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I arbetet presenteras en ny metod för identifikationen av asteroider vid tidspunkten

för upptäckten och under de närmaste därp̊a följande dagarna. Identifikationsprob-

lemet för asteroider uppst̊ar när man ur tv̊a skilda grupper av observationer försöker

hitta de gemensamma asteroiderna som observerats vid bägge tillfällen. I början

vet man inte ens om det överhuvudtaget finns n̊agra gemensamma asteroider bland

observationerna. Den nya algoritmen är den enda kända metoden som löser identi-

fikationsproblemet för nyligen upptäckta asteroider.

I praktiken g̊ar man tillväga genom att gallra bort omöjliga identifikationer i en

flerstegsprocess. Först jämförs efemerider och deras differenser inom en bestämd

tidsintervall. Identifikationsalgoritmen använder sig av en inversionsteknik kallad

statistisk variering med vilken det är möjligt att härleda banelementens fördelning

utg̊aende fr̊an endast tv̊a observationer. Den stora mängen data, som i tidigare

tillämpningar varit ett problem hos denna Monte Carlo -metod, har i detta arbete

effektivt undvikits genom användningen av en sk. adressjämförelseteknik. Tekniken

g̊ar ut p̊a att man transformerar realtalen (här efemeriderna och deras differenser)

till ett enda heltal och använder detta heltal för att hitta liknande lösningar. Till

slut försöker man framställa banfördelningar åt möjliga identifikationer. Ifall det

lyckas, bevisar det att det är möjligt att koppla ihop observationerna inom ramarna

för deras felmarginaler.

Identifikationsproblemet har undersökts och den nya metoden har testats med

simulerade observationer av när- och huvudbältsasteroider. När algoritmen testades

med observationer producerade enligt olika observationsstrategier, upptäcktes det

att Minor Planet Centers rekommendationer inte nödvändigtvis ger optimala resul-

tat med tanke p̊a identifikationsproblemet.

I fortsättningen är det meningen att bl.a. optimera parametrarna för att möjlig-

göra effektiv identifikation, undersöka hur olika observationsgeometrier inverkar p̊a

identifikationen, försöka identifiera asteroider bland hittills oidentifierade riktiga ob-

servationer och leta efter en optimal observationsstrategi med tanke p̊a asteroiders

identifikation.
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Työssä esitellään uusi ja toistaiseksi ainoa tunnettu menetelmä asteroidien lyhyen

aikavälin tunnistusongelman ratkaisemiseksi välittömästi uuden löydön tapahtuessa

ja muutamien löytöä seuraavien päivien aikana. Asteroidien tunnistusongelma syn-

tyy, kun kahdesta erillisestä havaintojoukosta yritetään poimia esiin molemmissa

esiintyvät kohteet. Alussa ei ole tiedossa, onko ylipäätään olemassa kohteita, jotka

esiintyvät kummassakin joukossa.

Käytännössä ongelmaa lähdetään ratkaisemaan monivaiheisesti vertailemalla ensin

eri havaintojoukkojen kohteille laskettuja taivaankannen koordinaatteja sekä näiden

muutosta tietyn aikavälin kuluessa. Tunnistusalgoritmin perustana käytetään tilas-

tolliseksi luotaukseksi kutsuttua inversiomenetelmää, jolla voidaan johtaa rataele-

menttien jakauma jo kahden havainnon perusteella. Aiemmissa sovelluksissa tämän

Monte Carlo -tyyppisen inversiomenetelmän ongelmana ollut suuri datamäärä

kyetään tässä työssä käsittelemään tehokkaasti nk. osoitevertailumenetelmällä, jossa

reaaliluvut (tässä rektaskensio, deklinaatio sekä näiden muutos) muunnetaan yhdeksi

kokonaisluvuksi ja samantyyppiset ratkaisut löydetään vertailemalla näitä kokonais-

lukuja. Lopuksi mahdolliselle kytkennälle yritetään laskea ratajakauma, joka on-

nistuessaan osoittaa tunnistuksen mahdolliseksi havaintovirheiden sallimissa rajoissa.

Tunnistusongelmaa on tutkittu ja uutta menetelmää testattu simuloidulla lähi- ja

päävyöhykkeen asteroidien havainnoilla. Testattaessa algoritmia eri havaintostrate-

gioiden suositusten perusteella simuloiduilla havainnoilla huomattiin, että Minor

Planet Centerin suositukset eivät välttämättä ole optimaaliset tunnistusongelmaa

ajatellen.

Jatkossa on tarkoitus mm. etsiä sopivimmat parametrit tehokasta tunnistusta varten,

tutkia erilaisten havaintogeometrioiden vaikutusta tunnistukseen, ajaa tunnistusal-

goritmi toistaiseksi tunnistamattomille oikeille havainnoille, sekä etsiä optimaalista

havaintostrategiaa tunnistusongelman näkökulmasta.
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Säilytyspaikka — Förvaringsställe — Where deposited
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Abstract

A novel method, the first of its kind published, for the identification of asteroids

at discovery and few days thereafter, is presented. Having two different sets of

observations, the identification problem arises when one tries to determine which

objects reside in both sets. It is not even known a priori, whether the sets have

objects in common at all.

The identification problem is solved in a multistep filtering process, which

first compares ephemeris positions and motions. The algorithm is built upon

an orbit inversion technique, termed statistical ranging, which allows rigorous

mapping of the orbital element distribution using two or more observations. The

huge output of data, which is a common problem of Monte Carlo methods, is

here avoided by using the so-called address comparison technique. The idea is to

transform an array of real numbers (here, the position and motion) to a single

integer, which is used in the search for similar values.

Finally, an orbit distribution is computed for a possible linking. If the inver-

sion succeeds, it shows that an orbit exists, thus tying the observations together

assuming predefined observational errors.

The new method presented here is tested with simulated observations of near-

Earth and main-belt objects. The tests, which are the most accurate and exten-

sive published to date, show that the method is functional, as expected. Running

the algorithm on observational sets simulated according to different observation

strategies shows, that the strategy promoted by the Minor Planet Center might

not be the best one from an identification point of view.

In the future, several areas must be addressed, such as establishing optimised

parameters for the identification procedure, examining the effect that different

observing geometries have on identification, scanning through archives of real

unidentified observations, and looking for an observation strategy that is opti-

mised for identification.
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Chapter 1

Introduction

A novel and the first published method for identifying asteroids at discovery and

for a few days thereafter, is presented. Having two different sets of observations,

the identification problem arises when one tries to find out which objects reside

in both sets (Figure 1.1). It is not known a priori, whether the sets have objects

in common at all.
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Figure 1.1: The goal of asteroid identification is to link observations of an object

observed at one epoch (t1) to the observations of the same object at another epoch

(t2). Here, the observational sets contain observations of several objects, which makes

the problem more realistic, and also more difficult. It is not usually known a priori

whether the sets have objects in common at all.

1.1 Asteroids observed

The definition of an asteroid is somewhat vague. This is due to the problem

that arises when one compares asteroids with planets or dust grains, because

strict physical rules to distinguish between these three do not exist. Contrary

to this, the path from microscopic grains up to gas giants is, more or less, a

smooth continuum. An asteroid can, however, be defined as a macroscopic body

on a heliocentric orbit whose own gravitational force is usually too weak to make

the body spherical. The diameters of asteroids range from a few metres up to

hundreds of kilometres. As a rule of thumb, asteroids get larger with increasing

1



Introduction 2

distance from the Sun. The largest near-Earth objects (NEOs) have diameters

of a few tens of kilometres, while some transneptunian objects (TNOs), residing

at the outer edges of the solar system, have been measured to be one thousand

kilometres across.

The distribution of asteroids in the solar system, however, is not continuous.

If traveling outwards from the Sun, the first population to be encountered are

the NEOs. They are defined as asteroids having perihelion distances q < 1.3 AU,

and aphelion distances Q > 0.983 AU. Some NEOs, forming a subcategory called

Atens, even have semimajor axes, a, smaller than that of Earth’s (a⊕ = 1 AU).

Due to relatively high eccentricities, the orbits of Atens are not completely inside

Earth’s orbit, but there is no, e.g., dynamical reason why they could not be.

There are only a few objects found to date that might orbit the Sun constantly

within Earth’s orbit. The probable reason for such a low number of inner-Earth

objects (IEOs) is the demanding observing geometry. Besides Atens, the three

subcategories of the NEO population also include the Apollos (a ≥ 1.0 AU and

q ≤ 1.0167 AU) and the Amors (1.0167 AU < q ≤ 1.3 AU).

The main asteroid belt between Mars and Jupiter contains the bulk of dis-

covered minor planets. These asteroids are termed main-belt objects, or MBOs.

Because of their observational properties, they were the first asteroids to be dis-

covered1 and has until recent years been the best observed asteroid population.

MBOs are the easiest asteroids to detect because their motions are neither too

slow to be noticed, nor too fast to slip away. On the other hand, the relatively

large diameters of MBOs, combined with reasonable distances, keep their appa-

rent magnitudes on an easily detectable level.

Another group closely related to MBOs are the Jupiter Trojans. Their orbits

are similar to Jupiter’s, and they are either leading or trailing the gas giant at

angular distances of approximately 60◦. The two areas, where these objects can

be found, are centered at the Lagrangian L4 and L5 points of the Sun-Jupiter-

system. All known NEOs, well-known MBOs and Jupiter Trojans, and all known

comets within the area, are plotted in Figure 1.2 according to the situation on

November 11th, 2003.

There are two main groups of asteroids outside Jupiter’s orbit, namely Cen-

taurs and TNOs. The TNO population was first discovered by Jewitt & Luu

(1993). So-called pencil-beam surveys, which are able to detect faint targets

with a trade-off in coverage, are used to search for these bodies. TNOs are prac-

tically residing on the same spots where they where found, due to a very slow

apparent motion and a recent discovery during the last decade. The footprints

1Asteroid Ceres, the largest MBO with a diameter of some 946 km, was discovered in 1801

by Giuseppe Piazzi.
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Figure 1.2: The inner solar system on November 11th, 2003. Orbits of the five

innermost planets (Mercury, Venus, Earth, Mars, and Jupiter) are shown in light blue,

with large coloured dots indicating the current positions. NEOs are indicated by

red circles, while numbered and unnumbered, but reasonably well-known MBOs are

marked with green circles. The two “clouds” of objects, here coloured deep blue, 60◦

ahead and behind Jupiter, are Jupiter Trojans. The filled, light-blue squares indicate

numbered periodic comets, while other comets are shown as unfilled, light-blue squares.

The plot has been prepared by the Minor Planet Center.

of the pencil-beam surveys are thus still apparent in Figure 1.3, which shows the

outer solar system as of November 11th, 2003.

So far 232,470 minor planets2 have been discovered and 73,636 of these have

been numbered, i.e., they have been observed enough to allow for computation

of reasonably accurate orbital elements. Reasonably accurate orbital elements

refers to the situation when an asteroid’s position can be determined with a

precision more accurate than 1′′ during a period of ten years without any further

observations.

An asteroid is observed during a so-called apparition3, which occurs around

2This was the situation on November 9, 2003 according to the Minor Planet Center at

http://cfa-www.harvard.edu/iau/mpc.html.
3The relatively short period when an object is continuosly observable.
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Figure 1.3: The outer solar system on November 11th, 2003. Orbits of the giant

planets (Jupiter, Saturn, Uranus, and Neptune) are shown in light blue, with large deep

blue dots indicating their current positions. Pluto is just marked with a large white dot.

The two “clouds” of objects, here coloured light blue, 60◦ ahead and behind Jupiter,

are Jupiter Trojans. Centaur objects are marked with orange triangles. Different

subcategories of TNOs are indicated by red, white, and magenta coloured circles.

Unusual high-eccentricity objects are marked with cyan triangles. Filled, light-blue

squares indicate numbered periodic comets, while other comets are shown as unfilled,

light-blue squares. The plot has been prepared by the Minor Planet Center.

the time of the opposition of the object. The time interval between two oppo-

sitions is typically one year; the closer an asteroid is to Earth, the more the

interval differs from the typical value. These circumstances lead to the fact that

asteroids cannot be observed continuously during a complete revolution. The

observational data is thus split into several short pieces.

Given two different sets of observations, each of which spans over an arbitrary

observational arc, it is unknown a priori whether they refer to the same object

or not. This is the basic formulation of the identification problem. Since orbit

computation for bodies with short observational arcs is difficult, linking observa-

tions between two apparitions is a nontrivial task and the long-term identification
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problem becomes evident.

Figure 1.4: Differential H-distribution for five different asteroid populations (Jedicke

et al. 2003). Bias-corrected estimates for each population are displayed as lines of

various types. Each line merges toward the left of the figure with the known distribution

of asteroids as of July 18, 2001. H = 3m equals a diameter of approximately 670–1500

kilometres, while H = 30m corresponds to 3–6 metres.

Jedicke et al. (2003) estimated the total number of NEOs and MBOs with

diameters larger than 1 km (corresponding to an absolute magnitude H . 18m)

to be about 1,000 and 350,000, respectively. The number of asteroids grows ex-

ponentially with decreasing size and increasing H, as seen in Figure 1.4. As the

limiting magnitude of telescopes approaches a value of 24m, e.g., the LSST4 and

the Pan-STARRS5, the number of observed asteroids per unit area will virtually

explode. For these forthcoming deep surveys of asteroids, the short-term identi-

fication of observations within a single apparition becomes a highly challenging

problem. Confusion typically arises whether given sets of observations separated

by just a few days can be safely addressed to a single asteroid or not.

4Large Synoptic Survey Telescope, see http://www.lssto.org/
5Panoramic Survey Telescope And Rapid Response System, see

http://pan-starrs.ifa.hawaii.edu/
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1.2 Solving the identification problem

Bowell et al. (2003) divided the asteroid orbit computation problem into the

inverse and prediction problems. The inversion from observations, usually Right

Ascensions (R.A.) and Declinations (Dec.), to orbital elements, was for the first

time solved in a practical way by Gauss more than two centuries ago (1801).

Since then the goal of the inversion has been to find a set of orbital elements

fitting best to observed positions. In the book Asteroids II, published in 1989,

the only authors refering to the ephemeris uncertainty were Bowell et al. (1989)

and Ostro (1989). A few years later, orbital element uncertainty estimations

were introduced as a part of the state of the art inversion methods. Muinonen &

Bowell (1993) laid out the theoretical basis for a Bayesian treatment of the orbit

computation problem, and used the first nonlinear approach on objects with long

observational arcs. Recently, Virtanen et al. (2001) and Muinonen et al. (2001)

presented an orbit computation method, termed statistical ranging, based on the

theory laid out by Muinonen & Bowell. Statistical ranging is particularly suitable

for objects with short observational and orbital arcs, e.g., recently discovered

NEOs and the majority of the known TNOs (Virtanen et al. 2003). Compared

to other orbit inversion techniques, statistical ranging is the only method capable

of dealing with strongly nonlinear cases (Milani 1999, Milani & Valsecchi 1999,

Chesley 2003).

When the inversion has been carried out successfully, the orbital parameters

can be used for solving different prediction problems, such as ephemeris pre-

diction and identification. Milani (1999) divided the identification problem into

different categories based on the success of the inversion from observations to

orbital elements:

• The data is sufficient to allow for an orbit solution for both sets separately.

• An orbit solution is found separately for one set only. In this case the orbit

solution of the first set is compared to the data of the second set, which is

insufficient to allow for an orbit solution on its own.

• Both arcs are insufficient to allow for separate orbit solutions. In this case

the data of both arcs joined together is, however, sufficient to allow for an

orbit solution.

The suitability of the above categorisation is discussed further in the final chapter.

Present-day identification algorithms rely on linear or semilinear approxima-

tions (e.g. Milani et al. 2000, Milani et al. 2001). Exact nonlinear algorithms

however, like statistical ranging, offer a rigorous foundation to build upon. Since

statistical ranging can be applied to objects having only two observations, the
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Term Explanation

angular observational arc Apparent angular arc from the first to the

last observation.

false positive [identification] An identification that is possible, but false.

identification Connecting two observational sets to a single

object. Also: linking, linkage

observational scheme A series of numbers indicating the observa-

tion night as days from discovery.

observational set A collection of observations of one or more

objects.

observational [time] arc Time span from the first to the last observa-

tion.

orbital arc True observed arc; ∆ν, where ν is the true

anomaly.

possible identification An identification that has not been proven

false.

Table 1.1: Terminology related to the identification problem.

identification algorithm built upon it can also be used when two positions become

distinguishable, i.e., as soon as it is clear that an object is moving. This has not

been possible with previous methods due to the inversion techniques used and

the aforementioned approximations in the identification algorithms.

1.3 Terminology

There have been too few articles dedicated to the asteroid identification problem

in refered journals. Consequently, the terminology has not yet converged, making

it difficult to classify various aspects of the problem. The terminology used in

this thesis, with the corresponding explanation, is presented in Table 1.1.

1.4 Aim of the thesis

The ultimate goal of the ongoing research is to produce a set of identification

algorithms jointly capable in dealing with arbitrary observational arcs as well

as any number of observations. The targets range from NEOs to TNOs, and

the set will be particularly suitable for large scale surveys such as European

Space Agency’s GAIA-mission and the Lowell Observatory Near-Earth-Object

Search (LONEOS). The LONEOS project will become an even more interesting
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collaborator as one of the main users of the coming Discovery Channel Telescope6.

The aim of the thesis is to study the identification problem in connection with

objects displaying very short observational and orbital arcs. A decision was made

to focus on the NEO and MBO populations, because several automatic NEO

surveys, that are currently running, could benefit from the results. Whether

NEOs and MBOs can be erroneously linked together during an identification

process, provides an example of the many unresolved questions in this area of

research.

This thesis presents the first systematic and realistic study on how para-

meters, such as observational time arc between observational sets, and limiting

magnitude, affect the identification problem. In other words, the aim is not to

look only for a solution to the short-term identification problem, but also to

study different aspects of the problem.

The thesis is organised as follows. Chapter 2 covers modern orbit determi-

nation theory, while in Chapter 3 the statistical ranging technique is described,

and the building blocks of an identification algorithm are presented. In Chapter

4 the asteroid survey simulation software for generating observations is outlined.

Some observational properties of the generated population are also included. In

Chapter 5, results produced by the identification algorithm are presented and

discussed. Finally, in Chapter 6, the key findings are summarised.

6See http://www.lowell.edu/dct/dct.php



Chapter 2

Modern orbit determination

2.1 Two-body problem

In addition to the three laws of motion, Newton, in his Principia, introduced the

law of universal gravitation:

F = G
m1m2

r2

r

|r| . (2.1)

Newton’s law of gravity expresses how particles act when impressed by forces,

and this still remains the fundamental law of modern celestial mechanics.

According to Newton’s three laws of motion and the law of universal gravi-

tation (2.1), a system with N + 1 bodies can be described with the following

equations of motion:

d2ri
dt2

= γ
N∑

j=0,j 6=i
mj

rij
rij3

, (i = 0, N) , (2.2)

where γ is the universal constant of gravity, ri are the Cartesian position vectors

of the N + 1 bodies and rij = rj − ri their relative position vectors. Three

assumptions have to be fulfilled when using the equation. Firstly, the bodies

have to be spherically symmetric with their masses concentrated to the center.

Secondly, no external forces are allowed to act upon them. Thirdly, an inertial

frame of reference, which is absolutely at rest and relative to which all motion

takes place, has to exist.

In the case of the solar system, the Sun (m0) can be adopted as the origin of

the coordinate system. The relative positions now refer to ri ← ri − r0 and the

equations of motion become

d2ri
dt2

= −γ(m0 +mi)
ri
ri3

+ γ

N∑

j=1,j 6=i
mj

(
rij
rij3
− rj
rj3

)
, (2.3)

9



Modern orbit determination 10

where i = 1, N . The first term on the right-hand side describes the two-body

motion of the central body m0 and mi. The second perturbative term represents

the effect of the gravity of the other bodies on the Sun, i.e., it is a force that

causes perturbations from Keplerian motion.

In a particular system where N = 1, Equation (2.3) describes the Keplerian

two-body system (Figure 2.1). In this case, the equation of motion can be written

as
d2r

dt2
= µ

r

r3
, (2.4)

where µ = γ(m0 + m1) and r = r1 − r0. As there are three spatial coordinates

in r, this second-order differential equation requires six constants of integration

for its complete solution.

e
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Sun

Planet

Figure 2.1: Illustration of the two-body problem.

The six constants of integration can be presented as Keplerian elements,

Cartesian positions and velocities, Poincaré variables, etc. Because of the equiva-

lence between these different sets, knowing one of them makes it possible to com-

pute the others. In this thesis, all different sets of these constants are collectively

referred to as the orbital elements.

The following two sections describe how the six constants of integration are

solved with modern techniques. The sections are mainly based on the presenta-

tion of the methods given by Danby (1992).

2.2 f- and g-functions

The orbital reference system is a coordinate system with the origin at the at-

tracting focus, the X-axis towards periapsis (the closest distance a body in orbit

about a mass reaches), and the Y -axis in the direction for which the true anomaly
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is 90◦. The system is given by

X = r cos ν , (2.5)

Y = r sin ν , (2.6)

where r is the instantaneous radius and ν is the true anomaly. Time derivatives

are given by

Ẋ = −rν̇ sin ν + ṙ cos ν , (2.7)

Ẏ = −rν̇ cos ν + ṙ sin ν . (2.8)

Knowing six orbital elements, i.e., the position and velocity, at a given epoch,

it is possible to obtain an exact mapping of these elements to an arbitrary epoch

in the two-body approximation using the f - and g-functions, which are defined

in the orbital reference frame:

r(t) ≡ f(t, t0)r(t0) + g(t, t0)v(t0) , (2.9)

v(t) ≡ ḟ(t, t0)r(t0) + ġ(t, t0)v(t0) . (2.10)

By writing Equation (2.9) in component form

[
X(t)

Y (t)

]
=

[
X(t0) Ẋ(t0)

Y (t0) Ẏ (t0)

][
f

g

]
, (2.11)

and solving f and g one gets

[
f

g

]
=

1

D

[
Ẏ (t0) −Ẋ(t0)

−Y (t0) X(t0)

][
X(t)

Y (t)

]
, (2.12)

where

D ≡ X(t0)Ẏ (t0)− Y (t0)Ẋ(t0) = r0
2ν̇0 . (2.13)

Equation (2.12) can be written explicitly as

f =
1

D

[
Ẏ (t0)X(t)− Ẋ(t0)Y (t)

]
(2.14)

=
r

p
[cos(ν − ν0)− 1] + 1 , (2.15)

g =
1

D
[−Y (t0)X(t) +X(t0)Y (t)] (2.16)

=
rr0√
µp

sin(ν − ν0) , (2.17)

where

p = r(1 + e cos ν) , (2.18)
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and e is the eccentricity. By calculating the time derivatives of Equations (2.15)

and (2.17) the two remaining functions can be found:

ḟ = −
√
µ

p3
[sin(ν − ν0) + e sin ν − e sin ν0] ,

ġ =
r0

p
[cos(ν − ν0)− 1] + 1 .

All orbit determination methods have to solve some version of Kepler’s equation.

Here, the computation of the difference between true anomalies (ν− ν0) requires

the equation to be solved to get the eccentric anomaly E. Instead of using

traditional Keplerian variables and solving E from

M = E − e sinE , (2.19)

where M is the mean anomaly, the whole problem can be expressed in terms

of universal variables. All different orbits can then be solved with a single set

of formulas. In universal variables, the f - and g-functions, and their respective

time derivatives, are written as

f = 1−
(
µ

r0

)
s2c2(αs2) , (2.20)

g = t− t0 − µs3c3(αs2) , (2.21)

ḟ = −
(
µ

rr0

)
sc1(αs2) , (2.22)

ġ = 1−
(µ
r

)
s2c2(αs2) , (2.23)

where the new independent variable s is defined as dt = r ds, and

α =
2µ

r
− ṙ2 . (2.24)

Terms c1, c2, and c3 are so-called Stumpff functions:

ck(x) =
1

k!
− x

(k + 2)!
+

x2

(k + 4)!
− . . . , (2.25)

where k=0,1,2,. . . Kepler’s equation for solving s is written as

t− t0 = r0sc1(αs2) + r0ṙ0s
2c2(αs2) + µs3c3(αs2) , (2.26)

and has to be solved iteratively as all versions of the equation.

2.3 p-iteration method for solving an orbit

The p-iteration method, also known as the method of Herrick and Liu, can be

used to solve any kind of orbit assuming that two positions (r1 and r2) are known.
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The only restriction is that it must be decided whether the orbital segment formed

by r1 and r2 includes the attracting focus, or not.

Assume that ν1 and ν2 are the respective true anomalies for r1 and r2. Then,

in equations

C = cos(ν2 − ν1) = r1·r2

r1r2
(2.27)

sin(ν2 − ν1) = Y
√

1− C2 (2.28)

Y = 1 if the orbital segment does not include the attracting focus, and Y = −1 if

it does. Writing Equations (2.15) and (2.17) using Equations (2.27) and (2.28),

the following equations are found:

C =
r1 · r2

r1r2

, (2.29)

f =
r2

p
(C − 1) + 1 , (2.30)

g =
r1r2√
µp
Y
√

1− C2 , (2.31)

v1 =
r2 − fr1

g
, (2.32)

where it is assumed that g 6= 0. If p is estimated, v1 can be computed. Having

both r1 and v1, a resulting position vector r∗ can be computed for the same epoch

as r2 by using the f - and g-functions given by Equations (2.20) and (2.21). The

cosine C∗ of the angle between r1 and r∗ is

C∗ =
r1 · r∗
r1r∗

, (2.33)

which has to be compared with C from (2.27). The difference

D(p) = C − C∗ (2.34)

has to be driven to zero using an iterative process by changing the value of p.

When zero difference has been reached, the correct v1 has been found. All six

orbital parameters are thus known at the epoch of r1, which means the orbit

corresponding to that epoch has been found.

As stated above, the procedure can lead to a false solution depending on the

value of Y . When r∗ is found from r1 and v1, the value of the g function is

computed. For a correct solution, the sign of g and Y should be the same. If it

is not the case, then the correct solution can be found by changing the Y value

and redoing the computations.

2.4 Criterions for acceptance

When fitting an orbit to observed positions, it is essential to have a criterion to

estimate the goodness of the fit. A χ2- or rms-value (root mean square) can be
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used for this purpose. χ2 is defined as

χ2 =
1

N

N∑

i=1

(Xi − xi)2

σi2
, (2.35)

where N is the number of observations, Xi is the computed value, xi is the

observed value, and σi
2 is the corresponding standard deviation. Assuming that

σi
2 = σ2, Equation (2.35) can be written as

χ2 =
1

Nσ2

N∑

i=1

(Xi − xi)2 , (2.36)

which simplifies the relation between χ2 and rms:

χ2 =
1

σ2

1

N

N∑

i=1

(Xi − xi)2

=
1

σ2



√√√√ 1

N

N∑

i=1

(Xi − xi)2




2

=
1

σ2
rms2 . (2.37)

For statistical inversion methods it can, for instance, be required that

∆χ2 = χ2 − χmin2 (2.38)

is smaller than a given threshold. χmin
2 may correspond to, e.g., the least-squares

orbit, or the best fit sample orbit.



Chapter 3

Algorithm for identification at

discovery

The simplest way to perform the identification is to combine two observational

data sets and make the inversion from observations to orbital elements with sta-

tistical ranging (Virtanen et al. 2003). If even a single solution is found, it shows

that the observational sets can be linked. In the case of larger sets of observations

leading to multiple solutions, the final decision has to be made either by further

observations, or by using a metric describing the probability of an identification.

The use of other inversion methods looking for a single orbit is somewhat ques-

tionable since they might not find a solution even if the identification would be

correct. The direct method has, however, a major disadvantage, namely the huge

computational load.

A realistic identification problem consists of two observational sets, A and

B. It is assumed that all identifications have been done correctly within each

set. Assuming that the number of objects in each set is nA ≈ nB ≈ 103, then

the number of possible identifications is nAnB ≈ 106. As the maximum number

of correct identifications is the smaller one of nA and nB, it is clear that in this

scenario more than 99.9% of the possible identifications are false. Thus, it is a

waste of resources to try to make the inversion for all possible matches. The

identification is most efficiently performed by filtering out unlikely pairs in a

multistep process.

All steps in the identification procedure described here use statistical ranging

as the inversion method. Therefore, it is shortly described before presenting the

methods used in the identification process. Several methods have been developed

and tested for the first step, as its efficiency is crucial for the whole identifica-

tion algorithm. Consequently, Section 3.2 (particularly Section 3.2.3) is the key

section of the thesis.

15
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3.1 Statistical orbital ranging

The technique of statistical orbital ranging is currently being modernised by the

asteroid orbit computation team (K. Muinonen, J. Virtanen and M. Granvik)

from the version presented by Virtanen et al. (2001). Instead of using Keple-

rian elements during the inversion, Cartesian positions and velocities are used

throughout the process. The implementation of the revised method is written in

Fortran 95 using an object oriented programming paradigm.

The probability density of orbital elements is examined using Monte Carlo

selection of orbits in orbital element space in the following way:

• Two observations are chosen (usually the first and the last), and angular

deviations in R.A. and Dec. are introduced.

• Topocentric ranges (distances) are assumed corresponding to the observa-

tion dates. In other words, two positions equalling six constants of integra-

tion are known.

• A trial orbit is computed using the p-iteration method described in Section

2.3 and is compared to all observations. If the trial orbit fits the obser-

vations to predefined accuracy (defined as a ∆χ2-threshold and maximum

sky-plane residuals), it is added to the sample of possible orbits.

The initial topocentric range intervals are determined manually using an edu-

cated guess in the basic version of statistical ranging, whereas in the automated

version the topocentric range intervals are further improved using the 3-σ cutoff

values of the range probability density. By increasing the number of generated

sample orbits (10 → 200 → n), an unbiased phase space region of possible or-

bits is found. Besides the ∆χ2-threshold and maximum sky-plane residuals, the

number of trials and solutions, as well as the initial topocentric range intervals,

are the key parameters of statistical ranging.

A probability density value, which describes how well the orbit explains the

observations, is associated with every orbit in the discrete orbit distribution. Ne-

glecting the probabilities, the distribution merely shows the extent of different

orbital solutions assuming a predefined observational error. A priori knowledge

on the orbital elements, mainly the semimajor axis a, eccentricity e and inclina-

tion i, may be used to narrow down the orbit distribution, if necessary.

Ephemeris are generated by transforming the orbital elements of every orbit

to a position on the celestial sphere at a given epoch. The result is thus a

discrete ephemeris distribution, which is interpreted as a continuous ephemeris

probability density as the number of orbits approaches infinity (practically some

thousands).
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3.2 Removing the bulk of impossible candidates

The first step in the filtering process has a clear objective: it should remove

the bulk of impossible candidates. The algorithm chosen for this purpose needs

to fulfil two main criteria, namely speed and reliability. Speed is important

because of the vast number of possible identifications to scan through. At the

same time it is essential to have a reliable routine which does not exclude correct

identifications. It is certainly better to allow a few more erroneous identifications,

than to remove the only correct one.

There are essentially four quantities that can be compared: astrometric posi-

tions (i.e. observations), magnitudes, ephemerides, or different orbital elements.

Magnitudes are difficult to use in short-term identification, because knowledge

of the physical properties of the targets is naturally very modest close to dis-

covery. The three remaining quantities can be used in the following combina-

tions: ephemerides vs. observations, elements vs. elements, or ephemerides vs.

ephemerides. The following three sections describe a method for each of these

combinations in the chronological order they were examined.

A common problem among Monte Carlo methods is how to efficiently ex-

amine the large output of data, here manifested particularly in the asymmetric

ephemeris comparison technique. It turned out, that at least for some cases the

huge computational load can be overcome by simplifying the data as much as

possible. The key idea is to compress real number arrays to integers, and hence

be able to make data comparisons more efficiently. The new technique, termed

address comparison, is described in connection to the phase space address com-

parison method, but it is also a main constituent of the best one of the examined

first-step algorithms, i.e., the symmetric ephemeris address comparison.

3.2.1 Asymmetric ephemeris comparison

Using observations of an object in set A, a distribution of ephemerides is gen-

erated corresponding to the first and the last epoch of an object in set B. If

neither the first position (R.A. and Dec.), nor the positional difference computed

between the first and the last position (Figure 3.1) fits the observations in set B

to predefined accuracy, the pair is excluded from possible identifications.

Asymmetric ephemeris comparison is efficient in finding the correct identifica-

tions. As long as the maximum differences between the coordinates of approved

identifications are kept small, it seems like the ratio between false positives and

correct identifications could go down to approximately one, requiring that all

correct ones have been found. For a first-step algorithm this is excellent.

Difficulties with the asymmetric approach are a huge computational load due
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Figure 3.1: The geometric definition of the positional difference between the end-

points of the nonlinear motion. Filled circles are observations.

to computations of the distances between observations and ephemerides, and

the asymmetry in the treatment of observational sets (hence the term asymmet-

ric). The computational load arises from the computations of distances between

observations and theoretical positions, and between observed and theoretical po-

sitional differences. Since observations are given in spherical coordinates, the

computation of distances between positions requires the use of trigonometric

functions, which in turn is computationally heavy. Moreover, the distances have

to be measured between every ephemeris and every observation. Consider for

instance the following example: observations of every object in set A (nA ≈ 103)

are transformed into orbit distributions containing norbit = 2 × 103 individual

orbits. All these orbits (Norbit = nA norbit ≈ 2 × 106) are then transformed into

ephemerides at the same epochs as the observations in set B (nB ≈ 103). Put to-

gether, the two distances (between positions, and between positional differences)

have to be computed for Norbit nB ≈ 2× 109 separate cases. When the distances

have been computed, they still need to be analysed, i.e., the shortest distances

need to be found.

An obvious question rising from the asymmetric treatment of observational

sets, is whether this method produces similar results if the sets are switched?

The answer is clearly no. Even if the parameters would be adjusted to find all

correct pairs, the number of false positives will always depend on the order of the

observational sets. To avoid subjective interpretation of the data, it is advisable

to treat both observational sets equally.

3.2.2 Phase space address comparison

Observations in both sets are inverted to orbital elements, e.g., Keplerian ele-

ments or Poincaré variables. The epoch of the elements is arbitrary, but it is

most convenient to choose the mean epoch of the combined observation set. As

both sets of observations have been treated similarly while inverted to orbital el-
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ements, and integrated to the same epoch, they can be compared with each other

to find similar values indicating possible identifications. There are two ways of

comparing the distributions; either by measuring distances between sets orbital

elements, or by binning the distributions and searching for bins populated by

elements inverted from two different observational sets.

In the first method, a possible identification is accepted if the distance be-

tween orbital elements is smaller than a given cutoff value. There are two prob-

lems with this approach. First, measuring the distances between two sets of

orbital elements requires some kind of metric. This could be solved by using a

metric resembling those used for determining asteroid families by, for instance,

Nesvorný et al. (2002):

dp = nap

√
Ca(δap/ap)2 + Ce(δep)2 + Ci(δ sin ip)2 , (3.1)

where p denotes proper elements, dp is the distance in the (ap,ep,ip)-space, nap is

the heliocentric velocity of an asteroid on a circular orbit having semimajor axis

ap, δap = |a(1)
p − a(2)

p |, δep = |e(1)
p − e(2)

p |, and, δ sin ip = | sin i(1)
p − sin i

(2)
p |. The

indices (1) and (2) denote the two bodies under consideration. Ca, Ce, and Ci

are constants, e.g., 5/4, 2, and 2, respectively.

Since the elements hardly change during short periods of days or months,

osculating elements can be used instead of proper elements. As the computation

of proper elements requires the osculating elements to be very well known, the

use of proper elements would, in fact, be an impossible solution to the short-term

identification problem. For Keplerian elements, the suitable metric could thus

be the following:

d = na
√
Ca(δa/a)2 + Ce(δe)2 + Ci(δ sin i)2 , (3.2)

where d is the distance in the (a,e,i)-space, na is the heliocentric velocity of an

asteroid on a circular orbit having semimajor axis a, δa = |a(1) − a(2)|, δe =

|e(1) − e(2)|, and, δ sin i = | sin i(1) − sin i(2)|. The indices (1) and (2) now denote

the two orbits under consideration, and Ca, Ce, and Ci are the same constants

as above.

The other problem is, once again, a heavy computational load. Despite that

the computation of the evaluation function is straightforward, the computational

load is heavy due to the need to measure the distance between every orbit inverted

from observations in set A and every orbit inverted from observations in set

B. Using the numbers given for the example in connection to the asymmetric

ephemeris comparison above, approximately 4 × 1012 of these comparisons are

needed.

The second method, binning the orbital elements, is more promising. The

idea is to put a multidimensional grid in the orbital element space and fill the
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bins between the gridpoints with orbits. In other words, each bin is related to

similar orbits. The difference between orbits in a bin depends on the bin size. It

is a very efficient way of categorising the orbits; using the above example, only

4 × 106 orbits have to be put in the correct bins. A possible identification is

approved, if orbits inverted from both observational sets are found in the same

bin.

The problem with binning is the small bin size compared to the large vol-

ume of the interesting orbital element space. Combined with the relatively small

amount of objects, this leads to a binned array mostly containing empty bins.

Consider, for instance, the binning given in Table 3.1. Assuming the same

amount of objects and orbits as above, the maximum amount of populated bins

is 4×106 out of approximately 1.7×1012. In other words, there are at least some

400,000 empty bins per populated bin.

Element Min. value Max. value Bin size No. of bins

a 0 AU 10 AU 0.5 AU 20

e 0 1 0.1 10

i 0◦ 180◦ 1◦ 180

Ω 0◦ 360◦ 1◦ 360

ω 0◦ 360◦ 1◦ 360

M 0◦ 360◦ 1◦ 360

Table 3.1: Parameters that have been found suitable for phase space comparison

using Keplerian elements.

When searching through the bins to find possible identifications, the time is

thus mostly spent checking empty bins, which is naturally not efficient. Instead

of using the whole map, or multidimensional array, one can write an address to

each bin and just compare the addresses that are occupied with orbits.

The phase space comparison method, and particularly the address comparison

technique, has originally been developed by K. Muinonen. For this thesis, the

technique was optimised and ported to Fortran 95. Moreover, the transformation

algorithm described below was generalised to allow arrays of any size and values.

In practice, the address is an integer i ∈ N+, transformed from an array of

elements p ∈ R6 using a transformation algorithm f , i.e., i = f(p, ...). The trans-

formation algorithm f essentially does the same as a basic binning algorithm.

But instead of returning the coordinates of a bin in multidimensional space (a

bi-product of the algorithm), it transforms the coordinates to a single integer i.

The integer can be thought of as a coordinate of an element in a long, winding

one-dimensional array perfectly filling the multidimensional space. Each element
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in this array corresponds to a separate bin in the original multidimensional bin-

network. Besides p, the essential input values for the transformation algorithm

f are the boundary values of the multidimensional space and the bin sizes. An

implementation of the technique in Fortran 95 is found in Appendix A.

Since the observations of an object are inverted to an orbit distribution, and

every orbit is transformed to a value i, each object will get a one-dimensional

array containing the i-values. Potential identifications are searched by comparing

the i-arrays of objects in set A with the i-arrays of objects in set B. The search

can move to the next possible identification as soon as a single pair of equal

addresses, or integers, are found.

Using the example, a maximum of 4 × 1012 comparisons between addresses

would need to be performed. Although the magnitude of the number is the

same as when computing differences between orbits, there is one big advantage.

When dealing with an array of integers, the search algorithm can be optimised

easier, than when searching a multidimensional array. By sorting the i-values

in ascending order, a binary search algorithm can be used for the search of

similar elements, which significantly accelerates the comparison algorithm. The

suitable sorting algorithm for this implementation of the comparison algorithm is

insertion sort, which is very efficient for almost sorted arrays. Short descriptions

of these algorithms are given in Appendix B.

The use of the address comparison technique makes the phase space com-

parison method much faster than, e.g., the asymmetric ephemeris comparison

method. As a rule of thumb, it is approximately ten times faster for the same

data set.

The main weakness of a method using orbital elements for short-term identifi-

cation arises from the well-known characteristics of widely spread orbital element

distributions for objects with short observational arcs or small numbers of ob-

servations (e.g. Virtanen et al. 2001, Bowell et al. 2003). Wide distributions

lead to a situation, where an object can be linked with almost any other object,

leading to an unacceptably high number of false positives. It turns out, that

most efficiently the number of false positives are reduced by taking into account

the locations of the objects. In Keplerian elements it means comparing the val-

ues of the inclination i, the longitude of the ascending node Ω, the argument of

perihelion ω, and the mean anomaly M .

3.2.3 Symmetric ephemeris address comparison

By combining the strengths of the asymmetric ephemeris comparison (accuracy)

and orbital element address comparison (speed), an efficient symmetric ephemeris

address comparison method is found. Even better, also the weaknesses of these
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two earlier methods seem to vanish as their better features are utilised.

The idea is to generate ephemeris distributions (R.A. and Dec.) and position

differences (∆R.A. and ∆Dec.) for objects in both sets at the same epoch (hence

the term symmetric), and then find out whether any objects in different sets have

similar values, which would indicate a possible identification. The choice of epoch

can be optimised, but the mid-epoch is a good approximation to start from, based

on the knowledge that the ephemeris uncertainty grows with increasing time

since last observation (Muinonen et al. 1994). Position differences are found by

computing the difference between two ephemerides generated at epochs separated

by twelve hours. The second ephemeris is produced by integrating an ephemeris

distribution, which is generated at the first epoch, to the second epoch, thus

mapping the nonlinear motion rigorously.

The search for similarities among the two ephemeris is done using the address

comparison technique originally developed for the phase space address compari-

son method.

3.3 Sieving possible linkings

The second stage in the filtering process is a kind of a preparation for the final

step. During the final filtering, an extensive orbit distribution is produced which

requires a huge number of trial orbits. However, if even a single orbit can not be

found in the inversion process, it means that valuable cpu-time is wasted. The

number of pairs, for which orbits can probably not be found, should therefore be

minimised before entering the last phase.

By using four observations (e.g., the two first and the two last observations

of the combined set) available for a possible identification, one orbit is generated

by using no more than a given number of trials. If no orbit is found, the pair at

issue is excluded from the list of possible identifications.

The observations belonging to pairs of initial objects, which still have not been

excluded, may or may not belong to a single object. At least one orbit could be

found that ties the used observations to a single object. Since all observations

are not necessarily used in this step, there will be some false positives slipping

through.

3.4 Finding potential identifications

During the last step of the identification algorithm, all observations related to a

potential identification are used to generate an extensive orbit distribution. The

simple fact that this inversion from observations to orbits is possible assuming
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given observational errors, is the sensible end for this algorithm. From this

point forward, the rational continuation of the identification process would be to

make observations using ephemerides computed for possible identifications. If an

object is observed moving as predicted by the ephemerides, it can be considered

an identification. On the other hand, if an object can not be found, the pair is

obviously a false positive and can thus be ruled out.

It is, however, possible to go further using only the knowledge given by the

original observations, and orbits inverted from them. Nevertheless, it can not be

stressed too much, that all further results are uncertain; all identifications fit the

observations to the accuracy given by the assumed observational error. Being

aware of this limitation, one can consider, for instance, a case with two possible

identifications, where letters denote observational sets, and numbers are different

objects within a set:

A1 ←→ B1

A1 ←→ B2

As A1 can not be linked to both B1 and B2, one can compute different quantities

describing the quality, or probability, of the fit based on the orbit distribution.

For instance a χ2-value could be used to rule out the first of two possible identi-

fications:

A1 ←→ B1 χ2 = 0.8

A1 ←→ B2 χ2 = 0.2

Usually the best fit corresponds to the correct identification, but it should not

be taken for granted due to observational errors. The complexity of the problem

can be seen in the, more or less theoretical, example given below.

A1 ←→ B1 χ2 = 0.8

A1 ←→ B2 χ2 = 0.2

A1 ←→ B3 χ2 = 0.4

A2 ←→ B2 χ2 = 0.1

A3 ←→ B1 χ2 = 0.6

A3 ←→ B2 χ2 = 0.5

A3 ←→ B3 χ2 = 0.3

Excluding the χ2-values and trying to find the candidate pairs which have to be

taken into account while looking for the most probable identification combining

A1 with an object from set B, it turns out one must actually check every possible

identification in this set.
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Moreover, if the χ2-values are taken into account, it turns out that the solution

is different depending on the selection method that is used. For instance, if the

criterion is to find the smallest possible χ2-value for each individual identification

by progressing step-wise through the list of possible identifications, the solution

is A1 ↔ B1, A2 ↔ B2, and A3 ↔ B3. For some cases, the results may even

depend on how the route through the possible identifications is chosen, i.e. one

might end up with different results when beginning from the top of the list of

possible identifications, compared to doing it the other way round and start from

the bottom.

On the other hand, if the criterion is to minimise the total sum of χ2-values for

all identifications while simultaneously maximising the number of identifications,

the solution is A1↔ B3, A2↔ B2, and A3↔ B1. It is obviously questionable,

whether the requirement to find as many identifications as possible is clever at

all.

As is probably already evident, there is only one smart thing to do at this

stage: grab a telescope, and either accept or reject possible identifications through

further observations.



Chapter 4

Simulated observations

The goal is to have sets of observations of NEOs and MBOs resembling those

produced by real-life asteroid search programs. They are observing the same

part of the sky twice during a single night with an interval of approximately one

hour. Instead of returning to a certain area every fourth or fifth day, like real

search programs do, the area at issue should be covered during eight subsequent

nights. A continuous set of observations is needed to get an idea of how the

number of false positives produced by the identification algorithm evolves as the

observational time arc between subsets of observations increases.

There are a lot of data available1 that need to be scanned with a proper

identification algorithm. Why are they not utilised in this study? First of all

they can not be used for estimating the probability of success since the correct

identifications are not known a priori. Secondly, it is difficult to control the

epochs of real observational data, which makes it impossible to analyse the impact

of other variables such as variations in limiting magnitude. Thirdly, they might

contain false detections, e.g., cosmic rays. Fourthly, it is not granted that they

contain a proper sample of the populations, particularly when reaching deeper

magnitudes. Fifthly, observational errors are not available, which makes it hard

to estimate the intrinsic errors of the identification algorithm. Sixthly, by using

simulated observations it is possible to make a decision between a two-body

approximation and n-body integration. If using the two-body approximation

while generating observations, it is possible to use the same fast approximation

in the identification algorithm. This will significantly reduce the computational

load without producing uncontrollable errors.

1E.g. LONEOS unidentified objects archives available via http://asteroid.lowell.edu/.
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4.1 ASurv simulation software

The current asteroid survey simulation software called ASurv (Muinonen 2003)

has been updated from that used by Bowell & Muinonen (1994), Muinonen (1998)

and Tedesco et al. (2000), and for the thesis it was translated to Fortran 95. A

debiased population of NEOs and MBOs is generated using the latest knowledge

of the observational biases, the overall orbital element distribution (Jedicke et al.

2003), and the orbital elements of the known objects provided by Bowell et al.

(1994) in the astorb.dat file.

The software allows the simultaneous simulation of several different surveys

(e.g. visual or infrared) from various locations. It uses the ephemerides provided

by the Jet Propulsion Laboratory (Standish 1998) in the de405.dat file to deter-

mine the position and motion of the Earth with respect to the Sun at a given

time.

The asteroid survey simulation is essentially a Monte Carlo simulation. The

orbital elements, diameter, and geometric albedo are randomly generated for a

sample asteroid using knowledge on the assumed distributions of orbital elements

and absolute magnitudes in the process. Positions are then computed in the

two-body approximation for the given survey dates. Finally, a decision is made

whether the sample asteroid is observable or not, based on the specified region(s)

and limiting magnitude(s).

It should be stressed that instrument-dependent parameters, such as the trail-

ing loss2, are not taken into account while deciding whether an object is observ-

able or not. Instead, one could think the observations are made with a perfect

instrument, the integration time of which approaches zero.

4.2 Generating simulated observations

Originally the intention was to perform the analysis for three different limiting

magnitudes V ; 20m, 22m and 24m. These magnitudes roughly correspond to the

surveys at present, in the near future, and in a more distant future, respectively.

As the computational power is limited, the number of observed objects need to

be kept reasonable, say to about one thousand. Knowing that the number of

objects grows exponentially with increasing absolute magnitude H (see Figure

1.4), the observed area must decrease proportionally. Otherwise, the number

of observations could not be kept small enough. While generating simulated

observations, it became clear that suitable areas for each limiting magnitude are

8◦ × 8◦, 3◦ × 3◦, and 1◦ × 1◦, respectively. Unfortunately, it later turned out

2Loss of magnitude due to the fast movement of an object on the CCD-chip.
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that the area corresponding to limiting magnitude 24m is too small in the sense

that every linkable object has moved beyond the area after a few days. In other

words, the observational sets are useless for identification studies after a couple

of nights since there are only false linkings available. Using a larger area would

result in computational overload, thus stating clearly that going this deep in

magnitude is a dead end for the time being. In a larger sense, this could be seen

as a statement of the problem’s size. Future projects, e.g., Pan-STARRS, will

scan the whole night-sky in four days to the limiting magnitude at issue, which

means that several hundreds of thousands of objects must be routinely identified

every night.

As V = 24m proved to be almost impossible for the time being, a decision was

made to change the limiting magnitudes to 18m, 20m and 22m. These new values

roughly correspond to advanced amateurs, professional surveys, and professional

surveys in the near future. The area suitable for V = 18m is 25◦ × 25◦.

In order to use the simulation software efficiently, one should not go deeper in

absolute magnitude H than necessary. On the other hand, the simulation must

reach deep enough to produce a realistic outcome. The correct H is found when

the number of observed objects does not increase when the absolute magnitude

interval is increased and the limiting, or apparent, magnitude stays constant.

This H-limit has to be determined separately for every V to be used.

A suitable limit for the absolute magnitude is practically found by running

the simulation in a loop and adding a small dH to H during every loop. After

the observations are generated during a loop, they are counted. Because of the

statistical nature of the simulated set of observations, the number of sample

asteroids must be larger than the realistic amount of asteroids corresponding to

the absolute magnitude at issue. To get an efficient routine and realistic result,

the number of sample asteroids is therefore equal to the assumed number of

asteroids below a certain absolute magnitude multiplied with a constant. The

value of the constant affects the smoothness of the curve, and since the number

of observed objects is renormalised back to a realistic level, its choice is more or

less arbitrary. The constant is chosen to be 100 for NEOs, and 10 for MBOs.

The whole sky, i.e., not only the dark sky, is used as the observational window.

Observational losses, e.g., the brightness of the background sky on small solar

elongations, are not taken into account.

As seen in Figures 4.1 and 4.2, the location of the steep slope is roughly

proportional to the limiting magnitude. In the case of MBOs, finding the suitable

H-limit is quite straightforward. The limits were chosen to be 17m, 19m, and 21m

for limiting magnitudes 18m, 20m, and 22m, respectively.

NEOs are more problematic. As can be seen in Figure 4.2, the number of

NEOs brighter than a given limiting magnitude does not necessarily flatten out as



Simulated observations 28

Figure 4.1: Number of MBOs brighter than a given limiting magnitude at a fixed date

as a function of the absolute magnitude H. The limiting magnitudes are (from the top)

18m, 20m, and 22m. These numbers were generated for a geocentric observer without

considering observational losses due to, e.g., the varying brightness of the background

sky.

a function of the absolute magnitude. This can be explained by two main factors,

namely the geocentric distance and the characteristics of the NEO population.

As the minimum geocentric distance for NEOs can be very small, there are

loads of faint bodies in terms of H that come sufficiently close to Earth to be

detected. In other words, it is a question of distance; if one of these faint bodies

would be moved from near-Earth space to the main belt, it would be too faint

to be observed. As these faint NEOs must reach small geocentric distances to be

visible, their apparent motion will usually be quite large. Now, if one considers

a real telescope, these fast and faint objects could probably not be observed due

to the trailing loss. Furthermore, motions sticking out from the crowd do not

pose any problems for identification and are thus not interesting for this study.

Secondly, the population characteristics also play a role. If one considers the

different slope parameters for the differential H distribution of NEOs given by
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Figure 4.2: Same as Figure 4.1, but for NEOs.

Jedicke et al. (2003), it is obvious that the number of NEOs grows more rapidly

for H > 24m than when H < 24m (Figure 1.4). This effect can also be seen in

the lowest plot in Figure 4.2, at H & 24m. As the number of NEOs compared to

MBOs is just of the order of one per cent, going a few magnitudes deeper does

not substantially change the situation. A decision is therefore made to set a hard

limit at H = 25m for NEOs for all limiting magnitudes. The smallest NEOs used

in this study are thus comparable in size (some tens of metres) to the asteroid

that exploded in the atmosphere above Tunguska River in 1908 (e.g. Morrison

et al. 2003).

As discoveries are usually made at or near opposition, the direction of op-

position at the discovery date is chosen to be the center of the observed area.

A search program is then mimicked by generating two nightly sets of simulated

observations of the same area during eight sequential nights. In order to keep

things simple, the virtual observer resides in the center of Earth thus producing

geocentric observations. The same area is reached by turning the virtual tele-

scope in the opposite direction (clockwise, if seen from the north ecliptic pole),

but at the same angular velocity as the Earth is orbiting the Sun. The angular
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velocity is
360◦

PEarth
=

360◦

365.25 d
≈ 0.9856◦ d−1 (4.1)

Obviously, if one considers a volume of space close to Earth it will not be covered

on sequential nights, as the distance to the perfectly covered area is infinite.

The time interval between two nightly sets is approximately one hour (exactly

0.04 days), which is, as already mentioned, roughly the same as for currently

running search programs.

Finally, single observations in the combined nightly sets were sorted out,

because there is no way to decide whether they belong to moving objects, or

not. A Gaussian error (σ = 0.5′′) is also added to the observations. Now the

set of simulated observations is ready to be used for the study of identification

problems. But before going into the main topic, a few interesting things about

the generated observations should be brought up.

4.3 Observational properties of the simulated

asteroid population

4.3.1 Verification

Figures 4.1 and 4.2 show the maximum number of visible objects at a certain

limiting magnitude for the whole sky. If a similar curve would be made for a

smaller part of the sky, say for a few square degrees, it could be compared to the

number of real detections for a similar area as an independent verification of the

simulated population.

4.3.2 Statistical opposition effect

A statistical opposition effect is manifested as a decreasing number of objects

observed as the telescope is pointed further away from the direction of opposi-

tion. Since the opposition effect occurs in a relatively narrow area centered in

the direction of opposition, it should be more evident for smaller observational

windows. In Figure 4.3 this can be seen as a pronounced opposition effect for

higher limiting magnitudes, which in this case correspond to smaller observation

areas. The values on the x-axis can be converted to degrees by multiplying with

the angular velocity given by equation 4.1. The discovery day naturally equals

0◦, while the phase angle is approximately 7◦ a week later.
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Figure 4.3: The number of observable objects, as a function of days since opposition,

at different limiting magnitudes. Note that the key parameter is not the limiting

magnitude itself, but the size of the observational area corresponding to each limiting

magnitude. A line is used to connect the values between sequential nights to make the

general trend more clearly visible. The symbols correspond to the following limiting

magnitudes and observational areas: (+): V = 18m / 25◦×25◦, (x): V = 20m / 8◦×8◦,

and (*): V = 22m / 3◦ × 3◦.

4.3.3 Positions and motions

Figures 4.4, 4.5 and 4.6 show the discovery observations of the objects at limiting

magnitudes 18m, 20m, and 22m, respectively. The center of each image is in the

direction of opposition.

Figure 4.7 shows the position differences of the objects during one hour on

the discovery night. Both NEOs and MBOs are displayed in these plots, and the

limiting magnitudes, V , are 18m, 20m and 22m.

For discovery and identification purposes it is interesting to see how fast the

objects are spreading on the celestial sphere. Figures 4.8, 4.9 and 4.10 show

the expansion of approximately one thousand MBOs during one week. Figures

4.11, 4.12 and 4.13 show the same for NEOs. The squares mark the outer edges

of the sample at discovery, and the circles map the situation one week later.

The observational windows at discovery are 25◦ × 25◦, 8◦ × 8◦ and 3◦ × 3◦, and

the respective limiting magnitudes are 18m, 20m and 22m. While generating

the NEOs, the number of sample asteroids was equal to the realistic number of

asteroids corresponding to the absolute magnitude used (25m for all NEO figures)

multiplied by 300 to get a big enough sample. Thus, the NEO figures are not
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Figure 4.4: Discovery observations of 1159 objects down to V = 18m in the direction

of opposition. The squares mark the regions covered at limiting magnitudes 20m (large,

see Figure 4.5) and 22m (small, see Figure 4.6).

showing a realistic number of observations, but merely a realistic scattering of

objects with time.



Simulated observations 33

Figure 4.5: Discovery observations of 1220 objects down to V = 20m in the direction

of opposition. The square marks the region covered at limiting magnitude 22m (see

Figure 4.6).
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Figure 4.6: Discovery observations of 1313 objects down to V = 22m in the direction

of opposition.
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Figure 4.7: Position differences during one hour on the discovery night. Different

symbols are used for six separate cases; MBOs at limiting magnitudes 18m (red plus),

20m (green cross), 22m (blue star), and NEOs at limiting magnitudes 18m (unfilled,

magenta square), 20m (filled, light blue square), 22m (filled, black circle). Note the

small number of NEOs compared to the number of MBOs. The observations are

simulated in the direction of opposition. Two NEOs at limiting magnitude 18m are

not displayed because their position differences (0.007h, 0.054◦ and 0.005h, 0.191◦) are

outside of the displayed area.
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Figure 4.8: The expansion of MBOs during one week. The square marks the obser-

vational area (25◦ × 25◦) at discovery. The limiting magnitude is 18m.

Figure 4.9: The expansion of MBOs during one week. The square marks the obser-

vational area (8◦ × 8◦) at discovery. The limiting magnitude is 20m.
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Figure 4.10: The expansion of MBOs during one week. The square marks the obser-

vational area (3◦ × 3◦) at discovery. The limiting magnitude is 22m.
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Figure 4.11: The expansion of NEOs during one week. The square marks the obser-

vational area (25◦ × 25◦) at discovery. The limiting magnitude is 18m. Note that the

number of objects is not realistic.
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Figure 4.12: The expansion of NEOs during one week. The square marks the obser-

vational area (8◦ × 8◦) at discovery. The limiting magnitude is 20m. Note that the

number of objects is not realistic.
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Figure 4.13: The expansion of NEOs during one week. The square marks the obser-

vational area (3◦ × 3◦) at discovery. The limiting magnitude is 22m. Note that the

number of objects is not realistic.



Chapter 5

Results and discussion

5.1 Adjusting the parameters

As the building blocks of the identification algorithm are rigorous, the only diffi-

cult thing is to find suitable parameters for the procedures. The values of these

parameters should simultaneously make the algorithm both accurate and fast.

Of the essential parameters needed by statistical ranging, only the number of

orbits and trials were altered. The following values were used for the statistical

parameters: the observational noise σ = 0.5′′, the maximum sky-plane residuals

were ±3σ in both R.A. and Dec., and the threshold of χ2 = 30.

5.1.1 First step — Symmetric ephemeris address compar-

ison

As already mentioned in Section 3.2, the essential duties of the first step is to

find all correct identifications and filter out the bulk of the impossible candidates.

The key parameters are the number of orbits combined with the bin sizes. Since

the ephemeris distributions are discrete, these parameters are linked to each

other. So if more orbits are used, the ephemeris distribution will be more dense

thus allowing for smaller bin sizes that lead to more efficient filtering and vice

versa. Figure 5.1 shows an ephemeris distribution and Figure 5.2 shows the

corresponding positional differences after 12 hours for the same object, a very

fast moving NEO, but using two different sets of observations. The distributions

are spread almost around the sky, yet they overlap at one point. A small part of

this area is shown in Figures 5.3 and 5.4.

The bin sizes, or tolerances, and the number of orbits must be adjusted to find

correct identifications. This means, that at least one pair of ephemeris arrays,

derived from different observational sets, need to fall in the same bin, i.e., acquire

the same address. An ephemeris array contains the positions, R.A., and Dec.,

40
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Figure 5.1: An example of two ephemeris distributions for the same fast moving NEO,

using different sets of observations with an interval of four days. The time between

the two observations in each set is one hour. A +0.5h shift in R.A., has been added to

the blue curve to make the overlap, centered at approximately 8.75h and 17◦, visible.

and also the positional differences after 12 hours, ∆R.A., and ∆Dec.

If the observational sets contain only a few observations, it is possible to find

suitable parameters. As long as the ephemeris distributions are spread all around

the sky, it is probable that the distance between at least one of the ephemeris

arrays is small enough to allow for correct identifications. However, if the sets

contain observations of a fast moving target, like in the case above, it might turn

out that by adding a few more observations the task becomes more difficult. The

ephemeris distribution computed for an object with a long observational arc or

several observations, can appear as a point compared to the second distribution,

as seen in Figures 5.5 and 5.6.

When adjusting the parameters, the main criterion is that all correct identifi-

cations has to be found, even if it means making the algorithm slower. The worst

case scenario, which was used for testing the parameters, was assumed to be the

observational scheme 0-7 at limiting magnitude 22m. The parameters allowing

for the derivation of all correct identifications are:

Orbits Tolerances

R.A. Dec. ∆R.A. ∆Dec.

2000 10′′ 10′′ 12′′ 12′′

Although the above parameters allow the correct identifications in the worst

case scenario, it turns out that the assumed worst case scenario was not the
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Figure 5.2: Same as Figure 5.1, but showing coordinate differences after a time interval

of 12 hours. No shift has been added.

most difficult case. By using the above parameters, the algorithm was unable to

detect all correct identifications in the V = 18m case. Roughly 99% of the correct

identifications were found, but some of the most interesting and important NEOs

were missed. The reason is shown in Figures 5.5 and 5.6. The only difference

between the two generated sets of observations, besides limiting magnitude, is

the window size. Obviously the larger window size at V = 18m allows for the

detection of fast moving NEOs thus making this observational set the actual

worst case scenario. Therefore, the parameters had to be evaluated once more

using a different set of observations. The final parameters are:

Orbits Tolerances

R.A. Dec. ∆R.A. ∆Dec.

2000 40′′ 40′′ 48′′ 48′′

(∼ 0.00074h) (∼ 0.011◦) (∼ 0.00089h) (∼ 0.013◦)

Assuming that the smaller ephemeris distribution, resulting from a longer

observational arc, is always surrounded by the larger ephemeris distribution,

it should be possible to find suitable parameters more systematically by com-

puting the maximum distance between neighbouring ephemeris points for large

ephemeris distributions derived from many different observations. The outcome

of such a computation is naturally dependent on many different parameters like

the number of orbits, time span from the observational epoch to the epoch of
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Figure 5.3: A close-up of Figure 5.1 showing two ephemeris distributions for the same

object, but using different sets of observations with an interval of four days. The time

between the two observations in each set is one hour. The tolerances in R.A., and

Dec., have to be large enough to accept this identification, i.e., the angular distance

between at least one pair of ephemeris, corresponding to objects in different sets, has

to be smaller than the tolerance.

ephemeris, and the set of observations.

5.1.2 Second step — Single-orbit filtering

One specific feature of statistical ranging is its diminishing efficiency, i.e., the

ratio of found orbits and trial orbits with increasing orbital and observational

arcs. This occurs when the bounds of the topocentric ranges are kept constant.

Consider the situation in a six-dimensional orbital element space E ∈ R6. When

the amount of data is barely enough to allow for a meaningful inversion, very

different orbits fit the observations to predefined accuracy. In other words, the

volume mapped by the orbit distribution in E is substantial. As more observa-

tions are added, the difference between orbits fitting to the observations reduces,

and the volume mapped in E decreases. Now, assuming that the topocentric

bounds, i.e., the total volume of E, are constant, it becomes evident that random

orbital elements are accepted less frequently with an increasing number of obser-

vations. In other words, the Monte Carlo algorithm requires more trials before

finding an acceptable solution.

The key parameters for the single-orbit filtering are the number of trials

combined with the bounds of the topocentric ranges. As there are many possible
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Figure 5.4: Same as Figure 5.3 but a close-up of Figure 5.2, showing position differ-

ences after a time interval of 12 hours. The tolerances in ∆R.A., and ∆Dec., have to

be large enough to accept this identification, i.e., the distance between at least one

pair of position differences corresponding to objects in different sets has to be smaller

than the tolerance.

identifications that will fail this step, the number of trials must be kept as small as

possible to achieve an efficient routine. Understanding the coupling between the

amount of trials and the bounds of the topocentric ranges, it is clear that some

kind of test is needed to find suitable parameters. Assuming that the bounds of

the topocentric ranges are computed similarly for all cases, the only thing that

needs to be determined is how many trials are required to find a single solution.

The idea is to generate a number of objects observable in a given window for a

period of time. Observational sets are generated by selecting two observations of

an object from one night and combining them with two from another night. Then,

by generating one orbit from these observations, a number of trials is found. A

histogram describing the numbers of trials is finally produced by repeating this

method for every object.

Four sets of observations have been generated, two of NEOs and two of MBOs.

The time interval between two observational sets is seven days, i.e., the same as

the worst case to be examined. As the number of trials increases for longer

observational arcs, the windows to be chosen must be of the same size as the

largest windows used in the study. The larger the windows become, the longer

the observational arcs will be, and thus the process of statistical ranging becomes

more difficult. The size of the observational window was the same for both NEOs

and MBOs; 25◦ × 25◦. It is assumed that approximately 1,000 objects in each
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Figure 5.5: Adding two more observations (see Figures 5.1 and 5.3) from the second

night dramatically shrinks the first ephemeris distribution. A correct identification

can be missed, if a tight ephemeris distribution is located in a less dense region of the

second ephemeris distribution.

Figure 5.6: Same as Figure 5.5, but showing the positional differences (see Figures

5.2 and 5.4).

population gives a realistic view of suitable values. The absolute magnitudes were

25m and 17m, respectively. For MBOs, the generated population for V = 18m

was used (993 objects), while the NEO population was generated using a limiting

magnitude of 26.5m (1,036 objects).
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Figure 5.7: Histogram showing the amount of trials needed when generating one

orbit using correct identifications and individually chosen topocentric bounds. The

observational noise σ and the ∆χ2 threshold were the same as during the identification

process, i.e., 0.5′′ and 30, respectively. The red curve marks MBOs (993 objects) and

the green marks NEOs (1,036). The largest numbers of trials were 56,057 for MBOs,

and for one NEO more than 100,000 trials were required and this went over the scale.

These two objects are real oddities, because the number of trials usually needed is

much smaller. The observational data consisted of two sets of two observations. The

time span between sets was seven days, and the sizes of the observational windows

were 25◦ × 25◦, centered in the direction of opposition at the first epoch.

The largest number of trials was greater than 100,000 for NEOs, and was

56,057 for MBOs. As can be seen in Figure 5.7, the numbers were usually much

smaller. As a compromise between accuracy and speed, it was decided that the

number of trials in the single-orbit filtering be set at 25,000.

5.1.3 Third step — Orbit distribution filtering

Since the main purpose of this step is to demonstrate the potential for producing

an orbit distribution using observations of a possible identification, the only key

parameter is the number of orbits. It should, however, be pointed out that in

some situations, e.g., in cumulative identification runs, also the number of trials

makes a notable difference. The reason, which was already pointed out in Section

5.1.2, is that statistical ranging gets slower as the number of observations, or the

observational arc, increases. The number of trials is chosen to be 1,000,000.

When using automated statistical ranging, the number is irrelevant and can
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be, e.g., 1 or 10,000. Typically, a set of observations that can be inverted to

one orbit can also be inverted to 10,000 orbits using the same input values. The

reason behind this is the stepwise use of statistical ranging. The number of orbits

is chosen to be one, unless stated otherwise. Note that the automated version is

not used when the number of orbits is set to one.

5.2 Identification of single-night asteroids

Objects that are not observed during a second night within a week after dis-

covery, are called single-night asteroids. So far many of these objects have been

almost impossible to identify with each other, as there are only a few observa-

tions available for each of them. Even if some of these have been identified with

previously known objects (Milani et al. 2001), there could be a large amount of

objects that have actually been observed multiple times, but the identification

has proved either impossible (too few observations), or too difficult (nonlinear

effects).

As there are no limitations with the current identification algorithm relating

to the number of observations or the nonlinearity of the situation, it can be used

for searching identifications among single-night asteroids. Table 5.1 displays the

results of identifications among simulated single-night asteroids using different

observational schemes and limiting magnitudes. The algorithm finds all correct

identifications in the first step, but as is evident, all correct identifications are not

found in the second step, and consequently not in the third either. The overall

rate of success in finding correct identifications is, however, excellent, as more

than 99.7% of them are detected in all cases.

The reason for the lacking detections is that the number of trial orbits in

the second step is too small. The observations, that can not be linked despite

being correct identifications, are all related to MBOs. For instance, when the

number of trials is 100,000, instead of 25,000, all correct identifications are found

for scheme 0-7 at limiting magnitude 18m. The price that has to be paid, how-

ever, is a slightly slower routine. Note that for some cases the number of false

positive identifications varies between the second and the third step. This how

the statistical nature of the algorithm is manifested; in the second step one orbit

is found using no more than 25,000 trials, but in the third step 1,000,000 trials

are not enough!

Figures 5.8 and 5.9 display the percentage of false positive identifications with

respect to correct identifications as function of time span between observational

sets. The first figure displays the situation after the first step, i.e., after sym-

metric ephemeris address comparison, and the second figure displays the final
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situation after the third step. As there are only minor differences between the

percentages between the second and the third step, the situation after the second

step is not displayed separately.

Scheme Correct Step 1 Step 2 Step 3

total correct false correct false correct false

Limiting magnitude 18m

0-1 1146 1146 1 1144 0 1144 0

0-2 1122 1122 7 1121 0 1121 0

0-3 1089 1089 14 1089 2 1089 2

0-4 1064 1064 30 1063 4 1063 4

0-5 1040 1040 47 1039 7 1039 7

0-6 1017 1017 77 1016 8 1016 8

0-7 994 994 103 993 11 993 11

Limiting magnitude 20m

0-1 1167 1167 41 1166 0 1166 0

0-2 1095 1095 114 1095 9 1095 9

0-3 1038 1038 214 1037 27 1037 27

0-4 980 980 351 979 40 979 40

0-5 925 925 519 923 70 923 70

0-6 845 845 679 844 87 844 87

0-7 790 790 871 788 121 788 121

Limiting magnitude 22m

0-1 1162 1162 321 1160 21 1160 21

0-2 993 993 807 992 94 992 94

0-3 859 859 1482 857 172 857 172

0-4 721 721 2179 721 261 721 261

0-5 611 611 2979 611 367 611 366

0-6 489 489 3468 489 458 489 458

0-7 372 372 3379 372 465 372 463

Table 5.1: Identification results among single-night asteroids. The steps refer

to different filters; the first step uses symmetric ephemeris filtering, the second

step single-orbit filtering, and the third step orbit distribution filtering. The total

numbers of correct identifications for each scheme and magnitude are given in the

Correct total column, while the numbers of correct identifications found during

each step are shown in the correct columns, and false positive identifications in

the false columns.
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Figure 5.8: The percentage of false positive identifications with respect to correct

identifications as function of time span between observational sets after the first step,

i.e., after symmetric ephemeris address comparison. Different limiting magnitudes, V ,

are displayed with different symbols: V = 18m is displayed with red plusses, V = 20m

with blue stars and V = 22m with black dots. The points are connected with lines to

make the trend more clearly visible.

5.3 Cumulative identification and observational

strategies

Cumulative identification is an identification procedure close to current practical

problems, compared to identifying single-night asteroids separated by several

days. The word cumulative stands for a stepwise identification procedure. If

there are observations from several nights, e.g., the first, the second, and the

third night, the identification algorithm is initially applied to the first and second

nights, and then the possible identifications are processed with the third night’s

data.

Since there are lots of possibilities1 on how to choose three or more nights

for examination from a total of eight nights, not all of them can be covered.

Two well-known strategies were therefore chosen to provide the observational

schemes. The first strategy is the one recommended by the Minor Planet Center

(MPC), and the second is a generic one used by automatic surveys. It should

be noted that the strategy promoted by the MPC is an idealisation of reality.

It is often impossible to make real observations precisely as suggested, due to,

1Exactly 6! 5! 4! 3! 2! 1! = 24, 883, 200 different possibilities.
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Figure 5.9: The percentage of false positive identifications with respect to correct

identifications as function of time span between observational sets after the final step.

Different limiting magnitudes, V , are displayed with different symbols: V = 18m is

displayed with red plusses, V = 20m with blue stars and V = 22m with black dots.

The percentage is zero for schemes 0-1 and 0-2 at V = 18m, and for scheme 0-1 at

V = 20m. The points are connected with lines to make the trend more clearly visible.

for instance, weather conditions. The generic automatic survey strategy, on the

other hand, gives a good approximation of real observations as it is consistently

used in automated surveys.

Unidentified targets from the first part of the process are regarded as lost

objects with respect to the forthcoming identification rounds. The simple reason

is that asteroids leaving the frame will seldom return to the same frame within

a short period of time.

5.3.1 Minor Planet Center

In the Guide to Minor Body Astrometry2 the MPC suggests that newly discov-

ered objects should be observed more or less according to the scheme 0-1-8-30-. . . ,

i.e., two or three observations should be made on the night following the discov-

ery night, a week after discovery, and a month after discovery, and so forth. By

promoting an observational strategy, the MPC staff makes an implicit statement

that claims they are able to handle observations produced according to the rec-

ommendations. Having a rigorous algorithm at hand, it is interesting to assess

2At http://cfa-www.harvard.edu/iau/info/Astrometry.html
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whether these implicit claims are justified when it all comes around. Recently,

the MPC has changed the guidelines to now support a 0-1-8-9-30-31-scheme.

This change in guidelines is not significant, so using the old scheme is satisfac-

tory as it will still provide hints on the reliability of identifications produced by

such observations. Note that the scheme used here (0-1-7) is even slightly more

compressed, with regard to the time span, than the one promoted by the MPC.

In other words, the number of false positives acquired would be even greater if

doing it according to the MPC guidelines.

Limiting Step 1 Step 2 Step 3

magnitude correct false correct false correct false

18 992 20 991 7 982 0

20 789 186 787 78 785 10

22 371 848 371 307 366 22

Table 5.2: Scheme 0-1-7.

It seems that the percentage of false positive identifications with respect to

correct identifications would be of the order of ∼ 0%, 1%, and 6%, at limiting

magnitudes 18m, 20m, and 22m, respectively (Table 5.2).

5.3.2 Automatic surveys

A generic automatic survey observes the same region two to five times during a

single night and returns to the same area every three to four days (Stokes et al.

(2003) and private communication with T. Grav).

Limiting Step 1 Step 2 Step 3

magnitude correct false correct false correct false

18 994 10 993 7 957 0

20 789 120 787 83 778 1

22 372 396 372 265 367 10

Table 5.3: Scheme 0-3-7.

The percentage of false positive identifications, with respect to correct iden-

tifications, are of the order of ∼ 0%, 0.1%, and 3%, for limiting magnitudes 18m,

20m, and 22m, respectively (Table 5.3).
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5.4 Interpretation

Firstly, of all it should be stressed that a single set of simulated observations

obtained with a statistical tool is not statistically significant. To ensure valid

results, the entire examination, i.e., from generating observations to finding iden-

tifications, should be repeated several times. Finally, the mean value of all in-

dividual results should be calculated and presented. In this study, the results

are based on one of the individual results, leading to only order-of-magnitude

predictions.

As pointed out in Section 3.4, all of the possible identifications fit the ob-

servational data to the assumed observational error, which in this study is well

known. If there are suspicions on whether an identification is correct, it should

be examined with further observations. It is also possible, however, to estimate

the probability of a correct identification by computing a value describing the

goodness of the fit. As seen in Figure 5.10, correct and erroneus identifications

seem to form two groups of χ2 values. Unfortunately, the overlap between these

groups makes it impossible to use the χ2 when deciding if suspicious identifica-

tions are false positives, or not. Large χ2 values do seem to indicate false positive

identifications though.

Figure 5.10: Mean χ2 values for the worst scenario case. The mean of χ2 is computed

for each identification by taking into account the χ2 value of every single orbit in

the orbit distribution (here 100 orbits). Limiting magnitude is 22, and the time span

between the observational sets is one week. Correct identifications (green x) usually

fit better to the observations, which generally leads to smaller χ2 values compared to

erroneous identifications (red +). There does not, however, exist any strict boundary

value between these groups.

The percentage of false positive identifications versus correct identifications

used in the examinations should be interpreted as depicting the whole sample

instead of individual identifications. Individual error margins can be obtained

by evaluating χ2 values that describe the probability of the identification.

The outcome of Section 5.3 suggests that the observation strategy promoted

by the MPC might not be the ultimate solution for identification purposes. Even



Results and discussion 53

if the generic observation strategy used by automatic surveys appear to be opti-

mal from the identification point of view, there may be even better solutions still

to be discovered. Using the exact method described here, it should be possible

to find the best strategy. Unfortunately, it is beyond the scope of this thesis and

must therefore be put aside for the time being.

All simulations were run on AMD Athlon 1.4GHz single-processor Linux PCs.

Comparison of computational loads is difficult, because the used computers are

shared ones. Generally, there appears to be a huge difference in the required cpu-

time between single-night identification runs and cumulative identification runs.

It is, however, not a surprise, as the algorithm was optimised for identification

among single-night asteroids.

For single-night identification runs, the cpu-time needed for the first step

varied from one hour to a few hours. The second step was usually the fastest,

and it was performed in time scales from seconds up to a few hours. Statistical

ranging slows down when the observational arc or the number of observations

increases. When the observational arc got longer in the third step, the cpu-

time usage increased substantially. For instance, when going from scheme 0-3 to

scheme 0-7 it roughly doubled.

In case of cumulative identification runs, the first and the second step was

approximately as fast as among single-night identification runs. The computa-

tions took substantially longer during the final step due to the increased amount

of observations. Typically, the step took some 12 to 36 hours. The cpu-time

consumption at the final step could probably be decreased by optimising the

parameters of the entire identification procedure, and perhaps an additional step

could be inserted between the second and the third step. The task of the new

filtering step would be to establish a single solution, like that of the second step,

but using all observations available. This would allow the last step to deal with

observational sets for which the inversion practically never fails.
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Conclusions

As far as it is known, the algorithm presented in this paper is the first pub-

lished and probably the only tool suitable for solving the identification problem

for the shortest observational arcs and the smallest possible numbers of observa-

tions. This algorithm is capable of producing identifications among single-night

asteroids, which, up to now, has been impossible. The algorithm has revealed its

power during the most systematic and accurate tests published to date, and with

minor modifications, it is poised for real identification problems that are beyond

the of scope of the thesis.

Despite accusations that the statistical methods were too slow for routine

use, the algorithm was able to demonstrate outstanding speed and reliability.

Applying a modest PC over a few hours, for the rigorous filtering of more than

one million possible identifications, should satisfy all current needs. The quantity

of data obtained with the new automatic telescopes will probably be too large to

handle with individual PCs, thus forcing supercomputers or clusters of PCs to

take the responsibility. Currently, identifications are obviously done, at least in

part, manually at the MPC. This will be impossible in the future and as everyone

involved is aware, this impossibility is already apparent. The solution is to use

exact methods that allow for automatic processing throughout the entire proce-

dure. Even if these methods, e.g., statistical ranging, are slightly slower than the

methods used today, the ability to solve problems without human intervention

will allow faster execution in the long run.

Due to its rigorous treatment of the problem, the algorithm presented here

can be used to evaluate observation strategies from the identification point of

view. According to the tests described in Section 5.3, the strategy promoted by

the MPC is not as good as the generic one used by automated surveys. However,

due to small differences and small observational sets, it is too early to say whether

this is a real effect or just a coincidence.

The terminology by Milani (1999), which was presented in Section 1.2, can be

54
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revised, as the use of statistical ranging and other forthcoming statistical methods

allows us to solve the inversion problem for any set of observations. Thus, the key

question is not whether the inversion can be done, but which method should be

used in the inversion and identification. The different methods for identification

could be the following three:

• Position and motion at mid-date.

• Orbital elements (5–6) at mid-date.

• Orbital elements (Milani et al. 2000).

A question concerning the future of the identification problem arose during

the process based on the observation that as the limiting magnitude increases,

the positional difference between observations get smaller and smaller. Assuming

that the observational accuracy does not improve in the future, it is perceivable

that the observational errors could become larger than the mean positional dif-

ference between objects. Will absolute identification be possible after this point?

If not, what kind of implications will it have on other predictions such as impact

probabilities? Will the critical depth ever be reached due to Gegenschein, ever

improving accuracy, or finite number of objects?
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Appendix A

Array-integer transformation

algorithms

A.1 Transforming an array to an integer

The purpose of the routine is to transform an array of real numbers to an inte-

ger. The idea is to transform each element to an integer as in a basic binning

algorithm. Instead of returning the separate integers describing the location of

the array in a multidimensional grid, they are presented as a single, often great,

integer.

The implementation of the method in Fortran 95 is given below. Note,

that the following routine is for the generic case. It allows one to input one-

dimensional arrays of any length, and to choose any elements in the array for

encoding. The chosen elements are given as a logical array, where .true. indi-

cates that the corresponding element should be included in the encoded array.

SUBROUTINE arrayToInteger(array,elements,bin_size,bins,bounds,intgr)

IMPLICIT NONE

REAL, DIMENSION(:), INTENT(in) :: array ! input array

LOGICAL, DIMENSION(:), INTENT(in) :: elements ! used elements

REAL, DIMENSION(:), INTENT(in) :: bin_size ! bin sizes

INTEGER, DIMENSION(:), INTENT(in) :: bins ! number of bins

REAL, DIMENSION(:,:), INTENT(in) :: bounds ! variable bounds

INTEGER(8), INTENT(out) :: intgr ! output integer

INTEGER(8), DIMENSION(:), ALLOCATABLE :: kp

INTEGER, DIMENSION(:), ALLOCATABLE :: help, bins_tmp

INTEGER(8) :: bins_coeff

INTEGER :: ncolumn, i, j
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! Make an index (help) of the elements that are used:

ncolumn = COUNT(elements)

ALLOCATE(kp(ncolumn),help(ncolumn),bins_tmp(ncolumn))

j = 0

DO i=1,SIZE(elements)

IF (elements(i)) THEN

j = j + 1

help(j) = i

bins_tmp(j) = bins(i)

END IF

END DO

! Compute coordinates of the bin:

DO i=1,SIZE(kp)

! Compute a value describing a single elements position:

kp(i) = &

INT((array(help(i)) - bounds(help(i),1)) / &

bin_size(help(i)),4) + 1_8

END DO

! If one or more of the elements are out of bounds, skip the

! array:

IF (ANY(kp>bins_tmp) .OR. ANY(kp<0)) THEN

intgr = 0_8

RETURN

END IF

! Transform bin coordinates to a single integer value

! (size(kp) == size(help)):

intgr = 0_8

DO i=1,SIZE(kp)

bins_coeff = 1_8

DO j=2,i

bins_coeff = bins_coeff*INT(bins_tmp(j-1),8)

END DO

intgr = intgr + INT((kp(i) - 1),8)*bins_coeff

END DO

intgr = intgr + 1_8

DEALLOCATE(kp, help, bins_tmp)
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END SUBROUTINE arrayToInteger

A.2 Transforming an integer to an array

The routine does the same as the one presented in Section A.1, but the other

way round. In other words, an integer is transformed to an array. Note that if an

array is first transformed to an integer, and then back to an array, information

will usually be lost. The same happens with all binning algorithms, and the

magnitude of the loss is proportional to the bin size: using smaller bin sizes leads

to smaller losses in accuracy.

The following implementation of the algorithm in Fortran 95 is generic, sim-

ilarly as the implementation in Section A.1.

SUBROUTINE integerToArray(intgr,elements,bin_size,bins,bounds,array)

IMPLICIT NONE

INTEGER(8), INTENT(in) :: intgr ! input integer

LOGICAL, DIMENSION(:), INTENT(in) :: elements ! used elements

REAL, DIMENSION(:), INTENT(in) :: bin_size ! bin sizes

INTEGER, DIMENSION(:), INTENT(in) :: bins ! number of bins

REAL, DIMENSION(:,:), INTENT(in) :: bounds ! variable bounds

REAL, DIMENSION(:), INTENT(out) :: array ! output array

INTEGER(8) :: intgr_coeff, bins_coeff

INTEGER, DIMENSION(:), ALLOCATABLE :: kp, help, bins_tmp

INTEGER :: ncolumn, i, j, k

! Make an index (help) of the elements that are used:

ncolumn = COUNT(elements)

ALLOCATE(kp(ncolumn), help(ncolumn), bins_tmp(ncolumn))

j = 0

DO i=1,SIZE(elements)

IF (elements(i)) THEN

j = j + 1

help(j) = i

bins_tmp(j) = bins(i)

END IF

END DO
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! Transform integer to bin coordinates

! (size(kp) == size(help)):

bins_coeff = 1_8

DO i=ncolumn, 1, -1

intgr_coeff = intgr

DO j=i+1, ncolumn

bins_coeff = 1_8

DO k=1,j-1

bins_coeff = bins_coeff*INT(bins_tmp(k),8)

END DO

intgr_coeff = intgr_coeff - INT((kp(j)-1_4)*bins_coeff,8)

END DO

bins_coeff = 1_8

DO j=1,i-1

bins_coeff = bins_coeff*INT(bins_tmp(j),8)

END DO

kp(i) = 1 + INT(intgr_coeff/REAL(bins_coeff),4)

END DO

kp(1) = kp(1) - 1

! Transform bin coordinates to real values:

j = 0

DO i=1,SIZE(elements)

IF (elements(i)) THEN

j = j + 1

array(i) = bounds(i,1) + kp(j)*bin_size(i)

ELSE

array(i) = -1.0

END IF

END DO

DEALLOCATE(kp, help, bins_tmp)

END SUBROUTINE integerToArray
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Algorithms for sorting and

searching

B.1 Insertion sort

The insertion sort technique is the same as the one used for sorting cards: Pick

out the second card and put it in order with the first card. Then pick out the third

card and put it into the sequence among the first two. Continue until the last

card has been picked out and inserted. In a random situation the algorithm scales

as N2, but assuming an almost sorted array it can even reach ∼ N . Generally,

the insertion sort should not be used for N & 100.

The following Fortran 95 code shows a general insertion sort algorithm im-

plemented as a memory saving in-place sort, i.e., already sorted items are not

stored in an additional temporary array.

SUBROUTINE insertionSort(array)

IMPLICIT NONE

INTEGER, DIMENSION(:), INTENT(inout) :: array

INTEGER :: element

INTEGER :: i, j

DO i=2, SIZE(array)

element = array(i)

j=i

DO WHILE (j>1 .AND. array(j-1)>element)

array(j) = array(j-1)

j = j - 1

END DO
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array(j) = element

END DO

END SUBROUTINE insertionSort

B.2 Binary search

As a prerequisite, the array which is to be scanned, has to be sorted, usually

in ascending order. The algorithm searches for the search key by repeatedly

dividing the search interval in half. Initially the interval covers the whole array.

If the item in the middle of the interval is larger than the key, the interval is

narrowed to the lower half. Otherwise it is narrowed to the upper half. The

procedure is continued until the value is found, or the interval is empty.

An example of the implementation of the algorithm in Fortran 95 is given

below.

INTEGER FUNCTION binarySearch(key,array)

! The input array needs to be sorted in ascending order.

IMPLICIT NONE

INTEGER, INTENT(in) :: key

INTEGER, DIMENSION(:), INTENT(in) :: array

INTEGER :: n, left, right, center

n = SIZE(array)

! Return immediately, if the key (value to be searched for) is

! smaller or larger than the minimum or maximum values of

! the array:

IF (key < array(1) .OR. key > array(n)) THEN

binarySearch = -1

RETURN

END IF

left = 1

right = n

DO WHILE (left <= right)

center = (left+right)/2

IF (key == array(center)) THEN

binarySearch = center
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RETURN

ELSE IF (key < array(center)) THEN

right = center - 1

ELSE IF (key > array(center)) THEN

left = center + 1

END IF

END DO

! The key could not be found in the array.

! Return a negative index:

binarySearch = -1

END FUNCTION binarySearch
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