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2.1 Importance of the Poincaré symmetry . . . . . . . . . . . . . . . . . . 11
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2.4 Local Poincaré gauge symmetry . . . . . . . . . . . . . . . . . . . . . 21
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Chapter 1

Introduction

1.1 Spacetime noncommutativity

1.1.1 The idea of spacetime noncommutativity

The traditional concept of spacetime describes space and time as a continuum of
points, or more precisely as a differentiable manifold which is locally isomorphic to
R

4. On a spacetime manifold M every point can be locally identified with a finite
number of real coordinates xµ ∈ R

4. The differentiability of the spacetime manifold
insures that the local coordinates are continuous and smooth — two points with
infitesimally differing coordinates will be infinitesimally close to each other on the
manifold.1

Although this description of spacetime has been very successful, it is widely
believed in the physics community that the manifold structure of spacetime should
break down at very short distances of the order of the Planck length

lP =

√

~G

c3
≈ 1.6 · 10−35 m (1.1)

which corresponds to the Planck energy 2

EP =
~c

lP
≈ 1.2 · 1019 GeV , (1.2)

where ~ is the Planck constant, c is the speed of light and G is the Newtonian
constant of gravitation. At these super-short distances physical phenomena are
believed to be nonlocal — opposed to the locality of traditional geometrical theories
of gravitation and quantum and gauge field theories of particle physics. In order to
capture this nonlocality, the mathematical concepts used to describe spacetime in
high energy physics should be revised.

The idea of spacetime noncommutativity has been adopted to meet this de-
mand. Spacetime noncommutativity is a way to deform the classical spacetime, so
that nonlocality becomes its characteristic feature. Noncommutativity of spacetime

1Of course the concept of distance requires that a metric is defined on the manifold.
2The energy equivalent of the Planck mass mP: EP = mPc2.
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means that the notion of a point is no longer well-defined and therefore noncommu-
tative spacetime is literally pointless. On such a noncommutative spacetime physical
phenomena are naturally nonlocal. Formally this can be achieved by defining the
coordinate operators x̂µ of noncommutative spacetime to satisfy the commutation
relations

[
x̂µ, x̂ν

]
= iθµν , (1.3)

where in the simplest case θµν is an antisymmetric constant matrix of dimension
length squared. This kind of spacetime cannot be described with traditional dif-
ferential geometry. Thus new mathematics is needed. The branch of mathematics
which is used to describe noncommutative spaces is called noncommutative geometry
and it is based on the algebraic approach to the geometry of spaces.

In the context of quantum mechanics the noncommutativity of coordinates (1.3)
implies that the spacetime has to be replaced by a Hilbert space of states, i.e. the
spacetime itself becomes a quantum object. The noncommutativity of coordinate
operators induces the uncertainty relations for coordinates

∆x̂µ ∆x̂ν ≥ 1

2
|θµν | , (1.4)

so that a spacetime point is replaced by a Planck cell of dimension given by the
Planck area. One may think of ordinary spacetime coordinates xµ as macroscopic
order parameters obtained by coarse-graining over scales smaller than the funda-
mental scale of order

√

|θ|.
In addition to the inherent nonlocality, noncommutativity of spacetime coordi-

nates has several important and interesting implications in theoretical high energy
physics. These include especially violation of the Lorentz invariance and formulation
of gauge symmetries in noncommutative spacetime, both of which we will discuss in
this work.

Because the idea of spacetime noncommutativity is far from trivial and because
its implications are so profound, we will motivate the idea by briefly reviewing the
main arguments for spacetime noncommutativity.

1.1.2 Quantum mechanics

The idea behind spacetime noncommutativity is very much inspired by quantum
mechanics. Noncommutativity is the central mathematical concept expressing un-
certainty in quantum mechanics, where it applies to any pair of conjugate variables,
such as position and momentum.

The classical phase space of canonical position and momentum variables xi, pj

is quantized by replacing the variables with Hermitean operators x̂i, p̂j which obey
the Heisenberg commutation relations

[x̂i, p̂j] = i~δi
j . (1.5)

As a result the classical phase space dissapears and it is replaced by a Hilbert space
of states. The noncommutativity of canonically conjugated operators implies the
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Heiseberg uncertainty principle of quantum mechanics, which states that noncom-
muting observables cannot be exactly measured simultaneously. Generally for a pair
of noncommuting observables Â and B̂ , the commutation relation

[
Â, B̂

]
= iĈ

implies the general Heisenberg uncertainty principle

∆Â ∆B̂ ≥ 1

2

∣
∣
∣〈Ĉ〉

∣
∣
∣ , (1.6)

where ∆Â is the standard deviation for the observable Â

∆Â =

√

〈(Â − 〈Â〉)2〉 .

For the canonical position and momentum operators the uncertainty relation (1.6)
is written as

∆x̂i ∆p̂j ≥
~

2
δi
j . (1.7)

So, in the scale defined by the Planck constant ~ the quantum phase space becomes
smeared out and the notion of point is replaced with that of a Planck cell. In the
(classical) limit ~ → 0 one recovers the classical phase space.

It was von Neumann who first attempted to rigorously describe such a“quantum
space” and he dubbed this study “pointless geometry”, referring to the fact that the
notion of a point in a quantum phase space is meaningless. This led to the theory
of von Neumann algebras and it was essentially the birth of noncommutative geom-
etry, referring to the study of topological spaces whose commutative C∗-algebras of
functions are replaced by noncommutative algebras [1, 2, 3, 4].

In this setting the idea to define the noncommutativity relation among co-
ordinate operators (1.3) arises quite naturally. Already in the pioneering days of
Quantum Field Theory (QFT) it was suggested by Heisenberg that one could use a
noncommutative structure for spacetime coordinates at very small length scales to
introduce an effective ultraviolet cutoff. This suggestion was motivated by the need
to regularize divergences which had troubled QFT from the very beginning. It was
H. S. Snyder who wrote the first paper on the subject [5], where he introduced a
Lorentz invariant “quantized spacetime”whose coordinates xµ are operators obeying
the commutation relations

[xµ, xν ] = i
a2

~
Lµν ,

where a is a fundamental length unit and Lµν are the generators of the Lorentz
group. Few months later C. N. Yang tried to restore the translational invariance
broken by Snyder’s model [6]. Back then as well as today, noncommuting spacetime
coordinates were used in the hope of improving the renormalizability of QFT and
of understanding the nonlocality of physics at the Planck scale.

However, the research of noncommutative spacetime did not take off well and
it was soon forgotten for several decades. The difficult theoretical problems caused
by the a priori nonlocality and by the violation of Lorentz invarince in noncom-
mutative field theories were too undesirable and unfruitful at that time. Success of
the renormalization programme in controlling divergences of QFT also furthered the
forgetting of spacetime noncommutativity.
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1.1.3 Noncommutative geometry

The correspondence between geometric spaces and commutative algebras is a well
known and basic idea of algebraic geometry. Noncommutative geometry generalizes
this correspondence to noncommutative algebras. In the physical applications of
noncommutative geometry discussed in this work, we are interested in the correspon-
dence between noncommutative algebras of functions on a space and the geometry
of the underlying noncommutative space.

The ideas of noncommutative geometry were revived in the 1980’s by the math-
ematicians Connes, Drinfel’d and Woronowicz. They generalized the notion of a
differential structure to the noncommutative setting [7, 8, 9, 10], i.e. to arbitrary
C∗-algebras, and also to quantum groups and matrix pseudo-groups. Along with
the definition of a generalized integration [11], this led to an operator algebraic de-
scription of noncommutative spacetimes — based entirely on algebras of functions
— and it enabled one to define Yang-Mills gauge theories on a large class of non-
commutative spaces. For quite some time, the physical applications were based on
geometric interpretations of the standard model and its various fields and coupling
constants (the so-called Connes–Lott model) [12, 13, 14]. Gravity was also eventu-
ally introduced in a unifying way [15, 16, 17, 18, 19]. Unfortunately this approach
suffered from many weaknesses — most glaring was the problem that quantum ra-
diative corrections could not be incorporated in order to give satisfactory predictions
— and eventually it died out. Nevertheless, thanks to these mathematicians, the
idea of spacetime noncommutativity became again very much alive.

1.1.4 General relativity and quantum mechanical measure-
ments

More evidence for the spacetime noncommutativity came from the works of Do-
plicher, Fredenhagen and Roberts [20, 21]. They showed that combining quantum
mechanical measurements obeying Heisenberg’s uncertainty principle (1.6) with Ein-
stein’s theory of classical gravitation, leads to the conclusion that ordinary spacetime
loses all operational meaning at short distances. Their argument was: Measuring
a spacetime coordinate x with high accuracy ∆x causes an uncertainty in a conju-
gated momentum of the order ~/∆x. Neglecting rest masses, an energy of the order
~c/∆x is transmitted to the system and concentrated at some time in the localiza-
tion region of the measurement. The energy–momentum tensor Tµν associated to
the energy concentration generates a gravitational field which, in principle, should
be determined by solving Einstein equations for the metric tensor gµν

Rµν −
1

2
Rgµν = 8πGTµν .

The smaller the uncertainties ∆xµ in the measurement of coordinates, the stronger
will be the gravitational field generated by the measurement. When the gravitational
field becomes so strong that it prevents light or any other signals from leaving
the localization region, an operational meaning can no longer be attached to the
localization.
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Analysing the limitations of localization measurements — for the sake of pos-
sible gravitational collapse of the localization region —, using a semiclassical ap-
proximation for an unknown theory of quantum gravitation, leads to uncertainty
relations among spacetime coordinates

∆x0

3∑

j=1

∆xj & l2P ,
∑

1≥j≥k≥3

∆xj∆xk & l2P .

These relations can be traced back to the commutation relations among coordinates
(though not uniquely)

[xµ, xν ] = iQµν ,

where Q is a tensor whose components Qµν commute with all coordinates. Thus,
the presence of classical gravitation makes the spacetime effectively noncommutative
and this feature should be present in any quantum theory of gravitation.

The paper [21] also introduced the fundamentals of QFT on noncommutative
spacetimes.

1.1.5 String theory with constant background field

String theory is the best candidate for a quantum theory of gravitation. Therefore
it has an important role in the study of the structure of spacetime.

String theory has the built-in characteristics of nonlocality and uncertainty of
coordinate measurements at short distances. It is the finite mean length of strings
ls that necessarily makes physics nonlocal and forces the shortest length that can
be observed by using the strings as probes. Hence, it was not a big suprise when
noncommutative spacetime coordinates began to repeatedly emerge in the research
of string theory.

String theory is one of the strongest reasons why spacetime noncommutativity
and noncommutative gravitation has been studied so much during the last decade.
In the end of the 1990s it was discovered that certain limits of string theory and
M-theory will directly lead to noncommutative gauge theories [22, 23], which are
simpler than the original theories but still preserve some of their stringy features
like nonlocality. N. Seiberg and E. Witten developed the idea by elegantly proving
that when the end points of strings in a theory of open strings are constrained to
move on D-branes in a constant (supergravity) B-field background and the theory is
taken in a certain low-energy limit, then the full dynamics of the theory is described
by a (supersymmetric) gauge theory on a noncommutative spacetime [24]. In this
Seiberg-Witten (low-energy) limit the open string modes completely decouple from
the closed string modes and only the end point degrees of freedom for the open
strings are left to live on a noncommutative spacetime defined by the coordinate
commutation relations (1.3). Thus noncommutative gauge theory emerges as a low-
energy limit of open string theory with constant antisymmetric background field.

Because the closed string modes decouple in the Seiberg-Witten limit, the result-
ing gauge theories do not have graviton, the quantum of gravitation. Nevertheless,
noncommutative gravitation can be studied in the Seiberg-Witten limit by consid-
ering first order corrections for the closed string modes. This approach has already
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provided us important information about noncommutative gravitation and twisted
symmetries [25, 26]. In string theory gravitational interactions have much richer dy-
namics than in some other noncommutative deformations of GR [26] — especially
than the ones based on the invariace under the naive twisted diffeomorhisms [27, 28].

1.2 Gravitation as a gauge theory

1.2.1 The big picture of interactions

Our best experimentally verified knowledge about the fundamental interactions of
nature can be summarized in the Standard Model of elementary particle physics and
in the theory of General Relativity.

The Standard Model of elementary particle physics (SM) is a gauge field theory
based on the gauge symmetry group

SU(3)C × SU(2)L × U(1)Y ,

where “C” refers to the color symmetry of quarks in quantum chromodynamics, “L”
refers to the doublets of left-handed fermions in the electroweak theory and “Y”
refers to the (weak) hypercharge. SM is defined on the Minkowski spacetime, where
it can be consistently quantized. The spacetime in SM is an invariable background
where all events take place.

The General Relativity (GR) on the other hand is a classical geometrical theory
of gravitation. It describes gravitation geometrically by coupling the curvature of
a spacetime manifold with the energy-momentum tensor of matter and radiation
fields. Hence, in GR the density and movement of matter determine how spacetime
curves and the curvature of spacetime determines how matter moves in space and
time. Due to the zero torsion condition of spacetime in GR the curvature is uniquely
defined by the metric tensor. Thus the fundamental dynamical variable of the theory
is the metric of spacetime, i.e. the spacetime itself. Unfortunately, GR cannot be
consistently quantized because of its pathological renormalization characteristics.

GR describes gravitation at the macroscopic and cosmic levels and SM describes
the world of particles in the sub-atomic level. Hence the areas of applicability for
these theories are far apart. Unfortunately, the weakeness of gravitation compared
to the other three interactions has prevented us from observing gravitational inter-
actions between elementary particles. Thus, we do not know well how gravitation
behaves at the sub-atomic level, which makes the construction of quantum theories
of gravitation harder.

Both GR and SM describe and predict physical phenomena in their separate
areas of applicability with unparalleled accuracy and success. The problem is that
the theoretical frameworks of SM and GR are so contradictory that they cannot be
unified. This theoretical conflict between SM and GR is severe and well known. It
has been the most fundamental problem in theoretical physics for decades.
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1.2.2 Gauge symmetry approach

In the gauge theories of particle physics both the existence of the gauge fields and
the ways they couple to matter fields are necessary consequences of the local gauge
symmetry of the theory. Also the structure of the free Lagrangean for the gauge
fields is defined by the gauge symmetry, so that the key characteristics of the gauge
fields are also implied by the gauge invariance. Since the role of gauge fields is to
mediate interactions between matter fields, a local gauge symmetry de facto defines
characteristics of all interactions of a gauge theory. This is the reason why the
concept of a gauge symmetry is so powerful and without dispute one of the most
important concepts in modern theoretical physics.

In order to understand the contradiction between GR and SM, it is important
to understand that gravitation — like all other fundamental interactions — can be
formulated as a gauge theory. In the pioneering work by R. Utiyama [29], gauge
theories were elegantly generalized and finally gravitation was considered as a gauge
theory of the Lorentz symmetry. Few years later T. W. B. Kibble developed the idea
by constructing a gauge theory of the Poincaré symmetry [30] and by rediscovering
the Einstein-Cartan theory of gravitation in a form more familiar to most physicists.
Since then the idea of gravitation as a gauge theory has been elaborated by many
people. An incomplete list of references on the subject is [31] [32] [33] [34, 35, 36] [37]
[38] [39] [40] [41]. The paper by F. W. Hehl et al. [37] contains an excellent historical
guide to the literature on the subject, including a complete list of references. This
study adopts the more recent point of view by first considering gauge theory of
gravitation on Minkowski spacetime [39, 42] and by later intepreting the theory
geometrically.

By understanding gravitation as a gauge theory we achieve several advantages
compared to GR. A gauge theory of gravitation explains both the existence of grav-
itation and its properties as necessary consequences of a single symmetry principle.
The second major advantage is the unification of the conceptual basis of theories
of fundamental interactions. This enables an elegant interpretation where all in-
teractions are results of two gauge symmetries — an external one for gravitation
and an internal one for SM. Further advantage is the weakening of the theoretical
connection between gravitation and the geometry of spacetime, especially when an
internal-like gauge symmetry is used. All this enables us to better study the similar-
ities and differences between SM and the theory of gravitation. The unification of
a gauge theory of gravitation and SM has only succeeded in the (trivial) case when
the gauge symmetry generators for gravitation and SM commute. Nevertheless, the
conceptual unification enabled by the gauge symmetry approach to gravitation is a
promising implication on the underlying unity of fundamental interactions.

1.3 Noncommutative gravitation

Noncommutative theories of gravitation have been under intense research over two
decades. Research on noncommutative gravitation can be roughly classified to three
categories based on the focus and the research strategy. The first category contains
studies which are mainly based on noncommutative geometry and are directed to
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the search of consistent noncommutative deformations of Einstein’s GR or more
generally noncommutative deformations of Riemannian geometries. The second line
of study is concentrating to seek noncommutative gravitation by studying string
theories in certain low-energy limits — namely the Seiberg-Witten limit. The third
approach is seeking for a grand symmetry principle in the framework of canonical
noncommutative field theory that could lead us to a consistent theory of noncommu-
tative gravitation. There are also some studies that utilize more than one of these
methods. This work fits best to the last category.

The critical challenges in the construction of any noncommutative theory of
gravitation are to find some dynamical principle to follow while deforming GR and
to consistently implement the concept of a general coordinate transformation in the
framework of noncommutative field theory. The history of field theories has taught
us that the best guiding dynamical principles are symmetries, for example spacetime
isometries and gauge symmetries. We believe that the right guiding symmetry prin-
ciple can also provide us the information of how to implement the general coordinate
covariance in noncommutative gravitation.

The main purpose of this work is to bring the idea of spacetime noncommu-
tativity and the idea of gravitation as a gauge theory together in order to study
the possibility to construct a theory of gravitation in noncommutative spacetime
as a gauge theory of twisted Poincaré symmetry. We will use the twisted Poincaré
symmetry [43, 44] as the candidate gauge symmetry for noncommutative gravita-
tion because it is the closest analogy for the Poincaré symmetry in noncommutative
spacetime and because we prefer the Poincaré group as a gauge symmetry group for
the classical gauge theory of gravitation.

It is not yet known whether the twisted Poincaré symmetry can or cannot be
consistently generalized to a local gauge symmetry in noncommutative spacetime.
If this is possible we want to know if the resulting gauge theory is a viable theory
of gravitation in noncommutative spacetime. If noncommutative gravitation cannot
be formulated as a gauge theory of twisted Poincaré symmetry, we will hopefully
learn something on how it should be formulated instead.

1.4 Structure of this study

We will begin our journey by reviewing the essential concept of invariance under
Poincaré transformations in traditional commutative field theories. Poincaré sym-
metry will be presented as an internal-like symmetry for maximal similarity with
non-Abelian gauge theories like SM. We will generalize the global Poincaré symme-
try to a local gauge symmetry and thereby construct a classical gauge theory of the
Poincaré symmetry, which we will show to be a viable theory of gravitation. This
construction and the resulting theory will serve us as a classical reference when we
later move to the framework of noncommutative spacetime.

Next we will discuss noncommutative spacetime and introduce the concepts
that are needed in order to define and study noncommutative quantum and gauge
field theories. Special emphasis is given to the concept of twisted Poincaré symme-
try, which provides a new concept of relativistic invarince for noncommutative field
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theories [43, 44]. We will, for instance, discuss how imposing the twisted Poincaré
symmetry defines the same noncommutative algebra of functions — i.e. geometry
of spacetime — which is generated by the noncommutativity of coordinates (1.3).

We will continue by discussing the formulation of gauge theories in noncommu-
tative spacetime, because they are essentially important in building realistic mod-
els. Since gauge symmetries are local and noncommutative spacetime is inherently
nonlocal, care has to be taken when formulating noncommutative gauge theories.
We will consider different ways to implement gauge symmetries in noncommutative
spacetime.

Finally we will try to put it all together in order to generalize the gauge theory
approach to gravitation in the noncommutative setting. We will also discuss how
this approach is related to other proposed noncommutative theories of gravitation.
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Chapter 2

Gravitation as a classical gauge
theory of the Poincaré symmetry

2.1 Importance of the Poincaré symmetry

One cornerstone of all local relativistic field theories is the concept of relativistic
invariance, which is traditionally implemented by demanding invariance of the action
under the group of Poincaré transformations.1 Therefore, every field in theories
like SM has to be a representation of the Poincaré group. Moreover, the fields
in the action of a relativistic field theory have to appear in specific combinations
that are invariant under Poincaré transformations. This has a major effect on the
characteristics of the fields and on the ways the fields interact with each other.

Because the Poincaré symmetry has such an important role in relativistic phys-
ics and especially in this work, we will first introduce the Poincaré group in some
detail and then discuss the global Poincaré symmetry. Next we will develop a gauge
theory of the Poincaré symmetry. Finally we will give a geometrical interpretation
of the theory and compare it with GR.

In this chapter we use the natural high energy units with the Planck constant
and the speed of light set to 1, ~ = c = 1, in order to emphasize the essential content
of the formulae.

2.2 Poincaré group

2.2.1 Definition and structure

The Poincaré group is the maximal symmetry group of the Minkowski spacetime. In
other words, the Poincaré group is the complete group of isometries of the Minkowski
spacetime.

The Poincaré group is a 10-dimensional noncompact Lie group. The group of
spacetime translations is a normal subgroup of the Poincaré group. The group of
Lorentz transformations is a subgroup of the Poincaré group and it is a 6-dimensional

1In the axiomatic (algebraic) approach to QFT the Poincaré invariance is one of the axioms of
the theory.
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non-Abelian Lie group. The Poincaré group can be constructed as a semidirect
product of the translation group T4 and of the homogeneous Lorentz group SO(1, 3)

Poincaré group = SO(1, 3) ⋉ T4 .

Finite Poincaré transformations of spacetime coordinates xµ are defined by 2

xµ −→ x′µ = Λµ
νx

ν + aµ ; Λρ
µΛσ

νηρσ = ηµν , (2.1)

where the matrix Λµ
ν provides the Lorentz transformation and aµ are the translation

parameters. If det Λ = 1, we speak about proper Lorentz transformations.3

The ten generators of the Poincaré group constitute a Lie algebra named the
Poincaré algebra P 4

[Pµ, Pν ] = 0 (2.2a)

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ) (2.2b)

[Mµν ,Mρσ] = −i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) , (2.2c)

where the M -matrix is antisymmetric Mµν = −Mνµ. The generators Mµν form a
closed subalgebra, which is the Lie algebra of the Lorentz group.5 The generators of
the Lorentz group can be divided into the familiar generators for boosts Ki = M0i

and for spatial rotations Ji = 1
2
ǫijkMjk, where the Latin indices take the three

“spatial” values {1, 2, 3} and ǫ is the fully antisymmetric permutation symbol. The
generators of translations Pµ form a commutative subalgebra of the Poincaré algebra,
reflecting the fact that the translation subgroup is Abelian. We have introduced the
imaginary unit i in the Poincaré algebra (2.2), which is a common practice in the
gauge theories of particle physics and in quantum mechanics in general, so that the
generators of the Poincaré group are Hermitian.

The relation between the elements of the Poincaré group and the Lie algebra
(2.2) is provided by the exponential map

U(ε) = exp(iεµPµ) (2.3a)

U(ω) = exp

(
i

2
ωµνMµν

)

, (2.3b)

where εµ and ωµν = −ωνµ are the ten parameters of the Poincaré group manifold.
On unitary reprsentations of the Poincaré group, the group elements are represented
by unitary operators (2.3).

2.2.2 Representation theory

Basics

In defining representation of the Poincaré group — the algebra of smooth (C∞)
functions on the Minkowski spacetime — the generators of infinitesimal Poincaré

2The Greek indices take the four values {0, 1, 2, 3}. A sum over repeated indices is always
implied unless otherwise stated.

3det η = −1 and (2.1) imply (det Λ)2 = 1.
4Also named iso(1, 3) after the inhomogeneous proper Lorentz group which is just another name

for the Poincaré group.
5Named so(1, 3) after the proper Lorentz group.
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transformations are the momentum operators and the generalized orbital angular
momentum operators

Pµ = i∂µ , (2.4a)

Mµν = i(xµ∂ν − xν∂µ) , (2.4b)

respectively.
The theory of unitary representations for the Poincaré group is divided to two

parts. For physical reasons these are called massive and massless representations.
Additional representations of interest in relativistic physics are finite dimesional
matrix and tensor representations of the Lorentz group. A complete classification
of irreducible representations of the Poincaré group was first introduced by E. P.
Wigner in [45].

Quadratic Casimir operators of a Lie algebra are distinguished elements of the
centre of the universal enveloping algebra of the Lie algebra.6. The quadratic Casimir
operators commute with all generators of the Lie algebra and therefore they can be
used to classify representations of the Lie algebra.

First we discuss the representation theory of the Lorentz group — emphasizing
the importance of the rotation Lie group SU(2) ∼= SO(3)/Z2 generated by the angu-
lar momentum operators 7 — and then we present a physically motivated treatment
of the representation theory of the Poincaré group.

For a more accessible and comprehensive introduction to the group theory, to
the representation theory of groups and to their physical applications, particularly
in the quantum theory, see e.g. [46, 47].

Finite dimensional representations of the Lorentz group

The Lorentz algebra (2.2c) of the generators of rotations Ji = 1
2
ǫijkMjk and boosts

Ki = M0i

[Ji, Jj] = iǫijkJk , (2.5)

[Ki, Jj] = iǫijkKk ,

[Ki, Kj] = −iǫijkJk ,

can be rewritten as two independent rotation SU(2) algebras by introducing the
combinations

X±
i =

1

2
(Ji ± iKi) (2.6)

as the generators of the two SU(2) Lie algebras

[X±
i , X±

j ] = iǫijkX
±
k ,

[X+
i , X−

j ] = 0 .

The rotation algebra (2.5) has a single quadratic Casimir operator J2 = JiJi which
has the eigenvalues j(j + 1) , j = 0, 1

2
, 1, 3

2
, 2, . . . and therefore the irreducible rep-

resentations of SU(2) are labelled with the integer and half-integer valued quantum

6We will discuss universal enveloping algebras later in the section 3.3.
7The group: Z2 = (·, {1,−1}) ∼= integers modulo 2.
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number j. The fundamental j = 1
2

representation of SU(2) is given by the Pauli
σ-matrices. Thus the irreducible representations of the Lorentz group are labelled
by the pair (j+, j−) of these quantum numbers j± = 0, 1

2
, 1, 3

2
, 2, . . .. Hence, the

Lorentz group inherits the representation content of SU(2).
Because of the imaginary unit in the definition (2.6) of X±

i , it is a certain
complexification of the Lorentz group that is locally isomorphic to SU(2) × SU(2),
not the Lorentz group itself (in a strict sense). Indeed, the proper Lorentz group is
isomorphic to SL(2, C)/Z2, i.e. to the group of complex-valued 2× 2 matrices with
unit determinant/Z2.

Massive representations

In quantum mechanics we are primarily interested in unitary representations of the
Poincaré group. Unitary representations are linear representations on a complex
Hilbert space whose elements are unitary operators acting on the Hilbert space of
states.

The quadratic Casimir operators for the Poincaré group are the quadratic mo-
mentum operator

P 2 = PµP
µ

and the quadratic spin operator

W 2 = WµW
µ ,

where Wµ is the covariant Pauli-Lubanski vector defined by

Wµ = −1

2
ǫµνρσM

νρP σ . (2.7)

Acting on a rest-frame eigenstate of a massive particle the momentum operator
effectively reduces to the rest-frame momentum eigenvalue

Pµ → p̄µ = (m,0)

and the Pauli-Lubanski vector (2.7) reduces to

Wµ → −1

2
ǫµνρσM

νρp̄σ =
m

2
ǫijkM

jk = mJi .

Thus the quadratic Casimir operators for the Poincaré group on a rest-frame eigen-
state are the mass squared

P 2 = m2

and the mass squared times the quadratic angular momentum operator

W 2 = −m2J2 .

A rest-frame eigenstate does not have orbital angular momentum, so the quadratic
angular momentum operator is indeed the quadratic spin operator. This means that
we can classify the massive irreducible representations of the Ponicaré group by using
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the mass m and the spin s. The Hilbert space of states spanning a representation
has the mass and the spin as quantum numbers

P 2 |m, s; . . .〉 = m2 |m, s; . . .〉 ; m 6= 0

W 2 |m, s; . . .〉 = −m2s(s + 1) |m, s; . . .〉 ; s =
1

2
, 1,

3

2
, 2, . . . .

The additional quantum numbers needed to label states in a massive represen-
tation of the Poincaré group are eigenvalues of operators which have to commute
with each other, so that they can be simultaneously diagonalized. Since the mo-
mentum operators commute (2.2a) we can use their eigenvalues to label the states.
The mass is already fixed by the representation, so it is sufficient to specify the spa-
tial momentum p. Any component Ji of the angular momentum operator J alone
cannot be used because they do not commute with the momentum operators

[Pi, Jj] = iεijkPk .

Instead we can use the projection of the angular momentum on the momentum

J · P
|P |

which is called the helicity operator. As any component of the angular momentum
the helicity has the eigenvalues λ ∈ {−s,−s + 1, . . . , s − 1, s}. The helicity is by
definition invariant under spatial rotations, but it does change under boosts.

Thus, the infinite-dimensional unitary vector space representations of the Poin-
caré group are labelled by the mass m and the spin s and spanned by the momentum
eigenstates |m, s; p, λ〉 which have the following eigenvalues

Pi |m, s; p, λ〉 = pi |m, s; p, λ〉 ,

J · P
|P | |m, s; p, λ〉 = λ |m, s; p, λ〉 .

Because the rest-frame states have the rotation group SO(3) (or SU(2)) as their
stability group — the subgroup that leaves the states invariant —, the Lorentz trans-
formation Λp′←p that transforms the momentum eigenstate |m, s; p, λ〉 to another
momentum eigenstate |m, s; p′, λ〉 is induced by an irreducible matrix representa-
tion Dλ′λ(RW) of the rotation group,8

Λp′←p |m, s; p, λ〉 =
∑

λ′

Dλ′λ(RW) |m, s; p′, λ′〉 .

The corresponding Wigner rotation RW depends on Lorentz transformations Λp←0,
Λp′←p and Λp′←0 ,

RW = Λ−1
p′←0Λp′←pΛp←0 .

8The general idea is that instead of first boosting a rest-frame state to p and then Lorentz
transforming it by Λp′←p we can directly rotate the rest-frame state to align with p′ and then
boost the rest-frame state to p′. Since a rest-frame state transforms under a rotation as a pure
angular momentum eigenstate, the aligning rotation of the rest-frame state and the boost to p′

commute and hence the full Lorentz transformation is equivalent to a rotation of the p′ momentum
state.
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Massless representations

Massless eigenstates with p2 = 0 do not have a rest-frame — since it would have to
move with the speed of light —, so the stability group for a canonical momentum
eigenstate is not the same SU(2) as for the massive eigenstates.

Let us consider a momentum p̄µ = ε(1,e3) = ε(1, 0, 0, 1) eigenstate of a mass-
less particle. It is fairly easy to see that the stability group for this eigenstate is
isomorphic to the group of isometries of the two-dimensional Euclidean space i.e.
the two-dimensional Euclidean group E(2). Acting on the massless eigenstate the
Pauli-Lubanski vector reduces to

Wµ → −1

2
εµνρσM

νρpσ = ε(J3, J1 + K2, J2 − K1, J3) = ε(J3, L1, L2, J3) ,

So the quadratic Casimir operator of massless representations reduces to

W 2 = −ε2
(
L2

1 + L2
2

)
.

The chosen angular momentum component J3 and the new generator combinations
L1 and L2 form the algebra 9

[J3, L1] = iL2 , (2.8a)

[J3, L2] = −iL1 , (2.8b)

[L1, L2] = 0 . (2.8c)

The first two relations tell us that the combinations

L± = L1 ± iL2

are the raising and lowering operators for the angular momentum J3

[J3, L±] = ±J± .

Thus J3 has a spectrum with constant spacing between eigenvalues. The all-impor-
tant difference between the familiar angular momentum algebra and the algebra (2.8)
is the commutativity of L1 and L2, which implies that there is no relation between
J3 and the quadratic Casimir operator W 2. As a result the eigenvalues of J3 do not
have to be integers or half-integers, unless we force the states of a representation to
be null-states of the generators L1 and L2,

L1 |. . .〉 = L2 |. . .〉 = 0 .

This is the case for all physically interesting massless representations. The quan-
tum numbers needed to label the eigenstates of a massless representation are the
momentum pµ and the eigenvalue λ of J3.

Pµ |p, λ〉 = pµ |p, λ〉 ,

J3 |p, λ〉 = λ |p, λ〉 .

9In E(2): L1 and L2 are the translation generators for the Euclidean plane and J3 generates
rotations around a point.
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The spin quantum number λ is again called helicity, though from the mathematical
point of view it is a different entity compared to the helicity of a massive represen-
tation. The helicity of a massless eigenstate is invariant under Poincaré transforma-
tions.

In the massless case the Wigner rotation is a simple phase change

Λp′←p |p, λ〉 = e−iΦWλ |p′, λ〉 ,

where ΦW is a real-valued Wigner angle.

Elementary particles as representations of the Poincaré group

In relativistic field theories, the elementary particles and matter they comprise are
described by field representations of the Poincaré group. In order to obtain the
generators of a multi-dimensional field representation of the Poincaré group, one
has to combine the standard scalar field representation (2.4) of the Poincaré group
and a finite-dimensional representation of the Lorentz group, whose generators Σµν

commute with the scalar field generators (2.4).
In addition to the properties discussed above many elementary particles need

additional parity (P), charge and charge conjugation (C) quantum numbers to la-
bel their representations. The charge quantum numbers are related to the gauge
symmetries. Eigenstates of more complex particles with inner structure (e.g. quark
compounds, hadrons) can have even more quantum numbers. These additional
quantum numbers are the reason why we have to use reducible representations for
some elementary particles. For example, the helicity is a pseudoscalar that changes
sign under parity transformations. Thus, if a massless particle participates in an in-
teraction that conserves parity it has to possess two helicity states ±s, so that it can
compensate the change of sign in helicity by reversing the helicity state. This implies
that we have to use reducible representations for massless particles that participate
in parity conserving interactions. An example of such a particle is the photon which
has ±1 helicity states.

We present a short inventory of important field representations of the Poincaré
group in high-energy physics. The only spin 0 particle in SM is the yet-to-be-found
Higgs boson required by the mechanism that gives masses to elementary particles
through spontaneous symmetry breaking in the electroweak theory. The spin 1

2

particles, the matter fields of SM, come in two flavors. The massless neutrinos
are described by the two-dimensional (j+, j−) = (1

2
, 0), (0, 1

2
) irreducible representa-

tions. The Dirac spinors describe massive spin 1
2

particles. They live in the four-
dimensional reducible representation (1

2
, 0)⊕(0, 1

2
) and their Lorentz transformations

are generated by the matrices

Σµν =
i

4

[
γµ, γν

]
,

where γµ are the γ-matrices. The γ-matrices are a four-dimensional realisation of
the Clifford algebra

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν .
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The vector bosons are spin 1 particles which mediate the interactions in SM. The
photon and the gluons are massless gauge fields and the weak Z and W vector bosons
are massive. If the graviton — the hypothetical mediator of gravitation — exists, it
must have spin 2, because gravitation is described by a second-rank tensor field. In
supersymmetric models the particle content is doubled by the superpartners, whose
spin differs by ±1

2
from that of their partners.

Lorentz tensors are multidimensional objects that are covariant under Lorentz
transformations. The four-dimensional representation (1

2
, 1

2
) of the Lorentz group

corresponds to its defining representation, the four-vectors. These spacetime vectors,
i.e. (1, 0)-tensors, V σ live in the representation

(Σµν)
ρ
σ = i(δρ

µηνσ − δρ
νηµσ) (2.9)

and the dual vectors, i.e. (0, 1)-tensors, Vσ live in the representation

(Σµν)
σ

ρ = i(ηµρδ
σ
ν − ηνρδ

σ
µ) . (2.10)

The generalization to arbitary tensor representations is straightforward. For (n,m)-
tensors V µ1···µn

ν1···νm
we have

− i

2
ωρσΣρσV

µ1···µn

ν1···νm
= ωµ1

ρV
ρ···µn

ν1···νm
+ · · · + ωµn

ρV
µ1···ρ

ν1···νm

+ ω ρ
ν1

V µ1···µn

ρ···νm
+ · · · + ω ρ

νm
V µ1···µn

ν1···ρ . (2.11)

2.3 Global Poincaré symmetry as an internal-like

symmetry

2.3.1 Global Poincaré invariance

Let us consider a generic relativistic field theory defined on Minkowski spacetime.
The action functional of the theory is constructed from a local Lagrangian,
LM

(
ui(x), ∂µui(x)

)
, for a set of matter fields ui(x), i = 1, 2, . . . , n ,

SM[ui] =

∫

Ω

d4xLM

(
ui(x), ∂µui(x)

)
. (2.12)

Relativistic invariance is implemented by requiring that the action (2.12) is invariant
under global Poincaré transformations. For this to be possible the set of fields u(x)
has to be a representation of the Poincaré group. We have excluded the explicit
coordinate dependence from the Lagrangian LM, because it is clearly forbidden by
the invariance under coordinate translations.10

The traditional way to introduce Poincaré transformations is to understand
them as simultaneous transformations in spacetime coordinates and in the fields

10Variation under any infinitesimal translation, xµ → xµ + aµ, has to vanish: δSM =
∫

Ω
dx4 δxµ ∂LM

∂xµ = aµ
∫

Ω
dx4 ∂LM

∂xµ = 0 ⇒ ∂LM

∂xµ = 0, i.e. there is no explicit coordinate dependence
in LM.
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of the theory. Since the Poincaré transformations are continuous it is sufficient to
consider infinitesimal transformations

xµ −→ x′µ = xµ + δxµ = xµ + εµ + ωµ
νx

ν (2.13a)

u(x) −→ u′(x′) = u(x) + δu(x) = u(x) − i

2
ωµνΣµνu(x) , (2.13b)

where εµ and ωµν = −ωνµ are the ten infinitesimal parameters of Poincaré transfor-
mations and Σµν are the generators of Lorentz transformations for the finite dimen-
sional representation where the components of the u(x) fields live. The fields u(x)
can be thought as a column vector with the components ui(x) and the generators
Σµν are matrices which act on the fields by matrix multiplication.

We take an alternative approach by writing the Poincaré transformations as
internal-like transformations, that only affect the fields u(x) but not the coordi-
nates. In other words, we consider the global Poincaré symmetry as an internal-like
symmetry. The external Poincaré transformations (2.13) can be revised to internal-
like transformations by writing the transformed fields in the same spacetime point
as the original fields

u′(x) = u′(x′ − δx) = u′(x′) − δxµ∂µ

[
u(x) + δu(x)

]
= u′(x′) − δxµ∂µu(x) .

After evaluating this transformation, we leave the coordinates unchanged

xµ −→ x′µ = xµ .

In the case of the Poincaré transformations (2.13) the complementary internal-like
transformations are

u(x) −→ u′(x) = u(x)+δu(x) = u(x)−(εµ +ωµνxν)∂µu(x)− i

2
ωµνΣµνu(x) . (2.14)

We can further rewrite these internal-like Poincaré transformations in a more familar
form

u(x) −→ u′(x) = Uu(x) ≈ (1 + Θ)u(x) , (2.15)

where Θ is an anti-Hermitian operator representing the infinitesimal global Poincaré
transformations on the algebra of fields in Minkowski spacetime,

Θ = −(εµ + ωµνxν)∂µ − i

2
ωµνΣµν

= iεµPµ − i

2
ωµνMµν . (2.16)

These are the global Poincaré transformations and we require that the action (2.12)
is invariant under them. From the last form of the transformation operator (2.16),
we can see that the operator can be decomposed in terms of the generators of the
group of Poincaré transformations in the u(x) field representation

Pµ = i∂µ , (2.17a)

Mµν = i(xµ∂ν − xν∂µ) + Σµν . (2.17b)
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Thus the unitary gauge transformation operator U introduced in (2.15) is indeed the
element of the Poincaré group (2.3) acting on the fields u(x). The finite-dimensional
part of the generators of Lorentz transformations Σµν is always chosen to match the
representation spanned by the fields the generators act on.

An important difference between the global Poincaré transformations (2.15) and
the truly internal gauge transformations used in the theories of particle physics is
that the generators of Poincaré transformations contain partial derivative operators
— in addition to matrix-valued generators. This has a major implication for the
gauge theory of Poincaré symmetry: The infinitesimal global Poincaré transforma-
tions (2.15) are not linear with respect to the fields u(x).

For partial derivatives of the fields u(x), the infinitesimal Poincaré transforma-
tions can be obtained by utilizing the fact that the transformations (2.15) do not
affect the coordinates,

δ∂µu(x) = ∂µδu(x) = ω ν
µ ∂νu(x)− (εν + ωνρxρ)∂ν∂µu(x)− i

2
ωνρΣνρ∂µu(x) . (2.18)

Though we were able to write the global Poincaré transformations in a form
similar with internal gauge transformations, we cannot completely escape the fact
that the Poincaré symmetry is by its origin an external symmetry. As a result the
invariance of the Lagrangian under global Poincaré transformations is not equivalent
with the invarince of the corresponding action functional — As is the case in the
familiar internal gauge symmetries, like the one in SM. The reason behind this is
expressly the nonlinearity of the transformations (2.15).

Let us consider the transformation of the Lagrangian density LM under the
global Poincaré transformation (2.15) 11

δLM ≡ ∂LM

∂u(x)
δu(x) +

∂LM

∂(∂µu(x))
δ∂µu(x) . (2.19)

Due to the Stokes theorem the change of the action

δSM ≡
∫

Ω

d4x δLM (2.20)

vanishes if the transformation of the Lagrangian either vanishes or if it is a pure
divergence

δLM = ∂µf
µ

and the fields fµ vanish on the boundary of spacetime x ∈ ∂Ω. Since the transfor-
mations of the fields (2.15) are nonlinear, (2.19) does not vanish for any nontrivial
Lagrangian. Thus the action is invariant if and only if (2.19) is a pure divergence
and the fields u(x) have appropriate boundary conditions. By inspection of the
transformation rules (2.15) and (2.18) it can be seen that the transformation of the
Lagrangian has to be

δLM = −(εµ + ωµνxν)∂µLM = −∂µ

(
(εµ + ωµνxν)LM

)
(2.21)

for the action (2.12) to be invariant under the global Poincaré transformations (2.15).
Thus (2.21) and the vanishing of the Lagrangian on the boundary of spacetime are
the correct Poincaré invariance conditions for the Lagrangian.

11 ∂
∂u(x) is a row vector with components ∂

∂ui(x) .
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2.3.2 Conservation laws

According to the Noether theorem we can rewrite the invariance condition (2.21) as
conservation equations of currents by utilizing the equations of motion for the fields

∂LM

∂u(x)
− ∂µ

∂LM

∂(∂µu(x))
= 0 (2.22)

and by using the infinitesimal Poincaré transformations (2.15) and (2.18). In this
way we obtain the conservation equations

∂νT
ν
µ = 0 , (2.23a)

∂ρS
ρ
µν = 0 , (2.23b)

where we have defined the canonical energy-momentum and angular momentum
tensors

T ν
µ =

∂LM

∂(∂νu(x))
∂µu(x) − δν

µLM (2.24a)

Sρ
µν = T ρ

µxν − T ρ
νxµ +

∂LM

∂(∂ρu(x))
iΣµνu(x) , (2.24b)

respectively, as the conserved currents of the theory. Thus the full conserved current
for the global Poincaré symmetry is

Jρ = εµT ρ
µ +

1

2
ωµνSρ

µν . (2.25)

The local conservation equations (2.23), together with the appropriate boundary
conditions, imply that the corresponding globally conserving charges are the total
energy-momentum

pµ =

∫

d3xT 0
µ

and the total angular momentum

mµν =

∫

d3xS0
µν .

The fundamental conservation laws (2.23) of the global Poincaré internal-like
symmetry are identical with the conservation laws of the traditionally formed Poin-
caré symmetry. This proves that these two complementary definitions of the global
Poincaré symmetry — based on the two concepts of Poincaré transformations (2.13)
and (2.15) — are indeed physically equivalent.

2.4 Local Poincaré gauge symmetry

2.4.1 Local Poincaré transformations and gauge invariance

In order to construct a full Poincaré gauge symmetry, we must first generalize the
Poincaré transformations (2.15) to local gauge transformations. We accomplish this
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by letting the parameters of the transformation group to take different values in
each point of spacetime or more precisely by letting the parameters to be arbitary
real-valued functions of spacetime points x,

εµ ≡ εµ(x) , ωµν ≡ ωµν(x) . (2.26)

This is the only change we have to make in the elements of the group of global
Poincaré transformations (2.3). No modification in the form of the global Poincaré
transformations (2.15) is needed in order to obtain the full Poincaré gauge trans-
formations. Only the transformation operator (2.16) has to be redefined as a local
operator

Θ(x) = −
(
εµ(x) + ωµν(x)xν

)
∂µ − i

2
ωµν(x)Σµν (2.27)

= iεµ(x)Pµ − i

2
ωµν(x)Mµν .

Since the generators (2.17) and the parameters (2.26) of the Poincaré gauge
transformations do not commute, the gauge transformations of partial derivatives
are no longer of the form (2.18). Instead, the partial derivatives of the fields have
the gauge transformations 12

δ∂µu = −(∂µε
ν + ∂µω

νρxρ)∂νu + ω ν
µ ∂νu − (εν + ωνρxρ)∂ν∂µu

− i

2
∂µω

νρΣνρu − i

2
ωνρΣνρ∂µu . (2.28)

Because these transformations contain partial derivatives of the gauge group pa-
rameters, a Lagrangian which satisfies the invariance condition (2.21) under global
transformations cannot do so under local gauge transformations. Moreover, any
Lagrangian constructed from the matter fields u alone cannot satisfy the invariance
condition under the gauge transformations. This is an essential observation in all
gauge theories.

Nevertheless, we require that the action of the theory has to be invariant under
the local Poincaré gauge transformations provided by the operator (2.27). The
local gauge invariance is achieved by introducing a set of gauge fields and by using
them together with the matter fields to construct a Lagrangian which satisfies the
invariance condition (2.21) under the gauge transformations. This construction is in
many ways similar to the construction of gauge theories for semisimple non-Abelian
gauge groups. For an introduction to such gauge theories see [48, 49] and for the
original idea of a non-Abelian gauge symmetry and some of its early developments
see the classics [50] and [29].

2.4.2 Covariant derivative and gauge fields

In order to enable the construction of a gauge invariant action, we need to define
a covariant derivative which preserves its form under local Poincaré gauge trans-
formations. Hence, we require that the covariant derivative ∇µ has to satisfy the

12From now on we do not write the x-dependence of fields u(x) explicitly.
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covariance condition
∇′

µU(x) = U(x)∇µ , (2.29)

where ∇′
µ is a gauge-transformed covariant derivative and U(x) is the local unitary

operator providing the Poincaré gauge transformations, or equivalently for infinites-
imal gauge transformations

∇′
µ

(
1 + Θ(x)

)
=

(
1 + Θ(x)

)
∇µ . (2.30)

By replacing the partial derivatives of the matter fields u into the Lagrangian with
such covariant derivatives we can make the Lagrangian transform similarly as the
original Langrangian transformed under global transformations.

The covariant derivative cannot be constructed without introducing new fields,
because the terms containing partial derivatives of the gauge group parameters in
the gauge transformations of a partial derivative (2.28) do not cancel each other in
any combination of the partial derivatives ∂µu.

Decomposing the covariant derivative with respect to the generators Pµ

and Mµν

As usual, the gauge transformation operator (2.27) can be decomposed with respect
to the generators of the gauge symmetry group, given in the field representation
(2.17), where the operator acts. Thus, we are led to choose the following Ansatz for
the covariant derivative

∇µ = ∂µ + Aµ(x) , (2.31)

where the gauge fields Aµ(x) can be decomposed with respect to the generators of
the representation on which the covariant derivative operates. The multipliers of
the generators are the gauge fields which we introduce in the gauge theory of the
Poincaré symmetry

Aµ(x) = −iA ν
µ (x)Pν +

i

2
A νρ

µ (x)Mνρ . (2.32)

The purpose of the gauge fields A ν
µ and A νρ

µ = −A ρν
µ is to act as compensating

fields for the local translations and Lorentz transformations, respectively. In 4-
dimensional Minkowski spacetime, four gauge fields are needed to compensate each
dimension of the local Poincaré symmetry: 4 × 4 = 16 gauge fields A ν

µ for local
translations and 6 × 4 = 24 gauge fields A νρ

µ for local Lorentz rotations.
This decomposition is important in algebraic calculations, because it enables

us to directly use the algebra of generators (2.2). This is particularly useful in
perturbative calculations.

We obtain the local gauge transformations of the gauge fields Aµ by substituting
the Ansatz (2.31) into the covariance condition (2.30) and by solving it:

δAµ(x) = A′
µ(x) − Aµ(x) = [Θ,∇µ] (2.33)

= ω ν
µ ∇ν + [Θ, ∂µ] + [Θ, Aµ] .

The crucially important first term in the right-hand side of (2.33) has its origin
in the fact that the covariant derivative ∇µ is a covariant vector and therefore the
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generators Σµν act on it as a linear transformation — more precisely we have to use
the (0, 1)-tensor representation of the generators Σµν (2.10) when we operate on the
covariant derivative. Gauge transformation laws for the individual gauge fields are
found by substituting the decomposition (2.32) and the variation

δAµ = −iδA ν
µ Pν +

i

2
δA νρ

µ Mνρ (2.34)

into the gauge transformation law (2.33). Evaluation of the commutators in the
right-hand side of (2.33) — especially [Θ, Aµ] — is a lengthy calculation, since even
the generators (2.17) and the gauge fields do not commute. By grouping the terms
of the result we obtain the required decomposition (2.34) which gives us the gauge
transformation laws:

δA ν
µ = −

(
ερ + ωρσxσ

)
∂ρA

ν
µ + ω ρ

µ A ν
ρ + ων

ρA
ρ

µ + ερA
ρν

µ (2.35a)

+ ∂µε
ν +

(
A ρ

µ + A ρσ
µ xσ

)
∂ρε

ν ,

δA νρ
µ = −

(
εσ + ωστxτ

)
∂σA

νρ
µ + ω σ

µ A νρ
σ + ων

σA
σρ

µ + ωρ
σA

νσ
µ (2.35b)

+ ∂µω
νρ +

(
A σ

µ + A στ
µ xτ

)
∂σω

νρ .

These gauge transformations are quite complicated and they also greatly differ from
the corresponding gauge transformation formulae found both in non-Abelian gauge
theories [29] and in the gauge theory of the translation symmetry [34, 42]. It should
also be noted that the gauge fields associated with translations and Lorentz rotations
are strongly involved through the gauge transformations (2.35). For these reasons
we do not further pursue this decomposition of the gauge fields.

Decomposing the covariant derivative with respect to ∂α and Σµν

For our purposes, a more useful form for the covariant derivative is obtained by
introducing a matrix of effective gauge fields,

e α
µ = δα

µ + A α
µ + A αν

µ xν , (2.36)

as replacements for the gauge fields A α
µ . This enables us to write the covariant

derivative in the form
∇µ = dµ + Aµ (2.37)

where we have defined

dµ = e α
µ ∂α , Aµ =

i

2
A νρ

µ Σνρ . (2.38)

The first term dµ of the covariant derivative (2.37) is a linear combination of partial
derivatives and the second term Aµ operates on the fields as a linear transformation.
In each point of spacetime the gauge fields e α

µ are used to cancel the first term in the
gauge transformations of partial derivatives (2.28) and the gauge fields A νρ

µ are used
to do the same for the fourth term of the transformations. This form of the covariant
derivative is perhaps the most natural decomposition for the field representations of
the Poincaré symmetry (2.17), where both Pµ and Mµν contain partial derivatives.
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We obtain the local gauge transformations of the gauge fields by substituting
the covariant derivative (2.37) into the covariance condition (2.30) and by solving
the equation

δe α
µ ∂α +

i

2
δA νρ

µ Σνρ = [Θ,∇µ] (2.39)

= ω ν
µ ∇ν + [Θ, dµ] + [Θ,Aµ] .

The evaluation of the right-hand side of (2.39) gives us the local gauge transforma-
tions of the gauge fields

δe α
µ = −

(
εβ + ωβνxν

)
∂βe α

µ + ω ν
µ e α

ν + e β
µ ∂β

(
εα + ωανxν

)
(2.40a)

δA νρ
µ = −

(
εβ + ωβσxσ

)
∂βA νρ

µ + ω σ
µ A νρ

σ + ων
σA

σρ
µ + ωρ

σA
νσ

µ + e α
µ ∂αωνρ .

(2.40b)

Alternatively, these transformations can be derived from the definition of the gauge
fields e α

µ (2.36) and from the gauge transformation laws (2.35). The gauge transfor-
mations of the gauge fields e α

µ do not involve the gauge fields A νρ
µ , which will turn

out to be a most useful improvement compared to the complicated gauge transfor-
mations of A ν

µ . This form of the gauge fields also has the most direct geometrical
interpretation. Hence this will be our primary choice of the covariant derivative and
of the gauge fields — unless otherwise stated, “covariant derivative” refers to (2.37).

Finally, it should be pointed out that the derivative operator dµ and the fields
e α

µ are the covariant derivative and the gauge fields of the gauge theory of the
translation symmetry, respectively.

Expanding the covariant derivative in two factors

Yet another form of the covariant derivative can be obtained by factorizing (2.37)
into two factors

∇µ = e α
µ Dα = e α

µ

(
∂α + Bα

)
= e α

µ

(

∂α +
i

2
B µν

α Σµν

)

, (2.41)

where we have defined the gauge fields

Bα =
(
e−1

)µ

α
Aµ ⇔ B µν

α =
(
e−1

)ρ

α
A µν

ρ (2.42)

and replaced Aµ by them.13 The operator Dα has the same form as the covariant
derivative has in non-Abelian gauge theories and the full covariant derivative (2.41)
is a linear combination of these operators at each point. The gauge fields B µν

α have
an interesting geometrical intepretation, as will be seen shortly.

Alternatively, the covariant derivative (2.41) can be introduced in two steps:
First by introducing“the incomplete covariant derivative”Dα and then by adding the
e α

µ factor to complete it. Similarly as in non-Abelian gauge theories, the Dα factor
cancels the fourth term — the nonlinear term which contains partial derivatives of
the transformation parameters ωνρ — of the gauge transformation (2.28). Then

13We are implicitly requiring that the gauge field matrix e α
µ is invertible: det e 6= 0.
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the e α
µ factor cancels the linear term, which contains partial derivatives of the

transformation parameters, of the same transformation. This is similar to what
Kibble did in [30], though not in the internal-like symmetry setting presented here.

Behaviour of the gauge fields under the local gauge transformations is again
obtained from the covariance condition (2.30). For that we can solve the equation

δe α
µ Dα + e α

µ δBα = [Θ,∇µ] (2.43)

= ω ν
µ ∇ν +

[
Θ, e α

µ

]
Dα + e α

µ

[
Θ, Dα

]
.

By evaluating the commutators in the right-hand side of (2.43) and by regrouping
the result we obtain the gauge transformation laws

δe α
µ = −

(
εβ + ωβνxν

)
∂βe α

µ + ω ν
µ e α

ν + e β
µ ∂β

(
εα + ωανxν

)
, (2.44a)

δB µν
α = −

(
εβ + ωβρxρ

)
∂βB µν

α + ω β
α B µν

β + ωµ
ρB

ρν
α + ων

ρB
µρ

α (2.44b)

− ∂α

(
εβ + ωβρxρ

)
B µν

β + ∂αωµν .

These gauge transformations can of course be deduced from the definition of the
gauge fields B µν

α (2.42) and from the gauge transformation laws (2.40). Notice that
now even the gauge transformations of the gauge fields B µν

α (2.44b) do not involve
the gauge fields e α

µ — the inverse of this is still true as it was before in (2.40a).
Thus the gauge fields ε α

µ and B µν
α are quite independent at this point. These two

type of gauge fields, however, do depend on each other through the equations of
motion, which we will derive later.

2.4.3 Lagrangian with minimal coupling to the gauge fields

We follow the well-known convention and choose the minimal coupling of matter
fields to the gauge fields. This is achieved by replacing the partial derivatives in the
Langrangian LM by the covariant derivatives (2.37). So, we define a new Lagrangian

L̃M

(
ui, ∂µui, e

α
µ , A µν

α

)
= LM(ui,∇µui) . (2.45)

This Lagrangian transforms under local Poincaré gauge transformations in the same
way as the Lagrangian LM transforms under global Poincaré transformations

δL̃M = − (εµ + ωµνxν) ∂µL̃M .

The right-hand side of this transformation is not a pure divergence anymore, because
of the coordinate dependence of the transformation parameters. We can repair this
issue by multiplying the Lagrangian with a factor E which has the needed gauge
transformation behaviour:

δ(EL̃M) = δEL̃M + EδL̃M = −∂µ

((
εµ + ωµνxν

)
EL̃M

)

, (2.46)

⇒ δE = −∂µ

(
εµ + ωµνxν

)
E −

(
εµ + ωµνxν

)
∂µE .

This behaviour implies that the factor E has to be constructed from the gauge fields.
The simplest choice that has the required gauge transformation characteristics is

E = det
(
e−1

)
= (det e)−1 = exp(−Tr ln e) , (2.47)
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where
(
e−1

)
is the inverse of the matrix e ≡ (e α

µ ). The gauge transformations of
(2.47) can be confirmed to fulfill (2.46) by a small calculation:

δ det
(
e−1

)
= − det

(
e−1

)
·
(
e−1

)µ

α
δe α

µ

= −∂µ

(
εµ + ωµνxν

)
det

(
e−1

)
−

(
εµ + ωµνxν

)
∂µ det

(
e−1

)
,

where
∂µ det

(
e−1

)
= − det

(
e−1

)
·
(
e−1

)ρ

α
∂µe

α
ρ .

According to (2.46) the infinitesimal gauge transformations of the Lagrangian
EL̃M are pure divergences, which vanish under integration over spacetime. Thus,
the Lagrangian that provides a gauge invariant action and that minimally couples
the matter fields to the gauge fields is

LM

(
ui, ∂µui, e

α
µ , A νρ

µ

)
= det

(
e−1

)
LM(ui,∇µui) . (2.48)

2.4.4 Field strength and free Lagrangian of the gauge fields

In order to complete the action of the theory we need to construct a gauge invariant
action of the free gauge fields, which defines physics completely in the absence of
matter. Since there is an infinite number of such actions we follow the common
practice in gauge theories by choosing the simplest nontrivial action.

The best way to construct a gauge invariant action of the free gauge fields
is to seek for tensor fields which are covariant under the gauge transformations
and to contract such tensors in order to obtain scalars, whose behaviour under the
gauge transformations is identical with the matter Lagrangian (2.45). Since the
commutator of two covariant derivatives is by definition gauge covariant, it can be
used to define covariant tensor fields, especially one called the field strength.14 Let
us calculate the commutator of two covariant derivatives:

[∇µ,∇ν ] = [dµ + Aµ, dν + Aν ] (2.49)

= [dµ, dν ] −
(
A ρ

µν − A ρ
νµ

)
dρ + dµAν − dνAµ + [Aµ,Aν ]

=
i

2
Rρσ

µνΣρσ − T ρ
µν∇ρ ,

where we have defined the tensor fields

Rρσ
µν = dµA

ρσ
ν − dνA

ρσ
µ − A ρ

µ τA
τσ

ν + A ρ
ν τA

τσ
µ − C τ

µν A ρσ
τ , (2.50a)

T ρ
µν = A ρ

µν − A ρ
νµ − C ρ

µν . (2.50b)

R and T are covariant under Poincaré gauge transformations and R is the field
strength tensor we are seeking. C is the covariant field strength tensor of the local
translation group,

[dµ, dν ] = C ρ
µν dρ , C ρ

µν =
(
e α

µ ∂αe β
ν − e α

ν ∂αe β
µ

)(
e−1

)ρ

β
, (2.51)

14An altervative way to obtain these tensors is to use geometric reasoning. This is analogous
to the argumentation used in Riemannian geometry to find the curvature tensor and the torsion
tensor.
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though it is not covariant under Poincaré gauge transformations. The second term
in the middle form of the commutator (2.49) is a result of the fact that the covariant
derivative ∇µ is a covariant vector and therefore Aµ operates on it as a local linear
transformation — recall that we have to use the (0, 1)-tensor representation of the
generators Σµν when operating on the covariant derivative.

We have stated that the field strength R is a tensor field, but we have not
explicitly written down how such an object transforms under the Poincaré gauge
transformations. For completeness and as an important example, we give the gauge
transformations of the field strength

δRρσ
µν = −

(
ετ + ωτυxυ

)
∂τR

ρσ
µν + ωρ

τR
τσ

µν + ωσ
τR

ρτ
µν

+ ω τ
µ Rρσ

τν + ω τ
ν Rρσ

µτ . (2.52)

In other words, the field strength Rρσ
µν is a (2, 2)-tensor field representation of the

local Poincaré gauge group, given by (2.17) and (2.11).

The simplest free Lagrangian is the one that has the lowest order in terms of
the gauge fields. A constant Λ has zero order and it is trivially gauge invariant. The
simplest nontrivial scalar combination of gauge fields can be obtained by contracting
the field strength tensor

R = Rµν
µν .

We cast aside all higher order terms like T ρ
µνT

µν
ρ , R2, Rµµ

ρσR
ρσ

µν etc. By multi-
plying the chosen scalars with the factor (2.47), we will obtain the free Lagrangian
of the gauge fields (taking the scalars in the lowest order according to the priciple
of correspondence),

LG(e α
µ , ∂βe α

µ , A νρ
µ , ∂αA νρ

µ ) = − 1

2κ
det

(
e−1

)
(R + 2Λ) . (2.53)

The constant κ in (2.53) is evaluated experimentally through comparison with GR.

2.4.5 Action of the gauge theory and the equations of mo-
tion

The complete action of the gauge theory of the Poincaré symmetry is obtained
by combining the Lagrangian of the matter fields (2.48) — includes the minimal
coupling to the gauge fields — and the Lagrangian of the free gauge fields (2.53):

S
[
ui, e

α
µ , A µν

α

]
=

∫

d4x (LG + LM) (2.54)

=

∫

dx4 det
(
e−1

)
(

− 1

2κ
(R + 2Λ) + LM(ui,∇µui)

)

.

The equations of motion for the Poincaré gauge theory are obtained in the usual
way, i.e. by varying the action with respect to the gauge fields e α

µ and A νρ
µ and

with respect to the matter fields ui. Since we are describing gravitation by gauge
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fields, the gravitational dynamics is encoded in the equations of motion for the gauge
fields. They are written as:15

1

2
det

(
e−1

)
(

−e α
ν

δR
δe α

µ

+ δµ
ν (R + 2Λ)

)

= κ det
(
e−1

)
T µ

ν , (2.55a)

det
(
e−1

) (
T ρ

µν + δρ
µT

σ
νσ − δρ

νT
σ
µσ

)
= κ det

(
e−1

)
Sρ

µν , (2.55b)

where we have defined the energy-momentum tensor and the spin density tensor for
the matter fields as

T µ
ν = −e α

ν

1

det
(
e−1

)
∂LM

∂e α
µ

= −∂LM(u,∇ρu)

∂(∇µu)
dνu + δµ

ν LM(u,∇ρu) , (2.56a)

Sρ
µν = − 2

det
(
e−1

)
∂LM

∂A µν
ρ

= −∂LM(u,∇σu)

∂(∇ρu)
iΣµνu , (2.56b)

respectively.

2.5 Geometrical interpretation and comparison with

General Relativity

In this section we establish the relation between the gauge fields of the gauge the-
ory of the Poincaré symmetry and the geometry of spacetime. This enables us to
interpret the fundamental gauge fields as gravitational potential fields and to give
the gauge theory a complete geometrical re-interpretation, which turns out to be the
Einstein-Cartan theory of gravitation (ECT). Finally, we compare the theory with
GR.

2.5.1 Geometry associated with the Poincaré gauge fields

So far we have insisted that we were developing the gauge theory of the Poincaré
symmetry in the flat Minkowski spacetime background. In order to compare the
Poincaré gauge theory with measurements and with the theory of GR, we are going
to give the theory a geometrical interpretation. The geometrical interpretation of
gravitation is very convenient, since gravitation has only been measured at macro-
scopic (& 1 mm) and astronomical scales. The primary reference of geometrical
concepts for this section is [51].

We intepret that the spacetime is not necessarily flat, but instead we have
just been considering physics in orthonormal non-coordinate bases of the spacetime
manifold. We interpret that the gauge field matrix e α

µ is the vierbein system of the
spacetime manifold.16 The orthonormal basis vectors for the tangent spaces of the
spacetime manifold are

êµ = e α
µ ∂α = dµ

15We do not write the variation δR
δe

α
µ

explicitly, because it is a lengthy expression and we are not

going to use it.
16This is enabled by the invertibility and by the correct transformation properties of e α

µ .
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and the basis one-forms for the cotangent spaces are

θ̂µ = eµ
αdxα ,

where {∂α} and {dxα} are the coordinate bases for the tangent and cotangent spaces
of the spacetime manifold and we have conventionally denoted the inverse of the
vierbein: eµ

α ≡
(
e−1

)µ

α
. In spacetime indices, the first half of the Greek alphabet

α, β, . . . refers to the coordinate bases and the latter half µ, ν, . . . refers to the or-
thonormal non-coordinate bases — we have anticipated this notation in the previous
sections. Tensor components transform linearly between these bases at each point:
V α = e α

µ V µ, Vα = eµ
αVµ and so forth.

The metric tensor of the spacetime manifold is defined by the orthonormality
of the basis vectors êµ with respect to the metric g in all points of the spacetime,

g(êµ, êν) = gµν ≡ ηµν ,

where ηµν is the Minkowski metric. Hence, in the coordinate bases the metric has
the components

gαβ = ηµνe
µ
αeν

β . (2.57)

The signature of the metric is the same as the signature of the Minkowski metric.
Thus the spacetime is a Lorentzian manifold. According to (2.57) the metric itself
can be seen as an effective gauge field, a dynamical variable. Hence the spacetime
is not anymore flat.

The rest of the gauge fields are interpreted to be the connection coefficents given
in orthonormal non-coordinate bases

Γρ
µν = −A ρ

µ ν . (2.58)

The antisymmetry of the gauge fields A µν
ρ with respect to the last two indices implies

Γµ ν
ρ = −A µν

ρ = A νµ
ρ = −Γν µ

ρ , (2.59)

which ensures the metric compatibility of the connection associated with the gauge
fields.

The covariant derivative of the Poincaré gauge theory is replaced by the covari-
ant derivative of a Lorentzian manifold

∇µ = e α
µ

(

∂α − i

2
Γν ρ

α Σνρ

)

, (2.60)

where the connection
Γν

αρ = eσ
αΓν

σρ (2.61)

is called the spin connection. The name refers to the fact that one is compelled
to use the covariant derivative (2.60) for all other representations of the Lorentz
symmetry except for the tensor representations, which also accept the covariant
derivative with respect to the coordinate bases, and spinors are of course the most
important non-tensorial representations. Notice that the gauge fields (2.42) have a
direct interpretation as the spin connection (2.61).
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In a Lorentzian spacetime manifold we can perform both local Lorentz transfor-
mations with respect to the non-coordinate bases (µ, ν, . . .) and general coordinate
transformations with respect to the coordinate bases (α, β, . . .), without affecting the
physics of the system. The local Lorentz transformations are the local frame rota-
tions which leave the metric tensor invariant, Λρ

µΛσ
νηρσ = ηµν ⇒ Λµ

ν ∈ SO(1, 3), in
each point of the manifold. Invariance under the general coordinate transformations
realizes the fact that we are free to choose any coordinate system for the space-
time manifold. The question is, how do the local Poincaré gauge transformations
translate to these two kinds of symmetry transformations? We demonstrate this by
considering the transformation behaviour of the mixed basis object e α

µ , first as a
vierbein and then as a gauge field. Under infinitesimal local Lorentz transformations
and under general infinitesimal coordinate transformations

xα −→ x′α = xα + ǫα(x)

the vierbeins transform as

e α
µ (x) −→ e

′ α
µ (x′) = Λν

µ(x) e β
ν (x)

∂x′α

∂xβ
(2.62)

=
(
δν
µ + ω ν

µ (x)
)
e β

ν (x)
(
δα
β + ∂βǫα(x)

)

= e α
µ (x) + ω ν

µ (x)e α
ν (x) + e β

µ (x)∂βǫα(x) .

We can cast this to a form of an internal-like transformation by expanding the
transformed vierbein around x: e

′ α
µ (x′) = e

′ α
µ (x) + ǫβ∂βe α

µ (x) +O (ǫ2). This gives
us the infinitesimal transformations of the vierbeins at x,

δe α
µ = e

′ α
µ − e α

µ = −ǫβ∂βe α
µ + ω ν

µ e α
ν + e β

µ ∂βǫα . (2.63)

If we now in the local Poincaré gauge transformations of the gauge fields e α
µ (2.40a)

identify the parameter fields

ǫα(x) ≡ εα(x) + ωαβ(x)xβ , (2.64)

we see that the gauge transformations are identical with the transformations of
the vierbeins (2.63). Thus the gauge invariance of the gauge theory of the Poincaré
symmetry can be re-interpreted as covariance under the group of general infinitesimal
coordinate transformations and as invariance under the group of local Lorentz frame
rotations.

By inserting the connection coefficients (2.58) to the expressions for R and T
tensor fields of the Poincaré gauge theory (2.50), we find out that apart from the
sign of R they are identical with the Riemann curvature tensor RΓ and the torsion
tensor TΓ of a pseudo-Riemannian manifold with a metric connection, given in an
orthonormal basis {êµ},

R ρ
Γ σµν = −Rρ

σµν = êµ(Γρ
νσ) − êν(Γ

ρ
µσ) + Γρ

µτΓ
τ
νσ − Γρ

ντΓ
τ
µσ − c τ

µν Γρ
τσ ,

(2.65a)

T ρ
Γ µν = T ρ

µν = Γρ
µν − Γρ

νµ − c ρ
µν , (2.65b)
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where the anholonomy coefficients c ρ
µν originate from the Lie algera of basis vectors,

[êµ, êν ] = c ρ
µν êρ .

By introducing the connection one-form

ωρ
σ = Γρ

νσθ̂
ν (2.66)

and the torsion two-form and the curvature two-form

T ρ =
1

2
T ρ

Γ µν θ̂
µ ∧ θ̂ν , Rρ

σ =
1

2
R ρ

Γ σµν θ̂
µ ∧ θ̂ν (2.67)

of the Cartan formalism we can express the identities (2.65) as the Cartan’s structure
equations,

dθ̂ρ + ωρ
σ ∧ θ̂σ = T ρ , (2.68a)

dωρ
σ + ωρ

τ ∧ ωτ
σ = Rρ

σ . (2.68b)

The Bianchi identities can be obtained by taking exterior derivative of each of
Cartan’s structure equations (recall d2 = 0),

dT ρ + ωρ
σ ∧ T σ = Rρ

σ ∧ θ̂σ , (2.69a)

dRρ
σ + ωρ

τ ∧ Rτ
σ − Rρ

τ ∧ ωτ
σ = 0 . (2.69b)

The connection coefficients with respect to the coordinate bases are obtained
from the definition of the connection coefficients with respect to the non-coordinate
bases

A ρ
µ ν êρ = Γρ

µν êρ ≡ ∇µêν = e α
µ

(
∂αe γ

ν + Γγ
αβe β

ν

)
eρ

γ êρ ,

⇒ Γγ
αβ = eµ

αeν
βe γ

ρ A ρ
µ ν − eν

β∂αe γ
ν . (2.70)

This enables us to write the curvature and the torsion tensors with respect to the
coordinate bases, which is the form familiar from elementary GR,

R γ
Γ δαβ = ∂αΓγ

βδ − ∂βΓγ
αδ + Γγ

αζΓ
ζ
βδ − Γγ

βζΓ
ζ
αδ , (2.71a)

T γ
Γ αβ = Γγ

αβ − Γγ
βα . (2.71b)

Lastly we emphasize that the complementary concept of the Poincaré symmetry
as an external symmetry (2.13), can equally well be generalized to a local gauge
symmetry and that the resulting gauge theory is complementary to the gauge theory
of the Poincaré symmetry we constructed in the section 2.4. In the complementary
approach the local gauge transformations are:

xα −→ x′α = xα + ǫα(x) , (2.72a)

u(x) −→ u′(x′) = u(x) − i

2
ωµνΣµνu(x) . (2.72b)

This approach has a clear advantage over the present approach when it comes to
the geometrical interpretation of the invariance under the Poincaré gauge transfor-
mations. The gauge transformations (2.72a) and (2.72b) translate directly to the
general infinitesimal coordinate transformations and to the local Lorentz frame ro-
tations, respectively. No “internalization” of the transformations (2.62) is needed to
provide the correspondence. Indeed, this is the way the gauge theory of the Poin-
caré symmetry has most often been considered [30],[33],[37]. The theory is called
the Einstein-Cartan-Sciama-Kibble theory of gravitation.
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2.5.2 Gravitational action and the equations of motion

We can re-interpret the action of the free gauge fields SG as a gravitational action of
the spacetime by rewriting the Lagrangian of the free gauge fields (2.53) in terms of
the metric (2.57) and the connection coefficients (2.70) with respect to the coordinate
bases,

SG[g, Γ] =
1

2κ

∫

d4x
√−g

(
RΓ − 2Λ

)
, (2.73)

where the determinant of the metric is denoted as g ≡ det(gαβ) and we have defined
the scalar curvature and the Ricci tensor as

RΓ = gαβRΓαβ , RΓαβ = R γ
Γ αγβ , (2.74)

respectively. We set κ ≡ 8πG, where G is the gravitational constant, in order to
match with experimental data. This is the well-known Palatini action — spiced with
the cosmological constant Λ — which can be deduced from ECT.17 The independent
variables of the action are the metric and the connection coefficients with respect to
the coordinate bases.

The equations of motion for the action (2.73) can be written [30, 31]

RΓαβ − 1

2
gαβRΓ + gαβΛ = κTαβ , (2.75a)

T γ
Γ αβ + δγ

αT δ
Γ βδ − δγ

βT δ
Γ αδ = κSγ

αβ , (2.75b)

where the energy-momentum tensor

Tαβ = − 2√−g

δSM

δgαβ
(2.76)

and the spin density tensor

Sγ
αβ = − 2√−g

δSM

δΓα β
γ

(2.77)

are comparable to the corresponding tensors of the Poincaré gauge theory (2.56).
The first equations of motion (2.75a) are the Einstein equations of GR, which con-
nect the curvature of spacetime and the energy-momentum tensor of matter and
radiation, but with the difference that now the torsion does not vanish and there-
fore the Ricci tensor and the energy-momentum tensor are not symmetric. The
second equations of motion (2.75b) connect the torsion of spacetime and the spin
density tensor of matter and radiation linearly, and they can be solved for the torsion

T γ
Γ αβ = κ

(

Sγ
αβ +

1

2
δγ
αSδ

βδ −
1

2
δγ
βSδ

αδ

)

. (2.78)

In the gauge theory approach the non-vanishing torsion and the spin density tensor
are necessary consequences of the local Poincaré gauge symmetry.

The Bianchi identities (2.69) can be used to construct conservation equations
for ECT. Equivalently the conservation equations can be derived from the gauge
theory of gravitation we have constructed. The covariant divergence of the energy-
momentum tensor does not vanish as it does in GR.

17For a recent review on the Einstein-Cartan theory and for references, see [52].
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2.5.3 Comparison with General Relativity

We have shown that the gauge theory of the Poincaré symmetry we have constructed
is equivalent with ECT, which was originally developed by Élie Cartan in the 1920s
— before spin was discovered — and later rediscovered by Sciama and Kibble.

The difference between ECT and GR is that in ECT the torsion of spacetime is
not set to zero and the spin of matter and radiation is explicitly recognized. In ECT
the torsion of spacetime and the spin density are directly proportional in each point
of spacetime (2.78). In the absence of spin, the torsion vanishes, the connection
becomes a Levi-Civita connection and so ECT reduces to GR. This also means that
the torsion cannot propagate, in other words “torsion waves” do not exist. There is
no difference between ECT and GR in empty space.

We can eliminate the torsion of spacetime in the equations of motion of ECT
(2.75) by separating the connection to a Levi-Civita connection and to a torsion
dependent part,

Γγ
αβ =

◦

Γ
γ

αβ +
1

2

(
T γ

αβ + T γ
α β + T γ

β α

)
,

and by replacing the torsion with the spin density (2.78). This way, we can replace
the equations of motion (2.75) with the Einstein equation

◦

Rαβ − 1

2
gαβ

◦

R + gαβΛ = κT eff
αβ , (2.79)

where the circle accent refers to a Levi-Civita connection depending only on the
metric and the effective energy-momentum tensor is of the form

T eff
αβ = Tαβ +

1

2

◦

∇γ

(
S γ

αβ + S γ
β α + S γ

α β

)
+ κS2 .

From the effective energy-momentum tensor it can be calculated that the contri-
bution of the spin density becomes equally important with the energy-momentum,
when the density of matter is 1047 g/cm3 for electrons or 1054 g/cm3 for protons
[37]. These densities are so high that they can only be encountered in the early
universe and in black holes, but they are still much smaller than the Planck den-
sity mP/l3P ∼ 1094 g/cm3 at which the quantum gravitational effects are believed to
dominate. Thus the predictions of ECT and GR are identical in most circumstances.

Since all experiments devised to test GR so far only involve relatively low den-
sities, all experimental data that support GR also support ECT. Thus, ECT is a
viable theory of gravitation. In the light of today’s knowledge, the elegant incorpo-
ration of spin in ECT is very welcome. It may also turn out that ECT is a better
limit of a yet unknown quantum theory of gravitation than GR.



Chapter 3

Noncommutative field theory and
twisted Poincaré symmetry

In this chapter we first review the concepts and tools needed to define field theories
on noncommutative spacetimes. Then we discuss the twisted Poincaré symmetry,
which provides the concept of special relativity for noncommutative field theories.

3.1 Noncommutative spacetime

The type of noncommutativity of spacetime coordinates discussed in this study is
defined by the commutation relations

[
x̂µ, x̂ν

]
= iθµν , (3.1)

where θµν is a real constant antisymmetric matrix. This is the form of noncommuta-
tivity encountered in the Seiberg-Witten low-energy limit of certain string theories
[24], as we explained in the section 1.1. Since this observation, noncommutative
quantum and gauge field theories have been under intense research (for reviews, see
[53, 54]). We assume the matrix θµν is invertible, which implies that the space-
time has to be even-dimensional. Since we are primarily interested in the usual
four-dimensional spacetime, this is not a problem.

In a more general case, θµν could be any kind of function of spacetime. For a
comprehensive treatment of noncommutative spaces and their application to math-
ematical physics, see [1, 2, 3, 4, 55].

3.2 Weyl quantization and the Moyal ⋆-product

The concepts presented in this section enable us to represent noncommutative C∗-
algebras of quantum operators on the algebra of commutative functions on an or-
dinary phase space. In the coordinate and momentum space representations of a
noncommutative field theory, we can utilize most of the tools and methods of the
ordinary commutative QFT.
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3.2.1 Weyl operators and symbols

Hermann Weyl invented an elegant method of canonical quantization that utilizes the
symmetrical operator ordering [56], which is perfectly suited for describing operators
on noncommutative spacetime.

We consider a unital commutative algebra A of complex-valued functions on D-
dimensional Minkowskian (or Euclidean) space, with the usual point-wise product
of functions

fg(x) = f(x)g(x) = g(x)f(x) = gf(x) .

We assume that the functions belong to an appropriate Schwartz space with suf-
ficiently rapid decrease at infinity, so that each function can be represented by its
Fourier transform

f̃(k) =

∫

dDx f(x)e−ikµxµ

. (3.2)

The Weyl operator that corresponds to the function f(x) is defined by

Ŵ [f ] =

∫
dDk

(2π)D
f̃(k)eikµx̂µ

, (3.3)

where the coordinate operators x̂µ satisfy the noncommutativity relations (3.1).
The function f(x) itself is a Weyl symbol. When a Weyl symbol is real-valued, the
corresponding Weyl operator is Hermitian. We can further define the Hermitian
operator

∆̂(x) =

∫
dDk

(2π)D
e−ikµx̂µ

eikνxν

, (3.4)

which enables us to write the relation between the Weyl symbol f(x) and its Weyl
operator (3.3) in the explicit form

Ŵ [f ] =

∫

dDx f(x)∆̂(x) . (3.5)

Thus the Weyl symbol f(x) can be interpreted to be the coordinate space repre-
sentation of the Weyl operator Ŵ [f ]. The Weyl operators (3.5) generated by the
noncommutative coordinates (3.1) for A constitute a unital noncommutative algebra
Â.

We can calculate the products of operators by using the Baker-Campbell-
Hausdorff formula for exponential functions

eikµx̂µ

eik′
ν x̂ν

= ei(k+k′)µx̂µ

e−
i
2
θµνkµk′

ν

and by inserting the operator relation (3.5) for f(z) = ei(k+k′)µzµ

:

ei(k+k′)µx̂µ

=

∫

dDz ei(k+k′)µzµ

∆̂(z) .

This gives us the products of the operators ∆̂(x) as

∆̂(x)∆̂(y) =

∫∫
dDk

(2π)D

dDk′

(2π)D

∫

dDz ei(k+k′)µzµ

∆̂(z)e−
i
2
θµνkµk′

νe−ikµxµ

e−ikνyν

. (3.6)
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Since the matrix θµν is invertible, we can perform the Gaussian momentum integrals
in (3.6) and reach the result

∆̂(x)∆̂(y) =
1

πD |det θ|

∫

dDz ∆̂(z)e−i2(θ−1)µν(x−z)µ(y−z)ν

. (3.7)

Derivatives of the noncommutative operators can be introduced through the
standard operator commutation relations

[
∂̂µ, x̂

ν
]

= δν
µ ,

[
∂̂µ, ∂̂ν

]
= 0 . (3.8)

From (3.8) we can deduce the following important results for the derivative and for
the trace of Weyl operators

[
∂̂µ, Ŵ [f ]

]
= Ŵ [∂µf(x)] , (3.9)

Tr Ŵ [f ] =

∫

dDx f(x) ; Tr ∆̂(x) = 1 . (3.10)

The relation between a Weyl operator and its Weyl symbol (3.5) can be reversed as:

f(x) = Tr
(

Ŵ [f ]∆̂(x)
)

. (3.11)

3.2.2 The ⋆-product

The ⋆-product of two functions (Weyl symbols) is defined to be the representation
of the product of their Weyl operators on the commutative algebra of functions

Ŵ [f ⋆ g] = Ŵ [f ]Ŵ [g] . (3.12)

The ⋆-product can be written explicitly by using the result (3.7)

f(x) ⋆ g(x) = f(x) exp

(
i

2

←−
∂ µθ

µν−→∂ ν

)

g(x) (3.13)

= f(x)g(x) +
∞∑

n=1

1

n!

(
i

2

)n

θµ1ν1 · · · θµnνn∂µ1
· · · ∂µn

f(x)∂ν1
· · · ∂νn

g(x) ,

where θµν is the constant matrix in (3.1). The nonlocality of the ⋆-product is obvious
in (3.13). The value of f(x) ⋆ g(x) receives contributions not only from the point
x, but also from an area around it, whose shape and size is defined by the constant
θµν . More precisely, if the fields f(x) and g(x) vanish outside a small region of
size δ ≪

√

‖θ‖, then f(x) ⋆ g(x) is nonvanishing in a much larger region of size
‖θ‖ /δ [57]. Physically this means that a high energy process can have immediate
effects over a large — potentially infinite — region of spacetime. The ⋆-product has
been named the Moyal product or the Groenewold–Moyal product after its inventors
[58, 59].

The ⋆-product can be generalized for multiple functions at possibly different
points

f1(x1) ⋆ · · · ⋆ fn(xn) =
∏

1≤a<b≤n

exp

(
i

2
θµν ∂

∂xµ
a

∂

∂xν
b

)

f1(x1) · · · fn(xn) . (3.14)
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The noncommutative algebra of Weyl operators Â can be represented on the
algebra of ordinary complex-valued functions by using the associative and noncom-
mutative ⋆-product. Particularly, the commutator of Weyl operators is represented
on the algebra of functions by the Moyal bracket

[f(x), g(x)]⋆ = f(x) ⋆ g(x) − g(x) ⋆ f(x) . (3.15)

The commutation relations of coordinates can be easily calculated to be of the same
form as the corresponding operator relations (3.1)

[xµ, xν ]⋆ = iθµν , (3.16)

since the ⋆-product of coordinates has the simple form

xµ ⋆ xν = xµxν +
i

2
θµν = xνxµ − i

2
θνµ .

Indeed, the noncommutative algebra of functions Aθ, obtained by replacing the
point-wise product of A with the noncommutative ⋆-product (3.13), is isomorphic
to the algebra of Weyl operators Â generated by the noncommutative coordinate
operators (3.1). This relation is often called the Weyl-Moyal correspondence.

The trace of the product of Weyl operators is represented by the integral of the
⋆-product of functions

Tr
(

Ŵ [f1] · · · Ŵ [fn]
)

=

∫

dDx f1(x) ⋆ · · · ⋆ fn(x) . (3.17)

Due to the invariance of the trace under cyclic permutations of the Weyl operators,
also the integral of the ⋆-product of functions is invariant under cyclic permutations
of functions. This implies, in particular,

∫

dDx f(x) ⋆ g(x) =

∫

dDx f(x)g(x) . (3.18)

3.3 The twisted Poincaré symmetry of noncom-

mutative spacetime

3.3.1 Breaking of the Lorentz symmetry

The defining commutation relation of the noncommutative spacetime (3.1) is clearly
not covariant under Lorentz transformations, because the left-hand side of the rela-
tion is a tensor and the right hand-side is a constant. The noncommutative spacetime
does not posses the Lorentz symmetry. Hence, Lorentz invariant theories are not
supported. The noncommutative spacetime, however, is symmetric under transla-
tions.

In four dimensions we can always choose a reference frame where the θ-matrix
in the commutation relations of coordinates (3.1) takes the block-diagonal form

θµν =







0 ϑ1 0 0
−ϑ1 0 0 0
0 0 0 ϑ2

0 0 −ϑ2 0







, (3.19)
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where we can see that for arbitary values ϑi the largest subgroup of the Lorentz
group that conserves the commutation relations of coordinates is SO(1, 1) × SO(2)
[60, 61]. Since both of the group factors are one-dimensional Abelian rotation groups,
we only have one-dimensional irreducible representations. This is a serious problem,
because the quantum and gauge field theories of high energy physics are vitally de-
pendent on the richer representation content of the Poincaré algebra — discussed in
the section 2.2 — including spinor, vector and Lorentz tensor fields. Especially, the
lack of representations with the spin posed a major threat to the usability of non-
commutative field theories. The solution to the problems arising from the breaking
of the Lorentz symmetry is the twisted Poincaré symmetry, a new kind of “quantum
symmetry”, which we will discuss next.

The Lorentz invariance has been verified with high accuracy. In spite of much
effort, no sign of violation of the Lorentz invariance has been observed (for a review
and references, see [62]). The noncommutativity scale ΛNC is defined by

θµν =
1

Λ2
NC

ǫµν , (3.20)

where ǫµν ∼ 1 is assumed. A low energy bound on ΛNC was obtained from clock-
comparison precison tests in [63] to be

ΛNC & 10 TeV ∼ (10−20 m)−1 . (3.21)

A high energy bound on the noncommutativity scale was obtained in [64] by analysing
high energy 2 → 2 processes

ΛNC & 1 TeV . (3.22)

These are only few important examples on the phenomenological research done
around noncommutative physics. If the Lorentz invariance is indeed broken at high
energies (low distances), the twisted Poincaré symmetry may well turn out to be a
very important concept for Planck scale physics. It may as well turn out that the
Lorentz symmetry is truly an exact symmetry, in which case we will have to find a
more elaborate way to implement the nonlocality, and possibly the noncommutativ-
ity, of Planck scale physics.

3.3.2 Mathematics of twisted Hopf algebras

Before diving into the twisted Poincaré symmetry, we shall discuss the mathematical
concepts needed to grasp the idea of this new symmetry. These concepts enable us to
generalize the Poincaré symmetry of ordinary field theories to the noncommutative
setting. For a further introduction on the subject and for a complete treatment of
quantum groups, see the monographs [65, 66].

Universal enveloping algebras

Universal enveloping algebras are nearly as common as Lie algebras in physics, but
we often take them for granted or do not even think about them. The universal
enveloping algebra of a Lie algebra is the most general unital associative algebra
into which the Lie algebra can be embedded.
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Let us consider a Lie algebra generated by Ti, i = 1, 2, . . . , n ,

[Ti, Tj] = icijkTk .

The Lie algebra could for instance be the algebra of angular momentum operators
Ji, a cornerstone of quantum mechanics. We do not usually see the Lie bracket
[Ti, Tj] as a non-associative product of generators Ti, but instead as a commutator

[Ti, Tj] ≡ TiTj − TjTi = icijkTk , (3.23)

where the associative product is TiTj. Thus, we have embedded the Lie algebra into
its universal enveloping algebra that consists of the polynomials in the generators
Ti modulo the commutation relations (3.23) and of the unit element 1. The basis
of the universal enveloping algebra can be chosen to consists of 1 and of the fully
symmetrized products of the generators

T(i1Ti2 · · ·Tin) , n ∈ N .

Since the universal enveloping of a Lie algebra fully captures the structure of the
Lie algebra, the representation theory of the common generators are identical for
the two algebras. In the universal enveloping of a Lie algebra we can define such
polynomial operators as the quadratic Casimir operators, which can be used to
classify the representations of the Lie algebra (for an example, see the discussion on
the Poincaré algebra in section 2.2).

Every Lie algebra has a universal enveloping algebra, which is uniquely deter-
mined up to a unique algebra isomorphism by the Lie algebra. This property of
“universality” is the reason why enveloping algebras of Lie algebras are called uni-
versal. The associativity of universal enveloping algebras enables the introduction
of interesting additional structures and that is what makes universal enveloping
algebras so useful for us.

Hopf algebras and their twists

Unital associative algebras have a natural hidden Hopf algebra structure. A uni-
tal associative algebra can be extended to a bialgebra by introducing a compatible
coalgebra structure.1 A bialgebra can be extended to a Hopf algebra by introduc-
ing an automorphism called the antipode (or coinverse) that is compatible with the
bialgebra. The antipode is related to the fact that every element of a group has its
inverse in the group. Indeed, Hopf algebras can be understood as generalizations of
groups, since they can be used to describe groups and also more general concepts
like quantum groups.

In this study we are interested in the structure of the universal enveloping
algebra of a Lie algebra U as a Hopf algebra and in the function representations of
U on spacetimes. The universal enveloping algebra U consists of a vector space V
over the field C and of the multiplication and unit linear maps

m : V ⊗ V → V ,

η : C → V ,

1It should be stressed that this coalgebra is not a dual of the algebra structure. A bialgebra is
both an algebra and a coalgebra.
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respectively.2 Explicitly the multiplication is usually written

m(X ⊗ Y ) = XY ; X,Y ∈ U .

The multiplication m is associative

m ◦ (1 ⊗ m) = m ◦ (m ⊗ 1)

and the unit map η implies the existence of a unit element 1 in V

m ◦ (1 ⊗ η) = m ◦ (η ⊗ 1) = id (identity map) ⇒ η(α) = α1 .

The bialgebra structure for U is constructed by introducing the coproduct and counit
homomorphisms

∆ : V → V ⊗ V ,

ε : V → C ,

respectively. The coproduct ∆ is coassociative,

(id ⊗ ∆)∆ = (∆ ⊗ id)∆ ,

and the counit ε satisfies

(id ⊗ ε) ◦ ∆ = (ε ⊗ id) ◦ ∆ .

We complete the Hopf algebra by introducing the antipode, an antihomomorphism
that is compatible with the bialgebra structure 3

S : V → V , m ◦ (S ⊗ 1) ◦ ∆ = m ◦ (1 ⊗ S) ◦ ∆ = η ◦ ε .

The natural hidden Hopf algebra structure of U is defined by

∆0(X) = X ⊗ 1 + 1 ⊗ X , ∆0(1) = 1 ⊗ 1 , (3.24)

ε(X) = 0 , ε(1) = 1 , (3.25)

S(X) = −X , S(1) = 1 , (3.26)

for all X ∈ V − {1}. It is easy to see that these maps satisfy all the above re-
quirements. The Hopf algebra U is noncommutative, but cocommutative due to the
symmetry of the coproduct (3.24).

We can deform a cocommutative Hopf algebra like U to a noncocommutative
one by introducing a twist element

F ∈ U ⊗ U

and by redefinig the coproduct of the Hopf algebra with a similarity transformation

∆0(X) −→ ∆t(X) = F∆0(X)F−1 , (3.27)

2Generally the field C could instead be any field.
3Recall that a homomorphism h satisfies h(xy) = h(x)h(y) and that an antihomomorphism a

satisfies a(xy) = a(y)a(x).
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in other words by twisting the coproduct of U . In order to preserve the Hopf algebra
structure, the twist element has to satisfy the twist conditions

F12(∆0 ⊗ id)F = F23(id ⊗ ∆0)F , (3.28a)

(ε ⊗ id)F = 1 = (id ⊗ ε)F , (3.28b)

where F12 = F ⊗ 1 and F23 = 1 ⊗ F . We denote the twist deformed U by Ut. The
twist element does not affect the multiplication m of the algebra Ut and therefore the
commutation relations (3.23) among the generators of U are preserved. This means
that the representation content of Ut is identical with that of U . What is affected by
the twist, is the action of Ut onto the tensor products of its representations, i.e. the
Leibniz rule.

Let A be a commutative associative algebra of functions — consistent with the
coproduct ∆0 — that holds a representation of U . The commutative multiplication
on A is defined by

mA : A⊗A → A , fg = mA(f ⊗ g) . (3.29)

We denote the action of X ∈ U on f ∈ A by X ⊲ f . An element of the universal
enveloping algebra X ∈ U acts on a product of representations f, g ∈ A by the
standard Leibniz rule 4

X ⊲ (fg) = mA(
∆0(X) ⊲ (f ⊗ g)

)
= (X ⊲ f)g + f(X ⊲ g) . (3.30)

When the coproduct of U is twisted, while preserving the action of U on the elements
of A, the multiplication map of the algebra holding the representations has to be
redefined to

mA −→ mA
t = mA ◦ F−1 , (3.31)

where F−1 is the inverse of the twist element F acting on A⊗A. The noncommu-
tative algebra At obtained by replacing the multiplication (3.29) with the deformed
multiplication

mA
t : At ⊗At → At , f ⋆ g = mA

t (f ⊗ g) = mA(
F−1 ⊲ (f ⊗ g)

)
, (3.32)

which is consistent with the twisted coproduct of Ut (3.27), holds the representation
of the twisted universal enveloping algebra Ut. The action ⊲t of the twisted universal
enveloping algebra Ut on the representation f ∈ At is not affected by the twisting

X ⊲t f = X ⊲ f . (3.33)

However, the action of X ∈ Ut on the product of representations f, g ∈ At is altered
by the twist and it is given by the deformed Leibniz rule

X ⊲t (f ⋆ g) = mA
t

(
∆t(X) ⊲t (f ⊗ g)

)
. (3.34)

Lastly we note that the above argument can be reversed: If we deform an algebra
A holding a representation of U by redefining the multiplication as in (3.32), then
we have to consistently twist the coproduct of U by (3.27).

4The action of X⊗Y ∈ U⊗U on f⊗g ∈ A1⊗A2 is defined: (X⊗Y )⊲(f⊗g) = (X ⊲f)⊗(Y ⊲g).
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Example of a twist Consider a Lie group G — a smooth manifold — and a set
of vector fields {Xi}m

i=1 on G that commute with each other. The element

F = eσijXi⊗Xi ≡ 1 ⊗ 1 +
∞∑

n=1

1

n!
(σijXi ⊗ Xi)

n ∈ U(g) ⊗ U(g) , (3.35)

where σij is an arbitary constant matrix and g is the Lie algebra of G, satisfies the
twist conditions (3.28)

F12(∆0 ⊗ id)F = eσij(Xi⊗Xj⊗1+Xi⊗1⊗Xj+1⊗Xi⊗Xj) = F23(id ⊗ ∆0)F (3.36)

and the second one is trivially true due to the counit (3.25) and Xi 6= 1. Therefore
(3.35) is a twist for U(g).

3.3.3 Twisting the Poincaré symmetry

For some time the problem of insufficient representation content of noncommuta-
tive field theories, due to the breaking of the Lorentz symmetry, was often ignored
and studies on noncommutative quantum field theories were made by using the full
representation content of the Poincaré algebra. These studies include the impor-
tant discussions on unitarity [67] and causality [68],[69] and on noncommutative
counterparts of some specific models like QED [70] and SM [71]. One could try to
justify this approach by considering the spacetime noncommutativity as a pertuba-
tion of commutative QFT, but this would be far too limited, since it rules out all
non-pertubative considerations.

An elegant solution to the problem was discovered by M. Chaichian et al. [43,
44] in the form of a twisted Poincaré symmetry. They introduced a twist deformation
of the universal enveloping algebra U(P) of the Poincaré algebra P that provides a
new symmetry that is respected by the noncommutative theory obtained by Weyl
quantization on the noncommutative spacetime (3.1). Since the twist deformation
does not alter the multiplication in U(P), the commutation relations among its
generators (2.2) are preserved. Thus the representation content of the twisted algebra
Ut(P) is the same as the representation content of the usual Poincaré algebra. This
legitimates the usage of the familiar representations of the Poincaré symmetry in
the context of noncommutative field theories.

The Poincaré algebra P (2.2) has a commutative subalgebra of translation gen-
erators Pµ that can be used to construct the Abelian twist element

F = e
i
2
θµνPµ⊗Pν , (3.37)

where θµν is a real constant antisymmetric matrix. This twist element is a special
case of the twist (3.35), so it clearly satisfies the twist conditions (3.28) and thus
it can be used to consistently twist the coproduct (3.24) of the Hopf algebra U(P).
Explicitly, the twisted coproduct (3.27) for X ∈ P is written

∆t(X) = e
i
2
θµνPµ⊗Pν (X ⊗ 1 + 1 ⊗ X)e−

i
2
θµνPµ⊗Pν .
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The coproduct of the translation generators Pµ is not affected by the twist (3.37)
due to commutativity of translations (2.2a),

∆t(Pµ) = ∆0(Pµ) = Pµ ⊗ 1 + 1 ⊗ Pµ . (3.38)

The coproduct of the Lorentz generators Mµν is altered by the twist, because of the
non-vanishing commutation relations (2.2b). The coproduct

∆t(Mµν) = Ad e
i
2
θρσPρ⊗Pσ∆0(Mµν)

can be evaluted by using (2.2b) and the operator formula

Ad eBC = eBCe−B =
∞∑

n=0

1

n!
[B, [B, . . . [
︸ ︷︷ ︸

n

B,C]] =
∞∑

n=0

(Ad B)n

n!
C .

The result is

∆t(Mµν) = ∆0(Mµν) +
i

2
θρσ

(
[Pρ,Mµν ] ⊗ Pσ + Pρ ⊗ [Pσ,Mµν ]

)

= Mµν ⊗ 1 + 1 ⊗ Mµν −
1

2
θρσ

(
(ηρµPν − ηρνPµ) ⊗ Pσ + Pρ ⊗ (ησµPν − ησνPµ)

)
.

(3.39)

Let us next consider the commutative algebra A of smooth complex-valued
functions on Minkowski spacetime, with the usual commutative point-wise multipli-
cation

m
(
f(x) ⊗ g(x)

)
= f(x)g(x) . (3.40)

In A the representation of U(P) is generated by the standard realization of the
Poincaré algebra (2.4)

Pµ ⊲ f(x) = i∂µf(x) (3.41a)

Mµν ⊲ f(x) = i(xµ∂ν − xν∂µ)f(x) , (3.41b)

that acts on the coordinates in the standard way: ∂µx
ν = δν

µ. U(P) acts on the
product of representations (3.40) through the standard Leibniz rule (3.30) defined
by the symmetric coproduct (3.24).

When U((P) is twisted with the twist element (3.37), the multiplication of its
reprentations on A has to be redefined according to (3.32). The noncommutative
algebra At of functions that holds the representation of the twisted Poincaré algebra
Ut(P),5 has the noncommutative multiplication rule

mt

(
f(x) ⊗ g(x)

)
= m

(

F−1 ⊲
(
f(x) ⊗ g(x)

))

(3.42)

= m
(

e−
i
2
θµνPµ⊗Pν ⊲

(
f(x) ⊗ g(x)

))

= m
(

e
i
2
θµν∂µ⊗∂ν

(
f(x) ⊗ g(x)

))

= f(x) ⋆ g(x) .

5A more verbose name for Ut(P) would be the twist deformed universal enveloping algebra of

the Poincaré algebra.
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The comparison of the Moyal ⋆-product (3.13) and of the multiplication mt on At

(3.42) reveals they are in fact the same noncommutative product of functions. Thus
the algebra At holding the representation of Ut(P) is indeed the same algebra of
functions Aθ that was found to be isomorphic to the algebra of Weyl operators Â
generated by the noncommutative coordinate operators (3.1) (see subsection 3.2.2),
At = Aθ

∼= Â. As an example, we calculate the coordinate commutation relations
on At ,

[xµ, xν ]⋆ = mt(x
µ ⊗ xν) − mt(x

ν ⊗ xµ) =
i

2
(θµν − θνµ) = iθµν , (3.43)

which are of course identical with the Moyal-brackets of coordinates (3.16). Now it
is clear that building quantum field theory through Weyl quantization with noncom-
mutative coordinate operators is equivalent to the procedure of twisting the Poincaré
algebra and redefining the multiplication of its representations.

According to (3.33), the action of the twisted Poincaré algebra Ut(P) on its
representation in At is not affected by the twist, but the action on the product of
representations is given by the deformed Leibniz rule (3.34). Let us calculate the
Leibniz rules for the generators Pµ, Mµν of Ut(P) by using their coproducts (3.38)
and (3.39). Since the coproduct of Pµ is not deformed, it has the standard Leibniz
rule

Pµ ⊲t

(
f(x) ⋆ g(x)

)
=

(
Pµ ⊲t f(x)

)
⋆ g(x) + f(x) ⋆

(
Pµ ⊲t g(x)

)
. (3.44)

For the generators Mµν we obtain the deformed Leibniz rule

Mµν ⊲t

(
f(x) ⋆ g(x)

)
= Mµν ⊲t f(x) ⋆ g(x) + f(x) ⋆ Mµν ⊲t g(x) (3.45)

− 1

2
θρσ

(
(ηρµPν − ηρνPµ) ⊲t f(x) ⋆ Pσ ⊲t g(x)

+ Pρ ⊲t f(x) ⋆ (ησµPν − ησµPν) ⊲t g(x)
)

.

Next we show that a noncommutative quantum field theory built through the
Weyl-Moyal correspondence is invariant under the twisted Poincaré algebra. We
do this by first checking that the commutation relations of coordinates (3.43) —
equivalently (3.1) — are invariant under the twisted Poincaré transformations and
then by showing that functions on the noncommutative spacetime are covariant
under the twisted Poincaré algebra.

Invariance of [xµ, xν ]⋆ under translations is obvious due to the invariance under
ordinary translations and the standard Leibniz rule (3.44). According to (3.45) and
(3.41), Mµν ’s action on the ⋆-product of coordinates is

Mµν ⊲t (xρ ⋆ xσ) = i(ηµτδ
ρ
ν − ηντδ

ρ
µ)xτ ⋆ xσ + i(ηµτδ

σ
ν − ηντδ

σ
µ)xρ ⋆ xτ (3.46)

+
1

2
θτυ

(
(ηµτδ

ρ
ν − ηντδ

ρ
µ)δσ

υ − (ηµτδ
σ
ν − ηντδ

σ
µ)δρ

υ

)
,

where the last term is antisymmetric in ρ ↔ σ. Thus the coordinate commutators
are invariant under the action of Mµν

Mµν ⊲t [xρ, xσ]⋆ = i
(
ηµτδ

ρ
ν − ηντδ

ρ
µ

)(
[xτ , xσ]⋆ − iθτσ

)

− i
(
ηµτδ

σ
ν − ηντδ

σ
µ

)(
[xτ , xρ]⋆ − iθτρ

)

= 0
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i.e. invariant under twisted Lorentz transformations. This is consistent with the θµν

being an invariant antisymmetric tensor

Pµ ⊲t θµν = 0 , Mµν ⊲t θµν = 0 .

So, the commutation relations (3.43) are invariant under twisted Poincaré trans-
formations. Note that (3.46) also implies the twisted-Poincaré invariance of the
Minkowski length x2 ≡ xµ ⋆ xµ = xµx

µ

Mµν ⊲t x2 = ηρσMµν ⊲t (xρ ⋆ xσ) = 0 .

Because of the invariant commutation relations (3.43)

[xµ, xν ]⋆ = 2x[µ ⋆ xν] = 0 ,

every tensorial object of the form

xµ1 ⋆ xµ2 ⋆ · · · ⋆ xµn

can be written as a sum of symmetrized tensors

x(µ1 ⋆ xµ2 ⋆ · · · ⋆ xµm)

with equal or lower ranks m ≤ n, which means that the basis of the representation
algebra At is symmetric. Hence, it is sufficient to show that symmetrized tensors
on At are covariant under Ut(P). Consider the transformation behaviour of the
symmetric rank two tensor

fρσ
⋆ = x(ρ ⋆ xσ) ≡ 1

2

(
xρ ⋆ xσ + xσ ⋆ xρ

)
.

The twisted Lorentz transformations of this tensor are directly obtained from (3.46)

Mµν ⊲t fρσ
⋆ = i(ηµτδ

ρ
ν − ηντδ

ρ
µ)f τσ

⋆ + i(ηµτδ
σ
ν − ηντδ

σ
µ)fρτ

⋆ .

This is the same tensor transformation rule obtained for the corresponding symmet-
ric tensor fµν = x(µxν) = xµxν in the commutative theory,

Mµν ⊲ fρσ = i(ηµτδ
ρ
ν − ηντδ

ρ
µ)f τσ + i(ηµτδ

σ
ν − ηντδ

σ
µ)fρτ .

Thus, fρσ
⋆ is twisted-Poincaré covariant. Generalization to arbitary symmetric ten-

sors x(µ1 ⋆ xµ2 ⋆ · · · ⋆ xµn) follows by induction.
This implies that the noncommutative quantum field theories built through

Weyl quantization and Moyal ⋆-product possess the twisted Poincaré symmetry. Fi-
nally we can conclude that, if in commutative theories, relativistic invariance means
invariance under the Poincaré transformations, then in noncommutative theories rel-
ativistic invariance means invariance under the twisted Poincaré transformations.
This also enables us to adopt the point of view, where the noncommutativity of
coordinates (3.1) is an implication of the twisted Poincaré symmetry of spacetime.
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The generalization of the above discussion for all physically interesting repre-
sentations of the Poincaré algebra has not yet been achieved. Because the Poincaré
algebra is twisted, the definition of the concept of field is more involved on noncom-
mutative space than on commutative space. In the commutative setting, Minkowski
space is realized as the quotient of the Poincaré group by the Lorentz group, and a
classical field is a section of a vector bundle induced by some representation of the
Lorentz group. However, the universal enveloping algebra of the Lorentz Lie algebra
is not a Hopf subalgebra of the twisted Poincaré algebra, so that there exists no
noncommutative analogue of the Minkowski space. For a proper discussion on this
problem, see [72].

3.4 Basic results in noncommutative QFT

In this section we briefly mention some important general aspects and results in
noncommutative QFT. The subjects discussed are perturbation theory and UV/IR
mixing, unitarity, causality and the spin-statistics relation.

3.4.1 Example: Noncommutative scalar field λφ4-theory

Noncommutative action

As a concrete example, let us consider the QFT of the massive real-valued scalar
field φ with the λφ4-interaction defined on the noncommutative version of four-
dimensional Minkowski spacetime.6 The action of the theory is written in terms of
the Weyl operator Ŵ [φ] associated with the field φ(x) (Weyl symbol)

S[φ] = Tr

(
1

2

[
∂̂µ, Ŵ [φ]

]2 − m2

2
Ŵ [φ]2 − λ

4!
Ŵ [φ]4

)

. (3.47)

The path integral measure is chosen to be the usual Feynman measure for φ(x). We
can write the action as an integral over spacetime by using the formulae (3.9) and
(3.17). By using the property (3.17), we can replace the single ⋆-products with the
ordinary point-wise product under the spacetime integral. So we have

S[φ] =

∫

d4x

(
1

2
∂µφ(x)∂µφ(x) − m2

2
φ(x)2 − λ

4!
φ(x) ⋆ φ(x) ⋆ φ(x) ⋆ φ(x)

)

.

(3.48)
As we can see from the action, the free theory of the field φ is identical with the corre-
sponding commutative theory. Only the higher-than-second-order interaction term
with multiple ⋆-products separates the action (3.48) from the more familiar action
of commutative fields, but this “small” difference has some remarkable implications.

Noncommutative pertubation theory

The fact that the free noncommutative scalar field theory is identical with ordinary
commutative theory means especially that the bare Feynman propagator for the

6For the commutative counterpart of this theory, see for example the books [49, 73].
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field φ is the same as in the commutative case

DF(x − y) =

∫
dDk

(2π)D
i∆F(k)e−ik·(x−y) ; i∆F(k) ≡ i

k2 − m2 + iǫ
.

The new features arise from the interaction vertex of four fields. The interaction
can be written

Tr
(

Ŵ [φ]4
)

=

∫
[

4∏

i=1

dDki

(2π)D
φ̃a(ki)

]

(2π)DδD

(
4∑

i=1

ki

)

V (k1, k2, k3, k4) ,

where the momentum space interaction vertex is the phase factor

V (k1, k2, k3, k4) =
∏

1≤i<j≤4

e−
i
2
ki×kj = e−

i
2

P

i<j ki×kj , (3.49)

and the antisymmetric product of momenta is denoted by

ki × kj = kiµθ
µνkjν .

Hence, instead of the ordinary momentum space Feynman rule −iλ, we now have the
Feynman rule −iλV (k1, k2, k3, k4) for the λφ4-interaction vertex. The phase factor
(3.49) describes the nonlocality of the interaction and the fact that the order of the
fields in a vertex is significant due to the noncommutativity of the fields.

The phase factor of Feynman graphs and crossing propagators The total
phase factor received by a Feynman graph due to the spacetime noncommutativity
depends crucially on the order the lines in the graph and on whether or not the lines
in the graph cross over each other. The following results for the phase factor are
presented in [74] and reviewed in [57].

Consider a connected Feynman graph with n external lines, which are cyclically
labelled with momenta k1, k2, . . . , kn. If the lines in the Feynman graph do not cross
over each other — i.e. we have a planar graph —, the graph receives the phase
factor

Vplanar(k1, . . . , kn) =
∏

1≤i<j≤n

e−
i
2
ki×kj = e−

i
2

P

i<j ki×kj ,

which is completely independent on the internal structure of the Feynman graph. If
the lines in the Feynman graph do cross over each other — i.e. we have a nonplanar
graph —, the graph receives the phase factor

Vnonplanar(k1, . . . , kn) = Vplanar(k1, . . . , kn)
∏

i,j

e−
i
2
Cijki×kj (3.50)

= e−
i
2

P

i<j ki×kj− i
2

P

i,j Cijki×kj ,

where Cij is the intersection matrix which counts how many times the line ki (ex-
ternal or internal) crosses over the line kj. If the line ki crosses over the line kj that
is moving to the left (right), then Cij is +1 (−1). If the lines do not cross, Cij is 0.
Since now also the internal lines are taken into a count, the phase factor depends on
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the internal structure of the nonplanar Feynman graph. Especially in the nonpla-
nar case the θµν dependence of the phase factor can be complex. In the nonplanar
case, the rapidly oscillating phase factor can provide an effective ultraviolet (UV)

cutoff Λeff ∼ ‖θ‖−
1

2 that makes an otherwise ultraviolet divergent graph converge.
In planar graphs the phase factor does not improve the UV behaviour of the graph.

3.4.2 UV/IR mixing

The most novel feature of noncommutative pertubation theory is the interesting mix-
ing of perturbative high energy and low energy dynamics, named the UV/IR mixing.
It was first discovered in noncommutative scalar field theory [57] and similar results
were also independently reached in noncommutative quantum electrodynamics [70].

The UV/IR mixing of noncommutative field theories originates from the addi-
tional phase factor of nonplanar Feynman graphs — like (3.50) in the above example
— when conventional methods are used to regulate the graphs. In [57] it was discov-
ered that in the noncommutative Euclidean φ4-theory, the effective UV cutoff Λeff

arising from the one loop nonplanar graph in mass renormalization is of the form

Λ2
eff =

1

Λ−2 + p ◦ p
; p ◦ p ≡ pµ(θµν)2pν ,

where the parameter Λ regulates the integrals of the one loop graphs and p is the
external momentum. In the limit Λ → ∞ the effective UV cutoff is finite

Λ2
eff =

1

p ◦ p

and so is the nonplanar graph. If we now take p → 0 (or θ → 0) the nonplanar graph
diverges quadratically along with the effective UV cutoff Λeff → ∞ in a way that
is not encountered in the commutative theory. Although this is an IR divergence
(p → 0), it is the result of high energy virtual processes. If the UV (Λ → ∞) and
the IR (p → 0) limits are taken in the opposite order, we have Λeff = Λ → ∞ and
so the one loop graph is divergent in the same way as in the commutative theory.
This kind of noncommutativity of UV and IR limits is not found in commutative
field theories.

3.4.3 Unitarity and causality

Unitarity and causality are essential ingriedients of local QFT. It is hard to imagine
a well-defined physical field theory without them and therefore we will reject theories
that are not both unitary and causal.

The noncommutativity of time and space θ0i 6= 0 violates both the unitarity
[67] and the causality [68] of noncommutative field theories.7 Noncommutative field
theories with space-space noncommutativity θ0i = 0 have been concluded to be both

7Theories with noncommutative time and space coordinates θ0i 6= 0 have many names. They
are called “time-space noncommutative” or “space/time noncommutative” or “space-time noncom-
mutative” or “time-like noncommutative”.
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unitary and causal [67, 68] and the noncommutative field theories obtained as low
energy limits of string theory [24] are precisely of this type.

In the further study of unitarity [75], it was discovered that only unitary non-
commutative field theories can be obtained as decoupled field theory limits of string
theory. Non-unitary field theories cannot be obtained from string theory because for
them the massive open string modes do not decouple. It was also found that field
theories with light-like noncommutativity θµνθµν = 0 (i.e. θ0i = −θ1i) are unitary
after all.

In theories with time-space noncommutativity θ0i 6= 0, causality is violated
on both micro- and macroscopic levels [68, 60]. Noncommutativity of the time
coordinate makes physical events nonlocal with respect to time, which means that
the value of a field at given time t depends on both the value of the field before
and after t. Therefore the effect, “the value of the field right now”, can precede the
cause, “the value of the field in future”. However, nonlocality in space coordinates
does not lead to acausal effects [68].

For a physical interpretation of the violation of unitarity in theories with time-
space noncommutativity and for a quantitative discussion of unitarity and causality
in such theories, see [60].

For these reasons, the space-space noncommutative field theories (θ0i = 0) —
and posssibly the light-like theories (θµνθµν = 0) — are considered to be the only
valid choices for physical models.

3.4.4 Spin-statistics relation and CPT theorem

The spin-statistics relation and the CPT theorem are fundamental results in lo-
cal QFT and therefore we would very much like to preserve these results in the
noncommutative theory. Fortunately, it has been convincingly argued that both the
spin-statistics relation and the CPT theorem stand steady in noncommutative QFT.

Pauli’s spin-statistics relation, stating that integer spin particles have bosonic
(symmetric) statistics and half-integer spin particles have fermionic (antisymmetric)
statistics, was proved to hold in noncommutative QFT [69] by using the Lagrangian
formalism according to Pauli and revisited in [76] after the discovery of the twisted
Poincaré symmetry. The same result was reached through axiomatic approach in
[61, 77, 78]. The only remaining question, does the spin-statistics relation hold
in light-like noncommutative θµνθµν = 0 theories, received a positive answer in
[79], where it was shown that the twisted Poincaré symmetry does not experience
nontrivial statistics, regardless of the form of the noncommutativity.

The CPT theorem has been proved to hold in noncommutative field theory, in
spite of the nonlocality and the violation of the Lorentz symmetry, even though the
individual charge conjugation (C) and time reversal (T) symmetries, and also the
parity (P) in some cases, are broken [80]. In [69], the CPT theorem of noncommu-
tative field theory was proved within the general Hamiltonian framework. This was
followed by the proof through the axiomatic approach [61, 77].



Chapter 4

Noncommutative gauge theory

Gauge theories are vitally important when building realistical physical models. So,
in order to get any real results out of the noncommutative field theory, the notion of
gauge symmetry had to be generalized to the noncommutative setting. Since gauge
symmetries are essentially local, generalizing them to the nonlocal noncommutative
spacetime is highly nontrivial.

There are two methods to construct gauge field theories in noncommutative
spacetime. First uses the Seiberg-Witten map, obtained from string theory [24],
which maps a noncommutative gauge theory to a commutative gauge theory. In
the second, one uses a noncommutative generalization of a gauge group and the
⋆-product to construct a gauge theory in the framework of noncommutative field
theory. Both methods have been further developed and they offer some flexibility
in their approaches. We will first present a short introduction to the idea of the
Seiberg-Witten maps and to a noncommutative SM based on them, and then move
to discuss the field theoretical approach.

In this chapter the noncommutative spacetime is considered to be of the same
type as in the chapter 3, i.e. to have noncommutative coordinates that satisfy (3.1).

For future use the Moyal ⋆-product and the Moyal bracket (see section 3.2.2)
are naturally generalized for the algebra of matrix-valued functions Mn×n ⊗Aθ

(
f(x) ⋆ g(y)

)

ij
= f(x)ik ⋆ g(y)kj . (4.1)

The Hermitean conjugation for the algebra Mn×n ⊗Aθ can be defined by the usual
Hermitean conjugation of matrices

(
f(x)†

)

ij
=

(
f(x)ji

)∗
and by the definition stat-

ing how the ⋆-product behaves under the operation

(
f(x) ⋆ g(x)

)†
= g(x)† ⋆ f(x)† . (4.2)

4.1 The Seiberg-Witten map method

When one in the open string theory in a constant antisymmetric background field,
with string end points constrained on D-branes, performs quantization by using the
Pauli-Villars or the point-splitting reqularization, one obtains a commutative or a
noncommutative gauge theory, respectively. The Seiberg-Witten maps provide a



52 Noncommutative gauge theory

correspondence between these two gauge theories, which should be equivalent, since
a well-defined quantum theory does not depend on the regularization technique.

The method has been extended to enable the use of any commutative gauge
group in [81, 82, 83, 84] (and in some earlier works referenced in these work.). In
this approach it is argued that, because most of the gauge theories on noncom-
mutative spaces cannot be formulated with Lie algebra valued infinitesimal gauge
transformations, the infinitesimal gauge transformations should instead be taken to
be enveloping algebra valued. The idea is to bypass the difficulties in constructing
noncommutative gauge groups — we will discuss these problems later — by letting
the generators of gauge transformations and the gauge fields to take values in the
universal enveloping of the gauge algebra. The main problem with this approach
is that enveloping algebras are infinite dimensional, which means that naively the
numbers of both gauge transformation parameters and the gauge fields are infinite.
The gauge transformation parameters and the gauge fields can, however, be defined
to be functions of the corresponding Lie algebra valued objects — the functions
being obtained through the Seiberg-Witten maps —, so that their numbers are the
same as in the corresponding commutative gauge theories.

Let us consider the noncommutative gauge theory of a non-Abelian gauge al-
gebra, say the algebra su(n), with the matter fields ψ̂ and the gauge fields Âµ. The
infinitesimal local gauge transformations are

δ̂λ̂ψ̂ = iρψ(λ̂) ⋆ ψ̂ , (4.3)

δ̂λ̂Âµ = ∂µλ̂ + i
[
λ̂, Âµ

]

⋆
, (4.4)

where the noncommutative infinitesimal gauge transformation parameter λ̂ is val-
ued in the universal enveloping of the gauge algebra U

(
su(n)

)
and ρψ is the matter

representation of U
(
su(n)

)
. It should be noted that there is no gauge symmetry

group, since this gauge symmetry is only defined for infinitesimal gauge transfor-
mations.1 Generally, the gauge transformation parameter λ̂ cannot be Lie algebra
valued, because the commutator of two Lie algebra valued parameters λ̂ = λ̂iTi and
σ̂ = σ̂iTi does not close in the Lie algebra

[λ̂, σ̂] =
1

2
{λ̂i, σ̂j}⋆ [Ti, Tj]

︸ ︷︷ ︸

icijkTk

+
1

2
[λ̂i, σ̂j]⋆
︸ ︷︷ ︸

6=0

{Ti, Tj} . (4.5)

Therefore, we have to use fields and gauge transformations that are U
(
su(n)

)
-valued.

The gauge fields Âµ have to be in the adjoint representation. The gauge covariant
derivative and the field strength are introduced by

D̂µψ̂ = ∂µψ̂ − iρψ(Âµ) ⋆ ψ̂ , (4.6)

F̂µν = ∂µÂν − ∂νÂµ − i
[
Âµ, Âν

]

⋆
, (4.7)

with the gauge transformations

δ̂λ̂D̂µψ̂ = iρψ(λ̂) ⋆ D̂µψ̂ , (4.8)

δ̂λ̂F̂µν = i
[
λ̂, F̂µν

]

⋆
. (4.9)

1For a U(L) there is nothing like the exponential map that maps a Lie algebra L to a Lie group.
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The gauge invariant action for the gauge fields is defined by

S[Â, ∂Â] = −1

4

∫

dDx Tr
(
F̂µν ⋆ F̂ µν

)
(4.10)

and the action for the matter fields is constructed by using the covariant derivative.
For example, the action of a noncommutative fermion is written as

S[ψ̂, ∂ψ̂, Â] =

∫

dDx
¯̂
ψ ⋆ (γµDµ − m)ψ̂ . (4.11)

The corresponding concepts for the commutative su(n) gauge theory are defined
similarly, the differences being the ordinary point-wise product and the Lie algebra
valued fields and gauge transformation parameters. We denote the commutative
concepts without the hats: ψ, Aµ, λ etc.

Since the gauge invariance of the commutative gauge theory should map to the
gauge invariance of the noncommutative gauge theory, the gauge transformations in
the latter theory are induced by the transformations of the former theory:

Âµ[A] + δ̂λ̂[λ,A]Âµ[A] = Âµ[A + δλA] , (4.12)

ψ̂[ψ,A] + δ̂λ̂[λ,A]ψ̂[ψ,A] = ψ̂[ψ + δλψ,A + δλA] . (4.13)

In other words, if the commutative fields Aµ and ψ are related to the fields AΛ
µ and ψΛ

through the gauge transformation Λ = eiλ generated by λ, then the noncommutative
fields Âµ[A] and ψ̂[ψ,A] are related to the fields Âµ[AΛ] and ψ̂[ψΛ, AΛ] through the

gauge transformation Λ̂ = eiλ̂[λ,A] generated by λ̂[λ,A]. These gauge equivalence
relations can be solved pertubatively in θ in order to obtain the Seiberg-Witten
maps. In the leading order in θ they can be written

Âµ[A] = Aµ +
1

4
θνρ{Aρ, ∂νAµ + Fνµ} + O

(
θ2

)
, (4.14)

ψ̂[ψ,A] = ψ +
1

2
θµνρψ(Aν)∂µψ +

i

8
θµν

[
ρψ(Aµ), ρψ(Aν)

]
ψ + O

(
θ2

)
, (4.15)

λ̂[λ,A] = λ +
1

4
θµν{Aν , ∂µλ} + O

(
θ2

)
. (4.16)

In [85] this approach was used to construct a noncommutative SM based on
the standard gauge algebra su(3) × su(2) × u(1). The noncommutative fields and
gauge parameters of the model are expressed as towers built upon the commutative
fields and gauge parameters that transform under the standard SM gauge group
SU(3)C × SU(2)L × U(1). The result is a minimal noncommutative extension of
SM that has the same number of fields and free coupling constants as SM, and that
gives SM as the zeroth order of the θ expansion. The model introduces a new kind
of mixing or unification of the interactions, since all the gauge fields are combined
to a single master field and its Seiberg-Witten map (4.14) is nonlinear. In the lowest
order in θ the gauge bosons of the group factors do decouple, but because the quarks
carry both SU(3)C and SU(2)L ×U(1) charges, there are vertices where two quarks
couple to both the SU(3)C and the U(1) gauge boson. This implies parity violation
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in QCD. There are also new vertices in the pure gauge sector, namely vertices with
five and six gauge bosons for the gauge groups SU(3)C and SU(2)L. The U(1)
gauge bosons do not self-interact nor do they couple to neutral particles, like the
Higgs boson. This means that neutral and charged currents are affected by the
noncommutativity. The effects may be observable particularly in the neutral decays
of heavy particles like the b and t quarks, and in the CP-violation phase extracted
from the Cabibbo-Kobayashi-Maskawa matrix.

4.2 The field theoretical method

4.2.1 Simple noncommutative gauge groups

In this section we consider local noncommutative gauge groups constructed directly
by replacing the Lie bracket with the Moyal bracket (3.15). There are two main
problems in the construction of noncommutative local groups. One is the fact that
the ⋆-product usually destroys the closure condition of local groups [86, 83, 87].
Second are the restrictions on the representation content of noncommutative local
groups [70, 88].

Let us consider a local Lie group generated by the Lie algebra of generators Ti

[Ti, Tj] = icijkTk . (4.17)

The local group elements eif(x) are parameterized by the Lie algebra valued functions

f(x) = fi(x)Ti . (4.18)

As we already saw while discussing the Seiberg-Witten map method, generally, two
Lie algebra valued parameters f and g do not close in the Lie algebra under the
generalized Moyal bracket

[f, g]⋆ =
i

2
cijk{fi, gj}⋆Tk +

1

2
[fi, gj]⋆{Ti, Tj} , (4.19)

because of the ⋆-product. This is the reason why there are no minimal noncommu-
tative extensions for most groups, e.g. SU(n), SO(n), O(n), Sp(n) and USp(n),
that we are interested in. The group U(n) is a “fortunate” exception. In the defining
representation it is parameterized by anti-Hermitean complex-valued n×n matrices
if and the Moyal bracket of two of these parameters is also anti-Hermitean (f † = f)

(
[if, ig]⋆

)†
= [(ig)†, (if)†]⋆ = [−ig,−if ]⋆ = −[if, ig]⋆ . (4.20)

This implies that we can construct a minimal noncommutative extension of U(n),
which we name U⋆(n). We choose the standard normalization Tr(TiTj) = 1

2
δij for the

basis of the generator algebra u⋆(n). In order to cover all Hermitean n× n matrices
we have to include the unit matrix T0 = 1√

2n
1n×n to the basis of u⋆(n). Now the

elements of u⋆(n),

if(x) = i
n2−1∑

i=0

fi(x)Ti , (4.21)
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can be arbitary anti-Hermitean n × n matrices and the Moyal bracket of two of
them is still anti-Hermitean (4.20). The elements of the group U⋆(n) are star-unitary
operators defined by

(e⋆)if(x) =
∞∑

k=0

ik

k!
f(x) ⋆ · · · ⋆ f(x)
︸ ︷︷ ︸

k

. (4.22)

By star-unitarity we mean that for U ∈ U⋆(n) ,

U † = U−1 and U−1 ⋆ U = U ⋆ U−1 = 1 . (4.23)

The adjoint of the group element (4.22) is easy to obtain,

(
(e⋆)if(x)

)†
= (e⋆)(if(x))† = (e⋆)−if(x) .

This construction does not work for SU(n) because the zero trace condition of su(n)
is not preserved by the Moyal bracket.

From the above construction it is evident that only the n×n irreducible repre-
sentation is possible for U⋆(n). If the dimension of an irreducible matrix represen-
tation is N ≥ n, the algebra u⋆(n) for this representation closes in u⋆(N), i.e. in
Hermitean N × N matrices. Thus, if N > n, the representation is reducible and it
cannot be used as a basis for the u⋆(n) gauge fields.

The action of the algebra u⋆(n) on its modules (representations) in Aθ is realized
through the ⋆-product and the primitive coproduct (3.24). Concretely, for the left
u⋆(n) module we have

f ⊲ ψ1 = f ⋆ ψ1 , (4.24)

f ⊲ (ψ1 ⋆ ψ2) = (f ⊲ ψ1) ⋆ ψ2 + ψ1 ⋆ (f ⊲ ψ2) ,

for f ∈ u⋆(n) and ψi ∈ Aθ.

4.2.2 Noncommutative U⋆(n) gauge theory

The gauge fields

The U⋆(n) gauge theory is based on the u⋆(n)-valued gauge fields

Aµ =
n2−1∑

i=0

Ai
µ(x)Ti . (4.25)

We emphasize that for U⋆(n) the gauge fields are necessarily in the n × n matrix
form. The gauge transformations of the gauge fields

Aµ −→ A′
µ = U ⋆ Aµ ⋆ U−1 +

i

g
U ⋆ ∂µU

−1 (4.26)

are generated by the elements U ∈ U⋆(n) in the adjoint representation

U = (e⋆)iλ , λ ∈ u⋆(n) . (4.27)
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The field strength is defined by

Fµν = ∂µAν − ∂µAµ − ig[Aµ, Aν ]⋆ (4.28)

and it is easy to show that it transforms in the adjoint representation of U⋆(n)

Fµν −→ F ′
µν = U ⋆ Fµν ⋆ U−1 , (4.29)

i.e. the field strength is covariant under the gauge transformations. The infinitesimal
gauge transformations are written in the familiar form

δAµ = ∂µλ + i[λ,Aµ]⋆ , (4.30)

δFµν = i[λ, Fµν ]⋆ . (4.31)

Combined integration over spacetime and matrix trace provides the trace operation
for the noncommutative gauge fields (see the section 3.2). The gauge invariant action
for the gauge fields can be defined by

SG[A, ∂A] = −1

4

∫

dDx Tr
(
Fµν ⋆ F µν

)
. (4.32)

Even the U⋆(1) gauge theory — unlike the commutative U(1) theory — is self-
interacting due to the Moyal bracket of the gauge fields in the field strength (4.28).

The matter fields

Since only the n×n representation is available for U⋆(n), the matter fields have to live
either in the fundamental representation ψ or in the anti-fundamental representation
χ or in the adjoint representation φ. The gauge transformations for these matter
field repesentations are

ψ −→ ψ′ = U ⋆ ψ , (4.33a)

χ −→ χ′ = χ ⋆ U−1 , (4.33b)

φ −→ φ′ = U ⋆ φ ⋆ U−1 , (4.33c)

where U is given by (4.27). The corresponding covariant derivatives for the matter
field representations are given by

Dµψ = ∂µψ − igAµ ⋆ ψ , (4.34a)

Dµχ = ∂µχ + igχ ⋆ Aµ , (4.34b)

Dµφ = ∂µφ − ig[Aµ, φ]⋆ , (4.34c)

where g is the gauge coupling constant. The gauge invariant action for the matter
fields is constructed as usual by using the covariant derivatives instead of the partial
derivatives. As an example, the noncommutative extension of the action for the
fermionic Dirac field ψ with the mass m is written as

SM[ψ̄, ψ, ∂ψ,A] =

∫

dDx ψ̄ ⋆ (iγµDµ − m)ψ (4.35)

=

∫

dDx
(
ψ̄ ⋆ iγµ∂µψ − mψ̄ ⋆ ψ + gψ̄ ⋆ γµAµ ⋆ ψ

)
.
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Adding the action of the gauge fields gives us the action of the U⋆(n) gauge theory

S = SG + SM (4.36)

=

∫

dDx

(

−1

4
Tr

(
Fµν ⋆ F µν

)
+ ψ̄ ⋆ iγµ∂µψ − mψ̄ ⋆ ψ + gψ̄ ⋆ γµAµ ⋆ ψ

)

.

The result (3.18) can be used in the terms with a single ⋆-product.
The restrictions on the representations of the matter fields (4.33),(4.34) im-

ply that the U⋆(1) gauge theory exhibits charge quantization [70]. There are only
three possible U⋆(1) charges for the matter fields: +1 for ψ, −1 for χ and zero for
φ. Though the φ field has no charge, all the matter fields have a dipole moment
[89, 90]. This charge quantization is problematic, because in a noncommutative
version of SM we should be able to have particles with both integer and fractional
hypercharges: −1,−2 for electrons and neutrinos, and 1

3
, 4

3
,−2

3
for quarks and 1 for

Higgs. A similar, though less problematic, charge quantization appears in ordinary
non-Abelian semi-simple gauge theories, where the charge for a matter field is fixed
by choosing the representation for the field.

The no-go theorem In physical models we need to consider gauge groups with
several simple factors. Let G1 and G2 be two local gauge groups. The gauge group
G = G1 × G2 is defined by the relations

g = g1 × g2 , h = h1 × h2 , g, h ∈ G , gi, hi ∈ Gi ,

g · h = (g1 × g2) · (h1 × h2) ≡ (g1 · h1) × (g2 · h2) , (4.37)

where · is the appropriate group multiplication for each group. If we now take the
groups to be the noncommutative ones, G1 = U⋆(n) and G2 = U⋆(m), we see that
because of the ⋆-product we cannot re-arrange the elements of the subgroups as
in (4.37). Therefore the matter fields cannot be in the fundamental representation
of both U⋆(n) and U⋆(m). However, there is one possibility left. The matter field
Ψ can be in the fundamental representation of one group, say U⋆(n), and in the
anti-fundamental representation of the other group

Ψ −→ Ψ′ = U ⋆ Ψ ⋆ V −1 ; U ∈ U⋆(n), V ∈ U⋆(m) . (4.38)

In the general case the gauge group consists of N factors G =
∏N

i=1 U⋆(ni). The
matter fields can at most be charged under two of the U⋆(ni) factors and they have
to be singlets under the rest of them. This is a strong constraint on the possible
models.

4.2.3 Noncommutative standard model

Since the SU(n) factors in the gauge group GSM ≡ SU(3)C × SU(2)L × U(1)Y of
the usual SM do not have simple noncommutative extensions, the SM cannot be
generalized to noncommutative spacetime just by replacing the gauge group with a
noncommutative one. Instead, we have to use a higher rank gauge group that has
GSM as its subgroup. At low energies, we should of course recover the usual SM.
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The minimal noncommutative gauge group for the noncommutative standard
model (NCSM) is GSM ≡ U⋆(3) × U⋆(2) × U⋆(1), which contains GSM and has two
additional U(1) factors. Thus the minimal gauge group of NCSM introduces two
extra U(1) gauge fields compared to the usual gauge group of SM. In order to recover
SM at low energies, the two extra gauge bosons should be considerably heavier than
the massive SM gauge bosons, the weak gauge bosons mZ ∼ mW ∼ 100 GeV.

The first problem in constructing NCSM is the quantization of U⋆(1) charges,
as we already mentioned. The restrictions placed by the no-go theorem on the
representations of matter fields are another challenge for building NCSM. Since SM
quarks are charged under all the three factors of the gauge group GSM, the no-
go theorem has to be evaded somehow. Both of these problems can be solved by
spontaneously breaking the NCSM gauge group GNCSM down to GSM.

In [71] NCSM was constructed by using the gauge group GNCSM. The two extra
U(1) symmeties were reduced through the Higgs mechanism, which needs to be ran
twice. The two fields used for this reduction were named the Higgsac fields — in
order to distinguish them from the usual Higgs doublet that is used for spontaneous
breaking of the electroweak symmetry, giving the masses to the SM particles — and
they were taken to be in the trace-U(1) part representation of U(n). Unfortunately
these Higgsac fields are not representations of the noncommutative gauge group
U⋆(n). Thus the symmetry breaking mechanism of [71] is not gauge invariant and
therefore not spontaneous, which leads to the violation of unitarity. The model
also contains gauge anomalies related to the extra trace-U(1) factors in GNCSM.
In [91], the gauge group reduction U⋆(n) → SU(n) mechanism was redefined in a
gauge invariant way by using half infinite Wilson lines, providing a spontaneous
breaking of noncommutative U⋆(n) gauge theories down to SU(n) gauge theories.
The noncommutative SM built with the new Higgsac fields is free of gauge anomalies,
when a pair of U⋆(2) doublet lepton fields is introduced to cancel the chiral anomalies
arising from the extra gauge fields [91].

As anticipated, NCSM has several new features beyond the usual SM. The most
important achievement of the model is that the no-go theorem together with the
Higgsac mechanism uniquely defines the weak hypercharges (consequently, also the
electric charges) of all the SM particles to their observed values. The hypercharge
is the linear combination of the generators of the trace-U(1) subgroups of the U⋆(n)
factors of GNCSM

Y = −2

3
T 0

U⋆(3) − T 0
U⋆(2) − 2T 0

U⋆(1) . (4.39)

Since in QED the values of electric charges have to be introduced by hand, this
reduces the number of free parameters needed in NCSM compared to SM.2

NCSM contains two new massive gauge bosons named W 0 and G0. These gauge
bosons contribute to the Z gauge boson mass eigenstate, although the contribution

is suppressed by
(

mZ

m
W0

)2
. A lower bound on the masses of the new gauge bosons

can be found by comparing the quantum corrections on the parameter

ρ ≡
( mZ

mW

)2

cos2 θ0
W

2The noncommutativity parameters θµν naturally increase the number of parameters.
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to the precision experiments used to test the same parameter in SM. The result is

mW 0 ,mG0 & 25mZ ≈ 2.3 TeV . (4.40)

Below these high energies the gauge bosons decouple from the particle spectrum and
the same may be the case for the extra anomaly cancelling leptons.

The neutrino has a dipole moment interaction vertex with the photon, just like
all other fermions in NCSM. This interaction can be used to calculate a lower bound
on the noncommutativity scale,

ΛNC & 1 TeV , (4.41)

based on astrophysical observations. This is consistent with the lower bounds men-
tioned in the subsection 3.3.1.

NCSM also exhibits the inherent CP violation of noncommutative QFT in both
lepton and quark sectors.

Lastly we note that so far the NCSM has primarily been considered at the
classical level and in the leading order in the noncommutativity parameter θ. Hence,
all the features and the final faith of the model are still open questions. However,
the Higgsac mechanism in one form or another will most probably continue to play
an important role in the noncommutative gauge theories based on the gauge groups
U⋆(n).

4.2.4 Noncommutative orthogonal and sympletic gauge groups

The constraint to use only the U⋆(n) gauge groups for noncommutative gauge theo-
ries is so restricting that the search for alternatives has received attention. We have
already seen that enveloping algebra valued gauge transformations can be used, but
how about Lie algebra valued, are we really stuck with u⋆(n) for good?

Noncommutative orthogonal and sympletic gauge symmetry groups can be for-
mulated [86, 87]. These approaches are based on elaborating the Hermitean con-
jugation (transposition) of the gauge algebra. Indeed, if the multiplication of an
algebra of matrix-valued functions is redefined, surely we can also try to redefine
the Hermitean conjugation in order to preserve the closure condition under the Moyal
bracket (4.1). Particularly the noncommutative local orthogonal groups may turn
out to be important when trying to construct a gauge theory of the Lorentz rotation
group.

o⋆(n) gauge algebra

For a concrete example, let us consider the algebra o(n) of the orthogonal gauge
group O(n). It consists of antisymmetric n×n matrices { a ∈ Mn×n ⊗A | at = −a },
where A is a commutative algebra of functions and t is the ordinary matrix trans-
position that does not act on the coordinate degrees of freedom; (at)ij = aji.

When we move to the noncommutative space (1.3), the point-wise matrix mul-
tiplication of o(n) is replaced with the noncommutative ⋆-multiplication of matrices
(4.1). Now the functions are necessarily complex-valued due to the ⋆-product (3.13).
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In order to construct the noncommutative algebra o⋆(n), we need to find a transpo-
sition operator(s) T that is consistent with the ⋆-product (4.1) and the form(s) of
the matrix-valued functions in the algebra. We need

a(x)T = −a(x) ,
(
a(x) ⋆ b(x)

)T
= b(x)T ⋆ a(x)T , (4.42)

for all a(x), b(x) ∈ o⋆(n). This is sufficient to provide the closure under the general-
ized Moyal bracket

([
a(x), b(x)

]

⋆

)T
=

[
a(x), b(x)

]

⋆
.

The transposition operator T can be defined as a combination of the matrix transpo-
sition t and of the transposition operator τ acting on the coordinates in the element
functions of the matrices aij(x). The full transposition T is given by

(
a(x)T

)

ij
= (at)ij(x)τ = aji(x)τ . (4.43)

For simplicity, we consider explicitly only two coordinates (x1, x2). It was discovered
in [87] that there are at least two τ operators we can use to construct o⋆(n). They
(τ1,2) are defined by

f(x1, x2)τ1 = f(x1,−x2) , (4.44)

f(x1, x2)τ2 = f(x2, x1) , (4.45)

for all f(x) ∈ Aθ. According to (4.42) the τ operators have to satisfy

(f ⋆ g)(x)τi ≡
(
f(x) ⋆ g(x)

)τi = g(x)τi ⋆ f(x)τi , i = 1, 2 . (4.46)

Indeed, it is fairly easy to check that this is true for the noncommutative algebra Aθ

generated by the commutators (1.3). As a consistency check we calculate the τ1,2

transpositions of the coordinate commutators
(
[x1, x2]⋆

)τ1 = (x2)τ1 ⋆ (x1)τ1 − (x1)τ1 ⋆ (x2)τ1 = (−x2) ⋆ x1 − x1 ⋆ (−x2)

= −x2 ⋆ x1 + x1 ⋆ x2 = [x1, x2]⋆ = iθ12 = (iθ12)τ1 ,
(
[x1, x2]⋆

)τ2 = (x2)τ2 ⋆ (x1)τ2 − (x1)τ2 ⋆ (x2)τ2 = x1 ⋆ x2 − x2 ⋆ x1

= [x1, x2]⋆ = iθ12 = (iθ12)τ2 .

Now we can write down the requirements for the elements of the two algebras o⋆(n)τ1

and o⋆(n)τ2 :

o⋆(n)τ1 : aji(x
1,−x2) = −aij(x

1, x2) , (4.47a)

o⋆(n)τ2 : aji(x
2, x1) = −aij(x

1, x2) , (4.47b)

where 1 ≤ i, j ≤ n. Notice that the diagonal elements aii(x) do not vanish in the
noncommutative case and therefore we have n more degrees of freedom than in the
commutative case, the total of n(n+1)/2 independent components for u⋆(n). Hence,
we also have the non-trivial o⋆(1) algebra. The functions of the forms (4.47) close
under the Moyal bracket and they can be used to formulate gauge transformations
and gauge fields for the O⋆(n) gauge theories, although the process is a bit more
involved than in the U⋆(n) case.



Chapter 5

Noncommutative gravitation

The formulation of a quantum theory of gravitation has been an important goal
for theoretical physicists since the birth of quantum mechanics. The consistent
introduction of quantum effects to the classical theories of gravitation has proven to
be extremely difficult. In spite of the great progress made in string theory during
the last few decades, quantum gravitation is still out of our reach.

Noncommutative gravitation could offer an alternative way to formulate a the-
ory of gravitation that is compatible with quantum mechanics and that is able to
capture the expected nonlocality of the Planck scale physics. In this chapter we
further discuss what is known about noncommutative gravitation and how the ex-
isting problems could be solved. Our emphasis is on the gauge theory point of view,
since we believe that noncommutative gravitation should be formulated as a gauge
theory.

5.1 Overview

In this section we present a compact overview of recent approaches to noncommu-
tative gravitation. A review on noncommutative gravitation with emphasis on its
string theoretical origin can be found in [92].

Since the discovery of noncommuattive geometry in string theory [24], the idea
of noncommutative gravitation has inspired many. Several different approaches to
the noncommutative deformation of the classical theories of gravitation — especially
Einstein’s GR and the gauge theory of the Poincaré symmetry — have been tried.
These have mainly been based on the canonical noncommutative structure (1.3)
and the Moyal ⋆-product (3.13). Generically, such noncommutative deformations of
gravitation result into a complexification of the connection and of the metric tensor
as well as of the local Lorentz invariance.

One of the first of these recents approaches to noncommutative gravitation [93]
used the simple prescription: in GR, replace the point-wise product of functions with
the Moyal ⋆-product and use complex-valued fields when necessary, resulting into
a complex symmetric metric on a complex manifold and the local complex Lorentz
gauge symmetry CSO(1, 3) instead of the local Lorentz symmetry SO(1, 3). This
was followed by the treatment of gravitation as the gauge theory of the unitary group
U(1, D − 1) [94, 95], which can be generalized to the noncommutative spacetime
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(see section 4.2). After it was shown that the special orthogonal and sympletic
groups can be used to build noncommutative gauge theories [86, 83] through the
Seiberg-Witten maps [24], a theory of noncommutative gravitation was derived by
gauging the SO(4, 1) symmetry and by reducing it to the inhomogenius Lorentz
gauge symmetry ISO(3, 1) [96].1

In addition to the violation of the Lorentz invariance, the canonical noncommu-
tativity of spacetime coordinates (1.3) also breaks the covariance under the general
coordinate transformations. There is, however, a subgroup of volume-preserving
coordinate transformations that acts covariantly on the canonical noncommutative
spacetime. This residual symmetry together with the gauge algebra so(3, 1) has
been used to build a theory of noncommutative gravitation [99].

A problem with most of the approaches to noncommutative gravitation is that
they are physically ad hoc, because they are not based on any general symmetri-
cal or dynamical principle. An attempt to amend this issue was made in [27, 28],
where noncommutative gravitation was derived by twisting the Hopf algebra struc-
ture of the infinitesimal diffeomorphisms of a smooth spacetime manifold, so that
the twisted infinitesimal diffeomorphisms act covariantly on the corresponding non-
commutative spacetime. In short the idea is: In GR, the covariance under general
coordinate transformations is implemented through the covariance under diffeomor-
phisms that are geneated by vector fields forming a Lie algebra, whose universal en-
veloping algebra has the natural Hopf algebra structure (see subsection 3.3.2). The
diffeomorphism Hopf algebra is deformed by using the Abelian twist element (3.37),
with the hope of obtaining general coordinate transformations on the noncommu-
tative spacetime. However, since the deforming of the diffeomorphisms is made in
a frame-dependent way, the twisted diffeomorphisms cannot be the correct general
coordinate transformations. Moreover, it turned out that the gravitational dynam-
ics obtained from string theory in the Seiberg-Witten limit is much richer than that
provided by the ⋆-product [26], particularly in the mentioned works [27, 28]. This
suggests that the simple ⋆-product (3.13) is not able to fully codify the gravitational
dynamics on noncommutative spacetimes.

Other Riemannian geometries for noncommutative spacetimes have also been
developed [100, 101, 102] and they are also based on generalizations of the familiar
concepts of metric and curvature. The latest of these [102] is the most important
one for this work, not least because it is where the idea of the possibility to derive
noncommutative gravitation as a gauge theory of the twisted Poincaré symmetry
was mentioned for the first time.2 In [102], a Riemannian geometry on noncommu-
tative n-dimensional surfaces is constructed through concrete examples, beginning
from 2-dimensional noncommutative surfaces embedded in flat 3-dimensional non-
commutative space — the simplest nontrivial case — and by building up from there,
finally generalizing to n-dimensional noncommutative surfaces. General coordinate
transformations are introduced as gauge transformations on the underlying non-
commutative associative algebra of functions, mapping it to another non-trivially
isomorphic algebra. It is hoped that this approach will eventually lead us to the

1Recently this approach was used to derive deformed Schwarzschild and Reissner-Nordström
solutions in noncommutative spacetime [97, 98].

2In fact, we have not found any other mentioning on this idea.
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correct geometrical concepts for noncommutative gravitation.

5.2 Challenges of noncommutative gravitation

In this section we further discuss the main challenges that need to be met, in order
to begin to understand noncommutative gravitation.

5.2.1 Covariance under general coordinate transformations

Covariance under general coordinate transformations is an essential ingredient of
GR and ECT, and theories alike. Such theories can be formulated similarly in
any reference frame. Hence, they are called frame-independent, in contrast to the
frame-dependent theories like special relativity and SM.

The noncommutative quantum and gauge field theories discussed in chapters 3
and 4 are also frame-dependent. By choosing the frame-dependent twist element

F = e−
i
2
θµν∂µ⊗∂ν , (5.1)

where θµν is a constant antisymetric matrix, we have defined the ⋆-product of the rep-
resentation algebra to the frame-dependent form (3.42) for good. The deformations
of GR that have been based on the frame-dependent ⋆-product are physically incon-
sistent, because in them the ⋆-product does not transform properly under general
coordinate transformations. The deformation of the general coordinate transforma-
tions has to be done in a frame-independent way, so that the ⋆-product transforms
covariantly under them. Giving the success of twisting Hopf algebras so far, it is
expected that the twisting may be a right approach to achieve this. We “just” have
to find a consistent way to deform both the algebra of functions on spacetime and
the general coordinate transformations.

5.2.2 Local Lorentz invariance

In addition to the frame-independence, the second essential feature of GR is the
local Lorentz invariance, i.e. the local SO(1, 3) gauge symmetry. As we have al-
ready discussed in chapter 4, noncommutative gauge theory of the Lorentz algebra
can be constructed through the extended Seiberg-Witten map [81, 82, 83, 84, 86].
The fact that the Lorentz symmetry is twisted in noncommutative spacetime com-
plicates the formulation of the local Lorentz invariance. At present, we are lacking
a symmetry principle that would guide us when formulating deformed symmetries
in noncomutative spacetime.
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5.3 Gauge theory of the twisted Poincaré symme-

try

5.3.1 Twisted gauge theories — Twist as a symmetry prin-
ciple

Since the discovery of the twisted Poincaré symmetry of noncommutative quantum
and gauge field theories, the role of the twisting procedure in high energy physics
has been under research and discussion [103, 104, 105, 106]. The essential question
is: does the twisting of symmetries itself provide a symmetry principle for building
noncommutative field theories? Giving the fact that the twisted Poincaré symmetry
can be used as the principle of special relativity when constructing frame-dependent
noncommutative field theories, it is expected that a generalized twisting procedure
could provide a symmetry principle that would enable the construction of consistent
noncommutative field theories with different kinds of gauge symmetries.

Covariance in twisted gauge theories

Here we present a general observation on the covariance in twisted gauge theories.
Let us consider a gauge theory of the gauge symmetry G on a noncommutative

spacetime that is twist deformed with the twist element

F̃ = e
i
2
θµνDµ⊗Dν+O(θ2) , (5.2)

where Dµs are operators acting on the representations of G (e.g. partial or covariant
derivatives etc.). Let R1 and R2 be two representations of G and φ1, φ2 be fields
transforming in the representations

φ1 −→ φ′
1 = U1φ1 , U1 ∈ R1 , (5.3a)

φ2 −→ φ′
2 = U2φ2 , U2 ∈ R2 . (5.3b)

According to (3.32), the noncommutative ⋆-product of the fields is defined by

φ1 ⋆ φ2 = m
(
F̃−1(φ1 ⊗ φ2)

)
. (5.4)

Notice that the ⋆-product is not present in the gauge transformations (5.3), because
a twisted gauge algebra acts on its representations in the same way as the original
gauge algebra acts on its representations before the twisting. Assuming φ1 ⋆ φ2

transforms in the product representation R1 ⊗ R2 ,

(φ1 ⋆ φ2)
′ ≡ m

(
F̃ ′−1(φ′

1 ⊗ φ′
2)

)
= m

(
(U1 ⊗ U2)F̃−1(φ1 ⊗ φ2)

)
, (5.5)

the twist element (5.2) has to transform as

F̃−1 −→ F̃ ′−1 = (U1 ⊗ U2)F̃−1(U−1
1 ⊗ U−1

2 ) = e
i
2
θµνU1DµU−1

1
⊗U2DνU−1

2
+O(θ2) . (5.6)

In order to obtain a gauge covariant ⋆-product, we have to demand that the inverse of
the twist is covariant under the gauge transformations. According to (5.6), this can
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be true if and only if the operators Dµ are covariant under the gauge transformations,
i.e.

Dµ −→ D′
µ = UiDµU

−1
i , i = 1, 2 , (5.7)

and of course the same applies to the rest of the terms O (θ2) in the twist (5.2).
The crucial question that we will soon discuss is: Are such gauge covariant twist

elements valid twists, i.e. do they satisfy the twist conditions (3.28)?

Internal gauge symmetries

An attemp to build twisted gauge theories of internal gauge symmetries was made
in [103, 104]. The idea is to take the combination of the Poincaré algebra P and
of the Lie algebra G of an internal gauge symmetry and to twist the coproduct of
the universal enveloping algebra for the combined algebra with the Abelian twist
element (3.37) of the twisted Poincaré symmetry. Soon this approach was shown to
contradict the very idea of a gauge symmetry [105] and such twisted gauge theories
were shown be incompatible with the twisted Poincaré symmetry [106] (see also
[26]). Next we review the results of the latter works.

Let us consider the Lie algebra G of an internal gauge symmetry, generated by
Ti, i = 1, 2, . . . , n ,

[Ti, Tj] = icijkTk . (5.8)

The local gauge transformations are generated by the Hermitean functions

α(x) = αi(x)Ti , (5.9)

which do not commute with the generators (2.17) of the global Poincaré algebra
(2.2). Thus, we can extend the Poincaré algebra by semidirect product with G and
twist the universal enveloping algebra U(P ⋉ G) of the combination. We choose the
Abelian twist element

F = e
i
2
θµνPµ⊗Pν (5.10)

and follow the twisting procedure presented in section 3.3. Since the elements of the
twisted algebra Ut(P ⋉ G) act on the noncommutative algebra of functions Aθ in
the same way as the algebra U(P ⋉G) acts on the commutative algebra of functions
on Minkowski spacetime (3.33), the infinitesimal gauge transformations for a pair of
fields on Aθ are defined by

δαφk(x) = iα(x)φk(x) , k = 1, 2 . (5.11)

The coproduct of the algebra of infitesimal gauge transformations δα is twisted as
in (3.27)

∆0(δα) → ∆t(δα) := F∆0(δα)F−1 ; ∆0(δα) = δα ⊗ 1 + 1 ⊗ δα (5.12)

and the action of the gauge transformation δα on the ⋆-product of fields is defined
by (3.34). Thus the gauge transformation of the quadratic term φ1(x) ⋆ φ2(x) in a
Lagrangian is written

δα

(
φ1 ⋆ φ2

)
= mt

(
∆t(δα)(φ1 ⊗ φ2)

)
(5.13)

= m
(
F−1F∆0(δα)F−1(φ1 ⊗ φ2)

)

= m
(
(δα ⊗ 1 + 1 ⊗ δα)e

i
2
θµν∂µ⊗∂ν (φ1 ⊗ φ2)

)
.
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In [103, 104], the result of the gauge transformation (5.13) is alleged to be

δα

(
φ1(x) ⋆ φ2(x)

)
= iαi(x)

[(
Tiφ1(x)

)
⋆ φ2(x) + φ1(x) ⋆

(
Tiφ2(x)

)]
, (5.14)

but from (5.13) we can see that this can be true only if the partial derivatives of
the fields φk(x) (k = 1, 2) transform under the gauge transformations in the same
representation as the field itself

δα

(
(−i)mPµ1

· · ·Pµm
φk(x)

)
= δα

(
∂µ1

· · · ∂µm
φk(x)

)
= iα(x)

(
∂µ1

· · · ∂µm
φk(x)

)
.

(5.15)
If this would be the case, there would be no reason to introduce the gauge fields and
the covariant derivatives, because the partial derivatives would already be covariant
under the gauge transformations. Thus, this approach contradicts the very essence
of gauge symmetries.

The form of the gauge transformations (5.14) is very desirable, because it would
enable any gauge group to close on the noncommutative spacetime, so that we would
not have to worry about the no-go theorem. Therefore, we can try to repair this
problem by replacing the twist element (5.10) with the gauge covariant non-Abelian
twist element

F̃ = e−
i
2
θµνDµ⊗Dν+O(θ2) , (5.16)

where the covariant derivative is defined by

Dµ = −i(Pµ + Ai
µTi) = ∂µ − iAµ (5.17)

and the gauge fields Aµ(x) = Ai
µ(x)Ti are in the adjoint representation of the gauge

algebra
δαAµ(x) = i

[
α(x), Aµ(x)

]
+ ∂µα(x) . (5.18)

According to (3.32), the noncommutative multiplication of the algebra of functions
that is holding the representations of the twisted algebra Ut(P ⋉ G) is defined by
(we denote the product by ⋆)

φ1(x)⋆φ2(x) := m
(

F̃−1
(
φ1(x) ⊗ φ2(x)

))

. (5.19)

Since Dµs are covariant under the gauge transformations

δα

(
Dµ1

· · ·Dµm
φk(x)

)
= iα(x)

(
Dµ1

· · ·Dµm
φk(x)

)
, (5.20)

the gauge transformations of the ⋆-product (5.19) can be of the form (5.14) without
contradicting the idea of gauge symmetries. The twist element (5.16), however, has
a fatal flaw: F̃ does not satisfy the first twist condition in (3.28), i.e. the following
equation is not true

F̃12(∆0 ⊗ id)F̃ = F̃23(id ⊗ ∆0)F̃ . (5.21)

The twist condition (5.21) is violated already in the second order in θ. The terms
responsible for this are of the forms θθD ⊗ D ⊗ DD, θθD ⊗ DD ⊗ D and θθDD ⊗
D ⊗ D, where the two indices of the DD factor come from both θs, so that the
alternative covariant first order terms θµνFµν ⊗ 1 and θµν1 ⊗ Fµν cannot cancel
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the terms of these forms. The possible second order terms of the covariant O (θ2)
in (5.16) can cancel some of the terms, but not all of them. In [106], it was also
verified that even the most general covariant twist element — a general invertible
function — cannot be made to satisfy the twist condition (3.28). Thus, a non-
Abelian covariant generalization of the twist (5.10) does not exist. This implies that
the noncommutative ⋆-multiplication for the representations of Ut(P ⋉ G) cannot
be associative.

We can conclude that the external Poincaré symmetry and the internal gauge
symmetry cannot be unified under a common twist. Hence, only the ⋆-gauge sym-
metries discussed in chapter 4, where the action of the gauge algebra on fields is
deformed δα = iα(x)φ(x) → iα(x) ⋆ φ(x) and the coproduct of δα is left untouched,
can currently be used to construct noncommutative gauge theories.

5.3.2 Gauging the twisted Poincaré symmetry

The local Poincaré gauge symmetry is an external gauge symmetry. Through ge-
ometrical interpretation the Poincaré gauge symmetry translates to the covariance
under general coordinate transformations and to the local Lorentz symmetry (see
the section 2.5). This “duality” of the Poincaré gauge symmetry is both a prob-
lem and a possibility, since we just saw that an internal gauge symmetry cannot
be twisted together with the Poincaré symmetry. What about gauging the twisted
Poincaré symmetry itself. We intend to find out whether the gauge theory of the
Poincaré symmetry on noncommutative spacetime can be formulated by means of a
twist.

We could take the direct naive approach and try to construct a noncommutative
gauge theory of the twisted Poincaré symmetry by using the Abelian twist (3.37)
and by replacing the point-wise product of functions with the Moyal ⋆-product
in the classical theory constructed in chapter 2. The result would, however, be
an inconsistent frame-dependent theory — in many ways similar to those already
developed — that would certainly not be a plausible theory of gravitation. We
would not be able to give any meaningful geometrical interpretation to a theory of
this type.

Since the global Poincaré symmetry is twisted with the Abelian twist (3.37) in
the case of the flat noncommutative spacetime, also the generalized local Poincaré
gauge symmetry on noncommutative spacetime should be a quantum symmetry. A
natural way to generalize the local Poincaré gauge symmetry into the noncommuta-
tive setting is to consider it as a twisted gauge symmetry, so that the global twisted
Poincaré symmetry is obtained in the limit of vanishing gauge fields. When the
global twisted Poincaré symmetry is generalized to a local gauge symmetry, we have
to introduce the gauge fields in order to compensate the non-covariance of the partial
derivatives, similarly as we did in the commutative case in section 2.4. Instead of
the partial derivatives we have to use the covariant derivatives (2.31) or equivalently
(2.37),

∇µ = dµ + Aµ = −i
(

e α
µ Pα − 1

2
A νρ

µ Σνρ

)

, (5.22)

where the Σνρs generate a finite-dimensional representation of the Lorentz algebra.
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The only difference compared to the covariant derivative of an internal gauge sym-
metry (5.17) are the vierbein gauge fields e α

µ multiplying the Pµs in (5.22). Aµs are
the gauge fields of the internal Lorentz rotations. In order to obtain a theory that
is covariantly deformed under the local Poincaré gauge transformations, according
to (5.6) and (5.7), the frame-dependent Pµs have to be replaced with the covariant
derivatives i∇µ in the Abelian twist element (5.16). The covariant non-Abelian twist
element is of the form

F̃ = e−
i
2
θµν∇µ⊗∇ν+O(θ2) , (5.23)

where O (θ2) stands for the possible additional covariant terms in higher orders of
the noncommutativity parameter θµν . Because of the similar forms of the covariant
derivatives (5.22) and (5.17) and of the twist elements (5.23) and (5.16), the basic
algebraic reasoning presented in [106] holds also for the twist element (5.23) proposed
here. The gauge fields Aµ alone in ∇µ will violate the twist condition (5.21) and
the rest of gauge fields e α

µ are not able to rescue the twist condition. The fact that
there are now two second rank (field strength) tensors (2.50) does not help us to
satisfy the twist condition.

We present the core argumentation of [106] applied to the present case. First we
consider the twist element (5.23) with only the first order term in θ in the exponent.
The second order terms in θ that do not cancel in the twist condition (5.21) are, in
the left-hand side

1

2

(

− i

2

)2

θµνθρσ
(
2∇µ∇ρ ⊗∇ν ⊗∇σ + 2∇µ ⊗∇ν∇ρ ⊗∇σ (5.24)

+ ∇µ ⊗∇ρ ⊗∇ν∇σ + ∇ρ ⊗∇µ ⊗∇ν∇σ

)

and in the right-hand side

1

2

(

− i

2

)2

θµνθρσ
(
2∇ρ ⊗∇µ∇σ ⊗∇ν + 2∇ρ ⊗∇µ ⊗∇ν∇σ (5.25)

+ ∇µ∇ρ ⊗∇ν ⊗∇σ + ∇µ∇ρ ⊗∇σ ⊗∇ν

)
.

These terms cannot be cancelled by terms that have second rank tensors

Rρσ
µνΣρσ , T ρ

µν∇ρ (5.26)

in them, because the two indices for such tensors come from the same θµν , unlike
for the ∇∇ factors in (5.24) and (5.25). This is why such terms were not included
in twist element (5.23) in the first place. The possible second order terms in (5.23)
have the forms

θµνθρσ 1 ⊗∇µ∇ν∇ρ∇σ , θµνθρσ ∇µ∇ν∇ρ∇σ ⊗ 1 , (5.27)

θµνθρσ ∇µ ⊗∇ν∇ρ∇σ , θµνθρσ ∇µ∇ν∇ρ ⊗∇σ , (5.28)

θµνθρσ ∇µ∇ν ⊗∇ρ∇σ , (5.29)

with all the permutations of indices of the covariant derivatives — although the
antisymmetry of θ greatly reduces the number of independent permutations. In the
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twist condition (5.21), these second orders terms can never cancel all the terms in
(5.24) and (5.25). Therefore, the twist condition (5.21) is necessarily violated in the
second order in θ.

It is well known that the gauging of the translation symmetry leads to the
Einstein-Hilbert Lagrangian and to the covariance under general coordinate trans-
formations (see [34, 42]). Hence, it is interresting to see whether the gauge theory of
the external translation symmetry group T4 can be consistently defined together with
the twisted Poincaré symmetry. The covariant derivative for the local translations
is

dµ = −ie α
µ Pα . (5.30)

In fact, this is also the covariant derivative of the Poincaré gauge symmetry for one-
dimensional representations, for which the covariant derivative (5.22) should reduce
to (5.30), where the gauge fields e α

µ now contain contributions also from the local
Lorentz transformations. Since the covariant derivatives of the translation group do
not commute (2.51), the covariant twist element

F̃ = e−
i
2
θµνdµ⊗dν+O(θ2) = e

i
2
θµνe

α
µ Pα⊗e

β
ν Pβ+O(θ2) (5.31)

cannot be of the Abelian type (3.35) that is known to be a twist. Because of this and
the high level of arbitarity in the gauge fields e α

µ of the covariant derivative (5.30),
we face the similar algebraic problems with the twist element (5.31) as we did with
the twist element of the full Poincaré symmetry (5.23). It is difficult to see how
(5.31) could satisfy the twist condition (5.21) any better than (5.23), even though
the twist candidate (5.31) is now much simpler. Thus, it is not only the internal
Lorentz rotation symmetry that breaks the validity of the non-Abelian Poincaré
gauge covariant twist element (5.23). The external gauge symmetry associated with
the general coordinate transformations is evenly problematic.

Thus the Poincaré gauge covariant non-Abelian twist element (5.23) is not a
twist and the ⋆-product (5.19) defined by it is not associative. We can conclude that
the twisted Poincaré symmetry cannot be gauged by generalizing the Abelian twist
(5.10) to a covariant non-Abelian twist (5.23), nor by introducing a more general
covariant twist element.

It should be mentioned that from the mathematical point of view, we could try
to deform the action of the twisted Poincaré algebra on its representations, instead
of generalizing the twist element, but it seems unlikely that such an approach could
solve the problems related to the frame-dependent twist element (5.1).

It is suggested in [106] that supersymmetric gauge theories may be formulated
by means of a twist, but such considerations are beyond the scope of this work.
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Chapter 6

Conclusions

We have discussed the essential role of the Poincaré symmetry in relativistic field
theories and we have explained how the local Poincaré symmetry produces the clas-
sical gauge theory of gravitation, equivalent to the Einstein-Cartan theory of grav-
itation. Next we discussed the properties of canonical noncommutative spaces and
the formulation of quantum and gauge field theories on noncommutative space-
times. We emphasized the twisted Poincaré symmetry that is respected by these
noncommutative field theories and we discussed the underlying mathematics of this
quantum symmetry. Then we discussed the main problems in formulating a theory
of gravitation on noncommutative spacetimes, emphasizing the need to formulate
the concept of general coordinate transformations in the noncommutative setting.
Finally we addressed twisted gauge symmetries, especially the possibility to general-
ize the global twisted Poincaré symmetry to a local gauge symmetry. Based on the
current understanding of noncommutative gauge theories and twisted symmetries,
we concluded that both the internal and the external twisted gauge symmetries in
noncommutative field theory are very problematic. We showed that the formula-
tion of a twisted Poincaré gauge symmetry cannot be made by means of a gauge
covariant twist. This suggests that in noncommutative spacetimes the gravitational
interaction does not arise from a twisted Poincaré gauge symmetry in the same way
as it arises from the Poincaré gauge symmetry in commutative spacetimes. Thus
more elaborate approaches to noncommutative gravitation will have to be invented
in order to understand the role of the twisted Poincaré symmetry with respect to
the gravitational interaction on noncommutative spacetimes.

Lastly, a final word about the significance of spacetime noncommutativity is
in place. Spacetime noncommutativity can be seen as the next major conceptual
step we may have to take in order to begin to resolve the incompatibility of general
relativity and quantum mechanics. Noncommutative field theories certainly will
not be the ultimate theory of physics. They, however, offer a nice test ground for
studying noncommutativity, nonlocality and all the fascinating things related to
these. They may also well be the theories that will offer first solid predictions on
physics at the Planck scale.
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[26] L. Álvarez-Gaumé, F. Meyer and M. A. Vázquez-Mozo, Comments on non-
commutative gravity, Nucl. Phys. B 753 (2006) 92.

[27] P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp and J. Wess,
A Gravity Theory on Noncommutative Spaces, Class. Quant. Grav. 22 (2005)
3511.

[28] P. Aschieri, M. Dimitrijevic, F. Meyer and J. Wess, Noncommutative Geome-
try and Gravity, Class. Quant. Grav. 23 (2006) 1883.

[29] R. Utiyama, Invariant Theoretical Interpretion of Interaction, Phys. Rev. 101
(1956) 5 1597.

[30] T. W. B. Kibble, Lorentz Invariance and the Gravitational Field, J. Math.
Phys. 2 (1961) 2 212.



Bibliography 75

[31] D. W. Sciama, On the analogy between charge and spin in general relativity,
page 415, Recent Developments in General Relativity, Oxford: Pergamon Press
and Warszawa: PWN (1962).

[32] D. W. Sciama, The Physical Structure of General Relativity, Rev. Mod. Phys.
36 (1964) 463–469 and 1103.

[33] K. Hayashi and A. Bregman, Poincaré gauge invariance and the dynamical
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