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Chapter 1

Introduction

Functional integration, also known as path integration e integration, has
become a common tool in physics as well as in some branchestbfermat-
ics such as functional analysis and partial differentialaggpns during the last
fifty years. It connects the theory of measures and integratith stochastics,
particularily with stochastic differental equations.

Functional integration is the theory of integration on gsaof functions. It
can also be understood as the extension of ordinary integrdtteory to spaces
of infinite dimensions. Since Lebesque integration theagsohot work in such
spaces functional integration is highly nontrivial.

Since Feynman [Fey48] introduced path integration metbogfysics over
fifty years ago functional integration has proved out to balaable tool — both
in theoretical considerations and in numerical calcuraioQuantum field the-
ory, statistical physics as well as analysis of stochasticgsses have greatly
benefited from the development of functional integratiog.“Bath integration”
we shall mean this functional integral of quantum mechaniesWiener integral
means the functional integral of Brownian motion.

The widespread use of path integration has been the matividr mathe-
matical research on functional integration in a more gdneras. This research
has revealed profound connections between path integrajsantum physics
and the Wiener integral applied to Brownian motion. An eaelyiew of of the
definitions and properties of Feynman'’s path integrals wadety Gel'fand and
Yaglom [G&Y60].

Today path integration has developed to the level that we lhapath inte-
gral solution to every quantum mechanical problem solvaplthe Schrodinger
equation. A good review of the current available calculaidechniques of path
integrals is given by Grosche and Steiner [G&S95]. The papsr contains a
large amount of references which touch almost every reteagpect of func-
tional integration.



Unfortunately most physicist take a very pragmatic view wmctional inte-
gration and use it as a fool-proof tool. They tend to forgetr-neglect — the
mathematical subtleties actually involved in the defimtémd methods of func-
tional integration. Besides that, the analysis of funaiontegration offers more
information than just calculational tools; as mentionethfirst paragraph, the
functional integral is also an important mathematical usiton.

In fact the mathematical foundation of Feynman’s path irgksghas never
been soundly established. The alternating naturéoin the Feynman “mea-
sure” effectively prohibits the use of well-founded methad measure theory.
In fact, the Feynman “measure” isn't really a measure at all least not in the
sense of probability theory.

The aim of this work is to give a thorough, but not entirely cige review of
the mathematical background of functional integration amgarticular, to show
why Feynman path integrals are not mathematically justifledachieve this, we
will review the mathematical properties of Brownian motenmd compare them
to the properties of Feynman path integrals. We will alsagtwhat has been
done to correct the lack of mathematical soundness in fomatintegration.

Although the context of this work is mathematical we will a/anost of
complex details. This choice is made at the expense of mattheahcomplete-
ness but the number of actual mathematical concepts anifsdetelved is so
large that it would considerably add to the length of this kvowe also wish
to keep the material accessible to physicists without aensite background in
mathematics.

We do not not attempt to give a concise review of functionedgnation or its
history. Such information can be found in many textbookshsas Feynman’s
own book on the subject with Hibbs [F&H65] or more recent matesuch as
Kleinert’s book [Kle90]. Brief definitions of Brownian math and Feynman
path integrals are included as well as some mathematicaladstwherever they
have some connection to the underlying problems or amlgguitVe shall not
go through the calculational methods of functional intégra We shall also
not discuss whether or not we can actually explicitely dalieuthe value of the
integral in a closed form.

In chapter 2 we shall study Brownian motion and its matheraggiroperties,
stochastic integration and the Wiener measure and inte@alshall point out
the ambiguities that lie in the well-studied theory of Braammotion and briefly
study the implications due to this arbitrariness in the diszation of the Wiener
integral. The analysis of Brownian motion also serves agjapsthg stone as we
proceed to take a closer look at the Feynman path integrals.

Chapter 3 considers the mathematical aspects of Feynmiampegrals. We
shall study the basic properties of path integrals and fiagotbblems that make
them mathematically vague. A review of some important aligve definitions



for Feynman path integrals will be made and these definitrat$e put under
scrutiny. The discretization procedure used in calcutatibpath integrals and
the solution of path integrals on spaces with curvature clviioth have their
own mathematical problems are also discussed in this ahapte

1.1

On notation and conventions

Throughout this work we shall pet=m= % = 1 except where explicitely
noted. This can be achieved by appropriate choice of the fmittime,
mass and length. These units are mainly chosen for typoipapiea-
sons. Since we are mostly dealing with mathematical rattaer physical
problems no significant harm is done by doing so.

Quantum mechanical operator corresponding to a classieaitiy A will
be denoted aA.

For simplicity we will only consider one-dimensional configtion space
and two-dimensional phase space. Generalizations to hdimensions
and other types of spaces are (usually) straightforwarder@lter neces-
sary, these generalizations will be analyzed seperatetys Will be es-

pecially done in section 3.5, where we consider functiongdgration on

non-eucledian spaces.

Variablex will generally be the coordinate in configuration space, nshe
variablesg andp are reserved for coordinate and momentum, respectively,
in phase space.

X; is shorthand notation fot(t;). Note that this applies also to other quan-
tities besides the coordinate.

R" = [0, 0]

1.2 Acknowledgements

| would like to thank professor Christofer Cronstrom for petience and his
interest in even the tiniest details and Heikki and Hilma kiiomen Foundation
for supporting my studies financially.



Chapter 2

Brownian Motion and the Wiener
Integral

Brownian motion is named after the Scottish botanist RoBestvn, who first
observed the irregular motion of pollen grains in a liquidatér this motion
was studied in detail by Einstein (a collection of his papmscerning Brow-
nian motion can be found in [Ein56]) and Wiener ([Wie23],p&#],[Wie30]),
after whom we now call the functional integral that arisesrfithe mathematical
model of this random motion.

The physical model of Brownian motion is as follows: a paetign every
sense macroscopical and therefore classical) moves in mmechich projects
a random force on the particle. This force causes the patiicinove on very
irregular and nondeterministic paths. Furthermore, tpesies are now known to
have a fractal nature. As we shall see, this fractal behaebBrownian motion
is the most important feature that affects its mathemagicalysis as well as that
of Feynman path integrals.

Since the paths of a Brownian particle are nondeterministec must ana-
lyze it with the machinery of probability theory and stodi@processes. From
a physicist’s point of view, this corresponds to statidtjgaysics. Simply ex-
pressed, we can only know the probabilities for the partelmove from point
ato pointb. The exact path of the particle canreopriori be known .

In what follows we shall take a mathematical point of view afisregard
most of the physics involved in describing Brownian motidine definition of
Brownian motion used here is not the usual one found in bookkinctional
integration. This is done because we want to stress thelfacbnhe arrives at the
same conclusions about Brownian motion even though therdiierent ways
to define it.

We shall closely follow @ksendal [@ks95] in defining the inm@mt concepts
of probability space and stochastic processes and alsonbtn we explore the



properties of Brownian motion. This choice is motivated ys@ndal’s similar
approach to the subject. Unfortunately we must omit evenesoone material
in order to keep this work compact and not to lead the disonsastray. For
more precise and deeper information one should consultriidieds book and
references therein.

2.1 Definitions

Definition 2.1 (Probability space) The triple (Q, 4,P) is called aprobability
spaceif 4 is ac-algebra on the se® and P is measurable function:1 — [0, 1]
on the measurable spa¢@,.4) so that

1. P(0)=0,P(Q)=1and

2. A1, A,... € 4 and they are disjoint (i.e. M A; = 0 if i # j)

As one can see, the notion of probability is very closelytegldo the theory
of measures and integration. Therefore we are equippedtetbowerful ma-
chinery of integration theory when we tackle problems ingataility and Brow-
nian motion. Many important results concerning Browniantiorohave been
derived by Kolmogorov (see, for example, his own book on thgext [Kol56]).

A random variableX is simply a measurable functiof: Q — R. (R could,
of course, also be some other space.) An important notionoibghbility theory
is almost surenesdVe denote this by

XEy

P{w|X(w) #Y(w)} =0.

Or, in expressed in word¥, andY differ from each other only on a set of measure
zero. Note that this set is not necessarily an empty set.

Definition 2.2 (Independence)Two subsets (“events”) B € 4 are indepen-
dent if

P(ANB) = P(A)P(B).

Definition 2.3 (Stochastic process)A stochastic process is a parametrized col-
lection of random variables

{Xher

defined on a probability spad€, 4,P) and assuming values iR.



(The restriction to one dimension is made only because ofleaision to sim-
plify notation. The space of values taken by the stochasticgss is usually
more general — for examplR.)

Notice that a stochastic process is a functfw,t) : Q x Rt — R (t is
usually taken positive). Therefore, if we fixe Q we get the function

t— X(w);te RT

which is called thepath of X;. This can be thought of as the “path” of one
Brownian patrticle in the liquid or as one experiment (if wenkhin the context
of quantum mechanics).

Also, if we fix t we see thaK is a mapping : Q — R for all fixed t. ThusX
can take any possible valuelikhdepending on the process. From our viewpoint
we can then considé? as a space of paths, parametrized by elemem<).

If {X:} and{Y;} are stochastic processes so that

P{w X (w) =%(w)}) =1 Wt

then{X;} is called aversionof {Y;}. Simply put the two processes are indistigu-
ishable in terms of probability distributions. Howeversfiould be noted that
their path properties and can be different. For exampleetban be a denumer-
able set of points when& andY; have different value.

Definition 2.4 (Brownian motion) Let X be a stochastic process starting at
Xo = 0 with the following properties:

1. The processphas normal distribution with mean 0 and variance t
2. The future values ofyéare independent of allXs< t
3. The incrementsjX- Xj, Xj — Xi are independent of each other

Then the stochastic process considered is cataddard Brownian motiafnere-
after simply Brownian motion).

From this definition one can readily explicitely write dowmretprobability for
the particle to move fron0, 0) to (X,t):

X2

1
P(0,x,t) = Mexp<—§>. (2.1)
If the process instead starts(ag, to), the probability fortransitionis

(X_XO)Z). 2.2)

P(X07X>t0>t) = 2T[(t —to) exp( - 2(t _to)



(Note that we assume thiat tg.)
If we integrate over the endpoint in equation (2.1) we aratéhe expected
result

/ dxP(xp,x,t) =1
reassuring us that probability is conserved. One easily g$&# both (2.1) and
(2.2) are Gaussian probability measures. This holds atBrfawnian motion in
higher dimensions.

The definition of Brownian motion we used here is not uniquge might
start with the above transition probabilities and find thattdescribe a stochas-
tic process with the properties stated in definition 2.4. afether way to con-
struct Brownian motion is to start from the definition of Wegrintegrals (see
section 2.4). It should be noted that in the end all of thegeagrhes are math-
ematically equal and lead to same properties for Browniatiano

It is worthwhile to notice that since Brownian motion does depend on its
history (property number 2), the transition probabilitylwliepend only on the
difference(t —tp). In fact, when we look at equation (2.2) we see that it depends
on the coordinates only through the differenfes Xo). Brownian motion is thus
homogenious in both time and space and is an exampléar&ovian process
Further properties of Brownian motion, especially of itshsawill be discussed
in the next section.

2.2 Properties of Brownian motion

Using the probability measure (or distribution) defined guation (2.1) we de-
fine expectationn the normal way as

E[f] = /( Ydp(x) = /dxf

wheref is a Borel measurable integrable function ahgx) is the probability
measure, in this case the measure of equation (2.1).

Since we are going to discuss the properties of Brownianangtt is very
useful to calculate the characteristic function»f xp), which defined as

@(u) := E[eU(x0)], (2.3)

If we write it down explicitly we find that

i) - L [ g P g b



Having calculated the characteristic function, all the neats of(x—Xg) can
be found by differentiation:
,d"e

E[(x—x0)")] = (=1)" g lu=0 (2.4)

We find that for all evem the moment is zero. For= 2 we find the variance
of Brownian motion. Itis

E[(x—x0)?] =t, (2.5)

just as we would expect on the basis of the definition 2.4. hreunhore, if we
calculate the quartic moment £ 4) we have the result

E[(x—x0)")] = 3t>. (2.6)

This result is important since we can now apply Kolmogoradsitinuity
theorem (see, for example, @ksendal [Fks95]), which stdi@isthe paths of
Brownian motion are continous. (Or, more exactly, therstsxa continous ver-
sion ofx.) A physical argument can also be used to “prove” the coitiiraf the
paths; discontinuous paths are clearly unphysical — thevBian particle does
not make “jumps”.

One might wonder what happens if we take O in equation (2.1). It seems
as if the probability would blow up as we take the limit becaws the term
exp(—(Xx—Xo)2/2t). But, if we take Fourier transformation Bfxg, x, t) (actually
we are calculating the characteristic function again) welgeresult

F{P(x0,x 1)} 1= eog3ut,

If we then taket — O, we see that the Fourier transform is equal to the Fourier
transform of Dirac’®d-function. Thus we conclude that

lim P(xg,X,t) = 8(x—Xo).
t—0

As we have assured ourselves that the Brownian motion hdmsoaos paths,
it seems appropriate that we say something about the ditfat®lity of these
paths. It can be proved (see, for example Breiman [Bre6&})ttie paths are
nondifferentiable for almost allw. This is the most important property of Brow-
nian motion, and can be expressed by saying that the patkslfractal dimen-
sionlarger than 1.

In the end of this section we recall that Browian motion id msingle ex-
ample of a stochastic process. There are numerous otheagsexsatisfying the
same basic definition of a stochastic process with otherdifs&rent properties.
In this work we will mostly consider continous stochastiogesses. We mention
that in addition to them there are also many important sttohprocesses with
discrete time dependence.



2.3 Stochastic integration

Let us now return to strictly mathematical constructs imumj stochastic pro-
cesses. In this section we familiarize ourselves with thecept of stochastic
integration and see how thédx)? = dt” property affects this procedure. We
will also see that there are two (actually, infinite numbeérdifferent ways to
actually calculate a stochastic integral yielding a déferresult.

This brief excursion to stochastics is motivated by the flaat we will learn
how Brownian motion behaves under integration and moretabewpath prop-
erties of Brownian motion.

Stochastic integration is required whenever one encasistechastic dif-
ferential equationgor SDES). These are usually normal differential equations
where a random element is added. (For example, to modelzb@Epopulation
for some species.) A major subclass of these differentiabgns are of the
form

dX .

i b(t, %) + a(t, %) - “noise”, (2.7)
whereb ando are some given functions. The “noise” term needs a propdn-mat
ematical interpretation. Let us represent it as a stoahpsices$\t. We assume
thatW has the following properties:

(i) t1 #to =W, andW, are independent

(i) {W} is stationary i.e. the distribution &% is independent of for all
k> 0.

(iii) E[W] = 0 for allt.

Unfortunately, there is no “reasonable” stochastic preaagisfying proper-
ties (i) and (ii). Such &4 cannot have continous paths. Itis, however, possible to
represent{ as generalized stochastic process calledawi¢ée noise procesdVe
shall construct such process by first considering the diseersion of equation
(2.7):

Xit-1 — Xk = b(ti, Xic) Aty + 0 (t, Xic) WAt (2.8)

whereAty =ty 1 —tx. The next thing to do is to replad®Aty by ABy = By 1 —
Bk, where{B} is some suitable stochastic process. It turns out{Bgj is in
fact a Brownian motion (that's why we chose the le®gr With this notation,
we can obtain from equation (2.8) by summation:

k—1 k—1

Xe=Xo+  b(tj,Xi)Atj + S o(t;, X;)AB;. (2.9)
j; IREA | J j; IREA | ]

10



Equation (2.9) immediately raises the question: What happewe take
At — 07 If the limit exists, we would be able to write the limit irrtes of usual
integration notation as

t t
X = Xo+ /O b(s, Xs)ds+ /0 o (s, Xs)dBs (2.10)

Especially the last term,

/O (s, X0 dBs (2.11)

needs some clarifying and special treatment, for we areidgfintegration
with respect to Brownian motion! If we are able to define thegnal it means
that X; = X;(w) of equation (2.10) is a stochastic process and a solutioheto t
original stochastic differential equation (2.7).

In order to define integrals of the form (2.11) we apply thealsnethod of
probability theory: first we define it on simple functions.ifeinctions that are
piecewise constant. Simple functions are of the form

Pt w) = Z}ej () * X[j2-n,(j+1)2-m (1), (2.12)

iz

wherey denotes the characteristic (or indicator) function aisla (large) natural
number.

We could then generalize this result to apply to non-negdtmctions and
finally to arbitrary measurable functions. However, thisqadure is not essential
to our work and therefore we shall present only the main gahthis definition
procedure.

For functions like (2.12) we can define

T
L o ode ) = 5 & (@B - Byl @13)
Let us now choose

;Bﬂ n Xlj2=n,(j+1)2- )(t)

Z)B(le n(@) - X[jzn,(j+1)2-m) (t)

It seems that these two functions are very similar approtiona to

f(t,w) = By(w).

11



But, if we calculate their expectations of their integraleinsome time interval
[0,T], we get

el [ ot o8] = 3 I3 (B =0

since{B;} has independent increments. Kprthe result is different,

£l ) ot B (@) = 3 ElBy, (8,8

>

= _%E[(Btthl - Blj )2] =T,
1=

by equation (2.5).

The two superficially equal approximations thus give défdrvalues for the
integral. Note also that this result does not depend on hoge la we have
chosen.

This result is the first indication we encounter to displag basic fact that
the paths of Brownian motion are too jagged — their totalatayn on interval
[0,T],

n
_SUD[Z B(ti_1)||, O=to<ti<...<th=T,

is infinite. This prohibits us from defining the integral (@) 1n the usual Riemann-
Stieltjes sense.
However, we proceed to define the general integral 2.10 b\l

Definition 2.5 (Stochastic integral) Let f(t,w) be a suitable function (square
integrable with respect to t and measurable with respect imMBian motion
Bt). The stochastic integral

T
/ (t, w)dB () (2.14)
S
is then equal to the limit

lim 'y f(t],w)[By,,, —By],

n—>0012

where the pointsitbelong to the intervalft;, tj1].

12



Notice that in order to find a value of a stochastic integra orust define
the pointd; —i.e. define the discretizatiof(t, ). As we have seen, this choice
directly affects the value of the integral. The two follogiohoices fot} have
turned out to be the most useful ones:

1. tf =tj, the left end point of the intervdt;,tj1]. This is referred to as
the prepoint prescription This choice leads to thko integral, which we
hereafter denote by

;
/S F(t,00) 0 dB ()

2. tf = (tj +1j4+1)/2, the mid point of the intervat;, tj.1]. Thisis also known
as themidpoint prescription This choice leads to th8tratonovich inte-
gral, denoted by

;
/S £(t, ) 0 dB ()

Some important properties of both Ito and Stratonovichgraks will be dis-
cussed in the two following subsections.

2.3.1 Itointegrals

As noted above, Ito integrals are produced by the chigieet; as the discretiza-
tion rule. The choice gives Ito integrals the property of t‘ftaoking into the

future” i.e. on the intervaltj,tj 1] the only value that matters B;. This prop-

erty is most profoundly expressed in termsnadrtingales But first we define
what we mean by conditional expectation.

Definition 2.6 (Conditional expectation) Let # C 4 and X be a random vari-
able with §X| < . The conditional expectation[K|#] is the functiorQ — R
with the following properties:

(i) E[X|#] is #H-measurable
(i) [qEX|H]dP= [y X dPforallHe #H

Note thatE[X|#] is a function and not a number like the normal expectation.
Conditional expectation is a generalization of the cood#i probability in sim-
ple probability theory:

P(AB) =

whereA,B C Q.
Now we can define
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Definition 2.7 (Martingale) Let{M;}>o be a stochastic process on the proba-
bility space(Q, 4, P) such that

() My is Fi-measurable for all t
(i) E[|Mt|] < oo forall t
(iii) E[Ms|F] =M forall s>t
where{ ¥ }+>0 is an increasing family of-algebras orQ such that
O<s<t=FCHhCA

(Such a family is called diltration.) The stochastic process is then called a
martingale

Let us now check that Ito integrals really have the propenexuired of
a martingale with respect to tleealgebras generated by the Brownian motion
{Bs;s<t}:

() E[fs f(t,) e dB(w)] =0<co
(i) fg f(t,w) edB(w) is Fr-measurable.
(iif) E[Bs|%] = E[Bs— Bt +Bt|] = E[Bs— Be| ht] + E[Bt| ] = 0+ By = By

The property 1 follows from taking first a simple functidg(t, w) and prov-
ing the equality and then taking the linmit— c. Property 2 can be proved in
the same fashion. In 3 we have used the fact Baat B; is independent off
andE[B:| %] = Bt sinceBy is fi-measurable. For this fact and others concerning
conditional probability one may consult Williams’ book [Wi], for example.

Thus we have proved that Ito integrals are martingales. iNgates have
many “nice” properties and the theory of martingales is weNeloped. We are
thus equipped with lots of useful concepts and theoremkydimg the important
Doob’s martingale inequality. The proof of the theorem ameherous other
results for martingales can be found in Williams’ book, whiakes martingales
as a starting point and, using martingales, develops thetate of probability
theory.

An equally important fact — for example, in light of applicats — is the
martingale representation theorert states that any martingale with respect to
the filtration { # } generated by Brownian motion can be represented as an Ito
integral. For proof see @ksendals book [Fks95].

14



Let us now prove that for Ito integrals

/thBs—} 2 (2.15)
0 S _ZB[ 27 "

assuming thaBg = O.
First we putgn(s, w) = 3 Bj(w) - X, t;,,)(S)- Then

i,
[/((ﬂw Bszdﬁ—EZ/] — Bs)2dg
ti,
= Z/tj (s—tj)ds= Zé(tj—l-l—tj) — 0 asAt; — 0
T/t J
So
t . t .

Now observe that
A(Bf) = Bf,1—Bf = (Bj+1—Bj)* +2B;(Bj11—Bj)
= (Bj)*+2B;AB;,

and therefore

B? = ZA (Bf) = Y (8Bj)*+2 BjAB;

] ]
Dividing equation (2.3.1) by 2, moving the second term orritjet hand side to
the left side of the equation and using the regyltAB;)? — t in L?(P) (in the
mean square sense)@s — 0 we arrive at equation (2.15).

The above calculation serves as a general example of howtkgrals are
calculated and also as an example of another importantréeafuto integrals:
they do not behave as ordinary integrals. For example, time {e%t would
not appear in normal integration. This, in fact, is a cleandestration of the
property {dX)? ~ dt” of Brownian motion.

Furthermore, if we write the equation (2.15) as

1, 1t
éBt_étJr/oBsst

and consider it as a mappimgx) = 3x2 of the Ito integralB; = J5 dBs, we see
that the result is not of the forrﬁg fdBs. This shows that normal rules of chang-
ing variables do not hold when we calculate Ito integralstdad, we now have
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the result thatto processes dx= u(t, By)dt + v(t,B;)dB form a closed group;
any mapping o¥; is again an integral of the form (2.10).

The above result and many others explicit forms of Ito iriégcan be ob-
tained by a formula corresponding to the chain rule of déffeiation, thelto
formula It can be stated shortly as (note that this definition appidy to one-
dimensional Brownian motion)

Theorem 2.1 (The Ito Formula) Let X be an stochastic process given by the
SDE

dX% = udt+vdg,

Where u is almost surely integrable and v is almost surelasgjintegrable with
respect to the probability measure P én Let gt,x) be a twice continously
differentiable oriR* x R. Then

Yt = g(t,Xt)
is again a stochastic process, and the differentialiafY
_dg . 09 10°g, . 2
dy _Edt-l— a—XdX{—l—EW(dX{) , (2.16)

where all partial differentials of g are computed at the fdin X;) and the term
(dX%)? is computed according to the rules

dt-dt=dt-dB = dB-dt=0, dB-dB = dt. (2.17)

Equation (2.17) explicitely shows thatiX)? = dt. We will not prove the Ito
formula here but rather refer to @ksendal’s book [Fks95]e Cem easily see that
by choosing¥ = B; andg(t,x) = %xz and using the Ito formula one arrives at the
result (2.15). Other results of stochastic integrals, f@neple the integration-
by-parts rule for Ito integrals, can also be derived by usireglto formula.

2.3.2 Stratonovich integrals

If we choose ! = (tj +ti,1)/2 instead ot; we arrive at the Stratonovich inter-
J J ]+ j
pretation of the integral

/O £ (5,00)dBs(0)

There are many reasons to pick such a choice; for examplesttagonovich
integral has the same rule for changing variables as ordintggrals. This fact
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makes it a natural choice when one considers stochastareliffial equations on
manifolds. We will see this property by calculating the grtd

T
| Brod (2.18)
0
We begin by noticing that
T . 1
/0 f(t,w)odB(w I|m Zf w)ABj, wheret] = é(tj+tj+1).
Using this, we write equation (2.18) in discretized form:

;
/0 Bod = 3 BB,

=2

J

(Bj+1+Bj)(Bj+1—B;j)
2
(BJ—I—l_Bj)

(2.19)

NI NP N

=
e
e

I
-™M

Summing over the index we see thag ; A(Bj)? = B2, actually regardless
of the numbeN of discretization points. Thus, we have computed the iriegr
(2.18) and write the solution as

TBt dBt—le (2.20)
/O 0dB = 5B}, .

As one can see from the above calculation, Ito and Stratchamterpreta-
tions of the stochastic integral are generally differentfreach other. In some
cases they do however coincide. To be more precise, thisshapphenever the
function to be integrated varies “smoothly” enough witlit can also be proved
(see Stratonovich [Str66]) that we can transform theseiate into each other

according to the formula

0 s t
/0 0(5,Xe) 0 dBs = 2/ a(s Xs) (s,Xs)ds+/O o(sX)edBs  (2.21)

Because of the explicit connection between the two intéations it suffices
for almost all mathematical purposes to consider only onthef. One can
easily then revert back to the other interpretation by ufiegormula (2.21).
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The way we calculated the integral (2.14) with Ito and Stratach interpre-
tations demonstrates the different techniques that capiésd when calculat-
ing stochastic integrals. The Ito formula is probably theiest way of doing
these integrals, although it is limited to Ito integrals.

The most important lesson to be learnt from this sectionadaolowing: in
order to calculate integrals such as equation (2.14) onetralso define what
interpretation of the integral one uses; i.e. one must im@at a certain rule of
discretization In different situations one choice just makes more seree tthe
others. This is a phenomenon that will appear again in théegbof functional
integration — the Wiener integrals and the Feynman patlgiate.

2.4 The Wiener measure and integral

In this section we shall return to the original problem of egsing Brownian
motion in terms of functional integration. We are still shafran integral defined
on a space of functions rather than configuration space.

Consider now that the Brownian particle moves in succedsion (xo, to) to
(x1,t1) and from there on tdxp,t2). The probability for movement frortxo, to)
to (x2,t2) can then be understood as follows: the particle moves to painex;
at fixed instant of time;. The point can be anywhere in the configuration space.
This probability for this is expressed as

PO toxet2) = [ dxiPOotoa )P tiet).  (2:22)

Equation (2.22) is also called tlgnstein-Smoluchowski-Chapman-Kolmogorov
equation

If we make further restrictions on the path of the particld demand that it
on its way from(Xo, to) to (X, tk) it must go through all the pointxy, t1), (x2,t2),
.oy (X-1,tk—1) we find that the probability for such movement is equal to the
product of the probabilities of movements on the requiredrirals (implied by
independency properties of Brownian motion):

k
P (X0, t0, Xk, k) {x} = I_l P(Xi,ti,Xi—1,ti 1), (2.23)
i=

where{x;} denotes that the pathustgo through the point set beforehand. Even
though we limit the path to go through these prescribed ppBriownian motion
can take any value between two points i.e. the path needsonme straight
between the points.
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If we wish to find the probability for the particle to travebfn (Xo,to) to
(X, tk) throughanypath we must allow the intermediate points to take any appli-
cable value. This is done by integrating over the interntegaints. Explicitely
done this yields

k
P (X0, to, Xk, t) = /]R J]ExPOtx 1) (2.24)
><...>< -:

wheredyx; is the ordinary Lesbesque measuréRofNotice that the starting point
and the end point of the interval are not integrated ovecesihey are fixed. The
above equation can also be understood as the being genleyaisthg the ESKC
equation (2.22) recursively.

If we take the sefts, to,. .. ,t} to be a finite set (with N elements), we get

1 (% —%i—1)?
P (X0, to, X, tk) = /RX and |_| —%—n ) ) exp(— Zéitl_tl—i) )-
(2.25)

(All products and summations start fram- 1.)

Now we choose to divide the intervéb,ty] into N equal subintervals, all
with lengthe = (tx —to)/N. In principle a nonlinear division can be done, but
when we takéN — o the length of each subinterval will approach zero no matter
how the division is done. Thug,=tg+ i€, withty =ty andtj —t_1 =¢

Inserting this division to subintervals into the equati@r2g) we get

P(xo,to,xk,tk):/RX“.XRn dx (\/; N-1 exp(— z € (Xi 2?2 1) ).

Let us now ponder on what we have just calculated; first weutatied the
probability for a certain path in the configuration spaceewe extended this
to all possible values at eadfy keeping at the same time the number of such
intervals finite. And as the last step, we t— «. The resulting integral could
then be interpreted as a single integral over a space ofifunsct : [to,ty] — R
rather than multiple integrals over the underlying configion space.

We could then write the integral formally as

P(Xo, to, Xk, tk) = /Q)x exp(— dt x 2), (2.26)

to
N
where Dx = limy_ <\/€/2T[) NN-tdx andx = 9% Note that neither the

- - N . - -
measurg]dx nor the normalizing constar(t\/s/ZTr) has a limit on its own.
However, (2.25) does have a limit as stated above.
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The above result is still merely a limit of a discrete prodafdntegrals rather
than a integral of its own. To truly establish a functionakgral of Brownian
motion we need the Kolmogorov extension theorem, whicks tedlthat there is
a unique measure — and therefore an integral — on the spaeghsf ipR. This
measure coincides with the usual product measure statee &moall values of
the number of discretization points. (The measures definetth@se points are
usually calleccylinder measure$

The discovered measure is tbenditional Wiener measurel'he word con-
ditional is used because we have fixed the endpoint of the pétivertheless,
equation (2.26) is finally mathematically on solid ground are have th&Viener
integralin our hands. We will denote the Wiener measuré&gs.

The implications of Wiener measure are quite interestingnsitler the fact
from section 2.2 that the paths of Brownian particles arediftarentiable. It can
be shown that in fact only these nondifferentiable pathshenzero Wiener
measure and thus continous paths do not affect the value efiéNintegrals.
Rivers [Riv87] describes this with an interesting analdgg. points out that the
situation here is similar to the one with Lebesque measuderational num-
bers; although rational numbers are dense in the set of vmabers (as are the
continous paths in the space of paths) their Lebesque nmeeesszero.

We can also see that the Wiener measure of a single path isvhetber it
is differentiable or not. This can be seen, for example, kintaequation (2.23)
and considering the limil — co. This fact is also in analogy with the Lebesque
measure — the measure of a single poiriRjror in any denumerable set, is 0.

Note that the derivativg is present in equation (2.26). How is this possible
if the paths having nonzero measure are almost certainlgtifierentiable? This
implies that if a path contributes to the value of the intédhee exponential term
must be infinite.

2.4.1 Diffusion

The Wiener integral can also be understood as Green’s iamofithe diffusion
equation

op  10%y

T _-- T 2.27

ot 209x2 (2.21)
(subject to initial conditionp(x,0) = §(x)). In fact the original Browian motion
can also be shown to satisfy the diffusion equation. (Whiclhe language of
mathematics, is calledolmogorov’s backward equation Roughly speaking,
both of these correspond to the situation in which we have

u(t,x) = E[f(By)],
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whereE is the expectation with respect to the measure in questidrBars a
Brownian motion. If we are talking about the Wiener measuea@placeB; by
a general path(t). Thenu satisfies the equation

u_ 15
ot 20x2
with u(0,x) = f(x) as the initial condition.
One can easily recognize that the probability measure ofvBian motion
(or the Wiener measure) is the Green'’s function since

u(t,x) = /Q)x f(x),

whereD is the appropriate measure. Note that (k) = 8(x) we haveu(t,x) =
DX.

One way to construct the Wiener measure and to analyze tipempies of
Wiener integrals is to view it as the Green’s function of thudion equation
and to assume that the Wiener measure exists. Then one ubasd(oov’s
extension theorem to show that the measure has a uniquesixtean cylinder
measures oiR. Doing this, one could derive the properties of transitiooba-
bility for Brownian motion and the ESKC-equation (2.22).i§tvay of defining
Wiener integrals is for example taken by Glimm and Jaffe [8&Jand is quite
opposite to the way we have found Wiener integrals.

Let us now generalize the system; we assume that in addia@iffusion
there is a heat sink in the system. This corresponds to addpwential term
V - u to the equation (2.27), whekeé is a continous function iR (with possi-
ble limitations on the values it may take). The well-knowtusion of the new
equation, also known as the Feynman-Kac formula, is

(2.28)

u(t,x) = E[exp(—/OtV(x(t))ds)f(x(t))], (2.29)

expressed here in terms of the Wiener measure. If we writendlogrexpectation
explicitely, we arrive at the equation

u(t,x):/ﬂ,vx exp(—/otds[%)'(erV(x)])f(x(t)). (2.30)

The term in exponential resembles a familiar construcs; alimost like the clas-
sical action integrafj dt£, wherer£ := $%% —V(x) is the Lagrangian.

Beside the diffusion equation, Brownian motion and the \&freimtegrals
can be applied to other partial differential equations a#i. wehey also have
other important applications, such as solutions of boundalue problems, for
example.
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2.4.2 Discretization of the Wiener integral

One of the virtues of equation (2.30) is that it allows easgdir coordinate trans-
formations; it behaves exactly as an ordinary integral uildese transforma-
tions. We must bear in mind that the paths that contributé¢ovalue of the
integral are nondifferentiable. This causes trouble wheantdes to apply a non-
linear coordinate transformation, just as in stochastegration. A fine example
of this is a free particle (thug = 0) moving in two dimensions. The transition
probability is then

t 1
P(X,,t, X0, Yo, to) = / DuXDyy eXpl— /t A5 (€ + ). (2.31)

If we would consider the above equation literally, aftemgfrming from
Cartesian coordinates to cylinderical coordinates=(r cosp, y = rsing) we
would have

t 1 .
P'(r,@.t,r0, 0, to) = / Dyt Dosp J[r] €Xp— /t (2 +r°¢7),  (232)

wherelJ|r] is the Jacobian of the coordinate transformation. (Acyyadlthis case
J[r] =r.) Equation (2.32) is however wrong! The reason for this azalitatively
be given as follows:

If we discretize the time derivative® + y2, we have

4V~ (% —Xi_1)2+ (Vi — Yi1) 2 (At)?2
[(ri—ri—1)?+ 2riri_1(1— cog@ — @_1))]/(At)?
[(ri—rica)?+riria(@ — @)

(@ 02 (2.33)

If the paths were differentiable the third term would vanesi\t — 0. But, as

we know, this is not the case with Wiener integrals. We dedrtara equation
(2.33) that terms of ordemz/t2 contribute to the integral in question. Note that if
we also consider the summation, we have the general reatiftiinificant terms

in the discretization procedure are at least of the ofAgy?/At. This is similar

to the property(dX)? ~ dt we observed in stochastic integration, and due to the
same reason: the nondifferentiability of the paths of Brianwmmotion.

Because of the very same reason we must also specify what ae by
when we discretize the Wiener integral. This choice has #meeseffects as in
stochastic integration: we can choose the point togber in a general case,
Xi + A(Xi—1 — %), whereA € [0,1]. For A = 0 we have the above case — the
postpoint prescription. Fox = % andA = 1 we get the midpoint and prepoint
prescription, respectively.
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To give an example of how the value of an functional integegdehds on the
discretization rule used we calculate the Wiener integral

t
_tdte
| = /Q)xe Jo ,
where

L= 1)'(2+>'<x-|— 1x2
2 2

and the endpoints on the intenjéd,t] are fixed. We begin by discretizing the
integral in a general scheme i.e with an arbitrary [0, 1]. This yields

N N+1 1 N+1 1(A i 2
In = /|_|d>q |_| \/ﬁexp(— z eb( sxz)
P )T (-0 )] (234)

The discretized form (2.34) can be worked out by the Gel'f¥adglom method
[G&Y60]. This includes calculating the determinant ofldrx N matrix. In the
end we can take the limi — o and we have the result

| = [P0 (1 — g 2t-10))]~1/2g~ (x-xoe™(710))?/ (1€ 70)), (2.35)

Equation (2.35) explicitely shows that the value of the fior@l integral
depends on\; the way we discretize the integral. Note that (2.35) is nbes t
Green’s function of the partial differential equation

O @(x,t) = [%6§+6xx—)\](p(x,t),
d

whereody meansg_ .
(This example is due to Langouche et al [LRT82].)

The form of the Wiener integral (2.30) is almost identicattie well-known
Feynman path integral of quantum mechanics. Even thouge thvéo integrals
are so close to each other — in fact they are connected by dhsfarmation
t — it — their mathematical properties are quite different. Inrtbet chapter we
will review the properties of the Feynman path integral asdsimilarities and
differences with the Wiener integral.
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Chapter 3

Feynman Path Integrals

The concept of applying path integration to quantum medsastates back to the
original paper of Feynman [Fey48], based on his unpublisioetioral disserta-
tion of 1942. Actually, Dirac had prompted the usage of dtadd.agrangian
function in the description of time evolution of quantum rnagical systems al-
ready in the thirties [Dir33]. Nevertheless, it was Feynmdro in his famous
paper emerged with the idea of expressing quantum mechartesns of func-
tional integration. Feynman’s paper has had an enormousahgm almost every
branch of physics; even today, his paper is referenced irypapers.

The original idea was that the transition amplitude (roygguivalent to the
transition probability of section 2.4) of a quantum meckahparticle could be
written as the sum over the possible histories — or paths heparticle. In
mathematical terms,

K(x1,t1,%0,t0) ~ > R (3.1)
all paths

wheres is the action integraftgldtL(x(t),X(t),t) of classical mechanics. Later
on, it is conceptually very easy to regard the above sum astagral over the
space of paths.

Notice that (3.1) is almost the same as equation (2.30) With = 1. The
small but important difference is havingnstead of—1 multiplying the action.
This little difference opens up an enormous gap betweenttbentegrals when
one analyzes them mathematically.

We will first present Feynman’s definition of path integralkhen we dis-
cuss how this concept can be further developed and what Kinchthematical
problems one encounters if one tries to define Feynman p&tgration in a
mathematically solid way. Our basic construction of therfregn path integral
follows closely the lines of Feynman’s own book [F&H65]. g work we will
only discuss nonrelativistic path integrals to keep in miimel connection with
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the original Feynman path integrals. Path integration baspurse, been de-
veloped for relativistic quantum theory as well and it is adispensable tool in
guantum field theory.

3.1 Definition

Feynman’s definition of path integrals rests on the notioprobability ampli-
tude @. Probability amplitudes are usually complex numbers; tabability
corresponding to a certain probability amplitude is givgrite absolute square,
P = |@/?, of the amplitude. The basic property of probability ampliés is that
whenever there are two possible ways for an event to happeprobability for
such event imotthe sum of the probabilitie®; + P> but the absolute square of
the sum of the probability amplitudeB = |@; + @|2. This is due to quantum me-
chanical phenomena, for example the motion of electrormutir a double slit
which shows an interference pattern similar to the behawibwaves in classical
mechanics. Probability amplitudes are thus frequentliedavave functions

We begin by assigning a probability amplitude to the eveat thparticle
travels from pointxg to pointx in configuration space. Let us first assume that
there are slits on the way of the particle, so that there ahg farite number
of paths the particle can actually move along. For each sati\pe assign a
separate probability amplitude. As stated above, the potadability amplitude
is then the sum over the amplitudes of all these paths. Thisgés similar to
the equation (2.23), where we demanded that the particlé moxge through a
given set of points.

As with Wiener integrals, it is natural to allowy to take arbitrary values at
each fixed;. Integrating over the variables gives us the probability amplitude
for the particle to move along a free path. It is quite nattwagéxpect this to
extend to possible all paths frorg to x by letting the number of intermediate
points approach infinity.

But what exactly is the probability amplitude correspomdio a single path?
Feynman tells us that the phase of the amplitude is propaitio the classi-
cal action. This is where he used the proposal of Dirac to ecnhooncepts of
classical mechanics with guantum mechanics. Having datewke arrive at the
expression for the probability amplitude given by equati®q).

What we have is still just the limi — o of the product of integrals
N—1 _

dx S [xxe, x-1}] (3.2)

K(X1>t1>X0>tO)N = AN /
=

Rx--- xR

1
v2nli-to) . .
(3.2) has as its limit an integral corresponding to the Wientegral. Feynman

whereA = is a normalization factor. It is tempting to assume that
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thus wrote the above produdrmally as an functional integral:
K(X1,11,X0,t0) = /@FX ROl (3.3)

where D:x is the Feynman “measure” similar to the Wiener measure. More
precisely,

Dox~ lim [ -5 (3.4)
N—eo | \/ 2TiE

wheree = (t1 —tg)/N. Then he named (3.3) ath integral It must be em-
phasized that notation like equation (3.3) is meant to be asea generalizing
notation of the concept of path integration; it is not mearibé a rigorous for-
mulation of path integration. Unfortunately it is exacthetequation (3.3) that
many take as the definition of Feynman path integrals.

Notice that if we také — —it and substituté@:x for D, x we have the Wiener
integral (2.26). This fact that the two integrals have alimios same mathemat-
ical structure is important; explicit solutions of the igtals of one type can
usually be applied immediately to the other type. We caniaksopret the Feyn-
man path integral as a Wiener integral of pure imaginaryatam. Because the
actual calculation of Wiener integrals uses nearly the s@tieniques as Feyn-
man path integrals we have a large number of calculation#ioads at our hand
when we need to find the value of a Feynman path integral.

It must stressed that there is only a small number of physigstems for
which path integrals can be evaluated explicitly. Fortalyabne of the benefits
of path integrals is that they allow a intuitive and effeetiway of solving the
integrals numerically, usually by Monte Carlo simulatiohhe number of an-
alytically solvable path integrals has grown rapidly in thst decade and now
almost every quantum mechanical system solvable by Saigédiequation can
also be solved by path integral methods. A review of anaytialculational
methods of path integrals is given by Grosche and SteinelJ&&}.

This procedure of taking the mathematically sound Wientagrals as the
starting point and themanalytically continuethem to imaginary time is quite
common. One of the early developments of this idea was bydddiNel64].
Analytical continuation especially useful in construetiield theory, where the
Euclidean field theory (with imaginary time) has been stddtensively by this
method. In some cases the results can then be transferradritugn field theory
with normal time. To what extent this analytical continoatis possible has been
studied by Osterwalder and Schrader ([O&S73],[O&S75]) ecample.

Like Brownian motion, the paths of quantum mechanics are fibctals.
Abbott and Wise [A&W81] show this explicitely. They also pbiout that the
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transition from classical mechanics to quantum mecharacsbe seen in the
fractal nature of the paths of particles; the paths of quanttechanics have
Hausdorff dimension of 2, while for classical paths it is hislreflects the uncer-
tainity principle of the quantum world — the path is effeetiwtwo-dimensional

because of the randomness of the movement.

Since the original definition of Feynman path integrals hasvieak points
and is not mathematically rigorous a lot of research has ldeee to find an
alternative way to define the integral. Several differetgrapts have been made;
some of these will be exposed and discussed in section 3tJir&uwve will list
the problems of the above definition. Note that the critiggigirected at the
above original definition of the Feynman path integrals.

3.2 Problems of definition

Even though the definition (3.3) seems to be complete fromyaipal point of

view, mathematically it is on a very shallow ground as Feynmianself admits
[F&H65]. There are several mathematical reasons why (3.8pt a functional
integral in a mathematical sense. In fact, the very constmiof the integral is
built mainly on physical concepts, with hardly any mathdosainvolved. Com-

paring this with the definition of Brownian motion and the Wae integral, we
find that there is a large gap between the two integrals whemmites to mathe-
matical rigour.

A fine review of the following mathematical problems and accamt of the
work done on them is given by Tarski [Tar74]. The problems ations will
be discussed in this work. We shall also make additional rkesn@ncerning the
reasons for mathematical problems in Feynman path integral

First of all, the introduction of the classical action in thetermination of the
probability amplitude may seem an arbitrary choice. Buwtigfconsider quantum
mechanics in terms of operators, we find that the Hamiltoaarator (and thus
the classical Hamiltonian function and Lagrangian funciis the generator of
time-evolution for states. Also, if we think of the Feynmaatipintegral as the
Green’s function of the Schrodinger equation we find thatiticéusion of the
classical action in the exponential term follows from FewwmakKac formula in
the same way as with Wiener integrals. So, at least from aigdiysoint of view
the form of Feynman path integrals is not problematic.

Another argument against the validity of (3.3) is that thpanential term
includes the imaginary unitand thus the integral does not converge in the usual
sense. The usual “solution” is to include a small imaginanyponent in the ex-
ponential term — usually it is assumed thas partly imaginary, sayi + i€. This
makes the integral to converge as a normal Gaussian intefgfitel calculating
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the integral we take the limg — 0. The use of this so-calledrie”-prescription
is actually prompted by causality arguments when we in&trire path integral
as a Green'’s function of the Schrédinger equation.

It is also possible to carry out the-ie”-prescription by adding a small imag-
inary part to the mass of the particle, which is not expllgighown in our for-
mulae. This has the same convergence-yielding effect badldition has other
effects on the integral. Hence the choice of which paranadtdre path integral
is subject to analytical continuation depends largely @physical situation in
guestion and what one wishes to calculate with the pathrakeg

The oscillation of the exponential term can also be a usegosdive way to
show an illuminating detail: if we write (3.3) with correctly inserted, we have

K (X1,11, X0, to) Z/@FX eSO, (3.5)

Notice that forS > & the exponential term oscillates strongly for all paths
except in the vicinity of the classical path which minimizles action functional.
For all other values of the action the phases are approxiyngp@osite and thus
cancel each other out. In effect, the only paths that affecvalue of the integral
correspond to the classical path. This example gives a veujtive and en-
lightening view to the fact that i — O we should get classical mechanics from
guantum mechanics. We also see thatfoer i quantum phenomena cannot be
neglected as we must consider other paths in addition tolaissical path when
calculating the integral (3.5).

If we were to understand the equation (3.3) as a functiortabnal, there
are still several unclear questions, such as what are tegratile functions and
what exactly is the underlying space of paths. Feynman didmginally answer
either of these questions. Only experience has taught ushitanctions are in-
tegrable — and thus which potentials can be handled with #itie integral for-
malism. This connection can be seen as follows: we assurhththhagrangian
is of the typel = T — V. Usually the kinetic term is included in the definition of
the path integral and so the integrated functional igiekgt V[q(t)]). (This is
the Feynman-Ito formula, see Theorem 3.1.) As we shall ssedtion 3.3, all
the alternative definitions do declare what functionalsistegrable.

3.2.1 Probability amplitude

The basic source of trouble in Feynman path integrals is dmeapt of prob-
ability amplitude itself; for a free particle i.e. a systentheut a potential it
is

t
K(x,t,O,O):/Q)Fx exp(i/ ds%kz), (3.6)
0

28



assuming that the particle startd at 0 from the origin. The above path integral
can be evaluated exactly and the result is

_ 1 X2/ 2t
K(x,t,0,0) \/ﬁe' : (3.7)

Although the amplitude has some of the properies of a triansgrobability —
for example, the Einstein-Smoluchowski-Chapman-Kolnrogaequation still
holds for successive transitions — it misses the most impbffieature of the
transition probability of Brownian motion: it is not a measu

Let us further scrutinize the equation (3.7). As can be st®nfact that it
is not a real positive measure is due to the imaginary fagboesent in the ex-
ponential term. It can be easily checked that (3.7) doesutfit the properties
of a probability measure (compare with definition 2.1). Oar generalize the
theory of measures to complex measuyre$2 — C but (3.7) is not even a com-
plex measure. This is due to the oscillation of the expoaétdrm; although we
cannot require the unit measyrgQ) = 1, the propertyy(AUB) = u(A) + u(B)
should hold forA,B C Q, AN B = 0. Because of the oscillation this is not true
for the Feynman measure.

The genuine probability is the absolute square of the pritihahmplitude.
For (3.7) itis

P(x,t) = (K(xt,0,0))? = 1

= (3.8)

Even more trouble follows; if we integrate over the endptordalculate the total
probability, the result is infinite and not 1, as it should.faet this is why the
transition probability (3.6) cannot be a measure — it doésooverge [Cam60].
The above expression must be a relative probability. Tlsis ptompts us to use
path integration in the context of time evolution of wavedtians.

An interesting interpretation of the fact that the probi&i(3.8) does not
converge for a free particle is as follows. Recall that a fadicle, with mo-
mentump, is represented by a wave functiquix) = &PX This function is not
square integrablef dx|(x)|? = . Thus we usually apply some sort of normal-
ization, for example by restricting the particle to a boxhwiihite dimensions.
Then we can carry out calculations and in the end we let thenéons of the
box go to infinity. The same applies for the propagator; sthedree particle is
not localized, we should not expect its probability to cogee

Since even the short-time probability amplitudes fail tonteasures (in any
reasonable sense) it is impossible to proof that thereseaibimit of these mea-
sures defined on discrete intervals which is equal to a meatefined on the
space of paths. The lack of a well-defined measure prohibifsam develop-
ing rigorous integration theory for Feynman path integrdlee Feynman path
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integral is only a linear functional and not a functionakigital. Equations such
as (3.3) must therefore be understood as a formal way ofngrdown the limit
of the product of integrals. The reason why path integradssarpopular is that
even though they are not really integrals they behave gxhik# genuine inte-
grals under linear coordinate transformations.

The formal definition has its benefits, though. Intuitivelysi clear what is
meant by such an equation and from physicist’s point of vieswnathematically
correct enough to be used as a tool in quantum mechanics. ifére mgptation
is also independent of how we are actually define the intedfrale ever find a
solid definition for the path integral, we need not changemmation.

3.2.2 Hamiltonian formalism

Another shortcoming of the original definition is that it iaded on concepts
derived from classical mechanics rather than quantum nmechaln quantum
mechanics based on operators, the Hamiltonian operatioe isasic ingredient,
not the Lagrangian of Feynman’s definition. It is possiblaléfine path inte-
grals in terms of the Hamiltonian, and many authors actuakg this as their
starting point. In can be argued that this approach is monergé and better
suited for quantum mechanics in which the Hamiltonian djeenalays a major
role. These two separate formulations of quantum mechanesonnected by
the time evolution operator, eﬁdpﬁ), whereH := H(X, p,t) is the Hamiltonian
operator.

The proper discussion of the usefbfin the time evolution operator involves
determining the order of the operatatand p. This is important since they do
not commute. We postpone this discussion to section 3.4ekewve consider
the problem in detail. For the time being we assume that ¢mekais of the
form H = T(p) + V(%) and then no problem of operator ordering exists.

Using this, we can write the transition amplitude from stagé to state|x)
as

K (X0,%t) = (X0l |x). (3.9)

K(xo,X,t) is actually, as we shall see, equivalent to the transitioplinae
of Feynman’s path integral. They both are Green’s functafrthe Schrodinger
equation. And of courseé (xo,X,t) of the equation (3.9) can be expressed as a
path integral. To see this, we first note that for time evolutiperator§) (t,tp) :=

A~

exp—i(t —tg)H) we have the rule

U(t,to) = U(t,t2)U(t1,t), (3.10)

wherety <t; <t. (thisis in fact equal to the ESKC-equation (2.22))
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Let us now divide the intervdto,t] into N equal subintervals. We can then
write down the transition amplitude frowg to x as

K (%0,t0,%,t) = (XU (t,tn-1)U (tn-1,tn-2) ---U (t1, to) [x0). (3.11)
If we insert the unit operators
1::/ dXaXn)(Xn|, N=1,...,N—-1

in suitable positions in equation (3.11) we have the prodtibt — 1 integrals

N—-1 N
K(xo,to,x,t):/I'dej [ KXt -1.t-1)- (3.12)
= =1

The entityK(xj,tj,Xj—1,tj—1) is called theshort time propagatarlf we take
tj —tj_1 =€ = (t —to)/N it can be written in the form

K (%), tj,Xj—1.tj—1) = (xj|&""|xj_1)

Now, as we have assumed, the Hamiltonian opetfdtoan be written in the
formH =T(p) +V(X). We can calculate the short time propagator with the help
of the Baker-Hausdorff formula

e—leH — e—ISVe—ISTe—S X7 (3.13)

whereX is an operator which depends on the the commutarE|. If V andT
commute therX = 0. For non-commuting operators we can usually neglect the
terms which are of ordes®. The short-time propagator is then

KX, tj:Xj-1,tj-1) / Lexp{ip; (xj —Xj-1) — ieH (pj, X))},

where we have replaced the Hamiltonian operbtavith the Hamiltonian func-
tion H. This procedure of finding the corresponding classical tioncwill be
fully described in section 3.4.1. The approximation sigdus to the fact thaxt
andp do not commute. The above equation is true to the ordef.of

The transition amplitude for the intervigy, t| can then be written as

K (Xo,to, X, t) / I_de, exp(|5 )s (3.14)
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wheresN is the sum

[P (Xj —Xj—1) —€H(pj,Xj)]- (3.15)

Mz

SN =

=1

For a reasonably smooth Hamiltonian functlérnhe right hand side of equa-
tion (3.14) converges and the approximate sign can be reglag an equality
when we take the limiN — o, € — 0. Note that in this limit the sum (3.15) tends
toward the classical canonical action for a padtt), p(t)] in phase space. Like
the original Feynman path integral, the limit of equatiorildd can be written
formally as

K (X0, to, X, t) = / D'x QZ)—]‘T)e‘S[va]. (3.16)

The prime in the above equation is included because the amdpg and x
are fixed for all paths and thus there is one less integratven coordinates in
equation (3.14) than there is over canonical momenta.

The equation (3.16) can be understood as the generalizaitithe configu-
ration space path integral, although they are derived fraiteglifferent basic
assumptions. As a matter fact, for Hamiltonian functionthvainly quadratic
dependence op we can readily integrate over the momenta in equation (3.12)
The resultis the configuration space path integral as defipyégynman. It must
be stressed that they all are integrals only formally — tieer® measure defined
on an infinite-dimensional phase space and therefore narttegration theory
on the paths of phase space.

If we taket — it in integral (3.16) we see that the resulting integral is altyu
similar to one we find in statistical physics — the partitiomdtion. The use of
path integrals in statistical physics is a broad subjeetfiesnd outside the scope
of this work. Therefore we shall not delve deeper into it. ugfust recall that
path integration is a very important mathematical tool atistical physics.

However, the procedure of defining path integrals beginmiitg operator
approach to quantum mechanics takes us even further awaytti® mathemat-
ically rigorous theory of Brownian motion. The paths in theape space are
not even continous — this can be seen by considering the coafign space
integral and recalling that the paths are nondifferenéiatiius the momenta is
discontinous almost everywhere. The functional integedingéd through oper-
ators and Hamiltonian formalism is even more clearly onlpranfal expression
meaning a limit of a product of integrals than in the case offiguration space
path integral.

If we use operator formalism to define the quantum mechapathl integral
we may fail to appreciate the fact that the way Feynman aaifyirdefined his
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path integrals is completely independent of the operatonéitation of quantum
mechanics.

As with the original Feynman path integral, a casual phgsitiay use the
formal equation (3.16) as the definition of the phase spatteiptegral and dis-
cretize it to find explicit solutions to the integral. Howevigom the discussion
above we know that the definition is actually built on thiscdetized form of the
transition amplitude.

3.3 Alternative definitions

Considering the multitude of mathematical problems coteteto the original
definition of path integration, as shown in the previousisectt is no wonder
that a lot of work has been done to build a proper foundatiorpédh integra-
tion. Unfortunately, as with Wiener integrals, there arengnavays to look at
the Feynman path integral. One’s viewpoint strongly affeghat one takes as
the starting point of the definition. In the following we diss some of the best
attempts at defining the Feynman path integral in matheaiBtigroper terms.

We must recall that the attempts are somewhat indirect;tthietare of the
integral is such that it does not allow a direct approachesime cannot define a
normal measure on a function of spaces that coincides witlottinary defini-
tion of the Feynman path integral.

The constructs used to alternatively define the path integabe divided
into two classes: the first deals directly with the space digpand tries to make
up for the lack of a proper measure by the means of some abstagicematical
construct. The other type uses the discretized versioneopéth integral as its
basis.

The following definitions are based on slightly differensasptions. Hence
the class of integrable functionals varies, as mentionsgation 3.2. This class
of integrable functionals is usually defined in terms of tlnt¢eptial partv of
the Lagrangian. Note that this does not necessarily impyghamg about the
class of physical potentials which can be handled with tleeifip definition; it
merely tells that the certain functionals fulfill the intadgility conditions of the
definition.

3.3.1 First constructs

The first notable attempt to redefine the Feynman path irteéga made by
Cameron in 1960 [Cam60]. He observed that usual measuoeetie models
cannot be used in connection with Feynman path integrals é¥ee exponent
of exp(i.5) is modified to have a real part. He then used a technique sitoila
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Wiener integrals to redefine path integrals; namely, hedditithe intervalto, t|
into n subintervals with

to<ti<b<...<tho1<th=t.

The paths are the assumed to be polygonal. Functional$.$xare the cal-
culated along these polygonal paths and finally when oneepassthe limit
maxt; —tj_1) — O one arrives at a construct one can call a path integral. Note
that one needs to apply the modification sch@me m+id in order to calculate
the integrals over the discretized coordinates

This approach is somewhat analogous to the Hamiltoniangbsm in sec-
tion 3.2.2 and defines the path integral as the lisit> oo of integral in finite
number of dimensions. The problem is that, as Cameron hiradeiits, there
does not exist a measure nor an integral on the space of oastfanctions that
would coincide with the finite-dimensional integral. THere the path integral
defined this way is only an heuristic derivation and is onlyoarfal notation
similar to the original definition by Feynman.

The above definition can be also achieved by using the Tratterula

expt(A+B)] = r!m[exp(tA/ n)exptB/n)]".

We takeA = iHg, whereHg is the free Hamiltonian%pz) andB = —iV. This
was first done by Nelson [Nel64].

Another approach — which we are already familiar with — i@ @lse to Nel-
son [Nel64] who defined Feynman path integrals by analytoatinuation of
Wiener integrals. As we know this is doomed to fail becausewlie make the
transformatiorm — im in Wiener integrals the variance becomes purely imag-
inary and the Wiener measure becomes a complex measureniiithe total
variation. This is exactly the case of Cameron explained@jpwithout a proper
measure we cannot have a proper integral.

Both of the above alternative definitions, however, havesdrae shortcom-
ings. First of all, they are both indirect in their approactitte path integral i.e.
neither actually manages to directly write the path integsaa true integral of
the form

| :/Q)x SN (3.17)

whereS[x| is the classical action. The above integral is what we caiuedly
mean when we speak of functional integral in quantum meckamd therefore
the definition we use should include an integral of the typgqB We also recall
that the definitions are quite restrictive with respect pbtential ternV in the
Lagrangian -V must satisfy strong conditions such as analyticity.
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Another weakness of the above definitions is that they do metitly sup-
port the most important intuitive feature of Feynman pategnals, namely the
transition to classical mechanics/as- O.

A different approach to the problem was taken by Ito [Ito&#}p suggested
the definition of the path integral through measudgs o on a Hilbert space
A with inner product< X,y >. dyr  is defined by the covariance operafor
(symmetric, strictly positive) and the mean veatonVe denote

oy a0 €2 T
T,a - deJ-T,O(X) ei<X,X>

A path integral on such space is then defined as

_ j <X, X> 0
I_/Q)xé () = Jim Ira(f). (3.18)

The limit T — c0 must be taken suitably and must be independent of the vector
a. Ito proved the convergence of the above integrals for a irerged class

of functionalsf with respect to potential¥. Ito’s proposal is too limited to

be a general definition of path integration: it only works fmtentials which

are Fourier transforms of bounded complex measures andtenfals of the
polynomial type

with ¢; > 0.

3.3.2 Pseudomeasures

The first formulation of Feynman path integrals that has & sokathematical
foundation was made by C. DeWitt-Morette [DeW72]. The dé&fni she used
has been later reviewed and refined in [DMN79] and in [C&D964lso paved
the way for further alternative definitions based on sligdtfferent assumptions
(see the following sections) which nevertheless used thre s@ay of indirectly
defining the measure on a function space
The definition is built on the concept pseudomeasuras prodistributions

prompted by the work of Bourbaki ggromeasures(see, for example, [Bou69]).
The theory of promeasures generalizes the theory of metsspaces which are
not locally compact, which is the case in most spaces of fonst Pseudomea-
sures are defined as the Fourier transforms of Gaussian measdne should
be aware that even though they are called “measures” theparasual set-
theoretic measures. Slightly altered, this formalism dao ae applied to the
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Wiener integrals at once, which makes this approach to ifmak integration
very general.

Let us now consider the space of continous pathfsom T :=]t,, ty[— R,
with the norm||q|| = sup<t |q(t)|. The space” can be understood as a topo-
logical space which is Hausdorff and locally convex. We assume that is
a linear space in the sense that for two pathtg € C also the sum of the paths
q+d is also inC. This is achieved by demanding thit,) = 0 for allg € C.

The space” has a dual spac@/, which is the space of bounded measures
defined onTl. The space of paths and its dual are connected by the equation

<u,q>:/Tq(t)du(t) eC. (3.19)

(Note thatM includes complex measures.)
If X is a topological space arfl is its dual space, the Fourier transformation
is defined with the help of the above equation as

FAX)} = /Xe—‘<*vx>d>\(x), (3.20)

whereA is a measure oX'. It should be noted that the above equation defines
a infinite-dimensional Fourier transform. Now we can defmeliounded Gaus-
sian measurw/ on C as

Fi{w} = exp(—iZW), (3.21)

whereW is the covariance of the measuyue

W(u):/T/Tinf(t,t’)dp(t)dp(t’). (3.22)

(Compare this with the characteristic function of the tramis probability of
Brownian motion, equation (2.3).) The choice of(ipf’) is made to connect
this definition to the ordinary Feynman path integrals. Nb&W is a positive
quadratic form o . In the general case of covariance functioft,t’) we have

= [ [Kt)dundut) (3.23)
andw is defined by the equation
F{w} = e 2£0), (3.24)

Having defined the measuvewe can proceed to define the path integral on
the space” in the form (n= 1)

K(b,a) = /C &n(@ gw(g). (3.25)
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We assume that the Lagrangian is of the frea T —V so thatSine = [ dt V(q(t)).
The integration measurg is the measure defined by the equation (3.21). Note
that we have not used discretization in any step of the abefieition. The
above integral may thus be a true functional integral on plaes of paths.

The main point of this definition is that it coincides with fr@yan’s original
definition of the path integral i.e.

n 2,n .
/Cdvv(q):/Rexp<iZ (22]) )|_| \/%, (3.26)

with g :=tj —tj_1 and (i) "2 = exp(—it/4). The right hand side of equation
(3.26) can be recognized as the original path integral mdlscretization points;
we denote it a$,. DeWitt-Morette proves in her paper [DeW72] that the “mea-
sure”dw(q) is equal to the product of “measure” of transition amplitstdehis is
completely analogous to the Wiener measure which is alsaléquhe product
of measures on a sequence of transition probabilitiesydgtimeasures.

One can easily see the similarities in the mathematicatwstres; we have
a measure defined on a space of paths (or functions) whicleideswith the
product of a finite number of measures on cylinders. Thislggeas no value in
the context of the definition but is very important if we wishetctually calculate
a functional integral. These similarities are well-docuteel in the reference
[C&D95], where Cartier and DeWitt-Morette develop the theof functional
integration from the basis of the notion of pseudomeasures.

Unfortunately, as mentioned before, the transition amgétis not a measure
in the usual sense. This is true also for the “measwrdéfined by the equation
(3.21). One must therefore make a generalization of integréheory to spaces
which are not locally compact, for example spaces of patid tlhen use other
arguments show that this definition is reasonable and mghinThese argu-
ments include that one should understand the measure asiddubdistribution
of rank zero and not as a measure, since it is an unboundedireeakhis in-
terpretation makes the equation (3.26) sensible even thaggare not dealing
with true measures. The point is that even thougls a poor measure it is a
good distribution.

To discuss the distributional properties of the pseudooreagswe assume a
functionalp € C*(R), which is the space of smooth functionsRnWe will use
@ as a test function. Then the inner product

<W,Q>= /(P(Q)dW(CI)

is always defined. Furthermone,is in the space of multiplication operatady.
If T € Om then

<WTLQ>=<T,wp >
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is defined for allT. Pseudomeasuse belongs also to the space of convolution
operators. These distributional properties are actua#yones that prompt us to
use Fourier transformation to define the desired measutesospiace of paths.

When we are to explicitely calculate functional integralbat we need to do
is to calculate the inner product according to the equaold). For example,

/dw(q) =< w,1>; /eiS(q)dvv(q) —<w,es >, (3.27)
c c

The general case is then calculated &snieans the inverse Fourier trans-
form)

<WQ>=< FFWQ>=< Fw, Fo>=<e W2 Fo> . (3.28)

The final term is calculated like the equation (3.19). An imi@ot example of
the above integrals is

<Wi1l>=<e W2 F1>5=ceW?50)>=1 (3.29)

Although it may seem that the definition is rather abstradtthat it is hard to
derive explicit results using it, this is not the case. Thaperty (3.26) connects
these integrals readily to ordinary Feynman path integmalR". This connec-
tion is made clearer in the paper [DeW74], where DeWitt-Merelarifies the
definition and uses the technique to calculate some simpleipgegrals. She
also shows that the definition allows one to make semiclakapproximations
of the functional integral with ease, which is a good feasiree the possibil-
ity to use classical approximation is one of important bttté of Feynman path
integrals.

The procedure can be generalized to phase space path Istefines work
has been done by Mizrahi ([Miz76],[Miz78]). He also devedammputational
techniques based on this definition of Feynman path integral

There are limitations to the pseudomeasure approach.dfiatlf the class of
potentials/ for which this formulation is valid was not originally defichelearly.
In [DeW74] DeWitt-Morette shows that the formalism works liaear continous
potentials and for non-linear potentidi$éq) which satisfy the constraint

/ du V(u)é"’ < o,
R

This class includes, for example, all polynomial potestial

The validity of several other arguments is somewhat amhigues well.
Furthermore, only paths belonging to the function spaté are considered.
By L21 we mean the space of functions whose derivative is squaegratle,
[dt|g|? < «. From the considerations of chapter 2 it is clear that thendifin
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of path integrals should also allow integration over camti® functions which
are not differentiable.

The definition via pseudomeasures may even be critized foglheo general
— in most cases we make further assumptions on the spacehsf aadl hence
removing some of the complications of the more general dasspite of these
weaknesses DeWitt-Morette’s ideas have been very impaaitathe inspiration
and basis for further attempts to redefine the Feynman ptegrad as we will
see in the following sections.

3.3.3 Fresnel integrals

Another attempt to rewrite the definition of Feynman patlegnals is due to
Albeverio and Hgegh-Krohn [A&H76]. They also take an indirevay to define
the path integral, this time by a construct calledfresnel integralafter similar

integrals found in optics). Their approach is built arounitbett space formalism
rather than topological concepts. They define their “mesisam a Hilbert space
of continous functions by a Fourier transform. In the foliogzwe shall briefly

study the main features of this definition which is based @ndbncept of an
oscillatory integrali.e. a functional integral of the form

/Q)x dh.
We begin by considering the Hilbert space &f= R" with inner product

denoted by(x,y). The norm is therx|2 = (x,X). Let us first writeN = (21)2.
With this notation we write the Fourier transform of the ftiono ¢(x):

F{o}(x) = / dy dYg(y). (3.30)
We also note that
%/ dx & 7 (g} (4 = [ dx e 2Mgrx (3.31)

Let f(x) now be the Fourier transform of a bounded complex megs(iheus
||| := J|dH < ) on #H. We then have

f(x) = / diy) 0. (3.32)

By ||u|| me denote the supremum of the meagurdext we write (R") for
the space of functions a# which are Fourier transforms of bounded complex
measures. We define a norm for a functiobe ¥ as||f||o = ||H||, wherep is
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the measure corresponding to the functionNote that this implies that is a
bounded continous function i#.
The main definition is the following: for a functiohe 7,

% / dx &P £ (x) = / du(x) e 2, (3:33)

With this notation, we then define tireesnel integrals
. 1 i|X|2
F(f) = N/o|xee £(x). (3.34)

From the above equations we get tifatf) is a continous bounded functional.
Albeverio and Hgegh-Krohn then prove that

as well as that the Fresnel integral supports a functiortagmal version of the

Fubini theorem and that the Fresnel integrals are invadadér transformations
X — Ox+ a of the Hilbert space wher® is an orthogonal transformation from
H to H anda s an arbitrary element of the Hilbert space.

The paper then goes on to define the same basic propertied ataive for a
general Hilbert space which is separable. The followingitadn is superficially
almost identical with Ito’s definition which we encounteragection 3.3.1. The
connection between these two is of the form

F(f)= %/dx el f(x) = F(e2X*f),

whereF is a function defined as a limit (in fact by the equation (3)18)

The general definition given above is then used on the reakeHispace
of real continous functiongt) from [0,t] to R such thady/dt € L2. We also
definey(t) = 0 and the inner product o as

[t dyidy;
(Y1,Y2) = /O L (3.35)

(Notice the similarity with DeWitt-Morette’s definition.)

This definition is then used to give the main result, a prapwsicalled the
Feynman-Ito formulawhich is the quantum mechanical version of the Feynman-
Kac formula of Wiener integrals.
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Theorem 3.1 (The Feynman-Ito formula) Let V andg be Fourier transforms
of bounded complex measures®h Let # be the real Hilbert space of conti-
nous pathg(t) from[0,t] to R" such thaty(t) = 0 andy € L% with inner product

(Y1.Y2) = [odT Ya¥2. Then

f(y) = e BTV gy(0) 4

isin F (), the space of Fresnel integrable functions#hand the solution of
the Schrédinger equation

oy 1,
50 = 50 Vy

with the boundary conditio(x,0) = ¢(x) is given by the normalized integral

W) = % / dy eV i (y)

-/ dy & B[ &PV gy0) + x). (3.36)

If the potential is of the quadratic forivi = %xAx whereA is a strictly pos-
itive definite form (i.e. matrix) orR", the above formula does not hold. The
Lagrangian with such a potential term is not Fresnel intelgraHowever, the
result can be generalized for such potentials. In this casemwst apply the
condition

V2= [t (7 4R) <o

and the inner product

<Yy >= /dT (V* — yA%y)

on the paths to get the result that the same Feynman-Ito faraiso holds in
this case.

Although the above definition is formally consistent it ddese its limita-
tions. For example, the space of paths is assumed to hdvig|?> < oo, which
— as in the case of pseudomeasures — is contrary to the wetuigw that the
paths which are essentially nondifferentiable contriliatthe path integral. So
in principle this definition misses some of the generalityagiroper definition,
at least if we compare it to the Wiener integral. The inteigiien of the termy
is a very difficult and is left a little ambiguous.
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3.3.4 Polygonal paths

The third major contribution to the proper definition of Fayan path integrals
is due to A. Truman. In his papers ([Tru76],[Tru77]) he imluces a definition
based on the work of Albeverio and Hgegh-Krohn as well as dh&@eWitt-
Morette. The concept gfolygonal pathsssentially only extends the space of
functionals for which the integral (3.36) exists and thukimg the Feynman-Ito
formula a more useful tool. The papers greatly clarify thecpeding work of
the above-mentioned authors.

To introduce this approach to path integrals we begin byragsythatX is a
separable reflexive Banach space. This implies the existeha dual spacX’
with the action of an elememnt € X’ defined as< X', x >. As with Fresnel inte-
grals, we then define the integrable functions as Fouriestoaims of bounded
complex measures oX'. The integrable function§(x) are thus of the form

_ /du(xl) e—i<x’,x>'

Let W(X,X') now be a variance such that gxp(i/2)W(X,X)} is measur-
able. We then define the Feynman path integral as

/du(x’ g BWXX) (3.37)

This is almost an exact synthesis of the definitions by DeWitette and Al-
beverio and Hgegh-Krohn. In non-relativistic quantum nagts we can choose
X to be a Hilbert space. On such sp&¢ex, x') = ||¥||? and the equation (3.37)
is identical with the equation (3.34).

Having defined the path integral we still are posed with thaesaroblem:
what is the interpretation of the derivatidg/dt? Truman proposes two alter-
native ways to understand the role of such derivative: yirgte may be able to
isolate the functions for whictly/dt does not exist and then define the path in-
tegral on a quotient space. Secondly, we could interpreti¢hieative “loosely”
as a weak derivative. Truman himself chooses the latteoopti

Let us takeH as the space of real-valued continous functigin$: [0,t] — R
with %’ € L2 and the end point of every path is fixegf) = 0. We begin by
noticing that any € H can then be written in the form

Y(T) = Op(T—t) — S %sin(@)
+ i% [1—005(@)], T € [0,t]. (3.38)

On,Bn € R are the usual Fourier coefficents g%‘ We apply the condition
5% (02 + B2) < « on the coefficentsin, Br. Note that in the above formula and
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in the following we havea € [0,t]. With this definition we instantly know that
the derivativey/ (1) exists and that it can be explicitely written down.

We can now write write down the inner product on the spgda# pathsy(T).
Itis

/d avay —taoao+ y Zanan+ ; ZB”Bn (3.39)

H is then a real separable Hilbert space with reproducingetésfo,1) =
(t—maxo,1)). The reproducing property is stated by the equation

¥(0) = (G(0,1),¥(1)), o €[0t]. (3.40)
We recall thatG(o,1) is the Green'’s function of the differential opera’eerélez2
with boundary condition%(on =0)=0,G(o,t=t)=0.
Next we introduce the linear magy : H — H by
(j+1t jt
n 1) —G(— )] [VJ+1_VJ] (3.41)

n—1
Pn - G
(Pay)(T) j;[ (
1

wherey; =y(jt/n), j= .,n. The reproducing property of the kerr&lo, 1)

implies
n-1
(Y, Pay) = %(V,Hl_ylj)(yjﬁ—l—yj) = (P, y). (3.42)
J_
ThusP; = P.
If we substitutg't — max(o, 1)) for G(o, 1) in the equation (3.41) we get
jt n jt j+ 1)t
E@® =i+ Dyl Beec W a3,

From the form of equation (3.43) we immediately see {Ray) is just the piece-
wise linear polygonal approximation §o It can be proved tha®? = P, and
thusP, is indeed a projection. This procedure of taking the piesewnear ap-
proximation of the path gives the nampelygonal path formulatiof Feynman
path integrals to the alternative definition of functiomd&igration which we will
present in the following.

We first note that the polygonal patfig,y) are dense ifd in the sense that
if V={yeH| ||P\y—Y|| — 0asn— «} thenV = H. For a proof see Truman
[Tru76].

To connect the above formalism to the usual definition of patygrals and to
the Feynman-Ito formula we introduce theynman map$g S. The labekrefers
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to a complex variable with I,s < 0. For the normal Feynman path integsat 1
and then we writef 1 = 7.
Let us define the complex Gausseyn H — C as

esly] = e, (3.44)

With this notation we define the Feynman m&g[f] of the complex-valued
functional f. We first denotef,J[ f]

gilf)= [ v (er [

n

dy (esoPn)| (3.45)
H

where integration is done fromeo to « for each of the varibledy; = (yj+1—Yj).
The equation (3.45) is normalized so th¥&f[1] = 1. The Feynman mag 5[f]
is defined by the limitF 5[ f] = lim,_,. ;[ f] when it exists. We also writé €
F3(PoH) if and only if the above limit exists¥ 3(P.,H) is the class of integrable
functionals.

We now use the definition of Albeverio and Hgegh-Krohn tfigH ) is the
space of functionals which are Fourier transforms of compbiued measures
onH which are of bounded absolute variation. Edch 7 (H) can be written in
the form of the equation (3.32). Truman proves tfidH ) C F5(P,H) and that
if feF(H)

F O[] _—/ dus (y) e 50, (3.46)
H
Hence for Ims < 0 we have

72100 < [ ldue ()] = [fllo < (3.47)

If we compare this with the results of Albeverio and Hgeglotidr shown in
section 3.3.3 we see th@t5(H) is an extension of the original space of integrable
functions.

If we takes = —i we have the Wiener integral, since

aly = e 20, (3.48)
with (y,y) given by||y||?. If we compare the functionad[y] of the above equa-
tion we find that it is the Wiener measure. Truman uses thiaeciion to estab-

lish some important properties of the general theory: thediation formula for
linear transformationg — y+awitha e H.
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What remains to do is to connect the polygonal path formatsthe usual
definition of the path integral and to show the validity of figynman-Ito for-
mula for path integrals defined by polygonal paths. We beginding the nota-
tion (Pyy+ X) for the polygonal path

(Piy+X)(1) = (Pay)(T) + X, T€]0,t], (3.49)

whereX is constant. We les[P,y-+ X] denote the classical action. Explicitely it
is, as usual,
n—-1 (V' v )2 t
_ i+1—Yj)
SIPy+X) =y I [ drvpiy+X, (3.50)
with At =t/n.

The Feynman-Ito formula is then written in the normal waytesdolution to
the Schrodinger equation with initial dage= [ exp(iaX)dv(a) and with a real-
valued potentiaV/ = AX? + BX +C + [exp(iaX)du(a). v andp are complex
measures of bounded variation Bn The solution is

W(X,t) = Fle VDG 0) 4 X]). (3.51)

Truman also shows in [Tru77] that his formalism behaveslyias far as
semiclassical expansions are conserned. The fimit O is also derived ex-
plicitely and shown to give the desired result — classicatmaaics results when
one extremizes the action in the integral (3.51).

Although the polygonal path formulation of the Feynman patkgrals is
clearly an extension of the aforementioned definitions ofMdEMorette and
Albeverio and Hgegh-Krohn, it too has its limitations. Frample, even though
the class of potentials that can be handled with this forsmais wider and the
procedure is far more lucid than in the formalism of Albewernd Haegh-Krohn
when it comes to non-singular quadratic potentials, wé ctihnot apply this
formalism to every possible case. For example, the genehahpmial potential
is not integrable according to the polygonal path formolatf path integration.

Another point that must be criticized is the formalism itselhen we use the
polygonal path approximation we are in fact using a diseeetiversion of the
path integral and using the limit— co as the definition. This is very evident in
equation (3.50). Although the limit exists we are still dhafra definition on the
path of spaces itself, and not merely on a limited subsetdf suspace.

3.4 Discretization of Feynman path integrals

Even though it is not mathematically correct it is quite plolesto take the origi-
nal definition of the Feynman path integral and use it as ifas\a well-founded
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construct. One then defines the functional “integral”

|:/@xé5

as theformallimit N — oo of the finite-dimensional integral

N—1

In —/ / r! d>ﬁ
where L is the Lagrangian of classical mechanics. This is an appgand
widely-used approach to path integrals since the explisitrdtization is very
easy to implement to calculation of such integrals on a cderpu

One must however be careful when one uses this definitioce Sinex-
plicitely depends on the way one writes the discretizedgately. We have
already seen in the case of Wiener integrals how sensiteventegral can be to
the choice of the discretization rule. In fact, one shouldagtk provide a dis-
cretization rule to the equation (3.52) when one uses ttpsogeh. If such rule
is not given, the integral does not have a unique meaning vaioe. Note that
discretization does not directly have anything to do withmfization.

Fortunately a lot of research has been done on this approaphth inte-
gration and on how discretization rules affect the pathgrge Ever since the
appearance of Feynman path integrals physicist have dmelmethods of cal-
culating these integrals via discretization. It is stiktimost important way of
actually computing the value of a path integral. Next we wdiicuss the dis-
cretization procedure a bit more formally, following clbgséangouche et al
[LRT82].

Let us now define more clearly what we mean by discretizatiidmapproach
the subject with phase space integration, since it is monengé and in most
cases can easily be reduced to a configuration space inbsgiratiegration over
the momentum varibles. Let us consider the phase spacednactintegral

)e'Z 1EL(4X/E), (3.52)

t
= /y Dap exp(i | dtlp-a-H(p(v).q(). 1)) {3}, (3.53)
0
wherey stands for certain discretization rule such that for a giugrctionhY

h¥(p,a,d,T) ® H(p,q,1) (3.54)

in the sense that the discretized integral

IN—/(rquﬂ o) e ze h¥(pj,a5,05-1,E))]) {3}
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has the limitl = limy_« In. {8} is & formal notation which represents the con-
straints on the coordinates — it is of the fofqo — 0)d(q: — x) and makes
sure that the starting and end points of the path are fidgd: [tj_1,tj] and
Agj = gj —qj_1. We also generally writg; := Agj /¢.

Essentially the functiom(p,qd’,q,1) thus defines the discretizatign We
also note that even though we have not explicitely writiegn the above equa-
tions the functiorhY can depend on it.

It is possible that two discrete approximations to (3.58)d/the same value
for the integral. We say then that two discretizatighandy’ are equivalent
if the limit | = limy_« In IS Same for both. Note that this equivalence may be
restricted to a certain set of functiohK p,q,t). We can write explicitely the
conditions of equivalence for two discretizations. Let esmsider a classical
Hamiltonian function which is quadratic ip. The discretized Hamiltonian is
then of the form

1
h(p.d,0,7) = Spupvdly (0,6, 1) — pualy (4,6, 1) + vy (d,9 1), (3.55)

wheregt is the metric of the underlying space.
Let us denotd := g — g. Then the conditions

diy —diy, = O(¥?) = 0(&%)
Ho _ 2
ay —ay = O(g) = O(A7)
VM _V[Y] = 0(81/2) = O(A) (356)

are sufficent for the discretizatiosandy to be equivalent. For a proof and
further details see Langouche et al [LRT82].

Let us now introduce a general notation for the most commasgd dis-
cretization rules. They depend on one parameter0, 1]. If

d? =q+a(d -q) (3.57)
thenys(a) is defined by
(@ (p,d,q,7) == H(p,q¥,1). (3.58)
We definey,(a) by
h2() (p,of,q,T) := (L—a)H(p,q,T) + aH(p,d, 7). (3.59)

One can easily verify that these both satisfy the property4(3for anya.
If we explicitely write down the discretizationg(0), yl(%) andyi(1) we find
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that they are the prepoint-, midpoint- and postpoint-mipsons encountered in
analysis of stochastic integration discussed in sectign 2.

Note that a linear combination of the above discretizatidas is also a dis-
cretization rule.

Although the above definition used Hamiltonian functionsl @éne phase
space formulation of functional integrals the same notaéiod definitions ap-
ply also to configuration space path integrals. We will thamehto define the
discretization on several functions rather than only thenttanian; for the dis-
cretized Lagrangian function

Aqﬁl AQ

€ €

1 1 : Y oAy F
égw(qivqiflvti) +au (qivqiflvti)T -V (qivqiflvti)

we must give the functiorg{}(},,g[y],aﬁ’} andvM in order to define the discretiza-
tion. The same conditions (3.56) ensure the equivalencemfliscretizations.
We can use thg (a)-notation on these functions by the generalization

@ (q,, 1) = F(d9,1)
and analogously og(a). An example of use of these discretization rules on
configuration space integrals is the calculation of a Wientagral in section
2.4.2, which also shows that the notation is also useful ier\&f integrals.
The discretization rules are generated by the use of opei@malism to
define path integrals. When we consider the short-time gajoa we can shift

p- andg-operators with respect to each other according to the basienutation
relation

[@.p] =i. (3.60)
To see this better let us consider the Hamiltonian operator
PN 1o e N
H(P,8) = —5P°G(9) — PA@) + V(D). (3.61)

This operator can be written, for any valaes [0, 1], in the form

AP.G) = (1-a)[5P°G(@) — PAD)

+ a[—5G@PF A
+ al—5 5% G(@)] - [B.A@)] +V(@). (362)
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By using the commutation relation (3.60) we get for the aaljt operator
()

-iF'(@

~2i[(1- @)BF/(@ + oF (@] - 2(a — H)F'(@), (369

[B,F(d)]
[B,F(d)]

whereF’ := dF /dq. Applying this result to the operatét(p, §) we get, by using
the resuIAts of section 3.2.2, that the path integral comedmg to the propagator
(g/exp(iH)|go) can be written in the form

| = DADp exp(i/t:dT[pQ—H“(p,Q)]) {0}, (3.64)

y2(r)

with

HY = —21?G(Q) — PIA(G) +aG/(q)]

+ V(q) —uA’(q)+a(a—%)G”(q). (3.65)

Thus, by using commutation relations on the operator (3véd )have ex-
plicitely introduced terms in the path integral which degp@m the form of the
operator. Therefore also the value of the path integral miggpen the definition
of the integraI.A Definition in this case means that we mushdefihat we mean
by the operato(p,q). Since the propagatdq| exp(iﬁ)|qo> must be independent
of any discretization we deduce that thedependence in the integrand cancels
out anya-dependence of the functional integral.

Looking at the equation (3.65) we see that the potential ¥(q) does not
depend or. This is due to the fact that

(q;[V(@)]aj-1) = V(9j)(qjldj-1) = V(dj-1){qj|gj-1)-

One can easily see thgt(a) = y»(a) whena = 0 ora = 1. The discretiza-
tions are also equal whenewudris a function of the form

H = f(q)p?+9(a),

wheref(q) is a linear functionf (q) = aq+ b of gwith a,b € R.

We also make the observation thigtc [tj,tj_1] can be chosen arbitrarily.
This can be seen by expanding the path integral accordingdalifferent dis-
cretization rules and comparing the terms corresponditiget@otential term.
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3.4.1 Connection to the operator ordering problem

If we use the definition of last section another problem wikkar; when we dis-
cretize the functional integral and write the short-timegagator like in section
3.2.2, we have to decide what is the interpretation of theeg@rHamiltonian
operator

H=H(pt) (3.66)

in terms of the discretized varibleg and p;. (H is the classical Hamiltonian
function.) The path integral does not know anything abowragors and hence
about their ordering. Everything is classical in the patgnal.

Operator ordering is not trivial since, for example, there many different
forms of Hamiltonian operator which correspond to the dtassjuantity p?cq.
The noncommutativity off and p demands that we describe a definite order in
which the operators corresponding to the classical quest#re written. The
above Hamiltonian function can be written @8°G, G°p° or p°g°, for example.
One can also always use a linear combination of the abovetosr

This problem is called theperator ordering problemit is quite common in
guantum mechanics. And since the path integral formalismasifestly based
on classical quantities that represent quantities in quamhechanics, the prob-
lem is also present in path integration when we calculatgtbbability ampli-
tude via the short-time operator formalism. We must thenerthk decision of
which ordering rule we use when we make the quantization p) — ﬁ(@, D).

The operator ordering problem in connection to path intisgnahas been
studied, for example, by Cohen [Coh66],[Coh70] and MehtaljiB#]. The anal-
ysis is based on the fact that we a functi@fu,v) which maps the classical
Hamiltonian functionH (g, p) into a Hamiltonian operatdﬁ(a, p). Let us first
define what we mean by a corresponce rule:

Definition 3.1 (Correspondence rule)A correspondence rule is a linear map-
ping from phase space functionéoBp) into operatorsB(g;, p). It is completely
characterized by the way it acts on the phase space funetipfiu - q+iv- p),
where u q is the inner product of the space in questionRth for example, we
have uq:= Y"uiqgi, v- p:=Y"vipi.

All usual correspondence rules are of the form
expiu-gq+iv-p) — Q(u,v)expiu-g+iv- p). (3.67)

In the following we shall take = 1 and so our phase spaceRs.
Q(u,Vv) is an analytical function of the componentswé#ndv. A list of the
usual correspondence rules with th@hfunction is given in table 3.1, which also
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shows the form of the operator the functigtp™ is mapped to. The names of the
most commonly used correspondence rules are also showe table. These
names originate from the operator formulation of quanturohmaics.

Correspondence rule Q(u,v) Mapping ofg"p™
Weyl 1 2- nZl o()a"'P"q
Symmetric cos(%u V) Z(@"p™+ pmg")
Standard exp(—iu-v) qpm
Anti-standard EXp(-I-%IU v) pmg"
Born-Jordan | sin(3u-v)/(3u-v) | #7370 o™ 'GP

Table 3.1: List of operator ordering rules

Note that if we consider the mappij— H by the correspondence rule, the
simple case$(q) — f(g) andg(p) — g(P) also lead to the restrictior¥(u,0) =
1 andQ(0,v) = 1, respectively. Thus, i is of the formf(q) + g(p) then all the
correspondence rules give the same operator.

We also define the inverse mapping from the opergtoordered by some
ordering rule, to the ordinary functidt as

dUaHvD) _, 0-1(y, v)dUatve), (3.68)

This is of great interest to us since if we use the short-tinopg@gator approach
we will have to determine the function corresponding to ttaeriitonian oper-
ator in the discretized form. We will denote this inverse piag with 6 and
drop the subscript whenever it can be done without confusion

Let us now give the explicit formulae for the mappirgs- B andB — B®.
Let I§( p,q) be the two-dimensional Fourier transform of the functiin, v):

B(p,a) = 7 {B(p,q)} = / du dv B p, q)e(UaHvP), (3.69)

8

Then the operatoﬁ(ﬁ, g) corresponding to a specific correspondence rule
Q(u,v) is given by

B(P,q) = /du dvB(u,v)Q(u,v)eUavP). (3.70)

This can be referred to as tluperator Fourier transform With the help of
equation (3.69) we can write the above equation in the form

B(P,q) = /du dv dp dq Bg, p)Q(u,v)e U(@-D-V(p-p), (3.71)
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To construct the inverse mapping frcﬁoﬁ, qg) to B(p,q) we begin by defin-
ing B(p,4) as

B(p,q) = / du dv Qu, v)& Ua+vP), (3.72)
whereG(u, V) is the Fourier transform

_ L 11iB(6.6)e-iw@vD)
G(u,v) = oTr[B(p,q)e J
(Tr denotes the tracédq (q|B(P,d)|a).)
We denote the invers®@(u,v) of Q asBg. Whenever we can we drop the
subscript and simply use the notati@nWe then define

B%(p,q) = /du dv Qu,v)Q Y(u,v)eUaHve, (3.73)

The quantityB®(p, q) is called thed-symbolof the operatoB(p,q). (This termi-
nology is due to Berezin [Ber80].)

We can also writeB®(p,q) explicitely in terms of the operatcﬁ(ﬁ, q) and
the correspondence rufu,v):

B®(p,q) = / du dvTrB(p,8)]Q (u, v)eu(@-a+V(P-P), (3.74)

Two different mapping8°:, B®2 of the operatoB are connected by the equa-
tion
0

2 9 i 9)8%(p.q) (3.75)

02 _ I T Yo st T2

What we need to do now is to show that the connection betweealibve
correspondence functions and the discretization rylgs) introduced before.
We begin by considering the Weyl correspondence rule (Qith,v) = 1). We

P

can derive the following formula for the general operd&0p, §):
RSN 1 . .0 00/ ~
(@BP.Q)IA) = 5, [ dp explipalQ(-i = ~DB%(p7)  (376)
21 oq
with A:= ¢ —qandq:= 3(d — g). We define

b%(p,¢f,q) := Q(—i%,—A)Beﬂ(p,q)- (3.77)
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Note that ifQ(u,0) = 1 then
b®(p,of,q) = B%(p,q). (3.78)

Let us consider the short-time propagator of a system wittmitanian op-
eratorH (P,q). The propagator can be written in the approximate form

(Qj U (tj,tj_1)|qj-1) / p1e| pjAd;—ehY(p,aj,0j-1.Tj)] (3.79)

according to the discretization rules of section 3.4.

On the other hand, there i®asymbolH®(p, g, T) corresponding to the Hamil-
tonian operatoﬁ through the correspondence r@¢u,v). As show in equation
(3.77), there exists a discretized version of such symbaolthat the propagator
can alternatively be written as

(@ U (tj,tj—1)|0j-2) /zp’e'pJAql (.0 9j-1T))] (3.80)

Notice that equations (3.79) and (3.80) are almost idelnticdact, as we take
the continuum limitN — oo we write the limit as a functional integral such as the
equation (3.53) wittH (p, g, 1) = HY®)(p,q,1), so that

HY® (p,q,1) = h(p,q,q,1), (3.81)

in the same sense as the equation (3.54).

Notice, however, tha¥(®) is not necessarily equal to tfesymbolH® of
the operatod. If Q(u,0) = 1 then this is true. Equation (3.81) shows that
there is a connection between the discretization of thetifoinal integral and
the ordering rule imposed on the Hamiltonian operator. Tmbee specific, the
correspondence ruf2(u,v) and its inverse, th@-symbol, induce a discretization
hY, which depends explicitely on the chosen corresponderee ru

To make this connection clearer we introduce the mapping

Q(u,v,a) :exp[i(%—a)uv], (3.82)

which is related to the;(o)-discretization. Foo = 0,% and 1 this coincides
with anti-standard, Weyl and standard correspondenceectisely.
From equation (3.77) it follows that

0. 6
aq]H “(p,q)
~ HEO(p.g- (5 —)a)

= H%®)(p,¢%). (3.83)

h®® (p,d,q,T) = exp/— (——G)
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Correspondence ruleDiscretization rule Discretization prescriptioh
Weyl yl(%) mid-point
Symmetric Y2(3)
Standard yi(1) =v2(1) | post-point
Anti-standard y1(0) = y2(0) pre-point
Born-Jordan y(P) polygonal path

Table 3.2: Table of corresponding discretization and dper@dering rules

SinceQi(p,0,1) = 1 we haveH (%) = H®%(%) Other important correspondence
rules and their associated discretizations are listeddniehle 3.2.

Note that the Born-Jordan correspondence rule of tablee3e2g to to the
polygonal path formulation of path integrals discusseceiction 3.3.4.

To end the discussion concerning the discretization of Freynpath integrals
we recall that the discretization ruig(a) affects the Feynman rules of quan-
tum electrodynamics [LRT82]. Langouche et al also showttiatiscretization
y1(0), corresponding to the prepoint discretization presaiptyields the sim-
plest Feynman rules.

The connection between operator ordering and discreatizati functional
integration has also been shown in path integrals definedowitthe limiting
procedure. This has been done by Mizrahi [Miz78], [Miz79].

3.5 Feynman path integral on spaces with curva-
ture

So far we have only dealt with path integrals which are defmetat i.e. eucle-

dian spaces corresponding to non-relativistic quantumharg@cs. As such our
current view is still quite limited since we should also béedato deal with cases
where the underlying configuration space (or phase spaegjaeseral manifold
and possibly has some topological constraints — the moveofi@enparticle may

be restricted to some subspace by infinite potentials, famgte. Another case
where we need a more general concept of path integrationes wie are dis-
cussing systems with rotational symmetry such as the Cdulpotential. The

ultimate goal is to make the path integration method corbfaivith general

relativity.

As one might expect, path integration is a much more comjglccanatter
when we generalize it to non-eucledian spaces. Even thetmpepproach to
guantum mechanics runs into trouble on spaces with cuvatiet us begin by
reviewing the procedures necessary when we write down ttieipgegral in a
general coordinate system. This was first done by in B. S. Di&\Viassical
paper [DeW57].
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First we note that, in absence of a potential, the Schrodiegeation on the
general manifoldM is written as

awgt) 1
qJ‘g? ) _ —QALBllJ(CI,t)- (3.84)

A is theLaplace-Beltrambperator

1
Alg = ﬁau(gw\/ga\,),

wheregt is the metric tensor ang = /detg?V. Since bothg® andg depend
on the coordinateg, we must be careful with operator ordering. Even though
equation (3.84) does not make a reference to operators #stiguis more trans-
parent in the treatment of the problem via path integral wdth

The classical Lagrangian and Hamiltonian functions are

1. .
L = égwq“q“rAuq“

1
H = ég“v(pu—Au)(pv—Av), (3.85)

with py = gwd’ + Au. A is a vector potential.
The normal correspondence rule we apply in the case of a glemanifold
is

N . 1
Gd'=d", Ppu=-i(0u+ Zaulng).

The Hamiltonian operator corresponding to the Schrodiegeation (3.84)
is written as

1 _ 1 . . .~ -~
g pug?o?pvg ? = PPy +Q, (3.86)

NI =

H(p,g) =

where
~ 1. _1
Q:_§g4ALBg 4,

Note that we have ordered the coordinates and momenta sthéhebvariance
of the quantum theory is ensured.

What we need to do next is to find a propagator — in path intdgrat —
which satisfies the Schrédinger equation (3.84). An ofteeduguess is to use
short-time propagators and seek for the correct limit vaaltmit 7 — 0 — the
semiclassical approximation. This should yield

K = DY/2€5, (3.87)
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whereD is a quantity which depends on the second derivatives of lHssical
actions.
The main result of DeWitt is that the above guess does notapvesct re-
sults. Instead, the propagator is of the form
N—1 Yda:
7o N — i i\ —1/2 g(ql)dql
(@) = Jim (erie) 2 [T [
N 1
X eXIO(I ]Zl[S(qj',tj) + 1—2R(QJ)])> (3.88)

wheree = tj —tj_1 andS(qj, t;) is the classical action.

The most interesting term in the equation (3.881%5{. Ris the curvature
scalar of the manifold. This term shows up as we do the coatditransfor-
mations to the integration measure and action. Dimensialysis tells us that
it has the dimension of energy, therefore it is possible akpf the effective
Hamiltonian operator

1
eff =H+ 12R(0I)-

This is an interesting and much disputed result. Severhbasihave derived
the same result — except that the constant multiplying tineature scalar is not
%2 as above. Since the curvature scalar directly affects tbeggrievels of the
system it is alarming to note that there is a general disaggae on the value
and the sign of the constant. However, we must recall thatidgnitude of the
curvature term is extremely small compared to the Hami#tonBut, in order to
make the theory of path integration compatible with genextivity we must
know the exact value of the curvature term.

Kleinert has worked on the subject extensively; he has gdined the theory
to spaces with curvaturend torsion. The original formulation of DeWitt did
not include this possibility. Kleinert has also applied thsults of his work to
physical systems, such as the hydrogen atom discussed mextheection. The
results he has derived using path integrals are equal tetudts obtained from
the Schrodinger equation. A good account of the methodscaiybé to path
integrals in spaces with curvatures can be found in Klembdok [KIe90].

Kleinert goes through the process of writing the propagatterms of a gen-
eral coordinate system. He argues that one must use a pasppescription if
one wishes to obtain the correct result. Other importargetspof the procedure
is to note that in the measure one should treat the diffexisutg as differences
Agi. This is reasonable since we are using the discretizedoreddithe propa-
gator. As with the Wiener integral (2.31), we must disceettze path integral in
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eucledian space and after that do the coordinate transfiomsa With these as-
sumptions, Kleinert finds that the multiplier of the curvatscalar i&% instead

of %2 In order to prove that the result is correct he finds the goiub the path

integral on the surface of a sphere by applying these methodgets exactly
the same result as obtained from the Schrddinger equation.

Other important observations include taking into accowrtect order of
terms in the action. As we have seen, all terms which are obttierr?/t con-
tribute substancially to the result. And, as we do the comatdi transformations,
the number of different terms usually rises and they becomeeroomplex. It
may therefore sometimes be difficult to deduce the order i &arm directly.

In order to be able to solve path integrals for systems witkerdgient po-
tentials some authors have introduced the concepinté transformationgo
complement the methods of coordinate transformationstim ipéegration. For
example, the system with Coulomb potential is not directivable by nor-
mal path integral methods. Duru and Kleinert [D&K79] intcambdpseudotime
slicing, which actually is local reparametrization of tinte solve the Coulomb
potential. Their method is now a basic tool when we solveesystwith diffi-
cult potentials. Another reference which discusses tirmestiormation methods
of path integration — in more general terms — is by Young an@/iteMorette
[Y&D86]. We note that this problem gbath collapsewould not appear if we
were able to write the path integral as a true functionagrakin continuum.

We also recall that the path integral formalism can also Isdyeapplied to
configuration spaces such 8§3). Problems involving the spin of particles
often use such spaces.

3.5.1 The hydrogen atom

One particular example which shows that in some cases themgagral formu-
lation of quantum mechanics is inferior to the traditionpémator-based formu-
lation is the hydrogen atom. The Feynman path integral fosmesimply breaks
down in the ¥r potential. Until very recently this simple system was umable
by methods of path integration, while the usual approachngiuar momen-
tum operators yields the exact eigenvalues and eigenturcof the hydrogen
atom Schrodinger equation easily. Even Feynman himseltiamot solve this
problem.

Finally, in 1979, Duru and Kleinert [D&K79] found the key the solution
of the path integral for hydrogen atom. The key was the aferdgianed pseudo-
time slicing, which allowed them to work with the Coulomb eotial. Another
important factor in the solution was the use of Kustaanhestiefel transfor-
mation [K&S65], which transforms the problem of a Coulombgrtial in three
dimensions into a problem of harmonic oscillators in foundnsions. This al-
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lows easier application of path integral methods.
In order to find correct results, one must also use carefuysisaof how the
path integral behaves on spaces with curvature.
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Chapter 4

Conclusions

As we have seen, even after decades of mathematical andcahgessearch a
thoroughly rigorous mathematical theory for Feynman patbgrals does not
exist. Several good attempts have been made, but none efithesly general
enough to béhedefinition for path integration. All the alternative defioits dis-
cussed in this work seem to have to drawbacks: firstly, theyat intuitively so
clear as Feynman'’s original definition. Secondly, they arecompletely math-
ematically justified. This is quite clear if we compare themthe well-defined
theory of Wiener integrals discussed earlier in this workertthe style of this
work shows this difference; while we were able to define theWr integral
exactly and compactly with the language of mathematics we wempelled to
use a more heuristic style in discussing the Feynman paglriait

The alternative definitions have turned out to be otherwis#fdil; mathe-
matical methods based on them have usually found use in sartieypar ap-
plication. However, as reviewed in this work, most of the@ipts to properly
define the Feynman path integral are rather abstract anedisis to understand
why they do not appeal to physicists whose work is mainly eated to the real
physical world. The indirect techniques of defining the patkegral by Fourier
transforms are also quite non-intuitive.

Even the much-studied Brownian motion has its own ambigslitit can be
argued that stochastic integrals are not unique until wendéfie discretization
rule imposed on the integral. Stratonovich and Ito intesyaaé both useful, and
the choice of which to use depends on the problem. It shoultbbed that the
theory does not prefer either. The value of a Wiener intaggelf also depends
on the choice of the discretization rule.

Much of the material cited in this work is quite old; most tHgapers which
discuss the definition of path integrals are from the end ef1870’s and the
beginning of the 1980’s. The era was a time of rapid developnmefunctional
integration and naturally some of the research was donesathéfoundations of
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the theory. However, only a very small number of articlesenagen written on
the foundations of functional integration after the 198@atdeast if we compare
it to the attention Feynman path integrals have otherwiseved. This is an
important point. While it is true that the Feynman path inédgwere analyzed
quite thoroughly and their limitations were brought to coamrknowledge, it
seems that the majority of physicists and mathematicians haen at ease and
concluded that the theory is perfect and concentrated Waek on the calcula-
tional details and applications rather than the basic quisce

Although the functional integration techniques seem tokweell in almost
all cases confronted by physicists today, the questiorsedaby the underly-
ing mathematical problems still remain unsolved. Howetles, mathematical
and physical research aimed at providing answers to thesgtiqos has in the
process produced other important results. The connecétween the operator
ordering problem and the discretization rule used in patygiration has been re-
vealed, as well as the similarities between Browian motimantum mechanics
and stochastic differential equations. One could say tivattfonal integration as
a mathematical field started to take its shape and unify asudt aff the problems
of Feynman path integrals.

Functional integration techniques have greatly improvesitd the search for
a rigorous theory. It is almost amazing how well functiomaégration works as
a computational tool and as the mathematical language fmtgm field theory.
However, physicists should be more aware of the limitatmirthe path integral
approach due to the lack of mathematical rigor.

In purely mathematical terms, the current basis of funeiontegration is
intellectually and conceptually unsatisfactory. A proged truly unifying math-
ematical foundation of functional integration should barfd. A lot of mathe-
matical research still remains to be done. As a side effetttiostudy we should
expect to find more interesting connections and applicationfunctional inte-
gration and and simultaneously develop even more refinedlegilonal methods
of functional integration.
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