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Introduction

The Standard Model of particle physics has been an exceptionally successful theory. Thirty-five
years after its conception there has been no measurement to positively prove it wrong. Yet,
pending experimental evidence, there is one dubiety: the Higgs sector. The theoretical problems
associated with this sector together with the precedent of quantum chromodynamics naturally
motivate the alternate concept of technicolor. In this thesis I introduce the concept of technicolor,
in particular showing that walking technicolor models are not excluded if we assume that there
is some separate dynamics to account for the masses of the top and bottom quarks.

Ever since Einstein introduced space-time symmetries, the idea of symmetries have been at
the heart of theoretical physics. In quantum field theory, there is an important class of symme-
tries called internal symmetries. The first example of a symmetry of this type was the isospin
symmetry of nucleons, which is based on a simple idea: what are the consequences of the fact
that the strong nuclear force does not know if it is dealing with a proton or a neutron? Such
questions can be answered in the framework of quantum field theory.

Ordinary matter is observed to be made of fermionic spin-1⁄2 particles. Forces are medi-
ated between charged particles by spin-1 gauge bosons corresponding to the charge. Of the
fundamental particles, leptons and quarks belong to a first category, and weak gauge bosons,
gluons, and the photon belong to a second. In the Standard Model, the currently accepted quan-
tum field theory describing nature, the strong and electroweak interactions are placed in the
SU(3)strong⊗SU(2)L⊗U(1)Y local group. Locality means that, in our description of quantum field
theory, we suppose that the group of transformations under which the Lagrangian is invariant
need not be constant in space, i.e. the fields transform independently at each space-time point.
This naturally leads to us to adopt the concept of a gauge field, the quanta of which are gauge
bosons of the interaction. All known interactions are now described in terms of local symmetries.
Thus it is also natural to classify theories according to their local symmetries.

However, because of the different SU(2)L charges of right- and left handed fields, gauge invari-
ance precludes fermion masses. Additionally, gauge bosons are by construction massless, but we
know that the weak interaction is weak, which implies mediation by massive gauge bosons. Thus
the electroweak symmetry must be broken. Within the Standard Model, electroweak symmetry
breaking was achieved by adding a scalar SU(2)L doublet with Yukawa couplings to fermions and
vev-developing potential. This scalar is unlike any other fundamental particle; indeed, it has the
very special role of generating all masses. After spontaneous symmetry breaking, all observed
masses are accounted for in the Standard Model.

There are very few experimental facts that the Standard Model cannot explain. Ignoring
gravity, the first observation of physics beyond the Standard Model is the need for neutrino
masses. This is based on the observation of neutrino oscillations. Secondly, the obvious baryon-
antibaryon asymmetry in the universe could be better explained by a new source of CP-violation.
Also, the dark matter and cosmological constant energy components of the universe do not have
a microphysical explanation. Lastly, the great range of masses of assumed elementary particles,
from the top quark to the neutrino, remain unexplained by the Standard Model.

The most relevant of these observations is the last one, but frankly there is no experimental
evidence to support the technicolor theory. The issues that have surfaced concern theoretical
aspects of the Higgs mechanism. Although none of these problems are relevant in any practical
calculations, many theorists find the following issues problematic in the Higgs sector:

1. The fine-tuning of parameters

2. Triviality

3. Flavor physics

The first two problems can be completely solved by introducing technicolor. It is a dynami-
cal theory of electroweak symmetry breaking modeled on quantum chromodynamics. However,
technicolor itself has no mechanism to generate ordinary fermion masses. For that, we have to
introduce extended technicolor, a non-trivial theory of flavor.



These theories cause their own set of problems, which are not theoretical, but phenomenolog-
ical. These are:

1. Discrepancies with precision electroweak measurements

2. Flavor-Changing Neutral Currents

3. A low top-quark mass

The primary solutions to these problems is to assume that technicolor is distinctly unlike quan-
tum chromodynamics. This scenario, where the coupling constant evolves slowly across a large
energy scale, is called walking technicolor.

In the first chapter I discuss quantum chromodynamics, and especially its low-energy dynam-
ics. Then I shall review the problems in the Standard Model in relation to the scalar particle. In
the third chapter, I will show that by replacing the scalar sector with a new theory that is like a
scaled version of quantum chromodynamics, the most pressing problems can be solved. Finally, I
will discuss the generation of fermion masses through extended technicolor interactions and the
walking technicolor scenario.

The reader interested in an introduction to spontaneous symmetry breaking should read the
appendix.

I use the following acronyms:
QCD: quantum chromodynamics
SSB: spontaneous symmetry sreaking
EWSB: electro-weak symmetry breaking
SM: standard model
TC: technicolor
ETC: extended technicolor



1
QCD and the Chiral Symmetry

Because QCD exhibits confinement and chiral symmetry breaking, its low-energy effective theory
is difficult to find analytically. However, this chapter should make it feasible that in the limit of
vanishing quark masses, the low energy dynamics are described by the linear sigma-model. It
is thus inferred that a QCD-like theory exhibits spontaneous chiral symmetry breaking. In the
real world, quarks have non-vanishing masses. Then the Goldstone bosons of the spontaneously
broken symmetry are light pseudo-Goldstone bosons, and are identified as the pions.

A perturbative analysis tells that the QCD coupling constant will grow infinite at small en-
ergies. This property is called asymptotic freedom, and it implies that there is a natural scale
associated with QCD. The natural scale is defined as that at which the coupling grows to order
one. For QCD this is ΛQCD ∼ 200 MeV.

The chiral symmetry of QCD is an example of an explicitly and dynamically broken symmetry.
If a symmetry is explicitly broken, it means that the symmetry is not fully realized in the theory.
In the case of QCD, the Lagrangian masses of quarks are this kind of small symmetry breaking
term. However, the three lightest quarks have masses that are small compared to the natural
scale of QCD, ΛQCD, and as a result, QCD sees these quarks as approximately massless, and
even after SSB there is an remaining approximate vector flavor symmetry.

The chiral condensate is a low energy phenomenon causing spontaneous chiral symmetry
breaking. It is in analogy to the ordinary superconductor, where electrons form Cooper pairs
through their interactions with lattice vibrations. The symmetry breaking is a fully dynamical
effect in the sense that it is not visible in the Lagrangian, or in any order of perturbation theory.
This is because at the limit of exact chiral symmetry, the Lagrangian is decomposed into left and
right-handed parts, that cannot couple perturbatively.

First I introduce QCD and its flavor symmetries. Then I show that at low energies, there
is an approximate vector flavor symmetry, by showing that the particle content of the theory
can be placed in representations of the symmetry. Then I introduce the sigma-models and make
it plausible that the dynamics are similar to that of the low-energy regime of QCD. Finally I
consider the possibility that the cause of spontaneous symmetry breakdown is a dynamical chiral
condensate. I derive the Goldberger-Treiman relation and first order corrections to vanishing
pion masses, and consider chiral perturbation theory.

1.1 QCD Introduced

The chiral symmetry of QCD is a global flavor symmetry. Flavor means that the symmetry acts in
the space of quark flavors - a flavor is up, down, charm etc. In a different parametrization, the left
and right symmetries are called the vector and axial symmetries. It can be said that the left and
right symmetries are broken to their vectorial subgroup at low energies - actually the axial group
is broken, but the left and right symmetries are more useful concepts in other contexts. Because
of this unbroken vectorial subgroup, we can apply symmetry analysis to classify hadrons.

As a side note, leptons can also be assigned a flavor. However, this is much less useful than
with quarks, because the lepton flavor symmetry is gauged: it corresponds to the SU(2)L group.
Thus gauge bosons change lepton flavor, i.e. e→ νe +W . In the last chapter of this thesis, while
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CHAPTER 1. QCD AND THE CHIRAL SYMMETRY

studying extended technicolor, we will also gauge the quark flavor symmetry. This will result in
exactly similar flavor-changing currents, which are not observed for quarks.

QCD Lagrangian

Consider QCD with two massless flavors of quarks. The Lagrangian for these massless quarks
is very simply

L = Q̄iγµD
µQ , (1.1)

where Q = (u, d). The covariant derivative acts on the color degrees of freedom, and the local
SU(3)color symmetry does not matter for this discussion. We immediately note a global U(2)
symmetry, because ��D = γµD

µ does not see the flavor space. However, there is more to it. Under
Q→ U(γ5)Q, we see

Q̄iγµD
µQ → Q̄iU†(−γ5)U(−γ5)DµγµQ = Q̄iγµD

µQ

i.e. the term is invariant. Thus there is also another global U(2) symmetry, which is the axial
symmetry.

Vector and Axial Symmetries

So, because U(2) = SU(2)⊗U(1), we can actually find four flavor symmetries, two SU(2) and two
U(1):

(i) Q→ e−iαQ
(ii) Q→ e−iβγ5Q
(iii) Q→ e−iα·τ/2Q
(iv) Q→ e−iβ·(τ/2)γ5Q
(i) is related to quark number conservation. (ii) is the axial quark number transformation. (iii)

is called the flavor isospin transformation, and (iv) is the axial flavor isospin transformation. The
first symmetry is unbroken and commutes with the others, so we may dismiss it. The conserved
quantity is actually quark number. The second symmetry does not correspond to any known
symmetry. We will find that the quark masses do not break this symmetry much, so there should
be a corresponding pseudo-Goldstone, but there isn’t. This is named the U(1) problem, and is
an example of quantum corrections anomalously breaking a symmetry. The third and fourth
symmetries are the ones we are currently interested in.

Notation

Here and later, τ should be understood as a three-vector, i.e. τ = (τ1, τ2, τ3). I will not always
distinguish vectors from scalars, but summation over suppressed indices is marked by a dot:
viu

i = v · u.

Left and Right Symmetries

We may rewrite the Lagrangian (1.1) with the projection operators

PR,L =
1
2

(1± γ5) .

First note that, since γ5 is hermitian and anticommutes with γµ,

q̄PL = q†γ0PL = q†PRγ0 = (PRq)†γ0 = q̄R

then

L = Q̄i��D(PL + PR)2Q = Q̄i��D(PLPL + PRPR + PLPR + PRPL)Q
= QPRi��DPLQ+ Q̄PLi��DPRQ

= Q̄Li��DQL + Q̄Ri��DQR ,
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1.1. QCD INTRODUCED

where we also used PLPR = 0 = PRPL.
We can now identify an SU(2)L⊗SU(2)R symmetry where the left and right fields respectively

transform with QL,R → e−iα·τ/2QL,R. Then it is clear that the mass term

Q̄mQ = Q̄LmQR + Q̄RmQL ,

breaks this symmetry. Here m is a diagonal matrix. From the first form we can see it specifically
breaks the axial symmetry.

We can write SU(2)L⊗SU(2)R=SU(2)V⊗SU(2)A, where V = R + L and A = R− L. We can
easily calculate, from (A.3), the conserved vector and axial currents:

vµ = iQ̄γµτQ

aµ = iQ̄γµγ5τQ

and defining the corresponding charge operators V =
´

d3xv0(x), A =
´

d3xa0, we may find (using{
Q†(x), Q(x′)

}
= iδ(x− x′)) that

[V,Q] = i

ˆ
d3x

[
Q†i (x)τijQj(x), Qk(x′)

]
= τQ

[A,Q] = τQ .

These commutators would be diagonal in the L− R basis.
It is believed that the axial symmetry is broken by a chiral condensate, while the vector

symmetry remains unbroken at low energies. Thus particles can be classified according to how
they transform under the vector group.

Low Energy Particle Content

QCD is believed to be a confining theory, which means that we can only observe color singlets. A
physically intuitive explanation is that the color force does not decrease in strength with distance,
so that if we try to pull colored particles apart, it becomes energetically cheaper to produce a new
colorless particle.

These particles binded by the strong force are now called hadrons. In early times, when
the energy reach of particle reactors grew, particle physicists detected an increasing number of
seemingly fundamental particles interacting through this strong force. However, a pattern was
found in these particles, and it led to the realization that hadrons consist of a number of quarks,
in such a way that the hadron is colorless. Now we understand that three quarks, the up, down,
and charmed, are relatively light, and thus the QCD Lagrangian has an approximate SU(3)V

symmetry. The corresponding SU(2)V symmetry is even better realized.
So there are two symmetries in play. First, any physical particle must be a color singlet. This

means that we cannot see the objects transforming in the fundamental representation of flavor
SU(2)V or SU(3)V. However, any higher number of quarks can essentially combine in a colorless
way; for example, mesons consist of two quarks in color + anticolor combinations.

These particles are grouped by how they transform under the flavor group. It is useful to
compare to addition of spin. Two electrons can either align or anti-align their spin. If they
are aligned, a rotation will certainly alter the wave function differently than if they were anti-
aligned. Just as particles are labeled by their spin, it is useful to label hadrons by how they
transform under the global flavor group - or equivalently, by what their quark content is.

SU(2)

There are two quarks transforming in the fundamental representation 2 of SU(2)V,

Q =
(
u
d

)
.

5



CHAPTER 1. QCD AND THE CHIRAL SYMMETRY

To see what combinations of these fields we can produce, it is useful to use Young’s tableaux [4].
Mesons are quark-antiquark bound states. Antiquarks transform under the conjugate repre-

sentation 2̄. Thus under SU(2)V, mesons can be found in the following representations:

2× 2̄ = 2× 2 = 1 + 3

Note that spin has not been considered here. This means that there is a spin 1 and a spin 0
triplet with the same quark combinations but the quarks having different spin alignment. Thus
there is one triplet which are the 0− pseudoscalar pions, and another triplet which are the 1−

pseudovector ρ-mesons. Technicolor will produce similar particles. The quark contents are

π+, ρ+ ∼ d̄u π0, ρ0 ∼ (ūu− d̄d)/
√

2 π−, ρ− ∼ ūd .

There are also SU(2)V singlets. These include the pseudoscalar η ∼ ūu+ d̄d.
The lightest baryons, which contain three quarks, are grouped as

2× 2× 2 = 2× (1 + 3) = 2 + 2 + 4 .

One of the 2’s contains the proton and the neutron.

SU(3): The Eightfold-Way

Adding the third quark, strange, which is also quite light, we have SU(3)V flavor symmetry. Now
quarks and antiquarks transform under 3 or 3̄ respectively. Thus from

3× 3̄ = 1 + 8

we find that there are mesons transforming in SU(3)V singlets and octets. The singlet can be
either the 0− or 1− and is ūu+ d̄d+ s̄s. The 0− octets are

π+ ∼ d̄u π0 ∼ (ūu− d̄d)/
√

2 π− ∼ ūd

K+ ∼ s̄u K0 ∼ s̄d K̄0 ∼ d̄s K− ∼ ūs

η0 ∼ (ūu+ d̄d− 2s̄s)/
√

6

For the baryons, which are quark-quark-quark states, we need the additional multiplications

3× 3 = 3̄ + 6

3× 6 = 8 + 10

which together imply
3× 3× 3 = 3× (3̄ + 6) = 1 + 8 + 8 + 10 .

Baryons are not as important for technicolor, as the number of technicolors is usually at least 4,
which means that technibaryons have 4 or more techniquarks and are thus much heavier. They
will probably decay quickly to heavy fermions, if it is allowed as in the ETC scenario.

The most important low-energy particles for QCD are, of course, the pions and the nucleons.
These particles transform under the SU(2)V because the strange quark is already much heavier
than either up or down. Approximate quark hard Lagrangian masses are given below, in MeV:

u ∼ 3 c ∼ 1× 103 t ∼ 2× 106

d ∼ 7 s ∼ 1× 102 b ∼ 4× 103 (1.2)

1.2 The Sigma-models

Now examine another model that contains a SU(2)L⊗SU(2)R symmetry [4]. It is this model that
we hope encompasses the features of a low-energy effective Lagrangian for QCD.

6



1.2. THE SIGMA-MODELS

Linear Sigma Model

Consider the following Lagrangian:

Lσ =
1
2
[
(∂µσ)2 + (∂µπ)2

]
+ N̄iγµ∂µN + gN̄(σ + iτ · πγ5)N − V (σ2 + π2) ,

where π = (π1, π2, π3) is a pion pseudoscalar isotriplet, N = (p, n) an isodoublet of fermion nucle-
ons, σ is an isoscalar, and the potential is

V (φ2) = −µ
2

2
φ2 +

λ

4
φ4 .

Conserved Currents

The Lagrangian is invariant under the transformations

σ → σ′ = σ

π → π′ = π + α× π
N → N ′ = N + iα · τ

2
N .

In the current case (A.1) generalizes to δψr = αiT
(i)
rs ψs for i = (1, 2, 3), because α is a 3-vector and

r = (σ, πi, Ni). We have

T (i)
σσ = 0

T (i)
πrπs = εirs

T
(i)
NN = i

τi
2
,

and from these, remembering that N is a fermion field, the conserved currents (up to a multi-
plicative constant)

v(i)
µ = εirsπr∂µπs + N̄γµ

τi
2
N

and the corresponding generators Va =
´

d3xv
(a)
0 (x). Similarly the Lagrangian is invariant under

another set of transformations,

σ → σ′ = σ + β · π
π → π′ = π − βσ
N → N ′ = N + iβ · τ

2
γ5N

which gives the conserved currents

a(i)
µ = πi∂µσ − σ∂µπi + N̄γµ

τi
2
γ5N

and generators Aa. The second set of currents are called axial currents. Using the commutation
relations

[φ(x, t), ∂0φ(y, t)] = iδ3(x− y){
ψ(x, t), ψ†(y, t)

}
= iδ3(x− y)

for ψ = {n, p} and φ = {π, σ}, we get, after careful calculation:

[Va, Vb] = iεabcVc

[Va, Ab] = iεabcAc

[Aa, Ab] = iεabcVc

7



CHAPTER 1. QCD AND THE CHIRAL SYMMETRY

If we name QL = 1
2 (V −A) and QR = 1

2 (V +A) we see that

[
QaL, Q

b
L

]
= iεabcQcL

[QL, QR] = 0[
QaR, Q

b
R

]
= iεabcQcR

We have thus recovered two independent transformation groups, with generators obeying the
SU(2) Lie algebra: name them SU(2)L and SU(2)R. How can we understand what the transfor-
mations are? Counting the number of generators helps. As we have seen, both SU(2)’s have 3
independent generators. SO(4)would have 6 in analogue to the Lorentz group SO(1, 3), where we
have 3 corresponding to space-space rotations and 3 to space-time rotations. Thus it might seem
plausible that SU(2)⊗SU(2)'SO(4). Mathematically this means that there would be a one-to-
one correspondence between elements of both groups. Physically, we should have a rotation of 4
combinations of fields that is a symmetry of the Lagrangian. In the mesonic sector we easily see
that σ2 + π2 is conserved if we simply rotate the fields among themselves. It is trivial to check
that this happens under both the vector and axial groups, at least to the first order.

This symmetry is spontaneously broken if µ2 > 0. The potential has SO(4) symmetry and
thus vacuum configurations correspond to points on a sphere. By convention we choose that
〈0|π|0〉 = 0 and 〈0|σ|0〉 = v.

Goldstone Theorem

At this point, it is useful to contemplate on the Goldstone theorem, proved in the appendix
for the general case. From our current definitions, it is easy to find [Aa, πb(0)] = iδabσ and
[Aa, σ(0)] = −iπa. Thus when we assume that σ develops a vev, we can write v = 〈0|σ|0〉 =
−i 1

3 〈0|[A
a, πa(0)]|0〉, which we can insert to (A.5). After inserting a full set of states we have

3iv =
∑
n

(2π)3δ3(pn)
{〈

0|a0
a(0)|n

〉
〈n|πa(0)|0〉 e−iEnt − 〈0|πa(0)|n〉

〈
n|a0

a(0)|0
〉
eiEnt

}
.

It is shown that v must be constant in time; thus |n〉 is massless. Now we have to conclude that
|n〉 = |πa(pn)〉. With the usual 1-particle normalization

∑
n

|n〉 〈n| =
ˆ

d3p

(2π)32p0
|p〉 〈p|

we have

3iv =
∑
a

ˆ
d3p

2p0
δ3(p)

{〈
0|a0

a(0)|πa(p)
〉
〈πa(p)|πa(0)|0〉 − 〈0|πa(0)|πa(p)〉

〈
πa(p)|a0

a(0)|0
〉}

.

The equation is satisfied for
〈
0|a0

a(0)|πb(p)
〉

= ivp0δab if we normalize 〈πa(p)|πa(0)|0〉 = 1. Then,
by relativistic covariance, we must have

〈0|aµa(0)|πb(p)〉 = ivpµδab (1.3)

and the matrix element of the current divergence is

〈0|∂µaµa(0)|πb(p)〉 = vm2
πδab .

Current conservation implies either v = 0 or mπ = 0; this is the Goldstone theorem in a concrete
form.

8



1.2. THE SIGMA-MODELS

Broken Phase

Now proceed by defining σ = ς + v to find the Lagrangian

Lσ,broken =
1
2
[
(∂µς)2 + (∂µπ)2

]
+ N̄iγµ∂µN − gvN̄N + gN̄(ς + iτ · πγ5)N

+µ2ς2 − λvς(ς2 + π2)− 1
4
λ(ς2 + π2)2 + const,

where v2 = µ2/λ. Notice how the masses of the particle spectrum change radically: the fermion
field becomes massive, as does the isoscalar, but the three pions remain massless. Since the
SU(2)V symmetry did not affect σ, we can deduce the Lagrangian is still invariant under the
symmetry. The ’vacuum choice’ respected the SU(2)V symmetry, i.e. the vacuum is invariant
under the corresponding transformations. However, the vacuum is not invariant under SU(2)A,
and the symmetry is sponteneously broken. But although the symmetry is not apparent in the
Lagrangian, the axial current is conserved: ∂µa

µ
a = 0. This is why a spontaneously broken

symmetry is sometimes called a hidden symmetry. For an explicitly broken symmetry, ∂µJµi 6= 0.
Thus we may postulate that this Lagrangian is some kind of hadronic version of the QCD

Lagrangian with two massless quarks. However, the current model does not include the effect of
explicit small quark masses. The effect will be incorporated in the nonlinear sigma model studied
next.

Nonlinear Sigma Model

Consider adding of a term cσ to Lσ. The vectorial current will be conserved, because it did not
affect σ, but what happens to the axial current? Denoting the new current by J , we see from
(A.2) that

δ(Lσ + cσ) = cδσ + 0 = βi∂µJ
µ
i = βicπi

∂µJ
µ
i = cπi

The additional term will affect the minimum of the potential as well. With the same convention,
〈0|σ|0〉 = v, we find the minimum is at v(µ2 − λv2) = c. We can see that if c vanishes, we get the
preceding v. Now if we define σ = ς + v, we find a term π2(µ2 − λv2)/2, which is a mass term for
the pion:

(µ2 − λv2) =
c

v
≡ m2

π 6= 0

Looking at the particle content and interactions, this might be a realistic model of low-energy
hadron dynamics. The πN interaction is the ’one pion exchange’ potential postulated by Yukawa,
with incorporation of isospin. The pions and nucleons can have realistic masses. The only imme-
diate problem is that σ is a 0+ meson, but no such particle is found in nature.

Chiral Circle

It turns out we can eliminate the particle if we assume its mass is very large. This means
assuming

√
2µ is large while v is finite. The parameter c is by definition small, so from µ2 =

m2
π + λv2 we conclude that in this case, λ must be very large. The potential has the form

V (φ2) = −λv
2

2
φ2 +

λ

4
φ4 −m2

πφ
2 .

As λ goes to infinity, near the value φ2 = v2, −λv4/2 becomes a very negative constant. This
encourages us to use a nonperturbative semiclassical limit of enforcing

σ2 + π2 = v2

9



CHAPTER 1. QCD AND THE CHIRAL SYMMETRY

because other values will be greatly suppressed. We are still assuming σ to develop the vev; but
think of σ =

√
v2 − π2 as the dynamical variable, thus effectively removing one degree of freedom.

Since mπ is not altered, the pions remain massive. Now the derivative term for σ becomes

1
2

[∂µ
√
v2 − π2]2 =

1
2

(−π · ∂µπ)2(v2 − π2)−1 =
1

2v2
(π · ∂µπ)2 +O(π6) .

The first term makes a simple prediction on pion-pion scattering. The final full Lagrangian is

Lfinal =
1
2

(∂µπ)2 − 1
2
m2
ππ

2 + N̄
(
i�∂ + igτ · πγ5 − gv

)
N +

1
2v2

(π · ∂µπ)2 + . . .

which is a somewhat complete model of the low-energy dynamics of QCD. Here we have intro-
duced the Feynman slash notation, �a = aµγ

µ.
We note that all terms are no longer renormalizable. This should not bother us as long as

the involved momentums are below the scale v. To see this, consider for example the pion-pion
scattering term. It is essentially the φ4 interaction term with λ/4! ∼ k2/2v2, which is small if
k2 � v2.

Of course, in the current model we have no explanation for the cause of SSB. It is surprising
that given the complexity of the problem, we do not even need to know: the low-energy behavior
can be discerned by simply assuming the symmetry is broken. For example, had we simply
written a derivative term of dimension six we would have found the pion-pion scattering term,
since v2 is the relevant dimensionful parameter. This is the key to a general modern approach
on low-energy dynamics, called effective field theory.

1.3 Dynamically Broken Chiral Symmetry

Since the Sigma model seems to apply to the low-energy regime of QCD, we may ask why is
the chiral symmetry of QCD broken. Because there are no scalar operators, the symmetry must
be broken by a composite operator. It is believed that the reason is a quark condensate in the
vacuum state.

Thus, let us continue on the case of QCD with massless up and down quarks [1]. Supercon-
ductivity occurs because a small electron-electron attraction leads to a condensate of electron
pairs in the ground state of the system. In QCD, there are very strong attractive interactions,
and now if we assume the masses are zero, it is very economical to create bound quark-antiquark
pairs. Thus the QCD vacuum could well include a quark condensate. But such a condensate,
parametrized by the expectation value of a scalar operator〈

Q̄Q
〉

=
〈
Q̄LQR + Q̄RQL

〉
6= 0

is not invariant under the axial SU(2). Thus the SU(2)A is spontaneously broken and we have
three related Goldstone bosons, that can be created by the axial current. Inspired by (1.3), write

〈0 |aµi (x)|πj(p)〉 = −ipµfπδije−ipx . (1.4)

The particle π has the quantum numbers of the axial current a and should be massless at the
limit of vanishing quark masses. We are factually provided with three such pseudoscalar parti-
cles, the pions. Then the constant appearing here, fπ, can be measured from the rate of π+ decay
through the weak channel, and is found fπ = 93 MeV. It is thus called the pion decay constant.
Contracting (1.4) with pµ we find the pion is massless, as is expected in this approximation.

Note that this condensate mixes quarks of different helicities. This means that the quarks
are allowed an effective mass! However, the situation is complicated by confinement. As we
cannot see quarks directly, what this really means is that quarks look heavier than their La-
grangian mass as they move inside a bound state. We will get an estimate of this difference from
considering the pion mass.

One might consider more elaborate condensates, such as
〈
Q̄RQR + Q̄LQL

〉
, which would break

the ordinary vectorial isospin. However, the Vafa-Witten theorem states that the flavor SU(N)V

10



1.3. DYNAMICALLY BROKEN CHIRAL SYMMETRY

cannot be broken spontaneously. Additionally, the small Lagrangian masses of quarks force the
usual condensate, exactly like a small external magnetic field forces the direction of magnetiza-
tion in ferromagnets.

Goldberger-Treiman Relation

Let us now derive the Goldberger-Treiman relation. The result will relate the coupling constant
of a πN term with the mass of the nucleon and fπ. Begin by considering the matrix element

〈N(p′) |aµ(q)|N(p)〉 = ū(p′)
[
γµF1(q2) +

iσµνqν
2m

F2(q2) + qµF3(q2)
]
γ5σu(p) ,

where we have written the most general possible axial structure. Remember, the a and σ have
one hidden index. At q = 0 the two latter terms in the brackets disappear, but F1(0) need not
be zero. Conventionally we define F1(0) = gA. Now we use the conservation of the axial current
when quark masses vanish:

0 = ū(p′)
[
�qF1(q2) + q2F3(q2)

]
γ5σu(p)

= ū(p′)
[
(��p
′ − �p)F1(q2) + q2F3(q2)

]
γ5σu(p)

= ū(p′)
[
2mNF1(q2) + q2F3(q2)

]
γ5σu(p) ,

where on the last line we have to use the equations of motion, ū(p′)(��p
′ − mN ) = 0, and (�p −

mN )u(p) = 0, commuting �p over the γ5. Thus we must have

gA = − lim
q→0

q2F3(q2)
2mN

,

which would vanish unless F3 contains a pole at q = 0. Such a pole would correspond to a
massless particle, one just like the pion!

For calculating F3, we must assume some form for the pion-nucleon term. We could take the
interaction term from our Sigma-model, but conventionally there is an additional factor of 2:

LπNN = 2igπNN N̄γ5(π · τ)N .

From (1.4) we see that we must have a term of the form fπ∂µπ ∈ aµ. The contribution of this
term is of the form qµfπ 〈N |π(q)|N〉, which gives

(−iqµfπ)(
i

q2
)(−2gπNN ūτγ5u) .

The first part is just 〈0 |aµi (x)|πj(p)〉, then we have the pion propagator, and the last part is the
pion-NN vertex. Thus this contribution to F3 dominates at small q:

F3 = −2fπgπNN
q2

,

and so we have
gA =

fπgπNN
mN

which is the famous Goldberger-Treiman relation. It is satisfied experimentally to a 5% accuracy.
This greatly increases confidense that our interpretation of the SSB pattern is correct.

Pion Masses

We might still be interested in finding the pion masses when the quark masses are not exactly
zero. We can find how they are related quite simply. With nonzero quark masses, we have an
additional term Lm = Q̄mQ, where m = diag(mu,md). Then we can calculate

∂µa
µ = δL+ δ(Q̄mQ)

∝ Q̄γ5 {m,σ}Q .

11
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Thus from (1.4) we find

〈0 |∂µaµi (x)|πj(p)〉 ∝ δijp
2fπ ∝

〈
0
∣∣Q̄ {m,σi} γ5Q

∣∣πj(p)〉
∝ tr [{m,σi}σj ]
∝ δij(mu +md) ,

where the second line follows from index structure and the last line from the fact that the part of
m proportional to the identity is mu +md. Thus we may write a proportionality constant and get

m2
π = (mu +md)

M2

fπ
.

Note that m2
π is proportional to the explicit symmetry breaking term (mu). Compare this to the

form of the nonlinear sigma-model, where we had m2
π = c

v .
The parameter M can be estimated to be around 400 MeV. Thus for mπ = 140 MeV one needs

mu +md ∼ 10 MeV. This would indeed imply a small perturbation compared to the strong inter-
action scale ΛQCD ∼ 200 MeV. Thus if the quarks acquire a dynamical mass from strong interac-
tions, the dynamical mass will be much larger than their explicit symmetry-breaking Lagrangian
mass. All in all, it would seem plausible that the QCD chiral symmetry is an approximate sym-
metry which is dynamically broken by a quark condensate.

As long as the effective mass is much larger than the explicit mass, the quarks inside hadrons
will behave in the first approximation as they were massless, and thus degenerate in mass. Thus
the isospin symmetry does not constitute anything fundamental about the relations of the quark
masses; it is simply the statement that for those quarks with masses much less than 200 MeV,
QCD does not see the masses. In other words, that the chiral flavor symmetry has consequences
is not related to the fact that the lightest quarks have small mass differences, but to the fact that
they are light compared to the natural scale of QCD.

Chiral Perturbation Theory

We now look at the low-energy problem from another angle, namely that of effective field theory.
We will need the result when discussing the technicolor scale.

At low energies, only the lightest particles matter. Thus we can exclude all quarks except for
the up and down quarks. We know, since there are no parity doublets, that the flavor SU(2) is
somehow broken. We want to find, from a top-down perspective, what the low-energy degrees of
freedom of QCD are. Of course these are the pions, which are interpreted Goldstone bosons of
the broken SU(2) chiral flavor symmetry, and nucleons. We want to find the Lagrangian of the
pions.

Under SSB, the formula is to replace the transformations that a field is invariant under with
a dynamic field representing that transformation, and then calculate the Lagrangian around the
vev. For example, with the complex scalar field considered in the appendix, we have invariance
under ϕ→ eiαϕ. Thus we write in the Lagrangian

ϕ→ (〈ϕ〉+ φ)expi
θ(x)
v

,

and take the few first terms of the expansion of the exponent.
In QCD, the SU(2) symmetry is Q → e−iα·τ/2−iγ5β·τ/2Q. The situation is different in the

respect that we cannot simply insert something of this form to the Lagrangian, because the
quarks are confined. The implicit solution has been effective field theory. Related to QCD, the
method is often called chiral perturbation theory. The general scheme is to write the most general
Lagrangian with the symmetries of the parent field theory.

Now consider the condensate. Assign a definite value, say〈
Q̄Q
〉

= −v3 .

12



1.3. DYNAMICALLY BROKEN CHIRAL SYMMETRY

Note that this assignment is a diagonal matrix equation in flavor space. Now the basic idea is the
same as with the scalar field. There, the Goldstone bosons replaced transformations around the
specific chosen vacuum in the direction of invariance. Here, Goldstone bosons should represent
fluctuations around this choice: 〈

Q̄(x)Q(x)
〉

= −v3U(x) .

We require detU = 1 because the U(1)A symmetry is badly broken by the anomaly. Otherwise we
would only require U to be unitary. In that case, we would have an additional particle appearing
in the low-energy particle spectrum. Thus, write

U = exp (iπ · τ/fπ) . (1.5)

The fields π are, of course, identified with the pions. Now the low-energy Lagrangian should be
the most general possible built from this field. However, the lowest-dimensional nontrivial term
built out of these objects is

L = −1
4
f2
πtr
[
(∂µU)† (∂µU)

]
.

This will give the same result for the pion-pion scattering as the previous section. Continuing
on these lines, and taking all the terms that are allowed by symmetries, we can arrive at the
low-energy effective Lagrangian. This would, for example, include fourth derivatives of U , and
also other particles, e.g. the proton and neutron. This is indeed a lengthy task, and so we have
simply assumed the Sigma-model Lagrangian and tried to justify it corresponds with the physical
setting.
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2
Probing Higgs’ Problems

In the SM the Higgs field causes EWSB. It is a vev-developing scalar field with Yukawa cou-
plings to the fermions. The electroweak gauge part SU(2)⊗U(1) is then broken to the U(1) of
electromagnetism, and the W and Z bosons acquire masses along with the the fermions.

Unnaturalness is the most pressing problem in the Higgs solution. Based on renormalization
groups, it is possible to argument that every theory has a physical cutoff. Taking this viewpoint
can actually explain why we consider only renormalizable field theories. Then the fine-tuning
problem is, that in this scheme of renormalization, we need unnatural fine-tuning of parameters.

This problem also manifests in another way. We can find that the scalar particle is related to
the partition function of statistical systems. In this picture we see that requiring m ∼ 0 is the
same as requiring T ∼ Tc in a statistical system to a great accuracy. In a lab, an experimentalist
can carefully tune the temperature. But in the case of the universe, one would have to resort to
the anthropic principle, which should always be avoided since there is no counterargument!

Trivialness is the exact statement that a weakly interacting scalar particle is likely always
related to an effective theory, because there is a definite maximum range of validity of the theory.
If we either push the cutoff scale high or examine the coupling at low energies, we find that
the coupling constant vanishes, i.e. the theory becomes the trivial free field theory. Since the
coupling is related to the physical Higgs particle mass, we can get a mass limit for the Higgs
particle from this analysis.

The last problem is just the statement that we would like a dynamic explanation for every
energy scale. The energy scale of QCD comes beautifully and naturally without great sensitivity
to the cutoff scale, fully by dynamical effects. Compared to this, the simple Higgs picture seems
lacking. This is called the hierarchy problem. Also, although the Yukawa couplings do allow for
the observed masses, there is no explanation for the various masses. This is called the flavor
problem.

There is not much more to the hierarchy and flavor problems, and they seem to be overlooked
by many theoretical physicists. Although it is obviously true that we would enjoy a better theory,
since there is no concrete problem, especially the flavor problem gets a philosophical connotation.
In addition its difficulty makes it unpopular to study. Extended technicolor attacks the problem
directly.

I begin this chapter by deriving tree-level relations for masses in the SM. Then I will show
why the cutoff scheme of renormalization is always relevant, and derive the relation between
the bare and dressed mass of the scalar particle. This relation will explicate what is meant by
unnaturalness: that the dressed mass is not proportional to the bare mass, but has an additive
contribution proportional to the cutoff scale. I will also derive the trivialness property by con-
sidering the scalar contribution to an effective potential. Then I find mass bounds on the Higgs
particle.

2.1 The Standard Model Masses

In technicolor, our ultimate wish is to explain mass by dynamical means. Within the SM, the
Goldstone bosons from the SSB of the electroweak symmetry give a mass to the gauge bosons
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CHAPTER 2. PROBING HIGGS’ PROBLEMS

proportional to the vev. Similarly the Yukawa terms gφψ̄ψ give mass terms proportional to the
vev. Our disposition is to write the most general possible couplings, and then use the assumed
symmetries to simplify the Lagrangian.

Gauge Boson Masses

The scalar part of the SM Lagrangian reads

Lscalar = |Dµφ|2 − V (φ) .

where
Dµ = ∂µ + ig

(σ
2
·Wµ

)
+ ig′

Y

2
Bµ .

The couplings are g for SU(2)L and g′ for U(1), and Y is the hypercharge operator. The generators
are fully determined by the group algebra in the correct representation. We get the gauge boson
masses from evaluating this at the scalar field vev, which can be arbitrarily chosen as

φ =
1√
2

(
0
v

)
.

Then, expanding the covariant derivative with the SU(2) and U(1) gauge boson fields, we get

∆L =
1
2
(

0 v
)(1

2
gσ ·Wµ +

1
2
g′Bµ

)2( 0
v

)
=

1
2
v2

[
1
2
g2W+W− +

1
4

(−gW3 + g′B)2
]

=
(gv

2

)2

W+W− +
1
2

(√
g2 + g′2v

2

)2

Z2
µ + 0 ·A2

where
W± = 1√

2
(W1 ∓ iW2) Z = gW3−g′B√

g2+g′2
A = g′W3+gB√

g2+g′2

The field A is chosen to be orthogonal to Z in the sense that(
A
Z

)
=
(

cosθ sinθ
−sinθ cosθ

)(
B
W3

)
where tanθ = g′/g. We thus have the standard mass term of a charged particle, mW = gv/2 and
mZ =

√
g2 + g′2v/2. The photon remains massless. We also have a nontrivial relation,

mW

mZ
=

g

(g2 + g′2)1/2
= cos θW .

Lepton Masses

Since there are no right handed neutrinos, the only possible Yukawa couplings of the Higgs
doublet to leptons is [1]

Lhll = −λijĒiL · φe
j
R + h.c. ,

where E is the lepton doublet, and φ the Higgs doublet. i, j are generation indices. This term is
of the form

−
(
ν̄LλeR
ēRλer

)
· φ

This coupling can be diagonalized as follows. λλ† is unitary. Thus it is a unitary rotation of its
eigenvalues, write λλ† = UD2U† = UDW †WD†U†. Thus λ = UDW † where W and U are unitary
and D diagonal.
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Subsequently do the change of variables EiL → U ijEjL, eiR → W ijejR. Since we are trans-
forming both elements of the doublet similarly, the covariant derivative terms with the SU(2)
matrices are unaltered. Thus we get terms of the form

Lhll = −λiĒiL · φeiR + h.c. .

which are exactly electron, muon and tau mass terms of the form vλi.

Quark Masses

The most general SU(2) singlet gauge-invariant renormalizable coupling with zero net hyper-
charge is

Lhqq = −λijd Q̄
i
L · φd

j
R − λ

ij
u ε

abQ̄iLaφ
†
bu
j
R + h.c. .

We want to diagonalize these to-be mass terms like we did with the lepton masses. Do exactly the
same trick, i.e. write λd = UdDdW

†
d and λu = UuDuW

†
u. Then the change of variables dR →Wd ·dR

and uR → Wu · uR will eliminate the W ’s from the theory, as the right handed fields are singlets
under SU(2) and thus the interaction terms are of the form q̄Ri��DqR. Now we have terms of the
form (ε ≡ [εij ])

−
(
ūLUdDddR
d̄LUdDddR

)
· φ−

(
ūLUdDduR
d̄LUdDduR

)
· ε · φ†

and we see that we can rotate U away from only one component. In the unitary gauge, we can
choose the lower component of φ to develop the vev. In this case, clearly we can diagonalize
the mass-matrix by choosing dL → Ud · dL and uL → Uu · uL. Each mass-parameter thus has a
corresponding coupling.

Since QCD is chiral-blind i.e. the L and R couple equivalently, this transformation will not
affect the QCD Lagrangian. But the weak interaction terms of SU(2) are not chiral-blind. The
current that couples quarks to the W− boson transforms as follows:

J+
µ =

1√
2
ūL · γµdL →

1√
2
ūL · (U†uUd) · γµdL .

This shows that there is mixing among the triplet uiL and or the diL, and this mixing is given by
the unitary matrix V = U†uUd. A 3 × 3 unitary matrix has one overall complex phase. Since this
phase will appear only when coupling to all three generations, it is a possible explanation for the
weak CP-violation observed in nature. This could explain e.g. the lifetime difference of the KL

and KS .
One more observation deserves attention. When making the chiral transformations on the

quarks, we assumed implicitly that the path integral measure would stay invariant. This is
not strictly true. In fact, we induce a total derivative term that cannot be removed! This is
because it induces a nontrivial topology to the vacuum. But such a term is also shown to come
from instanton effects. This is known as the strong CP problem, and its usual solution involves a
dynamical scalar degree of freedom called the axion; however, this particle has not been observed.

Higgs’ Mass

The Higgs sector’s potential is

VHiggs = −1
2
µ2φ∗φ+

λ

4!
(φ∗φ)2 .

In the unitary gauge we can choose, 〈(
φ+

φ0

)〉
=
(

0
v

)
and writing φ0 = v+h we get m2

h = λv2/2. Because λ is a free parameter, the SM does not predict
the Higgs mass.
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2.2 The Unnatural Higgs

Unnaturalness is by far the strongest argument against fundamental scalar field theories. We
will go through the argument from two different perspectives.

Analogy with Statistical Physics

For a quantum field theory with Lagrangian L, the generating functional of correlation functions
is

Z[J ] =
ˆ
DφeiS[J] ,

where S[J ] =
´

d4x (L+ Jφ). The time variable integration in the exponent goes from −T to T ,
with T → ∞(1 − iε). The infinitesimal ε gives the correct Feynman propagator. The Wick trick
is to rotate the contour integral so that T → −i∞, i.e. x0 → −ix4. Since the integration path is
deformed through an area with no poles, it should not alter the integral. Then we get

Z[J ] =
ˆ
Dφe−SE [J] ,

where SE [J ] =
´

d4xE (LE − Jφ). Take L = 1
2 (∂µφ)2 − 1

2m
2φ2 − λ

4!φ
4. Then

LE =
1
2

(∂µEφ)2 +
1
2
m2φ2 +

λ

4!
φ4 (2.1)

because there is an −i from the measure of integration. But LE looks very much like an energy;
it has a large value for large amplitudes or gradients. Actually Z[J ] is precisely the statistical
partition function of a 4-dimensional macroscopic system, described approximately by treating
fluctuations as a continuum field.

In Landau theory of phase transitions, the parameterm2 ∼ T−Tc. Thus our SM is in analogue
to a 4-d statistical system that is just slightly below the critical temperature. But just like the
Landau theory is a phenomenological theory, the Higgs picture provides no understanding of why
m2 would be so very small and negative. In fact, this argument requires that m2 is fine-tuned
to be very small, in analogue to fine-tuning T ∼ Tc. The relevant question is, who is doing the
fine-tuning?

A related fact is that in quantum field theory, the effective degrees of freedom are those parti-
cles with a mass much smaller than the energy scale in question. Thus we always want theories
with massless or almost massless particles. Then, according to the previous argument, a scalar
field theory can never be fundamental! Some particles, of course, are naturally massless, such as
the chiral fermion, the gauge boson, and the Goldstone boson. These are thus the natural build-
ing blocks of quantum field theory. Of course, this paragraph begs to mention supersymmetry,
in which the chiral symmetry of a superpartner fermion protects the small mass of the scalar,
which then becomes natural.

A Physical Cut-off

Renormalization is a procedure in which we write all physical quantities as a function of unphys-
ical divergent quantities. These divergent quantities appear when we consider the perturbative
interactions (loops). If the theory is renormalizable, physical quantities will stay finite in each
order of perturbation theory, with only a finite number of different types of divergences. The di-
vergent quantities can be calculated in many different ways, e.g. with a cutoff or by dimensional
regularization.

The SM is a renormalizable theory. In fact, this requirement greatly reduces the amount
of possible theories, and can thus be viewed as a simplifying principle. All this points to us
that perhaps, in correct quantum fiel theories, there is no physical cutoff. In condensed matter
physics, cutoffs appear at the scale at which the continuous description of space breaks down, so
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maybe this means our space truly is continuous. Here one can retreat to saying that since the
interpretation does not affect physics, the question should not be asked.

However, Wilson showed that there is a way to explain why we require renormalizable theo-
ries. The bottom line is that a field theory at a scale E compared to the same theory at the scale Λ
will have non-renormalizable dimension D operators modified by a factor of (E/Λ)D−d, where d is
the dimension of space-time. Thus non-renormalizable operators have vanishing effects at lower
energy-scales, and requiring renormalizable theories is equivalent to requiring theories that are
valid to much higher energy scales. The relevant concept is that of the renormalization group.

Wilson’s treatment is intriguing. We will take a scalar field theory with a cutoff, integrate
away the high-momenta parts, and then transform the path integral back into the original form,
except with the replacement L → Leff . Consider a real scalar field [1]. Define the path integral
measure Dφ = Πkφ(k). Then, in Euclidean space, and setting J = 0

Z =
ˆ
Dφe−SE .

Apply a cutoff Λ. This means φ(k) = 0 for k > Λ. For concreteness, assume the previous LE (2.1)
and omit the subindex E.

Now we want to integrate over high-energy modes. Let φ → φ̄ + φ̂, where φ̄(k) vanishes for
k ≥ bΛ, and φ̂(k) vanishes unless k ∈]bΛ,Λ[, b < 1. Then clearly Dφ→ Dφ̄Dφ̂, and

L[φ]→ L[φ̄] + L[φ̂] + λ

(
1
6
φ̄3φ̂+

1
4
φ̄2φ̂2 +

1
6
φ̄φ̂3

)
.

The φ̄φ̂-term disappeared because different Fourier modes are orthogonal (remember the inte-
gration limits).

Next, perform the integral over φ̂. To do this, we first note that we are interested in the limit
m � Λ so that we can treat all other terms as perturbations except 1

2 (∂µφ̂)2. This gives φ̂ the
trivial scalar propagator ∼ 1/k2. The other terms are regarded as perturbations, and we may use
diagrammatic techniques. The calculation is not very relevant to the rest of this argument, so
we just write the result:

L[φ] = L[φ̄] + (sum of connected diagrams) ≡ Leff [φ̄] .

Of course, the RHS has diagrams with φ̄. Now comes the trick. Write

Leff [φ̄] =
1
2

(1 + ∆Z)(∂µφ̄)2 +
1
2

(m2 + ∆m2)φ̄2 +
1
4!

(λ+ ∆λ)φ̄4

+∆C(∂µφ̄)2 + ∆Dφ̄6 + . . .

If we rescale distances and momenta with

k′ = k
b , x′ = xb

The first term will be 1
2b

2−d(1 + ∆Z)(∂µφ̄)2 because of the d4x and partial derivatives. This
suggests we also scale

φ′ =
√
b2−d(1 + ∆Z)φ̄ .

Because the primed quantities are integrated over, we may rename them without the primes.
Now we have written

Z ≈
ˆ
Dφe−Seff [φ]

where

Seff [φ] =
ˆ

d4x

[
1
2

(∂µφ)2 +
1
2
m′2φ2 +

λ′

4!
φ4

+C ′(∂µφ)4 +D′φ6
]

19



CHAPTER 2. PROBING HIGGS’ PROBLEMS

and
m′2 = (1 + ∆Z)−1(m2 + ∆m2)b−2 ,
λ′ = (1 + ∆Z)−2(λ+ ∆λ)bd−4 ,
C ′ = (1 + ∆Z)−2(C + ∆C)bd ,
D′ = (1 + ∆Z)−3(D + ∆D)b2d−6 ,

(2.2)

i.e. we have written a transformation of the Lagrangian. In our case C and D were zero, but they
are now included for generality.

Now compare calculating a correlation function at low external momenta. We can use either
formulation. With the original formulation, high-momentum fluctuations of the field are sud-
denly turned on as we compute loop diagrams. With our current Leff , however, these effects have
been absorbed into constants of the Lagrangian, and no infinities appear.

If we keep b ≈ 1, our perturbative treatment of the ∆ quantities is valid as long as the coupling
constants stay small. However, we will have to iterate the transformation many times to get to a
lower energy scale. This limit, in which the transformation is continuous, is the basic idea of the
renormalization group.

Look at (2.2) more closely. Ifm2 = λ = C = D = 0, to zeroth order all primed quantities vanish
as well. Thus L0 = 1/2(∂µφ)2 is a fixed point of the renormalization group transformation. If the
parameters are very close to zero, we have the simple transformation laws

m′2 = b−2m2 , λ′ = bd−4λ , C ′ = bdC , D′ = b2d−6D .

Taking d = 4, this suggests that the coefficient of an operator with N powers of φ and M deriva-
tives transforms as

C ′N,M = bN+M−4CN,M .

Actually, the coefficient is exactly what we would expect from naive dimensional analysis! The
preceding operator at scale Λ should have a coefficient gΛ4−N−M . At scale E, gE4−N−M . Thus
the dimensionless ratio multiplying the low-scale operator should be (E/Λ)N+M−4 ≡ bN+M−4.

Thus the result is that, at least in the viscinity of the free Lagrangian (and at least for the φ4-
theory), exactly the renormalizable terms remain of any theory defined at a much higher scale.
If this is a fact, then it seems plausible to assume that every theory has a physical cutoff, and
that we require renormalizability is just the statement that we require the theory to be valid to
a high scale, but not necessarily to an infinitely high scale.

Unnaturalness as Fine-tuning

For the grande finale of the unnaturalness argument, consider a generic scalar field theory with
a fermion:

L = iψ̄�∂ψ + |∂µφ|2 −m2
s|φ|2 − (λφψ̄ψ + h.c.) . (2.3)

If we assume, for discussion’s sake, that φ develops a vacuum expectation value:

φ =
1√
2

(ϕ+ v) ,

then the particle spectrum becomes massive: mf = λv/
√

2 and mh = ms. Now we want to find
the one-loop correction to the masses. As usual, define M2(p2) from the geometric series of the
two-point function:

hch = hah+hph+hphph+ · · ·

=
∞∑
n=0

KaK(pKaK)
n

=
KaK1− (pKaK)

=
i

p2 −m2 −M2(p2)
.
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2.2. THE UNNATURAL HIGGS

It is clear from here that
δm2 = ReM2(ms) = iKpK .

Relevant for this discussion is the fermion loop

hh`�L`hh .

We want to find the leading contribution to the mass in terms of a cutoff Λ. We can write down
this integral with the usual Feynman rules. To calculate it, we need Feynman parametrization,
a simple change of variables, the Wick rotation, and the formula

´
d4kEf(k2

E) = π2
´ Λ2

0
ydyf(y):

M2(p2 = mh) = i

(
−iλ√

2

)2

(−1)
ˆ

d4k

(2π)4

i2tr
[(

�k +mf

) (
�k − �p+mf

)][
k2 −m2

f

] [
(k − p)2 −m2

f

]
= i

(
−iλ√

2

)2 ˆ 1

0

dx
ˆ

d4k

(2π)4

tr
[(

�k +mf

) (
�k − �p+mf

)]
[(1− x)k2 + x(k − p)2]2

= i

(
−iλ√

2

)2 ˆ 1

0

dx
ˆ

d4k′

(2π)4

4(k′2 − x(2− x)m2
h +m2

f )[
k′2 + x(1 + x)m2

h −m2
f

]2
= i

(
−iλ√

2

)2 ˆ 1

0

dx
ˆ
id4kE
(2π)4

4(−k2
E − x(2− x)m2

h +m2
f )[

−k2
E + x(1 + x)m2

h −m2
f

]2
= m2

s

(
−iλ√

2

)2 ˆ 1

0

dxπ2

ˆ Λ2

m2
h

0

ydy
(2π)4

4(y + x(2− x) + α)
[y − x(1 + x) + α]2

= −m2
sλ

2 1
8π2

ˆ 1

0

dx
{

Λ2

m2
h

+ . . .

}
where the . . . denotes terms with Λ inside a logarithm, or in the denominator. Thus we have
discovered a leading contribution to the mass renormalization:

δm2
h,leading = − λ2

8π2
Λ2

For the fermion mass, the relevant graph is the one with a h-loop. A perfectly similar calculation
gives the corresponding result:

δmf,leading = −3λ2mf

64π2
ln(

Λ2

m2
F

)

Also, the same calculation for the SM gives similar results.
We earlier found that a fermion mass term broke the chiral symmetry. The Yukawa term is

of the same form. If λ is small, we may consider the Lagrangian to be approximately chirally
invariant. In case of the exact symmetry, we have decoupled left- and right handed degrees of
freedom that perturbative corrections cannot recouple. Thus in either limit mf → 0 or λ → 0
we must have δmf → 0. Then it seems plausible, by dimensional arguments, that the leading
correction is proportional tomf and the dependence on Λ is logarithmic. This keeps the correction
small. However, there is no symmetry that would in this way protect the small mass of the scalar.

Now, in accordance to the previous section, interpret Λ as a physical cutoff. This could be as
large as Λ ∼ 1016GeV. In the SM, in order to keep the WW-scattering from violating unitarity, we
must have the physical Higgs mass around 1 TeV. Thus

m2
h = m2

h0 + δm2
h,1 ,

where the unphysical bare mass must be adjusted to a precision of roughly 1 in 1016 in order to
cancel the quadratically divergent correction term. This adjustment must be made in each order
of perturbation theory, and is quite unnatural indeed.
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CHAPTER 2. PROBING HIGGS’ PROBLEMS

Here we finally get a formal definition of an unnatural mass. We say the scalar mass with
quadratically divergent mass renormalization is unnatural, while the fermion mass with loga-
rithmic divergence is natural.

2.3 Trivialness

Pure scalar field theories are trivial, and it is likely that all other models with fundamental scalar
fields are be trivial also. Trivialness means that the scalar degree of freedom decouples from the
theory at low energy-scales. To see this behavior, we need to use the renormalization group
equation. The renormalization group improvement of the coupling constant λ comes from the
vertex counterterm. However, we will take a another path and use the effective action formalism.

Effective Action and Running Coupling Constant

Take massless scalar field theory, with the simplest Lagrangian

L =
1
2

(∂µφ)2 − λ

4!
φ4 + counterterms.

The effective potential is a quantum corrected classical potential. Calculating the effective poten-
tial is an arduous task, but luckily the calculation is generalizable [14]. The one-loop contribution
of scalar loops to the effective potential is given by

Vscalar =
1

64π2
tr

{
M̄4(φc)ln

M̄2(φc)
M2

}
,

where
M̄2
ab =

∂2V0

∂φa∂φb

and the trace is over indices a, b. The subindex c denotes the classical field, and M is an arbitrary
energy-scale (not necessarily the cutoff). Now, with just one scalar, M̄2 = λφ2/2 and we have the
one-loop corrected potential:

V0+1 =
λ

4!
φ4
c +

λ2

256π2
φ4
c(ln

φ2
c

M2
+ ln

λ

2
)+counterterms .

The counterterms take care that the lnλ
2 term disappears (require ∂4V |M = λ). The effective

action can be expanded in powers of momentum, about the point where external momenta vanish:

Γ =
ˆ

dx
{
−Vc +

1
2

(∂µφc)2Zc + . . .

}
The parameter M was arbitrary, so the effective action should not depend on it:

M
dΓ
dM

=
{
M

∂

∂M
+ β

∂

∂λ
+ γ

ˆ
dxφc

δ

δφc

}
Γ = 0

This is the Callaman-Sumanzik renormalization group equation. It defines β and γ.
We need the one-loop corrected wave-function renormalization Z; in our simple case it turns

out to be Z = 1. It is useful to work with the dimensionless function,

V 4(t, λ) =
∂4V

∂φ4
c

= λ+
3λ2t

16π2

where t = ln(φc/M), because the dimensionless V 4 and Z can only depend on dimensionless
variables. Then writing the part proportional to Zc, which must vanish independently:{

−(1− γ)
∂

∂t
+ β

∂

∂λ
+ 2γ

}
Z = 0
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2.3. TRIVIALNESS

we find γ = 0. The other independent equation is{
− ∂

∂t
+ β

∂

∂λ

}
V 4 = 0 ,

from which we get, in the lowest order in λ,

β =
3λ2

16π2
.

This has the solution
λ(t) =

λ0

1− 3λ0t
16π2

where λ0 = λ(t = 0).

Trivialness and Higgs mass bounds

Now evaluate this at φc = E and M = Λ, and interpret these so that E is an arbitrary energy
scale and Λ is the physical cutoff. Then t = ln(E/Λ) 6 0. As t→ −∞, λ(t)→ 0 independent of λ0,
the self coupling at a high energy. Thus at low E/Λ, the scalar field theory becomes a trivial free
field theory. Other interactions modify this relation, but at the limit of small other couplings, the
property is probably true for all Higgs models [12].

The equation has another interesting feature as well, basically reverting the previous state-
ment. It is clear that λ(t) ≤ λ0. But what if λ0 is very large? In this limit, we see

λ(t) = −16π2

3t
.

We can solve for Λ. Then the scale at which the theory becomes strongly coupled, Λs, is

Λs < Λ = Eexp
16π2

3λ
.

So if the theory becomes strongly coupled before the cutoff of new physics, this relation approxi-
mately applies. The larger the self coupling, the lower this scale is forced to be. Our treatment
of the SM implicitly assumes that the theory is not strongly interacting, and thus this relation
says that the SM must be an effective theory.

Requiring the theory to stay weakly interacting to some scale Λw, this relation provides an
upper bound for the Higgs mass. Assume λ = (mHiggs/v)2 and set E = mHiggs. Then

mHiggs .
2πv√

3ln( Λw
mHiggs

)
.

Clearly our cutoff Λw must be greater than the Higgs mass for some range of validity of the
effective theory[24]. Lattice-based arguments give a tighter limit, Λw & 2πmHiggs. Then we get
the triviality bound mHiggs . 500 GeV. If the Higgs were heavier than this, we could surely say
that there was new physics at a few TeV. If the Higgs is much lighter, the scale of new physics is
pushed higher quite easily.

While this basic argument is correct, in the SM also interactions with other particles could
have a significant contribution. This raises the triviality bound.

23





3
Technicolor

To recapitulate what we know about strongly interacting theories, consider QCD. Since there is
no sign of parity doubling of the particle spectrum, we know that the chiral symmetry must be
broken. Since the Goldberger-Treiman relation holds so accurately, we can deduce that it is a
spontaneously broken symmetry, and the since there is no fundamental scalar operator to break
the symmetry, it must be a composite operator. Thus we have the picture that an asymptotically
free theory will produce a fermion condensate at low energies. Note that this is truly dynamical
symmetry breaking, because the symmetry breaking is not visible in the QCD Lagrangian, or in
any perturbative expansion.

If the Higgs sector is removed from the SM, all particles are apparently massless. However,
SSB of the quark chiral flavor symmetry propelled by a quark condensate still produces the
would-be pions. These Goldstone bosons give gauge bosons masses! However, the masses will
turn out to be much too small, and also there are no physical pions in the theory.

The naturalness, trivialness and hierarchy problems are solved in one stroke by assuming a
TC type of theory. TC is essentially a copy of QCD with a much bigger characteristic energy scale
ΛTC . We remove the Higgs sector from the SM, and replace it with a TC-sector which has an
exact chiral symmetry, broken by the chiral condensate in the low-energy regime. The related
Goldstone bosons disappear and the weak gauge bosons become massive. The only immediate
problem is that fermions remain massless.

I begin this chapter by considering the SM without the Higgs sector. I show that EWSB
would still occur because of the chiral condensate of QCD, but at a much lower scale. Using this
idea, I introduce the minimal technicolor model by replacing the Higgs sector with a strongly
interacting technicolor sector. I show that the minimal technicolor model is anomaly free, and
that it resolves the hierarchy problem, and examine the low energy particle content. I will find
that the particle spectrum, while sensitive to the specific model, has some predictability from
comparison to QCD. The lightest particles are the Goldstone bosons not consumed by the gauge
bosons. Some of these particles gain a small mass from SM interactions.

Finally, just to give a general idea, the scales relevant to this thesis are approximately:

ΛQCD ∼ 100MeV
vweak ∼ 102GeV
ΛTC ∼ 102GeV

ΛETC ∼ 104GeV
ΛGUT ∼ 1016GeV
Mp ∼ 1018GeV

3.1 The Standard Model Without Higgs

Consider the SM without the Higgs sector. In this case all particles look massless at tree level.
However, the gauge bosons will not remain so. For simplicity, consider only the two lightest
quarks.

It is a general result that any gauge boson coupled to the current of a spontaneously broken
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symmetry will acquire a mass. Here the reason is in the hadronic contributions to gauge boson
propagators. Such graphs give contributions that modify the propagator [7]:

gµν − qµqν/q2

q2
−→ gµν − qµqν/q2

q2(1 + Π(q2))
.

If the functional form of Π(q2) is smooth near the origin, the particles will remain massless. If
however, there is a pole, then the propagator will be modified to that of a massive particle. Such
is the case currently as we have the massless pions! We will consider the condensate, then find
how the chiral symmetry current couples to the gauge bosons, and finally calculate the masses
of these gauge bosons.

Dynamical Symmetry Breaking

SSB is signaled by a non-vanishing value of a scalar operator:〈
Q̄Q
〉
6= 0 .

This says that there is a quark condensate, i.e. the vacuum contains quark-antiquark pairs. The
operator Q̄Q does not transform correctly under SU(2)A. Thus we have 3 massless Goldstone
bosons. The conserved currents corresponding to the broken symmetries will couple the vacuum
to these pions. Thus we may write

〈0 |aµi |πj〉 = ifπq
µδij

where aµi are the three currents. Note that fπ defined in this way is a purely strong interaction
quantity, and cannot depend on the parameters of the weak interactions.

Global Symmetry Currents and Gauge Bosons

We must somehow see how to connect the local symmetry (gauge bosons) with this global sym-
metry current. The coupling will provide us with exactly the vertex needed to get massive gauge
bosons.

Take an arbitrary Lagrangian L0 with a global symmetry G. Then we have the corresponding
Noether current J (A.3), that satisfies δL0 = αaδJ

a = 0. If we now let α be x-dependent, we will
have an additional term δL0 = 0 + (∂µαa)Jaµ.

If we require L to be the Lagrangian invariant under such a local transformation, it is trivial
to see that

L = L0 − gAaµJaµ

satisfies this requirement to the first order in g. In general, terms of higher order in A can be
arranged to cancel higher-order terms in the gauge-transformation.

In effect, adding this term promotes the global symmetry G to its local counterpart. In our
current case, we can think that since the axial current contains at least the pion operator, it in
effect contains quark operators, and this is exactly the way it must thus couple to the weak gauge
bosons to be gauge-invariant.

Electroweak Boson Masses

According to the previous the argument, we write an interaction term − 1
2gW

±
µ a

µ
∓, where g is the

SU(2)L gauge coupling constant. The currents aµ± couple to the π± as before. Thus the vertex is

−i1
2
gfπkµ (3.1)

where kµcomes from the derivative.
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Ward’s identity tells us that the vacuum polarization amplitude is necessarily transverse; i.e.

agpgb= i

(
gµν −

kµkν
k2

)
Πab(k2) ,

where a, b are SU(2) or U(1) indices. Assuming a term

∆L =
1
2
m2
abA

a
µA

b
µ

we get a vertex proportional to gµνm2
ab, and a contribution

Πab ∈ m2
ab .

Thus if there is some contribution surviving in the k → 0 limit of the vacuum polarization am-
plitude, there must be a corresponding mass term to preserve the Ward identity. Generally such
contributions do not exist, but now we have the massless pion:

ghg =
(
−i1

2
gfπkµ

)(
i

k2

)(
−i1

2
gfπkν

)
= −i

(
kµkν
k2

)(
1
2
gfπ

)2

Thus we have mW = 1
2gfπ. Since the coupling of B is similar but g → g′, we can easily generalize

this to a mass matrix in the case of the B and W3 fields:

M2 =
(

g2 gg′

gg′ g′2

)
f2
π

4

The eigenvalues are

m2
γ = 0

m2
Z =

1
4

(g2 + g′2)f2
π

and the states that diagonalize the matrix are identified as the usual photon and weak neutral
boson. Importantly, we retain the phenomenologically extremely successful relation

mW

mZ
=

g

(g2 + g′2)1/2
= cos θW (3.2)

where θW is the usual weak mixing angle defined in terms of coupling constants. This result is
the same as the tree level result in the normal Higgs scenario.

Of course, there is a reason for this coincidence. In either model, taking the limit g′ → 0
there is a custodial global SU(2) symmetry in the symmetry breaking sector. Under this cus-
todial symmetry, the Goldstone bosons and the SU(2)L gauge currents transform in the same 3
representation. This means that in this limit, the SU(2) bosons must be degenerate in mass [17].
As there is only one chargeless SU(2)L boson, if we require mγ = 0, we have (3.2).

In the Higgs case, the custodial symmetry arises if we write the two complex fields as four
real fields. Then the vev breaks O(4) →O(3) 'SU(2). In our current case we have the quarks in
an isospin SU(2)L doublet. The gauged SU(2)L is broken, but a global SU(2) remains unbroken!

In the foregoing discussion we only considered the potential or elsewhise symmetry break-
ing sector. Generally there are interactions. In the SM they bring corrections to (3.2) of order
1%. In our current case, it is natural to question if the interactions produce larger corrections.
However, since the relation follows from a symmetry of the strong interactions, it must be valid
up to electroweak radiative corrections. It turns out there are much stronger phenomenological
implications of TC than these modifications.
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Thus, even simply removing the Higgs sector produces promising results. However, there are
also crucial shortcomings. With this model the masses of the gauge bosons would be of the order
of 10 MeV, while they should be about 100 GeV. Also, we do not have any physical pions in the
theory, as the pions went to the longitudinal degrees of freedom of the gauge bosons. However,
it is clear that these problems can be avoided if we assume a similar theory to QCD at a much
larger scale. Although fermions will remain massless, it is the basic idea of technicolor.

3.2 The Minimal Model

Suppose we have the SM but without the Higgs sector. This also entails that particles are mass-
less at tree level. To break the electroweak symmetry, add an electroweak doublet TL of fermions
that interacts through a new strong interaction, technicolor. The TC gauge group TC is assumed
to be SU(NT ).

T =
(
A
B

)
TL = PLT is a doublet whileAR andBR are singlets under SU(2)L, i.e. I3(AL, BL, TR) = (1

2 ,−
1
2 , 0).

T is a color-singlet. In the next-to-minimal model, we add ND of these doublets. We will assume
ND = 1 unless otherwise stated.

Gauge Anomalies

In some cases quantum corrections can violate a symmetry. These are found as a nonzero diver-
gence of the corresponding Noether current. The current is then called anomalous.

Anomalies arise when both axial and vector symmetry currents are present, since it is not
possible to find a regularization scheme which preserves both currents. They are visibile in tri-
angle graphs with three external gauge boson legs, or essentially one-loop corrections to vertices.
The η-meson is very heavy exactly because of an anomaly.

Anomalies coupled to gauge symmetries cannot be tolerated, since current conservation is a
necessity in the construction of gauge field theory. Gauge anomalies are proportional to [3]

Dαβγ =
1
2

tr [{Tα, Tβ}Tγ ] ,

where Tα is the representation of the gauge algebra acting on a left handed fermion or an-
tifermion field, and the trace is over the fields. The indices label different gauge groups.

We require that gauge anomalies vanish. The full gauge group is SU(NTC)⊗SU(3)⊗SU(2)⊗U(1).
Let Y (TL, AR, BR) = (a, b, c), and see if these constants are determined from requiring the gauge
anomalies to cancel.

While evaluating the triangle graphs, we only need to check if they vanish. There are two
simplifications. First, consider drawing an electron that emits a Z-boson and changes to a muon.
Then let this muon emit a photon. Now at the third vertex, the muon must change back into
an electron, and it cannot do this by emitting a photon. This happens with any non-U(1) gauge
group, and thus we only need to consider combinations in which the product TαTβTγ is a singlet
under the SU(n) groups. The other simplification is that anomalies vanish under some set of
groups if under those groups the fermions furnish a real representation. Thus

• SU(NT )-SU(NT )-SU(NT ) vanishes because NT +NT + N̄T + N̄T is a real representation of
the technifermions.

• SU(NT )-SU(NT )-SU(2) vanishes because we cannot draw a diagram with only one SU(2)
leg.

• SU(NT )-SU(NT )-U(1) vanishes if, when we sum over all left-handed fields which transform
under TC, the net hypercharge vanishes:

ND [Y (AL) + Y (BL) + Y (A∗R) + Y (B∗R)] = ND [2a+ b+ c] = 0
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• SU(NT )-X-X where X is not SU(NT ) vanishes because we cannot draw a diagram with only
one SU(NT ) leg.

• Any anomaly with SU(3) vanishes because T is color-singlet and the SM anomalies are
assumed to cancel.

• SU(2)-SU(2)-SU(2) vanishes in general because SU(2) has only real or pseudoreal repre-
sentations.

• SU(2)-SU(2)-U(1) vanishes if NDa = 0 because the SM anomalies are assumed to cancel.

• U(1)-U(1)-U(1) vanishes if ND
[
2a3 + b3 + c3

]
= 0.

Then we see we must choose Y (TL, AR, BR) = (0, b,−b), and for definiteness let b = 1. Thus
electric charges defined by Q = I3 + Y

2 give

Q(A,B) = (
1
2
,−1

2
) .

There is one more type of anomaly, namely the Witten global SU(2) anomaly. It can be qualita-
tively described as follows. Gauge transformations that vanish at spacial infinity correspond to
all gauge transformations on a 4-sphere. But SU(2) is isomorphic to the 3-sphere, and maps from
the 4-sphere to the 3-sphere form two disconnected subsets: π4(S3) = Z2. For an odd number of
SU(2) doublets, the contributions from these two domains exactly cancel in the path integral
defining the theory. Thus the the Witten SU(2) anomaly vanishes if the number of SU(2)L dou-
blets is even. As a corollary, we require NDNT to be even.

Technicolor Scale

Technicolor, like QCD, is a strongly interacting theory. The related phenomenom of the non-
perturbative condensate is difficult to study analytically. However, approximating QCD by the
Nambu-Jona-Lasino model, we can get results that become exact in the limit of a large number
of colors. The model connects the high-energy asymptotically free regime with the low-energy
confined regime, and produces rules that characterize QCD and are also used extensively in TC.
They can be written [8]

fπ ∼
√
NcΛQCD 〈q̄iqj〉 ∼ δijNcΛ3

QCD m0 ∼ ΛQCD

where m0 is a typical dynamical mass. These rules apply at the renormalization scale of ΛQCD.
From the first rule, we have

Fπ ∼ fπ

√
NT
3

(
ΛTC

ΛQCD

)
.

However, the technipion decay constant Fπ is essentially controlled by the masses of the gauge
bosons. Thus we should be able to solve ΛTC from this equation in terms of the true variables
NT , ND, and known parameters including

v ≡ vweak = v0/
√

2 = 175GeV

which is the EWSB scale.
We start by considering the coupling of the pions and weak gauge bosons. If we are in the

broken phase, the SM Higgs field can be written

H =
1√
2

exp
(
iπ · τ
v0

)(
v0 + h

0

)
.

This is exactly the analogue to ϕ = (v + φ(x))exp(iθ(x)/v) in the case of the complex scalar
field, which is discussed in the appendix. In the case of TC, we had (3.1) the coupling of the
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global symmetry current and the local gauge bosons: 1
2gFπW

i
µkµπi. Calculating (DµH)†(DµH)

and comparing the relevant terms we easily find v0 = Fπ.
However, we want to include the effect of ND > 1. For this, we use our result (1.5):

U = exp (iπ · τ/fπ) .

Then the previous W − π term is recovered from F 2
π

4 tr
(
|DµU |2

)
. Since each doublet separately

should produce this kind of term, for many doublets we write

L =
NDF

2
π

4
tr
(
|DµU |2

)
.

Then, expanding to find the boson mass term, we find v0 =
√
NDFπ.

Hence we can write

v0 ∼ fπ

√
NDNT

3

(
ΛTC

ΛQCD

)
.

Invert this relation to find the result:

ΛTC ∼ v
ΛQCD
fπ

√
3

2NDNT
∼ 460√

NDNT
GeV .

Here and later we will use the values v = 175 GeV, fπ = 93 MeV, ΛQCD = 200 MeV. If we also set
ND = 2 and NT = 4, we find ΛTC ≈ 160 GeV.

Hierarchy Problem Solved

Let us now see how the hierarchy problem is solved in this type of scenario naturally. Since the
TC scale is larger than QCD scale, assuming unification at some high energy tells us that the
β-function of TC must be more negative. Using the previous estimate, we want ΛTC/ΛQCD ∼ 103.
The β-function of an asymptotically free theory is given by:

β ≡ µdα
dµ

= −α
2

π
(
11N

6
− nf

3
) ≡ −α

2

π
b1 .

Integrating and assuming grand unification, which means that the coupling constants are the
same at GUT-scale, we get

ΛTC
ΛQCD

= exp

[
π

αGUT

(
− 1
bTC1

+
1

bQCD1

)]
.

With 3 colors and 6 flavors, bQCD1 = 7/2. Assume αGUT ∼ 1/30. Then for ND = 1,

NT 2 3 4
ΛTC/ΛQCD 10−2 103 105

and for ND = 2,
NT 3 4 5

ΛTC/ΛQCD 101 105 106

Thus, although the estimate is very sensitive to the number of techniflavors, we see that assum-
ing strong dynamics, the large separation of scales can exist completely naturally. These results
seem to imply that ND = 1, NT = 3 would be the natural choice, but that theory has the Witten
global anomaly.
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3.3. PARTICLE CONTENT

3.3 Particle Content

Pions

At low energies, we will have both the techniquark and the quark condensate breaking the axial
vector current. If the full axial current is defined J5, then〈

0
∣∣J5
µ

∣∣πQCD〉 = ifπq
µ〈

0
∣∣J5
µ

∣∣πTC〉 = iFπq
µ

The parameter Fπ is defined so that weak gauge bosons have right mass.
The weak bosons couple to the pions through the axial current. Thus the relevant eigenstates

are the physical pion which has no coupling and its orthogonal component, which will be absorbed
by the gauge bosons. We have 〈

0
∣∣J5
µ

∣∣πphys〉 = 0〈
0
∣∣J5
µ

∣∣πW 〉 =
√
F 2
π + f2

πq
µ

and the correct eigenstates are:

|πphys〉 =
Fπ |πQCD〉 − fπ |πTC〉√

F 2
π + f2

π

= |πQCD〉+O
(
fπ
Fπ

)
|πTC〉

|πW 〉 =
Fπ |πTC〉+ fπ |πQCD〉√

F 2
π + f2

π

= |πTC〉+O
(
fπ
Fπ

)
|πQCD〉

Since Fπ � fπ, the physical pion is mostly the QCD-pion and the absorbed pion mostly the TC-
pion. Since the longitudinal component of the bosons is strongly interacting, we expect this would
show in e+e− →W+W− cross-sections. Longitudinal production would show a complicated form
factor with resonances, while transverse W would be similar to the SM W .

Mass Gap and Technibaryons

In QCD, the quark condensate induces a dynamical mass for the quarks. We earlier found that
for the lightest quarks, this dynamical mass was much larger than the hard Lagrangian mass.
We now want to estimate the corresponding techniquark constituent mass. Using the scaling
rules,

mT ∼ ΛTC ∼ v
ΛQCD
fπ

√
3

2NDNT
∼ vmN

fπ

√
1

2NDNT

where mN is the nucleon mass. Thus there will be technibaryons with masses of order

mtechnibaryon ∼ NTmT ∼ v
mN

fπ

√
NT

2ND
∼ 2 TeV.

These technibaryons are fermions or bosons depending on the number of techniquark flavors.
In the current model, these technibaryons would be stable. However, when we introduce ETC,
techniquarks will be able to decay to quarks or leptons. The heavy technibaryons will then decay
into complex final states with many quarks and leptons. At very high energies, E � 10TeV we
would expect ’techni-jets’ similarly as in QCD.
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Goldstone Bosons and Techniaxions

The spectrum of the lightest mesons is predictable by analogy to QCD. With ND = 1, the quark
condensate produces exactly the minimum of pions to make the gauge bosons massive. However,
we also broke the U(1)A. In QCD there is an anomaly breaking this symmetry explicitly, making
the corresponding particle very heavy. An estimate of the ηTC mass is [8] (using ND = 1)

mηTC ∼
3
NT

√
8

NTND

v

fπ
mηQCD ∼ 2 TeV

which likely makes it hidden from direct searches in the near future. There are also 1− vector-
mesons, discussed in the next subsection.

Now consider increasing the number of techniquark doublets. First ignore U(1). The total
flavor symmetry is SU(2ND)V⊗SU(2ND)A. The SU(2ND)A group has 4N2

D − 1 generators, or
4N2

D if we include the identity which corresponds to the U(1)A symmetry, or the η-particle. When
the quark condensate breaks this symmetry, there will be 4N2

D Goldstone bosons, some of which
may gain masses through SM interactions. This corresponds to the situation in QCD where we
assumed two massless quarks, and thus had three almost massless pions. Since the fundamental
representation is not allowed, the particles will be in the adjoint representation, also correspond-
ing to the Goldstone bosons. In QCD, three quarks could be assumed approximately massless;
currently all techniquarks are massless.

The global version of SU(2)L mixes the electroweak doublet elements. The flavor subgroup
that acts on weak doublets horizontally is SU(ND). If we include identity operators, their direct
product has (3 + 1)(N2

D − 1 + 1) = 4N2
D generators. Thus it is palpable we can classify the

generators associated with the Goldstone bosons according to their transformation properties
under SU(2)L⊗SU(ND).

Let I2 be the SU(2) identity and τa the generators. Let IN be the SU(ND) identity and λA the
generators. Then, the grouping according to how the particles transform under the corresponding
groups becomes:

• I2 ⊗ IN : this is the η that was already discussed. It becomes heavy because of the axial
anomaly.

• I2 ⊗ λA: these are dubbed ’techni-axions’. The corresponding generators commute with
SU(2). The electrically neutral ones remain massless apart from electroweak instanton
effects. Since they correspond to a residual symmetry, they are sterile, or undetectable
save for their gravitational interactions. Their axial currents have electroweak anomalies,
like the π0, but no QCD anomaly. These axions should decay with strength Fπ. However,
astrophysical arguments constrain Faxion > 108GeV. This problem is cured in ETC.

• τa ⊗ IN : these are the three Goldstone bosons that become the longitudinal component of
the weak gauge bosons.

• τa ⊗ λA: these are pseudo-Goldstone bosons. They carry SU(2) charge and thus acquire a
small mass when we turn on the SU(2) gauge interactions, similarly to how the π±/π0 mass
difference is caused by electromagnetic effects in QCD. To estimate the mass, rescale the
π± − π0 mass difference. This estimate gives m ∼ 6 GeV. Such light charged scalars are
obviously experimentally ruled out. There might be further corrections when we put U(1)
on, but they should be small.

Now include U(1)Y. The particles whose generators do not commute with Y ⊗ IN have electric
charge, i.e. they are electrically charged technipions. They belong to each group: some are eaten
by the gauge bosons, some have SU(2) charge, and some do not. All will gain small masses
from the interactions, of order 5 GeV according to the previous estimate. These masses are
unacceptably small to have avoided detection.
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Techni-vector Mesons

Assume ND = 1. The 0− triplet mesons (pions) are eaten by the gauge bosons. The physical
spectrum will still contain the ρ-triplet and the ω, which are the 1− mesons. In QCD we have the
process

ρ→ ππ .

Thus in technicolor, we have
ρT →WW .

These vector mesons could provide resonance structures in processes like{
pp
e+e−

}
→W+W− .

Their masses can be estimated by scaling,

mρTC ∼ mωTC ∼
FT
fπ
∼ mρ

v

fπ

√
6

NTND
∼ 1.3 TeV.
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4
More Technicolor

As we have now seen, technicolor is the natural model to solve the unnaturalness and trivial-
ness problems. Unfortunately, the minimal model we considered predicts light technihadronic
particles that have not been seen. Also, the SM fermions remained massless. Answering these
challenges is the direction of further model-building. We cannot revert to scalar fields, except
possibly under the context of supersymmetry.

Luckily, there is a natural way to provide the masses. Assume a high scale ΛETC associated
with the spontaneous symmetry breaking of a gauge group ETC. The gauge bosons that cor-
respond to the broken generators become massive. At low energies, their propagators may be
replaced by 1/Λ2

ETC - effectively creating a 4-point vertex. Now if these gauge bosons connect
ordinary fermions to technifermions that have a dynamical mass, usual fermions will become
massive as well. A corresponding interaction will also raise the masses of unwanted techniparti-
cles.

This simple model has one major drawback. The same gauge group must also connect ordi-
nary fermions to each other. This produces flavor-changing neutral currents that are phenomeno-
logically nonexistant. To solve this issue, we introduce the concept of walking technicolor, which
means that the gauge coupling evolves slowly over a large hierarchy. This enhances the conden-
sate but does not affect Fπ, i.e. we get a large enhancement of ordinary fermion masses.

I first consider extended technicolor, and how this new interaction, defined at high energies,
gives masses to ordinary fermions. I show that flavor-changing neutral currents give an upper
limit on the possible masses that these interactions can generate, and thus that it is not possible
to produce large enough masses to have even the second generation quarks. To generate larger
masses, I introduce walking technicolor. In walking technicolor, the theory is assumed to be near
a conformal point at ΛETC . It is then shown that in a certain nonperturbative approximation
the anomalous dimension is a constant, γm ∼ 1, which enhances the condensate value greatly,
effectively enhancing masses.

4.1 Extended Technicolor

It is easy to write down mass terms for the fermions in the current model. A term of the form

mf̄f =
〈
F̄F
〉
f̄f

corresponding to a four-point interaction. Thus we want to have such interactions between tech-
nifermions and ordinary leptons and quarks. We know that the weak interactions lead to such a
vertex at low energies; thus in analogy to the weak currents we need currents of the form

F̄ γµf ,

coupled to the new gauge bosons. Here and later F denotes a technifermion and f an ordinary
fermion.

In a full theory we must assume a large gauge group ETC that has all the desired currents.
Clearly ETC must be large enough to furnish representations with both F ’s and f ’s. For example,
we might simply blockwise embed SU(NTC) into SU(NETC) with NETC > NTC .
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Minimal Model

Consider the SM. We have 3×3=9 electroweak quark-doublets, and 3 electroweak lepton-doublets.
In addition, their 12 corresponding righthanded fields are electroweak singlets. ETC should cou-
ple F ’s to all of these. Then we should have each generation falling into 3 doublets of quarks and
one of leptons under the gauged SU(2)L, and 3 doublets of quarks and one of leptons under the
global SU(2)R. Set ND = 1 and NT = 4. Then we still need 4 lefthanded techniquark SU(2)L

doublets and 4 righthanded SU(2)R doublets. Counting e.g. the lefthanded fields, we have (4
doublets) × (3 generations) from the SM and 4 techniquark doublets: 4 × 3 + 4 = 16. Thus the
natural gauge group is

ETC = SU(16)⊗ SU(2)L ⊗ SU(2)R ⊗U(1) .

Note that now both the color and technicolor symmetries are embedded into SU(16). Under this
gauge group, the fermions form two 16 multiplets:(

Q1, Q2, Q3, Q4, q
1
r , q

1
g , q

1
b , q

2
r , q

2
g , q

2
b , q

3
r , q

3
g , q

3
b , l

1, l2, l3
)
L,R

where the superscript denotes generation,Q’s are techniquarks, q’s normal quarks and l’s leptons.
All the multiplet elements are SU(2) doublets. This means that the L multiplet is a singlet under
SU(2)R, and doublet under SU(2)L, and vice versa for the R multiplet.

Now, picture SU(16) as a horizontal symmetry and SU(2) as a vertical symmetry. Compare
this to QCD, where we have the color symmetry in place of SU(16). Then we had physically
motivated reason to believe the quark condensate broke the axial weak isospin. Now it suffices
to say the techniquark condensate breaks both SU(2) symmetries.

Low-energy Theory

Starting from the theory with gauge group ETC defined at some high energy, we must arrive
at a low-energy theory in which the only active symmetry gauge groups are TC ⊗ SM . We thus
require the parent theory ETC to undergo symmetry breaking at a scale ΛETC , for example:

ETC
E∼ΛETC−→ TC ⊗ SM .

This elevates the coset gauge bosons of ETC/TC ⊗ SM to masses of order gΛETC , in accordance
to the Higgs mechanism, while keeping the technicolor and standard model gauge bosons intact.
This reason for this symmetry breaking is not explained in the current context; in this sense,
technicolor is a bottom-up approach to model building.

The symmetry breaking pattern can, in general, be much more complicated. Some interest-
ing ideas involve these considerations. One is that of ’Tumbling Gauge Theories’, in which the
symmetry breaking is sequential in the sense that

ETC → G1 → G2 → . . .→ Gn−1 → TC .

At each stage, there will be coset gauge bosons gaining masses of order Λn. This symmetry
breaking pattern can be made dynamic, and in principle, may generate the mass hierarchy for
quarks and leptons of different flavors, in accordance to what will be discussed next.

Low Energy Relic Interactions

Although we have required the correct low energy residual symmetries, the low energy phe-
nomenology still includes effects caused by the broken ETC generators, or essentially the mas-
sive gauge bosons. In the high energy theory we, in general, have three kinds of currents coupled
to the ETC gauge bosons:

F̄ γµF F̄γµf f̄γµf

These are connected to each other by gauge boson exchange. Taking the middle term, we have
terms in the Lagrangian of the form gAaµF̄ γµTaf , where Ta is an ETC generator. For example,
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we could have the following graph, where an ordinary fermion changes into a technifermion and
back:

ffmymff
Because the gauge bosons corresponding to these generators gain a large mass of order ΛETC ,
their propagator is simplified at low energies:

1
q2 − Λ2

ETC

∼ − 1
ΛETC

.

In the above diagram, the gauge boson line will be replaced by an effective 4-point vertex. As
will be explicitly discussed later, the technifermion will receive a dynamical mass, like quarks in
QCD. Thus this is the diagram that will generate fermion masses.

In general, when the broken generators become massive, we get effective terms of the form

ᾱab
F̄ γµT̄aFF̄γµT̄bF

Λ2
ETC

+ β̄ab
F̄ γµT̄aff̄γµT̄bF

Λ2
ETC

+ γ̄ab
f̄γµT̄aff̄γµT̄bf

Λ2
ETC

,

where now T̄a correspond to the broken generators, but also include any chiral PL, PR factors.
We want to use the Fierz-transformations to rearrange technifermions on one side. In general, a
Fierz arrangement is of the form

ū1Gau2ū3Gbu4 = Σc,dαabcdū1Gcu4ū3Gdu2 .

Thus, taking chiral factors separately, we have sums over all the original, non-chiral ETC gen-
erators. We must also include the identity in the generators. Mass terms mix the L and R
components so we can pick up the most interesting terms:

αab
F̄ T aFF̄T bF

Λ2
ETC

+ βab
F̄LT

aFRf̄RT
bfL

Λ2
ETC

+ γab
f̄LT

afRf̄RT
bfL

Λ2
ETC

.

The α-terms: Techniaxion Masses

Here we again need results that come from the Nambu-Jona-Lasinio model. Earlier we wrote
〈q̄iqj〉 ∼ δijNcΛ3

QCD. Thus similarly
〈
F̄iFj

〉
∼ δijNTCΛ3

TC . Now we need an expression for the
operator F̄iFj at lower energies. A beliavable explanation parallels the one that led to (1.5). At
low energy scales, when the techniquarks have condensed, the relevant degrees of freedom are
the pions. Thus, one is motivated to make the replacements

F̄aRF
b
L → cNTCΛ3

TCΣba ≡ cNTCΛ3
TCexp(iπcT̃ c/Fπ)ba

where b is an SU(2)L index, a is an SU(2)R index, and T̃ ’s are the TC generators. Now because
of the α terms, we have a 4-technifermion vertex. We can draw such a vertex between two loops,
starting from a technipion. Thus the following diagram

mflwfm
where an incoming technipion splits into two techniquarks which interact through a heavy vir-
tual gauge boson, contributes

αab
c2N2

TCΛ6
TC

Λ2
ETC

tr
(
ΣT aΣ†T b

)
.

Now we can expand the Σ’s to find the pion mass terms:

αab
c2N2

TCΛ6
TC

Λ2
ETC

tr
([
πcT̃ c, T a

] [
πdT̃ d, T b

])
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Now clearly if [
T̃ a, T b

]
= 0 ,

then the corresponding Goldstone πa will have vanishing mass contributions from ETC. If this
is not the case, then the corresponding Goldstone will, in general, receive a mass contribution of
the order NTCΛ3

TC/Λ
2
ETC .

In QCD we have a similar situation. There the charged pion π± is heavier than the neutral
π0. This is precisely because the neutral pion is associated with a generator that commutes with
electric charge, while the charged pions’ generators do not commute with electric charge, thereby
receiving electromagnetic contributions to their mass.

As stated before, the techniaxions were sterile under other than TC interactions. Thus this
interaction is the only way for them to receive masses. A typical result is

m2
axion ∼

1
NTC

(GeV)2 ,

which is still very small. Our previous estimate was that the charged pseudo-Goldstone bosons
received a mass of order 5 GeV from SM interactions, which is then still the leading contribution.
Also any colored states will have larger masses from the strong interaction.

This problem is, in principle, solved in the walking technicolor scenario. The condensate will
receive a significant boost, of order ΛETC/ΛTC ∼ 103. Thus the techniaxions masses, for example,
are in the TeV scale, out of reach of today’s experiments.

The β-terms: Quark and Lepton Masses

The terms with β-coefficients will give masses and mixing angles to the ordinary quarks and
leptons. At the TC scale, by our scaling rules we have the condensate

〈
Q̄Q
〉
∼ NTCΛ3

TC . Thus
the natural scale for ETC-induced quark and lepton masses is

mq,l ∼ β
NTCΛ3

TC

Λ2
ETC

.

Note that this relation is reciprocal in ΛETC : higher masses require a smaller ETC-breaking
scale.

For ΛETC & ΛTC , this relation would seem to allow m ∼ ΛTC . Assume βNTC . 1 and
ΛTC ∼ 100 GeV. Then

m(MeV) 10 103 105

ΛETC(GeV) 104 103 102

The first mass is approximately that of the up-quark, the second that of the charm-quark, and
the third that of the top-quark. Since ΛTC ∼ 102 GeV, the heavier particles place an upper bound
on the value of ΛETC .

The pattern and scale of masses and mixing angles is naturally sensitive to the symmetry
breaking pattern of ETC through the different components of β. It is thus a formidable task to
find a realistic model, but in principle it is possible. Thus we see how ETC models can potentially
solve the flavor problem.

4.2 Problems

The γ-terms: Flavor-changing Neutral Currents

Since the observation is that particles of different generations have different mass but otherwise
same charges under the SM, and ETC is now proposed to generate these masses, then ETC must
couple differently to fermions of different generations. The mass eigenstates are not, in general,
the same as interaction eigenstates, so that we have flavor changing neutral currents. The most
severe restriction comes from the strangeness-changing ∆S = 2 graphs.
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The corresponding term is
(s̄γ5d)(s̄γ5d)

Λ2
ETC

.

This gives a contribution to the well-measured mass difference of the kaons KL and KS . These
particles are weak-interaction eigenstates consisting ofK0 and K̄0. Because kaons decay through
the weak interactions, these eigenstates have definite lifetimes, with the KL ∼ ds̄+ d̄s being long
lived.

The above term induces a mass difference [8]

δm2

m2
K

∼ γ f2
K

Λ2
ETC

. 10−14 ,

where fK ∼ fπ ∼ 100 MeV is the decay constant of the kaon. From here,

ΛETC & 103TeV.

Now apply this to the previous mass-estimate:

mq,l . 10−14 β

γ
NTC

Λ3
TC

f2
K

.

Using ΛTC . 103 GeV,

mq,l . 10−14 β

γ
NTC

Λ3
TC

f2
K

∼ β

γ
NTCMeV, (4.1)

which means that even if β
γ ∼ 10 and NTC ∼ 10 we have mq,l . 100 MeV, which allows the first

generation of SM particles but already the second-generation up type quark mcharm ∼ 1 GeV is
too heavy. Moreover, we are missing the top quark mtop ∼ 100 GeV by 3 orders of magnitude.

Precision Electroweak Measurements

Precision electroweak measurements actually limit the technicolor theories, not extended techni-
color [12]. The basic parameters of the SM, α(MZ), MZ , sin 2θW are known so precisely that they
can limit physics at much higher scales, up to 100 GeV. The quantities most sensitive to such new
physics are defined as correlators of electroweak currents:

ˆ
d4xe−iq·x

〈
0
∣∣T (jµi (x)jνj (0)

)∣∣ 0〉 = igµνΠij(q2) + aqµqν

Once one has accounted for all the SM physics, including the single physical Higgs boson with an
assumed mass mH , new high energy physics brings additional contributions. The S-parameter,
which measures splitting between mW and mZ induced by weak-isospin conserving effects, is
defined

S = 16π
[
Π′ZZ(0)−Π′Zγ(0)

]
,

where the Π’s are self-energy corrections between the particles labeled by the subindices, and the
prime means derivative. The experimental limit is [25]

S = −0.13± 0.10(−0.08) .

The central value corresponds to mH = 117 GeV, and the value in parentheses gives the change
for mH = 300 GeV. For QCD-like technicolor, Peskin and Takeuchi found

S = 4π

(
1 +

m2
ρT

m2
α1T

)
F 2
π

M2
ρT

≈ 0.25ND
NTC

3
,

where m2
ρT and m2

α1T
are the masses of the corresponding particles. This is surely of order 1, and

shows that if a viable model of technicolor exists, it can not be based on simple rescaling of QCD.
In the walking technicolor scenario discussed next, there is reason to believe the S-parameter is
small, but no reliable way to estimate it.
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4.3 Walking Technicolor

Until now, we have assumed that technicolor is like QCD. This means that at high energies, the
theory is asymptotically free. As we come to lower energies, the renormalization group equation
tells that the coupling constant grows. The scale ΛQCD is defined as the scale where the coupling
becomes large. However, the perturbative expansions which indicate that α grows infinite cannot
be trusted.

It is theorized that before this scale, the coupling becomes equal to a critical value αc, at
which the vacuum state will include quark-antiquark pairs. In QCD the coupling constant ’runs’
in the sense that it declines very quickly with increasing energy. However, there is a priori no
reason to assume the same behavior for TC. A slowly evolving, or walking, asymptotically free
theory can greatly enhance the condensate at the ETC scale. In the graphs that generate masses,
the dominant loop contributions come from the ETC-scale momenta, and thus this enhancement
directly enhances our previous mass estimate.

The condensate value can depend on the scale and the coupling α. For notational comfort,
define

〈
Q̄Q
〉
ETC

≡ N(µ′),
〈
Q̄Q
〉
TC
≡ N(µ). Then their dimensionless ratio must, by dimensional

analysis, depend on other dimensionless ratios:

N(µ′)
N(µ)

≡ G(α,
µ′

µ
)

Apply the operator µ′d/dµ′ and evaluate the equation. at µ = µ′:

1
N(µ)

µ
dN(µ)

dµ
=

d
dz
G(α, z → 1)

Define the right hand side as γm(α). Then the solution is

N(µ) = exp
(ˆ µ

Λ

dµ′

µ′
γm(α(µ′))

)
N(Λ)

or

〈
Q̄Q
〉
ETC

= exp

(ˆ ΛETC

ΛTC

dµ
µ
γm(α(µ))

)〈
Q̄Q
〉
TC

.

In QCD, asymptotic freedom sets in quickly above ΛQCD. Applying this to technicolor, the tech-
nicolor coupling constant α ∝ 1/lnµ above the TC scale. Then with the anomalous dimension
γm ∝ α, we have the factor (ln(ΛETC/ΛTC))

γm .
Now assume that α = α∗ is approximately constant between ΛTC and ΛETC . Then the corre-

sponding ratio is
(ΛETC/ΛTC)γm(α∗)

This can be a much larger renormalization effect.

Anomalous Dimension

To find the anomalous dimension of the techniquark operator Q̄Q(µ) we must relate it to the
fermion self-energy Σ(µ). Assume we have a scale-invariant form for the operator Σ(µ, k):

Σ(µ, k) = aµ

(
µ2

k2

)b
.

Here µ is the renormalization scale and k the momenta. Normally m = lim→0 Σ(k), but now we
have a physical infrared cutoff corresponding to the TC chiral condensate. Thus assume that at
the scale ΛTC we have the scale-invariant operator

Σ(ΛTC ,ΛTC)Q̄Q(ΛTC) .
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Then at the scale ΛETC we must have

Σ(ΛETC ,ΛTC)Q̄Q(ΛETC) .

The operator Q̄Q has mass dimension 3, thus the natural scaling is Q̄Q ∝ µ3. The deviation from
this gives the anomalous dimension:〈

Q̄Q
〉
ETC〈

Q̄Q
〉
TC

=
(

ΛETC
ΛTC

)3 Σ(ΛTC ,ΛTC)
Σ(ΛETC ,ΛTC)

=
(

ΛETC
ΛTC

)3−(1+2b)

=
(

ΛETC
ΛTC

)2−2b

,

i.e.
γm = 2− 2b .

Schwinger-Dyson Analysis

The point of this analysis is to find the value of the anomalous scaling γm. Since the techniquarks
condense near the ΛTC scale, we must have α∗ ∼ αc constant.

The Schwinger equations connect Green’s functions to each other. The beginning point for
these equations is the assumption, that the generating functionalˆ

Dφexp(iS(φ) + iAφ)

is invariant if we change the integrand by φ → φ + ε, where ε disappears quickly enough. This
has an obvious analogy to a usual integral over all space, which is invariant if the variable of the
integrand is translated. Now by a Taylor expansion, the integral must satisfyˆ

Dφ δ

δφx
exp(iS(φ) + iAφ) = 0 .

By careful calculation we may arrive at the Dyson equation for any Green’s function. From the
two-point Green’s function i.e. the full propagator, we can find an expression for the self energy
Σ in any specific model. In general, the defining equation is of the form

Σ = ∆−1 −G−1 ,

where G is the full propagator, ∆ the zeroth order propagator, and this equation defines Σ. The
exact calculation is impossible, so we have to implement some approximation. In general, the
ladder approximation consists of approximating full vertices (third or higher-order Green’s func-
tions) in this equation by their tree-level counterparts. Our current case is that of a zero bare
mass fermion. While the defining equation is nonlinear, we write the linearized equation in the
traditional rainbow approximation in the Landau gauge:

Σ(p) =
3C2(R)

4π

ˆ ∞
0

dk2

M2
α(k)Σ(k) .

where C2(R) is the quadratic Casimir of the complex technifermion representation R, M2 =
max(k2, p2), and all operators are renormalized at a scale µ. Deriving this equation we have
assumed that the largest contribution comes from k ∼ p. Thus approximate α(k) ∼ α(p) constant,
and take it out of the integral. Assume the scale-invariant form

Σ(k) = aµ

(
µ2

k2

)b
.

Then

1 =
3C2(R)

4π
αT

[
p2(b−1)

ˆ p2

0

dxx−b + p2b

ˆ ∞
p2

dxx−(b+1)

]

=
3C2(R)

4π
αT

1
b(1− b)

.
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Thus we have two solutions,

b± ≡ 1
2

(
1±

√
1− αT /αc

)
,

where αc = π/3C2. Thus, since αT = αc, we have b± = 1/2, and

Σ(k, µ) = Cµ
µ

k
.

where C is some constant. Now, in conjunction with our previous result we have γm ∼ 1. Note
that this treatment has been nonperturbative. A perturbative analysis would give

γm ∼ 1−
√

1− αT /αc ,

which corresponds to the other solution b+. However, in the perturbative analysis we could not
assume αT to be large.

Theories with this type of scale-invariant behavior occur naturally if the theory is close to a
conformal fixed point. Then all these theories, according to this analysis, will produce a signifi-
cant enchancement of the condensate. Thus it may not be unnatural to assume such behavior for
technicolor.

The Top-quark Mass

Thus the techniquark condensate at the ETC scale has been enhanced by a factor of ΛETC/ΛTC .
This does not affect the term that caused the flavor changing neutral currents, but affects the
fermion mass terms. The kaon decay gave ΛETC & 103TeV. Using ΛTC ∼ 1 TeV, our previous
estimate is modified to

mq,l .
β

γ
NTC GeV,

which means that if β
γ ∼ 1 and NTC ∼ 10 we have mq,l . 10 GeV. Comparing to (1.2), we see

that all quarks except for the third generation are included in these limits. Also all leptons, with
mτ ∼ 2 GeV being the heaviest, are included. This means that in principle, if we assume some
other mechanism to generate the third generation quark masses, walking technicolor models are
not currently outruled.
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Conclusions

I began this thesis by considering QCD and especially the low-energy dynamics resulting from
two phenomena: confinement and chiral symmetry breaking. I found that the chiral symmetry is
spontaneously broken, and that the resulting low-energy dynamics can be modeled by the sigma
models.

I then examined and explicated the problems of the Higgs sector in the Standard Model. By
showing that we can always assume a physical cutoff, I showed that the Higgs scalar particle is
unnatural, i.e. its bare mass must be tuned to an absurd precision of 1 : 1016 to get the correct
physical mass. I also showed that the scalar theory is trivial, or that at large energies, the scalar
self-coupling vanishes. From this I deduced the Higgs triviality bound mHiggs . 500 GeV, which
can still be modified by other interactions.

To solve these problems I removed the Higgs sector and introduced the minimal technicolor
model. The model is essentially a replica of QCD at a higher scale. I showed that the model is
anomaly free and that it also solves the hierarchy problem. I found that the low energy particle
spectrum contains massless or very light technipions as well as technibaryons and techni-vector
mesons with a high mass of over 1 TeV.

Finally, I introduced the technicolor theory of flavor: extended technicolor. I showed that it
gives Standard Model fermions small masses. I also discussed flavor-changing neutral currents
and precision electroweak measurements. To reconcile these phenomenological aspects, and to
provide larger masses to Standard Model fermions and technipions, I introduced walking tech-
nicolor. I showed that all standard model fermion masses except for the top and bottom quarks
can be explained by this type of model, and that technipions are so heavy that they cannot be
detected at current particle accelerators. Thus in this thesis it has been shown that, if we do not
take the high masses of the third generation quarks into account, walking technicolor models
should not be ruled out as extensions of the standard model.

There are many interesting topics that I did not consider. In QCD, the strong CP problem
occurs because of a nonperturbative term in the Lagrangian that we cannot overlook. Assuming
a natural coefficient would produce a very large outruled dipole moment for the neutron. The
weak CP problem is related to the Cabibbo-Kobayashi-Maskawa matrix and its overall complex
phase.

With the top quark mass and the CP problem in mind, it would be natural to investigate
topcolor assisted technicolor theories. In these theories, one would basically assume the top
quark to be the first techniquark. ETC interactions give the top quark a mass of the order
of bottom. Most of the top mass is then dynamically generated by the top quark condensate.
Topcolor assisted technicolor models could also naturally provide a dynamic picture of CP non-
conservation arising from the vacuum alignment in ETC theories. In these models, the strong
CP problem can be evaded without the need for any additional particles like the axion. Thus the
topcolor assisted technicolor scenario might seem attractive.

Assuming supersymmetry also repairs the unnaturalness of the Higgs particle. Compared
to supersymmetry, technicolor theories provide a much more specific low-energy phenomenology.
However, they also have less in common with string theory. Neither model can currently be ruled
out, but as the Large Hadron Collider at CERN becomes operational in 2008, nature may soon
reveal the truth.
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A
Spontaneous Symmetry Breaking

Symmetries are important not only because of the existence of visible symmetries but also be-
cause sometimes they don ′t exist although we have reason to suspect so. Such a symmetry is
called spontaneously broken. In this appendix we will introduce the topic of spontaneous sym-
metry breaking and give an example of the Higgs mechanism.

The essence of SSB is that the vacuum state, i.e. ground state of the system, does not respect
a symmetry of the Lagrangian. Such a situation can present itself in various ways. We can have
a Lagrangian with a potential that respects the symmetry originally, but not after it is developed
into a power series in the fields around the true minimum. This is concretely choosing the ground
state. Physically, such situations can arise if certain parameters of the Lagrangian depend on
e.g. temperature.

SSB can also happen more concealedly. This is because the ground state can be modified
by the dynamics of the full Lagrangian. This means that the SSB would not be apparent at
tree level, i.e. in the Lagrangian, contrary to the previous case. The term dynamical symmetry
breaking can be used to refer to SSB that does not show at tree level. The quark condensate and
the related symmetry breaking is an example of dynamical symmetry breaking.

If a local symmetry is spontaneously broken, the particle spectrum behaves differently. What
happens is that the gauge bosons corresponding to the generators of the broken symmetry become
massive. This is the famous Higgs mechanism, and is exactly how we understand the electroweak
group breaking into electromagnetism.

A.1 Prelude

The laws of physics concerning an ordinary chair are rotationally symmetric, but a solution, the
chair, is obviously not. By the same reasoning, we expect it is possible that the lowest energy
solution of the quantum theory, the vacuum, can be asymmetrical under a transformation that
keeps the Lagrangian invariant. [2, 3]

Multiplets

Consider two states |A〉 and |B〉, where φ†i |0〉 = |i〉. Furthermore let [Q,H] = 0, i.e. Q is a
generator of a symmetry group. Assume [Q,φ†A] = φ†B . Then defining U ≡ exp(iεQ) ≈ 1 + iεQ,

U†φ†AU = (1− iεQ)φ†A(1 + iεQ) ≈ φ†A − iε
[
Q,φ†A

]
= φ†A − iεφ

†
B ,

so under the transformation U , |A〉 is rotated towards |B〉.
To see a multiplet structure, the particles must have the same energy. Thus assume EA = EB .

Then
EAφ

†
B |0〉 = EB |B〉 = Hφ†B |0〉 = H(Qφ†A − φ

†
AQ) |0〉 .

Rearranging, we get

0 =
[
EA(Qφ†A − φ

†
B)−Hφ†AQ

]
|0〉 = (EA −H)φ†AQ |0〉 .
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We may now conclude either Q |0〉 ∝ |0〉 or Q |0〉 = 0. We will later see, with the Fabri-Picasso
theorem, that the correct conclusion is the latter one. Thus, under the transformation U , the
vacuum is rotated into itself: U |0〉 = |0〉.

This means that a multiplet structure will arise when the vacuum is invariant under the sym-
metry transformation between the states. Then, when Q |0〉 6= 0, we see no multiplet structure,
and we have spontaneous symmetry breaking.

Spontaneous Symmetry Breaking and the Infinite Volume Limit

Suppose we have a Hamiltonian H(φ) of a real scalar field satisfying the symmetry H(φ) =
H(−φ). Then the potential V has the property V (φ) = V (−φ). The ground state is the state with
lowest energy. If L = T − V , then H = T + V , and the ground state corresponds to a constant
field minimizing V . If the minimum of V (φ) happens to be at a nonzero value, and we assume so
currently, then because of symmetry there are two unequivalent ground states, and we shall call
them |+〉 and |−〉. Of course,

|+〉 φ→−φ−→ |−〉 φ→−φ−→ |+〉

Both states thus correspond to a state of broken symmetry.
However, it is not yet correct to conclude that we have a case of spontaneously broken sym-

metry. The counterargument is that we might have a linear combination of these states as the
true ground state.

Using the aforementioned symmetries, we find

〈+|H(φ)|+〉 = 〈−|H(φ)|−〉 ≡ a

〈+|H(φ)|−〉 = 〈−|H(φ)|+〉 ≡ b ,

where a and b must be real. Assuming usual normalization, we find

H(φ) |+〉 = a |+〉+ b |−〉 H(φ) |−〉 = a |−〉+ b |+〉 ,

so the eigenstates of H are |+〉 ± |−〉, with eigenvalues a ± b. Note that the eigenstates are
invariant up to a sign under φ→ −φ.

But finding the value of b involves an integration of field configurations that tunnel from one
minimum to another. Of course calculating this value is a complicated task. But according to my
favorite analogue, field theory is just an infinite number of harmonic oscillators connected to each
other. In this metaphore, each of these harmonic oscillators must tunnel from one ground state
to the other. This must be small probability, and decreasing with volume; in fact, b is smaller
than a by a factor proportional to e−volume/L

3
. Thus for any macroscopic size, the eigenstates are

essentially degenerate.
We might also have a perturbation satisfying Hp(−φ) = −Hp(φ). In this case

〈+|Hp(φ)|+〉 = −〈−|Hp(φ)|−〉 ≡ c

and the off-diagonal elements are very small by the same token as b is. Thus

Hp(|+〉 ± |−〉) = c |+〉 ± (−c) |−〉 = c(|+〉 ∓ |−〉) .

This means that the eigenstates ofH are not eigenstates ofHp; in fact, they are maximally mixed.
Since the ground states ofHwere degenerate, the true ground state will be very close to one of the
eigenstates that diagonalize the perturbed Hamiltonian, and not the eigenstates invariant under
φ → −φ! Note that this effect becomes exact as the volume goes to infinity, as the non-diagonal
contributions tend to zero. In any case, while the perturbation is small, it is impossible to tell
which minimum we are located at, because we have c

a � 1.
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A.2 Theorems

First we must investigate general properties of symmetries. In quantum physics, the Hamilto-
nian guides the time-evolution of a system. Thus if an operator commutes with the Hamiltonian,
its eigenstates will stay eigenstates over time, i.e. we have conservation of something. The sit-
uation is similar in quantum field theory, and there is a very important general theorem, the
Noether theorem. This theorem states that there is a conserved current. The zeroth component
of this current is the corresponding charge, and it is constant in time.

In the case of spontaneous symmetry breaking, this charge becomes badly defined. The Fabri-
Picasso theorem makes this notion exact. In that case, there are Goldstone bosons - a massless
particle corresponding to each broken generator.

Noether’s theorem

Suppose our Lagrangian L is invariant under an infinitesimal transformation [2]

δψr = −iεTrsψs . (A.1)

Then we have

0 = δL =
∂L
∂ψr

δψr +
∂L

∂(∂µψr)
∂µ(δψr) = ∂µ

(
∂L

∂(∂µψr)
δψr

)
(A.2)

where we have used the (classical) Euler-Lagrange equations of motion for the first term. So we
have found a conserved current,

jµ =
∂L

∂(∂µψr)
Trsψs . (A.3)

The corresponding total charge is Q =
´

d3x
〈
0|j0(x)|0

〉
. This is constant in time. To see why, note

that
dQ
dt

=
ˆ

d3x
〈
0|∂0j

0(x)|0
〉

= −
ˆ

d3x
〈
0|∂iji(x)|0

〉
and ji is proportional to the field which is assumed to vanish smoothly at infinity, so the whole
expression vanishes.

If the symmetry is explicitly broken, there is no conserved current. But sometimes the symme-
try is broken ’a little’. Let the symmetry be broken by a small additional term in the Lagrangian,
∆. Let L be the part with a vanishing variation. Then

δ(L+ ∆) = −iε∂µJµ = δ∆ ,

where J is the corresponding current. From this we can find an expression for the divergence of
the current.

If the symmetry is spontaneously broken, the corresponding current is still conserved. This
is the crucial difference between a spontaneously and explicitly broken symmetry.

The Fabri-Picasso Theorem

Suppose L is invariant under a one-parameter continuous global internal symmetry with a con-
served Noether current jµ and charge Q [2]. We may then prove that either Q|0〉 = 0 or Q|0〉 has
no norm.

Because Q is an internal symmetry, [Pµ, Q] = 0, and P |0〉 = 0 |0〉 for the lowest energy
eigenstate. Then〈

0|j0(x)Q|0
〉

=
〈
0|eiP ·xj0(0)e−iP ·xQ|0

〉
=
〈
0|eiP ·xj0(0)Qe−iP ·x|0

〉
=
〈
0|j0(0)Q|0

〉
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and we have the norm ofQ|0〉:

〈0|QQ|0〉 =
ˆ

d3x
〈
0|j0(x)Q|0

〉
=
ˆ

d3x
〈
0|j0(0)Q|0

〉
.

This diverges in the infinite volume limit unless Q|0〉 = 0. If Q|0〉 = 0, we say the vacuum
respects the invariance of the Lagrangian. If this is not the case, we say the symmetry is spon-
taneously broken.

The Goldstone Theorem

The Goldstone theorem tells us that in the case of SSB, to every broken generator there is a
corresponding massless particle with the same quantum numbers. Consider the transformation
of a generic field φ [4].

φ′ = eiεQφe−iεQ ≈ φ+ iε[Q,φ] .

Although Q may have an infinite norm, the commutator exists always. Current conservation
∂µj

µ = 0 implies

0 =
ˆ

d3x [∂µjµ(x, t), φ(0)]

= ∂0

ˆ
d3x

[
j0(x, t), φ(0)

]
+
ˆ

d3Si
[
ji(x, t), φ(0)

]
.

The second term vanishes as the integration is taken to infinity because of the inevitable large
space-like separation. Hence we can recover

d
dt

[Q(t), φ(0)] = 0 . (A.4)

The commutator is some combination of fields, so we may ask what is its vev,

〈0| [Q(t), φ(0)] |0〉 ≡ v .

Inserting a complete set of states after opening the commutator and trading the p-part of the
exponent for a delta function we have

v =
ˆ

d3x
〈
0|
[
j0(x, t), φ(0)

]
|0
〉

=
∑
n

(2π)3δ3(pn){〈
0|j0(0)|n

〉
〈n|φ(0)|0〉 e−iEnt − 〈0|φ(0)|n〉

〈
n|j0(0)|0

〉
eiEnt

}
(A.5)

If we now ask that v 6= 0, it should nonetheless be constant in time . The positive and negative
frequency parts can not cancel at all times, so we are forced to conclude that the state |n〉 defined
by pn = 0, En = 0 must have non-vanishing matrix elements

〈
0|j0(0)|n

〉
and 〈n|φ(0)|0〉. This state

is called the Goldstone boson, and because En = 0, it is massless.

A.3 The Complex Scalar Field

The scalar field facilitates the simplest example of spontaneous symmetry breaking. We can also
demonestrate the Higgs mechanism with it. The Standard Model scalar is a doublet in SU(2),
but the basic mechanism remains unchanged.
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A.3. THE COMPLEX SCALAR FIELD

Global Spontaneous Symmetry Breaking

Consider the most general renormalizable Lagrangian of a complex scalar field

Lscalar = ∂µϕ∗∂µϕ+m2ϕ∗ϕ− λ(ϕ∗ϕ)2 . (A.6)

The φ field must occur in combinations of φ∗φ because Lmust be real. No higher powers can be al-
lowed by renormalizability, since in natural units [action]=[dimensionless], and [distance]=[mass]−1,
so [φ]=[mass], and any higher power would produce a parameter with negative powers of mass.
We must have λ > 0 or the potential would be unbound from below.

If m2 > 0, the potential has the form of a Mexican hat with a negative true minimum. We can
expand around any point on this circle we like, but in doing so we are choosing that value to be
the ground state of our system. The original (global) symmetry of ϕ→ eiβϕ will be hidden, as the
new fields are small oscillations in the viscinity of the minimum, i.e.

∂V

∂φ
|φ=0= 0 .

Parametrize
ϕ = (v + φ(x)) exp i(

θ(x)
v

) ,

where we assume φ, θ to be real. The parameter v can be found from requiring the term propor-
tional to φ to vanish, giving v2 = m2/2λ. Then

Lbroken = (∂µφ)2 + (∂µθ)2 + 2m2φ2 + . . .

where the . . . means interaction terms, i.e. products of at least three fields. Note that we have a
massless Goldstone boson θ and a massive scalar φ. Here we can get intuition about the Gold-
stone bosons. The Goldstone theorem states that there must be one massless particle for every
broken generator. This can be understood because those generators lead us from one minimum
to the other, and since the value of the potential does not change for a symmetry transformation,
the second derivative of the Lagrangian in that direction must be zero. This means that the field
with fluctuations in that direction must be massless.
Lbroken is a result of redefinition of fields and should be perfectly equivalent to (A.6). How-

ever, although it does describe the same dynamics, there is a semantic difference; now we have
expanded in the fields assuming we are near the minimum and thus φ and θ must be considered
small. Thus it does not make sense to speak of a symmetry θ → θ+const, because this would
imply changing the ground state.

In this simple model SSB happened because we had m2 is a varying function of some, e.g.
thermodynamic, variables. Then when m2 < 0 we have the symmetric phase. But as m2 > 0, we
have spontaneous symmetry breaking and the broken phase. There is always an order parameter
connected to such a phase transition; in this case it is precisely m2.

Higgs Mechanism

Now add a gauge field to the scalar field Lagrangian:

Lgauge = −1
4
FµνF

µν

where Fµν=∂µAν − ∂νAµ. This term is invariant under a gauge transformation Aµ → Aµ −
∂µη(x). Adding a mass term to the photon would ruin this symmetry. However, if we replace
the derivative of the scalar field with the covariant derivative, ∂µ → Dµ = ∂µ − ieAµ, our full
Lagrangian is invariant under a local group U(1)local:

Aµ → Aµ − ∂µη(x)

ϕ → e−ieη(x)ϕ
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Yet the same discussion applies for the potential, i.e. it is invariant under the global U(1). It
does not matter, however, for the following discussion: if we parametrize the ϕ field as before,
and choose the ground state, both the global and local symmetries are broken, and the transfor-
mations make no sense thereafter. So we might as well speak only of the local symmetry. After
calculation, we have

Lscalar+gauge,broken = Lgauge + (∂µφ)2 + 2m2φ2 + (∂µθ)2

−2evAµ∂µθ + e2v2AµA
µ + . . .

Now our U(1)local is broken by the previous reasoning. Note that the mass of the vector field is
proportional to v. This is usually true; after SSB, the massive gauge bosons will have masses of
the order of the symmetry breaking scale.

To remove the mixing term, remember that Aµ has unphysical degrees of freedom manifesting
in the gauge freedom. Thus fix the gauge by choosing Aµ → Aµ + β∂µθ. Note that this is not a
gauge transformation of the U(1)local. It does not leave the Lagrangian formally invariant. The
resulting Lagrangian is

Lfinal = −1
4
FµνF

µν + (∂µφ)2 + 2m2φ2 + e2v2AµA
µ + . . .

The unphysical θ-field has disappeared completely. We say the Goldstone boson has been ’eaten’,
and it has become the extra degree of freedom of the now massive gauge field. Also we have a
remaining massive scalar field φ.

This is an example of the Higgs mechanism, and φ is the physical Higgs particle. As we saw,
a vev of the Higgs broke a local symmetry, and the corresponding Goldstone boson disappeared
while the corresponding gauge boson became massive. This is how the Higgs mechanism works
in general. In the SM, the scalar field’s vacuum expectation value is also used to give fermion
fields masses through Yukawa couplings gφψ̄ψ.
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