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In the last �fty years fun
tional integration has be
ome an important tool in physi
s and math-emati
s. Fun
tional integration te
hniques are very versatile and 
an be applied to various typesof physi
al problems. Fun
tional integration is also more than just a 
al
ulational method; forexample, the Feynman path integral is in fa
t an independent formulation of quantum me
hani
s.Fun
tional integration divides into two sub
lasses: the Wiener integral en
ountered in 
onne
tionwith di�usion and the Feynman path integral whi
h is used to des
ribe quantum phenomena. Inthis work we review the properties of the two integrals and 
ompare them to ea
h other. We �ndthat even though they have almost the same mathemati
al stru
ture the di�eren
es between themare profound.Spe
ial emphasis is given to the Feynman path integral. We make the observation that it is not atrue integral over a spa
e of fun
tions like the Wiener integral. It is only a shorthand notation fora limit of multiple integrals.There have been several attempts to formulate a de�nition of Feynman path integrals that wouldbe mathemati
ally sound. Some of these are reviewed in this work. Even though they have hadsome su

ess, none of them has a
hieved the intuitiveness of the original de�nition by Feynman.We also �nd them often too abstra
t to be useful. More resear
h should thus be aimed at �nding aproper mathemati
al de�nition for Feynman path integrals. This is prompted by their widespreaduse whi
h often negle
ts the problems of the de�nition.In addition to the dis
ussion on the justi�
ation of fun
tional integration we dis
uss some morespe
ialized subje
ts, su
h as sto
hasti
 integration, dis
retization pro
edure of the Feynman pathintegral and the Feynman path integral on spa
es with 
urvature.We also present an extensive list of referen
es on the subje
t.
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Viimeisen viidenkymmenen vuoden aikana funktionaali-integroinnista on tullut t�arke�a fysiikan jamatematiikan ty�okalu. Funktionaali-integrointia voi soveltaa hyvin erilaisiin fysikaalisiin ongelmiin.T�am�an lis�aksi sill�a on muutakin merkityst�a; yksi mahdollisuus formuloida kvanttimekaniikka onFeynmanin polkuintegraali.Funktionaali-integraalit jakaantuvat kahteen aliluokkaan: di�uusion yhteydess�a tavattavaanWienerin integraaliin ja kvanttimekaniikan Feynmanin polkuintegraaliin. T�ass�a ty�oss�a k�ayd�a�anl�api n�aiden kahden integraalin ominaisuudet ja vertaillaan n�ait�a kesken�a�an. Selvi�a�a, ett�a vaikkaintegraaleilla on l�ahes samanlainen matemaattinen rakenne on niiden v�alill�a huomattavia eroja.Erityisesti tarkastellaan Feynmanin polkuintegraalia. Huomataan, ett�a kyseess�a ei ole todellinenintegraali yli funktioavaruuden vaan ainoastaan merkint�a �a�arellisulotteisen integraalin raja-arvolle.Koska Feynmanin polkuintegraalien m�a�aritelm�a ei ole matemaattisesti hyvin perusteltu, ovat mon-et yritt�aneet muuttaa m�a�aritelm�a�a siten, ett�a se olisi matemaattisesti t�asm�allinen. T�ass�a ty�oss�aesitell�a�an muutamia t�allaisia vaihtoehtoisia m�a�aritelmi�a. Vaikka ne ovatkin matemaattisesti parem-min perusteltuja, ovat n�am�a m�a�aritelm�at usein liian abstrakteja ollakseen yht�a k�aytt�okelpoisia kuinFeynmanin alkuper�ainen m�a�aritelm�a.Koska polkuintegraaleja k�aytet�a�an t�an�a p�aiv�an�a yleisesti l�ahes jokaisella fysiikan alalla { useinyll�amainitut matemaattiset ongelmat unohtaen { tulisi Feynmanin polkuintegraalien matemaattistam�a�aritelm�a�a edelleen tutkia.M�a�aritelmien lis�aksi ty�oss�a k�asitell�a�an my�os erikoistuneempia aiheita, kuten stokastista integrointia,Feynmanin polkuintegraalien diskretisointia sek�a polkuintegraaleja kaarevilla avaruuksilla.Ty�oh�on sis�altyy lis�aksi laaja lista viitteit�a aihetta k�asitteleviin artikkeleihin ja kirjoihin.

Tiedekunta/Osasto | Fakultet/Sektion | Fa
ulty Laitos | Institution | DepartmentTekij�a | F�orfattare | AuthorTy�on nimi | Arbetets titel | TitleOppiaine | L�aro�amne | Subje
tTy�on laji | Arbetets art | Level Aika | Datum | Month and year Sivum�a�ar�a | Sidoantal | Number of pagesTiivistelm�a | Referat | Abstra
t

Avainsanat | Ny
kelord | KeywordsS�ailytyspaikka | F�orvaringsst�alle | Where depositedMuita tietoja | �ovriga uppgifter | Additional information

HELSINGIN YLIOPISTO | HELSINGFORS UNIVERSITET | UNIVERSITY OF HELSINKI



Contents

1 Introduction 1
1.1 On notation and conventions . . . . . . . . . . . . . . . . . . . 3
1.2 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Brownian Motion and the Wiener Integral 4
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Properties of Brownian motion . . . . . . . . . . . . . . . . . . 7
2.3 Stochastic integration . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Ito integrals . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Stratonovich integrals . . . . . . . . . . . . . . . . . . 15

2.4 The Wiener measure and integral . . . . . . . . . . . . . . . . . 17
2.4.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Discretization of the Wiener integral . . . . . . . . . . . 21

3 Feynman Path Integrals 23
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Problems of definition . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Probability amplitude . . . . . . . . . . . . . . . . . . . 27
3.2.2 Hamiltonian formalism . . . . . . . . . . . . . . . . . . 29

3.3 Alternative definitions . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 First constructs . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Pseudomeasures . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Fresnel integrals . . . . . . . . . . . . . . . . . . . . . 38
3.3.4 Polygonal paths . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Discretization of Feynman path integrals . . . . . . . . . . . .. 44
3.4.1 Connection to the operator ordering problem . . . . . . 49

3.5 Feynman path integral on spaces with curvature . . . . . . . .. 53
3.5.1 The hydrogen atom . . . . . . . . . . . . . . . . . . . . 56

4 Conclusions 58



Chapter 1

Introduction

Functional integration, also known as path integration or Wiener integration, has
become a common tool in physics as well as in some branches of mathemat-
ics such as functional analysis and partial differential equations during the last
fifty years. It connects the theory of measures and integration with stochastics,
particularily with stochastic differental equations.

Functional integration is the theory of integration on spaces of functions. It
can also be understood as the extension of ordinary integration theory to spaces
of infinite dimensions. Since Lebesque integration theory does not work in such
spaces functional integration is highly nontrivial.

Since Feynman [Fey48] introduced path integration methodsto physics over
fifty years ago functional integration has proved out to be a valuable tool – both
in theoretical considerations and in numerical calculations. Quantum field the-
ory, statistical physics as well as analysis of stochastic processes have greatly
benefited from the development of functional integration. By “path integration”
we shall mean this functional integral of quantum mechanics; the Wiener integral
means the functional integral of Brownian motion.

The widespread use of path integration has been the motivation for mathe-
matical research on functional integration in a more general terms. This research
has revealed profound connections between path integrals in quantum physics
and the Wiener integral applied to Brownian motion. An earlyreview of of the
definitions and properties of Feynman’s path integrals was made by Gel’fand and
Yaglom [G&Y60].

Today path integration has developed to the level that we have a path inte-
gral solution to every quantum mechanical problem solvableby the Schrödinger
equation. A good review of the current available calculational techniques of path
integrals is given by Grosche and Steiner [G&S95]. The paperalso contains a
large amount of references which touch almost every relevant aspect of func-
tional integration.
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Unfortunately most physicist take a very pragmatic view on functional inte-
gration and use it as a fool-proof tool. They tend to forget – or neglect – the
mathematical subtleties actually involved in the definition and methods of func-
tional integration. Besides that, the analysis of functional integration offers more
information than just calculational tools; as mentioned inthe first paragraph, the
functional integral is also an important mathematical abstraction.

In fact the mathematical foundation of Feynman’s path integrals has never
been soundly established. The alternating nature ofeiS in the Feynman “mea-
sure” effectively prohibits the use of well-founded methods of measure theory.
In fact, the Feynman “measure” isn’t really a measure at all –at least not in the
sense of probability theory.

The aim of this work is to give a thorough, but not entirely concise review of
the mathematical background of functional integration and, in particular, to show
why Feynman path integrals are not mathematically justified. To achieve this, we
will review the mathematical properties of Brownian motionand compare them
to the properties of Feynman path integrals. We will also study what has been
done to correct the lack of mathematical soundness in functional integration.

Although the context of this work is mathematical we will avoid most of
complex details. This choice is made at the expense of mathematical complete-
ness but the number of actual mathematical concepts and details involved is so
large that it would considerably add to the length of this work. We also wish
to keep the material accessible to physicists without an extensive background in
mathematics.

We do not not attempt to give a concise review of functional integration or its
history. Such information can be found in many textbooks, such as Feynman’s
own book on the subject with Hibbs [F&H65] or more recent material such as
Kleinert’s book [Kle90]. Brief definitions of Brownian motion and Feynman
path integrals are included as well as some mathematical methods wherever they
have some connection to the underlying problems or ambiguities. We shall not
go through the calculational methods of functional integration. We shall also
not discuss whether or not we can actually explicitely calculate the value of the
integral in a closed form.

In chapter 2 we shall study Brownian motion and its mathematical properties,
stochastic integration and the Wiener measure and integral. We shall point out
the ambiguities that lie in the well-studied theory of Brownian motion and briefly
study the implications due to this arbitrariness in the discretization of the Wiener
integral. The analysis of Brownian motion also serves as a stepping stone as we
proceed to take a closer look at the Feynman path integrals.

Chapter 3 considers the mathematical aspects of Feynman path integrals. We
shall study the basic properties of path integrals and find the problems that make
them mathematically vague. A review of some important alternative definitions
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for Feynman path integrals will be made and these definitionswill be put under
scrutiny. The discretization procedure used in calculation of path integrals and
the solution of path integrals on spaces with curvature, which both have their
own mathematical problems are also discussed in this chapter.

1.1 On notation and conventions� Throughout this work we shall putc= m= ~� 1 except where explicitely
noted. This can be achieved by appropriate choice of the units for time,
mass and length. These units are mainly chosen for typographical rea-
sons. Since we are mostly dealing with mathematical rather than physical
problems no significant harm is done by doing so.� Quantum mechanical operator corresponding to a classical quantityA will
be denoted asbA.� For simplicity we will only consider one-dimensional configuration space
and two-dimensional phase space. Generalizations to higher dimensions
and other types of spaces are (usually) straightforward. Wherever neces-
sary, these generalizations will be analyzed seperately. This will be es-
pecially done in section 3.5, where we consider functional integration on
non-eucledian spaces.� Variablex will generally be the coordinate in configuration space, whereas
variablesq andp are reserved for coordinate and momentum, respectively,
in phase space.� xi is shorthand notation forx(ti). Note that this applies also to other quan-
tities besides the coordinate.� R+ := [0;∞℄

1.2 Acknowledgements

I would like to thank professor Christofer Cronström for hispatience and his
interest in even the tiniest details and Heikki and Hilma Honkanen Foundation
for supporting my studies financially.
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Chapter 2

Brownian Motion and the Wiener
Integral

Brownian motion is named after the Scottish botanist RobertBrown, who first
observed the irregular motion of pollen grains in a liquid. Later this motion
was studied in detail by Einstein (a collection of his papersconcerning Brow-
nian motion can be found in [Ein56]) and Wiener ([Wie23],[Wie24],[Wie30]),
after whom we now call the functional integral that arises from the mathematical
model of this random motion.

The physical model of Brownian motion is as follows: a particle (in every
sense macroscopical and therefore classical) moves in a medium which projects
a random force on the particle. This force causes the particle to move on very
irregular and nondeterministic paths. Furthermore, thesepaths are now known to
have a fractal nature. As we shall see, this fractal behaviour of Brownian motion
is the most important feature that affects its mathematicalanalysis as well as that
of Feynman path integrals.

Since the paths of a Brownian particle are nondeterministic, we must ana-
lyze it with the machinery of probability theory and stochastic processes. From
a physicist’s point of view, this corresponds to statistical physics. Simply ex-
pressed, we can only know the probabilities for the particleto move from point
a to pointb. The exact path of the particle cannota priori be known .

In what follows we shall take a mathematical point of view anddisregard
most of the physics involved in describing Brownian motion.The definition of
Brownian motion used here is not the usual one found in books on functional
integration. This is done because we want to stress the fact that one arrives at the
same conclusions about Brownian motion even though there are different ways
to define it.

We shall closely follow Øksendal [Øks95] in defining the important concepts
of probability space and stochastic processes and also later when we explore the
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properties of Brownian motion. This choice is motivated by Øksendal’s similar
approach to the subject. Unfortunately we must omit even some core material
in order to keep this work compact and not to lead the discussion astray. For
more precise and deeper information one should consult Øksendal’s book and
references therein.

2.1 Definitions

Definition 2.1 (Probability space) The triple(Ω;A ;P) is called aprobability
space, if A is aσ-algebra on the setΩ and P is measurable function P: A ! [0;1℄
on the measurable space(Ω;A) so that

1. P( /0) = 0, P(Ω) = 1 and

2. A1;A2; : : : 2 A and they are disjoint (i.e. Ai \A j = /0 if i 6= j)

As one can see, the notion of probability is very closely related to the theory
of measures and integration. Therefore we are equipped withthe powerful ma-
chinery of integration theory when we tackle problems in probability and Brow-
nian motion. Many important results concerning Brownian motion have been
derived by Kolmogorov (see, for example, his own book on the subject [Kol56]).

A random variableX is simply a measurable functionX : Ω! R. (R could,
of course, also be some other space.) An important notion in probability theory
is almost sureness. We denote this by

X
a:s:= Y

if

PfωjX(ω) 6=Y(ω)g= 0:
Or, in expressed in words,X andY differ from each other only on a set of measure
zero. Note that this set is not necessarily an empty set.

Definition 2.2 (Independence)Two subsets (“events”) A;B 2 A are indepen-
dent if

P(A\B) = P(A)P(B):
Definition 2.3 (Stochastic process)A stochastic process is a parametrized col-
lection of random variables fXtgt2T

defined on a probability space(Ω;A ;P) and assuming values inR.
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(The restriction to one dimension is made only because of ourdecision to sim-
plify notation. The space of values taken by the stochastic process is usually
more general – for exampleRn.)

Notice that a stochastic process is a functionX(ω; t) : Ω� R+ ! R (t is
usually taken positive). Therefore, if we fixω 2 Ω we get the function

t ! Xt(ω); t 2 R+
which is called thepath of Xt. This can be thought of as the “path” of one
Brownian particle in the liquid or as one experiment (if we think in the context
of quantum mechanics).

Also, if we fix t we see thatX is a mappingX : Ω! R for all fixed t. Thus,X
can take any possible value inR depending on the process. From our viewpoint
we can then considerΩ as a space of paths, parametrized by elementsω 2 Ω.

If fXtg andfYtg are stochastic processes so that

P(fω;Xt(ω) =Yt(ω)g) = 1 8t

thenfXtg is called aversionof fYtg. Simply put the two processes are indistigu-
ishable in terms of probability distributions. However, itshould be noted that
their path properties and can be different. For example, there can be a denumer-
able set of points whereXt andYt have different value.

Definition 2.4 (Brownian motion) Let Xt be a stochastic process starting at
X0 = 0 with the following properties:

1. The process Xt has normal distribution with mean 0 and variance t

2. The future values of Xt are independent of all Xs, s< t

3. The increments Xi�Xj , Xj �Xk are independent of each other

Then the stochastic process considered is calledstandard Brownian motion(here-
after simply Brownian motion).

From this definition one can readily explicitely write down the probability for
the particle to move from(0;0) to (x; t):

P(0;x; t) = 1p
2πt

exp
�� x2

2t

�: (2.1)

If the process instead starts at(x0; t0), the probability fortransitionis

P(x0;x; t0; t) = 1p
2π(t� t0) exp

�� (x�x0)2

2(t� t0) �: (2.2)

7



(Note that we assume thatt � t0.)
If we integrate over the endpoint in equation (2.1) we arriveat the expected

result Z ∞�∞
dxP(x0;x; t) = 1

reassuring us that probability is conserved. One easily sees that both (2.1) and
(2.2) are Gaussian probability measures. This holds also for Brownian motion in
higher dimensions.

The definition of Brownian motion we used here is not unique; one might
start with the above transition probabilities and find that they describe a stochas-
tic process with the properties stated in definition 2.4. Yetanother way to con-
struct Brownian motion is to start from the definition of Wiener integrals (see
section 2.4). It should be noted that in the end all of these approaches are math-
ematically equal and lead to same properties for Brownian motion.

It is worthwhile to notice that since Brownian motion does not depend on its
history (property number 2), the transition probability will depend only on the
difference(t� t0). In fact, when we look at equation (2.2) we see that it depends
on the coordinates only through the differences(x�x0). Brownian motion is thus
homogenious in both time and space and is an example of aMarkovian process.
Further properties of Brownian motion, especially of its paths, will be discussed
in the next section.

2.2 Properties of Brownian motion

Using the probability measure (or distribution) defined in equation (2.1) we de-
fineexpectationin the normal way as

E[ f ℄ := ZR f (x)dµ(x) = 1p
2πt

ZRdx f(x)e(x�x0)2
2t

where f is a Borel measurable integrable function anddµ(x) is the probability
measure, in this case the measure of equation (2.1).

Since we are going to discuss the properties of Brownian motion, it is very
useful to calculate the characteristic function of(x�x0), which defined as

φ(u) := E[eiu(x�x0)℄: (2.3)

If we write it down explicitly we find that

E[eiu(x�x0)℄ = 1p
2πt

ZRdxeiu(x�x0)e(x�x0)2
2t = eiux0e� 1

2u2t
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Having calculated the characteristic function, all the moments of(x�x0) can
be found by differentiation:

E[(x�x0)n)℄ = (�i)ndnφ
dun ju=0 (2.4)

We find that for all evenn the moment is zero. Forn= 2 we find the variance
of Brownian motion. It is

E[(x�x0)2℄ = t; (2.5)

just as we would expect on the basis of the definition 2.4. Furthermore, if we
calculate the quartic moment (n= 4) we have the result

E[(x�x0)4)℄ = 3t2: (2.6)

This result is important since we can now apply Kolmogorov’scontinuity
theorem (see, for example, Øksendal [Øks95]), which statesthat the paths of
Brownian motion are continous. (Or, more exactly, there exists a continous ver-
sion ofx.) A physical argument can also be used to “prove” the continuity of the
paths; discontinuous paths are clearly unphysical – the Brownian particle does
not make “jumps”.

One might wonder what happens if we taket ! 0 in equation (2.1). It seems
as if the probability would blow up as we take the limit because of the term
exp(�(x�x0)2=2t). But, if we take Fourier transformation ofP(x0;x; t) (actually
we are calculating the characteristic function again) we get the result

F fP(x0;x; t)g := eiux0e� 1
2u2t :

If we then taket ! 0, we see that the Fourier transform is equal to the Fourier
transform of Dirac’sδ-function. Thus we conclude that

lim
t!0

P(x0;x; t) = δ(x�x0):
As we have assured ourselves that the Brownian motion has continous paths,

it seems appropriate that we say something about the differentiability of these
paths. It can be proved (see, for example Breiman [Bre68]) that the paths are
nondifferentiable for almost allω. This is the most important property of Brow-
nian motion, and can be expressed by saying that the paths have afractal dimen-
sion larger than 1.

In the end of this section we recall that Browian motion is just a single ex-
ample of a stochastic process. There are numerous other processes satisfying the
same basic definition of a stochastic process with otherwisedifferent properties.
In this work we will mostly consider continous stochastic processes. We mention
that in addition to them there are also many important stochastic processes with
discrete time dependence.
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2.3 Stochastic integration

Let us now return to strictly mathematical constructs involving stochastic pro-
cesses. In this section we familiarize ourselves with the concept of stochastic
integration and see how the “(dx)2 = dt” property affects this procedure. We
will also see that there are two (actually, infinite number of) different ways to
actually calculate a stochastic integral yielding a different result.

This brief excursion to stochastics is motivated by the factthat we will learn
how Brownian motion behaves under integration and more about the path prop-
erties of Brownian motion.

Stochastic integration is required whenever one encounters stochastic dif-
ferential equations(or SDEs). These are usually normal differential equations
where a random element is added. (For example, to model the size of population
for some species.) A major subclass of these differential equations are of the
form

dX
dt

= b(t;Xt)+σ(t;Xt) � “noise”; (2.7)

whereb andσ are some given functions. The “noise” term needs a proper math-
ematical interpretation. Let us represent it as a stochastic processWt . We assume
thatWt has the following properties:

(i) t1 6= t2)Wt1 andWt2 are independent

(ii) fWtg is stationary i.e. the distribution ofWk+t is independent oft for all
k> 0.

(iii) E[Wt ℄ = 0 for all t.

Unfortunately, there is no “reasonable” stochastic process satisfying proper-
ties (i) and (ii). Such aWt cannot have continous paths. It is, however, possible to
representWt as generalized stochastic process called thewhite noise process. We
shall construct such process by first considering the discrete version of equation
(2.7):

Xk+1�Xk = b(tk;Xk)∆tk+σ(tk;Xk)Wk∆tk; (2.8)

where∆tk := tk+1� tk. The next thing to do is to replaceWk∆tk by ∆Bk = Bk+1�
Bk, wherefBtg is some suitable stochastic process. It turns out thatfBkg is in
fact a Brownian motion (that’s why we chose the letterB). With this notation,
we can obtain from equation (2.8) by summation:

Xk = X0+ k�1

∑
j=0

b(t j ;Xj)∆t j + k�1

∑
j=0

σ(t j ;Xj)∆B j : (2.9)
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Equation (2.9) immediately raises the question: What happens if we take
∆t ! 0? If the limit exists, we would be able to write the limit in terms of usual
integration notation as

Xt = X0+Z t

0
b(s;Xs)ds+Z t

0
σ(s;Xs)dBs (2.10)

Especially the last term, Z t

0
σ(s;Xs)dBs (2.11)

needs some clarifying and special treatment, for we are defining integration
with respect to Brownian motion! If we are able to define the integral it means
that Xt = Xt(ω) of equation (2.10) is a stochastic process and a solution to the
original stochastic differential equation (2.7).

In order to define integrals of the form (2.11) we apply the usual method of
probability theory: first we define it on simple functions i.e. functions that are
piecewise constant. Simple functions are of the form

φ(t;ω) = ∑
j�0

ej(ω) �χ[ j2�n;( j+1)2�n)(t); (2.12)

whereχ denotes the characteristic (or indicator) function andn is a (large) natural
number.

We could then generalize this result to apply to non-negative functions and
finally to arbitrary measurable functions. However, this procedure is not essential
to our work and therefore we shall present only the main points of this definition
procedure.

For functions like (2.12) we can defineZ T

S
φ(t;ω)dBt(ω) = ∑

j�0
ej(ω)[Bt j+1�Bt j ℄(ω): (2.13)

Let us now choose

φ1(t;ω) = ∑
j�0

B j2�n(ω) �χ[ j2�n;( j+1)2�n)(t)
φ2(t;ω) = ∑

j�0
B( j+1)2�n(ω) �χ[ j2�n;( j+1)2�n)(t)

It seems that these two functions are very similar approximations to

f (t;ω) = Bt(ω):
11



But, if we calculate their expectations of their integrals over some time interval[0;T℄, we get

E[Z T

0
φ1(t;ω)dBt(ω)℄ = ∑

j�0
E[Bt j (Bt j+1�Bt j )℄ = 0;

sincefBtg has independent increments. Forφ2 the result is different,

E[Z T

0
φ2(t;ω)dBt(ω)℄ = ∑

j�0
E[Bt j+1(Bt j+1�Bt j )℄= ∑

j�0
E[(Bt j+1�Bt j )2℄ = T;

by equation (2.5).
The two superficially equal approximations thus give different values for the

integral. Note also that this result does not depend on how large n we have
chosen.

This result is the first indication we encounter to display the basic fact that
the paths of Brownian motion are too jagged – their total variation on interval[0;T℄,

V(B(t)) = sup
n

h n

∑
j=1
jB(t j)�B(t j�1)ji; 0= t0 < t1 < :: : < tn = T;

is infinite. This prohibits us from defining the integral (2.10) in the usual Riemann-
Stieltjes sense.

However, we proceed to define the general integral 2.10 as follows:

Definition 2.5 (Stochastic integral) Let f(t;ω) be a suitable function (square
integrable with respect to t and measurable with respect to Brownian motion
Bt). The stochastic integral Z T

S
f (t;ω)dBt(ω) (2.14)

is then equal to the limit

lim
n!∞ ∑

j�0
f (t�j ;ω)[Bt j+1�Bt j ℄;

where the points t�j belong to the intervals[t j; t j+1℄.
12



Notice that in order to find a value of a stochastic integral one must define
the pointst�j – i.e. define the discretizationf (t;ω). As we have seen, this choice
directly affects the value of the integral. The two following choices fort�j have
turned out to be the most useful ones:

1. t�j = t j , the left end point of the interval[t j; t j+1℄. This is referred to as
theprepoint prescription. This choice leads to theIto integral, which we
hereafter denote by Z T

S
f (t;ω)�dBt(ω)

2. t�j = (t j +t j+1)=2, the mid point of the interval[t j ; t j+1℄. This is also known
as themidpoint prescription. This choice leads to theStratonovich inte-
gral, denoted by Z T

S
f (t;ω)ÆdBt(ω)

Some important properties of both Ito and Stratonovich integrals will be dis-
cussed in the two following subsections.

2.3.1 Ito integrals

As noted above, Ito integrals are produced by the choicet�j = t j as the discretiza-
tion rule. The choice gives Ito integrals the property of “not looking into the
future” i.e. on the interval[t j ; t j+1℄ the only value that matters isBt . This prop-
erty is most profoundly expressed in terms ofmartingales. But first we define
what we mean by conditional expectation.

Definition 2.6 (Conditional expectation) Let H � A and X be a random vari-
able with EjXj< ∞. The conditional expectation E[XjH ℄ is the functionΩ! R
with the following properties:

(i) E[XjH ℄ is H -measurable

(ii)
R

H E[XjH ℄dP= R
H X dP for all H2 H

Note thatE[XjH ℄ is a function and not a number like the normal expectation.
Conditional expectation is a generalization of the conditional probability in sim-
ple probability theory:

P(AjB) = P(A\B)
P(B) ;

whereA;B� Ω.
Now we can define

13



Definition 2.7 (Martingale) Let fMtgt�0 be a stochastic process on the proba-
bility space(Ω;A ;P) such that

(i) Mt is Ft-measurable for all t

(ii) E [jMt j℄< ∞ for all t

(iii) E [MsjFt ℄ = Mt for all s� t

wherefF gt�0 is an increasing family ofσ-algebras onΩ such that

0� s< t ) Fs� Ft � A :
(Such a family is called afiltration.) The stochastic process is then called a
martingale.

Let us now check that Ito integrals really have the properties required of
a martingale with respect to theσ-algebras generated by the Brownian motionfBs;s� tg:

(i) E[R T
S f (t;ω)�dBt(ω)℄ = 0< ∞

(ii)
R T

S f (t;ω)�dBt(ω) is FT-measurable.

(iii) E[BsjFt ℄ = E[Bs�Bt +Bt jFt ℄ = E[Bs�Bt jFt℄+E[Bt jFt℄ = 0+Bt = Bt

The property 1 follows from taking first a simple functionfn(t;ω) and prov-
ing the equality and then taking the limitn! ∞. Property 2 can be proved in
the same fashion. In 3 we have used the fact thatBs�Bt is independent ofFt

andE[Bt jFt ℄ = Bt sinceBt is Ft-measurable. For this fact and others concerning
conditional probability one may consult Williams’ book [Wil91], for example.

Thus we have proved that Ito integrals are martingales. Martingales have
many “nice” properties and the theory of martingales is well-developed. We are
thus equipped with lots of useful concepts and theorems, including the important
Doob’s martingale inequality. The proof of the theorem and numerous other
results for martingales can be found in Williams’ book, which takes martingales
as a starting point and, using martingales, develops the structure of probability
theory.

An equally important fact – for example, in light of applications – is the
martingale representation theorem. It states that any martingale with respect to
the filtrationfF g generated by Brownian motion can be represented as an Ito
integral. For proof see Øksendals book [Øks95].

14



Let us now prove that for Ito integralsZ t

0
BsdBs = 1

2
B2

t � 1
2

t; (2.15)

assuming thatB0 = 0.
First we putφn(s;ω) = ∑B j(ω) �χ[t j ;t j+1)(s). Then

E[Z t

0
(φn�Bs)2ds℄ = E[∑

j

Z t j+1

t j

(B j �Bs)2ds℄= ∑
j

Z t j+1

t j

(s� t j)ds= ∑
j

1
2
(t j+1� t j)2! 0 as∆t j ! 0

So Z t

0
BsdBs = lim

∆t j!0

Z t

0
φndBs = lim

∆t j!0
∑

j
B j∆B j :

Now observe that

∆(B2
j ) = B2

j+1�B2
j = (B j+1�B j)2+2B j(B j+1�B j)= (∆B j)2+2B j∆B j ;

and therefore

B2
t = ∑

j
∆(B2

j ) = ∑
j
(∆B j)2+2∑

j
B j∆B j

Dividing equation (2.3.1) by 2, moving the second term on theright hand side to
the left side of the equation and using the result∑ j(∆B j)2 ! t in L2(P) (in the
mean square sense) as∆t j ! 0 we arrive at equation (2.15).

The above calculation serves as a general example of how Ito integrals are
calculated and also as an example of another important feature of Ito integrals:
they do not behave as ordinary integrals. For example, the term �1

2t would
not appear in normal integration. This, in fact, is a clear demonstration of the
property “(dX)2� dt” of Brownian motion.

Furthermore, if we write the equation (2.15) as

1
2

B2
t = 1

2
t +Z t

0
BsdBs

and consider it as a mappingg(x) = 1
2x2 of the Ito integralBt = R t

0 dBs, we see
that the result is not of the form

R t
0 f dBs. This shows that normal rules of chang-

ing variables do not hold when we calculate Ito integrals. Instead, we now have

15



the result thatIto processes dXt = u(t;Bt)dt+ v(t;Bt)dBt form a closed group;
any mapping ofXt is again an integral of the form (2.10).

The above result and many others explicit forms of Ito integrals can be ob-
tained by a formula corresponding to the chain rule of differentiation, theIto
formula. It can be stated shortly as (note that this definition applies only to one-
dimensional Brownian motion)

Theorem 2.1 (The Ito Formula) Let Xt be an stochastic process given by the
SDE

dXt = udt+vdBt ;
Where u is almost surely integrable and v is almost surely square integrable with
respect to the probability measure P onΩ. Let g(t;x) be a twice continously
differentiable onR+ �R. Then

Yt = g(t;Xt)
is again a stochastic process, and the differential of Yt is

dYt = ∂g
∂t

dt+ ∂g
∂x

dXt + 1
2

∂2g
∂x2 (dXt)2; (2.16)

where all partial differentials of g are computed at the point (t;Xt) and the term(dXt)2 is computed according to the rules

dt �dt = dt �dBt = dBt �dt = 0; dBt �dBt = dt: (2.17)

Equation (2.17) explicitely shows that(dXt)2 = dt. We will not prove the Ito
formula here but rather refer to Øksendal’s book [Øks95]. One can easily see that
by choosingXt = Bt andg(t;x)= 1

2x2 and using the Ito formula one arrives at the
result (2.15). Other results of stochastic integrals, for example the integration-
by-parts rule for Ito integrals, can also be derived by usingthe Ito formula.

2.3.2 Stratonovich integrals

If we chooset�j = (t j + t j+1)=2 instead oft j we arrive at the Stratonovich inter-
pretation of the integral Z t

0
f (s;ω)dBs(ω)

There are many reasons to pick such a choice; for example, theStratonovich
integral has the same rule for changing variables as ordinary integrals. This fact
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makes it a natural choice when one considers stochastic differential equations on
manifolds. We will see this property by calculating the integralZ T

0
Bt ÆdBt: (2.18)

We begin by noticing thatZ T

0
f (t;ω)ÆdBt(ω) = lim

∆t j!0
∑

j
f (t�j ;ω)∆B j ; wheret�j = 1

2
(t j + t j+1):

Using this, we write equation (2.18) in discretized form:Z T

0
Bt ÆdBt = ∑

j
B�

j ∆B j= ∑
j

1
2
(B j+1+B j)(B j+1�B j)= ∑

j

1
2
(B2

j+1�B2
j )= ∑

j

1
2

∆(B j)2: (2.19)

Summing over the indexj we see that∑ j ∆(B j)2 = B2
T , actually regardless

of the numberN of discretization points. Thus, we have computed the integral
(2.18) and write the solution asZ T

0
Bt ÆdBt = 1

2
B2

T : (2.20)

As one can see from the above calculation, Ito and Stratonovich interpreta-
tions of the stochastic integral are generally different from each other. In some
cases they do however coincide. To be more precise, this happens whenever the
function to be integrated varies “smoothly” enough witht. It can also be proved
(see Stratonovich [Str66]) that we can transform these integrals into each other
according to the formulaZ t

0
σ(s;Xs)ÆdBs = 1

2

Z t

0

∂σ(s;Xs)
∂x

σ(s;Xs)ds+Z t

0
σ(s;Xs)�dBs: (2.21)

Because of the explicit connection between the two interpretations it suffices
for almost all mathematical purposes to consider only one ofthem. One can
easily then revert back to the other interpretation by usingthe formula (2.21).
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The way we calculated the integral (2.14) with Ito and Stratonovich interpre-
tations demonstrates the different techniques that can be applied when calculat-
ing stochastic integrals. The Ito formula is probably the easiest way of doing
these integrals, although it is limited to Ito integrals.

The most important lesson to be learnt from this section is the following: in
order to calculate integrals such as equation (2.14) one must also define what
interpretation of the integral one uses; i.e. one must implement a certain rule of
discretization. In different situations one choice just makes more sense than the
others. This is a phenomenon that will appear again in the context of functional
integration – the Wiener integrals and the Feynman path integrals.

2.4 The Wiener measure and integral

In this section we shall return to the original problem of expressing Brownian
motion in terms of functional integration. We are still short of an integral defined
on a space of functions rather than configuration space.

Consider now that the Brownian particle moves in successionfrom (x0; t0) to(x1; t1) and from there on to(x2; t2). The probability for movement from(x0; t0)
to (x2; t2) can then be understood as follows: the particle moves to somepointx1

at fixed instant of timet1. The point can be anywhere in the configuration space.
This probability for this is expressed as

P(x0; t0;x2; t2) = Z ∞�∞
dx1P(x0; t0;x1; t1)P(x1; t1;x2; t2): (2.22)

Equation (2.22) is also called theEinstein-Smoluchowski-Chapman-Kolmogorov
equation.

If we make further restrictions on the path of the particle and demand that it
on its way from(x0; t0) to (xk; tk) it must go through all the points(x1; t1);(x2; t2);: : : ;(xk�1; tk�1) we find that the probability for such movement is equal to the
product of the probabilities of movements on the required intervals (implied by
independency properties of Brownian motion):

P(x0; t0;xk; tk)fxig = k

∏
i=1

P(xi; ti;xi�1; ti�1); (2.23)

wherefxig denotes that the pathmustgo through the point set beforehand. Even
though we limit the path to go through these prescribed points, Brownian motion
can take any value between two points i.e. the path needs not to be straight
between the points.
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If we wish to find the probability for the particle to travel from (x0; t0) to(xk; tk) throughanypath we must allow the intermediate points to take any appli-
cable value. This is done by integrating over the intermediate points. Explicitely
done this yields

P(x0; t0;xk; tk) = ZR�����R k

∏
i=1

dxi P(xi; ti;xi�1; ti�1); (2.24)

wheredxi is the ordinary Lesbesque measure ofR. Notice that the starting point
and the end point of the interval are not integrated over, since they are fixed. The
above equation can also be understood as the being generatedby using the ESKC
equation (2.22) recursively.

If we take the setft1; t2; : : : ; tkg to be a finite set (with N elements), we get

P(x0; t0;xk; tk) = ZR�����RN�1

∏ dxi

N

∏
� 1p

2π(ti� ti�1)�exp(� N

∑ 1
2
(xi�xi�1)2(ti� ti�1) ):

(2.25)

(All products and summations start fromi = 1.)
Now we choose to divide the interval[t0; tk℄ into N equal subintervals, all

with lengthε = (tk� t0)=N. In principle a nonlinear division can be done, but
when we takeN!∞ the length of each subinterval will approach zero no matter
how the division is done. Thus,ti = t0+ iε, with tN = tk andti� ti�1 = ε

Inserting this division to subintervals into the equation (2.25) we get

P(x0; t0;xk; tk) = ZR�����R∏dxi
�r ε

2π
�N�1

exp(�N�1

∑ ε
(xi �xi�1)2

2ε2 ):
Let us now ponder on what we have just calculated; first we calculated the

probability for a certain path in the configuration space. Then we extended this
to all possible values at eachti, keeping at the same time the number of such
intervals finite. And as the last step, we letN ! ∞. The resulting integral could
then be interpreted as a single integral over a space of functions f : [t0; tk℄! R
rather than multiple integrals over the underlying configuration space.

We could then write the integral formally as

P(x0; t0;xk; tk) = Z
Dx exp(�Z tk

t0
dt

1
2

ẋ2); (2.26)

whereDx = limN!∞

�p
ε=2π

�N
∏N�1dxi and ẋ = dx

dt . Note that neither the

measure∏dxi nor the normalizing constant
�p

ε=2π
�N

has a limit on its own.

However, (2.25) does have a limit as stated above.
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The above result is still merely a limit of a discrete productof integrals rather
than a integral of its own. To truly establish a functional integral of Brownian
motion we need the Kolmogorov extension theorem, which tells us that there is
a unique measure – and therefore an integral – on the space of paths inR. This
measure coincides with the usual product measure stated above for all values of
the number of discretization points. (The measures defined on these points are
usually calledcylinder measures.)

The discovered measure is theconditional Wiener measure. The word con-
ditional is used because we have fixed the endpoint of the path. Nevertheless,
equation (2.26) is finally mathematically on solid ground and we have theWiener
integral in our hands. We will denote the Wiener measure asDWx.

The implications of Wiener measure are quite interesting. Consider the fact
from section 2.2 that the paths of Brownian particles are nondifferentiable. It can
be shown that in fact only these nondifferentiable paths have nonzero Wiener
measure and thus continous paths do not affect the value of Wiener integrals.
Rivers [Riv87] describes this with an interesting analogy.He points out that the
situation here is similar to the one with Lebesque measure and rational num-
bers; although rational numbers are dense in the set of real numbers (as are the
continous paths in the space of paths) their Lebesque measure is zero.

We can also see that the Wiener measure of a single path is zerowhether it
is differentiable or not. This can be seen, for example, by taking equation (2.23)
and considering the limitN! ∞. This fact is also in analogy with the Lebesque
measure – the measure of a single point inR, or in any denumerable set, is 0.

Note that the derivative ˙x is present in equation (2.26). How is this possible
if the paths having nonzero measure are almost certainly nondifferentiable? This
implies that if a path contributes to the value of the integral, the exponential term
must be infinite.

2.4.1 Diffusion

The Wiener integral can also be understood as Green’s function of the diffusion
equation

∂ψ
∂t

= 1
2

∂2ψ
∂x2 (2.27)

(subject to initial conditionψ(x;0) = δ(x)). In fact the original Browian motion
can also be shown to satisfy the diffusion equation. (Which,in the language of
mathematics, is calledKolmogorov’s backward equation.) Roughly speaking,
both of these correspond to the situation in which we have

u(t;x) = E[ f (Bt)℄;
20



whereE is the expectation with respect to the measure in question and Bt is a
Brownian motion. If we are talking about the Wiener measure we replaceBt by
a general pathx(t). Thenu satisfies the equation

∂u
∂t

= 1
2

∂2u
∂x2 (2.28)

with u(0;x) = f (x) as the initial condition.
One can easily recognize that the probability measure of Brownian motion

(or the Wiener measure) is the Green’s function since

u(t;x) = Z
Dx f(x);

whereD is the appropriate measure. Note that iff (x) = δ(x) we haveu(t;x) =
Dx.

One way to construct the Wiener measure and to analyze the properties of
Wiener integrals is to view it as the Green’s function of the diffusion equation
and to assume that the Wiener measure exists. Then one uses Kolmogorov’s
extension theorem to show that the measure has a unique extension to cylinder
measures onR. Doing this, one could derive the properties of transition proba-
bility for Brownian motion and the ESKC-equation (2.22). This way of defining
Wiener integrals is for example taken by Glimm and Jaffe [G&J81], and is quite
opposite to the way we have found Wiener integrals.

Let us now generalize the system; we assume that in addition to diffusion
there is a heat sink in the system. This corresponds to addinga potential term
V �u to the equation (2.27), whereV is a continous function inR (with possi-
ble limitations on the values it may take). The well-known solution of the new
equation, also known as the Feynman-Kac formula, is

u(t;x) = E[exp(�Z t

0
V(x(t))ds) f (x(t))℄; (2.29)

expressed here in terms of the Wiener measure. If we write down the expectation
explicitely, we arrive at the equation

u(t;x) = Z
DWx exp(�Z t

0
ds[1

2
ẋ2+V(x)℄) f (x(t)): (2.30)

The term in exponential resembles a familiar construct; it is almost like the clas-
sical action integral

R t
0 dtL , whereL := 1

2ẋ2�V(x) is the Lagrangian.
Beside the diffusion equation, Brownian motion and the Wiener integrals

can be applied to other partial differential equations as well. They also have
other important applications, such as solutions of boundary value problems, for
example.

21



2.4.2 Discretization of the Wiener integral

One of the virtues of equation (2.30) is that it allows easy linear coordinate trans-
formations; it behaves exactly as an ordinary integral under these transforma-
tions. We must bear in mind that the paths that contribute to the value of the
integral are nondifferentiable. This causes trouble when one tries to apply a non-
linear coordinate transformation, just as in stochastic integration. A fine example
of this is a free particle (thusV = 0) moving in two dimensions. The transition
probability is then

P(x;y; t;x0;y0; t0) = Z
DWxDWyexp(�Z t

t0
dt[1

2
(ẋ2+ ẏ2)℄): (2.31)

If we would consider the above equation literally, after transforming from
Cartesian coordinates to cylinderical coordinates (x = r cosφ; y = r sinφ) we
would have

P0(r;φ; t; r0;φ0; t0) = Z
DWrDWφ J[r℄exp(�Z t

t0
dt[1

2
(ṙ2+ r2φ̇2)℄); (2.32)

whereJ[r℄ is the Jacobian of the coordinate transformation. (Actually, in this case
J[r℄ = r.) Equation (2.32) is however wrong! The reason for this can qualitatively
be given as follows:

If we discretize the time derivatives ˙x2+ ẏ2, we have

ẋ2+ ẏ2 ' [(xi�xi�1)2+(yi �yi�1)2℄(∆t)2= [(r i� r i�1)2+2r ir i�1(1�cos(φi�φi�1))℄=(∆t)2= [(r i� r i�1)2+ r ir i�1(φi�φi�1)2� 1
12

r2
i (φi �φi�1)4+ � � � ℄=(∆t)2: (2.33)

If the paths were differentiable the third term would vanishas∆t ! 0. But, as
we know, this is not the case with Wiener integrals. We deducefrom equation
(2.33) that terms of orderr2=t2 contribute to the integral in question. Note that if
we also consider the summation, we have the general result that significant terms
in the discretization procedure are at least of the order(∆x)2=∆t. This is similar
to the property(dX)2� dt we observed in stochastic integration, and due to the
same reason: the nondifferentiability of the paths of Brownian motion.

Because of the very same reason we must also specify what we mean byx
when we discretize the Wiener integral. This choice has the same effects as in
stochastic integration: we can choose the point to bexi , or in a general case,
xi + λ(xi�1� xi), whereλ 2 [0;1℄. For λ = 0 we have the above case – the
postpoint prescription. Forλ = 1

2 andλ = 1 we get the midpoint and prepoint
prescription, respectively.
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To give an example of how the value of an functional integral depends on the
discretization rule used we calculate the Wiener integral

I = Z
Dx e�R t

t0
dtL ;

where

L = 1
2

ẋ2+ ẋx+ 1
2

x2

and the endpoints on the interval[t0; t℄ are fixed. We begin by discretizing the
integral in a general scheme i.e with an arbitraryλ 2 [0;1℄. This yields

IN = Z N

∏dxi

N+1

∏ 1p
2πε

exp(�N+1

∑ ε
h1

2
(∆xi)2

ε2+ ((1�λ)xi�1+λxi)∆xi

ε
+ 1

2
((1�λ)x2

i�1+λx2
i )i): (2.34)

The discretized form (2.34) can be worked out by the Gel’fand-Yaglom method
[G&Y60]. This includes calculating the determinant of anN�N matrix. In the
end we can take the limitN! ∞ and we have the result

I = [πe2λ(t�t0)(1�e�2(t�t0))℄�1=2e�(x�x0e�(t�t0))2=(1�e�2(t�t0)): (2.35)

Equation (2.35) explicitely shows that the value of the functional integral
depends onλ; the way we discretize the integral. Note that (2.35) is now the
Green’s function of the partial differential equation

∂tφ(x; t) = [1
2

∂2
x +∂xx�λ℄φ(x; t);

where∂x means∂
∂x.

(This example is due to Langouche et al [LRT82].)

The form of the Wiener integral (2.30) is almost identical tothe well-known
Feynman path integral of quantum mechanics. Even though these two integrals
are so close to each other – in fact they are connected by the transformation
t ! it – their mathematical properties are quite different. In thenext chapter we
will review the properties of the Feynman path integral and its similarities and
differences with the Wiener integral.
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Chapter 3

Feynman Path Integrals

The concept of applying path integration to quantum mechanics dates back to the
original paper of Feynman [Fey48], based on his unpublisheddoctoral disserta-
tion of 1942. Actually, Dirac had prompted the usage of classical Lagrangian
function in the description of time evolution of quantum mechanical systems al-
ready in the thirties [Dir33]. Nevertheless, it was Feynmanwho in his famous
paper emerged with the idea of expressing quantum mechanicsin terms of func-
tional integration. Feynman’s paper has had an enormous impact on almost every
branch of physics; even today, his paper is referenced in many papers.

The original idea was that the transition amplitude (roughly equivalent to the
transition probability of section 2.4) of a quantum mechanical particle could be
written as the sum over the possible histories – or paths – of the particle. In
mathematical terms,

K(x1; t1;x0; t0)� ∑
all paths

eiS [x(t)℄; (3.1)

whereS is the action integral
R t1
t0

dtL(x(t); ẋ(t); t) of classical mechanics. Later
on, it is conceptually very easy to regard the above sum as an integral over the
space of paths.

Notice that (3.1) is almost the same as equation (2.30) withf (x) � 1. The
small but important difference is havingi instead of�1 multiplying the action.
This little difference opens up an enormous gap between the two integrals when
one analyzes them mathematically.

We will first present Feynman’s definition of path integrals.Then we dis-
cuss how this concept can be further developed and what kind of mathematical
problems one encounters if one tries to define Feynman path integration in a
mathematically solid way. Our basic construction of the Feynman path integral
follows closely the lines of Feynman’s own book [F&H65]. In this work we will
only discuss nonrelativistic path integrals to keep in mindthe connection with
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the original Feynman path integrals. Path integration has,of course, been de-
veloped for relativistic quantum theory as well and it is an indispensable tool in
quantum field theory.

3.1 Definition

Feynman’s definition of path integrals rests on the notion ofprobability ampli-
tude, φ. Probability amplitudes are usually complex numbers; the probability
corresponding to a certain probability amplitude is given by the absolute square,
P = jφj2, of the amplitude. The basic property of probability amplitudes is that
whenever there are two possible ways for an event to happen, the probability for
such event isnot the sum of the probabilities,P1+P2 but the absolute square of
the sum of the probability amplitudes,P= jφ1+φ2j2. This is due to quantum me-
chanical phenomena, for example the motion of electrons through a double slit
which shows an interference pattern similar to the behaviour of waves in classical
mechanics. Probability amplitudes are thus frequently calledwave functions.

We begin by assigning a probability amplitude to the event that a particle
travels from pointx0 to pointx in configuration space. Let us first assume that
there are slits on the way of the particle, so that there are only finite number
of paths the particle can actually move along. For each such path we assign a
separate probability amplitude. As stated above, the totalprobability amplitude
is then the sum over the amplitudes of all these paths. This setting is similar to
the equation (2.23), where we demanded that the particle must move through a
given set of points.

As with Wiener integrals, it is natural to allowx j to take arbitrary values at
each fixedt j . Integrating over the variablesx j gives us the probability amplitude
for the particle to move along a free path. It is quite naturalto expect this to
extend to possible all paths fromx0 to x by letting the number of intermediate
points approach infinity.

But what exactly is the probability amplitude corresponding to a single path?
Feynman tells us that the phase of the amplitude is proportional to the classi-
cal action. This is where he used the proposal of Dirac to connect concepts of
classical mechanics with quantum mechanics. Having done that, we arrive at the
expression for the probability amplitude given by equation(3.1).

What we have is still just the limitN! ∞ of the product of integrals

K(x1; t1;x0; t0)N = AN
ZR�����RN�1

∏
j=1

dxj eiS [fx1;x2;::: ;xN�1g℄; (3.2)

whereA = 1p
2πi(t1�t0) is a normalization factor. It is tempting to assume that

(3.2) has as its limit an integral corresponding to the Wiener integral. Feynman
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thus wrote the above productformallyas an functional integral:

K(x1; t1;x0; t0) = Z
DFx eiS [x(t)℄; (3.3)

whereDFx is the Feynman “measure” similar to the Wiener measure. More
precisely,

DFx' lim
N!∞

N�1

∏
j=1

dxjp
2πiε

; (3.4)

whereε = (t1� t0)=N. Then he named (3.3) apath integral. It must be em-
phasized that notation like equation (3.3) is meant to be used as a generalizing
notation of the concept of path integration; it is not meant to be a rigorous for-
mulation of path integration. Unfortunately it is exactly the equation (3.3) that
many take as the definition of Feynman path integrals.

Notice that if we taket !�it and substituteDFx for DWx we have the Wiener
integral (2.26). This fact that the two integrals have almost the same mathemat-
ical structure is important; explicit solutions of the integrals of one type can
usually be applied immediately to the other type. We can alsointerpret the Feyn-
man path integral as a Wiener integral of pure imaginary variation. Because the
actual calculation of Wiener integrals uses nearly the sametechniques as Feyn-
man path integrals we have a large number of calculational methods at our hand
when we need to find the value of a Feynman path integral.

It must stressed that there is only a small number of physicalsystems for
which path integrals can be evaluated explicitly. Fortunately, one of the benefits
of path integrals is that they allow a intuitive and effective way of solving the
integrals numerically, usually by Monte Carlo simulation.The number of an-
alytically solvable path integrals has grown rapidly in thelast decade and now
almost every quantum mechanical system solvable by Schrödinger equation can
also be solved by path integral methods. A review of analytical calculational
methods of path integrals is given by Grosche and Steiner [G&S95].

This procedure of taking the mathematically sound Wiener integrals as the
starting point and thenanalytically continuethem to imaginary time is quite
common. One of the early developments of this idea was by Nelson [Nel64].
Analytical continuation especially useful in constructive field theory, where the
Euclidean field theory (with imaginary time) has been studied extensively by this
method. In some cases the results can then be transferred to quantum field theory
with normal time. To what extent this analytical continuation is possible has been
studied by Osterwalder and Schrader ([O&S73],[O&S75]), for example.

Like Brownian motion, the paths of quantum mechanics are also fractals.
Abbott and Wise [A&W81] show this explicitely. They also point out that the
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transition from classical mechanics to quantum mechanics can be seen in the
fractal nature of the paths of particles; the paths of quantum mechanics have
Hausdorff dimension of 2, while for classical paths it is 1. This reflects the uncer-
tainity principle of the quantum world – the path is effectively two-dimensional
because of the randomness of the movement.

Since the original definition of Feynman path integrals has its weak points
and is not mathematically rigorous a lot of research has beendone to find an
alternative way to define the integral. Several different attempts have been made;
some of these will be exposed and discussed in section 3.3. But first we will list
the problems of the above definition. Note that the critique is directed at the
above original definition of the Feynman path integrals.

3.2 Problems of definition

Even though the definition (3.3) seems to be complete from a physical point of
view, mathematically it is on a very shallow ground as Feynman himself admits
[F&H65]. There are several mathematical reasons why (3.3) is not a functional
integral in a mathematical sense. In fact, the very construction of the integral is
built mainly on physical concepts, with hardly any mathematics involved. Com-
paring this with the definition of Brownian motion and the Wiener integral, we
find that there is a large gap between the two integrals when itcomes to mathe-
matical rigour.

A fine review of the following mathematical problems and an account of the
work done on them is given by Tarski [Tar74]. The problems he mentions will
be discussed in this work. We shall also make additional remarks concerning the
reasons for mathematical problems in Feynman path integrals.

First of all, the introduction of the classical action in thedetermination of the
probability amplitude may seem an arbitrary choice. But, ifwe consider quantum
mechanics in terms of operators, we find that the Hamiltonianoperator (and thus
the classical Hamiltonian function and Lagrangian function) is the generator of
time-evolution for states. Also, if we think of the Feynman path integral as the
Green’s function of the Schrödinger equation we find that theinclusion of the
classical action in the exponential term follows from Feynman-Kac formula in
the same way as with Wiener integrals. So, at least from a physical point of view
the form of Feynman path integrals is not problematic.

Another argument against the validity of (3.3) is that the exponential term
includes the imaginary uniti and thus the integral does not converge in the usual
sense. The usual “solution” is to include a small imaginary component in the ex-
ponential term – usually it is assumed that~ is partly imaginary, say~+ iε. This
makes the integral to converge as a normal Gaussian integral. After calculating
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the integral we take the limitε! 0. The use of this so-called “+iε”-prescription
is actually prompted by causality arguments when we interpret the path integral
as a Green’s function of the Schrödinger equation.

It is also possible to carry out the “+iε”-prescription by adding a small imag-
inary part to the mass of the particle, which is not explicitely shown in our for-
mulae. This has the same convergence-yielding effect but inaddition has other
effects on the integral. Hence the choice of which parameterof the path integral
is subject to analytical continuation depends largely on the physical situation in
question and what one wishes to calculate with the path integral.

The oscillation of the exponential term can also be a used in apositive way to
show an illuminating detail: if we write (3.3) with~ correctly inserted, we have

K(x1; t1;x0; t0) = Z
DFx e

i~S [x(t)℄: (3.5)

Notice that forS � ~ the exponential term oscillates strongly for all paths
except in the vicinity of the classical path which minimizesthe action functional.
For all other values of the action the phases are approximately opposite and thus
cancel each other out. In effect, the only paths that affect the value of the integral
correspond to the classical path. This example gives a very intuitive and en-
lightening view to the fact that if~! 0 we should get classical mechanics from
quantum mechanics. We also see that forS � ~ quantum phenomena cannot be
neglected as we must consider other paths in addition to the classical path when
calculating the integral (3.5).

If we were to understand the equation (3.3) as a functional integral, there
are still several unclear questions, such as what are the integrable functions and
what exactly is the underlying space of paths. Feynman did not originally answer
either of these questions. Only experience has taught us which functions are in-
tegrable – and thus which potentials can be handled with the path integral for-
malism. This connection can be seen as follows: we assume that the Lagrangian
is of the typeL = T�V. Usually the kinetic term is included in the definition of
the path integral and so the integrated functional is exp(i R dt V[q(t)℄). (This is
the Feynman-Ito formula, see Theorem 3.1.) As we shall see insection 3.3, all
the alternative definitions do declare what functionals areintegrable.

3.2.1 Probability amplitude

The basic source of trouble in Feynman path integrals is the concept of prob-
ability amplitude itself; for a free particle i.e. a system without a potential it
is

K(x; t;0;0) = Z
DFx exp(i Z t

0
ds

1
2

ẋ2); (3.6)
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assuming that the particle starts att = 0 from the origin. The above path integral
can be evaluated exactly and the result is

K(x; t;0;0) = 1p
2πit

eix2=2t : (3.7)

Although the amplitude has some of the properies of a transition probability –
for example, the Einstein-Smoluchowski-Chapman-Kolmogorov equation still
holds for successive transitions – it misses the most important feature of the
transition probability of Brownian motion: it is not a measure.

Let us further scrutinize the equation (3.7). As can be seen,the fact that it
is not a real positive measure is due to the imaginary factori present in the ex-
ponential term. It can be easily checked that (3.7) does not fulfill the properties
of a probability measure (compare with definition 2.1). One can generalize the
theory of measures to complex measuresµ : Ω! C but (3.7) is not even a com-
plex measure. This is due to the oscillation of the exponential term; although we
cannot require the unit measureµ(Ω) = 1, the propertyµ(A[B) = µ(A)+µ(B)
should hold forA;B� Ω, A\B= /0. Because of the oscillation this is not true
for the Feynman measure.

The genuine probability is the absolute square of the probability amplitude.
For (3.7) it is

P(x; t) = (K(x; t;0;0))2 = 1
2π t

: (3.8)

Even more trouble follows; if we integrate over the endpointto calculate the total
probability, the result is infinite and not 1, as it should. Infact this is why the
transition probability (3.6) cannot be a measure – it does not converge [Cam60].
The above expression must be a relative probability. This also prompts us to use
path integration in the context of time evolution of wave functions.

An interesting interpretation of the fact that the probability (3.8) does not
converge for a free particle is as follows. Recall that a freeparticle, with mo-
mentump, is represented by a wave functionψ(x) = eipx. This function is not
square integrable;

R
dxjψ(x)j2 = ∞. Thus we usually apply some sort of normal-

ization, for example by restricting the particle to a box with finite dimensions.
Then we can carry out calculations and in the end we let the dimensions of the
box go to infinity. The same applies for the propagator; sincethe free particle is
not localized, we should not expect its probability to converge.

Since even the short-time probability amplitudes fail to bemeasures (in any
reasonable sense) it is impossible to proof that there exists a limit of these mea-
sures defined on discrete intervals which is equal to a measure defined on the
space of paths. The lack of a well-defined measure prohibits us from develop-
ing rigorous integration theory for Feynman path integrals. The Feynman path
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integral is only a linear functional and not a functional integral. Equations such
as (3.3) must therefore be understood as a formal way of writing down the limit
of the product of integrals. The reason why path integrals are so popular is that
even though they are not really integrals they behave exactly like genuine inte-
grals under linear coordinate transformations.

The formal definition has its benefits, though. Intuitively it is clear what is
meant by such an equation and from physicist’s point of view it is mathematically
correct enough to be used as a tool in quantum mechanics. The given notation
is also independent of how we are actually define the integral. If we ever find a
solid definition for the path integral, we need not change ournotation.

3.2.2 Hamiltonian formalism

Another shortcoming of the original definition is that it is based on concepts
derived from classical mechanics rather than quantum mechanics. In quantum
mechanics based on operators, the Hamiltonian operator is the basic ingredient,
not the Lagrangian of Feynman’s definition. It is possible todefine path inte-
grals in terms of the Hamiltonian, and many authors actuallytake this as their
starting point. In can be argued that this approach is more general and better
suited for quantum mechanics in which the Hamiltonian operator plays a major
role. These two separate formulations of quantum mechanicsare connected by
the time evolution operator, exp(it bH), wherebH := H(bx; bp; t) is the Hamiltonian
operator.

The proper discussion of the use ofbH in the time evolution operator involves
determining the order of the operatorsbx and bp. This is important since they do
not commute. We postpone this discussion to section 3.4.1 where we consider
the problem in detail. For the time being we assume that operator bH is of the
form bH = T(bp)+V(bx) and then no problem of operator ordering exists.

Using this, we can write the transition amplitude from statejx0i to statejxi
as

K(x0;x; t) = hx0jeit bH jxi: (3.9)

K(x0;x; t) is actually, as we shall see, equivalent to the transition amplitude
of Feynman’s path integral. They both are Green’s functionsof the Schrödinger
equation. And of course,K(x0;x; t) of the equation (3.9) can be expressed as a
path integral. To see this, we first note that for time evolution operatorsbU(t; t0) :=
exp(�i(t� t0)bH) we have the rulebU(t; t0) = bU(t; t1)bU(t1; t0); (3.10)

wheret0� t1� t. (this is in fact equal to the ESKC-equation (2.22))
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Let us now divide the interval[t0; t℄ into N equal subintervals. We can then
write down the transition amplitude fromx0 to x as

K(x0; t0;x; t) = hxjbU(t; tN�1)bU(tN�1; tN�2) � � � bU(t1; t0)jx0i: (3.11)

If we insert the unit operatorsb1 := Z ∞�∞
dxnjxnihxnj; n= 1; : : : ;N�1

in suitable positions in equation (3.11) we have the productof N�1 integrals

K(x0; t0;x; t) = Z N�1

∏
j=1

dxj

N

∏
j=1

K(x j ; t j ;x j�1; t j�1): (3.12)

The entityK(x j ; t j ;x j�1; t j�1) is called theshort time propagator. If we take
t j � t j�1 = ε = (t� t0)=N it can be written in the form

K(x j ; t j ;x j�1; t j�1) = hx j je�iεbH jx j�1i
Now, as we have assumed, the Hamiltonian operatorbH can be written in the

form bH = T(bp)+V(bx). We can calculate the short time propagator with the help
of the Baker-Hausdorff formula

e�iε bH = e�iεbVe�iεbTe�ε2bX; (3.13)

wherebX is an operator which depends on the the commutators[bV; bT℄. If bV andbT
commute thenbX = 0. For non-commuting operators we can usually neglect the
terms which are of orderε2. The short-time propagator is then

K(x j ; t j ;x j�1; t j�1)� Z
dpj

2π
expfip j(x j �x j�1)� iεH(p j ;x j)g;

where we have replaced the Hamiltonian operatorbH with the Hamiltonian func-
tion H. This procedure of finding the corresponding classical function will be
fully described in section 3.4.1. The approximation sign isdue to the fact thatbx
andbp do not commute. The above equation is true to the order ofε2.

The transition amplitude for the interval[t0; t℄ can then be written as

K(x0; t0;x; t)� Z N�1

∏
j=1

dxj

N

∏
j=1

dpj

2π
exp(iS N); (3.14)
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whereS N is the sum

S N = N

∑
j=1

[p j(x j �x j�1)� εH(p j ;x j)℄: (3.15)

For a reasonably smooth Hamiltonian functionH the right hand side of equa-
tion (3.14) converges and the approximate sign can be replaced by an equality
when we take the limitN!∞;ε! 0. Note that in this limit the sum (3.15) tends
toward the classical canonical action for a path[x(t); p(t)℄ in phase space. Like
the original Feynman path integral, the limit of equation (3.14) can be written
formally as

K(x0; t0;x; t) = Z
D 0x D p

2π
eiS [p;x℄: (3.16)

The prime in the above equation is included because the endpoints x0 and xt

are fixed for all paths and thus there is one less integration over coordinates in
equation (3.14) than there is over canonical momenta.

The equation (3.16) can be understood as the generalizationof the configu-
ration space path integral, although they are derived from quite different basic
assumptions. As a matter fact, for Hamiltonian functions with only quadratic
dependence onp we can readily integrate over the momenta in equation (3.12).
The result is the configuration space path integral as definedby Feynman. It must
be stressed that they all are integrals only formally – thereis no measure defined
on an infinite-dimensional phase space and therefore no trueintegration theory
on the paths of phase space.

If we taket ! it in integral (3.16) we see that the resulting integral is actually
similar to one we find in statistical physics – the partition function. The use of
path integrals in statistical physics is a broad subject itself and outside the scope
of this work. Therefore we shall not delve deeper into it. Letus just recall that
path integration is a very important mathematical tool in statistical physics.

However, the procedure of defining path integrals beginningwith operator
approach to quantum mechanics takes us even further away from the mathemat-
ically rigorous theory of Brownian motion. The paths in the phase space are
not even continous – this can be seen by considering the configuration space
integral and recalling that the paths are nondifferentiable; thus the momenta is
discontinous almost everywhere. The functional integral defined through oper-
ators and Hamiltonian formalism is even more clearly only a formal expression
meaning a limit of a product of integrals than in the case of configuration space
path integral.

If we use operator formalism to define the quantum mechanicalpath integral
we may fail to appreciate the fact that the way Feynman originally defined his
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path integrals is completely independent of the operator formulation of quantum
mechanics.

As with the original Feynman path integral, a casual physicist may use the
formal equation (3.16) as the definition of the phase space path integral and dis-
cretize it to find explicit solutions to the integral. However, from the discussion
above we know that the definition is actually built on this discretized form of the
transition amplitude.

3.3 Alternative definitions

Considering the multitude of mathematical problems connected to the original
definition of path integration, as shown in the previous section, it is no wonder
that a lot of work has been done to build a proper foundation for path integra-
tion. Unfortunately, as with Wiener integrals, there are many ways to look at
the Feynman path integral. One’s viewpoint strongly affects what one takes as
the starting point of the definition. In the following we discuss some of the best
attempts at defining the Feynman path integral in mathematically proper terms.

We must recall that the attempts are somewhat indirect; the structure of the
integral is such that it does not allow a direct approach since we cannot define a
normal measure on a function of spaces that coincides with the ordinary defini-
tion of the Feynman path integral.

The constructs used to alternatively define the path integral can be divided
into two classes: the first deals directly with the space of paths and tries to make
up for the lack of a proper measure by the means of some abstract mathematical
construct. The other type uses the discretized version of the path integral as its
basis.

The following definitions are based on slightly different assumptions. Hence
the class of integrable functionals varies, as mentioned insection 3.2. This class
of integrable functionals is usually defined in terms of the potential partV of
the Lagrangian. Note that this does not necessarily imply anything about the
class of physical potentials which can be handled with the specific definition; it
merely tells that the certain functionals fulfill the integrability conditions of the
definition.

3.3.1 First constructs

The first notable attempt to redefine the Feynman path integral was made by
Cameron in 1960 [Cam60]. He observed that usual measure-theoretic models
cannot be used in connection with Feynman path integrals even if the exponent
of exp(iS) is modified to have a real part. He then used a technique similar to
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Wiener integrals to redefine path integrals; namely, he divided the interval[t0; t℄
into n subintervals with

t0 < t1 < t2 < :: : < tn�1 < tn = t:
The paths are the assumed to be polygonal. Functionals exp(iS) are the cal-
culated along these polygonal paths and finally when one passes to the limit
max(t j � t j�1)! 0 one arrives at a construct one can call a path integral. Note
that one needs to apply the modification schemem!m+ iδ in order to calculate
the integrals over the discretized coordinatesxi .

This approach is somewhat analogous to the Hamiltonian formalism in sec-
tion 3.2.2 and defines the path integral as the limitN ! ∞ of integral in finite
number of dimensions. The problem is that, as Cameron himself admits, there
does not exist a measure nor an integral on the space of continous functions that
would coincide with the finite-dimensional integral. Therefore the path integral
defined this way is only an heuristic derivation and is only a formal notation
similar to the original definition by Feynman.

The above definition can be also achieved by using the Trotterformula

exp[t(A+B)℄ = lim
n!∞

[exp(tA=n)exp(tB=n)℄n:
We takeA = iH0, whereH0 is the free Hamiltonian (12 p2) andB = �iV . This
was first done by Nelson [Nel64].

Another approach – which we are already familiar with – is also due to Nel-
son [Nel64] who defined Feynman path integrals by analyticalcontinuation of
Wiener integrals. As we know this is doomed to fail because when we make the
transformationm! im in Wiener integrals the variance becomes purely imag-
inary and the Wiener measure becomes a complex measure with infinite total
variation. This is exactly the case of Cameron explained above; without a proper
measure we cannot have a proper integral.

Both of the above alternative definitions, however, have thesame shortcom-
ings. First of all, they are both indirect in their approach to the path integral i.e.
neither actually manages to directly write the path integral as a true integral of
the form

I = Z
Dx eiS [x℄; (3.17)

whereS [x℄ is the classical action. The above integral is what we conceptually
mean when we speak of functional integral in quantum mechanics and therefore
the definition we use should include an integral of the type (3.17). We also recall
that the definitions are quite restrictive with respect to the potential termV in the
Lagrangian –V must satisfy strong conditions such as analyticity.
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Another weakness of the above definitions is that they do not directly sup-
port the most important intuitive feature of Feynman path integrals, namely the
transition to classical mechanics as~! 0.

A different approach to the problem was taken by Ito [Ito66],who suggested
the definition of the path integral through measuresdµT;α on a Hilbert space
H with inner product< x;y >. dµT;α is defined by the covariance operatorT
(symmetric, strictly positive) and the mean vectorα. We denote

IT;α( f ) = R
dµT;α(x) ei<x;x> f (x)R

dµT;0(x) ei<x;x> :
A path integral on such space is then defined as

I = Z
Dx ei<x;x> f (x) = lim

T!∞
IT;α( f ): (3.18)

The limit T ! ∞ must be taken suitably and must be independent of the vector
α. Ito proved the convergence of the above integrals for a verylimited class
of functionals f with respect to potentialsV. Ito’s proposal is too limited to
be a general definition of path integration: it only works forpotentials which
are Fourier transforms of bounded complex measures and for potentials of the
polynomial type

V(x) = 2

∑
i=1

cix
i;

with c2 > 0.

3.3.2 Pseudomeasures

The first formulation of Feynman path integrals that has a solid mathematical
foundation was made by C. DeWitt-Morette [DeW72]. The definition she used
has been later reviewed and refined in [DMN79] and in [C&D95].It also paved
the way for further alternative definitions based on slightly different assumptions
(see the following sections) which nevertheless used the same way of indirectly
defining the measure on a function space

The definition is built on the concept ofpseudomeasuresor prodistributions,
prompted by the work of Bourbaki onpromeasures. (see, for example, [Bou69]).
The theory of promeasures generalizes the theory of measureto spaces which are
not locally compact, which is the case in most spaces of functions. Pseudomea-
sures are defined as the Fourier transforms of Gaussian measures. One should
be aware that even though they are called “measures” they arenot usual set-
theoretic measures. Slightly altered, this formalism can also be applied to the
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Wiener integrals at once, which makes this approach to functional integration
very general.

Let us now consider the space of continous pathsC from T :=℄ta; tb[! R,
with the normjjqjj = supt2T jq(t)j. The spaceC can be understood as a topo-
logical space which is Hausdorff and locally convex. We alsoassume thatC is
a linear space in the sense that for two pathsq;q0 2 C also the sum of the paths
q+q0 is also inC . This is achieved by demanding thatq(tb) = 0 for all q2 C .

The spaceC has a dual spaceM , which is the space of bounded measures
defined onT. The space of paths and its dual are connected by the equation< µ;q>= Z

T
q(t)dµ(t) 2 C : (3.19)

(Note thatM includes complex measures.)
If X is a topological space andX0 is its dual space, the Fourier transformation

is defined with the help of the above equation as

F fλ(x0)g := Z
X

e�i<x0;x>dλ(x); (3.20)

whereλ is a measure onX0. It should be noted that the above equation defines
a infinite-dimensional Fourier transform. Now we can define the bounded Gaus-
sian measurew on C as

F fwg= exp(� i
2
W); (3.21)

whereW is the covariance of the measureµ,

W(µ) = Z
T

Z
T

inf(t; t 0)dµ(t)dµ(t 0): (3.22)

(Compare this with the characteristic function of the transition probability of
Brownian motion, equation (2.3).) The choice of inf(t; t 0) is made to connect
this definition to the ordinary Feynman path integrals. NotethatW is a positive
quadratic form onM . In the general case of covariance functionK(t; t 0) we have

L(µ) = Z Z
K(t; t 0)dµ(t)dµ(t 0) (3.23)

andw is defined by the equation

F fwg= e� i
2L(µ): (3.24)

Having defined the measurew we can proceed to define the path integral on
the spaceC in the form (m= 1)

K(b;a) := Z
C

eiSint(q)dw(q): (3.25)
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We assume that the Lagrangian is of the formL=T�V so thatSint = R
dt V(q(t)).

The integration measurew is the measure defined by the equation (3.21). Note
that we have not used discretization in any step of the above definition. The
above integral may thus be a true functional integral on the space of paths.

The main point of this definition is that it coincides with Feynman’s original
definition of the path integral i.e.Z

C
dw(q) = ZR exp

�
i

n

∑ (∆q)2

2ε j

� n

∏ dqjp
2πiε j

; (3.26)

with ε j := t j � t j�1 and(i)�1=2 = exp(�iπ=4). The right hand side of equation
(3.26) can be recognized as the original path integral withn discretization points;
we denote it asIn. DeWitt-Morette proves in her paper [DeW72] that the “mea-
sure”dw(q) is equal to the product of “measure” of transition amplitudes. This is
completely analogous to the Wiener measure which is also equal to the product
of measures on a sequence of transition probabilities, cylinder measures.

One can easily see the similarities in the mathematical structures; we have
a measure defined on a space of paths (or functions) which coincides with the
product of a finite number of measures on cylinders. This equality has no value in
the context of the definition but is very important if we wish to actually calculate
a functional integral. These similarities are well-documented in the reference
[C&D95], where Cartier and DeWitt-Morette develop the theory of functional
integration from the basis of the notion of pseudomeasures.

Unfortunately, as mentioned before, the transition amplitude is not a measure
in the usual sense. This is true also for the “measure”w defined by the equation
(3.21). One must therefore make a generalization of integration theory to spaces
which are not locally compact, for example spaces of paths, and then use other
arguments show that this definition is reasonable and meaningful. These argu-
ments include that one should understand the measure as a bounded distribution
of rank zero and not as a measure, since it is an unbounded measure. This in-
terpretation makes the equation (3.26) sensible even though we are not dealing
with true measures. The point is that even thoughw is a poor measure it is a
good distribution.

To discuss the distributional properties of the pseudomeasurew we assume a
functionalφ 2 C ∞(R), which is the space of smooth functions onR. We will use
φ as a test function. Then the inner product< w;φ >= Z

φ(q)dw(q)
is always defined. Furthermore,w is in the space of multiplication operatorsOM.
If T 2 OM then < wT;φ >=< T;wφ >
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is defined for allT. Pseudomeasurew belongs also to the space of convolution
operators. These distributional properties are actually the ones that prompt us to
use Fourier transformation to define the desired measure on the space of paths.

When we are to explicitely calculate functional integrals,what we need to do
is to calculate the inner product according to the equation (3.19). For example,Z

C
dw(q) =< w;1>;

Z
C

eiS(q)dw(q) =< w;eiS > : (3.27)

The general case is then calculated as (F means the inverse Fourier trans-
form) < w;φ >=< F F w;φ >=< F w;F φ >=< e�iW=2;F φ > : (3.28)

The final term is calculated like the equation (3.19). An important example of
the above integrals is< w;1>=< e�iW=2;F 1>=< e�iW=2;δ(0)>= 1: (3.29)

Although it may seem that the definition is rather abstract and that it is hard to
derive explicit results using it, this is not the case. The property (3.26) connects
these integrals readily to ordinary Feynman path integralsonRn. This connec-
tion is made clearer in the paper [DeW74], where DeWitt-Morette clarifies the
definition and uses the technique to calculate some simple path integrals. She
also shows that the definition allows one to make semiclassical approximations
of the functional integral with ease, which is a good featuresince the possibil-
ity to use classical approximation is one of important attribute of Feynman path
integrals.

The procedure can be generalized to phase space path integrals. This work
has been done by Mizrahi ([Miz76],[Miz78]). He also develops computational
techniques based on this definition of Feynman path integrals.

There are limitations to the pseudomeasure approach. Firstof all, the class of
potentialsV for which this formulation is valid was not originally defined clearly.
In [DeW74] DeWitt-Morette shows that the formalism works for linear continous
potentials and for non-linear potentialsV(q) which satisfy the constraintZR du V(u)eiu2 < ∞:
This class includes, for example, all polynomial potentials.

The validity of several other arguments is somewhat ambiguous as well.
Furthermore, only paths belonging to the function spaceL2;1 are considered.
By L2;1 we mean the space of functions whose derivative is square integrable,R

dtjq̇j2 < ∞. From the considerations of chapter 2 it is clear that the definition
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of path integrals should also allow integration over continous functions which
are not differentiable.

The definition via pseudomeasures may even be critized for being too general
– in most cases we make further assumptions on the space of paths and hence
removing some of the complications of the more general case.In spite of these
weaknesses DeWitt-Morette’s ideas have been very important as the inspiration
and basis for further attempts to redefine the Feynman path integral as we will
see in the following sections.

3.3.3 Fresnel integrals

Another attempt to rewrite the definition of Feynman path integrals is due to
Albeverio and Høegh-Krohn [A&H76]. They also take an indirect way to define
the path integral, this time by a construct called theFresnel integral(after similar
integrals found in optics). Their approach is built around Hilbert space formalism
rather than topological concepts. They define their “measure” on a Hilbert space
of continous functions by a Fourier transform. In the following we shall briefly
study the main features of this definition which is based on the concept of an
oscillatory integrali.e. a functional integral of the formZ

Dx eiA:
We begin by considering the Hilbert space ofH = Rn with inner product

denoted by(x;y). The norm is thenjxj2 � (x;x). Let us first writeN = (2πi) n
2 .

With this notation we write the Fourier transform of the function φ(x):
F fφg(x) = Z

dy ei(x;y)φ(y): (3.30)

We also note that

1
N

Z
dx e

i
2 jxj2F fφg(x) = Z

dx e� i
2 jxj2φ(x) (3.31)

Let f (x) now be the Fourier transform of a bounded complex measureµ (thusjjµjj := R jdµj< ∞) on H . We then have

f (x) = Z
dµ(y) ei(x;y): (3.32)

By jjµjjme denote the supremum of the measureµ. Next we writeF (Rn) for
the space of functions onH which are Fourier transforms of bounded complex
measures. We define a norm for a functionf 2 F as jj f jj0 = jjµjj, whereµ is
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the measure corresponding to the functionf . Note that this implies thatf is a
bounded continous function inH .

The main definition is the following: for a functionf 2 F ,

1
N

Z
dx e

i
2 jxj2 f (x) = Z

dµ(x) e� i
2 jxj2: (3.33)

With this notation, we then define theFresnel integralas

F ( f ) := 1
N

Z
dx e

i
2 jxj2 f (x): (3.34)

From the above equations we get thatF ( f ) is a continous bounded functional.
Albeverio and Høegh-Krohn then prove that

F (1) = 1jF ( f )j � jj f jj0
as well as that the Fresnel integral supports a functional integral version of the
Fubini theorem and that the Fresnel integrals are invariantunder transformations
x! Ox+a of the Hilbert space whereO is an orthogonal transformation from
H to H anda is an arbitrary element of the Hilbert space.

The paper then goes on to define the same basic properties stated above for a
general Hilbert space which is separable. The following definition is superficially
almost identical with Ito’s definition which we encounteredin section 3.3.1. The
connection between these two is of the form

F ( f ) = 1
N

Z
dx e

i
2 jxj2 f (x) = F(e i

2 jxj2 f );
whereF is a function defined as a limit (in fact by the equation (3.18)).

The general definition given above is then used on the real Hilbert spaceH
of real continous functionsγ(τ) from [0; t℄ to Rn such thatdγ=dτ 2 L2. We also
defineγ(t) = 0 and the inner product onH as(γ1;γ2) = Z t

0
dτ

dγ1

dτ
dγ2

dτ
: (3.35)

(Notice the similarity with DeWitt-Morette’s definition.)
This definition is then used to give the main result, a proposition called the

Feynman-Ito formula, which is the quantum mechanical version of the Feynman-
Kac formula of Wiener integrals.
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Theorem 3.1 (The Feynman-Ito formula) Let V andφ be Fourier transforms
of bounded complex measures onRn. Let H be the real Hilbert space of conti-
nous pathsγ(τ) from[0; t℄ toRn such thatγ(t)= 0 andγ̇2 L2;1 with inner product(γ1;γ2) = R t

0 dτ γ̇1γ̇2. Then

f (γ) = e�i
R t

0 dτ V(γ(τ)+x)φ(γ(0)+x)
is in F (H ), the space of Fresnel integrable functions onH and the solution of
the Schrödinger equation

i
∂ψ
∂t

=�1
2

∇2ψ+Vψ

with the boundary conditionψ(x;0) = φ(x) is given by the normalized integral

ψ(x; t) = 1
N

Z
dγ e

i
2 jγj2 f (γ)= Z

dγ ei
R t

0 dτ
�j dγ

dτ j2�V(γ(τ))�φ(γ(0)+x): (3.36)

If the potential is of the quadratic formV = 1
2xAx, whereA is a strictly pos-

itive definite form (i.e. matrix) onRn, the above formula does not hold. The
Lagrangian with such a potential term is not Fresnel integrable. However, the
result can be generalized for such potentials. In this case we must apply the
condition jγj2 = Z t

0
dτ (γ̇2+ γ2)< ∞

and the inner product < γ;γ >= Z
dτ (γ̇2� γA2γ)

on the paths to get the result that the same Feynman-Ito formula also holds in
this case.

Although the above definition is formally consistent it doeshave its limita-
tions. For example, the space of paths is assumed to have

R
dτjγ̇j2 < ∞, which

– as in the case of pseudomeasures – is contrary to the intuitive view that the
paths which are essentially nondifferentiable contributeto the path integral. So
in principle this definition misses some of the generality ofa proper definition,
at least if we compare it to the Wiener integral. The interpretation of the terṁγ
is a very difficult and is left a little ambiguous.
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3.3.4 Polygonal paths

The third major contribution to the proper definition of Feynman path integrals
is due to A. Truman. In his papers ([Tru76],[Tru77]) he introduces a definition
based on the work of Albeverio and Høegh-Krohn as well as thatof DeWitt-
Morette. The concept ofpolygonal pathsessentially only extends the space of
functionals for which the integral (3.36) exists and thus making the Feynman-Ito
formula a more useful tool. The papers greatly clarify the preceeding work of
the above-mentioned authors.

To introduce this approach to path integrals we begin by assuming thatX is a
separable reflexive Banach space. This implies the existence of a dual spaceX0
with the action of an elementx0 2 X0 defined as< x0;x>. As with Fresnel inte-
grals, we then define the integrable functions as Fourier transforms of bounded
complex measures onX0. The integrable functionsf (x) are thus of the form

f (x) = Z
dµ(x0) e�i<x0;x>:

Let W(x0;x0) now be a variance such that expf�(i=2)W(x0;x0)g is measur-
able. We then define the Feynman path integral as

I ( f ) = Z
dµ(x0) e� i

2W(x0;x0): (3.37)

This is almost an exact synthesis of the definitions by DeWitt-Morette and Al-
beverio and Høegh-Krohn. In non-relativistic quantum mechanics we can choose
X to be a Hilbert space. On such spaceW(x0;x0) = jjx0jj2 and the equation (3.37)
is identical with the equation (3.34).

Having defined the path integral we still are posed with the same problem:
what is the interpretation of the derivativedγ=dτ? Truman proposes two alter-
native ways to understand the role of such derivative: firstly, we may be able to
isolate the functions for whichdγ=dτ does not exist and then define the path in-
tegral on a quotient space. Secondly, we could interpret thederivative “loosely”
as a weak derivative. Truman himself chooses the latter option.

Let us takeH as the space of real-valued continous functionsγ(τ) : [0; t℄! R
with dγ

dτ 2 L2 and the end point of every path is fixed,γ(t) = 0. We begin by
noticing that anyγ 2 H can then be written in the form

γ(τ) = α0(τ� t)� ∞

∑ αnt
2πn

sin
�2πnτ

t

�+ ∞

∑ βnt
2πn

h
1�cos

�2πnτ
t

�i; τ 2 [0; t℄: (3.38)

αn;βn 2 R are the usual Fourier coefficents ofdγ
dτ . We apply the condition

∑∞(α2
n+β2

n) < ∞ on the coefficentsαn;βn. Note that in the above formula and
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in the following we haveτ 2 [0; t℄. With this definition we instantly know that
the derivativeγ0(τ) exists and that it can be explicitely written down.

We can now write write down the inner product on the spaceH of pathsγ(τ).
It is (γ;γ0) := Z

dτ
dγ
dτ

dγ0
dτ

= tα0α0
0+ t

2

∞

∑αnα0
n+ t

2

∞

∑βnβ0n: (3.39)

H is then a real separable Hilbert space with reproducing kernel G(σ;τ) =(t�max(σ;τ)). The reproducing property is stated by the equation

γ(σ) = �
G(σ;τ);γ(τ)�; σ 2 [0; t℄: (3.40)

We recall thatG(σ;τ) is the Green’s function of the differential operator� d2

dτ2

with boundary conditionsdG
dτ (σ;τ = 0) = 0;G(σ;τ = t) = 0.

Next we introduce the linear mapPn : H ! H by(Pnγ)(τ) = n�1

∑
j=0

�
G(( j +1)t

n
;τ)�G( jt

n
)�[γ j+1� γ j ℄nt (3.41)

whereγ j = γ( jt=n); j = 0;1; : : : ;n. The reproducing property of the kernelG(σ;τ)
implies (γ0;Pnγ) = n�1

∑
j=0

(γ0j+1� γ0j)(γ j+1� γ j)n
t
= (Pnγ0;γ): (3.42)

ThusP�
n = Pn.

If we substitute(t�max(σ;τ)) for G(σ;τ) in the equation (3.41) we get(Pnγ)(τ) = γ j +(τ� jt
n
)(γ j+1� γ j)n

t
; jt

n
� τ� ( j +1)t

n
: (3.43)

From the form of equation (3.43) we immediately see that(Pnγ) is just the piece-
wise linear polygonal approximation toγ. It can be proved thatP2

n = Pn and
thusPn is indeed a projection. This procedure of taking the piecewise linear ap-
proximation of the path gives the namepolygonal path formulationof Feynman
path integrals to the alternative definition of functional integration which we will
present in the following.

We first note that the polygonal paths(Pnγ) are dense inH in the sense that
if V = fγ 2 Hj jjPnγ� γjj ! 0 asn! ∞g thenV = H. For a proof see Truman
[Tru76].

To connect the above formalism to the usual definition of pathintegrals and to
the Feynman-Ito formula we introduce theFeynman mapsF s. The labels refers

43



to a complex variable with Ims� 0. For the normal Feynman path integrals= 1
and then we writeF 1 � F .

Let us define the complex Gaussianes : H ! C as

es[γ℄ = e
i

2s(γ;γ): (3.44)

With this notation we define the Feynman mapF s[ f ℄ of the complex-valued
functional f . We first denoteF s

n [ f ℄
F s

n [ f ℄ = Z
PnH

dnγ ( f es)ÆPn

hZ
PnH

dnγ (esÆPn)i�1; (3.45)

where integration is done from�∞ to∞ for each of the varibles∆γ j =(γ j+1�γ j).
The equation (3.45) is normalized so thatF s

n [1℄ = 1. The Feynman mapF s[ f ℄
is defined by the limitF s[ f ℄ = limn!∞ F s

n [ f ℄ when it exists. We also writef 2
F s(P∞H) if and only if the above limit exists.F s(P∞H) is the class of integrable
functionals.

We now use the definition of Albeverio and Høegh-Krohn thatF (H) is the
space of functionals which are Fourier transforms of complex-valued measures
onH which are of bounded absolute variation. Eachf 2 F (H) can be written in
the form of the equation (3.32). Truman proves thatF (H)� F s(P∞H) and that
if f 2 F (H)

F s[ f ℄ = Z
H

dµf (γ) e� is
2 (γ;γ): (3.46)

Hence for Ims� 0 we havejF s[ f ℄j � Z
H
jdµf (γ)j= jj f jj0 < ∞: (3.47)

If we compare this with the results of Albeverio and Høegh-Krohn shown in
section 3.3.3 we see thatF s(H) is an extension of the original space of integrable
functions.

If we takes=�i we have the Wiener integral, since

ei[γ℄ = e� 1
2(γ;γ); (3.48)

with (γ;γ) given byjjγ̇jj2. If we compare the functionalei[γ℄ of the above equa-
tion we find that it is the Wiener measure. Truman uses this connection to estab-
lish some important properties of the general theory: the translation formula for
linear transformationsγ! γ+a with a2 H.
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What remains to do is to connect the polygonal path formalismto the usual
definition of the path integral and to show the validity of theFeynman-Ito for-
mula for path integrals defined by polygonal paths. We begin by using the nota-
tion (Pnγ+X) for the polygonal path(Pnγ+X)(τ) = (Pnγ)(τ)+X; τ 2℄0; t[; (3.49)

whereX is constant. We letS [Pnγ+X℄ denote the classical action. Explicitely it
is, as usual,

S [Pnγ+X℄ = n�1

∑ (γ j+1� γ j)2

2∆t
�Z t

0
dτ V[Pnγ+X℄; (3.50)

with ∆t = t=n.
The Feynman-Ito formula is then written in the normal way as the solution to

the Schrödinger equation with initial dataφ = R
exp(iαX)dν(α) and with a real-

valued potentialV = AX2+BX+C+ R
exp(iαX)dµ(α). ν andµ are complex

measures of bounded variation onR. The solution is

ψ(X; t) = F [e�i
R t

0 dτ V[γ(τ)+X℄φ[γ(0)+X℄℄: (3.51)

Truman also shows in [Tru77] that his formalism behaves nicely as far as
semiclassical expansions are conserned. The limit~! 0 is also derived ex-
plicitely and shown to give the desired result – classical mechanics results when
one extremizes the action in the integral (3.51).

Although the polygonal path formulation of the Feynman pathintegrals is
clearly an extension of the aforementioned definitions of DeWitt-Morette and
Albeverio and Høegh-Krohn, it too has its limitations. For example, even though
the class of potentials that can be handled with this formalism is wider and the
procedure is far more lucid than in the formalism of Albeverio and Høegh-Krohn
when it comes to non-singular quadratic potentials, we still cannot apply this
formalism to every possible case. For example, the general polynomial potential
is not integrable according to the polygonal path formulation of path integration.

Another point that must be criticized is the formalism itself; when we use the
polygonal path approximation we are in fact using a discretized version of the
path integral and using the limitn! ∞ as the definition. This is very evident in
equation (3.50). Although the limit exists we are still short of a definition on the
path of spaces itself, and not merely on a limited subset of such a space.

3.4 Discretization of Feynman path integrals

Even though it is not mathematically correct it is quite possible to take the origi-
nal definition of the Feynman path integral and use it as if it was a well-founded
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construct. One then defines the functional “integral”

I = Z
Dx eiS

as theformal limit N!∞ of the finite-dimensional integral

IN = Z � � �Z N�1

∏
i=1

dxi

N

∏
i=1

� 1p
2πiε

�
ei ∑N

i=1εL(xi ;xi=ε); (3.52)

whereL is the Lagrangian of classical mechanics. This is an appealing and
widely-used approach to path integrals since the explicit discretization is very
easy to implement to calculation of such integrals on a computer.

One must however be careful when one uses this definition, since it ex-
plicitely depends on the way one writes the discretized integral IN. We have
already seen in the case of Wiener integrals how sensitive the integral can be to
the choice of the discretization rule. In fact, one should always provide a dis-
cretization rule to the equation (3.52) when one uses this approach. If such rule
is not given, the integral does not have a unique meaning – norvalue. Note that
discretization does not directly have anything to do with quantization.

Fortunately a lot of research has been done on this approach to path inte-
gration and on how discretization rules affect the path integral. Ever since the
appearance of Feynman path integrals physicist have developed methods of cal-
culating these integrals via discretization. It is still the most important way of
actually computing the value of a path integral. Next we willdiscuss the dis-
cretization procedure a bit more formally, following closely Langouche et al
[LRT82].

Let us now define more clearly what we mean by discretization.We approach
the subject with phase space integration, since it is more general and in most
cases can easily be reduced to a configuration space integralby integration over
the momentum varibles. Let us consider the phase space functional integral

I = Z
γ
DqD p exp

�
i
Z t

t0
dτ[p � q̇�H(p(τ);q(τ);τ)℄� fδg; (3.53)

whereγ stands for certain discretization rule such that for a givenfunctionhγ

hγ(p;q;q0;τ)� H(p;q;τ) (3.54)

in the sense that the discretized integral

IN = Z � N

∏
i=0

dqi

N

∏
j=1

dpj

2πi

�
exp

�
i

N

∑
j=1

ε[p j � ∆q j

ε
�hγ(p j ;q j ;q j�1; t j)℄� fδg
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has the limitI = limN!∞ IN. fδg is a formal notation which represents the con-
straints on the coordinates – it is of the formδ(q0� 0)δ(qt � x) and makes
sure that the starting and end points of the path are fixed.t j 2 [t j�1; t j ℄ and
∆q j = q j �q j�1. We also generally write ˙q j := ∆q j=ε.

Essentially the functionhγ(p;q0;q;τ) thus defines the discretizationγ. We
also note that even though we have not explicitely written~ in the above equa-
tions the functionhγ can depend on it.

It is possible that two discrete approximations to (3.53) yield the same value
for the integral. We say then that two discretizationsγ0 and γ00 are equivalent
if the limit I = limN!∞ IN is same for both. Note that this equivalence may be
restricted to a certain set of functionsH(p;q;τ). We can write explicitely the
conditions of equivalence for two discretizations. Let us consider a classical
Hamiltonian function which is quadratic inp. The discretized Hamiltonian is
then of the form

hγ(p;q0;q;τ) = 1
2

pµpνgµν[γ℄(q0;q;τ)� pµaµ[γ℄(q0;q;τ)+v[γ℄(q0;q;τ); (3.55)

wheregµν is the metric of the underlying space.
Let us denote∆ := q0�q. Then the conditions

gµν[γ℄�gµν[γ0℄ = O(ε3=2) = O(∆3)
aµ[γ℄�aµ[γ0℄ = O(ε) = O(∆2)
v[γ℄�v[γ0℄ = O(ε1=2) = O(∆) (3.56)

are sufficent for the discretizationsγ and γ0 to be equivalent. For a proof and
further details see Langouche et al [LRT82].

Let us now introduce a general notation for the most commonlyused dis-
cretization rules. They depend on one parameterα 2 [0;1℄. If

q(α) = q+α(q0�q) (3.57)

thenγ1(α) is defined by

hγ1(α)(p;q0;q;τ) := H(p;q(α);τ): (3.58)

We defineγ2(α) by

hγ2(α)(p;q0;q;τ) := (1�α)H(p;q;τ)+αH(p;q0;τ): (3.59)

One can easily verify that these both satisfy the property (3.54) for anyα.
If we explicitely write down the discretizationsγ1(0), γ1(1

2) andγ1(1) we find
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that they are the prepoint-, midpoint- and postpoint-prescriptions encountered in
analysis of stochastic integration discussed in section 2.3.

Note that a linear combination of the above discretization rules is also a dis-
cretization rule.

Although the above definition used Hamiltonian functions and the phase
space formulation of functional integrals the same notation and definitions ap-
ply also to configuration space path integrals. We will then have to define the
discretization on several functions rather than only the Hamiltonian; for the dis-
cretized Lagrangian function

1
2

g[γ℄µν(q j ;q j�1; t j)∆qµ
j

ε
∆qν

j

ε
+a[γ℄µ (q j ;q j�1; t j)∆qµ

j

ε
�v[γ℄(q j ;q j�1; t j)

we must give the functionsg[γ℄µν;g[γ℄;a[γ℄µ andv[γ℄ in order to define the discretiza-
tion. The same conditions (3.56) ensure the equivalence of two discretizations.
We can use theγi(α)-notation on these functions by the generalization

f γ1(α)(q;q0;τ) = F(q(α);τ)
and analogously onγ2(α). An example of use of these discretization rules on
configuration space integrals is the calculation of a Wienerintegral in section
2.4.2, which also shows that the notation is also useful in Wiener integrals.

The discretization rules are generated by the use of operator formalism to
define path integrals. When we consider the short-time propagator we can shiftbp- andbq-operators with respect to each other according to the basiccommutation
relation [bq; bp℄ = i: (3.60)

To see this better let us consider the Hamiltonian operatorbH(bp;bq) =�1
2
bp2G(bq)� bpA(bq)+V(bq): (3.61)

This operator can be written, for any valueα 2 [0;1℄, in the formbH(bp;bq) = (1�α)[�1
2
bp2G(bq)� bpA(bq)℄+ α[�1

2
G(bq)bp2�A(bq)bp℄+ α[�1

2
[bp2;G(bq)℄� [bp;A(bq)℄+V(bq): (3.62)
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By using the commutation relation (3.60) we get for the arbitrary operator
F(bq) �bp;F(bq)� = �iF 0(bq)�bp;F(bq)� = �2i[(1�α)bpF0(bq)+αF 0(bq)bp℄�2(α� 1

2
)F 00(bq); (3.63)

whereF 0 := ∂F=∂q. Applying this result to the operatorbH(bp;bq) we get, by using
the results of section 3.2.2, that the path integral corresponding to the propagatorhqjexp(i bH)jq0i can be written in the form

I = Z
γ2(α)DqD p exp

�
i
Z t

t0
dτ[pq̇�Hα(p;q)℄� fδg; (3.64)

with

Hα = �1
2

p2G(q)� p[A(q)+αG0(q)℄+ V(q)�αA0(q)+α(α� 1
2
)G00(q): (3.65)

Thus, by using commutation relations on the operator (3.61)we have ex-
plicitely introduced terms in the path integral which depend on the form of the
operator. Therefore also the value of the path integral depends on the definition
of the integral. Definition in this case means that we must define what we mean
by the operatorb(bp;bq). Since the propagatorhqjexp(i bH)jq0imust be independent
of any discretization we deduce that theα-dependence in the integrand cancels
out anyα-dependence of the functional integral.

Looking at the equation (3.65) we see that the potential termV(q) does not
depend onα. This is due to the fact thathq j jV(bq)jq j�1i=V(q j)hq j jq j�1i=V(q j�1)hq j jq j�1i:

One can easily see thatγ1(α)� γ2(α) whenα = 0 or α = 1. The discretiza-
tions are also equal wheneverH is a function of the form

H = f (q)p2+g(q);
where f (q) is a linear functionf (q) = aq+b of q with a;b2 R.

We also make the observation thatt j 2 [t j; t j�1℄ can be chosen arbitrarily.
This can be seen by expanding the path integral according to two different dis-
cretization rules and comparing the terms corresponding tothe potential term.
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3.4.1 Connection to the operator ordering problem

If we use the definition of last section another problem will occur; when we dis-
cretize the functional integral and write the short-time propagator like in section
3.2.2, we have to decide what is the interpretation of the general Hamiltonian
operator bH = H(bq; bp; t) (3.66)

in terms of the discretized variblesqi and pi . (H is the classical Hamiltonian
function.) The path integral does not know anything about operators and hence
about their ordering. Everything is classical in the path integral.

Operator ordering is not trivial since, for example, there are many different
forms of Hamiltonian operator which correspond to the classical quantityp2q2.
The noncommutativity ofbq and bp demands that we describe a definite order in
which the operators corresponding to the classical quantities are written. The
above Hamiltonian function can be written asbqbp2bq, bq2bp2 or bp2bq2, for example.
One can also always use a linear combination of the above operators.

This problem is called theoperator ordering problem. It is quite common in
quantum mechanics. And since the path integral formalism ismanifestly based
on classical quantities that represent quantities in quantum mechanics, the prob-
lem is also present in path integration when we calculate theprobability ampli-
tude via the short-time operator formalism. We must then make the decision of
which ordering rule we use when we make the quantizationH(q; p)! bH(bq; bp).

The operator ordering problem in connection to path integration has been
studied, for example, by Cohen [Coh66],[Coh70] and Mehta [Meh64]. The anal-
ysis is based on the fact that we a functionΩ(u;v) which maps the classical
Hamiltonian functionH(q; p) into a Hamiltonian operatorbH(bq; bp). Let us first
define what we mean by a corresponce rule:

Definition 3.1 (Correspondence rule)A correspondence rule is a linear map-
ping from phase space functions B(q; p) into operatorsbB(bq; bp). It is completely
characterized by the way it acts on the phase space functionexp(iu �q+ iv � p),
where u�q is the inner product of the space in question. InRn, for example, we
have u�q := ∑nuiqi , v� p := ∑nvi pi .

All usual correspondence rules are of the form

exp(iu �q+ iv � p)!Ω(u;v)exp(iu � bq+ iv � bp): (3.67)

In the following we shall taken= 1 and so our phase space isR2.
Ω(u;v) is an analytical function of the components ofu andv. A list of the

usual correspondence rules with theirΩ-function is given in table 3.1, which also
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shows the form of the operator the functionqnpm is mapped to. The names of the
most commonly used correspondence rules are also shown in the table. These
names originate from the operator formulation of quantum mechanics.

Correspondence rule Ω(u;v) Mapping ofqnpm

Weyl 1 2�n∑n
l=0

�n
l

�bqn�l bpmbql

Symmetric cos(1
2u �v) 1

2(bqnbpm+ bpmbqn)
Standard exp(�1

2iu �v) bqnbpm

Anti-standard exp(+1
2iu �v) bpmbqn

Born-Jordan sin(1
2u �v)=(1

2u �v) 1
m+1 ∑n

l=0 bpm�l bqnbpl

Table 3.1: List of operator ordering rules

Note that if we consider the mappingH ! bH by the correspondence rule, the
simple casesf (q)! f (bq) andg(p)! g(bp) also lead to the restrictionsΩ(u;0)=
1 andΩ(0;v) = 1, respectively. Thus, ifH is of the form f (q)+g(p) then all the
correspondence rules give the same operator.

We also define the inverse mapping from the operatorbH, ordered by some
ordering rule, to the ordinary functionH as

ei(ubq+vbp) !Ω�1(u;v)ei(uq+vp): (3.68)

This is of great interest to us since if we use the short-time propagator approach
we will have to determine the function corresponding to the Hamiltonian oper-
ator in the discretized form. We will denote this inverse mapping with θΩ and
drop the subscript whenever it can be done without confusion.

Let us now give the explicit formulae for the mappingsB! bBΩ andbB! Bθ.
Let B̃(p;q) be the two-dimensional Fourier transform of the functionB(u;v):

B̃(p;q) = F fB(p;q)g= 1(2π)2

Z
du dv B(p;q)e�i(uq+vp): (3.69)

Then the operatorbB(bp;bq) corresponding to a specific correspondence rule
Ω(u;v) is given bybB(bp;bq) = Z

du dvB̃(u;v)Ω(u;v)ei(ubq+vbp): (3.70)

This can be referred to as theoperator Fourier transform. With the help of
equation (3.69) we can write the above equation in the formbB(bp;bq) = Z

du dv dp dq B(q; p)Ω(u;v)e�iu(q�bq)�iv(p�bp): (3.71)
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To construct the inverse mapping frombB(bp;bq) to B(p;q) we begin by defin-
ing bB(bp;bq) as bB(bp;bq) = Z

du dv G(u;v)ei(ubq+vbp); (3.72)

whereG(u;v) is the Fourier transform

G(u;v) = 1
2π

Tr[bB(bp;bq)e�i(ubq+vbp)℄:
(Tr denotes the trace

R
dq hqjbB(bp;bq)jqi.)

We denote the inverseΩ�1(u;v) of Ω asθΩ. Whenever we can we drop the
subscript and simply use the notationθ. We then define

Bθ(p;q) = Z
du dv G(u;v)Ω�1(u;v)ei(uq+vp): (3.73)

The quantityBθ(p;q) is called theθ-symbolof the operatorbB(bp;bq). (This termi-
nology is due to Berezin [Ber80].)

We can also writeBθ(p;q) explicitely in terms of the operatorbB(bp;bq) and
the correspondence ruleΩ(u;v):

Bθ(p;q) = Z
du dvTr[bB(bp;bq)℄Ω�1(u;v)eiu(q�bq)+iv(p�bp): (3.74)

Two different mappingsBθ1, Bθ2 of the operatorbB are connected by the equa-
tion

Bθ2(p;q) = Ω1(�i
∂

∂q
;�i

∂
∂p

)Ω�1
2 (�i

∂
∂q

;�i
∂

∂p
)Bθ1(p;q) (3.75)

What we need to do now is to show that the connection between the above
correspondence functions and the discretization rulesγi(α) introduced before.
We begin by considering the Weyl correspondence rule (withΩ(u;v)� 1). We
can derive the following formula for the general operatorbB(bp;bq):hq0jbB(bp;bq)jqi= 1

2π

Z
dp exp[ip∆℄Ω(�i

∂
∂q

;�∆)BθΩ(p;q) (3.76)

with ∆ := q0�q andq := 1
2(q0�q). We define

bθ(p;q0;q) := Ω(�i
∂
∂q

;�∆)BθΩ(p;q): (3.77)
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Note that ifΩ(u;0)� 1 then

bθ(p;q0;q) = BθΩ(p;q): (3.78)

Let us consider the short-time propagator of a system with Hamiltonian op-
eratorbH(bp;bq). The propagator can be written in the approximate formhq j jU(t j; t j�1)jq j�1i= Z

dpj

2π
ei[p j∆q j�εhγ(p;q j ;q j�1;t j )℄ (3.79)

according to the discretization rules of section 3.4.
On the other hand, there is aθ-symbolHθ(p;q;τ) corresponding to the Hamil-

tonian operatorbH through the correspondence ruleΩ(u;v). As show in equation
(3.77), there exists a discretized version of such symbol and that the propagator
can alternatively be written ashq j jU(t j; t j�1)jq j�1i= Z

dpj

2π
ei[p j∆q j�εhθ(p;q j ;q j�1;t j)℄: (3.80)

Notice that equations (3.79) and (3.80) are almost identical; in fact, as we take
the continuum limitN!∞ we write the limit as a functional integral such as the
equation (3.53) withH(p;q;τ) = Hγ(θ)(p;q;τ), so that

Hγ(θ)(p;q;τ) = hθ(p;q0;q;τ); (3.81)

in the same sense as the equation (3.54).
Notice, however, thatHγ(θ) is not necessarily equal to theθ-symbolHθ of

the operatorbH. If Ω(u;0) � 1 then this is true. Equation (3.81) shows that
there is a connection between the discretization of the functional integral and
the ordering rule imposed on the Hamiltonian operator. To bemore specific, the
correspondence ruleΩ(u;v) and its inverse, theθ-symbol, induce a discretization
hγ, which depends explicitely on the chosen correspondence rule.

To make this connection clearer we introduce the mapping

Ω(u;v;α) = exp[i(1
2
�α)uv℄; (3.82)

which is related to theγ1(α)-discretization. Forα = 0; 1
2 and 1 this coincides

with anti-standard, Weyl and standard correspondence, respectively.
From equation (3.77) it follows that

hθ1(α)(p;q0;q;τ) = exp[�(1
2
�α)∆ ∂

∂q
℄Hθ1(α)(p;q)= Hθ1(α)(p;q� (1

2
�α)∆)= Hθ1(α)(p;q(α)): (3.83)
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Correspondence ruleDiscretization rule Discretization prescription
Weyl γ1(1

2) mid-point
Symmetric γ2(1

2)
Standard γ1(1)� γ2(1) post-point

Anti-standard γ1(0)� γ2(0) pre-point
Born-Jordan γ(P) polygonal path

Table 3.2: Table of corresponding discretization and operator ordering rules

SinceΩ1(p;0;τ)� 1 we haveHγ1(α) � Hθ1(α). Other important correspondence
rules and their associated discretizations are listed in the table 3.2.

Note that the Born-Jordan correspondence rule of table 3.2 refers to to the
polygonal path formulation of path integrals discussed in section 3.3.4.

To end the discussion concerning the discretization of Feynman path integrals
we recall that the discretization ruleγi(α) affects the Feynman rules of quan-
tum electrodynamics [LRT82]. Langouche et al also show thatthe discretization
γ1(0), corresponding to the prepoint discretization prescription, yields the sim-
plest Feynman rules.

The connection between operator ordering and discretization in functional
integration has also been shown in path integrals defined without the limiting
procedure. This has been done by Mizrahi [Miz78], [Miz79].

3.5 Feynman path integral on spaces with curva-
ture

So far we have only dealt with path integrals which are definedon flat i.e. eucle-
dian spaces corresponding to non-relativistic quantum mechanics. As such our
current view is still quite limited since we should also be able to deal with cases
where the underlying configuration space (or phase space) isa general manifold
and possibly has some topological constraints – the movement of a particle may
be restricted to some subspace by infinite potentials, for example. Another case
where we need a more general concept of path integration is when we are dis-
cussing systems with rotational symmetry such as the Coulomb potential. The
ultimate goal is to make the path integration method compatible with general
relativity.

As one might expect, path integration is a much more complicated matter
when we generalize it to non-eucledian spaces. Even the operator approach to
quantum mechanics runs into trouble on spaces with curvature. Let us begin by
reviewing the procedures necessary when we write down the path integral in a
general coordinate system. This was first done by in B. S. DeWitt’s classical
paper [DeW57].
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First we note that, in absence of a potential, the Schrödinger equation on the
general manifoldM is written as

i
∂ψ(q; t)

∂t
=�1

2
∆LBψ(q; t): (3.84)

∆LB is theLaplace-Beltramioperator

∆LB := 1p
g

∂µ(gµνpg∂ν);
wheregµν is the metric tensor andg = p

detgµν. Since bothgµν andg depend
on the coordinatesqµ we must be careful with operator ordering. Even though
equation (3.84) does not make a reference to operators the question is more trans-
parent in the treatment of the problem via path integral methods.

The classical Lagrangian and Hamiltonian functions are

L = 1
2

gµνq̇µq̇ν +Aµq̇µ

H = 1
2

gµν(pµ�Aµ)(pν�Aν); (3.85)

with pµ = gµνq̇ν +Aµ. A is a vector potential.
The normal correspondence rule we apply in the case of a general manifold

is bqµ = qµ; bpµ =�i(∂µ+ 1
4

∂µ lng):
The Hamiltonian operator corresponding to the Schrödingerequation (3.84)

is written as bH(bp;bq) = 1
2

g� 1
4 bpµgµνg

1
2 bpνg� 1

4 = 1
2
bpµgµνbpν + bQ; (3.86)

where bQ=�1
2

g
1
4 ∆LBg� 1

4 :
Note that we have ordered the coordinates and momenta so thatthe covariance
of the quantum theory is ensured.

What we need to do next is to find a propagator – in path integralform –
which satisfies the Schrödinger equation (3.84). An often used guess is to use
short-time propagators and seek for the correct limit via the limit ~! 0 – the
semiclassical approximation. This should yield

K = D1=2eiS ; (3.87)
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whereD is a quantity which depends on the second derivatives of the classical
actionS .

The main result of DeWitt is that the above guess does not givecorrect re-
sults. Instead, the propagator is of the formhq00; t 00jq0; t 0i = lim

N!∞
(2πiε)�1=2

Z N�1

∏
j=1

hpg(q j)dqj(2πiε)n=2

i� exp
�

i
N

∑
j=1

[S(q j; t j)+ 1
12

R(q j)℄�; (3.88)

whereε = t j � t j�1 andS(q j ; t j) is the classical action.
The most interesting term in the equation (3.88) is1

12R. R is the curvature
scalar of the manifold. This term shows up as we do the coordinate transfor-
mations to the integration measure and action. Dimension analysis tells us that
it has the dimension of energy, therefore it is possible to speak of the effective
Hamiltonian operator bHe f f = bH + 1

12
R(bq):

This is an interesting and much disputed result. Several authors have derived
the same result – except that the constant multiplying the curvature scalar is not
1
12 as above. Since the curvature scalar directly affects the energy levels of the
system it is alarming to note that there is a general disagreement on the value
and the sign of the constant. However, we must recall that themagnitude of the
curvature term is extremely small compared to the Hamiltonian. But, in order to
make the theory of path integration compatible with generalrelativity we must
know the exact value of the curvature term.

Kleinert has worked on the subject extensively; he has generalized the theory
to spaces with curvatureand torsion. The original formulation of DeWitt did
not include this possibility. Kleinert has also applied theresults of his work to
physical systems, such as the hydrogen atom discussed in thenext section. The
results he has derived using path integrals are equal to the results obtained from
the Schrödinger equation. A good account of the methods applicable to path
integrals in spaces with curvatures can be found in Kleinert’s book [Kle90].

Kleinert goes through the process of writing the propagatorin terms of a gen-
eral coordinate system. He argues that one must use a postpoint prescription if
one wishes to obtain the correct result. Other important aspects of the procedure
is to note that in the measure one should treat the differentialsdqi as differences
∆qi. This is reasonable since we are using the discretized version of the propa-
gator. As with the Wiener integral (2.31), we must discretize the path integral in
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eucledian space and after that do the coordinate transformations. With these as-
sumptions, Kleinert finds that the multiplier of the curvature scalar is�1

6 instead
of 1

12. In order to prove that the result is correct he finds the solution to the path
integral on the surface of a sphere by applying these methodsand gets exactly
the same result as obtained from the Schrödinger equation.

Other important observations include taking into account correct order of
terms in the action. As we have seen, all terms which are of theorderr2=t con-
tribute substancially to the result. And, as we do the coordinate transformations,
the number of different terms usually rises and they become more complex. It
may therefore sometimes be difficult to deduce the order of each term directly.

In order to be able to solve path integrals for systems with divergent po-
tentials some authors have introduced the concept oftime transformationsto
complement the methods of coordinate transformations in path integration. For
example, the system with Coulomb potential is not directly solvable by nor-
mal path integral methods. Duru and Kleinert [D&K79] introducedpseudotime
slicing, which actually is local reparametrization of time, to solve the Coulomb
potential. Their method is now a basic tool when we solve systems with diffi-
cult potentials. Another reference which discusses time transformation methods
of path integration – in more general terms – is by Young and DeWitt-Morette
[Y&D86]. We note that this problem ofpath collapsewould not appear if we
were able to write the path integral as a true functional integral in continuum.

We also recall that the path integral formalism can also be easily applied to
configuration spaces such asSO(3). Problems involving the spin of particles
often use such spaces.

3.5.1 The hydrogen atom

One particular example which shows that in some cases the path integral formu-
lation of quantum mechanics is inferior to the traditional operator-based formu-
lation is the hydrogen atom. The Feynman path integral formalism simply breaks
down in the 1=r potential. Until very recently this simple system was unsolvable
by methods of path integration, while the usual approach of angular momen-
tum operators yields the exact eigenvalues and eigenfunctions of the hydrogen
atom Schrödinger equation easily. Even Feynman himself could not solve this
problem.

Finally, in 1979, Duru and Kleinert [D&K79] found the key to the solution
of the path integral for hydrogen atom. The key was the aforementioned pseudo-
time slicing, which allowed them to work with the Coulomb potential. Another
important factor in the solution was the use of Kustaanheimo-Stiefel transfor-
mation [K&S65], which transforms the problem of a Coulomb potential in three
dimensions into a problem of harmonic oscillators in four dimensions. This al-
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lows easier application of path integral methods.
In order to find correct results, one must also use careful analysis of how the

path integral behaves on spaces with curvature.
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Chapter 4

Conclusions

As we have seen, even after decades of mathematical and physical research a
thoroughly rigorous mathematical theory for Feynman path integrals does not
exist. Several good attempts have been made, but none of these is truly general
enough to bethedefinition for path integration. All the alternative definitions dis-
cussed in this work seem to have to drawbacks: firstly, they are not intuitively so
clear as Feynman’s original definition. Secondly, they are not completely math-
ematically justified. This is quite clear if we compare them to the well-defined
theory of Wiener integrals discussed earlier in this work. Even the style of this
work shows this difference; while we were able to define the Wiener integral
exactly and compactly with the language of mathematics we were compelled to
use a more heuristic style in discussing the Feynman path integral.

The alternative definitions have turned out to be otherwise fruitful; mathe-
matical methods based on them have usually found use in some particular ap-
plication. However, as reviewed in this work, most of the attempts to properly
define the Feynman path integral are rather abstract and it iseasy to understand
why they do not appeal to physicists whose work is mainly connected to the real
physical world. The indirect techniques of defining the pathintegral by Fourier
transforms are also quite non-intuitive.

Even the much-studied Brownian motion has its own ambiguities. It can be
argued that stochastic integrals are not unique until we define the discretization
rule imposed on the integral. Stratonovich and Ito integrals are both useful, and
the choice of which to use depends on the problem. It should benoted that the
theory does not prefer either. The value of a Wiener integralitself also depends
on the choice of the discretization rule.

Much of the material cited in this work is quite old; most the of papers which
discuss the definition of path integrals are from the end of the 1970’s and the
beginning of the 1980’s. The era was a time of rapid development in functional
integration and naturally some of the research was done on the the foundations of
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the theory. However, only a very small number of articles have been written on
the foundations of functional integration after the 1980’s, at least if we compare
it to the attention Feynman path integrals have otherwise recieved. This is an
important point. While it is true that the Feynman path integrals were analyzed
quite thoroughly and their limitations were brought to common knowledge, it
seems that the majority of physicists and mathematicians have been at ease and
concluded that the theory is perfect and concentrated theirwork on the calcula-
tional details and applications rather than the basic concepts.

Although the functional integration techniques seem to work well in almost
all cases confronted by physicists today, the questions raised by the underly-
ing mathematical problems still remain unsolved. However,the mathematical
and physical research aimed at providing answers to these questions has in the
process produced other important results. The connection between the operator
ordering problem and the discretization rule used in path integration has been re-
vealed, as well as the similarities between Browian motion,quantum mechanics
and stochastic differential equations. One could say that functional integration as
a mathematical field started to take its shape and unify as a result of the problems
of Feynman path integrals.

Functional integration techniques have greatly improved due to the search for
a rigorous theory. It is almost amazing how well functional integration works as
a computational tool and as the mathematical language for quantum field theory.
However, physicists should be more aware of the limitationsof the path integral
approach due to the lack of mathematical rigor.

In purely mathematical terms, the current basis of functional integration is
intellectually and conceptually unsatisfactory. A properand truly unifying math-
ematical foundation of functional integration should be found. A lot of mathe-
matical research still remains to be done. As a side effect ofthis study we should
expect to find more interesting connections and applications for functional inte-
gration and and simultaneously develop even more refined calculational methods
of functional integration.
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