
Pro gradu -tutkielma

Teoreettinen fysiikka

The Effect of

Matter and Baryon Densities

on the

Cosmic Microwave Background Anisotropy

Reijo Keskitalo

2005

Ohjaaja: Dos. Hannu Kurki-Suonio

Tarkastajat: Dos. Hannu Kurki-Suonio, Prof. Kari Enqvist

HELSINGIN YLIOPISTO
FYSIKAALISTEN TIETEIDEN LAITOS

PL 64
00014 Helsingin yliopisto

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Acknowledgments

I acknowledge the financial support from the Academy of Finland project
177744 and personally thank professor Keijo Kajantie for providing me with
the resources and facilities to complete this work in this extent and time. I
consider myself fortunate to have received guidance from such an experienced,
thorough supervisor as Hannu is. I also wish to thank Tomi Koivisto for his
advice about the recombination computation. In the process of research and
writing I have far too often neglected my dear wife, Petra. Her understanding
and encouragement have been an endless cache of inspiration to complete this
thesis.



Contents

1 Introduction 1
1.1 The Primeval Fireball . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Method 6
2.1 The Model of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Angular Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Silk Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Tightly Coupled Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Perturbation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Results 20
3.1 Integration of the Perturbations . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Components of the Angular Power Spectrum . . . . . . . . . . . . . . . 28

3.2.1 Perturbation Values at Decoupling . . . . . . . . . . . . . . . . . 28
3.2.2 Spherical Bessel Functions and Their Derivatives . . . . . . . . . 28
3.2.3 Integrated Sachs-Wolfe Term . . . . . . . . . . . . . . . . . . . . 30

3.3 Baryon Density and the Power Spectrum . . . . . . . . . . . . . . . . . 34
3.3.1 Sound Speed And Peak Separation . . . . . . . . . . . . . . . . . 39

3.4 Matter Density and the Power Spectrum . . . . . . . . . . . . . . . . . . 43
3.4.1 Matter Density and the Overall Power of the Spectrum . . . . . 48
3.4.2 Matter Density and the Power at Large Angular Scales . . . . . 50
3.4.3 Matter Density and the Peak Scale . . . . . . . . . . . . . . . . . 52

4 Conclusions 53

A Oscillator Equation for Photon-Baryon Fluid 56

iv



List of Figures

2.1 Silk damping and the acoustic oscillations . . . . . . . . . . . . . . . . . 15
2.2 Ionization fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Perturbations in different Fourier modes without diffusion damping. . . 22
3.2 Perturbations in different Fourier modes . . . . . . . . . . . . . . . . . . 23
3.3 Perturbations for different baryon densities ωb . . . . . . . . . . . . . . . 24
3.4 Perturbations for different matter densities ωb . . . . . . . . . . . . . . . 25
3.5 Visibility function and the damping scale kD . . . . . . . . . . . . . . . 27
3.6 Visibility function with respect to redshift . . . . . . . . . . . . . . . . . 27
3.7 Decoupling values for the perturbations . . . . . . . . . . . . . . . . . . 29
3.8 The spherical Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . 30
3.9 Derivative for the gravitational perturbation . . . . . . . . . . . . . . . . 32
3.10 Integrated Sachs-Wolfe term . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.11 Components of the angular power spectrum . . . . . . . . . . . . . . . . 33
3.12 Angular power spectrum with different baryon densities . . . . . . . . . 35
3.13 Angular power spectrum with different baryon densities without damping 36
3.14 Monopole and dipole contributions with different baryon densities . . . 39
3.15 Decoupling values for different baryon densities . . . . . . . . . . . . . . 40
3.16 Decoupling values for different baryon densities without damping . . . . 40
3.17 Temperature perturbation and baryon density . . . . . . . . . . . . . . . 41
3.18 Distance to the sound horizon at decoupling . . . . . . . . . . . . . . . . 41
3.19 Angular power spectrum with different matter densities . . . . . . . . . 44
3.20 Monopole and dipole contributions with different matter densities . . . . 45
3.21 Decoupling values for low baryon density, no damping . . . . . . . . . . 46
3.22 Decoupling values for low baryon density, no damping, Hubble units . . 47
3.23 Undamped power spectra for low baryon density and different matter densities 48
3.24 Radiation driving for a mode that enters during radiation domination . 49
3.25 ISW effect and matter and baryon densities . . . . . . . . . . . . . . . . 51

v





Chapter 1

Introduction

Ever since its discovery[25] in 1965 the cosmic microwave background radiation (CMB)
has been a subject of relentless efforts to reveal its origins and structure. Immediately, it
was realized that the seemingly isotropic1 black-body radiation must originate from the
smooth primeval plasma[4] and can be traced back to the flaming youth of our universe.
The photons we observe as CMB have scattered from ionized plasma when the universe
was only 400 000 years old.

Although it was suggested on theoretical grounds that the CMB should exhibit
the perturbed structure of the early universe, it was not until 1992 that the Cosmic
Background Explorer (COBE) mission was able to measure the 10−5 order fluctuations
in the nearly perfectly smooth radiation background of our sky[30]. Those fluctuations
correspond to similar fluctuations in the matter that are the seeds which by now have
grown to the complex structures we observe as galaxies, galaxy clusters and other large
scale inhomogeneity.

After the COBE mission numerous attempts have been made to improve the pre-
cision at which the anisotropies of the CMB are known. To this day the most precise
measurement was provided by the Wilkinson Microwave Anisotropy Probe[2] (WMAP)
in 2003. The European Space Agency (ESA) is preparing the launch of its Planck[6]
satellite in the year 2007. The comparison of the angular power spectrum of the ob-
served CMB sky[10] with spectra that were derived from different theoretical models
provides constraints on the cosmological parameters[31] that define different cosmolo-
gical models. Examples of these parameters are the matter and baryon densities of our
universe.

Study of the CMB as well as other observations of the masses of galaxies and galaxy
clusters indicate the existence of a yet undiscovered form of matter. We can only observe
it through its gravitation; it is completely transparent to electromagnetic radiation. On
the account of this property, the missing matter component is called dark matter. It
actually seems that dark matter is the dominant component of the matter density in
our universe, there being roughly five times more dark than baryonic matter in terms of
energy density[32]. Theories that treat the dark matter problem separate between hot
dark matter (HDM) that consists of light, initially relativistic particles and cold dark
matter (CDM) that is nonrelativistic in the early universe[3].

Analysis has shown that the way the primeval perturbations present themselves on
the sky gives us detailed information about the content of our universe. In this thesis,

1That is, not dependent on direction.
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2 CHAPTER 1. INTRODUCTION

we will explore some aspects of this analysis as we study the effect of cold dark matter
and baryon densities on the formation of these anisotropies.

1.1 The Primeval Fireball

From redshift observations of distant galaxies, we know that the universe is expand-
ing. The Hubble law, named after Edwin Hubble, the discoverer of the cosmic expan-
sion, states that distant objects recede from us at a speed that is proportional to their
distance[14]:

v = dH0, (1.1)

where v is the speed at which the object recedes, d is its distance and H0 is the Hubble
parameter value measured today. The Hubble parameter is often expressed equivalently
as

H0 ≡ h · 100 km s−1Mpc−1, (1.2)

where h is now a new Hubble parameter.
If the universe is expanding, it is natural to assume that we could trace back its

expansion into denser and denser settings in which the energy density of the universe
would eventually exceed all limits achievable by particle accelerators. Already at much
lower energies we would reach a temperature where the average energy of particles would
not allow them to stay neutral. Matter would ionize, filling the universe with hot plasma,
the primeval fireball.

Had this fireball been completely homogeneous, the following phases of the universe
would have been somewhat uninteresting: expansion, rarefaction and cooling with only
complete void as a limit. Of course this progress would not have lead to birth of observ-
ers to admire this inevitable slow fading into nothingness. However anyone of us can
look into the night sky and observe that the universe is far from homogeneous. It has
structure.

Cosmologically speaking anything less than a galaxy is beyond the resolution of our
equations. Galaxies group up to clusters. The clusters arrange themselves into some-
thing beyond. These large scale structures have their seeds in the slight imperfections
of the primeval fireball.

How the primordial inhomogeneities of the plasma came to be, is a matter of physics
in extreme conditions. There exists compelling indications about a period of exponential,
accelerating growth of the universe, inflation, when it was only a fraction of a second
old[9]. It is believed that during this expansion, the quantum fluctuations of the scalar
field that is responsible of the expansion, were extended beyond causal contact. The
scales at which the perturbations were manifested exited the horizon.

After the exponential growth epoch, the expansion decelerates. The energy density
of the universe is dominated by radiation whose gravity slows down the expansion. The
perturbations that remain frozen beyond the horizon begin to enter the horizon and
evolve deterministically by the physics of more comprehensible energies.

The evolution of these entering scales is determined by a set of cosmological para-
meters like the densities of baryons, neutrinos, dark matter and dark energy. All these
parameters have their distinct imprint on the evolution of the perturbations.

As the expansion decreases the energy density, the plasma cools down. Eventually,
electrons are able to bind themselves to nuclei. The plasma neutralizes, recombination
occurs. Prior to this, the photons have rapidly scattered from the protons and (mainly)
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electrons but are now freed by the recombination. It is these photons that we can ob-
serve, cooled down by the expansion along their way, as the cosmic microwave radiation.
They carry with themselves a snapshot of the primeval fireball at recombination.

Making only some simple assumptions about the nature of the primordial perturb-
ations we can study what kind of imprints different cosmic parameters should leave on
the observed anisotropies of the CMB. Many of these effects are related to the acous-
tic oscillations of the coupled photon-baryon fluid. The ionized baryon2 gas is kept in
equilibrium with the photon gas through Thomson scattering to the extent, that their
evolution can be described as a single, photon-baryon fluid until the coupling breaks in
recombination, the neutralization of the plasma.

When the fluid density at some point is perturbed it creates a gravitational well
that attracts both the photon-baryon fluid as well as dark matter into it. As the fluid
is compressed, it heats up. The photon pressure rises with the temperature which
eventually reverses the contraction. The fluid begins to rarefy driven by the photon
pressure. If the energy density of the universe is still dominated by radiation, the
gravitational well becomes more shallow. However dark matter does not interact with
the photons and keeps contracting into the well. The reversing pressure gradient with
the aid of gravitation end inevitably the rarefaction of the photon-baryon fluid which
compresses again. This motion is called the acoustic oscillation.

The dynamics of the photon-baryon fluid are fascinating. Their interaction through
Thomson scattering leads to a single fluid system with a component that has inertia,
and another one without it. The baryons drag the oscillations with their weight. The
photon component adds another effect: they carry energy over the perturbations and
smoothen out the gravitational perturbations in the radiation dominated universe.

Cold dark matter begins its role as a mere bystander and is forced to follow the
gravitational pull of the photon overdensities. Since this process is set up in the frame
of an expanding universe, the roles eventually change. The energy density of the dark
matter exceeds the energy density of radiation and begins to dominate the formation of
structure in the universe.

We will addresses two complex questions: how does the dynamical behavior of the
primeval plasma change as matter and baryon densities change and how are these effects
observed in the anisotropies of the CMB? Tools of this process include both analytical as
well as computational methods though the emphasis is on the computational approach.

1.2 Conventions

A Greek letter α, β, . . . as an index is understood be assigned values from 0 to 3, and
Latin letters i, j, . . . get values from 1 to 3, referring to the spatial parts of the quantities
in question. We will also assume the Einstein summation convention, where applicable.
Furthermore, we will employ subindex zero when denoting present day value, for instance
in H0.

In this thesis we will use the metric signature {−,+,+,+} and operate in the con-
formal Newtonian gauge[5, 17], also known as the longitudinal or zero shear gauge.

We assume a flat background universe. That is, a homogeneous universe with just

2For cosmologists baryons are the matter component that interacts with photons, unlike dark matter.
Thus in addition to particles consisting of quarks, the term baryon refers also to electrons that are
actually leptons.
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the energy density to keep expanding forever. Models with more energy are referred
as closed and models that have less energy are open. The expansion of the universe is
computed from the flat, homogeneous background model. Furthermore we will assume
small perturbations about this homogeneous background and write evolution equations
for these perturbations. Full perturbed values are then given as a sum of the background
value and the perturbation. For instance the energy density:

ρ = ρ̄+ δρ, (1.3)

where the overbar denotes the background values and the δ denotes the perturbation
parts.

The perturbed FRW metric is described as

gµν = a2(ηµν + hµν), (1.4)

where ηµν is the flat Minkowski metric and hµν is the perturbation part. Divide it into
components:

hµν ≡
[
−2A −Bi
−Bi −2Dδij + 2Eij

]
. (1.5)

Now the conformal Newtonian gauge assumes the perturbations to be of the scalar
type and is defined by setting the B and E parts of this general form perturbation to
zero. This yields us the metric perturbation in terms of two scalar perturbations A and
D. We choose to denote them as Φ and Ψ respectively. Thus the line element for the
perturbed metric reads (in terms of the conformal time, η):

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + (1− 2Ψ)δijdx

idxj
]

(1.6)

Where it is not explicitly noted otherwise, we use as a time coordinate the conformal
time, which is related to ordinary cosmic time by

dη =
dt

a(t)
, η =

∫ t dt′

a(t′)
, (1.7)

where a is the scale factor, normalized to unity today, a0 = 1. The conformal time gives
the maximum coordinate distance light could have traveled since the Big Bang. That
is, the size of causally connected regions.

Being a monotonic function of time, the scale factor provides another convenient way
of dating events. Often in cosmology time is measured also as cosmological redshifts,
z. It has little to do with the Doppler effect, even though both can be observed as the
shifting of absorption lines. Cosmological redshift occurs because the universe expands
as the light propagates. The scale factor and the redshift scales are related as

a =
1

1 + z
(1.8)

The scalar potentials of our gauge of choice are related to the gauge-invariant po-
tentials of Bardeen[1], as

Φ = ΦA Ψ = −ΦH (1.9)

When discussing the energy density of a given species of energy, its value is given
relative to the critical energy density ρcrit, the energy density of a flat universe. That
is,

Ωi =
ρi
ρcrit

with ρcrit ≡
3H2

8πG
. (1.10)
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Here H is the Hubble parameter

H =
1

a

da

dt
(1.11)

and G is the gravitational constant. These densities are parameters of the model. They
evolve with time, so it is reasonable to define them in a fixed instant, namely present.
Thus Ωi ≡ ρi0/ρcrit.

We will also encounter the comoving Hubble parameter :

H =
1

a

da

dη
=

1

a

(
a

da

dt

)
=

da

dt
= aH (1.12)

and the equation-of-state parameter

w =
p

ρ
(1.13)

Magnitudes of the perturbations are given relative to the background values e.g. for
the energy density of a given species i, we write

δi ≡
δρi
ρ̄i
. (1.14)

For velocity perturbations there is no background velocity since the Newtonian gauge is
chosen so that the fluid is at rest in the comoving coordinates. Thus

vi ≡ δvi (1.15)

In our calculations we will employ the natural unit system kB = c = ~ = 1 and where
applicable we will scale dimensional variables with the present Hubble parameter H0 or
if the Hubble parameter depends on the variables we study, H100. These are related as:

H0 ≡ h · 100 km s−1Mpc−1 ≡ h ·H100 ≈
h

3000 Mpc
≈ h

9.78 Ga
, (1.16)

where “Ga” stands for 109 years. For the remainder of this work, h is understood to refer
to the Hubble parameter. A typical value used in this work is h = 0.5. Observations
prefer a somewhat higher value[31]: h = 0.72 ± 0.05. This apparent discrepancy is
explained by our parametrization in Section 2.1.



Chapter 2

Method

The basic tool for describing inhomogeneities in the standard cosmological model is
the linear perturbation theory[5, 17] (for a detailed treatment see ref. [22] and the
references therein). In it the universe is described as flat and homogeneous and upon
this background, small Gaussian perturbations are introduced.

In the Einsteinian universe the laws of physics are formulated in terms of tensor
quantities. The perturbations can be understood as tensor fields in the background
spacetime. However these fields depend on the gauge chosen. The perturbations can
be separated into scalar, vector and tensor perturbations which can be studied inde-
pendently in linear perturbation theory. Vector perturbations decay in an expanding
universe and tensor perturbations generate gravitational waves, that do not couple to
energy density inhomogeneities[22]. In this research the chosen gauge, the Newtonian
gauge, assumes scalar perturbations[21].

The set of scalar perturbations relevant to our model of the universe is given in Table
2.1.

Φ The gravitational perturbation, as given in (1.6)

Θ` Multipoles of the angular expansion of photon

temperature anisotropy

δc Relative energy density perturbation for cold dark matter

vc Dark matter velocity perturbation

δb Relative energy density perturbation for baryon fluid

vb Baryon fluid velocity perturbation

Table 2.1: The scalar perturbations relevant for our model.

The photon temperature anisotropies deserve a few lines. Let us denote the per-
turbed distribution function for the photons by

f(η,x,p) =
1

exp

(
p

T̄ (η)(1+Θ(η,x,p))

)
− 1

, (2.1)

where the background photon temperature is T̄ (η) and local perturbations to this tem-
perature are denoted by Θ, the brightness function. The perturbed temperature is thus

6
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T (η,x,p) = T̄ (η)(1 + Θ(η,x,p)), (2.2)

The brightness function is related to the photon distribution function. The dis-
tribution in the background universe is the Bose-Einstein distribution: f(η,x,p) =
1/
(
e(E−µ)/T − 1

)
with µ = 0. The photon chemical potential is zero since there is no

photon number conservation.

Here p is the momentum of the cosmic fluid. Its magnitude has a second order effect
on the brightness function[20] and is thus negligible, therefore Θ = Θ(η,x, p̂).

The first photon multipoles can now be defined using p̂:

Θ0 =
1

4π

∫
Θ(p̂)dΩ (2.3)

−→
Θ1 =

1

4π

∫
p̂Θ(p̂)dΩ (2.4)

Θij
2 =

1

4π

∫
(p̂ip̂j +

1

3
δij)Θ(p̂)dΩ. (2.5)

We assume scalar perturbations and thus relate the vector and tensor quantities to scalar
source terms:

−→
Θ1 ≡ −∇Θ1 (2.6)

Θij
2 ≡ (∂i∂j −

1

3
δij∇2)Θ2 (2.7)

2.1 The Model of the Universe

To define the background on which the perturbations evolve we need a simplified model
of the universe. Since the observations clearly favor a flat or close to flat solution, we
set the energy density of the universe equal to the critical density i.e., Ω = 1. Because
this thesis focuses on the effect of baryon and CDM content to the structure formation,
we ignore the effect of dark energy. The results of discarding the dark energy will be
discussed in more detail with the angular power spectrum. Thus our universe is made
up of radiation, baryonic matter (nucleons and electrons) and cold dark matter:

Ω = 1 = Ωγ + Ωb + Ωc. (2.8)

Of these, the photon energy density parameter is fixed by the CMB temperature, T0.
The density parameters manifest in the equations as physical density parameters: ωi =
Ωih

2 We choose to parametrize our model by the physical matter and baryon density
parameters, ωm ≡ ωc + ωb and ωb, respectively.

Photon density parameter is negligible at present (of order ∼ 10−5). Observations
indicate that a good deal of the universe’s energy density is due to dark energy (ΩΛ ≈
0.70), but we set ΩΛ = 0 leaving matter density parameter close to unity: Ωm ≈ 1. This
modification has little effect on the physics of the CMB, since dark energy density if
significant only in the late universe.

Recent observations[31] indicate that ωm = 0.14± 0.02. Thus we need to reduce the
value of Hubble parameter h in order to conform our model with the observed physical
matter density. For ωm = 0.20 (the reference model value) we have h ≈ 0.447.
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The model parameters set values for two important background quantities, the in-
stant of matter-radiation-equality aeq and the baryon-photon-momentum-ratio, R. Since
ρr ∝ a−4 and ρm ∝ a−3, we can trace these densities back to the equality:

ρr0a
−4
eq = ρm0a

−3
eq ⇒ aeq =

ρr0
ρm0

=

π2

30

[
2 + 21

4

(
4
11

)4/3]
T 4

0

Ωmρcrit
(2.9)

aeq =
π3G

45H2
100

[
8 + 21

(
4

11

)4/3
]
T 4

0

ωm
, (2.10)

where the expression for ρr(T ) includes neutrino contribution and follows from integ-
ration of the background distribution function. The baryon-photon-momentum-ratio
is

R =
ρb + pb
ργ + pγ

≈ ρb

ργ + 1
3ργ

=
3ρb
4ργ

=
3ρb0a

−3

4ργ0a−4

(2.9)
=

3Ωbρcrita

4π
2

15T
4
0

=
135H2

100

32π3GT 4
0

aωb (2.11)

In our model we approximate the baryonic matter by hydrogen and have no other
elements.

The evolution mechanisms are described by the Einstein equation:

Gµν = 8πGTµν , (2.12)

where Gµν is the Einstein tensor and Tµν the energy-momentum tensor. The energy
continuity equation T µν;ν = 0 follows from the Einstein equation. Here ; ν denotes
covariant derivative. For an ideal fluid in its rest frame the tensor has the form Tµν =
diag(ρ, p, p, p)

Finally the Boltzmann equation describes the evolution of the distribution function:

df

dt
≡ ∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂pi
dpi

dt
= collision effects (2.13)

A detailed derivation of the set of equations governing the evolution of perturbations is
given (for example) in [5, 16]. The resulting equations are

Θ′ + p̂ · ∇Θ + p̂ · ∇Φ−Ψ′ = −τ ′
[
Θ0 −Θ + p̂ · vb +

3

4
p̂ip̂jΘij

2

]
(2.14)

δ′c +∇ · vc − 3Ψ′ = 0 (2.15)

v′c +Hvc +∇Φ = 0 (2.16)

δ′b +∇ · vb − 3Ψ′ = 0 (2.17)

v′b +Hvb +∇Φ = −τ ′ 4ργ
3ρb

(vγ − vb), vγ = 3
−→
Θ 1 (2.18)

An important background parameter is also introduced here: the optical depth, τ(η),
gives the amount of collisions a single photon experiences on average during the interval
[η, η0]. It is defined as

τ(η) =

∫ η0

η
dη aneσT (2.19)

where ne is the electron number density and σT is the cross section for Thomson scat-
tering. From the definition it is obvious that τ(η0) = 0. Quite naturally its derivative
is the collision rate:

τ ′(η) = −aneσT (2.20)
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For many background quantities the scale factor, a, plays a significant role. In our
simplified case the Friedmann equation:

H2 =

(
1

a

da

dη

)
=

8πG

3
ρa2 (2.21)

provides the means to solve for a(η) in a universe that is co-dominated by matter and
radiation. The solution[22] is

a(η) =
η

η3

(
2 +

η

η3

)
aeq, (2.22)

where η3 is a shorthand notation1 for η3 ≡ ηeq/(
√

2 − 1). Here as well as anywhere
else the subscript “eq” refers to the value during matter-radiation equality. That is, the
moment when the two components have equal energy densities.

Solving a(η) enables us to write

H =
a′

a
=

η3 + η

ηη3 + 1
2η

2
(2.23)

We still need two equations for the gravitational perturbations. Here we make an
important approximation. The difference of the two potentials, Φ and Ψ, is related to
the deviations from the perfect fluid form of the energy tensor[5]. This is only relevant
before matter domination since the energy tensor of non-relativistic matter (dust) has
the perfect fluid form. We extend the perfect fluid approximation to cover the radiation
dominated epoch and write

Φ = Ψ. (2.24)

Thus we only need one equation for the gravitational potential. It is the first order
correction to the Friedmann equation:

∇2Φ− 3H(Ψ′ +HΦ) = 4πGa2δρ (2.25)

Primordial perturbations in the smooth photon-matter content of the universe extend
to a large range of scales due to inflation. In linear perturbation theory, the evolution
of an individual scale of perturbations is independent of other scales. This enables us
to Fourier transform the set of differential equations that describe the evolution of the
perturbations to separate out the evolution of a single scale, parametrized by the Fourier
mode, k.

Fourier transforming the scalar velocity perturbation, v = ∇v, as[20]:

v(x) =

∫
v(k)eik·x

dk

k
(2.26)

giving
vk = −ik̂v (2.27)

and expanding the angular dependent parts in terms of Legendre polynomials,

f(cos θ) =
∞∑

`=0

(−i)`(2`+ 1)f`P`(cos θ), (2.28)

1In ref. [22] η3 is denoted by ηeq.
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where

f` = i`
∫ 1

−1

d cos θ

2
P`(cos θ)f(cos θ), (2.29)

the set of partial differential equations (2.14)-(2.18) and (2.25) can be cast into the
form[5, 21]:

− k2Φ− 3H(Φ′ +HΦ) = 4πGa2(ρcδc + ρbδb + 4ργΘ0) (2.30)

Θ′0 + kΘ1 − Φ′ = 0 (2.31)

Θ′1 +
k

3
(2Θ2 −Θ0)− k

3
Φ = −τ ′(1

3
vb −Θ1) (2.32)

Θ′2 +
k

5
(3Θ3 − 2Θ1) = −τ ′

[
1

10
(Θ2 + Θp

0 + Θp
2)−Θ2

]
(2.33)

Θ′` +
k

2`+ 1
[(`+ 1)Θ`+1 − `Θ`−1] = τ ′Θ`, ` ≥ 3 (2.34)

δ′c + kvc − 3Φ′ = 0 (2.35)

v′c +Hvc − kΦ = 0 (2.36)

δ′b + kvb − 3Φ′ = 0 (2.37)

v′b +Hvb − kΦ = −τ ′ 4ργ
3ρb

(3Θ1 − vb). (2.38)

The manner in which the lower multipoles depend on the higher multipoles is referred
to as the Boltzmann hierarchy. The multipoles with the upper index p in the quadrupole
equation correspond to a similar hierarchy in the photon polarization.

Even though the lowest photon multipoles, the monopole Θ0 and the dipole Θ1 enter
here simply as the first terms of the Fourier transformed Legendre expansion of the
brightness function, they have a specific physical significance. Integrating the perturbed
distribution function (2.1) one finds that

δγ =
δργ
ρ̄γ

= 4Θ0 (2.39)

vγ = 3Θ1 (2.40)

valid in both real and Fourier space.

2.2 The Angular Power Spectrum

The perturbations of the preceding section are responsible for the anisotropy of the CMB.
The quantitative analysis of the observed anisotropies is based on the angular power
spectrum that tells us the magnitudes at which different angular scales of perturbations
are exhibited. First, take the CMB temperature anisotropy to be a function over the
celestial sphere

Θ(θ, φ) ≡ δT

T0
(θ, φ). (2.41)

It is related to our brightness function as

Θ(θ, φ) = Θ(η = η0,x = 0,−p̂), (2.42)

where p̂ is the unit vector pointing in the direction (θ, φ)).
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Expand now the anisotropy in terms of the spherical harmonics

Θ(θ, φ) =
∑

a`mY`m(θ, φ), a`m =

∫
Y ∗`mΘdΩ. (2.43)

Now we may define the angular power spectrum as

C` ≡ 〈|a`m|2〉 =
1

2`+ 1

∑

|m|≤`
〈|a`m|2〉 (2.44)

which nicely exhibits that we only consider the angular scale, depending on `, not the
orientation through m.

The first generation of programs that computed the angular power spectrum used
the full set of equations (2.30)-(2.38). The necessary number of multipole equations
according to (2.34) were added to reach the desired angular scale. Truncation errors
that propagate to lower multipoles through the Boltzmann hierarchy required the use of
several more multipoles than the required angular scale, yet adding to the set of necessary
equations. Ma and Bertschinger[21] report on using as much as 2000 multipoles.

However, shortly after their research, Seljak and Zaldarriaga[27], published a paper
in 1996 describing a method to compute the higher multipoles from only a few of the
lower multipoles. The method is known as the line-of-sight integration and it is the
cornerstone of modern power spectrum computing programs such as the widely used
CMBFast code[28]. All the multipoles we observe in the CMB have evolved from just
a few of the lowest multipoles at decoupling, after which the photons free-stream to us.
To follow their path one needs to integrate equation (2.14).

In this method the multipoles are computed in terms of a source function, S(η,k),
as follows:

Θ`(η0,k) =

∫ η0

0
dηS(η,k)j`[k(η0 − η)], (2.45)

where j` are the spherical Bessel functions and the source term is

S(η,k) = g(Θ0 +
v′b
k

+ Φ +
1

4
Θ̃2 +

3

4k2
Θ̃′′2)

+g′(
vb
k

+
3

2k2
Θ̃′2) + g′′(

3

4k2
Θ̃2) + e−τ (Φ′ + Ψ′). (2.46)

The form (2.45)-(2.46) results from the integration of Eq. (2.14) with the help of
two partial integrations, and dropping the boundary terms which affect only Θ0(η0,k)
and Θ1(η0,k) of which we are not interested.

Here g(η) is the visibility function, defined as

g(η) ≡ −τ ′e−τ . (2.47)

It can be understood to give the distribution of last scattering instances for the CMB
photons. Also Θ̃2 is the quadrupole moment with corrections done to take into account
the effect of polarization,

Θ̃2 = Θ2 + ΘP
0 + ΘP

2 (2.48)

Using photon multipoles only up to ` = 8 in the Boltzmann hierarchy and a trun-
cation scheme introduced in [21], Seljak and Zaldarriaga were able to compute the
spectrum with an accuracy better than 0.1%
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We make a number of approximations to the method presented here. Most im-
portantly we reduce the number of multipoles in our computations to two: Θ0 and
Θ1. Correspondingly we neglect polarization as it is related to the evolution of the
quadrupole moment (cf. equation (2.33)).

Secondly, for the purposes of line-of-sight integration, we replace vb by vγ = 3Θ1.
As long as the photons and baryons remain tightly coupled, this is a very good approx-
imation, since the photon-baryon fluid moves with only one velocity. During decoupling
this relationship breaks, but it still takes time for the velocity perturbations to evolve
away from each other.

Third, we apply a delta function approximation to the visibility function in (2.45),
since it is sharply peaked near decoupling. For our purposes even this is justified and
simplifies the calculations greatly. This ignores the effect of reionization2 so we also
omit it from our model. The visibility function is explored further in Figure 3.5.

Applying all these simplifications to (2.45) yields us a formula for an arbitrary mul-
tipole moment today:

Θ`(η0,k) = [Θ0(ηdec) + Φ(ηdec)]j`[k(η0 − ηdec)]

+3Θ1(ηdec)j′`[k(η0 − ηdec)]

+2

∫ η0

0
e−τΦ′(η)j`[k(η0 − η)]dη, (2.49)

where we have used

j′`(x) = j`−1(x)− `+ 1

x
j`(x) (2.50)

The first term in (2.49), Θ0 + Φ, is known as the effective temperature perturbation.
The lowest photon multipole, the monopole Θ0 is directly proportional to the energy
density perturbation of the photon gas and thus represents the temperature of the gas.
Adding the gravitational perturbation Φ to it takes into account the redshift effects that
the CMB photons experience due to different gravitational potentials at their origin.
This effect is known as the ordinary Sachs-Wolfe effect (SW).

The second term, Θ1, is the photon dipole and it is proportional to the photon gas
velocity perturbation. Its significance is promoted by the fact that the baryon collisions
manifest first in this term of the Boltzmann hierarchy.

The last term describes the redshift effects the photons undergo after the last scat-
tering. During their travel they cross over evolving potential wells. If the depth of the
well changes during the passing, there is a net redshift effect that changes the temperat-
ure of the photon. This phenomenon is referred to as the integrated Sachs-Wolfe effect
(ISW).

We have now the Fourier transformation for the photon temperature anisotropy. To
compute the angular power spectrum in real space we need to inverse Fourier trans-
form it and then compute its spherical harmonic expansion. By applying an adiabatic
perturbation approximation3 and conducting the transformation one reaches

C` = 4π

∫ ∞

0

dk

k
PR(k)TR`(k)2, (2.51)

2The CMB originates from the neutralization of the cosmic plasma, when the content of the universe
becomes transparent. The interstellar gas is again ionized by the formation of stars, but the universe
remains transparent due to decreased density.

3The adiabatic approximation is well supported by recent analysis of CMB observations[33].
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where PR is the power spectrum of the primordial curvature perturbation R. The
curvature perturbation is related to the three dimensional scalar curvature of the con-
stant time slices that remain constant for scales that are outside horizon in the comoving
gauge. In the adiabatic approximation all other perturbations can be defined using the
curvature perturbation, as will be discussed in Section 2.4.

TR` is the transfer function defined as Θ`(k, η0) ≡ R(k)TR`(k) , i.e. the transfer
function describes how the primordial curvature perturbation evolves into present day
CMB temperature perturbations. For our computations we set the initial curvature
perturbation to R = 1. This means that (2.49) defines the transfer function.

Simplest inflationary models produce nearly scale-invariant perturbations, for which
the power spectrum of the initial values (the primordial power spectrum) can be ap-
proximated by a power law:

PR(k) = A2

(
k

kp

)n−1

, (2.52)

where the amplitude A and the spectral index n ≈ 1 are constants and kp is a reference
scale called the pivot scale. We approximate n = 1, eliminating kp.

For our calculations we may set A = 1 later to be rescaled to agree with data. These
approximations leave us with

C` = 4π

∫ ∞

0

dk

k
Θ2
`(η0, k). (2.53)

Equation (2.53) along with (2.49) plays a central role in the computation.

2.2.1 Silk Damping

Because of our abrupt truncation of the Boltzmann hierarchy, no explicit damping takes
place in the time evolution of the perturbations. However we know, that for small scales
(large k), the oscillations of the anisotropies are significantly diminished by radiation
diffusion[29] which our approximation neglects. In the oscillating photon-baryon fluid
the photons conduct random walks carrying energy from the hot regions to colder ones.
Since the pressure which drives the oscillations is proportional to the temperature, this
damps the oscillations. Dodelson presents in his book[5] a method to include the damp-
ing effect into the angular power spectrum in an approximate manner, without resorting
to the integration of several photon multipoles in order to model the effect. The solu-
tion approximates tight coupling to apply, scale to be small (well within the horizon,
kη � 1) and the remaining gravitational perturbation negligible. In this setting the
inclusion of the photon quadrupole equation yields the damping scale, though through
some cumbersome calculations.

The damping scale, kD, is included in the calculation by multiplying the oscillating
quantities, Θ0 and Θ1, by a damping function:

D(η) ≡ e−k2/k2
D(η) (2.54)

For kD, we find4

1

k2
D(η)

=

∫ η

0

dη′

6(1 +R)neσTa(η′)

[
R2

1 +R
+

8

9

]
, (2.55)

4The formula presented here does not take into account the effect of polarization. To include
polarization[16], replace the numeric constant 8/9 by 16/15.
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where R ∝ ωba.
For a qualitative discussion let us write the electron density as ne = const · ωb · a−3

and consider two cases: radiation (a ∝ η) and matter domination (a ∝ η2). It can be
computed, that even for high baryon densities, R is of the order of unity at decoupling.
During matter domination R ∝ ωbη2, so it is reasonable to approximate its effect on the
integral negligible for an order-of-magnitude estimate. These actions provide us with

1

k2
D(η)

rad.dom.∝ η3

ωb
and

1

k2
D(η)

mat.dom.∝ η5

ωb
, (2.56)

that is, the damping extends to larger scales faster during matter domination. It trans-
lates into two qualitative predictions about diffusion damping: earlier matter-radiation
equality implies smaller kD and thus stronger damping effects. Higher baryon densities
spell larger kD; baryons inhibit diffusion damping. The latter is somewhat unsurprising,
since the photon mean free path is dictated by the electron density and thus by baryon
density.

The damping function is a rapidly decreasing function near recombination and thus
the delta function approximation performed on the visibility function does it no justice.
To take into account for this effect we replace

e−k
2/k2

D(ηdec) by

∫ η0

0
dη g(η)e−k

2/k2
D(η) (2.57)

after applying the delta function approximation in (2.45). The difference of this abrupt
damping scheme and the integral approach can be viewed from Figure 2.1.

2.2.2 Recombination

When the universe has cooled down to approximately 4000 degrees Kelvin, ionized hy-
drogen recombines rapidly. In the process the until-now-opaque content of the universe
becomes transparent. The optical depth decreases by many orders of magnitude from,
τ � 1 to τ � 1 (see Fig. 2.2, lower half).

Recombination is the most significant epoch from which the visibility function re-
ceives its contribution. In more detailed models reionization inflicts another visible peak.
We choose not to model reionization in this order of the calculations.

The key variable in recombination is the ionization fraction, x. If our model included
helium, its ionization would need to be described with a different ionization fraction.
We define x to be the fraction of free electrons with respect to all electrons. Since the
universe is electrically neutral, the latter is equal to the number of protons. Thus

x =
ne
n∗e

=
ne
n∗p
, (2.58)

where the number of free electrons is ne and the total number of electrons or protons
are denoted with the asterisk.

We will require both the electron and photon number densities. Photon number
can be computed as a function of temperature by integrating the photon distribution
function. Approximating all baryons as nonrelativistic hydrogen nuclei (protons) we
may compute hydrogen number density simply by dividing baryon energy density by
proton mass. Thus

nγ =
2

π2
ζ(3)T 3 and n∗p ≈ nB ≈ ne∗ ≈

ρb
mp

=
ρb0a

−3

mp
=

Ωbρcrit

mpa3
(2.59)
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Figure 2.1: An example power spectrum computed with and without the effects of damping.
In the abrupt damping approach the damping scale (2.55) is recorded on a zero thickness last
scattering surface. The solid line represents the method adopted for our computation. It takes
into account the finite thickness for the last scattering surface. In this computation we used
Ωmh

2 = 0.25 and Ωbh
2 = 0.03.

Well before recombination high electron density ensures that the ionization maintains
chemical equilibrium. In these conditions the Saha equation holds:

1− x
x2

=
4
√

2ζ(3)√
π

η

(
T

me

)3/2

eB1/T (2.60)

where η is the baryon-photon ratio, nb/nγ , and B1 = mee
4/2 = 13.6 eV is the ground

state binding energy in which e is the unit charge.

We apply the analytic Saha equation in temperatures greater than 5000 K. This
corresponds to ionization fractions greater than 0.999.

Peebles[23] investigated recombination in settings similar to ours (i.e. no helium)
in 1968. To describe the time evolution of the ionization fraction he came up with the
following differential equation:

dx

dη
= aCr

[
β(Tb)(1− x)− nHα(2)(Tb)x

2
]

(2.61)

Here β(Tb) is the collisional ionization rate from the ground state, α(2)(Tb) is the
recombination rate to excited states and Cr is a reduction factor, the fraction of net
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decay rate and sum of decay and ionization rates. They are defined as

β(Tb) =

(
meTb

2π

)3/2

e−B1/Tbα(2)(Tb) (2.62)

α(2)(Tb) =
64π

(27π)1/2

e4

m2
e

(
Tb
B1

)1/2

φ2(Tb) (2.63)

φ2(Tb) ≈ 0.448 log

(
B1

Tb

)
(2.64)

Cr =
Λα + Λ2s→1s

Λα + Λ2s→1s + β(2)(Tb)
(2.65)

β(2)(Tb) = β(Tb)e
+2πvα/Tb (2.66)

Λα =
8πȧ

a2λ3
αn1s

(2.67)

λα =
1

vα
=

8π

3B1
= 0.617 eV−1, (2.68)

where Λ2s→1s = 5.413 · 10−15 eV is the two-photon decay rate from 2s state and
n1s is the number density of hydrogen atoms in the ground state. We categorically
approximate n1s = (1 − x)nH , placing all of the recombined hydrogen in the ground
state.

The notation presented here is from Ma and Bertschinger[21], with the modification
that we use natural units. Both the Saha equation and the solution to the Peebles
differential equation are plotted in Figure 2.2.

Prior to decoupling the photon and baryon temperatures are the same, giving Tb =
Tγ ≡ T . Ma and Bertschinger present a simple thermodynamic differential equation
to integrate the baryon temperature after the decoupling. It is however coupled to the
ionization fraction, making it somewhat cumbersome to evaluate. We found that extend-
ing the above temperature approximation over the period of recombination produced
a relative error of no more than 10−6 and choose not to incorporate the temperature
equation into our calculations.

Having now a model for the ionization fraction we are able to compute the electron
density and using that, the derivative for optical depth. That derivative, in turn, is used
to integrate the values of optical depth backwards from present day. The evolution of
electron number density and optical depth are depicted in Figure 2.2.

2.3 Tightly Coupled Limit

Before recombination the rapid interaction of photons and baryons via Thomson scat-
tering ensures that the two fluids evolve together with common velocity. Under these
conditions we may expand (2.38) in terms of 1/τ ′, where the collision rate, τ ′ = −aneσT ,
is assumed to be large.

Ma and Bertschinger[21] (1995) describe the tightly coupled limit through the velo-
city perturbations of the coupled photon-baryon fluid. First eliminate the collision rate,
τ ′, in baryon velocity equation (2.38) by the photon velocity (dipole) equation (2.32),
yielding:

(1 +R)v′b +RHvb − kΘ0 + (3Θ′1 − v′b) = (1 +R)kΦ (2.69)
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Figure 2.2: Ionization fraction (x), photon mean free path (λγ) and electron density in a model,
for which Ωmh

2 = 0.25 and Ωbh
2 = 0.03. The Saha equation assumes equilibrium but the actual

reaction rates fail to maintain it which leads to slower decrease in the ionization fraction.

if we then solve for (vb−3Θ1) in (2.38), differentiate with respect to conformal time and
apply (2.69) we find

v′b − 3Θ′1 =
2

1 +R
H(vb − 3Θ1)−

R

τ ′(1 +R)

[
−(H′ +H2)vb −Hk (2Θ0 + Φ)− kΘ′0

]
+O(1/τ ′2) (2.70)

Equation (2.69) also solves for 3Θ′1:

3Θ′1 = −R
(
v′b +Hvb

)
+ kΘ0 + (1 +R)kΦ (2.71)

To use these we first insert (2.70) into (2.69) yielding an equation for v′b:

(1 +R)v′b +RHvb − kΘ0 −
2

1 +R
H(vb − 3Θ1)

− R

τ ′(1 +R)

[
−(H′ +H2)vb −Hk (2Θ0 + Φ)− kΘ′0

]
= (1 +R)kΦ. (2.72)

where we have made the tight coupling approximation and dropped the O(1/τ ′2) terms.
From (2.72) we can solve for v′b and substitute into (2.71) to compute Θ′1 in (2.71).

The use of these expressions significantly reduces the amount of CPU time needed for the
integration of the perturbations in the early universe. Following Ma and Bertschinger we
apply the tight coupling approximation until the photon temperature drops to 2×104K.
The applicability of this limit was tested against the slower method and was found
satisfactory.
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2.4 Perturbation Equations

From Equations (2.30)-(2.38), omitting the multipoles higher than the dipole (` ≤ 1),
we have a set of equations:

Φ′ = −HΦ− 1

3H
[
k2Φ + 4πGa2(ρcδc + ρbδb + 4ργΘ0)

]
(2.73)

Θ′0 = Φ′ − kΘ1 (2.74)

Θ′1 =
k

3
(Θ0 + Φ)− τ ′(1

3
vb −Θ1) (2.75)

δ′c = 3Φ′ − kvc (2.76)

v′c = kΦ−Hvc (2.77)

δ′b = 3Φ′ − kvb (2.78)

v′b = kΦ−Hvb − τ ′
4ρr
3ρb

(3Θ1 − vb) (2.79)

2.4.1 Initial Conditions

To actually attain numerical results we also need to initialize the perturbations at some
early enough time. The criterion for this is, that the scales that are considered should
be outside the horizon, retaining their inflation inherent values as we start to track their
evolution. To formalize this we require[16, 5] that

kη ' k

H � 1 (2.80)

enabling us to drop terms proportional to k in the evolution equations. The second form
is due to the fact that under radiation domination a ∝ η and

H =
a′

a

rad.dom.
=

1

η
(2.81)

The tight coupling approximation, expected to be applicable at early times, assures
that |τ ′| � 1 and thus as a zeroth order approximation we drop all other terms from
(2.79) and find:

3Θ1 − vb = vγ − vb = 0. (2.82)

Furthermore we are considering a radiation dominated epoch, so ρc, ρb � ργ .

Given these approximations and the perturbed Einstein equations[16, 17] one can
relate the initial perturbation values to the primordial curvature and entropy perturba-
tions R and S:

R = −Ψ− 2

3(1 + w)

(
Ψ′

H + Φ

)
and S = H

(
δp

p′
− δρ

ρ′

)
(2.83)

Although it is possible to consider models where both these perturbations are present,
a zero entropy perturbation is consistent with the observations[18]. For simplicity we
will study only adiabatic modes, setting S = 0. The applicability of the curvature
perturbation is based on the notion that for scales outside the horizon, during the
radiation dominated era, it settles to a constant value.
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Application of the described approximations to our perturbation Equations (2.73)-
(2.79) allows to write the perturbations as functions of the constant curvature perturb-
ation. The computation and the results are described in [16, 20]. For the initial values
we will set the curvature perturbation to unity: R = 1 (in order to find the transfer
function) and from that

Φ = −2

3
R = −2

3
(2.84)

Θ0 = −1

2
Φ =

1

3
(2.85)

Θ1 =
1

6
kηΦ = −1

9
kη (2.86)

δc = δb = −3

2
Φ = 1 (2.87)

vc = vb =
1

2
kηΦ = −1

3
kη. (2.88)



Chapter 3

Results

In order to study the evolution of the perturbations we applied an adaptive step size
Runge-Kutta-Fehlberg algorithm to the set of differential equations (2.73)-(2.79). The
delta function approximation performed on the visibility function made it necessary to
record only the values of the perturbations at decoupling. This turned out to provide
us with a useful tool in the study of the parameter effects. Because they vary smoothly
as functions of k, we were able to collect them in a grid and then interpolate them using
cubic splines[7]. Both the DE-solver and the spline routines are implemented in the Gnu
Scientific Library[8] (GSL).

The only exception were the integrated Sachs-Wolfe effects that are handled in a
different manner.

3.1 Integration of the Perturbations

As a first approximation we started our numerical calculations with a model, in which
baryons and the corresponding perturbations were omitted. This is not a very realistic
model, as there is no recombination without baryons. It did, however, provide as with
some insight in whether or not the group of differential equations was stiff or not. Stiff
differential equations are such, that their solutions have multiple different timescales[7],
and therefore require implicit methods to be integrated efficiently.

We concluded, that although the stiffness of the system did increase somewhat as
k was increased, no actual gain in speed was accomplished resorting to more complex,
implicit methods. For this experiment the full range of GSL-provided ODE solvers were
tried out.

Adding the baryon equations to the system changed the situation completely. The
tight coupling between the photon and baryon equations introduced a whole new time
scale requiring as much as over 7 minutes to integrate the equations with a single value
for k on a workstation. The saving grace here is, that the coupling could be approximated
as described in section 2.3.

Applying the tight coupling approximation to the coupled photon-baryon fluid before
recombination reduced the time needed to complete the integration to less than half a
minute. This is an over ten-fold speedup.

The time evolution of the perturbations in different Fourier modes can be viewed
from Figures 3.1 and 3.2 and the effect of baryon and matter contents upon them from
Figures 3.3 and 3.4. The effect of the density parameters will be the subject of sections

20
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to follow.
For the remainder of this thesis we will scale all conformal time coordinates with

H−1
100 ≈ 9.78 · 109a and Fourier modes with H100 ≈ (2998 Mpc)−1.

ωm h ηeq/H
−1
100 ηdec/H

−1
100

0.10 0.316 0.053 0.105
0.20 0.447 0.027 0.088
0.30 0.548 0.018 0.077

Table 3.1: Matter-radiation equality and decoupling in different ωm models

For the purpose of computing the angular power spectrum (Section 2.2), we record
the perturbation values only at decoupling. It is crucial to notice, that small angular
scales (large k), are damped exponentially with respect to the Fourier wave number
k, before the photons and baryons decouple. Therefore integration of the decoupling
values over k-axis receives its significant contributions from the beginning of the axis.
This being the case it is not feasible to use a coordinate transformation in order to
map the infinite k-axis to a finite interval. In practice we only need to integrate the
differential equations for k/H100 < 104.
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Figure 3.1: The time evolution of the perturbations for multiple Fourier modes presented first
without the added diffusion damping. These are the numerical solutions for the differential
equations (2.73)-(2.79) with the initial values (2.84)-(2.88). In this model Ωmh

2 = 0.20 and
Ωbh

2 = 0.03. The matter-radiation equality occurs at η/H−1
100 = 0.027 (the slashed vertical

lines) and the decoupling takes place roughly at η/H−1
100 = 0.088 (the dotted vertical lines). η0

is approximately at η/H−1
100 = 4.32.
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Figure 3.2: The time evolution of the perturbations for multiple Fourier modes with diffusion
damping. In this model Ωmh

2 = 0.20 and Ωbh
2 = 0.03. The matter-radiation equality occurs at

η/H−1
100 = 0.027 (the slashed vertical lines) and the decoupling takes place roughly at η/H−1

100 =
0.088 (the dotted vertical lines). η0 is approximately at η/H−1

100 = 4.32.
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Figure 3.3: The time evolution of the perturbations with different baryon energy densities. Here
ωm = 0.20 and k = 400H100. Decoupling takes place roughly at η/H−1

100 = 0.087. Increasing
the baryon density actually delays the decoupling time as the peak of the visibility function is
shifted forward in time (cf. Figure 3.5). Also the addition off baryons decreases the sound speed,
which in turn lengthens the period of the oscillations.
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Figure 3.4: The time evolution of the perturbations with different matter energy densities. Here
Ωbh

2 = 0.03 and k = 400H100. Matter-radiation equality and the time of decoupling vary as a
function of ωm and are both advanced by increment of the matter density (see Table 3.1).
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Figures 3.5 and 3.6 represent the damping scale and the visibility function for dif-
ferent baryon and matter densities. They show that both matter and baryon densities
shift the decoupling, but in their own, characteristic way. Since decoupling is brought
on by the weakening interactions of photon and baryon fluids, it can be considered to
occur once the collision rate (∼ ane) drops below some limit. Baryon density is related
to the overall electron density. Adding baryons will provide more electrons and thus the
ionization fraction will need to drop more to yield the same free electron density and
allow decoupling. Therefore increasing baryon density will delay decoupling.

For matter density the process is more complicated. Adding matter will shift the
matter-radiation equality. Since matter has negligible pressure, the rate of expansion
changes. A universe with more matter will also expand faster, leading to earlier decoup-
ling. This effect is rather virtual, since the scale factor and redshift of decoupling are
not affected. The subject is developed further in section 3.2.

Be sure to note two important features of the evolution of these perturbations. First,
if you look at the upper left corner in Figures 3.1-3.4, you see the gravitational potential,
Φ, decay upon the horizon entry of the scale. For small scales (large k) that enter during
radiation domination the effect is far more stronger than for larger scales that enter
after matter-radiation equality, ηeq. Gravitational potential perturbation reflects the
inhomogeneity of energy density in the universe. During expansion static energy density
would just decrease, but the gravitation of these inhomogeneities attract more matter
and radiation. This process opposes the expansion-related decay of Φ. For radiation,
the concentration of energy is impeded by radiation pressure. As a result, gravitational
potentials decay heavily during the radiation dominated epoch. This applies for scales
that evolve, i.e. are in causal contact (within the horizon), prior to matter-radiation
equality.

Next compare the differential equations of CDM and baryons:

δ′c = 3Φ′ − kvc (3.1)

v′c = kΦ−Hvc (3.2)

δ′b = 3Φ′ − kvb (3.3)

v′b = kΦ−Hvb − τ ′
4ρr
3ρb

(3Θ1 − vb). (3.4)

Aside from the collision term due to photon-baryon coupling the equations are the
same. Looking now at Figure 3.3 you can see this making a huge difference in the beha-
vior of the perturbations as the baryon variables oscillate with the photon multipoles.
Tight coupling does indeed assure, that photons and baryons behave as a single fluid.
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matter and baryon densities of the universe. In the figures the peaked shapes are the visibility
functions that are approximated by a delta function in line-of-sight integration. They corres-
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Figure 3.6: Plotted against conformal time the peak of the visibility function appears to advance
with increasing matter density (cf. Fig. 3.5). However matter also changes the expansion of the
universe. This plot with the visibility function against cosmic redshift shows, that the redshift
of CMB photons depends very little on the matter density. The plot on the right shows, that
the delay of decoupling due to baryon density is real. In a high baryon density model the cosmic
redshift to the last scattering is lower.
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3.2 Components of the Angular Power Spectrum

Let us review the final result in our line-of-sight integration:

Θ`(η0, k) = [Θ0(ηdec, k) + Φ(ηdec, k)]j`[k(η0 − ηdec)]

+3Θ1(ηdec, k)j′`[k(η0 − ηdec)]

+2

∫ η0

0
e−τΦ′(η, k)j`[k(η0 − η)]dη. (3.5)

It has five ingredients, that all vary in respect to k. They divide into three categories

• Perturbation values at decoupling: Θ0(ηdec, k),Θ1(ηdec, k) and Φ(ηdec, k).

• Spherical Bessel functions and their derivatives: j`[k(η0−ηdec)] and j′`[k(η0−ηdec)].

• Integrated Sachs-Wolfe term

In the following we will discuss these categories separately.

3.2.1 Perturbation Values at Decoupling

The two remaining photon multipole moments that we keep in our approximation are
Θ0 and Θ1. Instead of the monopole Θ0, which is proportional to the photon energy
density perturbation, we will encounter and utilize the effective temperature perturb-
ation (Θ0 + Φ). As discussed in conjunction with the Sachs-Wolfe effect, adding the
gravitational perturbation actually negates the potential differences between the source
and the observer. Thus the perturbations of the effective temperature correspond to
actual temperature fluctuations of the CMB.

The decoupling values as functions of the Fourier mode are oscillating functions
with a decreasing amplitude: the effects of diffusion damping strengthen as the Fourier
wave number increases. These two properties dominate also their decoupling values
with respect to k. According to Figure 3.7 these values oscillate as a function of k,
with a period not much smaller1 (∼ 300H0) than the scale at which these oscillations
are damped (∼ 1200H0). That is, as we integrate over a few damping scales we only
require a handful of data points in that interval for decoupling values to accurately
interpolate them between the data points. This supports the notion made earlier about
the applicability of spline interpolation to the decoupling values.

The integral for C` is evaluated for every required ` separately, but the perturbation
values remain unchanged, so the spline interpolants need to be constructed only once.
Since the angular power spectrum is also smoothly oscillating as a function of `, it also
can be approximated using splines[12]. Later on their evaluation and even integration
can be done with a fraction of the time cost of actually integrating the differential
equations.

3.2.2 Spherical Bessel Functions and Their Derivatives

The impact of evaluating spherical Bessel functions j` on the scalability of our computa-
tion is considerable. The GSL library provides multiple different algorithms to evaluate

1The oscillation period is determined by the sound horizon. Details will be presented with baryon
oscillations in Section 3.3.
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Figure 3.7: Decoupling values of the perturbations for Ωmh
2 = 0.20 and Ωbh

2 = 0.03.

spherical Bessel functions. Because most of these algorithms use recursion relations to
reach desired j` and are able to return also the intermediate stages, it makes sense to
compute these values in advance. Since these functions are not dependent on the model,
we wrote a program that creates a table of the spherical Bessel functions for ` = 2..2000
in a range 0..10000 and stride 1.5. After the table is created once, it can be loaded
during program execution and used to initialize splines.

The generation of the spherical Bessels requires great care, because the recursion
relations easily lead to over- and underflows due to limited precision. Only after trial and
error we were able to determine the ranges in which the supplied generation algorithms
produced satisfactory results.

Some of the spherical Bessel functions are plotted in Figure 3.8

For the integral of spherical Bessel functions, an analytical result exists,

∫ ∞

0
dx xn−2j2

` (x) = 2n−4π
Γ(`+ n

2 − 1
2 )Γ(3− n)

Γ(`+ 5
2 − n

2 )Γ2(2− n
2 )

(3.6)

for n = 1 this reads ∫ ∞

0

dx

x
j2
` (x) =

1

2`(`+ 1)
(3.7)
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Figure 3.8: Spherical Bessel functions have their first peak near x = `. As ` increases, the oscil-
lation frequency and the relative difference between the first and the following peaks decrease.
This means, that to integrate over, say 99% of the area of j2

` one needs to cover an increasing
strip of the x-axis. The very weak beginning before the first peak is prone to produce numerical
errors because of underflow. Our program approximated it to zero up to a point where double
precision was sure to suffice.

and from the above we can also derive
∫ ∞

0

dx

x
j′`

2
(x) =

1

6`(`− 1)
. (3.8)

The latter formula is derived using the derivative of a spherical Bessel function:

j′`(x) = j`−1(x)− `+ 1

x
j`(x) (3.9)

We used equations (3.7) and (3.8) to determine the range in which the Bessel func-
tions need to be integrated to obtain at least a precision of 1% by integrating the two
expressions over definite intervals and comparing the results to the analytical expres-
sions. This provided us with an upper limit for the C` integration interval.

3.2.3 Integrated Sachs-Wolfe Term

The redshift effects a primeval photon experiences on its journey to the observer are
called Sachs-Wolfe effects on account of their paper in 1967[26].

These effects divide into two: the overall potential difference between the source
and the observer and the evolution of the gravitational potential during the photon’s
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travel. The former is known as the ordinary and the latter as the integrated Sachs-Wolfe
effects (SW and ISW). The normalization for the angular power spectrum, `(`+1)C`/2π
is chosen so, that the SW effect for scales large enough to enter the horizon during
matter domination is flat[16]. During matter domination, the gravitational potential Φ
is constant, so we get no ISW contribution from the matter dominated era.

Although the ISW term has an inferior effect to the spectrum compared to the Θ0+Φ
term, it is responsible for some important characteristics of the spectrum at relatively
large angular scales (small `). Our model does not include the dark energy that is
responsible for the evolution of gravitational perturbations near the present, so we also
lack the late ISW effect that manifests itself in the very first multipoles.

We do, how ever, have an early ISW effect that affects Fourier scales for which Φ
has not decayed completely before recombination. For these scales Φ also has a non-
negligible derivative shortly after recombination.

Let us define

ISW (k, `) ≡ 2

∫ η0

0
e−τΦ′(η, k)j`[k(η0 − η)]dη, (3.10)

the last term of Eq. (3.5).
The e−τ factor ensures that no contribution is gained from time prior to recombina-

tion. After that it is close to unity. Had the epoch during which Φ′ is significant turned
out to be far less than the time scale for j`[k(η0 − η)], we could have approximated
j`[k(η0 − η)] ≈ j`[k(η0 − ηdec)] and moved it out from the integral. For j`(x) the period
was of the order ∼ 10. So, denoting the length of the Φ′(k)-significant period as 4k we
can formulate this applicability condition as

k4k � 10. (3.11)

Comparing this limit to Figure 3.9 shows, that the approximation holds for small k
but breaks down around k = 100H0. We will compute the ISW integral with the spherical
Bessel function included. However the plots also show, that for all scales considered a
very good accuracy is reached integrating only up to η = 0.2H−1

0 and not all the way to
present day η0 ≈ 2H−1

0 . Hu and Sugiyama[12] estimate an error of 10−15% when using
the value Φ′dec for the ISW instead of following the evolution of Φ′(η). Such an approach
would though require some estimate of the duration of matter-radiation co-dominance.

ISW (k, `) is plotted for a few different ` in Figure 3.10.
The spectrum along with all the source function components for our reference para-

meter values (ωm = 0.20, ωb = 0.03) can be viewed in Figure 3.11.
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Figure 3.9: Derivatives of Φ(η, k) for different Fourier modes k in a model for which Ωmh
2 = 0.25

and Ωbh
2 = 0.03. Note the different scales. The decoupling is at ηdec = 0.041H−1

0 . The rightmost
plot in the lower row is e−τ . The up-pointing wedge which you can see in the k = 10H0 and
k = 100H0 results from the damping of the photon monopole. For higher k the damping occurs
more abruptly and this shows as by narrowing of the wedge. For high enough k the wedge peak
occurs too early to contribute to the ISW integral, significantly reducing the ISW term.
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Figure 3.10: ISW (k, `) = 2
∫ η0

0
dη e−τΦ′(η, k)j`[k(η0 − η)] for ` = 10− 800. Note the different

vertical scales. As can be seen from Figure 3.11, the ISW contribution is most significant around
` = 200 and utterly negligible for ` > 500. The rapid oscillations that cause the plots appear
solid are due to the spherical Bessel functions and the low frequency oscillations are from the
gravitational perturbation.
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3.3 Baryon Density and the Power Spectrum

Before we may study and discuss the impact matter density has on the angular power
spectrum we need to know more about the dynamics of the photon-baryon fluid. We
studied the effect of baryon energy density to the power spectrum using ωb ≡ Ωbh

2

between 0.01 and 0.05. Setting ωm = 0.20 (our reference value) yields h =
√
ωm/Ωm =

0.447 and Ωb = 0.0045 . . . 0.0224.
The oscillating pattern of the angular power spectrum is known as the acoustic, or

Doppler, peaks. The former reflects better the mechanism that produces these shapes
and is therefore adopted for our use. When the initial perturbations at some scale enter
horizon they begin to evolve. Overdensities begin to grow, leading to temperature rise.
Since the dominating energy component is initially radiation that has also pressure,
the process of compression is eventually reversed. In time the pressure gradient is
reversed and, with the aid of gravitation, compression begins again. This process can
be considered as sound waves propagating in the photon-baryon plasma.

It is a well known fact of the trade, that as baryon density increases the odd acoustic
peaks in the power spectrum strengthen and the even peaks weaken. The mechanism
that transmits this effect from the acoustic oscillations of the photon-baryon fluid will
be the subject of this section. Having set up this machinery from scratch we are in the
position to track its propagation thoroughly.

Figure 3.12 shows this behavior of the acoustic peaks with respect to baryon energy
density. There is something more to be seen here: increasing the baryon density reduces
the frequency of the acoustic oscillations so the peaks occur on smaller scales (larger `)
than with lower baryon density. Also the damping effect that reduces the power at small
scales is weaker for higher baryon densities. This is explained by looking at the damping
scale calculation in Eq. (2.55): kD ∝

√
ωb. For more graphical evidence see Figure 3.5.

For comparison we created the power spectra for different baryon densities also without
the damping effects. Figure 3.13 shows that without diffusion damping there is actually
more power at small scales in low baryon density models. To discover the source of
these effects we plotted the angular power spectra for the monopole (Θ0 +Φ) and dipole
(Θ1) terms. They are included as Figure 3.14. Since ISW affects only the first acoustic
peak we could rule it out as a source of the baryon effects (it is plotted in Fig. 3.25).
Clearly we need to study how the effective temperature (Θ0 +Φ) is related to the baryon
density.

Hu and Dodelson[11] discuss the baryon effect through an oscillator equation first
given in [12]. For derivation, see Appendix A:

c2s
d

dη

(
c−2
s Θ′0

)
+ c2sk

2Θ0 = −k
2

3
Φ + c2s

d

dη

(
c−2
s Φ′

)
, (3.12)

where the sound speed, cs ≡
√

p′
ρ′ , now includes the baryon effect:

c2s =
ρ′γ

ρ′γ + ρ′b
c2γ +

ρ′b
ρ′γ + ρ′b

c2b ≈
1

1 + ρ′b/ρ
′
γ

c2γ =
1

3(1 +R)
. (3.13)

In the first stage we have approximated c2
b � c2γ . The second equality requires the use

of the background continuity equation:

ρ̄′ = −3(ρ̄+ p̄)
a′

a
(3.14)
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Figure 3.12: The angular power spectrum 2`(`+ 1)C`/2π for different baryon energy densities.
As expected, increase in Ωb raises the first and third (odd) peaks and lowers the second and
fourth (even) peaks. After these, the effect is blurred by diffusion damping that suppresses the
smallest scales (large `). For higher baryon densities the damping scale is smaller so the end of
the spectrum is not damped as heavily. Because of damping, the overall power of the spectrum
if clearly higher for high baryon density. Here we have used Ωmh

2 = 0.20.

and the fact that for radiation c2
γ = 1/3. cs is the weighted average of the sound speeds

of the two fluids. R is the photon-baryon momentum density ratio:

R =
pb + ρb
pγ + ργ

≈ 3ρb
4ργ

. (3.15)

The second form is due to the fact that we approximate out baryon pressure and for
radiation p = 1

3ρ.
Equation (3.12) can be arranged further by applying Eq. (3.13):

d

dη

[
c−2
s (Θ′0 − Φ′)

]
= −k2 [Θ0 + (1 +R)Φ] . (3.16)

Matter domination ends the decay of the gravitational potentials as discussed in Section
3.1. At decoupling this holds effectively only for small scales that decay earlier, but for
our purposes it suffices to approximate Φ′ = 0. Another issue is the derivative of sound
speed, or actually

d

dη
c−2
s = 3

d

dη
(1 +R) = 3R′ (3.17)
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Now, remembering that ρb ∝ a−3 and ργ ∝ a−4 we may write ρb = ρb0a
−3 and

likewise for ργ . Since ρi0 = Ωiρc = Ωi3H
2
0/8πG, we eventually reach[13]

R =
3

4

ρb
ργ

=
3

4

ρb0a
−3

ργ0a−4
=

3

4

Ωbρc
ργ0

a =
3

4

Ωb
3H2

0
8πG

π2

15T
4
0

a ≈ 3 · 104 · Ωbh
2a = 3 · 104 · ωba, (3.18)

where ργ0 is computed from T0, the CMB temperature today and Bose-Einstein statist-
ics.

The fact that R ∝ a yields that R′ ∝ a′. Compare now the timescale of R′ to the
expansion time scale, namely the Hubble time:

(R′/R)−1

H−1
=

(R′/R)−1

(a′/a)−1
=
R

a

a′

R′
∼ 1 (3.19)

Thus for time scales shorter than the Hubble time we may approximate

c−2
s ∝ R = const. (3.20)
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Figure 3.13: The angular power spectrum 2`(`+ 1)C`/2π for different baryon energy densities
without the simulated diffusion damping effects. Here you can see clearly how increase in baryon
density separates the odd and even peaks throughout the spectrum. For low ωb the oscillation
amplitudes alternate less. Without damping the overall power of the spectrum is lower for high
baryon density. Here we have used Ωmh

2 = 0.20.
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Regarding the acoustic oscillations the applicability of this approximation would require
that the period of the oscillations was significantly less than the Hubble time. For
qualitative discussion we apply the approximation for all scales that exhibit acoustic
oscillations within the horizon, before decoupling.

The solution of equation (3.16) in the constant (Φ,Ψ, R) approximation is according
to Appendix A:

[Θ0 + (1 +R)Φ] (η) = [Θ0 + (1 +R)Φ] (ηmd) cos(ks) ≡ A cos (ks) (3.21)

⇔ (Θ0 + Φ)(η) = A cos (ks)−RΦ (3.22)

Here ηmd denotes some conformal time in the matter-dominated era. The only time
dependent variable on the right is the sound horizon,

s(η) ≡
∫ η

0
cs(η

′)dη′. (3.23)

In the Φ′ = 0 approximation the effective temperature oscillates around an equilib-
rium value that is shifted from the zero value by −RΦ. Gravitational perturbation for
initial overdensities is negative, so this effect amplifies the positive (odd, compressional)
peaks of the spectrum and weakens the even peaks.

Note also that increasing the baryon density decreases the sound speed and therefore
reduces the sound horizon which in turn increases the period of the oscillations with
respect to k.

These effects are visible if two conditions are satisfied: (Θ0 + Φ) ∼ RΦ (for the shift
of equilibrium) and 1 ∼ R (for sound speed). The magnitude of R must be assessed from
Eq. (3.18). Table 3.2 lists the decoupling values for R in different ωb models. It tells
us that R is of the order of unity near decoupling, making the change in the oscillation
periods detectable. Since Θ0 is also of the order of unity, and Φ decays effectively for
large k, we do not expect to observe the equilibrium shift for small scales (large k).

ωb Rdec

0.01 0.166
0.02 0.341
0.03 0.515
0.04 0.690
0.05 0.865

Table 3.2: The baryon-photon momentum ratio in decoupling

Hu and Dodelson point out two separate effects due to baryons: they enhance the
amplitude of the oscillations and shift the equilibrium of the effective temperature
(Θ0 + Φ) to Θ0 = −(1 + R)Φ. On account of the latter, the former has an ambigu-
ous result: the absolute values of the positive peaks are reduced and the negative peaks
are enhanced. Changes in the amplitude of the oscillations are however very subtle
(Figure 3.3 offers some hint of this). However baryon density has much stronger impact
on diffusion damping. This makes it very hard to detect other changes in the amplitude.

Figures 3.15 and 3.16 show the decoupling values of Θ0 and other related variables
first with and then without the added diffusion damping. In these two plots multiple
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different effects conspire to produce the observed baryon effects in the oscillation amp-
litudes. First the increment in the oscillation amplitude, barely perceptible around the
first peak (small k, large scales) is indeed the previously mentioned amplitude enhance-
ment. The effect is due to the fact, that adding baryons to the fluid doesn’t change the
initial conditions. If the same initial velocity applies to a fluid with more mass it neces-
sarily acquires more energy and thus greater oscillation amplitude. For scales smaller
than the damping scale at decoupling (kD(ηdec) ∼ 300H100), the dominating effect is
diffusion damping. Photon mean free path depends greatly on electron density that in
turn is increased with baryon density.

It is illuminating to note, that the Equation (3.16) with the approximations (Φ′ =
0, R′ = 0, c′s = 0), is in direct analogy to a body of a mass (1 +R) hanging on a spring
in constant gravitational field. Consider a body of mass m, suspended on a spring with
Hooke constant K in a gravitational field with constant gravitational acceleration g.
The equation of motion is then

F = mẍ = −mg −Kx ⇔ ẍ = −K
m

(x+m
g

K
) (3.24)

If we rewrite the constants as m = 1 + R = 1/3c2
s , K = k2/3 and g/K = Φ, we arrive

to (3.16). Thus the mass sets the tension of the spring that has a counterpart, the
sound velocity. The spring constant corresponds to the scale of the Fourier mode and
the two gravitational potentials correspond as well. The left hand side of the equation
is still missing the second time derivative of the gravitational potential, but in this
approximation it is negligible and we could add the second derivative of the constant
(1 +R)Φ, to the lhs to complete the analogy with Eq. (3.16)

In our case the spring consists of the gravitation of the overdensity and the pressure
of the photons. If the mass on the spring is increased, the equilibrium moves downwards.
Likewise, increasing the baryon energy density (and with it R) increases the mass of the
fluid: the fluid is concentrated into denser and denser regions before radiation pressure
equals the two forces. If the same initial conditions lead to a larger amplitude of the
first compression phase, then the energy of the oscillator must also increase. Thus the
amplitude of the decompression phase can be expected to increase as well.

Let us now return to the angular power spectra in Figures 3.12-3.14. The spectra
confirm that the origin of the observed effects lies in the effective temperature (Θ0 + Φ).
The part of the line-of-sight integral that corresponds to this is

∫ ∞

0

dk

k
(Θ0(ηdec, k) + Φ(ηdec, k))2 j2

` [k(η0 − ηdec)]. (3.25)

Figure 3.15 shows Θ0(ηdec, k) and Φ(ηdec, k) separately, summed and finally summed
and squared. The cross terms between this monopole term and the dipole or ISW are in-
significant, so the squared term is expected to carry the baryon peak enhancing/reducing
effect to the angular power spectrum.

To clarify things further we removed the effect of damping from the decoupling
values, yielding Figure 3.16. From these figures the alternating peak behavior for high
baryon density models is evident. Also we can clearly observe how the change in sound
speed changes the period of these oscillations.

However, the temperature curve in the topmost section of Fig. 3.16 has some in-
triguing characteristics that are not completely covered by our preceding discussion.
Observe how the amplitude of the low baryon density curve (green) increases with k
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Figure 3.14: The angular power spectrum for the monopole (Θ0 + Φ) and dipole (Θ1) terms.
As expected, the comparison of these and Figure 3.12 shows that all the characteristic effects
of baryon density increment are transmitted via the effective temperature. Here we have used
Ωmh

2 = 0.20.

and outpowers higher baryon density models for small scales. This is an effect you can-
not observe with diffusion damping present, since it has the opposite effect for small
scales as a function of baryon density. It does serve as an example of how the energy
of the oscillator is distributed in decoupling to its two components, photon and baryon
fluids. See, adding baryons increases the energy of the oscillator, but also increases the
baryons’ share of the energy in decoupling. The latter effect is more significant: after
decoupling the photon fluid has less energy, when there are more baryons present.

Figure 3.17 shows the time evolution of a single Fourier mode, k = 400H100. The un-
damped decoupling values indicate that the oscillation amplitude is strongest for models
with low baryon density. However you can see from the plot that for the oscillations
that occur before decoupling it is the model with highest baryon density that has the
largest amplitude.

3.3.1 Sound Speed And Peak Separation

Looking at the angular power spectra of Figures 3.12-3.13 we noted that decreasing the
amount of baryons seems to compress the acoustic peaks to larger angular scales to the
left (smaller `). Closer examination reveals that it is not the phase of the oscillations
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Figure 3.15: Θ0(ηdec, k) and Φ(ηdec, k) separately, summed and squared for different baryon
energy densities. The function in the lowest plot is integrated with the spherical Bessel function
j2
` [k(η0−ηdec)] to produce the angular power spectrum in Fig. 3.11. Here we have used Ωmh
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Figure 3.16: Θ0(ηdec, k) and Φ(ηdec, k) separately, summed and squared for different baryon en-
ergy densities. These values were computed without the effects of damping. Now the alternating
amplitude pattern is apparent for the high baryon density case. Here we have used Ωmh

2 = 0.20.
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Figure 3.17: For a single Fourier mode (k = 400H100) increasing baryon density enhances
the amplitudes of both compression and rarefaction phases. It indicates that the energy of the
oscillation increases. Since the decoupling amplitudes in Fig. 3.16 follow an opposite trend, it
is implied that the additional energy decouples with the baryons before last scattering, leaving
the photon oscillations with smaller amplitude. Here we have used Ωmh

2 = 0.20.
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Figure 3.18: Both matter and baryon densities affect the acoustic scale that is proportional to
the ratio H−1

0 /sdec, though the mechanism is different. Increasing baryon density slows down
the speed of sound thus shortening the sound horizon. Increasing matter density reduces the
Hubble length but also accelerates the expansion of the universe thus decreasing the comoving
distance sound can travel before decoupling. As a net result the acoustic scale decreases.
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that changes but the separation of the peaks. Customarily this separation is called the
acoustic scale, `A.

Combining Equations (3.22) and (3.25) we can write the monopole contribution to
the angular power spectrum as

CΘ0+Φ
` ≈

∫ ∞

0

dk

k
A2 cos2 (ksdec)j2

` (kη0), (3.26)

where we have approximated η0 − ηdec ≈ η0 and RΦ� A.
The first peak for the spherical Bessel function is located near ` = kη0 and its

amplitude decreases swiftly after that. The peaks of the monopole term are located in
ksdec = mπ, where m is any integer. These peaks manifest at multipoles

` ≈ kη0 = m
π

sdec
η0 ≡ m`A. (3.27)

In this equation η0− ηdec ≈ η0 is the comoving distance to the last scattering surface. If
we considered also open and closed models it would need to be replaced by the comoving
angular diameter distance. The latter is a distance concept that relates the physical size
of distant objects to the angle at which they are observed. The significance of the
ratio sdec/η0 is that in flat geometry it gives the angle at which the sound horizon at
decoupling is viewed.

Here we have found the acoustic scale as a function of the comoving distance to the
last scattering surface and the sound horizon at decoupling. The comoving distance to
the scattering surface can be computed from the Friedmann equation and is in turn
proportional to the Hubble length, H−1

0 :

`A =
πη0

sdec
∝ H−1

0

sdec
(3.28)

In our model the constant of proportionality is fixed. For more general cases with
non-flat geometries or dark energy it is a function of the density parameters.

Baryons alter the acoustic scale by affecting the sound horizon. Since the sound speed
is a weighted average of the two fluid components, photons and baryons, decreasing the
baryon density parameter increases the sound speed and thus pushes the sound horizon
further. Although this also advances decoupling (see Fig. 3.5), the latter effect is
weaker. The net result is, that the ratio H−1

0 /sdec decreases with the baryon density
parameter and accordingly also with the acoustic scale. For the angular power spectrum
this implies that the peaks appear to compress to the left.
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3.4 Matter Density and the Power Spectrum

Gravitational perturbations reflect similar concentrations in the dominating energy com-
ponent. These concentrations evolve due to two opposing effects: the overdense regions
gather more energy through gravitation but the energy densities decrease due to expan-
sion and pressure-driven rarefaction.

Expansion is affected by the dominating energy component. The radiation domin-
ated universe expands faster and permits thus less growth for the initial perturbations.
Also radiation has pressure, which sets a limit to the overdensity. Scales that enter the
horizon during radiation domination have their gravitational potentials severely reduced
by these two facts. The duration of this epoch is determined by matter and radiation
densities.

One way to qualitatively approach this is to consider the matter-radiation ratio. At
any given moment the matter-radiation ratio can be given in terms of the matter density
parameter and the scale factor2. Repeating some steps of Section 3.3 we can show that:

ρm
ρr

=
ρm0a

−3

ρr0a−4
= . . . ≈ 2.4 · 104 · ωma (3.29)

For one thing this result tells us, that the expansion scale a at matter-radiation
equality is inversely proportional to matter energy density, that is

aeq ∝
1

ωm
. (3.30)

This means that increasing matter energy density causes the universe to become matter
dominated earlier, that is with smaller a.

The effect of matter density, ωm, is transmitted to the spectrum with the aid of
baryons. Hu and Sugiyama[12] give a notable discussion of the effect of the Hubble
parameter h to the height of the acoustic peaks. We set Ωm = 1, ωm = Ωmh

2 = h2,
making ωm and h equivalent parameters. Thus much of their discussion applies to
our model directly. As the photon-baryon fluid oscillates through its compressions and
rarefactions, the two driving forces are the gravitational perturbation and fluid pressure.
Effectively the pressure is due to photons, as baryon pressure is approximated negligible.

For the total pressure perturbation we may write

δp ≈ δpγ =
1

3
δργ =

1

3
ρ̄γδγ =

4

3
ρ̄γΘ0 (3.31)

Recall from Section 3.3 how we wrote

c2s =
1

3(1 +R)
=

ρ̄γ

3(ρ̄γ + 3
4 ρ̄b)

(3.32)

Combining equations (3.31) and (3.32) leads to a useful relation:

δp ≈ (4ρ̄γ + 3ρ̄b)c
2
sΘ0. (3.33)

During the positive peaks of the effective temperature, [Θ0 + Φ] (ηdec, k), the photon-
baryon fluid is at its compressional phase indicated by high pressure. The effective

2There is little point to fiddle with the radiation density. It can be computed from the CMB tem-
perature which in turn is known to high accuracy.
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temperature is lower than this, for the observed CMB photons must climb up from
the potential well to reach us. This is represented by a negative Φ. In conclusion,
the positive peaks correspond to compressional phases within the potential wells (or
rarefaction phases outside them). The negative peaks occur as the fluid expands within
the well and for photons departing the well at this time the gravitation strengthens the
contrast by further cooling the escaping photons. Bear in mind this discussion as we
will return to it shortly.

Fixing the baryon density parameter ωb = Ωbh
2 we may study the effect of total

matter density on the angular power spectrum. For ωb = 0.03 the results are displayed
in Figure 3.19.
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Figure 3.19: Increasing ωm suppresses the entire spectrum. Furthermore the two first peaks
decrease by a larger factor, enhancing the third and following peaks in respect to them. Finally
the period of the acoustic oscillations appears to shorten as ωm increases. Here we have used
Ωbh

2 = 0.03.



3.4. MATTER DENSITY AND THE POWER SPECTRUM 45

0 500 1000
l

0

0.1

0.2

0.3

0.4
l(l

+1
)C

l/2
π

ωm = 0.10
ωm = 0.20
ωm = 0.30
ωm = 0.40

0

0.1

0.2

Θ
0 +

 Φ

0 500 1000
l

0

0.1

Θ
1

Figure 3.20: Unlike with baryons, ωm affects the spectrum via both the effective temperature
and the dipole term. Tick intervals in all three graphs are equal to ease the comparison. The first
peak gains extra contribution from the cross terms of ISW and the multipoles, so ISW-related
terms are removed from this plot (cf. Figure 3.19 for the missing ISW). Here we have used
Ωbh

2 = 0.03.

It appears that increasing the matter density does three things to the power spec-
trum:

• overall power of the spectrum is decreased

• the third peak grows in strength in respect to the beginning of the spectrum

• period of the oscillations shortens

As with baryons, we may well expect that effects that manifest on all scales must be
transmitted by the multipole terms, not the integrated Sachs-Wolfe effect (nevertheless
also the ISW is investigated in Fig. 3.25). Figure 3.20 shows that matter density has a
characteristic imprint on both monopole and dipole power spectra.

Naturally we must trace the phenomenon back into Fourier space. Figure 3.21 shows
the values of the perturbations at decoupling for Fourier modes k = (0, 300H100) and
Figure 3.22 shows the values of the perturbations at decoupling for Fourier modes in
Hubble units k ∈ (0, 1000H0). The scaling with Hubble units in Fig. 3.22 has the
advantage that the curves for different matter density models can be easily compared,
since the differences in the spectra are the same as in the angular power spectrum.
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Figure 3.21: These are the decoupling values for the gravitational potential, photon monopole
and photon dipole for different Fourier modes. To separate the matter related effects we de-
creased baryon density to Ωbh

2 = 0.01. As you can observe, odd and even peaks behave almost
equivalently. This figure does not include diffusion damping.
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here baryon density is Ωbh
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Figure 3.23: The angular power spectrum for average and low baryon densities with different
matter densities. To separate the matter related effects we decreased baryon density to Ωbh

2 =
0.01. As you can observe, odd and even peaks behave almost equivalently. These plots are
without the simulated damping to show that the loss of power is not related to the damping
scale.

3.4.1 Matter Density and the Overall Power of the Spectrum

To begin to explain what we have seen we need to discuss one more mechanism that
has its impact on the structure of the acoustic peaks. Hu and Dodelson[11] refer to it
as radiation driving.

As discussed earlier in Section 3.1, radiation dominance evens the gravitational po-
tential for the scales that enter prior to matter-radiation equality. In the evolution
plots this can be seen to occur during the first compression-rarefaction of the photon-
baryon fluid (see Fig. 3.2). To keep the gravitational potential stable the fluid would
need to compress, but radiation pressure instead forces it to expand. During the fluid’s
rarefaction the potential decays heavily. This permits the fluid to expand further.

Amplitude of the expansion is determined by the depth of the gravitational potential.
How deep the well remains is determined by the matter-radiation ratio which we learned
to be proportional to ωm. Higher matter ratio implies less radiation driving effects and
thus smaller amplitudes to the oscillations. Since it is the oscillations altogether, that
manifest as acoustic peaks, the inhibition of radiation driving explains why the overall
power of the angular power spectrum of the anisotropies is diminished.

Figure 3.24 was set up to study the dependency of radiation driving and matter
density at single Fourier mode k = 400H100. It shows two separate, but related effects
that can be combined under the title “radiation driving”. As noted in the preceding, the
instant of matter-radiation equality sets the final depth of the gravitational potential.
This depth redshifts the departing photons that we observe in their effective temperature
of the CMB. We now note, that reducing matter leads to a shallower gravitational
potential and hence higher effective temperature for the oscillations. As a result the odd,
compressional amplitudes grow in strength and the cooler rarefaction phases weaken,
since they both suffer less cooling redshift effects.

On the behalf of the rarefactional amplitudes a competing effect is present. Since the
gravitational potential decays alongside with the compressing photon-baryon fluid, the
first expansion phase has less gravitation to hinder its rarefaction. Here the radiation
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actually drives the fluid further and rarer than it would expand if more matter was
present and the well was deeper. Consequently the oscillations are driven to a higher
amplitude. This is the effect that dominates the amplitude of the negative peaks.

If we consider the effective temperature, Φ + Θ0, these two effects are actually one
and the same. Changing the matter density does not change the equilibrium value, only
the amplitude of the oscillations. Therefore we see the amplitudes grow for all the peaks
of the angular power spectrum, when matter density is decreased.
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Figure 3.24: Here are the time evolutions of Φ, Θ0, and (Θ0 + Φ) for ωm = 0.10, 0.20, 0, 30.
The Fourier mode (k = 400H100) enters the horizon well before matter radiation equality that
occurs for these matter densities at ηeq/H

−1
100 = 0.053, 0.027, 0.018 As ωm decreases, there are two

effects: shallowing of the gravitational potential (leftmost plot) and as a result, increment of the
oscillation amplitude, also know as radiation driving (center plot). For the effective temperature
(right plot) these two effects manifest in a two-way manner (see: text). Here we have used
Ωbh

2 = 0.03.
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3.4.2 Matter Density and the Power at Large Angular Scales

Radiation driving does not affect all of the Fourier modes. It affects only those scales
that enter the sound horizon before matter domination, since no acoustic oscillation
exists outside it. In their subsequent paper[13] Hu and Sugiyama showed that these
effects die out quickly after the Fourier mode, keq, that enters the Hubble horizon during
matter-radiation equality. It can be computed as

keq = Heq
(2.23)

=
4− 2

√
2

ηeq
∝ ωm. (3.34)

Table 3.3 shows how keq depends on matter density.

ωm keq/H0 keq/H100 `

0.10 69.3 21.9 133
0.20 98.1 43.9 189
0.30 120.1 65.8 232
0.40 138.7 87.7 268

Table 3.3: Hubble horizon at matter-radiation equality

The angular scale ` that gains most contribution from Fourier mode k can be es-
timated by considering the C` integral, and especially the dominating monopole part:

∫
dk

k
((Θ0(ηdec, k) + Φ(ηdec, k))j`[k(η0 − ηdec)])

2 (3.35)

Remembering, that j`(x) has its first peak at x ≈ ` and that its amplitude decreases
steadily after that peak, we can deduct that

• Angular scales with ` > keq(η0 − ηdec) receive no contribution from perturbations
at scale keq.

• Angular scales with ` < keq(η0 − ηdec) receive very little contribution from per-
turbations at scale keq.

For lower matter densities even the first peak can be included in the radiation driven
scales. You can observe the effect of keq from Figure 3.20. For the first acoustic peak
the Sachs-Wolfe effect contributes coherently and therefore it was necessary to remove
the ISW part to display the keq effect.

It is not obvious, that radiation driving should boost the first acoustic peak. It
corresponds to such Fourier modes that have only enough time to reach their first com-
pression before the last scattering and thus receive no boost on their amplitude in the
manner described. How does their amplitude increase then? Looking again at Figure
3.24 it shows that the amplitude of the first compression really changes relatively little
in comparison with the other peaks. What does change is the depth of the gravitational
well that serves as a last scattering point for the photons of the first acoustic peak.
Even though the initial conditions guarantee that in all the different matter density
models the first compression begins with equal energy, the gravitational potential at the
compressional maximum deepens by increasing matter density.
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The integrated Sachs-Wolfe effects occur due to evolution of the gravitational per-
turbations after decoupling. For many purposes it is a reasonably good approximation
to set Φ′(η) = 0 ∀ η > ηdec. Naturally this does not apply to the ISW effects. Since it
is the radiation components of the cosmic fluid that cause the early effects, we should
see stronger ISW for low ωm models. Fig. 3.25 explores this phenomenon further and
confirms this. The angular power of the ISW term also manifests in the cross terms of
the multipoles and ISW. These actually form the better part or the observed ISW, but
are less informative to view, since the cross terms are effected also by the monopole and
dipole
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Figure 3.25: This is the angular power spectrum for the ISW effect. In the left hand plot the
low matter density models have later matter domination. This extends the period of nonzero Φ′

further and thus strengthens the effect. No apparent effects are detectable in the magnitude of
ISW for different baryon density models.
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3.4.3 Matter Density and the Peak Scale

Finally we need to address the observed change in the period of the oscillations. Increas-
ing matter density clearly shortens the peak scale `A; the acoustic peaks are compressed
left to the larger angular scales. The same can be observed for the decoupling values in
Figure 3.22 when they are plotted as a function of the relative Fourier mode k/H0(ωm).
As a function of the absolute Fourier mode the oscillation period actually increases with
ωm (cf. Fig. 3.21), but that is only related to the changes in the Hubble parameter.

In Equation (3.28) we presented a relation between the Hubble length, sound horizon
and the acoustic scale:

`A ∝
H−1

0

sdec
(3.36)

Due to our parametrization, changing the matter density parameter affects both H0

and sdec. Regarding the Hubble parameter we had

ωm = Ωmh
2 Ωm=1

= h2 ⇒ H0 = hH100 ∝
√
ωm. (3.37)

Now with the sound horizon the matter is more complex. Matter density affects the
matter-radiation equality and the decoupling. It does not alter sound speed directly,
but since it changes the expansion law, the comoving distance the sound can travel (i.e.
the sound horizon) is affected.

The Friedmann equation for a flat universe,

(
ȧ

a

)2

=
8πG

3
(ργ + ρm), (3.38)

indicates that the universe expands and contracts faster when there is more matter
present. Figure 3.6 showed that regardless of the matter density, baryons and photons
decouple at the same redshift and scale factor. If the universe does expand faster, it
will reach this preset value of the scale factor earlier allowing less time for sound to
travel before decoupling. As a result the sound horizon shrinks when the matter density
parameter is increased.

Since both the Hubble length and the sound horizon shrink by increasing the matter
density, the preceding discussion does not reveal whether the acoustic scale should grow
or be reduced by increasing the matter density. Exact expression for the sound horizon
at decoupling (sdec(ωm)) can be computed using the background equations. However
we have already computed the solution numerically for Fig. 3.18. It indicates that when
the matter density parameter is increased, the sound horizon shrinks by a smaller factor
than the Hubble length. Thus the ratio H−1

0 /sdec decreases, as does the acoustic scale.
For the angular power spectrum this means that the peaks are compressed to the left.



Chapter 4

Conclusions

Following the discussion in [5] we studied a simplified model of the universe by making a
number of approximations preserving the major features of pre-recombination dynamics.
We:

• omitted dark energy and as a result had no late ISW

• approximated baryonic matter by hydrogen

• ignored shear stress and assumed perfect fluid dynamics

• studied only scalar perturbations and thus neglected possible gravitational waves

• neglected reionization

• truncated the Boltzmann hierarchy to the dipole term, but applied an approximate
calculation to obtain the damping scale induced by the higher multipoles

• ignored polarization dependency in the Thomson scattering

• approximated the thickness of the last scattering surface by a δ-function, except
for the diffusion damping scale

These steps yielded a relatively simple model in which to study the effects of two selected
cosmological parameters, ωm and ωb. Qualitative comparison of our angular power
spectra and the results of the “CAMB” code[19] show that we were able to reproduce
the key effects of the two cosmological parameters.

Having inserted the diffusion damping into the equations by hand provided us with
the option to remove damping when we so choose. This proved to be a valuable tool in
separation of the different effects.

The harvest of this work is not so much the already recognized behavior of C`(ωm, ωb),
as the way these effects can be viewed through the deterministic time evolution of the
cosmological perturbations before the decoupling. The oscillating photon-baryon fluid,
within a framework of an expanding, CDM universe, is an exciting dynamical system
with rich interactions. The effects of changes in a single parameter manifest in multiple
levels.

Let us sum up the key features of these dynamics. The energy of the acoustic
oscillations increases with the baryon density. This can be understood as adding more
mass to an oscillator without changing its initial motion. Increased energy spells higher
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oscillation amplitudes. Adding more mass to an oscillator in a gravitational well also
shifts its equilibrium. The more massive oscillator is able to contract further against the
fluid pressure before the rarefaction begins. Expansion of this oscillator is left short due
to the additional mass and thus the equilibrium of the oscillations moves deeper into
the gravitational potential. The implications of this baryon drag on the angular power
spectrum are well known: odd peaks gain in strength in respect to the even peaks.

Odd peaks of the angular power spectrum correspond to fluid contractions within
gravitational wells or rarefactions outside them. These motions are aided by gravitation
once the mass of the oscillator increases. The even peaks on the other hand correspond
to rarefactions within gravitational wells and compressions outside them. Both motions
are opposed by the gravitation and thus adding mass weakens them.

Photon diffusion that evens the perturbations is affected by baryon density. This
is so because the diffusion is generated by the random walks of the photons, that are
characterized by the mean free path λγ = 1/aneσT . Less baryons (and electrons) leads
to longer diffusion lengths and larger damping scales: diffusion damping is hindered by
higher baryon density.

Matter density determines the length of the radiation dominated era. The most
profound effect that the radiation has over the perturbations is the decay of the gravita-
tional perturbation. This occurs because the radiation component is unable to contract
beyond a limit set by its pressure and because the universe’s expansion exceeds the
energy density build up caused by gravitational concentration. Adding matter makes
the equality occur earlier thus leaving the gravitational potential stronger.

For all scales that exhibit acoustic oscillations before decoupling, the gravitational
potential decays through the first compression, all the way to the first rarefaction. The
amplitude of the decompression is determined by the remaining potential, whose depth is
a function of the matter density. Less matter leads to later equality and more decay, thus
also to a higher amplitude of the first expansion as the weaker gravitational potential
resists the expansion less. The decompression phase is said to be radiation driven.
The decompression also sets the amplitude of the oscillations, Therefore changes in the
radiation driving affect the overall power of the spectrum. More matter, less radiation
driving and correspondingly less power.

Aside from the loss of overall power, delaying the end of radiation domination has a
clear impact on the low-` part of the power spectrum. It allows larger scales to enter the
horizon during radiation domination and be boosted by radiation driving. The scales
in question reside in the vicinity of the first acoustic peak. Also the early integrated
Sachs-Wolfe effect changes. With matter-radiation equality occurring later, the decay of
the gravitational potentials goes on further beyond the decoupling, allowing for stronger
ISW effects that also contribute coherently to the height of the first peak. Adding matter
will reverse these effects and reduce the power for the beginning of the angular power
spectrum.

Finally the sound horizon at decoupling sets the acoustic scale of the angular power
spectrum. Both baryons and cold dark matter affect this distance, though in very
different ways. Baryon density slows down the pure radiation sound speed of the photon
component in the photon-baryon fluid. Higher baryon density implies thus a shorter
sound horizon. This enlarges the angular scale, moving the acoustic peaks to the right
in the angular power spectrum. Adding matter has the opposite effect, though sound
speed is not affected. Matter speeds up the expansion of the universe and thus reduces
the comoving distance the sound can travel prior to recombination. However in our
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parametrization the Hubble length is also decreased and as a result the acoustic scale
decreases.



Appendix A

Oscillator Equation for
Photon-Baryon Fluid

In the tight coupling regime, rapid Thomson scattering maintains photons and baryons
in equilibrium. This can be seen as a high collision rate:

|τ ′| = aneσT � 1 (A.1)

During this epoch the baryon-photon momentum ratio R = 3ρb/4ργ � 1. This holds
well beyond matter-radiation equality.

For the evolution equations of temperature and baryons,

Θ′0 + kΘ1 = Ψ′ (A.2)

Θ′1 −
k

3
Θ0 =

k

3
Φ + τ ′

(
Θ1 −

1

3
vb

)
(A.3)

v′b +Hvb = kΦ− τ ′

R
(3Θ1 − vb) , (A.4)

this means that the collision terms dominate.
To the zeroth order, equation (A.4) reads 3Θ1 = vb. It can be differentiated to give

3Θ′1 = v′b (A.5)

Solving first vb from the rhs of (A.4) we may insert the zeroth order approximations
and reach a first order iterated equation

vb = 3Θ1 +
R

τ ′
(
3Θ′1 + 3HΘ1 − kΦ

)
. (A.6)

The iteration approach was first presented by Peebles and Yu[24] in 1970.
The expression for vb can in turn be substituted in (A.3) to rid the photon equations

of the baryon variables:

(1 +R)Θ′1 −
k

3
Θ0 =

k

3
(1 +R)Φ−RHΘ1 (A.7)

To eliminate Θ1 we differentiate (A.2) and substitute Θ′1 from (A.7). Note that from
(A.2) follows also an expression for Θ1. These steps result in

Θ′′0 + k

[
k

3(1 +R)
Θ0 +

k

3
Φ +

R

1 +R
H1

k
(Θ′0 −Ψ′)

]
= Ψ′′ (A.8)
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The sound speed in the coupled photon baryon fluid is a weighted average of the separate
photon and baryon sound speeds:

c2s =
1

3(1 +R)
(A.9)

Since ρb ∝ a−3 and ργ ∝ a−4, is R ∝ a and thus

1

R

dR

dη
=

1

a

da

dη
= H (A.10)

Making these substitutions yields

Θ′′0 −Ψ′′ + 3c2sR
′(Θ′0 −Ψ′) = −c2sk2[Θ0 + (1 +R)Φ] (A.11)

Finally, noting that
d

dη
c−2
s = 3

d

dη
(1 +R) = 3R′ (A.12)

allows us to write

c2s
d

dη

[
c−2
s (Θ′0 −Ψ′)

]
= −c2sk2[Θ0 + (1 +R)Φ], (A.13)

or

c2s
d

dη

(
c−2
s Θ′0

)
+ c2sk

2Θ0 = −k
2

3
Φ + c2s

d

dη

(
c−2
s Ψ′

)
(A.14)

In a matter dominated universe the gravitational perturbations cease to evolve, i.e.
Φ′ = Ψ′ = 0. If we also ignore the evolution of

R ∝ a md∝ η2 (A.15)

in c−2
s = 3(1 +R), approximating sound speed as a constant, we may arrange (A.13) by

adding d2

dη2 [(1 +R)Φ] = 0 to the left hand side to read

d2

dη2
[(Θ0 + (1 +R)Φ)] + c2

sk
2[Θ0 + (1 +R)Φ] = 0, (A.16)

a simple harmonic oscillator equation for the quantity Θ0 + (1 + R)Φ. Do note that
(A.13) can be solved[12] for a time dependent R, but the complexity of the solution
manages to hide the underlying physics.

For the constant (Φ,Ψ, R) case the solution,

[Θ0 + (1 +R)Φ](η) = [Θ0 + (1 +R)Φ](ηmd) cos ks (A.17)

tell us that the effective temperature Θ0 + Φ oscillates around an equilibrium point that
is shifted by −RΦ. Here we have used the sound horizon: csη ≈ s ≡

∫ η
dη′cs(η′), the

comoving distance sound can travel in cosmological time scales.
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