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pro gradu -työ maaliskuu 2008 51
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The possible presence of periodicity in the terrestrial impact crater data has been discussed in

several papers since 1984. The authenticity of this detected periodicity data is controversial. It is

possible, however, that real periodicity is present and could be detected from more accurate and

complete data.

In our study we created simulated different probability distributions for terrestrial impact crater

record, that covered completely aperiodic and periodic impact cratering scenarios, as well as two

specific combinations of these two cases, with four different impact crater age uncertainties. From

these distributions we then generated simulated time series of impact craters with different numbers

of craters and tested if the periodicity in the distribution could be detected using the Rayleigh

method.

Our analysis shows that if only one third of the terrestrial impact craters are caused by periodic

cratering events, the detection of a real period in the data is very difficult and probably could not

be detected even if better impact crater data became available. If two thirds of the craters are

caused by periodic impacts, detection is possible, but would require substantially better data than

which is currently available. We conclude that the periodicities reported so far in the impact crater

data are not caused by real physical phenomena.

Maan törmäyskraaterien ikäjakauman mahdollinen ajallinen jaksollisuus on herättänyt laajaa

keskustelua sen jälkeen, kun ilmiö ensimmäistä kertaa raportoitiin joukossa arvostettuja tieteel-

lisiä artikkeleita vuonna 1984. Vaikka nykytiedon valossa on kyseenalaista perustuuko havaittu

jaksollisuus todelliseen fysikaaliseen ilmiöön, on kuitenkin mahdollista, että jaksollisuus on todella

olemassa ja se voitaisiin havaita laajemmalla ja tarkemmalla törmäyskraateriaineistolla.

Tutkimuksessa luotiin simuloidut kraaterien ajalliset tiheys- ja kertymäfunktiot tapauksille, jossa

kraaterit syntyvät joko täysin jaksollisella tai satunnaisella prosessilla. Näiden kahden äärita-

pauksen lisäksi luotiin jakaumat myös kahdelle niiden yhdistelmälle. Nämä mallit mahdollistavat

myös erilaisten kraaterien iänmäärityksen epätarkkuuksien huomioonottamisen. Näistä jakaumista

luotiin eri pituisia simuloituja kraaterien ikien aikasarjoja. Lopulta simuloiduista aikasarjoista py-

rittiin Rayleigh’n menetelmän avulla etsimään jakaumassa ollutta jaksollisuutta.

Tutkimuksemme perusteella ajallisen jaksollisuuden havaitseminen kraateriaikasarjoista on lähes

mahdotonta mikäli vain yksi kolmasosa kraatereista on jaksollisen ilmiön aiheuttamia, vaikka ny-

kyistä kraateriaineistoa laajempi ja tarkempi aineisto olisi tulevaisuudessa saatavilla. Mikäli kaksi

kolmasosaa meteoriittitörmäyksistä on jaksollisia, sen havaitseminen on mahdollista, mutta vaatii

huomattavasti tämän hetkistä kattavamman kraateriaineiston. Tutkimuksen perusteella on syytä

epäillä, että havaittu kraaterien ajallinen jaksollisuus ei ole todellinen ilmiö.
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Chapter 1

Introduction

The possible presence of periodicity in the terrestrial impact crater data has been

discussed in several papers since 1984. In an article published in the Nature

magazine, Alvarez and Muller (1984) detected a 28.4 million year periodicity

in the impact cratering on Earth using Fourier analysis. They also found a

connection between the periodicity in the impact crater data and the periodicity

of 26 million years found by Raup and Sepkoski (1984) in the geological record

of the mass extinctions of species.

Davis et al. (1984) and Whitmire and Jackson (1984) offered a distant solar

companion as a possible explanation for these periodicities. Davis et al. (1984)

suggested that a solar companion in a moderately eccentric orbit could send a

large number of comets from the Oort cloud into the inner Solar System when

near its closest approach to Sun. Several of these comets would then collide with

Earth in the following million years and cause mass extinctions of species, as well

as a detectable periodicity in the terrestrial impact crater record. According to

Davis et al. (1984) the unseen solar companion would currently be at its max-

imum distance (about 2.4 light years) from Sun and not pose a threat in another

15 million years. Whitmire and Jackson (1984) proposed independently a similar

explanation and concluded that the solar companion’s highly eccentric (e > 0.9)

orbit would have a semi-major axis of about 1.4 light years. They suggested that

this companion would be a black dwarf with mass of 0.0002M� < M < 0.07M�.

An alternative explanation for the periodicity in the impact crater record was

offered by Rampino and Stothers (1984) and Schwartz and James (1984). Both

papers argued that the interstellar clouds of gas and dust at the galactic plane

would gravitationally disturb comets in the Oort cloud and therefore increase the

flux of comets to the inner Solar System. Rampino and Stothers (1984) reana-

lyzed the data used by Raup and Sepkoski (1984) and suggested that the main

period in marine life extinctions was 30±1 million years and found this period to

closely match the time that the Solar System spends oscillating vertically about

1



Introduction 2

the galactic plane (33±3 million years). They also discovered a similar periodicity

of 31±1 million years in the impact crater data on Earth. Recently, the presence

of periodicity in the impact crater record has been supported by, among others,

Chang and Moon (2005), Chang (2006), Stothers (2006) and Napier (2006).

Trefil and Raup (1987) postulated that the age distribution of craters in the

impact crater data could be uniformly periodic, totally random or a combination

of the two. Through numerical computation of both real and simulated time

series of impact crater events they concluded that the terrestrial impact crater

record is created by a mixture of periodic and aperiodic components, so that

the random events constitute a majority. Grieve et al. (1988) concluded that it

is difficult to consistently detect periodicity in the impact craters record due to

aging uncertainties. They analyzed a simulated impact crater data set containing

50% periodic and 50% aperiodic craters and concluded that the correct period

could be detected at 99% confidence level only in 50% of the cases where crater

aging uncertainties were < 10% of the periodicity in the data.

The detection of periodicity in the impact crater record has been criticized

based on the large uncertainties attached to many impact crater age estim-

ates (e.g. Deutsch and Schaerer, 1994; Grieve and Pesonen, 1996). For example,

Grieve and Pesonen (1996) concluded that ”Statements regarding a periodicity

in the terrestrial cratering record.. are considered unjustified, based on statistical

arguments and the large uncertainties attached to many crater age estimates”.

Similarly, Jetsu (1997) and Jetsu and Pelt (2000) have argued that the detected

periods have been due to ”human signal”: the tendency of rounding uncertain

impact crater ages to integer numbers. They found that this rounding enhances

spurious periodicities between 10 and 100 million years and apart from these

artificial periods, did not find any real periodicity in either impact crater data,

nor in the epochs of mass extinctions of species.

The authenticity of the detected periodicity in the terrestrial impact crater

data is debatable. It is possible, however, that real periodicity is present and

could be detected from more accurate and complete data. In this study we

analyze the possibility to detect a real periodicity from the currently available

data and, if the current data are found inadequate, we will try to determine the

minimum requirements for these data: the quantity (number of craters) and the

quality (accuracy in crater ages) that would allow the detection of real periodicity

if it were present.

In Chapter 2, we calculate fractional numerical estimates for the detectability

of terrestrial impact craters assuming that the impact cratering rate has stayed

relatively constant over the time scale covered by this study. The difference

in detectability of older and younger craters would therefore be completely due

to volcanic and seismic activity, and erosion effects. These fractional estimates
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are then utilized in the distribution functions in the following Chapters. In

Chapter 3 we define an uncertainty for impact crater ages that is relative to the

presumed period in the data. This definition of uncertainty will also be used in

the distribution functions in the following Chapters.

Next, we derive the probability density and cumulative distribution func-

tions for crater detectability for the purely periodic (Chapter 5) and aperiodic

(Chapter 6) impact cratering cases and for an arbitrary combination of these

cases (Chapter 7). Two specific combinations, where the periodic component

generates either one or two thirds of all impact craters, are further investigated

in the study. Furthermore, we describe the process for creating series of n impact

crater ages t1, t2, .., tn from these distribution functions that we use later in our

simulations.

The Rayleigh test is introduced and formulated in Chapter 8 as the method

used in our period analysis. In Chapter 9, we introduce our simulation hypotheses

against which we will later test the statistical significance of our period analysis

results. We also compute statistics for these hypotheses H1, H2, H3 and H4.

In Chapter 10, we conduct the main period analysis of our simulated impact

crater series of time points and present our results, which are finally discussed in

Chapter 11.



Chapter 2

Real data: estimated real

detection rate

In this Chapter we derive a model for the detectability of terrestrial impact

craters as a function of their age assuming that the terrestrial impact cratering

rate has remained constant and the decreasing detectability is completely due to

erosion effects.

Neukum and Ivanov (1994) studied the craters on the Moon and arrived at

the conclusion that the lunar impact cratering rate has remained constant for

about 3000 million years. This would imply that the cratering rate on Earth has

also been constant, at least over the past 300 million years covered by this study.

If the terrestrial cratering rate has remained constant, the apparent deviation

from this steady cratering is solely caused by geological and other processes

that reduce the detection rate as a function of crater age. Several geological

and other processes influence the detectability of the terrestrial impact craters,

e.g. erosion, sedimentary burial, plate tectonics and volcanism. The terrestrial

impact cratering rate for the geologically stable areas, such as Australia, North

America and Europe, has been investigated by Hughes (2000). He concluded that

nearly all craters having a diameter D > 2.4 km and an age t < 125 ± 20 My

in these regions are still detectable, datable and measurable. The detectability

decreases for older craters. For example, in Europe the detectability of craters

with t < 300 My and D > 2.4 km was reduced to 73%.

In this paper, we estimate the detectability of craters by using the same

samples already studied in Jetsu (1997) and Jetsu and Pelt (2000). We use two

particular sub-samples, where the crater diameter (D), age uncertainty (σt) or

age (t) have been used as a selection criterion. Similar criteria have been used also

in some earlier studies (Grieve and Pesonen, 1996; Matsumoto and Kubotani,

1996) to remove undue bias towards small and young craters which erode away

quickly becoming undetectable, and also to eliminate craters whose age is too

4



Real data: estimated real detection rate 5

uncertain to be useful in period analysis. The selection criteria for these 2nd and

3rd sub-samples of Jetsu (1997) and Jetsu and Pelt (2000) were

C2 : t ≤ 250 My, σt ≤ 20 My, D ≥ 5 km (n = 34)

C3 : 5 My ≤ t ≤ 300 My, σt ≤ 20 My (n = 35).

These two crater sub-samples are given in Table 2.1.

We use the data in C2 and C3 to provide a direct estimate for the detectability

of craters over the whole terrestrial surface based on the above assumption of

constant terrestrial cratering rate (Hughes, 2000; Neukum and Ivanov, 1994). We

emphasize that our data also contain craters from geologically less stable regions

than those studied by Hughes, where the detection probability is lower.

Within C2 and C3, these data are divided into ten time intervals of equal

length of 25 and 30 My, respectively. That is, we assume ten cycles of equal

length during the whole time span of the data in C2 and C3. The fraction of

craters within each interval is given in the 2nd and 3rd columns of Table 2.2.

For example, the first time interval 0 My ≤ t < 30 My contains 5 craters out

of the total of 35 craters in C3. Assuming that the cratering rate has remained

constant, the detection rate should be monotonically decreasing over time. There

are minor fluctuations, which are most probably caused by random effects. For

example, the 3rd, 4th and 5th intervals in C3 gave the fractions 6/35, 2/35 and

6/35. For this reason, we have averaged these fractions of C2 and C3 for pairs of

consecutive cycles on the 4th and 5th columns of Table 2.2. Both sub-samples

contain the same 31 craters, which equals 91% and 89% out of all craters in

C2 and C3, respectively. Thus the time distributions in both samples are very

similar, and we have therefore averaged 4th and 5th columns on the 6th column.

These final fractions Ak will be used in our simulations (i.e. as the multipliers

Ak in Eqs. 5.3 & 5.4 and 6.3 & 6.5). Hence, the detectability of terrestrial

impact craters is introduced into our simulations by multiplying the sum of the

periodic and aperiodic distribution functions with these fractions Ak from Table

2.2. In other words, these Ak values are assumed to represent the fractions of

craters detected within each particular cycle k, if the cratering rate has remained

constant. Note that our definition gives

K
∑

k=1

Ak = 1 (2.1)

where K = 10 and k = 1, 2, ...K.
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Table 2.1: Our terrestrial impact crater data: name, location, age ([t] = My),

diameter ([D] = km), sub-sample (C2 or C3 from Jetsu (1997)), cycle number

k = 1, ...10 in C2 or C3.

Crater Location t D C2 C3 k in C2 k in C3

Zhamanshin Kazakhstan ±.1 13.5 Yes No 1 -

Bosumtwi Ghana 1.03 ± .02 10.5 Yes No 1 -

El’gygytgyn Russia 3.5 ± .5 18 Yes No 1 -

Bigach Kazakhstan 6 ± 3 7 Yes Yes 1 1

Shunak Kazakhstan 12 ± 5 3.1 No Yes - 1

Ries/Steinheim Germany 15 ± 0.7 24.3 Yes Yes 1 1

Haughton Canada 23 ± 1 24 Yes Yes 1 1

Logancha Russia 25 ± 20 20 Yes Yes 2 1

Popigai Russia 35 ± 5 100 Yes Yes 2 2

Chesapeake Bay U.S.A 35.5 ± .6 85 Yes Yes 2 2

Wanapitei Canada 37 ± 2 7.5 Yes Yes 2 2

Mistastin Canada 38 ± 4 28 Yes Yes 2 2

Logoisk Belarus 40 ± 5 17 Yes Yes 2 2

Chiyli Kazakhstan 46 ± 7 5.5 Yes Yes 2 2

Kamensk / Gusev Russia 49 ± .14 25.2 Yes Yes 2 2

Montagnais Canada 50.5 ± .76 45 Yes Yes 3 2

Ragozinka Russia 55 ± 5 9 Yes Yes 3 2

Marquez U.S.A 58 ± 2 13 Yes Yes 3 2

Chicxulub Mexico 64.98 ± .05 170 Yes Yes 3 3

Kara/Ust-Kara Russia 73 ± 2.1 69.6 Yes Yes 3 3

Manson U.S.A 73.8 ± .3 35 Yes Yes 3 3

Lappajärvi Finland 77.3 ± .4 23 Yes Yes 4 3

Boltysh Ukraine 88 ± 3 24 Yes Yes 4 3

Dellen Sweden 89 ± 2.7 19 Yes Yes 4 3

Steen River Canada 95 ± 7 25 Yes Yes 4 4

Carswell/Zapadnava Canada/Ukraine 115 ± 7.1 39.2 Yes Yes 5 4

Zeleny Gai Ukraine 120 ± 20 2.5 No Yes - 5

Mien Sweden 121 ± 2.3 9 Yes Yes 5 5

Tookoonooka Australia 128 ± 5 55 Yes Yes 6 5

Romistrovka Ukraine 140 ± 20 2.7 No Yes - 5

Gosses Bluff Australia 142.5 ± .5 22 Yes Yes 6 5

Mjølnir Norway 143 ± 20 40 Yes Yes 6 5

Puchenzh-Katunki Russia 175 ± 3 80 Yes Yes 8 6

Rochechouart France 186 ± 8 23 Yes Yes 8 7

Wells Creek/Red Wing U.S.A 200 ± 18 15 Yes Yes 9 7

Manicouagan Canada 214 ± 1 100 Yes Yes 9 8

Araguainha Dome Brazil 247 ± 5.5 40 Yes Yes 10 9

Clearwater West/East Canada 290 ± 14 44.4 No Yes - 10
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Table 2.2: The fraction of the craters within each cycle k: Col. 2 and 3 are the

fractions within individual cycles of C2 and C3. Col. 4 and 5 are the averaged

fractions over two consecutive cycles of C2 and C3. The means of Col. 4 and 5

in the last column are the final values for the Ak fractions used in our simulation

of artificial crater data.

k Col. 2 Col. 3 Col. 4 Col. 5 Ak

1 6/34=0.1765 5/35=0.1429 7.0/34=0.2059 7.5/35=0.2143 0.2101

2 8/34=0.2353 10/35=0.2857 7.0/34=0.2059 7.5/35=0.2143 0.2101

3 6/34=0.1765 6/35=0.1714 5.0/34=0.1417 4.0/35=0.1143 0.1307

4 4/34=0.1177 2/35=0.0571 5.0/34=0.1417 4.0/35=0.1143 0.1307

5 2/34=0.0588 6/35=0.1714 2.5/34=0.0735 3.5/35=0.1000 0.0868

6 3/34=0.0882 1/35=0.0286 2.5/34=0.0735 3.5/35=0.1000 0.0868

7 0/34=0.0000 2/35=0.0571 1.0/34=0.0294 1.5/35=0.0429 0.0361

8 2/34=0.0588 1/35=0.0286 1.0/34=0.0294 1.5/35=0.0429 0.0361

9 2/34=0.0588 1/35=0.0286 1.5/34=0.0441 1.0/35=0.0286 0.0363

10 1/34=0.0294 1/35=0.0286 1.5/34=0.0441 1.0/35=0.0286 0.0363



Chapter 3

Real data: average crater age

uncertainty

In this Chapter we define a period dependent impact crater age uncertainty that

is later used in our simulated data in Chapters 5 and 6.

When compared to geological time scales, impact cratering is an instant-

aneous event, which in principle allows for precise dating with high resolution.

Current impact crater ages have been derived using two fundamentally differ-

ent approaches: other depend on dating primary shock-related phenomena such

as shock metamorphism and displacement of target rocks, others on examining

secondary features such as sedimentation and sometimes environmental effects

(Deutsch and Schaerer, 1994). Currently only few of the geochronometers used

in the impact crater dating provide self-consistent crater ages. It should be noted,

that the error estimates given to crater ages in many studies are also often un-

realistically small, since the quoted errors only reflect the internal precision of the

aging (Deutsch and Schaerer, 1994). In order to establish a comparable definition

for dating uncertainties between real impact cratering record and our simulated

record (in Chapters 5 and 6), we will define the errors in relation with the pro-

posed periodicity in the data. A similar definition for crater age uncertainty has

previously been used e.g. in Grieve et al. (1988).

If we assume K cycles of equal length during the whole time span of the

impact crater data t1, t2, .., tn, the length of one time interval, i.e. the period PK

will be

PK =
tn − t1

K
. (3.1)

Using this period, the aging uncertainty relative to the period PK for any given

crater would be

8



Real data: average crater age uncertainty 9

σP =
σt

PK

, (3.2)

where σt is the absolute uncertainty of the actual crater age. Finally the average

crater age uncertainty for the whole data set would be

σ̄P =
1

n

n
∑

i=1

σt i

PK

, (3.3)

where n is the number of craters in the data set and σt i is the aging uncertainty

for each of the crater ages.

If we use this definition for the actual crater data in Table 2.1 and assume ten

(K = 10) full cycles of equal length during the whole time span of the data in C2

and C3, we will get an average relative uncertainty of σ̄P = 0.152 and σ̄P = 0.186

for the sub samples C2 and C3 respectively as shown in Table 3.1.
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Table 3.1: Aging uncertainties for our terrestrial impact crater data. In the

last two rows first the average σ̄P of uncertainties σP for both sub-samples is

calculated and finally the average over these two averages σP .

Crater t σt PK,C2
PK,C3

σP for C2 σP for C3

Zhamanshin 0 0.1 24.7 - 0.004 -

Bosumtwi 1.03 0.02 24.7 - 0.001 -

El’gygytgyn 3.5 0.5 24.7 - 0.020 -

Bigach 6 3 24.7 28.4 0.121 0.106

Shunak 12 5 - 28.4 - 0.176

Ries/Steinheim 15 0.7 24.7 28.4 0.028 0.025

Haughton 23 1 24.7 28.4 0.040 0.035

Logancha 25 20 24.7 28.4 0.810 0.704

Popigai 35 5 24.7 28.4 0.202 0.176

Chesapeake 35.5 0.6 24.7 28.4 0.024 0.021

Wanapitei 37 2 24.7 28.4 0.081 0.070

Mistastin 38 4 24.7 28.4 0.162 0.141

Logoisk 40 5 24.7 28.4 0.202 0.176

Chiyli 46 7 24.7 28.4 0.283 0.246

Kamensk / Gusev 49 0.14 24.7 28.4 0.006 0.005

Montagnais 50.5 0.76 24.7 28.4 0.031 0.027

Ragozinka 55 5 24.7 28.4 0.202 0.176

Marquez 58 2 24.7 28.4 0.081 0.070

Chicxulub 64.98 0.05 24.7 28.4 0.002 0.002

Kara/Ust-Kara 73 2.1 24.7 28.4 0.085 0.074

Manson 73.8 0.3 24.7 28.4 0.012 0.011

Lappajärvi 77.3 0.4 24.7 28.4 0.016 0.014

Boltysh 88 3 24.7 28.4 0.121 0.106

Dellen 89 2.7 24.7 28.4 0.109 0.095

Steen River 95 7 24.7 28.4 0.283 0.246

Carswell/Zapadnava 115 7.1 24.7 28.4 0.287 0.250

Zeleny Gai 120 20 - 28.4 - 0.704

Mien 121 2.3 24.7 28.4 0.093 0.081

Tookoonooka 128 5 24.7 28.4 0.202 0.176

Romistrovka 140 20 - 28.4 - 0.704

Gosses Bluff 142.5 0.5 24.7 28.4 0.020 0.018

Mjølnir 143 20 24.7 28.4 0.810 0.704

Puchenzh-Katunki 175 3 24.7 28.4 0.121 0.106

Rochechouart 186 8 24.7 28.4 0.324 0.282

Wells Creek/Red Wing 200 18 24.7 28.4 0.729 0.634

Manicouagan 214 1 24.7 28.4 0.040 0.035

Araguainha Dome 247 5.5 24.7 28.4 0.223 0.194

Clearwater West/East 290 14 - 28.4 - 0.493

σ̄P for C2 and C4 0.170 0.202

Average for σ̄P ’s 0.186



Chapter 4

Real data: estimated periodicity

and aperiodicity

The presence of periodicity in terrestrial impact cratering and mass extinctions

of species has been proposed in numerous subsequent studies after the first de-

tections by Alvarez and Muller (1984) and Rampino and Stothers (1984). Even

if such periodicity does exist, all impacts on Earth are not necessarily periodic.

This has been suggested for example by Trefil and Raup (1987), who conclude

that ”[crater] record seems to show both periodic and random components, with

the random part constituting about two-thirds of the whole”. Furthermore, ac-

cording to Neukum and Ivanov (1994) the cratering rate for the Earth-Moon

system has been nearly constant for approximately 3000 million years which in-

dicates that even if a periodic component exists, it may have a relatively low

amplitude in comparison with the overall cratering rate. Therefore, when con-

structing a simulated distribution for the terrestrial impact craters, both periodic

and aperiodic impacts must be considered.

Periodic impacts could be due to comets. Periodic “comet showers” from the

Oort cloud towards the inner Solar System might be caused by an unseen solar

companion “Nemesis” (e.g. Davis et al., 1984; Whitmire and Jackson, 1984) or

by the oscillation of Sun in the galactic plane (e.g. Schwartz and James, 1984).

If such processes perturb comets into orbits that enter the inner Solar System,

the comets will remain in these orbits until they are scattered to new hyperbolic

orbits by further perturbations, collide with another body, or are destroyed by

close encounters with the Sun. These orbits form a Sun-centered “loss cone” in

the comets velocity space. The time that it takes for the comets in this loss

cone to be consumed by the aforementioned processes has been studied by Hills

(1981). Characteristic survival time for such a comet in orbit with minor axis of

a = 3×103 AU is approximately four orbital periods, or about 7×105 yr. On the

other hand, the suggested periodicities for the Oort cloud perturbations filling

11
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this loss cone are approximately 2.5−3.0×107 yr (e.g. Alvarez and Muller, 1984;

Rampino and Stothers, 1984; Napier, 2006; Chang, 2006). Thus the time interval

between comet showers would be approximately two magnitudes longer than the

duration of the shower and for the purposes of this study can be considered to

be an ”instantaneous” event. The simulation of such a periodic component is

formulated in Chapter 5.

Aperiodic impacts are likely to be mostly due to main asteroid belt objects

that are transported to Earth crossing orbits by gravitational resonance. For

example, numerical simulations have shown that 90% of asteroids injected into

3:1, 5:2 or ν6 resonances decay in a few million years (Gladman et al., 1997).

Since this time scale for the destruction of asteroids on Earth crossing orbits

is so short, the simulations predict a much smaller population of Near Earth

Asteroids (NEA) than what has been discovered from observations. One possible

explanation presented for this problem is a slow “diffusion” of asteroids close to

the resonance borders to the actual resonances (Gladman et al., 1997), which has

been shown to happen in Kuiper belt (Morbidelli, 1997; Duncan et al., 1995).

Gladman et al. (1997) also suggests that a contributing factor to the observed

NEA population could be the higher order Jovian resonances (e.g. 8:3 or 9:4)

which may induce Earth-crossing asteroid orbits in much longer time scales.

Finally, some portion of the NEAs might be old comet nuclei rather than main

asteroid belt objects.

It has also been suggested that the terrestrial impacts from the known Earth-

crossing meteor streams (especially the Taurid Complex) are not randomly dis-

tributed, but may correlate over a time scale of ≈ 10 to 104 years (Steel et al.,

1994). However, the kinetic energy of these objects would not cause detect-

able craters, only atmospheric detonations, such as the Tunguska event in 1908.

Since these impacts from Earth-crossing meteor streams do not contribute sig-

nificantly into the impact crater record, this possible periodic mechanism is not

considered further in our study. The random temporal distribution of asteroid

impacts is further supported by the comparison of simulations against observed

fireball data, which shows that the orbital elements of Earth-crossing chondrite

asteroids are consistent with steady state injections to 3:1 and ν6 resonances

(Morbidelli and Gladman, 1998). In short, it is relatively safe to assume that the

impact events caused by Earth-crossing asteroids can be approximated with an

even (i.e. random) distribution, where the impact probability remains constant

over time. Our formulation for the aperiodic component simulation is presented

in Chapter 6.

The actual ratio between periodic and aperiodic components is unknown. In

this paper this ratio will be denoted by S so that a value of S = 0 represents

a fully periodic case and that of S = 1 a fully aperiodic case. This parameter
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will be introduced to our simulations in Eqs. 7.1 & 7.2. The formulation for the

simulated combination of the aperiodic and periodic cases is given in Chapter 7.



Chapter 5

Simulated data: periodic

component

In this Chapter we formulate the simulation of the periodic component of ter-

restrial impact cratering. We will simulate ten cycles of periodic short impact

events. Let the whole time interval be 0 ≤ t ≤ 10 and period P0 = 1. Since the

duration of each comet shower is assumed to be very much shorter than P0, the

probability density function of these periodic events is approximated with

f1(t) = δ(t),

where δ(t) is the Dirac delta function. This function is defined by the following

relations

δ(t − t0) = 0, t 6= t0
∫ ∞

−∞

δ(t)dt = 1

∫ ∞

∞

g(t)δ(t − t0)dt = g(t0),

where the g(t) must be a well-behaved function. From this definition it fol-

lows that f1(t − t0) can be described as an infinitely high thin spike at t0

(Arfken and Weber, 1995).

Let us assume that the values of Ak represent the fraction of craters detected

within the k:th cycle, where k = 1, 2, ..., K. The sum of these fractions is
∑

Ak =

1. The probability distribution function must satisfy
∫∞

−∞
f1(t)dt = 1. Hence a

suitable form for the respective probability density function is

fP (t) =

K
∑

k=1

Akf1(t − tk),

where tk = k− 1
2

and k = 1, 2, ..., K. Here the subscript P in fP (t) is adopted to

denote the periodic component in the simulated crater distribution. Incidentally,

the above definition of fP (t) is identical to the Dirac comb function

14
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∆P (t) =

∞
∑

k=−∞

δ(t − Pk),

if Ak = 1, P = P0 = 1 and 1 ≤ k ≤ K (Williams, 1999).

Since craters can not be dated with absolute precision, all the crater ages have

some uncertainty attached to them. We assume that this uncertainty follows a

Gaussian (i.e. normal) distribution with a mean µ and a standard deviation σP

as defined in Chapter 3.

The probability density and cumulative distribution functions are

fG(t, µ, σP ) =
1

σ
√

2π
e
− 1

2

“

t−µ
σP

”2

(5.1)

FG(t, µ, σP ) =
1

σP

√
2π

∫ t

−∞

e
− 1

2

“

t′−µ
σP

”2

dt′. (5.2)

From the definition of f1(t) it follows that the convolution with this error dis-

tribution fG(t, µ, σP ) modifies the probability density functions for the periodic

component into the form

fP (t) =
K
∑

k=1

AkfG(t − tk, µ, σP ).

The mean of the error in the ages of the craters is assumed to be µ = 0. Therefore,

the following relation

fG(t − tk, µ = 0, σP ) = fG(t, µ = tk, σP ) = fG(t, tk, σP )

gives the final form of the probability density function

fP (t, σP ) =

K
∑

k=1

AkfG(t, tk, σP ). (5.3)

Hence the cumulative distribution function is simply

FP (t, σP ) =

K
∑

k=1

AkFG(t, tk, σP ). (5.4)

These two functions fP (t, σP ) and FP (t, σP ) are shown in our Fig. 5.1 for the

cases σP = 0.05, 0.10, 0.20 and 0.30.
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Figure 5.1: Probability density and cumulative distribution functions (Eqs. 5.3

and 5.4) for fully periodic simulated impact events (S = 0), where the dating

inaccuracies are σP = 0.05, 0.10, 0.20 or 0.30. Note that this case is equivalent

to setting S = 0 in Eqs. 7.1 & 7.2.



Chapter 6

Simulated data: aperiodic

component

In this Chapter we formulate the simulation of the aperiodic component of ter-

restrial impact cratering. During the cycle k, an aperiodic (i.e. even or ran-

dom) component has the following probability density and cumulative distribu-

tion functions

f2(t, ak, bk) =











0, t < ak

1
bk−ak

, ak ≤ t ≤ bk

0, t > bk,

F2(t, ak, bk) =











0, t < ak

t−ak

bk−ak
, ak ≤ t ≤ bk

1, t > bk

where ak = k − 1 and bk = k.

Let the values of Ak represent the fraction of craters detected within cycle

k, where k = 1, 2, ..., K. The sum of these fractions is
∑

Ak = 1 and the

probability distribution function must satisfy
∫∞

−∞
f2(t)dt = 1. Hence the forms

for the probability density and cumulative distribution functions are

fA(t) =
K
∑

k=1

Akf2(t, ak, bk) (6.1)

FA(t) =

K
∑

k=1

AkF2(t, ak, bk), (6.2)

where the subscript “A” in fA(t) and FA(t) is adopted to denote the aperiodic

(i.e. random) component in the simulated crater distribution.

17
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Figure 6.1: Density and cumulative distribution functions (Eqs. 6.3 and

6.5) in the fully aperiodic case, where the dating accuracies are σP =

0.05, 0.10, 0.20 or 0.30. Note again that these are equivalent to the case S = 1 in

Eqs. 7.1 & 7.2.

Again, an uncertainty is introduced when the ages of the craters are determ-

ined. These uncertainties in the ages of the impact craters will modify the above

functions fA(t) and FA(t). The subsequent forms for these functions are derived

in Appendix A.12 (Eqs. A.12 and A.13), where we obtain:

fA(t, σP ) =

K
∑

k=1

Ak [FG(t, k − 1, σP ) − FG(t, k, σP )] (6.3)

FA(t, σP ) =

K
∑

k=1

Ak{ (6.4)

FG(t, k, σP )

+(t − k + 1) [FG(t, k − 1, σP ) − FG(t, k, σP )]

+σ2
P [fG(t, k + 1, σP ) − fG(t, k, σP )]

}.

These functions fA(t, σP ) and FA(t, σP ) are shown in our Fig. 6.1 for the cases

σP = 0.05, 0.10, 0.20 and 0.30.



Chapter 7

Simulated data: combined

components

The probability density function fP (t, σP ) and the cumulative distribution func-

tion FP (t, σP ) describe the statistics for a fully periodic case (Sect. 5: Eqs. 5.3

and 5.4). The statistics of a fully aperiodic case are described by the respective

functions fA(t, σP ) and FA(t, σP ) (Sect. 6: Eqs. 6.3 and 6.5). A mixture of these

two cases can be described with the functions

fAP (t, σP ) = SfA(t, σP ) + (1 − S)fP (t, σP ) (7.1)

FAP (t, σP ) = SFA(t, σP ) + (1 − S)FP (t, σP ), (7.2)

where the parameter 0 ≤ S ≤ 1 determines the relative contribution of the

periodic and aperiodic components. The case of S = 0 is fully periodic and that

of S = 1 is fully aperiodic. In this paper, we simulate the cases S = 0, 1
3
, 2

3
and

1. The cases S = 0 and S = 1 have already been displayed in Figs. 5.1 and 6.1.

For the two values S = 1
3

and 2
3
, both components are present simultaneously.

These two cases are displayed in Figs. 7.1 and 7.2, respectively.

In this paper we create simulated series of time points of impact crater ages

from the cumulative distribution function defined by the Eq. 7.2. A series of

n time points is created by first selecting a random sample of x1, x2, .., xn real

numbers from an even distribution [0, 1). Then we invert the relation

xk = FAP (tk, σP , S), (7.3)

which gives the simulated data t1, t2, .., tn for any chosen combination of n, σP

and S. This idea is depicted in Fig. 7.3.

19
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Figure 7.1: The case S = 1
3

in Eqs. 7.1 & 7.2. The dashed line represents the

aperiodic and the dotted line the periodic components, while the continuous line

denotes their sum.

Figure 7.2: The case S = 2
3

in Eqs. 7.1 & 7.2, otherwise as in Fig. 7.1.
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Figure 7.3: The simulated time series of impact craters is derived from cumulative

distribution function FAP (t, σP , S), where σP = 0.3 and S = 1. The time series

of t1 ≤ t2.. ≤ tn of n = 25 impact crater ages is obtained from the Eq 7.3, where

x1 ≤ x2.. ≤ xn are evenly distributed random numbers between 0 and 1.



Chapter 8

Rayleigh test

In this Chapter we introduce the Rayleigh test and it’s statistics. This periodicity

test is later used in in our simulations in Chapters 9 and 10.

In astronomy, time points are often sparse and have a low event rate compared

to the expected frequency of some periodic phenomena. Individual cycles are not

visible in this kind of data, but folding, i.e. splitting the data into parts according

to the expected frequency, produces a phase distribution of data. Periodicity can

then be detected in this phase distribution using some periodicity test. These

phases φi for a series of time points t0 ≤ t1 ≤ ... ≤ tn are calculated with

φi = FRAC[(ti − t0)P
−1] = FRAC[(ti − t0)f ], (8.1)

where FRAC[x] removes the integer part of it’s argument x. The relation

between period P and frequency f is f = P−1. Thus these phases are always

0 ≤ φi < 1.

One of the most widely used non-parametric methods for detecting periodicity

is the Rayleigh test (e.g. Kruger et al., 2002). Besides astronomy, Rayleigh test

has been used in several other fields, including biology and geology. For example,

Batschelet (1981) analyzed the randomness in the observed flight directions of a

flight of birds using this method.

Rayleigh method’s test statistic or Rayleigh power is

z =
1

n





(

n
∑

i=1

cosθi

)2

+

(

n
∑

i=1

sinθi

)2


 , (8.2)

where θi is the phase angle of phase φi defined by θi = 2πφi = 2πfti. This z

measures the directional distribution of the vectors [cosθi, sinθi]. It is large when

these vectors are pointing to the same direction. Thus the Rayleigh method is

sensitive to uni-modal phase distributions. The value for this test statistic z

is independent from the chosen zero point t0 of the time series ti. In order

22
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to determine the statistics of the Rayleigh power z, we fix the following null

hypothesis H0:

”The phases φi with an arbitrary period P have a random (i.e. even)

distribution between [0, 1).”

For this H0, the density probability function of z for any one arbitrary tested

period P is

f(z) = e−z. (8.3)

By integrating we obtain the cumulative distribution function for z

P (z ≤ z0) = F (z0) = 1 − e−z0, (8.4)

which gives the probability for the test statistic z being equal or less than z0.

Normally, instead of testing one arbitrary period P , the test is applied to

all periods within a certain period range [Pmin, Pmax] Since the value for the

test statistic z is almost identical for two periods very close to each other, only

periods (or frequencies) that are far enough from each other can serve as two

independent tests.

The distance (f0) between two independent tested frequencies is

f0 =
1

tn − t1
=

1

∆T
, (8.5)

where ∆T = tn − t1. When this small difference f0 is added to any arbitrary

frequency f , the phases of the time points tn and t1 are ∆Tf = x and ∆T (f +

f0) = x + 1 (from Eq. 8.1), i.e. the phase difference during the whole time range

∆T is one full cycle. This means that the phases φi calculated with f and f + f0

are completely rearranged. Therefore, when calculating the periodogram z(f),

i.e. the Rayleigh test statistic within the frequency range [fmin, fmax], we will

actually test

m =
fmax − fmin

f0

(8.6)

independent frequencies. This number m of independent tests has also been

empirically verified (Jetsu and Pelt, 1996). Hence, the probability that z reaches

z0 at least once in all these m independent tests is

Q = 1 − (1 − e−z0)m, (8.7)

which is hereafter referred as the critical value for the Rayleigh test between fmin

and fmax.

The null hypothesis H0 is rejected if, and only if the critical value Q is less

than a preassigned significance level γ. If Q ≤ γ H0 is not rejected. The choice
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of this preassigned significance level is largely subjective, although in astronomy

the values γ = 0.01 or γ = 0.001 are often used. Significance level represents the

Type I error rate, i.e. it expresses the probability of falsely rejecting H0 when it

is in fact true.



Chapter 9

Simulation of fully aperiodic

hypotheses H1, H2, H3 and H4

The null hypothesis H0 formulated in Chapter 8 represents a case, where the

observed statistical impact crater age distribution is due to random impacts and

the detectability of the craters remains constant over time. With these assump-

tions, there is no reason to suspect that the phases φi of ti folded with any

arbitrary period P would not be evenly distributed between 0 and 1. However,

as discussed in Chapter 2, the detectability of impact craters in the real data

decreases as a function of time and therefore H0 does not necessarily correctly

represent the statistical distribution of observed impact crater ages. The stat-

istics of the case where the data are fully aperiodic (S = 1), the detectability

decreases as a function of time (Ak) and the crater age inaccuracy is σP , is hard

to derive analytically, but a numerical estimate for it can be determined by com-

puter simulation. We define the following four hypotheses which are used to

determine the statistics of our future simulations:

”H1: The cumulative distribution function is FAP (t, S = 1, σP = 0.05).”

This hypothesis H1 will be used in the simulations for the cases FAP (t, S =

0, σP = 0.05), FAP (t, S = 1
3
, σP = 0.05) and FAP (t, S = 2

3
, σP = 0.05).

”H2: The cumulative distribution function is FAP (t, S = 1, σP = 0.1).”

This hypothesis H2 will be used in the simulations for the cases FAP (t, S =

0, σP = 0.1), FAP (t, S = 1
3
, σP = 0.1) and FAP (t, S = 2

3
, σP = 0.1).

”H3: The cumulative distribution function is FAP (t, S = 1, σP = 0.2).”

This hypothesis H3 will be used in the simulations for the cases FAP (t, S =

25
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0, σP = 0.2), FAP (t, S = 1
3
, σP = 0.2) and FAP (t, S = 2

3
, σP = 0.2).

”H4: The cumulative distribution function is FAP (t, S = 1, σP = 0.3).”

This hypothesis H4 will be used in the simulations for the cases FAP (t, S =

0, σP = 0.3), FAP (t, S = 1
3
, σP = 0.3) and FAP (t, S = 2

3
, σP = 0.3).

The statistics for the Rayleigh test with these four hypotheses was calculated

by producing a time point series ti of n impact craters as already described

in the end of Chapter 7. The chosen cumulative distribution function in these

calculations was that mentioned in each particular hypothesis H1, H2, H3 or H4.

This simulation of ti with any particular hypothesis was repeated 100 000

times for each combination of our chosen dating error values σP = 0.05, 0.1, 0.2

& 0.3 and n values 10, 25, 50, 75 & 100. For each simulated sample t1, .., tn, the

periodogram z(f) was calculated for periodicities between 0.5 ≤ P ≤ 2.0 and

the highest z value was recorded. In order to prevent the detection of fractions,

especially P = P0

2
= 0.5, of the period P0 = 1 in our simulations, we disregarded

the highest value of z if it was closer than f0

2
to the highest (fmax) or the lowest

(fmin) tested frequency. In other words, only the highest value of z(f) between

fmin + f0

2
and fmax − f0

2
was recorded. By sorting these 100 000 highest z values

for each combination of n and σP in to ascending order we created a numerical

estimate for the minimum value z0 that corresponds to the chosen preassigned

significance level γ. In this study, we have chosen to test the data against the

critical levels γ = 0.01 and γ = 0.001. The corresponding numerical estimates

for z0 are presented in Table 9.1.

The values in Table 9.1 will be used in the next Chapter to determine the

statistical significance of found periodicities. For example, the hypothesis H1

gives the probability that P (z ≥ z0) = 0.01 when z0 = 6.861 for n = 10 and

σP = 0.05. This particular limit will be used for n = 10 in cases, where the

simulated distribution is FAP (t, S = 0, σP = 0.05), FAP (t, S = 1
3
, σP = 0.05) or

FAP (t, S = 2
3
, σP = 0.05)
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Table 9.1: Numerical simulated estimates of the z0 limit for Rayleigh test statistic

z that correspond to the critical values Q = 0.01 and Q = 0.001 under the

hypothesis H1, H2, H3 or H4.

H1 H2

n P (z ≥ z0) = 0.01 P (z ≥ z0) = 0.001 P (z ≥ z0) = 0.01 P (z ≥ z0) = 0.001

10 z0 = 6.861 z0 = 8.060 z0 = 6.902 z0 = 8.149

25 z0 = 7.907 z0 = 9.975 z0 = 7.885 z0 = 9.838

50 z0 = 8.427 z0 = 10.708 z0 = 8.284 z0 = 10.667

75 z0 = 8.728 z0 = 11.375 z0 = 8.608 z0 = 11.155

100 z0 = 9.073 z0 = 11.719 z0 = 8.878 z0 = 11.534

H3 H4

n P (z ≥ z0) = 0.01 P (z ≥ z0) = 0.001 P (z ≥ z0) = 0.01 P (z ≥ z0) = 0.001

10 z0 = 6.884 z0 = 8.188 z0 = 6.803 z0 = 8.077

25 z0 = 7.735 z0 = 9.912 z0 = 7.687 z0 = 9.703

50 z0 = 8.070 z0 = 10.367 z0 = 7.995 z0 = 10.324

75 z0 = 8.283 z0 = 10.587 z0 = 8.114 z0 = 10.475

100 z0 = 8.495 z0 = 11.018 z0 = 8.213 z0 = 10.764



Chapter 10

Simulation of different cases of

periodicity

In this Chapter, we determine the probability of finding the correct period P0 = 1

with the Rayleigh test from the time point series derived out of our chosen

simulated cumulative distribution function. The impact crater data of n crater

ages ti were created from the cumulative distribution function (Eq. 7.2) using

the same procedure as described in Chapter 9.

We performed 100 000 simulations for each combination of n, σP and S. In

each simulation, the periodogram z(f) was calculated for the frequency range

0.5 ≤ f ≤ 2.0. We selected the highest value for z from this range and recorded

the corresponding period P . Again, as in Chapter 9, in order to prevent the

detection of fractions, especially P = P0

2
= 0.5, of the correct period P0 = 1

in our simulated distribution FAP we accepted only the highest value of z(f)

between fmin + f0

2
and fmax− f0

2
. The statistical significance of this detected best

period was compared to our numerical estimates z0 for corresponding simulation

hypothesis H1, H2, H3 or H4. The values for these z0 were taken from the

Table 9.1. The equivalent significance was also computed from the the analytical

estimate (Eq. 8.7) for null hypothesis H0. Furthermore, we derived the result

for two significance levels: γ = 0.01 and γ = 0.001.

If the detected period P was statistically significant, we examined if this

period was the same as the correct period P0 = 1 embedded in our simulations.

We accepted the detected period P as correct if its corresponding frequency

f = 1
P

fell within 1
P0

− f0

2
≥ f ≥ 1

P0
+ f0

2
, where f0 is the distance between the

independent frequencies (Eq. 8.5). Periods P outside this range were considered

incorrect. Finally, statistically significant periods, both correct and incorrect

ones separately, were counted and divided by the number of simulations (i.e.

100 000) in order to get the probabilities for detecting the period for each of

these cases. All results of the simulations are presented in Tables 10.1 – 10.6.

28
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Figure 10.1: Example of a periodogram calculated from simulated data with

S = 1
3
, n = 25 and σP = 0.1. The limits for z0 having γ = 0.01 and 0.001 are

shown in dotted line for H0 (from Eq. 8.4, z0 = −ln[1−(1−Q)
1
m ]) and the dashed

line for H1 (from Table 9.1). The highest z exceeds the levels Q ≤ γ = 0.01 and

Q ≤ γ = 0.001 for both H0 and H1. The corresponding best detected frequency

f satisfies the criterion 1
P0

− f0

2
≥ f ≥ 1

P0
+ f0

2
, which is limited by the two solid

vertical lines. The two dashed vertical lines represent the limits for fmin + f0

2
and

fmax − f0

2
.
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Table 10.1: Results of simulations for FAP (t, S = 0, σP = 0.05), FAP (t, S =

0, σP = 0.1), FAP (t, S = 0, σP = 0.2) and FAP (t, S = 0, σP = 0.3) tested against

hypotheses H0, H1, H2, H3 and H4 with significance level γ = 0.01. Cases where

the correct period was found in 95 % or more of all 100 000 simulations are

marked in bold. Cases where periodicity was not found in any of the 100 000

simulation rounds are marked with an integer zero.

γ = 0.01 γ = 0.01

correct incorrect correct incorrect

|1 − f | ≤ f0

2
|1 − f | > f0

2
|1 − f | ≤ f0

2
|1 − f | > f0

2

H1 H0

10 0.999 0.001 0.999 0.001

25 1.000 0 1.000 0

50 1.000 0 1.000 0

75 1.000 0 1.000 0

100 1.000 0 1.000 0

H2 H0

10 0.676 0.012 0.685 0.011

25 1.000 0.000 1.000 0.000

50 1.000 0 1.000 0

75 1.000 0 1.000 0

100 1.000 0 1.000 0

H3 H0

10 0.031 0.013 0.035 0.013

25 0.298 0.019 0.379 0.030

50 0.831 0.012 0.888 0.017

75 0.979 0.004 0.989 0.004

100 0.998 0.001 0.999 0.001

H4 H0

10 0.003 0.011 0.003 0.010

25 0.008 0.012 0.013 0.023

50 0.023 0.018 0.039 0.036

75 0.050 0.024 0.081 0.047

100 0.087 0.029 0.136 0.058
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Table 10.2: As Table 10.1 but with γ = 0.001.

γ = 0.001 γ = 0.001

correct incorrect correct incorrect

|1 − f | ≤ f0

2
|1 − f | > f0

2
|1 − f | ≤ f0

2
|1 − f | > f0

2

H1 H0

10 0.993 0.001 0.597 0.001

25 1.000 0 1.000 0

50 1.000 0 1.000 0

75 1.000 0 1.000 0

100 1.000 0 1.000 0

H2 H0

10 0.259 0.004 0.040 0.001

25 1.000 0.000 1.000 0.000

50 1.000 0 1.000 0

75 1.000 0 1.000 0

100 1.000 0 1.000 0

H3 H0

10 0.004 0.001 0.000 0.000

25 0.106 0.003 0.140 0.005

50 0.620 0.005 0.712 0.007

75 0.927 0.002 0.959 0.003

100 0.991 0.000 0.997 0.001

H4 H0

10 0.000 0.001 0.000 0.000

25 0.001 0.001 0.001 0.002

50 0.004 0.002 0.008 0.005

75 0.012 0.004 0.023 0.007

100 0.024 0.005 0.046 0.011
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Table 10.3: Results of simulations for FAP (t, S = 1
3
, σP = 0.05), FAP (t, S =

1
3
, σP = 0.1), FAP (t, S = 1

3
, σP = 0.2) and FAP (t, S = 1

3
, σP = 0.3) tested against

hypotheses H0, H1, H2, H3 and H4, with significance level γ = 0.01. Cases where

the probability of finding an incorrect period is higher than that of finding the

correct one are in italics. Otherwise as in Table 10.1.

γ = 0.01 γ = 0.01

correct incorrect correct incorrect

|1 − f | ≤ f0

2
|1 − f | > f0

2
|1 − f | ≤ f0

2
|1 − f | > f0

2

H1 H0

10 0.205 0.003 0.208 0.014

25 0.777 0.003 0.837 0.012

50 0.995 0.000 0.998 0.001

75 1.000 0.000 1.000 0.000

100 1.000 0 1.000 0

H2 H0

10 0.099 0.013 0.104 0.013

25 0.560 0.012 0.651 0.019

50 0.962 0.002 0.980 0.003

75 0.998 0.000 0.999 0.000

100 1.000 0 1.000 0

H3 H0

10 0.009 0.010 0.010 0.009

25 0.052 0.013 0.077 0.024

50 0.226 0.018 0.308 0.032

75 0.457 0.018 0.571 0.032

100 0.669 0.014 0.778 0.023

H4 H0

10 0.002 0.010 0.002 0.008

25 0.003 0.010 0.005 0.019

50 0.006 0.011 0.011 0.025

75 0.011 0.013 0.020 0.029

100 0.017 0.014 0.031 0.032
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Table 10.4: As Table 10.3 but with γ = 0.001.

γ = 0.001 γ = 0.001

correct incorrect correct incorrect

|1 − f | ≤ f0

2
|1 − f | > f0

2
|1 − f | ≤ f0

2
|1 − f | > f0

2

H1 H0

10 0.107 0.003 0.034 0.000

25 0.587 0.003 0.643 0.004

50 0.979 0.000 0.989 0.000

75 1.000 0.000 1.000 0.000

100 1.000 0 1.000 0

H2 H0

10 0.026 0.002 0.004 0.000

25 0.335 0.003 0.382 0.004

50 0.882 0.001 0.929 0.002

75 0.992 0.000 0.997 0.000

100 1.000 0 1.000 0

H3 H0

10 0.001 0.001 0.000 0.000

25 0.011 0.001 0.016 0.003

50 0.084 0.003 0.126 0.006

75 0.241 0.005 0.330 0.009

100 0.424 0.004 0.565 0.008

H4 H0

10 0.000 0.001 0 0.000

25 0.000 0.001 0.001 0.002

50 0.001 0.001 0.002 0.003

75 0.002 0.001 0.004 0.004

100 0.003 0.001 0.007 0.004
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Table 10.5: Results of simulations for FAP (t, S = 2
3
, σP = 0.05), FAP (t, S =

2
3
, σP = 0.1), FAP (t, S = 2

3
, σP = 0.2) and FAP (t, S = 2

3
, σP = 0.3) tested against

hypotheses H0, H1, H2, H3 and H4,with significance level γ = 0.01. Otherwise

as in Table 10.3.

γ = 0.01 γ = 0.01

correct incorrect correct incorrect

|1 − f | ≤ f0

2
|1 − f | > f0

2
|1 − f | ≤ f0

2
|1 − f | > f0

2

H1 H0

10 0.015 0.012 0.016 0.011

25 0.070 0.013 0.107 0.027

50 0.248 0.014 0.356 0.034

75 0.476 0.013 0.620 0.031

100 0.666 0.010 0.803 0.023

H2 H0

10 0.008 0.009 0.009 0.009

25 0.037 0.012 0.060 0.024

50 0.142 0.015 0.217 0.033

75 0.296 0.014 0.428 0.034

100 0.459 0.012 0.621 0.030

H3 H0

10 0.002 0.008 0.002 0.008

25 0.005 0.010 0.009 0.019

50 0.014 0.011 0.025 0.024

75 0.028 0.011 0.052 0.028

100 0.045 0.011 0.086 0.032

H4 H0

10 0.001 0.010 0.001 0.008

25 0.001 0.009 0.002 0.016

50 0.002 0.009 0.003 0.020

75 0.002 0.094 0.004 0.021

100 0.003 0.009 0.005 0.022
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Table 10.6: As Table 10.5 but with γ = 0.001.

γ = 0.001 γ = 0.001

correct incorrect correct incorrect

|1 − f | ≤ f0

2
|1 − f | > f0

2
|1 − f | ≤ f0

2
|1 − f | > f0

2

H1 H0

10 0.004 0.002 0.001 0.000

25 0.021 0.002 0.030 0.003

50 0.112 0.003 0.176 0.007

75 0.258 0.003 0.404 0.009

100 0.444 0.003 0.629 0.008

H2 H0

10 0.001 0.001 0.000 0.000

25 0.009 0.002 0.013 0.003

50 0.047 0.002 0.083 0.006

75 0.127 0.002 0.224 0.008

100 0.240 0.002 0.399 0.008

H3 H0

10 0.000 0.001 0.000 0.000

25 0.001 0.001 0.001 0.001

50 0.002 0.001 0.005 0.003

75 0.006 0.001 0.012 0.004

100 0.011 0.001 0.025 0.005

H4 H0

10 0.000 0.001 0 0.000

25 0.000 0.001 0.000 0.001

50 0.000 0.001 0.000 0.002

75 0.000 0.001 0.001 0.002

100 0.000 0.001 0.001 0.002



Chapter 11

Discussion and Conclusions

In this Chapter we discuss our results, which are summarized in Tables 11.1 and

11.2. We also compare our results to those of Grieve et al. (1988) and comment

on the detection of a period of 28.4 million years by Alvarez and Muller (1984) in

the light of our simulations. Finally, we argue whether it is achievable to reliably

detect a possible real periodicity in the most recent impact crater data.

We raised a set of questions in the first Chapter relating to the quantity and

quality (i.e. the dating accuracy) of impact crater time points that would allow

detection of real periodicity in the cratering record. In order to answer these

questions we postulate that detecting the periodicity is ”certain” when we have

found the correct period P0 with the chosen preassigned significance level in more

than 95 % of the simulation rounds. These cases had a value of ≥ 0.950 in our

Tables 10.1 – 10.6.

The choice of the hypothesis that the simulated crater data was tested against,

either the null hypothesis H0 or one of H1, H2, H3 or H4, had little effect on the

results. In only two cases (n = 10, S = 0 & σP = 0.05 and n = 75, S = 0 &

σP = 0.2, both connected to the preassigned significance level γ = 0.001), was

the correct periodicity detected with certainty with our hypothesis (in this case

H1 and H3), while the same periodicity was not detected with the null hypothesis

H0. In general, with significance level of γ = 0.001 the hypothesis H1, H2, H3 or

H4 had a slightly higher chance of finding the correct period than H0, while with

significance level of γ = 0.01 the result was the opposite. One contributing factor

to this behaviour is that with small n (n < 50) the assumption of asymptotic

density distribution (Eq. 8.3) of the Rayleigh power z does not hold (Brazier,

1994). Since the results obtained when applying the different hypotheses do not

differ significantly, we will limit the following analysis only to the cases H1, H2,

H3 and H4, which we believe to give a more reliable representation for the real

crater data.

Using the above definition for ”certain” detection, when S = 0, that is all the

36
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Table 11.1: The minimum number n of simulated impact crater time points ti

needed to detect the correct periodicity at the preassigned significance level of

γ = 0.01 when tested against hypotheses H1, H2, H3 or H4. The cases where

periodicity could not be detected with certainty for n ≤ 100 are denoted with

”never”.
H1 H2 H3 H4

σP = 0.05 σP = 0.1 σP = 0.2 σP = 0.3

S = 0 n ≥ 10 n ≥ 25 n ≥ 75 never

S = 1
3

n ≥ 50 n ≥ 50 never never

S = 2
3

never never never never

Table 11.2: The minimum number n of simulated impact crater time points

ti needed to detect the correct periodicity at the preassigned significance level

γ = 0.001. Otherwise as in Table 11.1.

H1 H2 H3 H4

σP = 0.05 σP = 0.1 σP = 0.2 σP = 0.3

S = 0 n ≥ 10 n ≥ 25 n ≥ 100 never

S = 1
3

n ≥ 50 n ≥ 75 never never

S = 2
3

never never never never
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impact events are caused by periodic phenomena, the dating uncertainties of the

craters can not exceed σP = 0.2, if the periodicity is to be detected in the data

with the tested number of values ti below n = 100. For σP = 0.2, the period is

reliably found with n ≥ 75 when γ = 0.01 and with n ≥ 100 when γ = 0.001.

When one third of the cratering is caused by random events (S = 1
3
), P0 = 1

was reliably found only when crater age uncertainties are σP ≤ 0.1. For the

statistical significance γ = 0.01, the required number of crater events was n ≥ 50

while for γ = 0.001 it was n ≥ 75. When two thirds of the impact craters were

aperiodic (S = 2
3
), we were unable to find the periodicity with certainty in any

of our simulated cases. The probability of finding the correct period did not rise

above 66.6 % for any of the tested cases of n and σP .

In many cases where the correct periodicity could not be found in 95 % of

all simulations, there was also a slight chance of finding an incorrect period.

For example, when S = 1
3
, σP = 0.1, γ = 0.01 and n = 25, there was a 56 %

probability of finding the correct period, but also a 1.2 % probability of finding

an incorrect one (Table 10.3, hypothesis H2, row two). When S = 1
3

or S = 2
3

and σP = 0.3, detecting an incorrect period was more likely than detecting a

correct one for majority of the tested n. This phenomenon was more prominent

with γ = 0.01 than with γ = 0.001 as could be expected, since lowering the

significance level reduces the probability of falsely rejecting the null hypothesis,

i.e. finding periodicity in data where it is in reality not present.

The impact crater event data used in Alvarez and Muller (1984) is presented

in Table 11.3. The mean error of this data is σ̄P = 0.240 ≈ 0.2 and since two

of the craters (Logoisk and Boltysh) have the same age this is equivalent to

the case n = 10. Our data shows that if all these craters were due to periodic

impacts, the probability for detecting (with statistical significance of γ = 0.01) a

real periodicity in this data is 3 %. If one third of these impacts were aperiodic

(S = 1
3
) respective probability falls to 0.9 % and with two thirds of aperiodic

events (S = 2
3
) gives only 0.2 %. It seems therefore highly unlikely that the

periodicity detected by Alvarez & Muller would be a real signal caused by periodic

impact cratering events. A more probable explanation for this finding could be

some spurious periodicity caused by, for example, the crater age rounding effect

proposed in Jetsu (1997) and Jetsu and Pelt (2000).

The fractions Ak were derived from the sample of impact craters used in the

earlier papers (Jetsu, 1997; Jetsu and Pelt, 2000). We are aware that since then

the impact crater data has improved in both number of ti values and dating

accuracy σt. In Appendix B, we study a more recent set of impact crater data

using the impact crater catalogue of The Earth Impact Database maintained by

the Planetary and Space Science Centre at the University of New Brunswick.

Two sub-samples were taken from these more recent data that fulfilled the cri-
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Table 11.3: Impact crater data from which Alvarez and Muller (1984) detected

the period P = 28.4. This periodicity was used to calculate the relative uncer-

tainties σP . The ages (t) and uncertainties (σt, σp) are presented in millions of

years and crater diameters (D) in kilometers.

Crater Location D t σt σP

Karla Russia 10 7 4 0.317

Ries/Steinheim Germany 24 14.8 0.7 0.141

Mistastin Canada 28 38 4 0.246

Popigai Russia 100 39 9 0.704

Lappajärvi Finland 14 77 4 0.176

Steen River Canada 25 95 7 0.211

Logoisk Belarus 17 100 20 0.176

Boltysh Ukraine 25 100 5 0.141

Gosses Bluff Australia 22 130 6 0.211

Rochechouart France 23 160 5 0.176

Manicouagan Canada 70 210 4 0.141

Average error σ̄P of the data 0.240

terion C2 or C3 from Jetsu (1997) is presented in the Table B.1. The larger

sub-sample C3 has n = 45 ≈ 50 records and σP = 0.193 ≈ 0.2. According to

our simulations, the probability of finding the real period in these C3 data with

S = 0 is 83 % (γ = 0.01) or 62 % (γ = 0.001). With S = 1
3

the respective

probabilities are ≈ 22 % (γ = 0.01) or ≈ 8 % (γ = 0.001). Finally, with S = 2
3

the respective probabilities fall to ≈ 1 % (γ = 0.01) and 0.2 % (γ = 0.001). In

other words, current impact crater data are not sufficient to confidently detect a

possible real periodic signal. This is mainly due to the large uncertainties in the

crater age data. It should also be considered, that even these large uncertainties

might be underestimated (Deutsch and Schaerer, 1994). Our results more or less

confirm the conclusion of Grieve et al. (1988):

”It is difficult to consistently detect a period from a mixture of peri-

odic and random ages, unless the record is either dominated by the

periodic ages or the ages have small uncertainties (< 10 %) in respect

to the period in question”.

Currently the quantitative value of the ratio between periodic and aperiodic

events is not known, although the apparently constant terrestrial cratering rate

over the last 3000 million years (Neukum and Ivanov, 1994), the observed num-

ber of Near Earth Asteroids, the behavior of asteroid belt objects at Jovian res-

onances (Gladman et al., 1997) and the results in Trefil and Raup (1987) could
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indicate that a major portion of the impact craters are caused by aperiodic

events. If this is the case, according to our simulations the detection of real

periodicity is very difficult even though the crater ages in the data would have

smaller uncertainties in the future. If the random component dominates, the

detection of real periodicity might only be possible with several hundred highly

accurate terrestrial impact crater ages. Considering that the number of craters

in the C3 sub-sample has increased only by ten and C2 sub-sample by four in the

last decade, this is not likely to happen in the near future. Thus, the question

of periodicity in the terrestrial impact crater record might remain without final

answer for the foreseeable future.
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Appendix A

Convolution of the even and

Gaussian distributions

The first random variable x has an even distribution between a and b

g1(x, a, b) =











0, x < a
1

b−a,
a ≤ x ≤ b

0, x > b

G1(x, a, b) =











0, x < a
x−a
b−a

, a ≤ x ≤ b

1, x > b.

The second random variable y has a normal distribution with a mean µ and a

standard deviation σ

g2(y, µ, σ) =
1

σ
√

2π
e−

1
2(

y−µ
σ )

2

G2(y, µ, σ) =
1

σ
√

2π

∫ y

−∞

e−
1
2(

t−µ
σ )

2

dt.

Note that for simplicity we use the notation σ here in the Appendix, while in the

text this error is referred to as σP . The cumulative distribution function for the

sum

z = x + y

is obtained from the convolution

G(z) =

∫ ∞

−∞

G1(z − x, a, b)g2(x, µ, σ)dx. (A.1)

Because g2(x, µ, σ) > 0 for ∀x, the product G1(z − x, a, b)g2(x, µ, σ) ≥ 0 only

when G1(z − x, a, b) ≥ 0. There are three cases

44
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1. case: G1(z − x, a, b) = 0 when z − x < a ⇔ x > z − a

2. case: G1(z − x, a, b) = z−x−a
b−a

when a ≤ z − x ≤ b ⇔ z − b ≤ x ≤ z − a

3. case: G1(z − x, a, b) = 1 when z − x > b ⇔ x < z − b.

The convolution integral in Eq. A.1 becomes

G(z) =

∫ z−b

−∞

g2(x, µ, σ)dx +

∫ z−a

z−b

z − x − a

b − a
g2(x, µ, σ)dx (A.2)

= I0 +
1

b − a
(I1 − I2) ,

where the three integrals are

I0 =

∫ z−b

−∞

g2(x, µ, σ)dx = G2(z − b, µ, σ) (A.3)

I1 = (z − a)

∫ z−a

z−b

g2(x, µ, σ)dx (A.4)

= (z − a) [G2(z − a, µ, σ) − G2(z − b, µ, σ)]

I2 =

∫ z−a

z−b

xg2(x, µ, σ)dx. (A.5)

The derivative of the density function g2(x, µ, σ) can be used to solve I2.

d

dx
[g2(x, µ, σ)] =

d

dx

[

1

σ
√

2π
e−

1
2(

x−µ
σ )

2
]

(A.6)

=
1

σ
√

2π
e−

1
2(

x−µ
σ )

2 d

dx

[

−1

2

(

x − µ

σ

)2
]

= −g2(x, µ, σ)

(

x − µ

σ

)

1

σ

⇔ xg2(x, µ, σ) = µg2(x, µ, σ) − σ2 d

dx
[g2(x, µ, σ)]

Inserting this relation into Eq. A.5 gives

I2 =

∫ z−a

z−b

[

µg2(x, µ, σ) − σ2 d

dx
[g2(x, µ, σ)]

]

= µ[G2(z − a, µ, σ) − G2(z − b, µ, σ)] −
σ2[g2(z − a, µ, σ) − g2(z − b, µ, σ)] (A.7)

The solution for the integral in Eq. A.3 is now obtained from the I0, I1 and I2

solutions (Eqs. A.3, A.5 and A.7)

G(z) = G2(z − b, µ, σ)

+
1

b − a
{(z − a − µ) [G2(z − a, µ, σ) − G2(z − b, µ, σ)]

+ σ2 [g2(z − a, µ, σ) − g2(z − b, µ, σ)]}. (A.8)
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The density function for z = x + y is obtained from the convolution

g(z) =

∫ ∞

−∞

g1(z − x, a, b)g2(x, µ, σ)dx. (A.9)

Because g2(x, µ, σ) > 0 for ∀x, the product g1(z − x, a, b)g2(x, µ, σ) ≥ 0 only

when g1(z − x, a, b) ≥ 0. Again, there are three cases

1. case: g1(z − x, a, b) = 0 when z − x < a ⇔ x > z − a

2. case: g1(z − x, a, b) = 1
b−a

when a ≤ z − x ≤ b ⇔ z − b ≤ x ≤ z − a

3. case: g1(z − x, a, b) = 0 when z − x > b ⇔ x < z − b.

Therefore the integral in Eq. A.9 becomes

g(z) =

∫ z−a

z−b

1

b − a
g2(x, µ, σ)dx (A.10)

=
1

b − a
[G2(z − a, µ, σ) − G2(z − b, µ, σ)] .

Finally, we can check that the results in Eqs. A.8 and A.11, because the correct

results should fulfill the relation

dG(z)

dz
= g(z). (A.11)

But before solving the derivative of G(z), the relation in Eq. A.7 rewritten into

the form:

xg2(x, µ, σ) − µg2(x, µ, σ) + σ2 d

dx
[g2(x, µ, σ)] = 0.

This gives the following two useful relations

(z − a)g2(z − a, µ, σ) − µg2(z − a, µ, σ) + σ2 d

dx
[g2(z − a, µ, σ)] = 0

−(z − b)g2(z − b, µ, σ) + µg2(z − b, µ, σ) − σ2 d

dx
[g2(z − b, µ, σ)] = 0.

The sum of the terms underlined on each line below is zero:

dG(z)

dz
=

dG2(z − b, µ, σ)

dz
+

1

b−a



[G2(z−a, µ, σ)−G2(z−b, µ, σ)]+(z−a−µ)

»

dG2(z−a, µ, σ)

dz
−

dG2(z−b, µ, σ)

dz

–

+σ
2

»

dg2(z−a, µ, σ)

dz
−

dg2(z−b, µ, σ)

dz

–ff

=

g2(z − b, µ, σ) +
1

b−a



[G2(z−a, µ, σ)−G2(z−b, µ, σ)]+(z−a−µ) [g2(z−a, µ, σ)−g2(z−b, µ, σ)]+σ
2

»

dg2(z−a, µ, σ)

dz
−

dg2(z−b, µ, σ)

dz

–ff

=

g2(z−b, µ, σ) +
1

b−a
[G2(z−a, µ, σ)−G2(z−b, µ, σ)] +

1

b−a

(

(z−a)g2(z−a, µ, σ)−(z−a)g2(z−b, µ, σ)−µg2(z−a, µ, σ)+µg2(z−b, µ, σ)+σ
2

dg2(z−a, µ, σ)

dz
−σ

2
dg2(z−b, µ, σ)

dz

)

=

g2(z−b, µ, σ) +
1

b−a
[G2(z−a, µ, σ)−G2(z−b, µ, σ)]+

1

b−a



−(z−b+b − a)g2(z−b, µ, σ)+µg2(z−b, µ, σ)−σ
2

dg2(z−b, µ, σ)

dz

ff

=

g2(z−b, µ, σ) +
1

b−a
[G2(z−a, µ, σ)−G2(z−b, µ, σ)]+

1

b−a

(

−(b−a)g2(z−b, µ, σ)−(z−b)g2(z−b, µ, σ)+µg2(z−b, µ, σ)−σ
2

dg2(z−b, µ, σ)

dz

)

=

g2(z−b, µ, σ) +
1

b−a
[G2(z−a, µ, σ)−G2(z−b, µ, σ)]−g2(z−b, µ, σ) = g(z)
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The connection between Eqs. A.8, A.11 and A.11 has now been verified. In

other words, our results for G(z) and g(z) are certainly correct.

Using the following connections

f2(t, ak, bk) ≡ g1(x, a, b)

F2(t, ak, bk) ≡ G1(x, a, b)

fG(t, µ, σ) ≡ g2(y, µ, σ)

FG(t, µ, σ) ≡ G2(y, µ, σ)

we can solve the convolution of fA(t) and FA(t) (Eqs. 6.3 and 6.5) with fG(t, µ, σ)

and FG(t, µ, σ) (Eqs. 5.1 and 5.2). The probability density function is

fA(t) =
K
∑

k=1

Ak

bk − ak

[FG(t − ak, µ, σ) − FG(t − bk, µ, σ)] .

Using the following relations

ak = k − 1

bk = k

µ = 0

FG(t − ak, µ = 0, σ) = FG(t, µ = ak, σ) = FG(t, ak, σ) = FG(t, k − 1, σ)

FG(t − bk, µ = 0, σ) = FG(t, µ = bk, σ) = FG(t, bk, σ) = FG(t, k, σ)

gives the final form

fA(t, σ) =

K
∑

k=1

Ak [FG(t, k − 1, σ) − FG(t, k, σ)] . (A.12)

The cumulative distribution function is

FA(t, σ) =

K
∑

k=1

AkFG(t − bk, µ, σ)

+
Ak

bk − ak

{(t − ak − µ) [FG(t − ak, µ, σ) − FG(t − bk, µ, σ)]

+ σ2 [fG(t − ak, µ, σ) − fG(t − bk, µ, σ)]}.

Using the following two additional relations

fG(t − ak, µ = 0, σ) = fG(t, µ = ak, σ) = fG(t, ak, σ) = fG(t, k − 1, σ)
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fG(t − bk, µ = 0, σ) = fG(t, µ = bk, σ) = fG(t, bk, σ) = fG(t, k, σ)

gives the final form

FA(t) =
K
∑

k=1

Ak{FG(t, k, σ)

+ (t − k + 1) [FG(t, k − 1, σ) − FG(t, k, σ)]

+ σ2 [fG(t, k − 1, σ) − fG(t, k, σ)]} (A.13)



Appendix B

Recent impact crater data

Two comprehensive lists of terrestrial impact craters are maintained: the The

Earth Impact Database (Planetary and Space Science Centre, 2006) and the Cata-

logue of the Earth’s Impact structures (Siberian Center For Global Catastrophes,

2008). Here we study only The Earth Impact Database, because it has been used

in previous studies (e.g. Jetsu, 1997; Jetsu and Pelt, 2000).

The The Earth Impact Database contains 174 impact crater records. When

we select from these data only craters that have age and age error estimates that

fulfil either criterion C2 or C3, we obtain two sub-samples of impact crater data

presented in Table B.1. These contain n = 38 craters for C2 and n = 45 for

C3. When these new revised records are compared to the data used in Jetsu

(1997) we can conclude that the number of known impact craters has increased

somewhat over the years. With C2 the increase is only four craters (≈ 10 %)

while with C3 the change is 10 craters (≈ 22 %).

The uncertainty in these re-examined crater ages was analyzed as already

done to the old crater ages in Chapter 3. The whole time span between the

youngest and the oldest impact crater was divided into ten equal length time in-

tervals or periods PK. For each crater the uncertainty σP relative to this period

was calculated as in Eq. 3.2 and finally the individual uncertainties were av-

eraged into σ̄P . These values of σP are shown in Table B.1. The average age

uncertainty σ̄p for C2 is 0.160 and that for C3 0.193. When these inaccuracies

are compared to the inaccuracies 0.170 for C2 and 0.202 for C3 in Jetsu (1997),

we can note that the mean accuracy of the The Earth Impact Database data

has improved by approximately 5 %. It should be emphasized, however, that in

many cases the crater ages in the latest revisited data does not even fit inside the

error estimates of the same ages in the earlier data in Table 2.1. For example,

the older age estimate for Boltysh in Ukraine was 88± 3 million years, while the

more recent data gives the re-evaluated value of 65.17± 0.64 million years. This,

along with the fact that the sub-sample selection criteria have a significant effect

49
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on the average error of the crater ages, could indicate that the actual crater age

inaccuracies are far greater than the ones presented in the impact crater data-

base. This is further supported by Deutsch and Schaerer (1994), who conclude

that ”an unsatisfactory situation exists in the error assignment to [crater] ages,

because quoted uncertainties frequently reflect internal precision only, yielding

unrealistically small errors”.
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Table B.1: Terrestrial impact crater data from The Earth Impact Database:

name, location, diameter ([D] = km), age ([t] = My), age uncertainty ([σt] =

My), period length PK calculated for C2, period length PK calculated for C3,

σP for C2 and σP for C3. The sub-samples are chosen with the criterion C2

and C3 in Jetsu (1997). Last row contains the average uncertainties σ̄P for both

sub-samples.

Crater location D t σt PK,C2
PK,C3

σp for C2 σp for C3

Zhamanshin Kazakhstan 14 0.9 0.1 24.35 - 0.0041 -

El’gygytgyn Russia 18 3.5 0.5 24.35 - 0.0205 -

Karla Russia 10 5 1 24.35 28.5 0.0411 0.0351

Bigach Kazakhstan 8 5 3 24.35 28.5 0.1232 0.1053

Steinheim Germany 3.8 15 1 - 28.5 0.0000 0.0351

Ries Germany 24 15.1 0.1 24.35 28.5 0.0041 0.0035

Mien Sweden 9 21 2.3 24.35 28.5 0.0945 0.0807

Chesapeake Bay USA 90 35.5 0.3 24.35 28.5 0.0123 0.0105

Popigai Russia 100 35.7 0.2 24.35 28.5 0.0082 0.0070

Mistastin Canada 28 36.4 4 24.35 28.5 0.1643 0.1404

Wanapitei Canada 7.5 37.2 1.2 24.35 28.5 0.0493 0.0421

Logancha Russia 20 40 20 24.35 28.5 0.8214 0.7018

Beyenchime-Salaatin Russia 8 40 20 24.35 28.5 0.8214 0.7018

Logoisk Belarus 15 42.3 1.1 24.35 28.5 0.0452 0.0386

Shunak Kazakhstan 2.8 45 10 - 28.5 - 0.3509

Ragozinka Russia 9 46 3 24.35 28.5 0.1232 0.1053

Chiyli Kazakhstan 5.5 46 7 24.35 28.5 0.2875 0.2456

Gusev Russia 3 49 0.2 - 28.5 - 0.0070

Kamensk Russia 25 49 0.2 24.35 28.5 0.0082 0.0070

Montagnais Canada 45 50.5 0.76 24.35 28.5 0.0312 0.0267

Marquez USA 12.7 58 2 24.35 28.5 0.0821 0.0702

Chicxulub Mexico 170 64.98 0.05 24.35 28.5 0.0021 0.0018

Boltysh Ukraine 24 65.17 0.64 24.35 28.5 0.0263 0.0225

Kara Russia 65 70.3 2.2 24.35 28.5 0.0903 0.0772

Lappajärvi Finland 23 73.3 5.3 24.35 28.5 0.2177 0.1860

Manson USA 35 73.8 0.3 24.35 28.5 0.0123 0.0105

Zeleny Gai Ukraine 3.5 80 20 24.35 28.5 0.8214 0.7018

Wetumpka USA 6.5 81 1.5 24.35 28.5 0.0616 0.0526

Dellen Sweden 19 89 2.7 24.35 28.5 0.1109 0.0947

Steen River Canada 25 91 7 24.35 28.5 0.2875 0.2456

Deep Bay Canada 13 99 4 24.35 28.5 0.1643 0.1404

Carswell Canada 39 115 10 24.35 28.5 0.4107 0.3509

Rotmistrovka Ukraine 2.7 120 10 - 28.5 - 0.3509

Tookoonooka Australia 55 128 5 24.35 28.5 0.2053 0.1754

Mjølnir Norway 40 142 2.6 24.35 28.5 0.1068 0.0912

Gosses Bluff Australia 22 142.5 0.8 24.35 28.5 0.0329 0.0281

Morokweng South Africa 70 145 0.8 24.35 28.5 0.0329 0.0281

Tabun-Khara-Obo Mongolia 1.3 150 20 - 28.5 - 0.7018

Zapadnaya Ukraine 3.2 165 5 - 28.5 - 0.1754

Puchezh-Katunki Russia 80 167 3 24.35 28.5 0.1232 0.1053

Obolon’ Ukraine 20 169 7 24.35 28.5 0.2875 0.2456

Viewfield Canada 2.5 190 20 - 28.5 - 0.7018

Manicouagan Canada 100 214 1 24.35 28.5 0.0411 0.0351

Rochechouart France 23 214 8 24.35 28.5 0.3285 0.2807

Araguainha Brazil 40 244.4 3.25 24.35 28.5 0.1335 0.1140

Ternovka Ukraine 11 280 10 - 28.5 - 0.3509

Clearwater East/West Canada 36 290 20 - 28.5 - 0.7018

σ̄p for C2 and C3 0.1600 0.1930
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