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Introduction

"...you don’t want to do it unless there is a sweet way to do it. That is sort of the
way I feel about topological quantum computation, that the word topological is
going to make it sweet, that we are not going to take some system and just make
it more and more isolated, colder and colder and force one or two more qubits in
a year out of it. We are going to do something that is beautiful and elegant and
then even if we fail, we have at least pursued the right course and will probably

learn something interesting about solid state physics on the way."
-Michael H. Freedman, [23]

It maybe a cliché to start with a quotation, but there is hardly a better way to express the
attitude for exploring the topic of this thesis. Words such as ’sweet’, ’beautiful” and ’elegant’
are a bit too poetic and vague to be used in a scientific context, but there are good reasons
why such words of praise are not out of place, as opposed to the more conventional approaches
to quantum computation, when used in connection with topological quantum computation.
To fully understand these reasons, it is in place to take a quick look on the brief history of
quantum computation.

The classical computer science, the study of information processing with computers, has
been a crucial asset for the rise of the modern information society. The development of
computers during the 20th century has been extremely rapid. This progression is maybe best
captured by a variant of the famous Moore’s law, which states that the number of transistors
per central processing unit doubles in approximately in every 24 months [40]. Even though
this is more like an observation than a rigorous law, it has been shown to hold with amazingly
good accuracy since the 1960s. This progress has been made possible by the development of
miniaturization techniques, which have allowed squeezing the physical size of the transistors
ever smaller. However, it is natural that there will be a limit on the size of transistors.
As the size diminishes, one approaches scales where the quantum effects can not be ignored
anymore. This is where the quantum computer comes into play by promising to turn the
physical limitation into a new resource, which allows more powerful, and even totally new kind
of information processing. The introduction of this revolutionary idea could be attributed to
the two seminal physicists David Deutsch and Richard Feynman, who in the mid 1980’s were

the first to speculate the capabilities of quantum mechanics as computation [13, 17|. However,



the motivations for considering the computational power of quantum mechanics were quite
different. The first was concerned about how such new kind of computation would contrast
with the Church-Turing principle, the pillar of classical information science, whereas the
latter considered the complex task of simulating quantum mechanical systems with classical
computers and how quantum computers would change the situation. These two perspectives
can still today be used to roughly divide the study of quantum computation into two branches

of study.

First, there is the abstract theoretical branch known as quantum information science,
which is concerned with the information processing capacity of quantum mechanics [38]. It is
a blooming interdisciplinary field of research bringing together both theoretical physicists as
well as computer scientists and much progress has been made in understanding the relevance of
different aspects of the quantum theory to computation. Although much of this work strives to
understand the computational power of the quantum computer, there is also a more physical
side involved in switching to studying quantum systems in terms of the language of computer
scientists. It is a quite modern and daring idea that the concept of information, which only
recently has penetrated into the realm of physics through the study of quantum computation,
might actually have a role to play in the description of the physical reality [39]. Whether
such speculations prove to have any relevance for a serious physicists, is a subject of further
research. Yet, it is a very motivating idea, that the study of quantum computation is not
only about building a new super-computer, but also about learning something relevant about
fundamental physics. These speculations aside, the progress in quantum information science
has been rapid and a good overview about considering quantum mechanics as computation
has been obtained [40, 42]. From this purely theoretical point of view, one could even go as
far as to claim that the problem has been solved and concentrate on studying what new tricks
one can perform with this new toy. However, as often is the case, bridging theoretical and
experimental considerations is a non-trivial and even a daunting task. This is what the second
branch of study is concerned about - finding suitable physical systems to serve as quantum
computers. As candidates, there exists a wide variety of suggestions ranging from NMR
systems to more exotic condensed matter systems such as superconductors or quantum dots
[15, 16, 40, 44]. The multitude of suggestions is a clear reflection of the fact that at the present
level of knowledge, one is still uncertain which of the proposed systems, if any, would serve the
best as a large-scale quantum computer. However, one is sure of few general properties, which
are demanded from all candidate systems: to retain scalability and control over the system,
and most importantly, at the same time cope with the arch-enemy of quantum computation

- decoherence.

Decoherence is the reason why quantum mechanical effects are not observed in every
day life. Since a quantum computer relies on these effects to operate properly, to promote it
from a theoretical construction to a functioning macroscopic computer, one most overcome the
challenge imposed by decoherence. In principle, this can be achieved by isolating the quantum

computer from the environment, but in practice such isolation is never perfect and becomes



increasingly difficult with the growing size of the computer. To deal with small errors, the
theory of quantum error-correcting codes was developed. These allow quantum information
to be encoded in a redundant way, which tolerates errors up to some finite error rate, and
thus allows quantum computation to be performed fault-tolerantly [40, 43]. Unfortunately, the
level of tolerated error is still well beyond anything that can be achieved in any of the proposed
physical systems. Yet, the study of quantum error-correcting codes has not been in vain, but
has shed much light on how quantum information can be encoded and stored in a robust
manner. As a curious offspring, it also spawned the idea of considering topological features to
store quantum information [12]. In the form they were first suggested, these topological error-
correcting codes were a purely theoretical construction. However, they involved considering
quantum information organized on surfaces of non-trivial topology, which could be thought of
as lattices. Such constructions bear an analogy with the spin models of statistical mechanics
[5], and inspired Alexei Kitaev to consider condensed matter systems, where the topological
degrees of freedom would be manifest as physical degrees of freedom [31]. If one could encode
quantum information by using them, the information would be intrinsically protected from
decoherence, because the topological properties are by definition robust in the presence of
small perturbations. In principle, there would be no need for additional error-correction.
Realizing a quantum computer using such topologically ordered systems would indeed be a

sweet way to deal with decoherence.

Remarkably enough, condensed matter systems exhibiting such topological properties had
already earlier been proposed in connection with superconductors. The sweetness comes with
a price though. These physical systems are available only in two spatial dimensions where
the topological degrees of freedom manifest themselves as quasiparticle excitations called
anyons [11, 47]. Anyons have the exotic property that they obey neither bosonic or fermionic
statistics, but something in between. Clearly such genuinely two dimensional systems are
hard to manufacture, but it can be done. Much pioneering work has been done related
to the Quantum Hall effect and the existence of so-called abelian anyons has already been
confirmed [47]. Unfortunately, to perform quantum computation with anyons, i.e. topological
quantum computation, one needs non-abelian anyons [34, 42|, whose existence remains to be
confirmed. Though no system exhibiting them has been found yet, high hopes are placed on
certain fractional Quantum Hall states [36, 37|, and preliminary research has been done for
utilizing them as topological quantum computer [7, 22, 45]. While the experimental search
for non-abelian anyons is still in progress, the theory of topological quantum computation is
well worth a closer look. The main reason is that the underlying topological and algebraic
structure of non-abelian anyons is closely related to various topics in contemporary theoretical
physics: topological quantum field theories [19], knot theory [27, 30, 48] as well as to Hopf
algebras [3, 4, 32, 11|. Therefore, even though quantum computation with anyons using
current technology might sound a bit far-fetched, there is definitely enough incentive to pursue
this path. Also, as a sign that these ideas are really started to be taken seriously, the first

popular article ever on topological quantum computation was recently featured on Scientific



American [10].

The outline of this thesis is as follows. Chapter 1 gives a brief introduction to the ba-
sic concepts and terminology to translate quantum mechanics into quantum computation.
Chapter 2 forms the core by discussing the nature of anyons and the algebraic structure un-
derlying them. A specific example will be given in the form of an anyon model based on the
gauge group Ss3. Using this model as an example, Chapter 3 pulls the two preceding chapters
together by discussing how the anyons can be used to perform quantum computation with

intrinsic fault-tolerance.



Chapter 1

Quantum Mechanics as Computation

The study of quantum computation can be regarded as the study of the structure of prepara-
tion, evolution and measurement of quantum systems. Since these three steps essentially form
the core of quantum theory, quantum computation can be considered as quantum mechanics
rephrased in the terminology of computation. Broadly speaking, the theory of computation is
interested in what resources are required to perform a given computational task. Specifying
these resources, which in general correspond to some initial information and some elementary
operations, forms a computation, which simulates the task with some precision. To translate
quantum mechanics into quantum computation, one should adopt a similar way of thinking.
More precisely, one should find a way to express a given quantum system and its evolution as
this kind of a computation, which could be expressed in terms of some elementary quantum
mechanical objects and operations. Now, instead of considering a given task, one could ask
what resources are required to perform an arbitrary task. Specifying these resources enable
then one to perform wuniversal computation and a systems where such resources are avail-
able are consequently referred to as wuniversal computers. In direct analogue, the problem
of transforming quantum mechanics into quantum computation breaks down to specifying
the elementary elements and operations out of which an arbitrary quantum system and its
evolution can be constructed with arbitrary precision. A system with these operations at the
repertoire would then be a universal quantum computer. The big questions then are: what are
the elementary quantum mechanical objects and operations and in which quantum systems
they are available, i.e. what quantum systems are capable of universal quantum computation?
To answer these questions, one needs the language of quantum computation. The aim of this
chapter is to provide the vocabulary and way of thinking to transform quantum mechanics into
quantum computation, and thereby identify the general criteria which all quantum computer

candidate systems have to meet.

Before proceeding, it is useful to briefly recall the key concepts of quantum mechanics.
Associated with each quantum system there is a state space, which is a Hilbert space H. The
quantum system is fully described by the state vector [¢)) € H, (¢|t)) = 1, a unit vector

in the state space, which is a function of the system’s observables M. The observables are



Hermitian operators on the state space of the system. Fach observable has a spectrum of
eigenvalues {m}, which are the possible outcomes when measuring M, and associated with
each m there is an eigenspace H,, C ‘H of M. The quantum measurements are described by

a set of measurement operators {M,,}, such that the probability that m occurs is given by

Pm = (Y|M}, M), (1.1)
and the properly normalized state |¢)') right after the measurement is given by

[Y') = Mult) (1.2)

(| M, My, |1))

The evolution of the state [¢)) is described by unitary operators U, such that the states [¢)
and [¢) at two distinct times 1 and ¢y are related by

[¢) =Uly), (1.3)

where U depends only on the times ¢; and t5. Therefore, the evolution as described by such
unitary operators is discrete in time. Moreover, the evolution of the state [¢)) in continuous

time is described by the Schrodinger equation

Hlip) =i %, (1.4)

where H is the Hamiltonian of the system, which completely specifies the dynamics of the

system, at least in principle [40].

1.1 Qubits and Qudits

In classical computation, the elementary indivisible unit of information is a bit, a binary
valued integer. To promote the concept of the bit into quantum mechanics, the integers 0 and
1 are replaced by the orthonormal states |0) and |1) in a two dimensional vector space. Then,

instead of a bit with a fixed binary value, a normalized linear combination can be defined by
6) =al0) +b1),  abeC, |af2+ b2 =1. (15)

A general state of the form (1.5) is known as the qubit, the quantum bit, which is an object
in two dimensional complex vector space with an inner product, namely the two dimensional
Hilbert space C2. The basis spanned by the state vectors {|0), [1)} is known as the computa-
tional basis of the qubit.

The qubit is the basic and most widely used unit of information in quantum computation.
However, also higher dimensional objects can be considered. These objects are known as

qudits and they take the general form
d—1 d—1
6) =D ail)),  weC, Y |uf =1, (1.6)
i=0 i=0
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where d is the dimension of the qudit. Hence, qudits are objects in a d-dimensional Hilbert
space C%. d is assumed to be prime, because qudits of non-prime dimension can in principle
always be expressed as a tensor product of qudits of smaller, but prime dimension. In this
sense the qubit (1.5) is the indivisible unit of quantum information. However, the qudit (1.6)
is a more general and flexible concept, which is better suited for platform-independent general
discussion.

A quantum state of N qudits can be expressed as a vector in the space
&N
C= (cd) . dim(C) = dV. (1.7)

This space is referred to as the computational space of the quantum computer. The orthornor-

mal basis given by the tensor product of the single qudit basis states

{lin)liz) -+ [in) Yirsiz,onin=0,1,..d 1 (1.8)

where one has adopted a convention to suppress the explicit tensor product notation, |i)]j) =

|i) ®]j). The normalized state vector of a general N-qudit state |®) € C can then be expressed

as
d—1 d—1
D) = > iy anlin)]ia) - lin), Yo i’ =1, (1.9)
11,22,...0 =0 11,82,.... =0

where «;, j,...iy € C.

Encoding Quantum Information

When considering a quantum mechanical system in terms of quantum computation, one wants

to express every quantum state [¢)) € H of the system as a coupled state of some n qudits

[¢i) €C
V) = [®) = |p1)[@2) - |Dn)s (1.10)

for some |¢1),|p2),...,|¢n) (1.6), and the study the evolution of this |¢)) in terms of the
evolution of the multi-qudit state |®). The conceptual change in thought is the treatment of
qudits as elementary quantum mechanical objects out of which an arbitrary quantum state,
at least in principle, could be constructed.

This idea underlies one of the crucial criteria for a given quantum mechanical system
to serve as a quantum computer: the computational space C, the calculational arena of the
quantum computer, should be identified somehow with the state space H of the system,
C C H, such that the tensor product structure (1.7) exists for some d, N € R. In general,
this criterion expresses the demand that in the quantum system there should exist some N
degrees of freedom, usually meaning some N independent observables M;, which each have
d eigenspaces H,,,. Letting H; C H be the space spanned by the eigenspaces of M;, the

computational space of a single qudit would then be identified with it

Cl=H; = (Hum,)®" (1.11)



When identifying qudits with such degrees of freedom, one talks of encoding the quantum
information on the quantum mechanical system. For example, in nature there exists well
studied physical systems, which behave as two-level systems offering natural ways of encoding
qubits. Simple examples are for example the electron spin or the photon polarization, where
the encoded qubits would be identified with the observables corresponding to spin or wave
polarizations, respectively. These cases are also illustrative in the sense that the qubit can
then be considered localized on the particle and can be thought as moving in space-time much
in analogy with classical circuits. However, such simple intuitive systems are not often the
most practical for large-scale implementation, and in general the exact way of encoding the
quantum information always depends on the physical system in question. Hence, for a general
platform-independent discussion, it is useful to treat the qudit as a purely mathematical
object, an internal space identified with some subspace of the whole state space, which does

not necessarily have any local physical correspondent.

1.2 Entanglement

Entanglement is maybe the most curious feature of quantum mechanics. In quantum compu-
tation it is considered as an extra resource, which can be utilized to perform computational
tasks not possible with classical computers. However, it is more than just a resource. It
has been proven that the ability to entangle states is required by any quantum system and
therefore the concept of entanglement lies at the very heart of quantum mechanics [9] - with-
out entanglement, there is no quantum mechanics. To better understand the role played by
entanglement, the connections between quantum entanglement and topological entanglement
have been studied [26, 28, 29]. These topics might have a role to play also in the theory of
quantum computation, especially in topological quantum computation due to the role played
by the braid group [30, 48], but since the research is still very much a work in progress, this
topic will not be touched upon here.

So, entanglement is a crucial ingredient in quantum computation, but it does not appear
often explicitly unless specifically looked for. As a general rule of thumb, if an N-qudit state
|®) (1.9) cannot be expressed as tensor product of single qudits,

d—1

@)= > Qiayliliz) - lin) # |61)]g2) - [én), (1.12)

11,12,...in =0

the state is said to be entangled [40]. Similarly, an operator G is said to be entangling if

Glp1)|d2) - [on) # (1)) - - [d)- (1.13)

In more casual language, to say that a state is entangled is to say that there exists non-
classical correlations between the constituent states. These correlations can be non-local and
may be used to gain information about the possibly spatially separated individual states. This

extra information transmission channel is the resource, which enables quantum computation

10



to outperform classical computation on various, although currently very selected tasks. In the
discussion to follow, only very little explicit attention needs to be paid to entanglement. Yet,
it is an essential concept looming everywhere beneath the surface. It is responsible for most

of the non-classical features and no text on quantum computation should pass on it carelessly.

1.3 The Quantum Gates and the Universal Gate Set

In classical computation, all possible logical operations, the logic gates, can be formed out of
a small number of elementary operations. Similarly, in quantum computation one wishes to
construct all possible quantum gates out of a small set of elementary quantum gates. The ob-
vious difference to classical gate set is that instead of classical (usually irreversible) logic gates,
unitary (reversible) gates are required to preserve the probability interpretation of quantum
mechanics [40]. Therefore, all quantum gates G will be assumed to be unitary operators.
This means that the quantum gates G are elements of the group of unitary transformations

G € U(d") acting in the computational space (1.7) as
G:Cw—C, GeU@d"). (1.14)

The unitary group is a continuous group having an infinite number of elements, and thus one
can at best approximate an arbitrary gate with an arbitrary precision. To do this, one should

give a set of elements
G={A,..., A}, Ay, A, e UWAY), (1.15)
such that every G € U(d") can be expressed as

Ga AT ... AT (1.16)

1k

for some k, my,...,mi € Z and iy,...,ip = 1,...,n. Then, the elements Ay,..., A, would
be the generators of the group and the set G would form the universal gate set for quantum
computation. In direct analogy with qudits, which in quantum computation are taken as
the elementary quantum mechanical objects (1.10), the elements of the universal gate set
G are to be treated as the most elementary unitary transformations out of which, at least
principle, an arbitrary unitary transformation G could be constructed. This idea gives the
second criterion for given system to be able to execute universal quantum computation: the
qudits must be encoded on the system such that by performing some unitary transformations
U; (1.3) on the systems state space H, one should be able to apply the universal gate set G
in the computational space C. In practice this breaks down to specifying a set of physical

operations {Uy,Us,...,U,} on the state space H such that
Uit |¢) = Ailg), VA €, (1.17)

or to put the criterion in more general form, the set {Uy,Us, ..., Uy} should generate U(d™)
in C.

11



In order to specify the U;, which can be used to implement the universal gate set, one
should know which A; constitute G. There is flexibility, since the choice for G (1.15) is not
unique and various suggestions have been considered [40]. Different choices arise naturally in
different experimental platforms, and the implementational efficiency varies from one platform
to another. Still, as already anticipated in connection with entanglement, all the valid univer-
sal gate sets have to share one common feature: at least one of the gates has to be entangling
(1.13). A general theorem proven in [9] states that a single entangling gate, when appended
with all the possible single qudit gates, is universal for quantum computation. Usually all
universal gate sets are structured in this way. Hence, choosing a universal gate set breaks

down to choosing a set elementary single qudit gates
A;i:Cct—cl A eg, (1.18)

which generate in the sense of (1.16) all unitary mappings from C? to itself, and a single

entangling two-qudit gate
A:clgcl—c?, Aeg. (1.19)

By forming tensor products of these elementary elements, one can extend the action of G to
the whole computational space and thereby approximate an arbitrary G € U(d") gate.

Only a few simple and illustrative universal gate sets have been explicitly constructed.
Their main function is to serve as a basis for theoretical considerations, and it is a rare occasion
that one could actually implement these most elementary gate sets on a given quantum
mechanical system [40, 42]. In a realistic setting the available unitary transformations are
determined by the dynamics of the system, and in practice, one has to resort to studying
case-wise whether the given unitary operations allow universal quantum computation. Yet,
as an example of the presented abstract discussion, it is illustrative to briefly consider one
particular universal gate set for qubits (d = 2), which, surprisinly enough, will be partially
encountered later on. For a more rigorous discussion about the universality, gate sets for
qubits have been discussed in more detail in [14, 42, 40], and gate sets for qudits of arbitrary
d in [8, 25, 46].

The universal gate set in question consists of the unitary gates
G ={H,T,cNOT }, (1.20)

whose action on the qubit basis |j) € C2,j € {0, 1}, is defined by
1

alj) = — (10) + (=1)[1)) , (1.21)
Tlj) = ("5)13), (1.22)
CNOT [j)|k) = |j)|j +k (mod 2)). (1.23)

In literature, H is known as the Hadamard gate, T' is known as the g-phase gate and CNOT
as the controlled-not. It has been explicitly proven in [40], that modulo the relations

HT* =T'H, H? =1, T8 =1, (1.24)

12



where 1 is an identity gate, H and T freely generate U(2) to an arbitrary accuracy. Hence,
when appended with an entangling CNOT gate, they form a universal gate set. Consequently,
the elements of U(4) are freely generated, modulo some further relations, by CNOT together
with the tensor products 1 ® H™, 1 ® T", T* ® 1 and H' ® 1 for all m,l € {0,1} and
n,k€{0,...,7}.

1.4 Quantum Measurements

The qudit |¢) as the elementary unit of information and the universal gate set G as the
toolkit for quantum computation are direct generalizations of their classical correspondents.
However, having access to a computational space (1.7) and a universal gate set (1.15) is still
not enough to execute quantum computation. One needs an extra piece of structure, which
is the quantum measurement (1.1). Classical computation is deterministic in the sense that
given an input and a a set of logical operations, the outcome of the computation is always
uniquely defined. Also quantum computation is deterministic in the sense that given an
input state |¥) € C and a computation C, a set of unitary transformations performed in
fixed order C = Gy ---G,, € U(dV), the output state |¥’) = C|¥) is uniquely defined (1.3).
However, the difference is that whereas the output of the classical computation is a fixed
string of bits, in general the output C|¥) is now an entangled superposition, and to extract
any information from it, one must project it onto the computational basis. The real outcome
of the computation is then the probability p; for projecting onto the computational basis state
|i). Therefore, the quantum measurement to be performed at the end of the computation is an
as essential ingredient of quantum computation as are the computational space and universal
gate set. A criterion for quantum computer candidates is then that the encoding of quantum
information must be allowed in such a way that by performing measurements {M,,} (1.2) on

the quantum system, one can apply projectors P; in the computational space,
My, : |®) — P;|®). (1.25)

That is, performing a measurement described by M, and observing the outcome m with the
probability p,, (1.1) should in the computational space C uniquely correspond to projecting
onto |i) with the probability p; = py,.

This kind of correspondence arises naturally when qudits are encoded in the physical de-
grees of freedom of some observable M (1.11), which consequently leads to the computational
basis being identified with the eigenspaces H,, of M, i.e. one can define |i) = |m). The mea-
surement of M can be formulated as projective measurements, meaning that the Hermitian
operators {M,,} describing the measurement are orthogonal projectors, M,, = P,,, which

satisfy the projector algebra

PPy = Prdin, Z P, =1. (1.26)
m

13



The observable M has then a spectral decomposition
M =Y "mPy, (1.27)
m

where P,, are the projectors onto eigenspaces H,, of M corresponding to the eigenvalue m.
Then, performing a measurement of M and observing the outcome m is equivalent in the
computational space to projecting the associated qudit onto the computational basis state

Given a computation C, the output of a quantum computation, i.e. the probability p,, to

project onto the state |m), is then given by the expression
pm = (¥|CTP,CW), (1.28)

which nicely summarizes a single run of the quantum computer as the expectation value of
the operator CTP,,C in the initial state |[¥). Of course, with the single run of a quantum
computer one can only infer the information whether the projection onto the state |m) succeeds
or not, which is a binary yes-no information. Whether this piece of information is sufficient to
deduce the result depends on the architecture of computation. In same cases, it is also worth
considering measurements, if such are available, which in the computational space translate
to projections onto some other orthogonal basis than the computational basis. This freedom
offers much flexibility when designing quantum computations, and with clever designs one
can enhance the information gained from single projective measurements.

One might also ponder whether performing intermediate measurements and conditioning
the computation on them would improve the computation. However, according to the principle
of deferred measurement, without any loss of generality, all measurements can be postponed till
the end of computation [40]. No computation requires intermediate measurements and nothing
is gained by using them. This means that the state of the system after the measurement plays
no role, since all the information lies in the probabilities to obtain the different outcomes at
the end of the computation. It is in the measurement statistics where all the information

resides.

1.5 The Framework for a Quantum Computer

One is now ready to present the very general theoretical framework for the quantum computer.
In order for a given quantum system to serve as a universal quantum computer, the necessary

requirements for encoding quantum information are:

1. The computational space C has a tensor product decomposition in terms of d-dimensional

subspaces (qudits) (1.7).

2. By performing unitary transformations on the system, one can, to an arbitrary precision,
generate an arbitrary element of U(d") on C, which is equivalent to showing that one

can implement some universal quantum gate set (1.15).

14



3. By performing measurements on the system, one can perform projective measurements

in C.

These are the structures, which one sets out to look for in the anyonic system to be presented in
the next chapter. The aim is to try to discover some physical degrees of freedom, which exhibit
the promised intrinsic fault-tolerance and which at the same time allow the implementation

of the properties listed above.
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Chapter 2

Non-Abelian Anyons and the
Algebraic Structure

To make a long story short, anyons are identical particles which do not obey the usual
Fermi-Dirac or Bose-Einstein statistics, but something in between. Hence, the term fractional
statistics is also often used in connection with anyons. The aim of this chapter is to give a
compact account of classification of different anyons and describe their exotic interactions.
The relevant aspects to performing quantum computation will be made transparent when
encountered, but the discussion on performing quantum computation with anyons, that is
topological quantum computation, will have to wait till the next chapter.

There exist two prominent approaches to tackle the anyonic behavior. The first incorpo-
rates the fractional statistics through fictitious Chern-Simons gauge fields, which transmute
the statistics into the particular topological interactions [18, 35, 47|. The second one makes
use of quantum symmetries as described by Hopf algebras, which offer a unified description
of the particle properties [2, 11, 31, 32, 42]. Of course, both capture the same physics, but
the argumentation leading to the existence of anyons and the emphasis on different features
vary. From the point of view of the applicability of anyons to quantum computation, it is
the latter approach which provides more insight to the problem. However, before proceeding
to the abstract algebraic treatment, motivation will be derived from physical considerations,
which will provide the grounds for the rather abstract mathematical framework.

The defining property of anyons arises when one considers the symmetry properties of an
N-particle system of varying spatial dimension. Under the action of Sy, the permutation
group of N particles, the Hamiltonian of the system remains invariant, but the eigenstates
|¢;) are transformed according to an irreducible representation. Letting 1;(1,2,...,N) =
(1,2,...,N|¢;) denote an N-particle wave function and U(w) an operator implementing a

particular permutation 7, this can be expressed as the transformation
U(m)pi(1,2,...,N) =3 tbp(m(1),(2),...,m(N))Dy;(m), (2.1)
k
where Dy;(7) are the matrices representing the permutation 7. In most quantum mechanical
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systems the Fermi-Dirac and Bose-Einstein statistics are sufficient to describe the symmetry
properties of the wave function. These two cases are the two one-dimensional representa-
tions: the trivial representation D(7) = 1 and the alternating representation D(r) = (—1)I7,
with |7| the number of interchanges in 7 [35]. These correspond to bosons and fermions,
respectively.

Anyons correspond to irreducible representations taking other forms than the two afore-
mentioned ones. They come about when one considers particles on manifolds of varying
spatial dimension. The symmetry group to which the permutation 7 belongs to depends on
the topology of the configuration space M ]j\:[) of the D-dimensional N-particle system, and
especially on the structure of the fundamental group m (M Je ). The configuration space M ]j\:[)
is not simply connected, because indistinguishable particles are not allowed to coincide, and
thus the fundamental group is non-trivial [11, 35]. This is reflected in the structure of the
first homotopy group, which now depends on the dimension D of the space. Namely, in two

spatial dimensions it is known to be isomorphic to the N-string braid group,
(M%) ~ By, (2.2)
whereas for D > 3 it is isomorphic to the permutation group of N-objects,
m(ME)~ Sy, D>3. (2.3)

The one-dimensional irreducible representations of S correspond to the aforementioned triv-
ial and alternating representations, but it is known that there are also higher dimensional ir-
reducible representations. However, these would correspond to so called parastatistics, which
are not observed and, at the present knowledge, are not assumed to exist in nature [35]. On
the other hand, there are no such constraints on the dimensionality of the representations
of the braid group. Therefore, it follows that the anyonic behavior is manifest only in two
spatial dimensions and the symmetry properties of the N-anyon wavefunction are described
by the braid group By. If the wave function transforms in some one-dimensional irreducible
representation of By, one talks of abelian anyons. Wavefunctions transforming in some higher

dimensional irreducible representation are said to describe non-abelian anyons.

The Emergence of Anyons

The emergence of anyons in only 2+1 dimensions, the additional dimension being time, greatly
restricts the possible quantum mechanical systems where they could be found. Currently the
most promising systems involve the fractional Quantum Hall states [36, 37, 47|, but there are
also proposals for engineering suitable systems [15, 16]. Constructing and controlling such
systems will be a great challenge to experimentalists, but the exact details are not the item
of interest here. The existence of anyons will be taken for granted and one will settle with
a toy model to discuss their properties. Yet, to put the model in a physical context, a very
brief overview of one theory underlying the emergence of anyons will be presented also here.

A comprehensive review of these so called discrete gauge theories can be found in [11].
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As usually with gauge theories, one starts with a Lagrangian, which is invariant under a
continuous symmetry group G and which involves Higgs fields, which may be coupled to some
external matter fields. By performing spontaneous symmetry breaking in a suitable manner,
one finds a set of degenerate ground states, which are invariant only under some discrete
subgroup H C G. Consequently, the ground state manifold is assumed to be isomorphic to
G/H. The broken phase supports topological defects which are fingerprints of the broken
symmetry, and which can be classified by the fundamental group m; of the ground state
manifold. For a discrete and finite H, and for a continuous and simply connected G, the

fundamental group is isomorphic to the residual symmetry group
m(G/H) ~ H. (2.4)

The topological defects can be treated as quasiparticles, which by (2.4) are classified by the
elements h € H. In addition, when one includes also matter fields coupled to the Higgs field,
the broken phase supports also excitations, which, as usual with theories involving symmetry
breaking, are labeled by the unitary irreducible representations I' of the residual symmetry
group H. These two seemingly different types of excitations can be treated on equal footing
by considering them both to be in accordance with the irreducible representations of a larger
symmetry group, namely a quantum group. This unified approach will be discussed in a while.

It is a feature of the broken phase that all the physical charges of the unbroken phase,
both magnetic and electric, are screened and therefore there are no electromagnetic long-range
interactions [11]. However, the peculiar statistics of the anyons can be interpreted as a kind
of interaction, which is of topological nature. In the physics literature, these topological inter-
actions are usually known as the famous Aharonov-Bohm interactions taking place between
between magnetic flux and electric charge [1]. It derives from this analogy, that the h and
I' are often referred to as flux and charge, respectively, carried by the quasiparticles. The
topological excitations can be treated as particles on the plane, but the way they are to be
understood as physical objects is very much model dependent. For example the flux-charge
analogy may in some cases be an accurate description, since in some superconductor-like
systems the fluxes are magnetic vortices carrying quantized magnetic flux, and the charges
are condensates of matter fields carrying some quantized electric charge as their collective
property. On the other hand, in other models the quasiparticles may manifest themselves
as collective excitations bearing no direct correspondence to the elementary magnetic and/or
electric charge. The topological interactions still exist as if the quasiparticles were carrying
some flux and charge, but these are to be regarded merely as fictitious properties having

nothing to do with ordinary electromagnetism [47].

The Toy Anyon Model

For the purposes of the theory of topological quantum computation, the exact nature of the
anyonic quasiparticles is not of importance. The theory of topological quantum computation

is only interested in which residual gauge groups H give anyons, which are suited for quantum
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computation. It has been shown that universal quantum computation is possible only with
non-abelian groups [34] and hence it will be assumed that H is non-abelian. To study the
properties of these non-abelian anyons, it suffices to use a toy model, which consists of N point
like particles on a two-dimensional surface. The symmetry properties of the wavefunction of
the N particles are described by the braid group By. This is not to be confused with symmetry
group of the system, which is some finite discrete group H. The different particles are labeled
by the elements h € H and/or the irreducible representations I' of H. The particles carry
also conserved quantum numbers, which depending on the group H, may or may not be in
accordance with the labels h and I'. This will be studied in detail in the sections to come.
All the long-range interactions of the model are of Aharonov-Bohm type and there are no
other long-range interaction mechanisms. Finally, when two particles are brought together,
they can fuse to yield a new particle, which carries new quantum numbers, such that the total

quantum numbers are conserved in the process.

2.1 The Braid Group and the Topological Interactions

The topological interactions come about when a multi-particle wavefunction undergoes a
permutation (2.1), which in two spatial dimensions is described by the action of the braid
group (2.2). Physically this corresponds to moving the particles around each other. The most
elementary of such permutations would be the interchange of the relative positions of two
particles, which would correspond to the action of a generator of the By. Finding how these
generators act on the states appearing in the model would then be equivalent to specifying how
two particles interact. Generalizing this observation, finding the irreducible representation of
By, in which the wavefunction of multi-anyon system transforms, fully captures all the long-
range interactions in the model.

Before proceeding, it is useful to adopt suitable notation and conventions for describing
the quasiparticles. The notations |h), |q) and |h,q) will be used to denote particles carrying
flux h, charge ¢ and a combination of both, respectively. The state vector form is taken
into use, because it will later be shown that the particles will carry an internal vector space
with a basis given by the different flux/charge eigenstates. However, for the time being, this
state vector notation is to be regarded merely as labels for different particles. Also, it is
useful to adopt a gauge convention that a system of N particles is organized on a line, the
x-axis for example, on the (z,y)-plane so that the spatial location and the placement on
the tensor product describing the whole system are in one-to-one correspondence. That is, if
r1 < 3 < ... < zy denote the positions on the line, the direct product of the labels expresses

also the relative positions by
a1, 1) @ |ag, ©2) ® -+ @ |an, 2n) = |a1)|az) - - an). (2.5)

Further, interchanges are only allowed between particles occupying adjacent positions. These

conventions are sufficient to describe the nature of the topological interactions.
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The Aharonov-Bohm Interactions

The Aharonov-Bohm effect is a purely quantum mechanical effect which is of topological
nature. What is commonly meant by it, following the classic paper [1], is that when an electric
charge ¢ encircles a magnetic flux h, the wave function of the charge picks up a quantum phase
'™ with w the winding number. The topological nature has several peculiar consequences.
First, it is a non-local effect, because there is no particle mediating the interaction. This
means that it persists, regardless of the spatial separation of the charge and flux, even at very
large distances. Second, the phase picked up by the wave function is indifferent to variations
of the path travelled, but depends only on the number of times the path winds around the
flux [47].

All the long-range interactions of the considered anyon model are of this type. Recall that
the fluxes and charges are labeled by the elements h and irreducible representations I' of the
gauge group H, respectively. Then, in general, the charges I' carry a charge vector spaces VI,
which has the dimension of the representation I', and the state vector in VT is given by |q).
When a charge encircles a flux, the Aharonov-Bohm effect in the present formalism is then
the rotation of this state vector by the matrix I'(h) assigned to the group element h in the

representation I'. In general, this is the transformation
[Mla) — [R)[T(R)g), (2.6)

which in the case of one dimensional representations boils down to the aforementioned quan-
tum phase.

The classic Aharonov-Bohm interaction takes place between a flux and a charge. In the
case of non-abelian gauge group H, there exists also an effect called the non-abelian Aharonov-
Bohm effect or the flur metamorphosis [42, 11]. Consider a two-particle state with two fluxes
a,b € H with total flux given by ab € H. Since both a and b are elements of a non-abelian
group, they do not in general commute. However, the long-range properties of the combined
system, the total flux, should not be altered if the positions of the particles carrying flux were
interchanged. This means that under the interchange of the fluxes, b should be conjugated

by a. The flux metamorphosis is thus equivalent to the transformation
|a)[b) — laba™")|a). (2.7)

After the interchange, the total flux is (aba~!)(a) = ab and is conserved. Both (2.6) and (2.7)

can be captured in a unified way via the action of the braid group.
The Braid Group
The braid group of N particles, By, is generated by the abstract relations

oio; = o004, |i—jl>2, di,j=1,...,N—1, (2.8)

0i0i410; = 0410041, t=1,...,N —2. (2.9)
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Figure 2.2: Pictorial presentation of (2.9) [11]

1

Altogether there are N — 1 generators o;. Their inverses o, = are given by

-1 _ _—1 _
O'Z'O'Z- _Ji g; = €,

where e denotes the unit element. Each of the N particles can be thought as moving on
a trajectory in the 2+1 dimensional space-time. Since in two spatial dimensions the coun-

I can be

terclockwise and clockwise rotations can be distinguished, the generators o; and o,
thought as generating the interchange of the positions of i*" and (i + 1) particle by a rota-
tion in a counterclockwise and clockwise direction, respectively. The choice for the direction
of rotations is arbitrary, but this particular choice is commonly used in the literature and
will also be adopted here. With these conventions, the relations (2.8) and (2.9) are most
vividly illustrated by the Figures 2.2 and 2.1. In mathematical language, the trajectories are
considered as strands which are braided by applying the generators. The elements b € By,
the braids, are generated by taking all possible products of all possible powers, positive or
negative, of the generators. Therefore, By is a group of infinite order with each element b
corresponding to a certain braiding.

The abstract generators o; can be represented in an N-particle space by the braid operators
oi— Ry = 10"V @ R 1®W-i-1) (2.10)

where [ is the identity operator and R the braid operator interchanging the positions of
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Figure 2.3: The transformation convention

adjacent particles occupying places ¢ and 7 + 1 in a counterclockwise manner. Because the
representations have to respect the group properties (2.8) and (2.9), the braid operators have

to satisfy

RiR; = R;R;, |i—j|>2,
RiRz‘—f—lRi = Ri+1RZ‘R,‘+1, i=1,...,N =2 (2.11)

Of particular importance is the latter relation, which is known as the Yang-Baxter equation,
which serves as a consistency condition for all possible matrix representations of braiding
operators. From the point of view of quantum computation, the interest will be lying par-
ticularly on the unitary solutions of (2.11), because as will be shown later, unitary braidings
can be utilized as unitary quantum gates.

Before proceeding, it is useful to adopt a further gauge convention. Recall that the particles
were organized in a line in z-direction (2.5) and that interchanges were allowed only between
neighboring particles. The topological interactions take place when the particles encircle
each other, but to allow a consistent description of the phenomena, one should specify when
exactly do the transformations (2.6) and (2.7) occur. Since the braiding in clockwise and
counterclockwise direction are inverse operations of each other, they should also correspond
to inverse transformations. A convention to be adopted here is illustrated by two fluxes in
Figure 2.3. When particles a and b, a being to the left of b, are braided counterclockwise, the
state of b is transformed by a. On the other hand, under clockwise braiding the state of a is
transformed by b~!, the inverse of b. Then, in terms of the braid operator R implementing a
counterclockwise interchange, the non-abelian Aharonov-Bohm effect (2.7) between two fluxes

|a) and |b) can be summarized by

Rla)|b) = |aba™")|a),  R™'|a)[b) = [b)[b~ ab),

2.12
R?|a)|b) = |(abaY)a(aba=)"1)|aba™t) = |(ab)a(ab)~t)|aba~t). (212)

Similarly the abelian Aharonov-Bohm interaction between a pure flux |h) and pure charge

|g) can be summarized by

RIh)|q) = [L(h)g)|h), R7h)q) = |g)]h),
R|q)|n) = |h)|q), R7Mg)lh) = [W)|T1(h)g), (2.13)
R?|h)|q) = |n)|T(h)g).
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Two pure charges |¢) and |p) do not interact topologically and hence the action of braiding is

trivial
Rlq)|p) = R™'|q)Ip) = [p)|a). (2.14)

These formal, but simple expressions capture all the long-range interactions of particles car-
rying only either flux or charge. The treatment of particles carrying both flux and charge is

slightly trickier and it will be discussed in a while.

2.2 The Quasiparticle Spectrum

It has been illustrated above how would the particles carrying only the elements h € H or
the representations I' of H as their quantum numbers transform under the action of the braid
group. If these were the good quantum numbers, the given expressions would capture all the
topological interactions. However, they are not good quantum numbers, because one has not
yet accounted for the existence of the residual non-abelian symmetry group H, which implies

that the physics should remain invariant under all global g € H transformations
geH: [|h)—lghg™),  la)— [L(g)a). (2.15)

This is equivalent to demanding that the good quantum numbers, the particle labels, remain

unchanged and that g commutes with the braiding operator R,
gR = Ry, VgeH. (2.16)

As can clearly be seen from (2.15), unless h and g commute and the representation I' is
trivial for all g € H, the |h),|q) labeling is not in general invariant under global symmetry
transformations and does not therefore bear a gauge-invariant meaning. To find the physically
meaningful particles of a non-abelian anyon model, some other labeling should be used. Still,
because of (2.4), this new labeling should account somehow for the fact that h € H labels
the distinct topological excitations. Most insight to the problem is obtained when each of the

three general particle types are considered separately.

The Pure Fluxes

The pure fluxes are particles, which were originally assumed to be labeled with some h € H.
To find the good quantum numbers for pure fluxes, one should find the the invariant features

of H under conjugation (2.15). By definition, these are the conjugacy classes
C(h) = {ghg~'lg € H}, (2.17)

Therefore, the pure fluxes manifest in a non-abelian model should be labeled by the conjugacy
classes C' of H. This means that the particles are organized into degenerate multiplets labeled

by the conjugacy classes C, and for a given conjugacy class, there are altogether |C| different
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representatives of the same physical particle [11, 42]. Therefore, a particle labeled by C' can
be thought as carrying a |C|-dimensional internal flux vector space V. The basis in this

internal space is given by the flux eigenstates
M thec,  (Wh)=dwn VI, heC. (2.18)
A general state can be expressed as a superposition of the form

la) = > an|h). (2.19)

heC
Although the emergence of the internal spaces V¢ is a consequence of the topological degen-
eracy of the system, they are not the protected subspaces one is looking for. Even though
no small local perturbation can affect the state in this internal space, global transformations
(2.15) become rotations in V¢, and thus states of the form (2.19) are not in general invari-
ant under g € H transformations. The topologically protected subspace, which is the major

motivation for studying anyons, still awaits to reveal itself.

The Pure Charges

The pure charges of an anyon model were assumed to be labeled by the unitary irreducible
representations I' of H. Depending on the dimensions of the representations I', there is an
internal |T'|-dimensional charge vector space V1 associated with each particle carrying charge.

A basis in this space is given by some set of charge eigenvectors

{"L>}7 <Z‘]> :52',]'7 i, = 17"'7’F’a (2.20)

and a general state is a superposition of the form

T

)= aili). (2.21)
=1

Unlike with the fluxes, the existence of the residual gauge group does not introduce any
modification in the labeling, i.e. the pure charges are still labeled by the different irreducible
unitary representations I' of H. For the same reasoning as with the pure fluxes, states in the
internal space VT carried by a pure charges are resistant to small local perturbations, but not

conserved under global transformations (2.15).

The Dyons

In addition to the pure fluxes and charges, there exists also particles carrying both flux and
charge. These flux/charge composites are called dyons and their quantum numbers come
about in a slightly different way. The relevant remark is that for flux carrying particles, the
invariance under (2.15) does not completely fix the quantum numbers to coincide with the

conjugacy classes (2.17). The reason is that there may be global transformations g, which
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commute with a given flux h, and which can therefore be used to fix an additional internal

charge degree of freedom [11]. These g € H form the normalizer subgroup N(h) C H,
N(h) ={g € H|gh = hg}. (2.22)

Because the N(h) and N(ghg~!) are isomorphic, the normalizer group can be associated with
the corresponding conjugacy class C' of the element h and denoted just by Ng. It follows
that the charges carried by the dyons are labeled by the irreducible representations I'y,, and
thus by combining both the gauge invariant flux and charge labels, the distinct dyons should
be labeled by the pairs (C,I'y,) as their good quantum numbers. As the pure fluxes and
charges, also dyons carry an internal vector space, which now is a direct product of the flux

and charge vector spaces
VC =V = Ve ® iy, (2.23)
with the basis given by the tensor product of the bases (2.18) and (2.20)

{1h YT oy (il G) = Snbiy. (2.24)

The Full Particle Spectrum

The dyons offer a natural generalization of the particle spectrum of the anyon model. The
different physical particles are organized into degenerate multiplets, which are labeled by the
the conjugacy classes C' and irreducible normalizer representations I'y,, of the gauge group
H. The pairs (C,I'y,) are the good quantum numbers, which are usually said to define
the superselection sectors of the model. All particles carrying same quantum numbers are
treated as indistinguishable particles, which each carry an internal flux and/or charge vector
space VFC . The pure flux and charge sectors appear as special cases corresponding to trivial
conjugacy class and trivial representations, respectively.

Since each superselection sector is always labeled by two different quantum numbers, both
which may or may not be trivial, but which are always different for different sectors, the

notation can be simplified by labeling each particle with only a single label
a:=(C,T'n,). (2.25)

In every model there is one special sector, the superselection sector corresponding to the con-
jugacy class C'(e) of the trivial element and the trivial representation ' Ne(e) Of its normalizer.

This unique sector will labeled by

1= (C(e).Twey, ) - (2.26)

It is known as the vacuum sector, because it corresponds to having no particle at all. The full

particle spectrum M is then formally given by the set of labels

M:{l,al,ag,...,a|M‘,1}, (227)
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where |M| denotes the number the different superselection sectors.

Using the dyons as the most general particle types allows also the generalization of the
global symmetry transformations (2.15) as well as of the the topological interactions (2.12) -
(2.14). To account for the possible charge degrees of freedom, every g € H transformation,

acting on some flux state |h), should be decomposed such that

9=93, 9 ¢ Newy, G€New): (2.28)

If such decomposition exists for some g # e, the g part of g commutes with h, and can be
implemented as a non-trivial transformation in the charge sector. Then, the action of global

symmetry transformations (2.15) on arbitrary states of the model can be summarized by

g€ H:|hq) |ghg ", T(@a),  §€ Now- (2.29)

Similarly, all the topological interactions (2.13) - (2.14) can now be captured by the compact

expressions

Rlh, )|V, q') = [RW' b=, T(R)¢)|h, q), h € Ny, (2.30)
RYh, )W, gy = |W, )W 'hl T (W)q), I € Negy.

Using these results one can finally check that braiding also bears a gauge invariant meaning,
i.e. that (2.16) is satisfied

Rglh.q)|W',d') = Rlghg™",T(§)q) |gh'g~".T"(9)d'),
= |ghh'h~1g~! F’(ghg‘l) "(9)d) lghg™',T(9)q),
(2.31)
gRIh, )| q') = glhWh= T/ (R)q') |h. q),
= [ghh'h= g~ ", T (@' (R)d') lghg™",T(G)a)-

These expressions are equal, because the isomorphy of the normalizers, N(h) ~ N(ghg™'),
implies

—_——

ghg™' = ghg". (2.32)

Using then the representation properties I'(ab) = T'(a)T'(b) and I'(a=1) = I'"!(a), it follows
that

I'(ghg=")I"(g) = T'(@T" ("G (g) = I' ()T (h), (2.33)
which completes proving that the action of By commutes with global ¢ € H symmetry
transformations (2.16).

After all this work, one still has not even got a glimpse of the topologically protected

subspaces, which was the main motivation for considering quantum computation with anyons.

The closest thing resembling them are the internal flux/charge vector spaces (2.23), which,
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however, were not robust storages for quantum information. The genuine invariant features
of the model are the particle types M (2.27), which can change only under the process of
fusion [11]. Hence, what remains in the discussion are the fusion rules which dictate what
happens when two anyons are brought together. It will be shown that related to them, there
exist a further internal space which is finally the one protected by topology. All this is most
conveniently discussed in terms of Hopf algebras, which offer a natural description of anyons
by unifying the given physically motivated arguments in terms of more rigorous mathematical

formalism.

2.3 The Algebraic Structure of Non-Abelian Anyons

All the preceding discussion can be unified by extending the residual H symmetry into a
quantum group symmetry. By doing so, instead of treating the different excitations appearing
in the model as having fundamentally a different origin, the topological excitations being
classified by the fundamental group (2.4), but the matter excitations being classified the
representations I' of H, they can be classified by the unitary irreducible representations of
this single extended symmetry structure.

There is a physical way of motivating the appearance of this quantum symmetry by
considering the allowed physical operations, i.e. the ones commuting with the action of
the residual symmetry group. These are the independent measurements of both flux and
charge by using quantum interference experiments [11]. They are captured by "interference
amplitudes” of the form (h,q|(h',¢'|R?|W,q')|h,q), which, because of (2.16), are invariant
under global symmetry transformations. However, the measurements of flux or charge are
described in different ways. First, the measurements of flux correspond to projecting onto
some flux eigenstate in the vector space V, carried by a particle a. They are described by

projectors P, which satisfy the flux projector algebra
Py Py = op,p P, h,h' € H. (2.34)

On the other hand, the measurement of charge corresponds to determining the representation
I" in which a given particle a transforms. These can be determined, at least in principle, by the
transformation properties under all the g € H transformations. Therefore, the structure of
allowed physical operations in an anyon system is, in principle, fully captured by the projectors
(2.34) and the g € H transformations. However, since g € H transformations act on general
flux states by (2.29), P, and g do not in general commute

9Pn = Pypg1g. (2.35)

All the possible combinations of these two elementary physical operations form the set of

elements

{Prn g}ngen, (2.36)
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whose elements, due to the non-commutativity of P, and ¢, do not commute either. Instead,

they obey the relation
Prg - Pug = 0pgrvg-1Pr g g, (2.37)

which can taken as a multiplication rule for the elements P,g. The idea is now to treat
the set of elements (2.36) as the elements of the extended symmetry algebra D(H). Indeed,
these elements are known to generate a so called quantum double D(H) of H, which is a
quasitriangular Hopf algebra [2, 11, 31]. It arises naturally as an extended symmetry algebra
on any systems where the fundamental group coincides with the the residual gauge group
(2.4).

The full quasitriangular Hopf algebra structure is given by {D(H),-,A,e,S, R}, where
the mappings are formally given by [24, 33|

D(H)® D(H) — D(H), (2.38)

A: D(H) — D(H)® D(H), (2.39)

e: D(H) — C, (2.40)

S: D(H) — D(H), (2.41)

R: D(H)®D(H)— DH)® D(H). (2.42)

There are a number of defining relations these structures have to obey in order to constitute

a Hopf algebra. First, from the multiplication - one assumes associativity
(D(H) - D(H)) - D(H) = D(H) - (D(H) - D(H)). (2.43)
Analogously, the co-multiplication A has to satisfy coassociativity
(A®id)A(D(H)) = (id® A)A(D(H)). (2.44)

The coassociativity tells how the action of D(H) can be extended on tensor products of
vector spaces. The quasitriangular structure of D(H) is given by the unique element R €

D(H) ® D(H), the universal R-matriz, which has to satisfy the quasitriangularity conditions

RA(D(H)) = (0 0 A(D(H)))R,
(id® A)(R) = RisRiz, (2.45)
(A®id)(R) = Ri3Ras,

where o is a transposition map, oo (a ® b) = b® a, and the R;; act on the ith and jth factor
of D(H) ® D(H) ® D(H) [33]. When combined, the the last two imply that R satisfies also

the abstract Quantum Yang-Bazter equation
R12R13Ra3 = Raz3R13R12- (2.46)
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Finally, the co-unit € and the antipode S are defined as mappings obeying the respective
relations

(e@id)A(D(H)) (id®e)A(D(H)) = D(H), (2.47)

(S®id)A(D(H)) = -(id® S)A(D(H)) = ¢(D(H)). (2.48)

The counit € plays the role of unit mapping with respect to comultiplication, whereas the
antipodal map S serves to provide the inverse elements of D(H).

Now, for the quantum double D(H) with the set of elements (2.36), these objects are
given by [2, 11, 33|

A(Prg) = Z Prg & Pyrg, (2.49)
h!-h!'=h
R= > Py®Pyg (2.50)
h,geH
€(Phg) = One, (2.51)
S(Prhg) = Py1p-1,9", (2.52)

with the multiplication - already given by (2.37). To show that the structure of D(H) is
indeed given by these objects, one should prove that they satisfy the definitions above. First,
the coassociativity (2.44) is nearly trivial, since by just using the definition (2.49) and then

renaming the indices suitably, one can immediately write both sides as
(id ® A)A(Phg) = (A®1)A(Pyg) = > Pug® Pyg @ Pung. (2.53)
h R R =h

The quasitriangularity conditions (2.45) can be proven as follows

RA(Pb) = [ Y Py@ Pg (Z Pafb®Pa~b>,

h,g a’-a’=a

=" > gwyingarPeb @ Pugh,

h,g a’-a'"=a

=) " SangPyb @ Prgb,
h.,g

— Z S bab—1byb—1 Poyh-10 @ Pyyyp1byb™'b, (2.54)
x7y

= Z Z 5a/,bzb_15a”,byb—1pa”b & Pa/by’

T,y a'-a''=a

= ( Z Paub®Pa/b> (ZPyQ@ny)a
z,y

a’-a'"=a

— (00 A(PD)R,

where the summation indices have been relabeled as h = bzb~! and ¢ = byb~!. This is allowed,

because the sums run over all the elements h,g € H, and thus relabeling only permutes the
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terms in the sum. Likewise,

Ri3Ri2 = ZPg®1®Phg ZPa®Pba®]— ,

hvg a,b
= Zzég,apg(gpba@Phga
h,g a,b
= Z Py ® Pog @ Ppg, (2.55)
g,h,b

:Z Z Pg®Pa:’g®Px”ga

x,g CE:I/'IH

= ([d® A)(R),

and

RisRas = | D P@1@Pug| [Y 10 P @ Pal,
h,g a,b

= Z Z 5h,gbg*1Pg ® P ® Phgaa
h,g a,b
=Y Py@P® Pyyga, (2.56)

g,a,b

= Z Z P, ® Py ® Pyx,

Y,x x=x'-x"

= (A®id)(R),

where the summation indices have again in both been relabeled suitably. Finally, the defini-

tions for the counit e (2.47) and the antipode S (2.48) can be proven by

(e ®id)A(Prg) = (e ®id) ( > Pug ®Ph~g> :
W B =h
= Z 5/7/,6 (29 Ph”g = Ph97 (257)
W h=h
ST
W R =h
= (id ® €)A(Prg),
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where one can write 0y .Prg = Prg ® 0 = 05 ® Pg, and

(S & ld)A(Phg) = - Z Pg—lhlflggil X Ph//g’

W h''=h
= Z 5h’h",h5h’71,h”nglhlflgﬁ
%

= Z 5h7epgflh/flg = 5h,e = e(Phg),
h/

= nePu, (2.58)
h/

— E 6h',h"_1Ph/’

W h/'=h

= . Z Ph/g®Pg—1h//—1ggil,
h'h!'=h
= -(id ® S)A(Prg),

where the completeness of the projectors, ), P, = >, Pj-15-1, = 1, has been used.

This concludes the summary of the algebraic structure of the quantum double D(H). How-
ever, although one could loosely argue for the rise of D(H) in physical terms, by themselves
these abstract structures offer only very little insight to how they can be used to deal with
the anyons in a holistic manner. To get back to physics, one must consider the representation
theory of D(H).

2.3.1 Representation Theory for the Quantum Double D(H)

It is known from the general theory of Hopf algebras that the representation space, the left
D(H)-module, of a quantum double D(H) is given by a H-graded vector space, V = @, .y Vi,

where H also acts in a compatible way according to [33]
lg-v[=gllg™", VeeV, geH. (2.59)

Here g- denotes the action of g € H, v € V}, C V is a vector and |v| = h is the degree of v.
Recalling that g € H are the residual symmetry transformations, this abstract compatibility
condition expresses that the representation space V' decomposes into the irreducible subspaces
transforming onto themselves under the action of H. Such spaces were already encountered
during the preliminary discussion, which paved the way for the algebraic treatment, and with
a slight reinterpretation, these results can now be directly taken into use.

It was argued how the superselection sectors, or the particle spectrum M (2.27), of the
anyon model are formed when the gauge group of the system is the non-abelian group H. It
was found that they are in general degenerate, which implied that each particle a could be
thought as carrying an internal vector space V,. Now, the quantum double D(H) expresses
the extended symmetry algebra of a model with the gauge group H. Therefore, it should act

irreducibly in these internal vector spaces, which can now be mathematically interpreted as
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the subspaces, which correspond to the gradation of the D(H)-module and which are simulta-
neously compatible with (2.59). Hence, in the language of the present algebraic treatment, the
particle spectrum M should be understood as a collection of vector spaces V, each carrying a

particular irreducible representation I, of D(H)

M = {(Va, o) }a=1,... - (2.60)

Having already considered the spaces V, in connection with dyons (2.23), the basis in each
being given by |k,i) € V, (2.24), one should now find how the action of D(H) is represented
in them.

Recall that for an element P,g € D(H ) one assigned the physical interpretation of a global
g € H transformation followed by a projection onto the flux eigenstate |h). To preserve this

interpretation, for a state |k,i) € V;, the action of D(H) should be represented by

Prg: |k,i) — Wa(Pag)lk, i) = 0 grg-1lgkg ™", Ta(g)i), (2.61)

where g € N(k) is the part of g commuting with k& (2.28). In order this to be a valid
representation in V,, it should respect the group algebra (2.37) of D(H)

Ha(Phg)Ha(Pl/lg,)‘k7 Z> = 5h,gh’g*1Ha(Phgg/)‘k7 Z> (262)

This can checked by considering the following actions of D(H):

Ha(Phg)Ha(Ph’g/)|ka Z> = 6h,gg/1€_g.7’—1_g.7—1 (Sh’,g’lcg/_1 |gg,kg/_1g_1) Fa(g)ra(.&)i% (263)
=4

h,gh’g*l
5h,gh’g—1Ha(Phgg/)|kai> = 6h,gh’g_1 6h,gg’kg/_1g_1 |gg,kg/_1g_1, Fa(;\/gl) Z> (264)

:(sh’,g’h’g/_l :Fa(!})Fa(é/)

These expressions are equal if the values of the delta functions are equal for a fixed k£ and for
all g,¢',h,h’ € H. This is true, because if either ¢y, jprg-1 = 0 or s ypgy—1 = 0, both sides
of (2.62) are immediately zero. It can be seen from the two different expressions for the delta
functions above, that it is not possible to have other equal to unity and simultaneously the
other equal to zero. To only alternative to having both equal to zero is to have both equal to
unity, which again satisfies (2.62). The identity Fa(évg’) =T'4(§)Ta(g’) follows again from the
isomorphism N (k) ~ N(gkg~!) (2.32). Therefore, (2.61) is indeed a viable representation of
D(H) in the space V.

The extension of the action of D(H) on multi-particle states is given formally by the
comultiplication (2.49). Particularly, in terms of the representation (2.61), the action on
two-particle state |k, )|k, j) € Vo, ® V, is given by

I, ® Iy (A(Prg)) |k, 0)|K', 5) = Z Oht ghg—10m ghrg—119kg ™ Da(9)i) gk g To(9)4),

R'-h'"=h

= Opgkg-119kg ™ Ta(@)D) gk 9~ T5(9)J). (2.65)
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Physically this corresponds to implementing a residual g transformation separately on each
particle and subsequently projecting out the total flux of the combined system. Therefore, the
action (2.49) of D(H) determines the globally conserved properties of the two particle quan-
tum system and the coassociativity (2.44) implies that the action of D(H) can be extended
through comultiplication to an arbitrary number of states with similar interpretation.

Using (2.61), the representations for the counit € (2.51) and the antipode S (2.52) are
given by

I1, (E(Phg)) |k7 Z> = 5h,e|ka ’i>, (266)
I, (S(Pug)) |k, i) = 641 4lg~ kg, Ta(g~")i). (2.67)

One can see that the action of € is represented trivially in an arbitrary space V,, and therefore
the counit implements a trivial symmetry transformation. Physically this signals the existence
of vacuum 1 € M. The representation of the antipode acts non-trivially, but the physics can

be extracted by considering the following

o(Pog)a (S(Prhg)) [k, i) = a(Prg) (6p-11l9~ kg, Ta(G)i))
= 5h,k5h—1,k|k7Fa(g)ra(g_l)i>’ (268)
== 6h,h_1|kai>'

The combined action of the elements P,g and S(Pyg) is proportional to the trivial transfor-
mation, and thus as expected from the general theory of Hopf algebras [33], the antipode plays
the role of inverse. Physically this corresponds to the implementation of inverse transforma-
tions and hence of also to the existence of anti-particles a € M. Generally one can define the
anti-particles as transforming in the conjugate representation, which can be defined with the
aid of the antipode [2]

ﬁa(Phg) = Hg(S(Phg))’ (269)

where T" denotes transposition. The anti-particles are unique in a sense that for each particle
a, there is only one other particle a, which can fuse to give the vacuum. However, because
of the topological degeneracy, this does not mean that a fusion with an anti-particle would
always give the vacuum, but that there are no particles b, other than the anti-particle a, which
when fused with @ may give the vacuum [32|. This curious property will play a key role in
the next section.

The final piece of structure is the universal R-matrix (2.50). It is of primary interest since
it satisfies the quantum Yang-Baxter equation (2.46), and hence representations of R can be
used to define representations of the braid group. Because R € D(H) ® D(H), it acts in
Vo, ® Vi, and one can therefore define physical braid operator R by

Ry =00 (Ha X Hb)(R), (2.70)
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where the o is an operator performing the spatial exchange of the particle positions. Using

(2.61), the action of R, on a two particle state is then given by

Rab|k7i>|kl)j> =00 (Ha®Hb)(ZPQ®Phg)|kal>|k/)]> 9
h.g

=00 | Y Ggrlp g1 lki)lgk'g™" To(@)5) | »
h,g

— g O (Z 5h,kk‘/k‘1’k’l>‘kk/k1,Fb(l~€)~]>> 5 (271)
h

= oo (Jk, i) kK~ T (R)g))

= |kK'k™Y, Ty (k)j) |k, 7).

Comparing this to (2.30), one can see that the action of the universal R-matrix in the space
Va®Vy, as defined by (2.70), coincides with the action of the braid operator on the flux/charge
eigenstates by implementing the Aharonov-Bohm effect (2.6) and the flux metamorphosis (2.7)
on all conceivable states in the model. Because of the transposition map ¢ in the definition

R, it does not satisfy the abstract quasitriangularity conditions (2.45), but the conditions [11]

RA(D(H)) = (A (D(H)))R,
(id® A)R) = (1® R)(R® 1), (2.72)
(A®id)(R) = (R®1)(1® R),

The first of these expresses the already familiar property (2.16), i.e. that braiding commutes
with residual symmetry transformations and conserves the total flux. When combined, the

last two imply that R satisfies the Yang-Baxter equation (2.11)
(Ro1)1®R)(R®1)=(1®R)(R®1)(1® R), (2.73)

and thus the representations (2.70) indeed define representations of the braid group.

To summarize, in an anyon model based on a finite gauge group H, an internal vector space
of N particles carries representations of both D(H) and By given by ((II,)®N ,(V,)®N) and
Ry, respectively, for each a,b € M. Therefore, the algebraic construction with the quantum
double D(H) as an extended symmetry algebra, captures all the features of an anyon model as
derived based on purely quantum mechanical considerations. However, it also allows one to go
further by providing a way to tackle the theory of fusion which was unaccessible before. This
will be the topic of the next section where the long sought topologically protected subspaces

will finally be discovered.
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2.3.2 The Topological Hilbert Space

When two particles are fused together, the quantum numbers M should be conserved. How-
ever, as one is now considering an anyon model with degenerate superselection sectors, i.e. a
non-abelian model, it is not at all obvious how the quantum numbers should be added up. One
the other hand, since the irreducible representations I1, of D(H) are used to classify the dis-
tinct particles, it is natural to demand that the outcome of the fusion has to transform also in
some irreducible representations of D(H). Now, in addition to assigning quantum numbers to
distinct particles, the I, describe also the transformation properties under D(H) transforma-
tions, and thus one could as well consider the tensor products of single particle representations
11, ® I, which could be thought of as describing the transformation properties and quantum
numbers of a composite two-particle system. However, the first quasitriangularity condition
(2.72) shows that D(H) and By commute and can thus be simultaneously diagonalized. This,
on the other hand, means that the N-particle representations ((II,)®N,(V,)®N) are in gen-
eral reducible and hence under the action of D(H) x By, the multi-particle representations
breaks down to a direct sum of irreducible representations [11]. The possible outcomes of a
fusion of two particles are then determined by the decomposition of I, ® II; into irreducible

representations, i.e. the Clebsch-Gordan series

I, ® I, = @Ngbnw (274)
c

where NS, stands for the multiplicity of the irreducible representation II. in the decomposition.
These numbers are determined by using the orthogonality of the characters of irreducible

representations [11, 24]

Niy = o hz tr (T, T (A(Pag))) tr (T (Pag))” (2.75)

In more physical terms, given two particles a and b, the decomposition (2.74) state which
particles ¢ can be be formed, i.e. it provides the fusion rules of the model. If for some
particles NJ > 2, there exist N, ways of obtaining the particle c. The fusion rules are the
most interesting feature of the representation theory of D(H), at least as far as topological
quantum computation is concerned, because they encode the robust features of multi-particle
systems. The whole preceding discussion has been presented to argue for their emergence,
and much of it will not play a role anymore. Yet, the discussion has not been in vain,
because to actually calculate the fusion multiplicities (2.75) for a given model, one still needs

to understand how to derive the representation spaces V, (2.60) and the representations II,
(2.61).

The Fusion Algebra and the Fusion Spaces

The new starting point is to consider the decomposition (2.74) as an abstract fusion algebra,

axb=>Y Nge, (2.76)
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which is both commutative and associative [32, 42|

axb=bxa, < Ng=Ng, (2.77)
(axb)xd=ax(bxd), < Y NLN&G=Y NNy,

The physics underlying these two properties is the conservation of the quantum numbers:
given that the outcome will be ¢, it does not matter in which order the particles are fused.
The fusion algebra can be thought as assigning each label set {a,b,c} € M a fusion space

o, of dimension
dim(V}5) = N5 (2.78)
The vector space V3 is spanned by so called fusion states, which form the orthonormal basis

{|ab, c, M>}u=1,...,N°ba <CLb, c, ,U,|Clb, c, :U’/> = 6u,u’a (279)

a

and have the physical interpretation of corresponding to the inequivalent and distinguishable
ways a and b can fuse to form ¢. One can as well consider more general fusion spaces Vg,
carried by particles ¢ and b and where the fusion outcome is not fixed. The structure of
such spaces is given by the direct sum over all the subspaces indexed by the possible fusion

outcomes ¢
V=PV,  dim(Vip) = > NG, (2.80)
C C
Since for each ¢ there is a proper subspace, the orthonormal basis in V; is given by

{|ab; ) M>}Z:1,...,N§ba <ab; Cau|ab; Clal/> = 50,0’6p,p/- (281)

From the definition (2.80), one can see that dim(V,;) > 1 only for non-abelian models. In
an abelian model there would be no topological degeneracy and the outcome of every fusion
would always be unique. The topological Hilbert space would coincide with the only subspace
labeled by a single ¢, Vg, >~ V.5, and thus dim (V) = NS, = 1 for all a and b. Since one wants
to consider the fusion spaces as an arena for quantum computation, this reinforces the notion
that quantum computation with anyons is only possible for a non-abelian model [42].

The two-particle fusion spaces (2.78) and (2.80) serve as simple examples of what are
sometimes called topological Hilbert spaces. However, they are hardly of particular interest,
because unless there is fusion degeneracy, i.e. N7, > 2, V.5 can not be used to encode quantum
information. Consequently, the fusion spaces V; are directly out of the question, because one
cannot form superpositions of states belonging to different superselection sectors [32]. To
overcome these restrictions, one must consider the more general fusion spaces V;, . carried
by some N-particles, whose total charge has been restricted to ¢. To study their structure,
one needs to decompose them in terms of the elementary fusion spaces V. Because the

fusion algebra is associative (2.77), multi-particle fusion spaces V" can be decomposed

sy AN
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as a direct sum of subspaces corresponding to different fusion orders. For example, one

decomposition is realized by fusing always the two left most particles

b b
Vi ™ P Vi, eV e @V L (2.82)
b1,b2,....bN_2
where by, bs,...,by are particles which may occur during intermediate stages of fusing all

the particles together. From this expression, one can immediately read off the dimension of
VC

al,...,aN?

dim(V¢ =No oy = >, NULNZ

C
a1...aN) ai...an ajaz2” ‘biag NbN72G/N'

(2.83)

b1,b2,....bN 2

Of course, this particular fusion order is not the only possible choice for the decomposition.
Any other choice would give as viable alternative decomposition. Yet, regardless of how
one does the decomposition, the N-particle fusion space always decomposes as a direct sum
of N — 2 two-particle fusion spaces, and all the different choices correspond to isomorphic

representations of the same space Vj, Since one needs to pick one to proceed with

AN -©
the analysis, the decomposition (2.82) is as good as any. It is known as the standard basis
decomposition, which often serves as the most practical choice due to its simple structure [42].
The standard basis corresponding to this decomposition is given by the tensor product of the

subspace bases

{laraz; by, p1)|brasz; ba, po) - - - |bv—2an; ¢, pn—1) }- (2.84)

The orthonormality of these spaces is given by the orthonormality of the individual basis
states (2.81). Working with basis of this form a rather awkward due to the large number of
indices, and thus in analogy with (2.79), it is useful to adopt a more compact notation by

denoting these basis states by

{’alaz---aN;C,/L>}u:071,m7Ng <a1a2---aN;c,,u\alaz---a,N;c,//>: ) (2.85)

1ag-an?

where the index p counts now both the fusion state degeneracies as well as the distinct
intermediate fusion outcomes.

The observation above that the fusion algebra is associative allowed one to decompose
the N-particle fusion spaces in terms of smaller subspaces. There are also quite a few other
relations between different fusion spaces that the fusion algebra implies [32, 42]. First, the

commutativity implies a natural fusion space isomorphism
5 = Vi (2.86)

This observation can be extended to IV particles by saying that all fusion spaces corresponding
to permutations of the lower indices are isomorphic. The label ¢ can therefore be said to

define the superselection sector of the fusion space V, which can not change in any

yeens AN Y

physical process in which only the particles ay,...,an participate. Second, the existence of
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unique anti-particles induces further natural isomorphisms between the fusion spaces V5. The
starting point is the fusion space V%, where no fusion occurs. This space can be thought as
corresponding to free propagation and hence it is one-dimensional by definition, dim(V}4) =

a4 = 1. Since the anti-particle a is unique for a given a, the space V... where total annihilation
occurs must also be one-dimensional, dim(V,L) = NL = 1. More specifically, these spaces are

isomorphic [32]

Ve ~ VL~ yee (2.87)

a aa —

The last isomorphism in (2.87) also implies that a pair of particles created out of vacuum
always carries conjugate labels. These isomorphisms can be generalized to arbitrary fusion
spaces by adopting a convention that the indices can be raised and lowered by replacing them

with their conjugates

(ol

VS~ Vi~V

a a a

~e (2.88)

Ql

All fusion spaces isomorphic to each other are also of same dimension. The physics underlying
these isomorphisms is still the conservation of total charge - all the fusion spaces corresponding
to fusion processes conserving the same total charge are isomorphic.

The fusion algebra can also be used to partition M into various useful subsets. For

example, the fusion outcomes of the particles a and b form the set

Map = {clveem,ne, 20,  Map C M. (2.89)

Another kinds of partitions, if such exist in a given model, are the subsets M; C M, which

are closed under the fusion algebra (2.76)

The existence of such sets is of interest, because particles in such M; would span a subalgebra
of the complete fusion algebra, and they could therefore be treated independently of any other
particles appearing in the model. Consequently, the fusions spaces carried by particle in M;
form a proper subspace of the full fusion space, which is closed under operations involving
only these particles. From the point of view of quantum computation, these subalgebras are
a desirable feature, because the possibility to restrict to dealing with only a limited number
of particles types can significantly simplify the discussion.

The primary reason to study topological quantum computation is that the fusion spaces are

protected from decoherence by topology. The states in V7 are robust in the presence of

-
local external perturbations. By external perturbations one r;veans for example interactions
with environment such as photons or ordinary matter, which can cause deviataions in the
quasiparticle trajectories, but can not change the superselection sector in the topological
Hilbert space. Only interactions or fusions with external quasiparticles can cause this and
thus the primary error source to be controlled is the spontaneous creation of particle - anti-

particle pairs. Otherwise, in principle, there are no other sources of error. The pair creation is
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not assumed to be a significant obstacle, because it is exponentially suppressed with decreasing
temperature and thus one can deal with it with sufficient cooling [31, 42]. Having now finally
identified the arena for topological quantum computation, it is time to consider what one can

do there, i.e. how the braid group is represented.

Braiding in the Topological Hilbert Space

The commutativity of the fusion algebra (2.76) implied the fusion space isomorphisms (2.86).

This, on the other hand, implies that there exists a unique unitary intertwiner map
R: Vg — Vi, (2.91)

which relates the isomorphic fusion spaces. Absorbing the convention of the placement of
the particles on a line (2.5) on the placement of the indices in V§, R then has an additional
interpretation of implementing the transposition of adjacent particles. The isomorphism (2.91)
relating two representation tensor products of D(H) should be map commuting with the action
of D(H), and such a map is already familiar. It is the braid operator (2.70) obtained from
the universal R-matrix, which by (2.72) satisfies this property and which hence acts in the
fusion spaces as (2.91) [24, 32, 33]. In general, the applications of R will be referred to as
R-mowes, which can be considered as the actions of braid group generators on two-particle
fusion spaces. When expressed as a matrix acting on the basis states of the isomorphic fusion

spaces, an R-move relates the two bases |ab; ¢, ) € VG and |ba; ¢, i) € V& by the expansion

lab; ¢, ) = Ri,[ba; e, u) = Y (R, )1 |bas e, ). (2.92)
o
This is a very general expression, but the exact form of the unitary matrix R, is constrained
by certain consistency conditions to be discussed in a while.

There exists also a second intertwiner map relating the isomorphic N-particle fusion
spaces. The associativity of the fusion algebra allowed one to decompose multi-particle fusion
spaces by different fusion orders with no fusion order being singled out by any physical prin-
ciple. Since all the possible decompositions are still representations of the same fusion space

[32], the alternative representations should be related by some unique unitary map
Fcilbc : Va%c = @ Vazb ® Vzdc - Va%c = @ Vadx ® ‘/bzc’ (293)
rE€M,yp €My,

In analogy to the R-moves (2.91), these maps are known as the F-mowves, which act on the

basis states as

zu'v
abse,mlecd,v) = > (Fihe) " lawsd,)lbesw,). (2.94)
xeMbC? eHV
W'

Since the canonical basis in the fusion spaces was chosen to coincide with the distinct fusion

channels, an F-move can be interpreted as implementing a basis change in the fusion spaces
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by switching between the possible fusion orders. As the R-moves, also the F-moves are
constrained by certain consistency conditions.

These consistency conditions arise, because R- and F-moves define isomorphisms between
different spaces and therefore certain combinations of them have to be compatible with each
other. These conditions go under the names of pentagon and hezagon equations. Consider first
the fusion space V3 ;, = @xeMab,yEch Ve ® Vi@ Ve yd 1 the standard basis decomposition.

Both of the F-move sequences,

F;c b
P vievievy =2 @ vievs, eV Cay P Vi evhevy, (295
Z'GMab, Z'GMab, CE’EMby/,
yEMze y'€Mea Y €My

and

Yy

F ’
D vievievi-=s D Viewe

TrEMap,yE Mz z'€Mpe,yEM, ./
Fe e
@ Vay/ ® ‘/}70 ® Vx’d (296)
x/eMbcvy,eMz/d
!
FY "
bed
-4 b vyevlevy,

CE"GMcd,y’GMbm//

yield the same decomposition and thus in terms of the matrix elements (2.94), the F have to

satisfy
(Fiy)? (Fiea)) = (FLL)Y (Feua)! (F4)Y (2.97)
aby ) ;. xed/y bed abc ) ’
yleMcd xleMbc
:E/EMby/ y’EMm/d,x"EMcd
This is the pentagon equation with the summation over the fusion state indices u, v, ... sup-
pressed.

Similarly one can consider the fusion space V.4 ~ P, My, Var ® Vi ~P,. My, Vi @ VE.

Starting from the first one, the latter decomposition can then be reached either by
Ra ® id Fdac 4 d®Rac
P vieovi ™" @ viiove s @ vinevn T P Vb e va (2.0
TEM z€Mgp ' EMac x'EMac
or by
Fd, o (SR A, 5
D vievi—== D Vi oV TP v evi. s @ v e v
xEMab IL'/GM(,C z e]‘ch " EMea
This means that in terms of the matrix elements (2.94) and (2.92), the hezagon equation reads
, x/ 1.// x/
Z Rgc <Fbcfzc)x 2b = Z (deca>$, Rd ( (;ibc)x : (2]—00)

x'EMac JEIEMbC,
x//eMca
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By the so called MacLane’s coherence theorem, there are no further consistency conditions
[32, 42|, and thus (2.97) and (2.100) define viable and consistent anyon models, which are

completely characterized by their solutions.

From the point of view of quantum computation, it is assuring that viable anyon models
are defined by solutions to only two polynomial equations. On the other hand, since these
solutions give the representations of the R- and F-moves as the only fundamental structure,
the tools to construct various transformations in the fusion spaces are very limited. Partic-
ularly, one wishes to construct the representation of the braid group in an N-particle fusion

space V; i.e. find how the braid group acts on the standard basis (2.85). However, since

5oy AN
the this space is associated with only one particular arrangement of the indices aq,...,ap, it
can not by itself carry a representation of braid group. In contrast, the viable space should
include all the spaces associated with different permutations of the lower indices, which can

in general be written as

Ve= P Vi an (2.101)

at,...,an

Anticipating the things to come, this is also the general structure one assumes from the poten-
tial computational spaces. Because braiding is in practice the only way to apply transforma-
tions, one must include all the permutations of the labels in order to prevent transformations

taking states out of the computational space.

Considering the Va%c in the standard basis as the simplest non-trivial multi-particle fusion

space, an R-move, as defined by (2.91), implements then the transformation

R:VS — Vi (2.102)

a

which acts only on the two left most particles. As argued earlier, R can be interpreted as a
generator of the braid group o1 — R, but to construct an arbitrary braid on three particles
as the tensor product (2.10), one needs also a second generator oo — B which together with
(2.102) satisfies the Yang-Baxter equation (2.11). This meas that one wishes to find an unitary

operator implementing the transformation

B:vV4 — V. (2.103)

abc

Considering the limited number of tools at disposal, it is evident that the F-move has to be
utilized. The solution is to first apply an F-move to switch into a basis where the R-moves
are well defined, applying an R-move there and return to the standard basis by applying the

inverse F'~!-move [42]. Using this procedure the B-mouve, the action of an arbitrary generator
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of the braid group in the standard basis, can be constructed as successive R- and F-moves

|abe; d) = |ab;z, p)|xe; d, v),

- /’d / be: /o Fd ' '’
— Z laz’; d, 1')|be; ', V') abe)

x/eMbcal"‘lay/ M
B Lod i eb: 2! " 2\ Fd Ty 2.104
— Z |a,;c, ,,u,>|C,£C,V > cb o abc o ’ ( . )

! / ! 1"
z'e€Mpe, ' Vv
" " 11 1

FANTANY AV x'u'v
= Y laga" Wb d ") ((FY) (rz), (Fae) "

' Ty
CEIEMbC“LL/,VI,l/// 7 a
1" " 11
" eMae,pn” v
" " s
z,u' v
o /AN " d A
= E lac; ", ") |z" by d, v >(Bacb) ,
JEHGMac “// i il
b K

= Biylach; d).

Suppressing the fusion state indices over which one always sums, the elements of the matrix

representation Bgcb in the space Vacib can be defined by

()" = S (1) () (71" 2105
z'€Mpe
which means that the action of By in the standard basis is completely characterized by R-
and F-moves.

This concludes the overview of the non-abelian anyon model based on a finite residual
gauge group H. The model is fully described by the quasitriangular Hopf algebra D(H), the
quantum double of H. The defining structures are the particle spectrum M (2.60), which label
the superselection sectors arising as the irreducible representations of D(H ), the fusion rules
(2.76) specified by the fusion multiplicities { NS, }a.p,cerr (2.75), and the R- (2.50) and F-moves
(2.93) describing braiding properties. The discussion has in no way been a rigorous treatment
of the algebraic structure of anyons and the presented topics have been chosen due to their
relevance in the light of topological quantum computation. For a more rigorous and detailed
treatment, one is referred to [18, 20| and [32]. The reason to go through all this trouble is
the discovery of the topological Hilbert space, which has the exceptional property for being
insensitive to local perturbations. Quantum information encoded there would be intrinsically
protected from decoherence. With the topological Hilbert space as the playground and the R
and F' as the tools at the repertoire, it now remains to be studied how quantum computation
can be executed in this long-sought arena. To put things into a bit more concrete setting, a

specific anyon model will be presented next.
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2 2 2

Table 2.1: Multiplication table of S3

2.4 The S3 Anyon Model

As an example of the abstract construction of the previous section, an anyon model based on
the non-abelian group S3 will be considered. This particular example was chosen, because S3
is the simplest non-abelian group and its application to topological quantum computation,
although in quite a different setting, has been considered in [34]. Unlike the Chern-Simons
type models, which seem to rise naturally in fractional Quantum Hall states [22, 42, 45],
no natural systems exhibiting S3 symmetry are currently known. However, there has been
proposals for preparing such experimentally [15], and the simple structure of S3 may well be
one which can be artificially constructed in the future.

S3 is the symmetry group of an equilateral triangle, which is generated by the reflections
with respect to any one of the three diagonals and by the 120 deg rotations around their
intersection point. The respective symmetry groups are the cyclic groups Zs and Z3, which
are generated by x and y satisfying 22 = e and y® = e, respectively. Mathematically, S3 can

then be expressed as the direct product
Sg = Zy X 3, (2.106)
with the elements given by
S3 = {a"y" o0 = {e. v my, 007, y,y7) (2.107)
The generators x and y satisfy the relations
zy = y’x, 22 =e, P =e (2.108)

which enable one to construct the multiplication table of S (Table 2.1).
The conjugacy classes (2.17) and normalizers (2.22) are summarized in Table 2.2. One

can see that there are only two distinct non-trivial conjugacy classes

Co ={,zy, 2y}, Cy={y,y°}. (2.109)

The first one contains all the three elements which are generated by both x and y whereas

the second contains the two elements which are generated by y alone. Hence, there are also
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Co = {gag™'|g€S3} No = {ag=ga|ge€ Ss}

Ce = {e} Ne = Aewayzy’y,y’t =5S;
Co = Az,2y,2y°} Ne = Aea} ~ 7y
Czy = {x,xy,ny} Nzy - {evxy} ~ Zy
Cppr = A2y, ry?} Ny = Ae, ry?} ~ 7
Cy = {y.v*} Ny, = Heyy*} ~ 73
Cp = {y,v*} Npo o = A{ey, v’} ~ Z3

Table 2.2: Conjugacy classes and normalizers of Sg

Ss e x ry xy? y y?

Iy 1 1 1 1 1 1
| 1 -1 -1 -1 1 1

w () (o) (25) (55) (62) ()

Table 2.3: Unitary irreducible representation of S3

two distinct non-trivial internal flux vector spaces: the three-dimensional V, with basis given
by the states {|z), |zy), |zy*)} and the two-dimensional V,, with the basis given by the states

{ly), |y?)}. Likewise, there are only two non-trivial normalizers, which will be denoted by

Ny =Ny~ Ngy =~ N,

T

g2 = 22, Ny =Ny~ Ny~ Z3. (2.110)

Strictly speaking, the normalizers N, Ny, and N, are different groups, but they are isomor-
phic and for the purposes here, they can be treated in practice as being equal. To establish
the particle spectrum (2.60), one must consider the unitary irreducible representations of
each of the normalizers. Their multiplicity is given by the number of conjugacy classes of the
respective normalizer. It was already noted that S3 has 3 conjugacy classes. Furthermore,
Z> and Z3 have 2 and 3 conjugacy classes, respectively, because they are abelian groups,
which means that each element forms its own conjugacy class. One particular choice for the
unitary irreducible representations of these three groups is given in Tables 2.3 and 2.4, where
w = exp(%r) is the primitive cube root of unity. One can see that there is only one higher di-
mensional irreducible representation, the I'y of S3, to which one associates a two-dimensional
charge vector space V2 with the basis given by some orthonormal states {|1),(2)} (2.20). All
the other irreducible representations, and hence also the associated charge vector spaces are
one-dimensional.

Forming the tensor products of the flux and charge spaces (2.23), one can establish the
superselection sectors, which define the particle spectrum of the model (Table 2.5). Altogether
there are eight superselection sectors, which means that in addition to the vacuum 1, there are
seven distinct particles. The internal flux and/or charge spaces associated with each sector
transform irreducibly under the action of D(S3), and to study the structure of the fusion

spaces of the model, one should find these irreducible representations II, of D(S3) (2.61).
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Zs e «x Zsle y y
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;|1 -1 IT'p |1 w @
1 w

Table 2.4: Unitary irreducible representations of Zs and Z3

There are a few things which help in constructing the representations. First, instead of the
representations II(Py,g), it is enough to find the separately the representations II(P},) and II(g).
The elements P,g € D(H) were interpreted as implementing a global g € H transformation
and subsequently projecting onto the flux eigenstate |h), and the representations should also

respect this structure by obeying
o (Prg)lk,i) = Iy (Pp)I,(g) |k, 3), g € S3,h € Cy, (2.111)

where I1,(P},) forms a representation of the projector algebra in V, and the matrix II,(g)
fully specifies how the state transforms. The values of h have been restricted to the conjugacy
class C, of H, because other cases would be identically zero. The reason for this is that
since arbitrary g € S3 transformations can not change the superselection sector, one can only
project onto those flux eigenstates which span the flux space. In terms of the representations
of D(H) this means

Ha(Phg) = Ha(Ph)Ha(g) =0, Vh Qé Ca. (2'112)

The second helpful piece of information is that the representations II(P,g), h,g € Ss re-
spect the group composition. Since S3 is generated by the elements x and y, also all the

representations should be generated by the representations of the group generators
Mo (z™y™) = o (z"™)a(y™) = (Ha(x))™ (Ha(y))" - (2.113)

Therefore, since the internal spaces VFC are either one-, two- or three-dimensional, it is enough
to find the one-, two- and three-dimensional representations II(z) and II(y). Representations
for all other elements can be constructed by multiplying them according to Table 2.1. Third,
when forming representations for each superselection sector, there should exist a conjugate

representation I1,(g) = 112 (g~1) (2.69) for each representation II,(g), such that
M,(9)a(9) =1, Vh,g € Ss. (2.114)

The conjugate representations could be constructed by using the definition of the antipodal
map, but there is no specific need for this. Finding the irreducible representations carried
by each sector exhausts the model completely. Having found all the representations, one
can then check which representations are conjugate and whether there are self-conjugate

representations.
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M | V¥ =Ve@Vr | dim(Vg) - dim(Vr) = dim(V)
1 Vi=Vf 1-1=1
Ay | Vi, =VE 1-1-=1
Ay | Va,=VE 1-2=2
o Vo, = V* 3-1=3
Dy | Ve, =VEH 3-1=3
Qo Vo, = V/ 2-1=2
Q| Vo, =WV 2-1=2
Q| Vo =W 2.1=2

Table 2.5: The particle spectrum M of the S3 anyon model

The different superselection sectors are best discussed separately, but before proceeding,
one should choose representations for the bases. The simplest and most convenient choice

is to represent the basis states in the two-dimensional spaces V{’, VY and V¥ by the column

ly) = (é) ly?) = (?) (2.115)

and in the three dimensional spaces V|* and V* by the column vectors

vectors

0 0
=0, Jlzg)=11|, |z =|0]. (2.116)
0 0 1

On these bases the projector representations II,(P,) are given by the diagonal matrices

m(P,) — ((1) 8) . TP = (8 ?) , (2.117)

100 000 000
M*(P,)=1000 |, II"(Py)=|[010|, I*P,e)=1]1000 ], (2.118)
000 000 001

respectively. Strictly speaking, also the basis in the pure charge space V5 is represented
similarly as in (2.115), [1) = (1,0)7 and |2) = (0,1)7. However, since the flux part is trivial,
one does not apply the projectors P, in this space.

Consider first the vacuum V| and the spaces V¢, and V. Because the flux space is trivial,

there is no flux degree of freedom, and every g € S3 transformation orbit is identical
g |6’i> - |€,F(g)’b>, Vg € Ss. (2119)

Hence, the representations of D(S3) coincide exactly with the irreducible representations of
Ss

I5(9) =Talg), a=1,-1,2, (2.120)
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which are already given in Table 2.3.

Consider then the three-dimensional spaces Vi* and V¥, with the bases |k,i) € V.,
k € Cy,a € {1,—1}. Here the crucial observation is that by using (2.108), the elements
g € C, can be written in the form (2.28)

r =yay =y’ ay’
zy =y ay: =1y°x, (2.121)
vyt =y =y ay,

whereas for the elements in C), there is no such decomposition. This means that every g € C,

can be written as g = ¢'g, where the g € N(k) part can be implement in the charge space.

The representations can then be inferred by considering the following transformation orbits

a: |vy,i) — |ey? Taley)i) — |oy, Ta(zy®)Ta(ay)i), |z,9)  — |2, Ta(2)i),

a
o

vy |w,i) — |zy? Te(z)i) — |2, Ta(zy?)Ta(z)i), lzy, i) — |zy, Ta(zy)i),
zy? o |z,i) — |lzy, To(a)i)  — |2, To(zy)Ta(2)i), lzy?, i) — |zy?, Ta(zy?)i),
(2.122)
yo i) — |ley,i) — |oy? i) — |@,6), (2.123)

2 layi) = ey i) — Joy,d) = fa,i).

One can aee that each of the g € C, transformations commutes trivially with itself, and thus

implements a transformation only in the charge sector, but maps the other two states into

each other. Likewise, (2.123) shows how the g € C), transformations only cyclically permute
the basis states.

Analogously with the treatment above, the representations in the remaining three two-

dimensional spaces V{’, V.Y and V, with the bases |k,i) € V/,k € Cy,a € {1,w, &}, can be

inferred by considering the following g € S5 transformation orbits

x|y, i) — Y% i) — |y, 1),
zy: ly, i) — [¥2,Ta(y), 1) — |y, Ta(y?)i), (2.124)
ay? : |y, i) — [y2. Ta(y?), i) — |y, Ta(y)i),

yolyd) = . Ta@)i),  ly?d) — [y Ta(y)i), (2.125)

y2 e lyd) = [y Ta(y®)i),  1y%0) — [y Ta(y?)i).
This time there is no need to decompose the transformations as in (2.121), because the g € C,,
are already of the desired form with = ¢ N(k), but y,y? € N(k). Also, the last two just state
the obvious result that y commutes with itself and thus implements a transformation only in
the charge space.

The matrix representations II,(g), g € S3, implementing the actions (2.119) and (2.122) -
(2.125) on the basis states representations (2.115) and (2.116) are shown in Table 2.6. One can
see that except for the representations I, and IIY, which are conjugate to each other, all the
other are self-conjugate. Recalling that particles transforming in conjugate representations

are regarded as anti-particles, one can conclude that in an S5 anyon model (Table 2.5), the
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I, (g) e x Ty zy? y y?

¢ 1 1 1 1 1 1
e, 1 -1 -1 -1 1 1
o <10> <01> <0w> (0@) <@0> <w0
01 10 @ 0 w 0 w 0w
100 100 001 010 001 010
I 010 001 010 100) 100 001
001 010 100 001 010 100
100 10 0 0 0 -1 0 -1 0 001 010
I, 010 0 0 -1 0 -1 0 10 0 100 001
001 0 -1 0 ~10 0 0 0 —1 010 100
e 10 01 (01) (()1) <10> (10
01 10 10 10 01 01
- 10 01 0w 0w w 0 @0
01 10 w 0 @ 0 0w 0w
I 10 01 (3@ 0w w(j w 0
01 10 w0 w 0 0w 0w
Table 2.6: The irreducible representations II(g) of D(S3)
tr(la(Prg)) | e = zy xy® y y°
e P 11 1 1 1 1
mne, P, 1 -1 -1 -1 1 1
n, P~ |2 0 0 0 -1 -1
I P |1 1 0 0 0 0
Py |1 0 1 0 0 0
Poe |1 0 0 1 0 0
m, p, |1 -1 0 0 0 0
Py |1 0 -1 0 0 0
Py |1 0 0 -1 0 0
v P, (1 0 0 0 1 1
Pp |1 0 0 0 1 1
m, P, (1 0 0 0 w @
Pp |1 0 0 0 w @
nw P, (1 0 0 0 & w
2 1.0 0 0 o w

Table 2.7: The non-zero characters tr(Il,(Prg)) of D(S3)

49




particles 2, and €_ are anti-particles of each other, Q, = Q_, but all other particles are
their own anti-particles.

These results can also be inferred from the fusion rules (2.74), which are the real item of
interest. To calculate them, one needs the fusion multiplicities Ng,. They can be obtained by

using (2.75), which in the case of S3 can be written as

=5 > 3 tr[(Pug)) tr (M(Py-19) tr (Te(Pag))” (2.126)

geSs heC.

h'eCq
Here one has simplified the expression by using the definition of the comultiplication (2.49)
and the trace property tr(Il, @ (g @ h)) = tr(Il4(g))tr(IIy(R)). Also, because of (2.112), the
sums over h and A’ have been explicitly restricted to values in the conjugacy classes C, and
C.. Any other values would give identically zero. Having found the representations II,(g)
displayed in Table 2.6, all the representations II,(F}g) can be formed by using the property
(2.111) and the appropriate projector representations (2.117) or (2.118). To calculate to fusion
multiplicities using (2.126), one needs their characters tr(Il,(Fg)). The ones which are not
trivially zero are summarized in Table 2.7. Plugging the characters in (2.126), one obtains

the fusion rules (2.74) of the S35 anyon model:
eI =05, O{ell=T1° Va,b, (2.127)

M, one, =005, I, 10 = 115,

. . . . . (2.128)
H2®H2 :Hl@H,1 @HQa

¥ @ 11§ = 11§ @ I & 1Y @ 11%, ¢ 1Y,
I, ol =Ifelle Il ¢ I, @ 112, (2.129)
el®, =1 ol eIl & I ¢ 1Y,

H?{®H%’ :HT@He—la
I o =05 eIy, eI =115 12,

2.130
ol =Msel, Yol =TI5ael, 2430
Yy =15 e, oY,
ne, @y =1+, ¢, I, =TI, (2.131)
e, @Il =1¢, [0 elf=IY I el=1y, '
5 @Iy =17 @117,  Hjell?, =If o7, (2.132)

MeIY =1 T, eIl =IYaell, Iielll=IYaIll,
e, ol =T ol*,, 0, =IFal*,, 0, el=I0F¢I",. (2.133)

There are a number of general remarks one can make. First, as expected, the trivial sector
I1{ (2.128) plays the role of the vacuum and all other particles are their own anti-particles
except for the particles carrying the conjugate representations I1Y, and T2 (2.130). Second,

all the fusion multiplicities are either zero or one, N, = 0 or 1,Va,b,c € M, meaning there is
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no degeneracy associated with the fusion states and thus all the two-particle fusion spaces V3
(2.78) with a fixed fusion outcome ¢ are one-dimensional. Third, one can notice that some
sets of the fusions rules close on themselves meaning that the S3 fusion algebra has three

non-trivial subalgebras (2.90) spanned by the following sets of elements

M1 - {HiaHe—la g}a (2134)
My = {IIf, 1%, TI7}, (2.135)
My = {IIf, 112, TI5, TT{, I, TIZ }. (2.136)

To fully specify the S3 anyon model, one should find the maps R (2.91) and F' (2.93) in all
the fusion spaces appearing in the model. However, since for the purposes of the topological
quantum computation one can settle with one of the subalgebras, much of this cumbersome
work would be in vain. Instead, one should specify the spaces utilized as the computational
space and find the matrices representing R and F' there. Since this would nearly complete
demonstrating the computational power of the anyon model, it is better to move on and
consider them in connection with the theory of quantum computation in the topological

Hilbert space.
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Chapter 3

Quantum Computation in the

Topological Hilbert Space

In the previous chapter it was discussed how the representation theory of the quantum double
D(H) can be used describe the non-abelian anyons, and how the fusion rules give rise to
decoherence-free topological Hilbert spaces. The aim of this chapter is to demonstrate how
these topological Hilbert spaces can be utilized as the computational space of a quantum
computer. As outlined in the first chapter, the illustration breaks down to (1) specifying
the computational space C and showing how qudits are encoded, (2) showing how braiding of
anyons can simulate quantum gates and (3) showing how to perform projective measurements.

To address these problems in more concrete terms, it is useful to anticipate how a quan-
tum computation could be executed in practice. The computational space is initialized by
specifying the number, type and relative locations of the particles in the plane. One could
consider drawing particle - anti-particle pairs (a,a), some N particles altogether, out of the
vacuum so that the total charge of the system is trivial. The initial state of the system would

then reside in V!

uras..ay- Lhe computation is carried out by braiding the anyons in some way,

which corresponds to the desired unitary transformations. After the braiding, some or all
the anyons are fused together, and observing whether they fuse to vacuum or leave residual
particles behind corresponds to the output of the computation.

Anyons arising from the S3 gauge theory introduced in the last chapter will be used as
an example of the theoretical framework for a topological quantum computer. The common
features which all topological quantum computer candidate systems should exhibit will be
emphasized when encountered, but the discussion is at most illustrative in connection with
a particular model. Now, the fusion rules (2.127) - (2.133) of the whole S5 anyon model are
too complicated to serve as an illustrative model. Hence, the simplest fusion subalgebra My
(2.135)

My = {1,A, @}, (3.1)
will be chosen as the model underlying the topological quantum computer. For notational
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clarity one has redefined A = A; and ® = ®3. The respective fusion rules, in the particle
notation of fusion algebra 2.76, can be inferred from (2.127) - (2.133)

I1x1=1, 1x A=A, I1x®=9, (3.2)
AxA=1, Axd=07, (3.3)
dxd=1+A, (3.4)

The fusion rule for two ® particles states that this subalgebra is indeed a non-abelian one,
because there exist two possible fusion outcomes. Since all the other fusion rules determine
the outcomes uniquely, higher dimensional fusion spaces are always carried by ® particles.

Using (3.4) successively gives the fusion rules for a N ® particles

PxPxP = 20,
OPXPXPXxD = 2-1+2A,
OPXPXDPXDPXP = 4D, (3.5)

N—-1

(@) = 2¥-1+2¥A, N even
272 O, N odd

From these one can read off the smallest non-trivial fusion spaces

Vas = Vase, dim(Vape) = Ngs = 2, (3.6)
Vos = Voooa: dim(Voges) = Ngs = 2, (3.7)
Vq??) = Vipos, dim(Veppp) = N£4 =2 (3.8)

Since one anticipates that the computational space should belong to the vacuum sector, the
interest lies particularly in the spaces (3.7), because they could be used to encode a single
unit of quantum information. Since the dimension of this space is two, the qubit (1.5) arises

naturally as the elementary unit of quantum information.

3.1 The Computational Space

There are a number of general criteria which constrain the identification of the computational
space with the fusion spaces. First, the identification should be made such that C has a
decomposition in terms of subspaces C¢ of some dimension d > 2 (1.7), with d determining the
dimension of the qudits to be used. Second, the physics behind the topological Hilbert space
constrains the identification further by stating that all the quantum states in the model should
belong to the same superselection sector, because otherwise they can not form superpositions
[32]. Third, the computational space should include all the states which can be obtained when
unitary transformations are performed on the system, i.e. when the particles are braided.
Because the fusion spaces (3.7) are carried by only one types of particles, all the states

corresponding to different permutations of the particles are automatically contained therein.
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Therefore, as anticipated, one may identify this space with the computational space of a single

qubit
C=Va~Vi~ P VoV~ @ Vie Ve V. (3.9)
ze{1,A} ze{1,A}

It follows that the computational basis has to be identified with
li) = |®4;1,1) ~ |2 ;)| 2;D; B), i=0,....,Ngs —1=0,1, (3.10)
where x; € {1, A}. Consequently, the m-qubit computational space should then be defined by
c= (Vi)™ (3.11)

given that such space actually exists in the model, i.e. it corresponds to some fusion space car-
ried by N ®-particles for some N. Using the standard basis decomposition (2.82) backwards,

one can see that C corresponds in the standard basis to the fusion space
(Vas)™",
®
_ (Vq?g) m, (3.12)
D veeViee eV e

T1yeisTy—1=P

C

1
>~ V¢2m+2,

where one has used the observation that the fusion of three ®-particles, although in two
distinct ways, always gives another ®-particle (3.5). Hence, to encode m qubits, one needs a
fusion space carried by N = 2m + 2 ®-particles. In general, the dimension of the fusion space

carried by N particles can be read off by using the fusion algebra (3.4) successively

N=[123456789101112...
Nlv=[01020408016 0 32...

(3.13)

= dim(Vany) = 2¥, N even, (3.14)
which means that the topological Hilbert space grows exponentially with /N. Since the fusion
multiplicities are zero for all odd N, one can restrict to consider only spaces carried by an
even number of particles. This is in line with the anticipated initialization of the quantum
computer, where one draws some number of particle - anti-particle pairs out of the vacuum,
which implies that one always ends up with an even number of particles.

The basis in C is given by the tensor product of the computational basis states. Using the
decomposition (3.10), an arbitrary m-qubit basis state |i1)|i2) - - i) € C can be expressed

in the standard basis of the underlying fusion space Vq}QmH as

lin)io) -« im) = |®@%1,00)| @ 1,00) - - - |B 1,0y, (3.15)
o (0% 2y ) i, ®; @)% 4y a4, B @) - -+ |2 4, ) |4, D3 D).
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Since the braiding was defined in the standard basis through the R- and B-moves, (2.102) and
(2.103) respectively, they are the decompositions (3.9) and (3.15) which will have to be used
to determine to how is braiding in the standard basis related to the unitary transformations
in C.

3.2 Braiding and Quantum Gates

To find out how braiding acts in the standard basis of the present model, one should find the
R- and F-moves as unitary solutions to the pentagon (2.97) and hexagon (2.100) equations.

On the single qubit space V1 Vq‘g, the F-move (2.93) is the map

F: P VieoVe— P Ve oVy, (3.16)
ze{1,A} ze{l,A}

which relates two possible bases. Using the second decomposition of (3.9) and considering the

two distinct ways (2.95) and (2.96) to implement the transformation

P VeoVheVh— P VheoVe oV, (3.17)
ze{1,A} ze{1,A}

one can derive the pentagon equation for the model
> (Fl, ) (Flaa)o = Y. (Fib)y (Faye)y (Fih)L. (3.18)
ye{L,A} vy e{1,A}

where z € {1, A} is now a free index. This polynomial equation states that there are altogether

seven different F'-moves appearing in the model

{F<11>2 <I>2’F‘1>y‘i>) Fgsly=14- (3.19)

However, only one of them, F(I)37 is a genuine matrix, because it is the only one acting in a

non-trivial fusion space. As can be seen from the decompositions

Vaye = Vay ® Vag = Vag @ Vg, (3.20)
Vapy = Vg @ V), ~ Voo ® Va,, (3.21)
Vyss = Vg @ Vag = Vi @ Viy, (3.22)

all the intermediate fusion spaces are one-dimensional for Vy € {1,A}. Hence, because of
unitarity, the F-moves acting in these spaces have to be proportional to some complex constant

of unit norm
P
(Fé?y)x = ylz y, (de>2) = bydzy, F<Il>y‘i> = Cy, |ay|2 = |by|2 = |Cy|2 =1 (3.23)

for some ay, by, ¢, € C, meaning that these F-moves introduce only overall phases, which are

non-physical and can be set to unity, a; = b; = ¢; = 1. The real item of interest is then
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the F-move F, g’g, which implements an F-move in the computational space of a single qubit.

Writing all the indices down, it is represented by a 2 x 2 unitary matrix,
F, F
F=FY = ( ! “) , (3.24)

where the components have to satisfy the constraints following from unitarity

|F1i? + |Fia? =1,
|Fanl? + | Fa|? =1, (3.25)
Fi1(Fpa1)* + Fia(Fap)* = 0.

Then, simplifying the pentagon equation (3.18) using (3.23), the components are determined

as solutions to the polynomial equations

(3.26)

1 = F11(Fi1 + Fip) + Fia(Far + Fap)
1 = Fni(Fin + Fia) + Faa(Far + Fan),

The set of equations has four types of general solutions

1 1 i 1 e
e T 0 e and £ 1 ). (32n)
01 0-—1 e 0 V2 e @ —1

where ¢ = [0, 27] is an undetermined arbitrary parameter. Of these the three first are trivial in
the sense that they only redefine the basis up to some overall phase. Fixing the arbitrary phase
by setting ¢ = 0 and choosing the solution with an overall ’+’-sign, the matrix implementing

the non-trvial F-move in the standard basis of the model is

1 11
(), .

This solution is of particular interest, because it is the Hadamard gate, which was already
encountered as one of the gates in one particular universal gate set (1.20). In the general
theory of quantum computation, it is known to implement a canonical basis change [40], and
therefore the F-moves in the underlying fusion spaces have in the computational space C
clear interpretations as basis changing unitary gates. Still, it should be kept on mind that
F-moves are not physical operations as such, but mathematical tools to tell how do the fusion
states look like when studied in a basis other than the standard basis. The genuine physical
operation is the braiding, through which one might, or might not be able to implement a
transformation of the form (3.28). To show whether this is the case, one should find the
matrix representations for the braid group generators.

To find how the braid group acts in the fusion space of the model, one should find the
unitary matrices representing the R-moves as solutions to the hexagon equation (2.100), which

for the present model reads

Z Ry (Fg), Rbo = Z (F§3)z,R$y (Fgs): . (3.29)
ye{L,A} yy e{1,A}
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This time all the ng, y € {1,A}, are complex constants with unit norm. This is because the
spaces ny are one-dimensional, which implies that braiding can only contribute non-physical
overall phases, which can again be set to unity. As can be seen from the definition of R-moves
(2.91), also RY4,y € {1,A} are phases, because there are no fusion degeneracies. However,
the fusion space of a single qubit (3.9) is two-dimensional, and the action of braiding depends
whether one braids particles which fuse to yield either 1 or A [42]. Therefore, these phases

are physical and correspond to the eigenvalues of a matrix implementing an R-move in C?

RL. O
RE( 3@ s ) (3.30)
(O]

Simplifying (3.29) by substituting the elements of F' from (3.28), and assuming that R is

unitary, the eigenvalues are then determined from the set of equations

%(R}M)Y + %R}b@Ré@ =1,
—%(RQ@P + %R}I@Rgé =1, (3.31)
|R$<1>|2 = |R<11><1>|2 =1

The solutions to these polynomial equations is given by all complex numbers with unit norm

obeying the relation
(Ryp)” = €™ (Rps)*. (3.32)

Since all the solutions give a different representation of the same model, the simplest one will

be chosen to represent the R-moves in Cy4

10
R= (0 Z) (3.33)

This particular matrix appears also in the theory of quantum computation, where it is known
as the phase gate S [40].

The R forms a representation of the braid group Bs, the braid group on two strands. To
construct the representation of By, one needs also a representation of a second generator,
which is given in the fusion spaces by a B-move (2.103), which can be constructed according
to (2.105). Now, since there is only a single F and a single R acting in C?, B is given simply
by the matrix product

el 1 —
B=F'RF= : 3.34
S0 30
It can be checked that the R- and B-moves, as represented by (3.33) and (3.34), indeed form
the representation of the braid group in C2, i.e. that they satisfy the Yang-Baxter equation
(2.11)

RBR = BRB. (3.35)
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Considering both sides separately, one finds

i (11 x

RBR = =¢e'sF = BRB, (3.36)
V2

verifying that (3.35) is indeed satisfied. In addition, as it happens that both sides are pro-

portional to F' (3.28), this also demonstrates that F-moves are physically meaningful trans-

formations, which can indeed be implemented by braiding particles.

Another thing to be noticed is
R'=B'=1, (3.37)

which means that one is not dealing with the pure braid group By of infinite number of
elements, but with a truncated version By 4, i.e. with a group defined by (2.8), (2.9) and an
additional relation o* = 1 [11]. The truncated braid group has a finite number of elements
and this sets a limit on the number of different braidings, which could be implemented. For
example, the braid group in the fusion space Vq%, which underlies the single qubit space C?,
is Bs 4, which is freely generated by R and B modulo the relations (3.35) and (3.37). Since
braiding is the only tool to perform unitary transformations in C, dealing with truncated
braid groups implies that there is also only a limited number of unitary transformations
available. However, models with truncated braid groups are not automatically invalid for
universal quantum computation since some may generate subgroups which are dense in the
unitary group. For instance, even though single qubit unitary transformations are limited to
the elements in Bs 4, even this relatively simple group is of order 96 [11] and it is far from
obvious whether it admits universal quantum computation.

Summarizing, all the single qubit operations are given by the elements b € B3 4, which are
generated by R and B. Using the universal gate set (1.20) as a reference, the two elementary
single qubit quantum gates (1.18) appearing in the model, up to an overall phase, can be
chosen to correspond to the braids {R, RBR}

R: i) — T?i), (3.38)
RBR: |i) — HJi) (3.39)

Unfortunately, such a model is not universal for quantum computation. Even though the
Hadamard gate H can be realized, instead of the g-phase gate T', one can only produce the
phase gate R = T?. Because R and B are the physical braid group generators arising as
the solutions to the pentagon and hexagon equations, they are the most elementary unitary
transformations implementable implemented on the system. There can not exist a T" € B3 4,
because then R could be decomposed as two successive even more elementary operations 7',
which should satisfy the pentagon and hexagon equations. However, no such solutions were
obtained and thus even without considering the entangling gates arising through braiding
anyons, it can be concluded that the fusion subalgebra (3.1) of the full S5 anyon model does

not admit universal quantum computation.
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3.3 Fusion as Projective Measurement

To complete the demonstration of quantum computation in the topological Hilbert spaces,
one should show how to perform projective measurements. By braiding the particles one could
produce unitary transformations on the system, but no information about the state of the
system could be obtained in this way. The topological robustness ensures that the quantum
information is not only protected from decoherence, but also well hidden from any outside
observer. To get any information out of the fusion space, one must break the topological
protection by fusing some or all the particles together. The information residing in the
topological Hilbert space can then be inferred by observing the outcome, which is either a A
particle or the vacuum 1. In the first case one should not observe anything whereas in the
second case the annihilation produces photons, which carry the combined energy of the fused
particles, and which could be easily detected by conventional means. Because there are only
these two possibilities, the outcome of the fusion can be unambiguously deduced.

Since one has identified the computational basis with the different fusion outcomes (3.10),
determining outcome is equivalent to projecting onto the computational basis. More precisely,
the fusion of the two left-most of the four ® particles realizing the qubit, and the observation
of the outcome x; € {1, A}, i.e. either photons or nothing, is equivalent to applying a projector
P, = [i{i] in 2

zi: )= BlyY),  |g) eC? (3.40)

Comparing this to (1.25), it can be seen that this exactly of the type of correspondence
between the physical system and the computational space one set out to look for. Projections
onto m-qubit computational space C can be realized in a similar manner by fusing sequentially
from left to right all the 2m + 2 particles. Observing the outcome of each fusion is equivalent
to recording the string x;, x;, - - - ;,,, which in the in the computational space translates into

the projector
Tiy Ty Tyt ) = Py @ Py ® - @ B |9), ) € C. (3.41)

The discussed model offers also a natural measurements on a certain superposition state.
The only non-trivial F-move, which relates the two possible bases in the fusion space underly-
ing the qubit (3.9), was solved and found to have the form (3.28). This form was recognized as
the Hadamard gate H acting on basis states as (1.20). Because the computational basis was
identified exactly with the standard basis, the basis @ corresponding to fusing the particles
from right to left can be expressed in terms of the standard basis by using the F-move

~ 1 < 1
[0 =50+ 1), i) = == (10) = [1)). (3.42)

Therefore, depending whether photons are observed or not, fusing the two right most particles

corresponds to applying the projector P; = |4)(i|, i.e. projecting in C onto either of the states
1(0) % [1).
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For performing projective measurements at the end of the computation, one needs only to
consider the fusion of neighboring particles: Fusion of non-neighboring particles would first
require braiding which implies a transformation on the system. Therefore, projections onto
the computational basis (3.9) take in the presented model always either of the two forms
(3.40) or (3.42). The scheme of using fusion to perform projective measurements works well,
because there are only possible outcomes, which can be unambiguously distinguished. In
more complicated models, i.e. in ones with multiple non-vacuum fusion outcomes, one might
want more flexibility and control over the measurement procedure. Such can be provided
by the use of quantum interference experiments, which can be used to distinguish between
various different quasiparticles. For the case of non-abelian anyons, such experiments have
been discussed in detail in [41], but for the present model they offer no additional control and

need not be considered here.
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Conclusions

It is perhaps a bit of an anti-climax that after investing much effort in obtaining an adequate
understanding for considering quantum computation with anyons, the chosen model turns out
not to be universal for quantum computation. Actually, without even calculating the braid
group representations R and B, the non-universality of the model could have been immediately
inferred from the structure of the fusion subalgebra (3.1). These rules are known describe a
so called Ising anyons, arising from SU(2), Chern-Simons theories [42], whose application to
quantum computation has been considered in detail in [7] and [22], because they describe as
an effective field theory the topological excitations which are expected to be found in v = 5/2
fractional Quantum Hall systems. As demonstrated, these particular anyons do not admit
universal quantum computation through purely topological means, i.e. by relying only on
braiding to produce unitary transformations. However, even with this severe imperfection,
they are at the present knowledge the best candidate for a topological quantum computer, and
various supplementary non-topological [6], or even topology altering operations [21| have been
suggested for promoting these anyon systems to the status of a universal quantum computer.
If an anyon system based on the gauge group S3 can ever be realized, in principle, these same
supplementary operations could be used to overcome the non-universality provided by pure
braiding.

It is a small consolation that the presented model is not totally useless for topological
quantum computation. However, it is not the search for new implementational platforms
which has been the objective in this thesis, but the presentation of the anyonic systems, their
properties and use as topological quantum computers in as physically motivated and illustra-
tive manner as possible. Apart from John Preskill’s exemplary lecture notes [42], there are
hardly any accessible introductions to the theory of topological quantum computation. Most
of the contemporary research papers tackle the theory of topological quantum computation in
terms of mathematics of the most abstract kind and often without any obvious connection to
actual physical systems. Even though the mathematical rigor is formidable, such an abstract
approach can be very discouraging for newcomers in the field. Therefore, rooting the anyon
model in gauge theories and taking the time to argue for the emergence of the fusion spaces
were personal choices for addressing the problem in terms more familiar to physicists, and
hopefully thereby providing an accessible introduction to the basic concepts of topological

quantum computation. Once one got to the fusion spaces, the general theory covered here
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has much in common with [42], but topics which were found confusing or lacking in physical
explanation have now been attempted to be presented in more detail. It is because of this
illustrative approach that one also chose as an example a model, which was known not to be
universal for quantum computation, but which allowed explicit calculations to be carried out
with the most transparency.

However, it should be pointed out that the potential contribution to quantum compu-
tation of the anyon model based on the quantum double D(S3) was not exhausted by the
demonstration that the subalgebra spanned by the particles My (2.135) does not admit uni-
versal quantum computation. There were also two other fusion subalgebras M; (2.134) and
M3 (2.136), and ultimately the full fusion algebra (2.127) - (2.133), whose properties were not
investigated. The last two are likely to contain too many particles for any realizable efficient
practical implementation, but the braiding properties the particles spanning M;, however,
could well be worth a closer investigation. The reason is that their fusion subalgebra (2.128)
closely resembles the fusion rules of the so called Fibonacci anyons, whose braiding properties
are known to be universal for quantum computation [42]. It could be an interesting topic of
further research to study whether the braiding properties of the particles in M; allow universal
quantum computation.

Another open question, although more on the technical side, is the construction of the
representations of arbitrary braid group generators out of the R- and F-moves. In the present
work only two braid group generators R and B were considered, because it was already
found based on single qubit transformations that the model is not universal for quantum
computation. If entangling gates would have been considered, one should have constructed
the representations of all the four braid group generators in the space Vq;% underlying the two-
qubit space. In principle, all the representations should be constructable out of the R- and
F-moves, but nowhere in the literature was it discussed how this is done in practice. On the
other hand, there have been attempts to find all the four-dimensional unitary representations
of the braid group [48], i.e. potential two-qubit gates, but even though these studies constrain
the form of the representations, they say nothing about their availability in a given anyon
system. Therefore, it could be another topic of further research to develop methods for

constructing a representation of an arbitrary braid group generator on a given fusion space.
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