
Pro gradu -tutkielma
Teoreettisen fysiikan suuntautumisvaihtoehto

TOPOLOGICAL QUANTUM COMPUTATION – AN ANALYSIS OF AN ANYON MODEL
BASED ON QUANTUM DOUBLE SYMMETRIES

Ville Lahtinen

08.05.2006

Ohjaaja:   FT Claus Montonen

Tarkastajat:   Prof. Keijo Kajantie
   FT Jani Martikainen
   FT Claus Montonen

HELSINGIN YLIOPISTO
FYSIKAALISTEN TIETEIDEN LAITOS

PL 64 (Gustaf Hällströmin katu 2)
00014 Helsingin yliopisto

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Contents
1 Quantum Me
hani
s as Computation 71.1 Qubits and Qudits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.2 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.3 The Quantum Gates and the Universal Gate Set . . . . . . . . . . . . . . . . 111.4 Quantum Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.5 The Framework for a Quantum Computer . . . . . . . . . . . . . . . . . . . . 142 Non-Abelian Anyons and the Algebrai
 Stru
ture 172.1 The Braid Group and the Topologi
al Intera
tions . . . . . . . . . . . . . . . 202.2 The Quasiparti
le Spe
trum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.3 The Algebrai
 Stru
ture of Non-Abelian Anyons . . . . . . . . . . . . . . . . 282.3.1 Representation Theory for the Quantum Double D(H) . . . . . . . . . 322.3.2 The Topologi
al Hilbert Spa
e . . . . . . . . . . . . . . . . . . . . . . 362.4 The S3 Anyon Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 Quantum Computation in the Topologi
al Hilbert Spa
e 533.1 The Computational Spa
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.2 Braiding and Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.3 Fusion as Proje
tive Measurement . . . . . . . . . . . . . . . . . . . . . . . . 60

1



2



Introdu
tion". . . you don't want to do it unless there is a sweet way to do it. That is sort of theway I feel about topologi
al quantum 
omputation, that the word topologi
al isgoing to make it sweet, that we are not going to take some system and just makeit more and more isolated, 
older and 
older and for
e one or two more qubits ina year out of it. We are going to do something that is beautiful and elegant andthen even if we fail, we have at least pursued the right 
ourse and will probablylearn something interesting about solid state physi
s on the way."-Mi
hael H. Freedman, [23℄It maybe a 
li
hé to start with a quotation, but there is hardly a better way to express theattitude for exploring the topi
 of this thesis. Words su
h as 'sweet', 'beautiful' and 'elegant'are a bit too poeti
 and vague to be used in a s
ienti�
 
ontext, but there are good reasonswhy su
h words of praise are not out of pla
e, as opposed to the more 
onventional approa
hesto quantum 
omputation, when used in 
onne
tion with topologi
al quantum 
omputation.To fully understand these reasons, it is in pla
e to take a qui
k look on the brief history ofquantum 
omputation.The 
lassi
al 
omputer s
ien
e, the study of information pro
essing with 
omputers, hasbeen a 
ru
ial asset for the rise of the modern information so
iety. The development of
omputers during the 20th 
entury has been extremely rapid. This progression is maybe best
aptured by a variant of the famous Moore's law, whi
h states that the number of transistorsper 
entral pro
essing unit doubles in approximately in every 24 months [40℄. Even thoughthis is more like an observation than a rigorous law, it has been shown to hold with amazinglygood a

ura
y sin
e the 1960s. This progress has been made possible by the development ofminiaturization te
hniques, whi
h have allowed squeezing the physi
al size of the transistorsever smaller. However, it is natural that there will be a limit on the size of transistors.As the size diminishes, one approa
hes s
ales where the quantum e�e
ts 
an not be ignoredanymore. This is where the quantum 
omputer 
omes into play by promising to turn thephysi
al limitation into a new resour
e, whi
h allows more powerful, and even totally new kindof information pro
essing. The introdu
tion of this revolutionary idea 
ould be attributed tothe two seminal physi
ists David Deuts
h and Ri
hard Feynman, who in the mid 1980's werethe �rst to spe
ulate the 
apabilities of quantum me
hani
s as 
omputation [13, 17℄. However,3



the motivations for 
onsidering the 
omputational power of quantum me
hani
s were quitedi�erent. The �rst was 
on
erned about how su
h new kind of 
omputation would 
ontrastwith the Chur
h-Turing prin
iple, the pillar of 
lassi
al information s
ien
e, whereas thelatter 
onsidered the 
omplex task of simulating quantum me
hani
al systems with 
lassi
al
omputers and how quantum 
omputers would 
hange the situation. These two perspe
tives
an still today be used to roughly divide the study of quantum 
omputation into two bran
hesof study.First, there is the abstra
t theoreti
al bran
h known as quantum information s
ien
e,whi
h is 
on
erned with the information pro
essing 
apa
ity of quantum me
hani
s [38℄. It isa blooming interdis
iplinary �eld of resear
h bringing together both theoreti
al physi
ists aswell as 
omputer s
ientists and mu
h progress has been made in understanding the relevan
e ofdi�erent aspe
ts of the quantum theory to 
omputation. Although mu
h of this work strives tounderstand the 
omputational power of the quantum 
omputer, there is also a more physi
alside involved in swit
hing to studying quantum systems in terms of the language of 
omputers
ientists. It is a quite modern and daring idea that the 
on
ept of information, whi
h onlyre
ently has penetrated into the realm of physi
s through the study of quantum 
omputation,might a
tually have a role to play in the des
ription of the physi
al reality [39℄. Whethersu
h spe
ulations prove to have any relevan
e for a serious physi
ists, is a subje
t of furtherresear
h. Yet, it is a very motivating idea, that the study of quantum 
omputation is notonly about building a new super-
omputer, but also about learning something relevant aboutfundamental physi
s. These spe
ulations aside, the progress in quantum information s
ien
ehas been rapid and a good overview about 
onsidering quantum me
hani
s as 
omputationhas been obtained [40, 42℄. From this purely theoreti
al point of view, one 
ould even go asfar as to 
laim that the problem has been solved and 
on
entrate on studying what new tri
ksone 
an perform with this new toy. However, as often is the 
ase, bridging theoreti
al andexperimental 
onsiderations is a non-trivial and even a daunting task. This is what the se
ondbran
h of study is 
on
erned about - �nding suitable physi
al systems to serve as quantum
omputers. As 
andidates, there exists a wide variety of suggestions ranging from NMRsystems to more exoti
 
ondensed matter systems su
h as super
ondu
tors or quantum dots[15, 16, 40, 44℄. The multitude of suggestions is a 
lear re�e
tion of the fa
t that at the presentlevel of knowledge, one is still un
ertain whi
h of the proposed systems, if any, would serve thebest as a large-s
ale quantum 
omputer. However, one is sure of few general properties, whi
hare demanded from all 
andidate systems: to retain s
alability and 
ontrol over the system,and most importantly, at the same time 
ope with the ar
h-enemy of quantum 
omputation- de
oheren
e.De
oheren
e is the reason why quantum me
hani
al e�e
ts are not observed in everyday life. Sin
e a quantum 
omputer relies on these e�e
ts to operate properly, to promote itfrom a theoreti
al 
onstru
tion to a fun
tioning ma
ros
opi
 
omputer, one most over
ome the
hallenge imposed by de
oheren
e. In prin
iple, this 
an be a
hieved by isolating the quantum
omputer from the environment, but in pra
ti
e su
h isolation is never perfe
t and be
omes4



in
reasingly di�
ult with the growing size of the 
omputer. To deal with small errors, thetheory of quantum error-
orre
ting 
odes was developed. These allow quantum informationto be en
oded in a redundant way, whi
h tolerates errors up to some �nite error rate, andthus allows quantum 
omputation to be performed fault-tolerantly [40, 43℄. Unfortunately, thelevel of tolerated error is still well beyond anything that 
an be a
hieved in any of the proposedphysi
al systems. Yet, the study of quantum error-
orre
ting 
odes has not been in vain, buthas shed mu
h light on how quantum information 
an be en
oded and stored in a robustmanner. As a 
urious o�spring, it also spawned the idea of 
onsidering topologi
al features tostore quantum information [12℄. In the form they were �rst suggested, these topologi
al error-
orre
ting 
odes were a purely theoreti
al 
onstru
tion. However, they involved 
onsideringquantum information organized on surfa
es of non-trivial topology, whi
h 
ould be thought ofas latti
es. Su
h 
onstru
tions bear an analogy with the spin models of statisti
al me
hani
s[5℄, and inspired Alexei Kitaev to 
onsider 
ondensed matter systems, where the topologi
aldegrees of freedom would be manifest as physi
al degrees of freedom [31℄. If one 
ould en
odequantum information by using them, the information would be intrinsi
ally prote
ted fromde
oheren
e, be
ause the topologi
al properties are by de�nition robust in the presen
e ofsmall perturbations. In prin
iple, there would be no need for additional error-
orre
tion.Realizing a quantum 
omputer using su
h topologi
ally ordered systems would indeed be asweet way to deal with de
oheren
e.Remarkably enough, 
ondensed matter systems exhibiting su
h topologi
al properties hadalready earlier been proposed in 
onne
tion with super
ondu
tors. The sweetness 
omes witha pri
e though. These physi
al systems are available only in two spatial dimensions wherethe topologi
al degrees of freedom manifest themselves as quasiparti
le ex
itations 
alledanyons [11, 47℄. Anyons have the exoti
 property that they obey neither bosoni
 or fermioni
statisti
s, but something in between. Clearly su
h genuinely two dimensional systems arehard to manufa
ture, but it 
an be done. Mu
h pioneering work has been done relatedto the Quantum Hall e�e
t and the existen
e of so-
alled abelian anyons has already been
on�rmed [47℄. Unfortunately, to perform quantum 
omputation with anyons, i.e. topologi
alquantum 
omputation, one needs non-abelian anyons [34, 42℄, whose existen
e remains to be
on�rmed. Though no system exhibiting them has been found yet, high hopes are pla
ed on
ertain fra
tional Quantum Hall states [36, 37℄, and preliminary resear
h has been done forutilizing them as topologi
al quantum 
omputer [7, 22, 45℄. While the experimental sear
hfor non-abelian anyons is still in progress, the theory of topologi
al quantum 
omputation iswell worth a 
loser look. The main reason is that the underlying topologi
al and algebrai
stru
ture of non-abelian anyons is 
losely related to various topi
s in 
ontemporary theoreti
alphysi
s: topologi
al quantum �eld theories [19℄, knot theory [27, 30, 48℄ as well as to Hopfalgebras [3, 4, 32, 11℄. Therefore, even though quantum 
omputation with anyons using
urrent te
hnology might sound a bit far-fet
hed, there is de�nitely enough in
entive to pursuethis path. Also, as a sign that these ideas are really started to be taken seriously, the �rstpopular arti
le ever on topologi
al quantum 
omputation was re
ently featured on S
ienti�
5



Ameri
an [10℄.The outline of this thesis is as follows. Chapter 1 gives a brief introdu
tion to the ba-si
 
on
epts and terminology to translate quantum me
hani
s into quantum 
omputation.Chapter 2 forms the 
ore by dis
ussing the nature of anyons and the algebrai
 stru
ture un-derlying them. A spe
i�
 example will be given in the form of an anyon model based on thegauge group S3. Using this model as an example, Chapter 3 pulls the two pre
eding 
hapterstogether by dis
ussing how the anyons 
an be used to perform quantum 
omputation withintrinsi
 fault-toleran
e.
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Chapter 1Quantum Me
hani
s as ComputationThe study of quantum 
omputation 
an be regarded as the study of the stru
ture of prepara-tion, evolution and measurement of quantum systems. Sin
e these three steps essentially formthe 
ore of quantum theory, quantum 
omputation 
an be 
onsidered as quantum me
hani
srephrased in the terminology of 
omputation. Broadly speaking, the theory of 
omputation isinterested in what resour
es are required to perform a given 
omputational task. Spe
ifyingthese resour
es, whi
h in general 
orrespond to some initial information and some elementaryoperations, forms a 
omputation, whi
h simulates the task with some pre
ision. To translatequantum me
hani
s into quantum 
omputation, one should adopt a similar way of thinking.More pre
isely, one should �nd a way to express a given quantum system and its evolution asthis kind of a 
omputation, whi
h 
ould be expressed in terms of some elementary quantumme
hani
al obje
ts and operations. Now, instead of 
onsidering a given task, one 
ould askwhat resour
es are required to perform an arbitrary task. Spe
ifying these resour
es enablethen one to perform universal 
omputation and a systems where su
h resour
es are avail-able are 
onsequently referred to as universal 
omputers. In dire
t analogue, the problemof transforming quantum me
hani
s into quantum 
omputation breaks down to spe
ifyingthe elementary elements and operations out of whi
h an arbitrary quantum system and itsevolution 
an be 
onstru
ted with arbitrary pre
ision. A system with these operations at therepertoire would then be a universal quantum 
omputer. The big questions then are: what arethe elementary quantum me
hani
al obje
ts and operations and in whi
h quantum systemsthey are available, i.e. what quantum systems are 
apable of universal quantum 
omputation?To answer these questions, one needs the language of quantum 
omputation. The aim of this
hapter is to provide the vo
abulary and way of thinking to transform quantum me
hani
s intoquantum 
omputation, and thereby identify the general 
riteria whi
h all quantum 
omputer
andidate systems have to meet.Before pro
eeding, it is useful to brie�y re
all the key 
on
epts of quantum me
hani
s.Asso
iated with ea
h quantum system there is a state spa
e, whi
h is a Hilbert spa
e H. Thequantum system is fully des
ribed by the state ve
tor |ψ〉 ∈ H, 〈ψ|ψ〉 = 1, a unit ve
torin the state spa
e, whi
h is a fun
tion of the system's observables M . The observables are7



Hermitian operators on the state spa
e of the system. Ea
h observable has a spe
trum ofeigenvalues {m}, whi
h are the possible out
omes when measuring M , and asso
iated withea
h m there is an eigenspa
e Hm ⊂ H of M . The quantum measurements are des
ribed bya set of measurement operators {Mm}, su
h that the probability that m o

urs is given by
pm = 〈ψ|M †

mMm|ψ〉, (1.1)and the properly normalized state |ψ′〉 right after the measurement is given by
|ψ′〉 =

Mm|ψ〉√
〈ψ|M †

mMm|ψ〉
. (1.2)The evolution of the state |ψ〉 is des
ribed by unitary operators U , su
h that the states |ψ〉and |ψ′〉 at two distin
t times t1 and t2 are related by

|ψ′〉 = U |ψ〉, (1.3)where U depends only on the times t1 and t2. Therefore, the evolution as des
ribed by su
hunitary operators is dis
rete in time. Moreover, the evolution of the state |ψ〉 in 
ontinuoustime is des
ribed by the S
hrödinger equation
H|ψ〉 = i~

d|ψ〉
dt

, (1.4)where H is the Hamiltonian of the system, whi
h 
ompletely spe
i�es the dynami
s of thesystem, at least in prin
iple [40℄.1.1 Qubits and QuditsIn 
lassi
al 
omputation, the elementary indivisible unit of information is a bit, a binaryvalued integer. To promote the 
on
ept of the bit into quantum me
hani
s, the integers 0 and
1 are repla
ed by the orthonormal states |0〉 and |1〉 in a two dimensional ve
tor spa
e. Then,instead of a bit with a �xed binary value, a normalized linear 
ombination 
an be de�ned by

|φ〉 = a|0〉 + b|1〉, a, b ∈ C, |a|2 + |b|2 = 1. (1.5)A general state of the form (1.5) is known as the qubit, the quantum bit, whi
h is an obje
tin two dimensional 
omplex ve
tor spa
e with an inner produ
t, namely the two dimensionalHilbert spa
e C2. The basis spanned by the state ve
tors {|0〉, |1〉} is known as the 
omputa-tional basis of the qubit.The qubit is the basi
 and most widely used unit of information in quantum 
omputation.However, also higher dimensional obje
ts 
an be 
onsidered. These obje
ts are known asqudits and they take the general form
|φ〉 =

d−1∑

i=0

αi|i〉, αi ∈ C,

d−1∑

i=0

|αi|2 = 1, (1.6)8



where d is the dimension of the qudit. Hen
e, qudits are obje
ts in a d-dimensional Hilbertspa
e Cd. d is assumed to be prime, be
ause qudits of non-prime dimension 
an in prin
iplealways be expressed as a tensor produ
t of qudits of smaller, but prime dimension. In thissense the qubit (1.5) is the indivisible unit of quantum information. However, the qudit (1.6)is a more general and �exible 
on
ept, whi
h is better suited for platform-independent generaldis
ussion.A quantum state of N qudits 
an be expressed as a ve
tor in the spa
e
C ≡

(
Cd
)⊗N

, dim(C) = dN . (1.7)This spa
e is referred to as the 
omputational spa
e of the quantum 
omputer. The orthornor-mal basis given by the tensor produ
t of the single qudit basis states
{|i1〉|i2〉 · · · |iN 〉}i1,i2,...,iN=0,1,...,d−1, (1.8)where one has adopted a 
onvention to suppress the expli
it tensor produ
t notation, |i〉|j〉 ≡

|i〉⊗|j〉. The normalized state ve
tor of a general N -qudit state |Φ〉 ∈ C 
an then be expressedas
|Φ〉 =

d−1∑

i1,i2,...iN=0

αi1,i2,...iN |i1〉|i2〉 · · · |iN 〉,
d−1∑

i1,i2,...iN=0

|αi1,i2,...iN |2 = 1, (1.9)where αi1,i2,...iN ∈ C.En
oding Quantum InformationWhen 
onsidering a quantum me
hani
al system in terms of quantum 
omputation, one wantsto express every quantum state |ψ〉 ∈ H of the system as a 
oupled state of some n qudits
|φi〉 ∈ C

|ψ〉 ≡ |Φ〉 = |φ1〉|φ2〉 · · · |φn〉, (1.10)for some |φ1〉, |φ2〉, . . . , |φn〉 (1.6), and the study the evolution of this |ψ〉 in terms of theevolution of the multi-qudit state |Φ〉. The 
on
eptual 
hange in thought is the treatment ofqudits as elementary quantum me
hani
al obje
ts out of whi
h an arbitrary quantum state,at least in prin
iple, 
ould be 
onstru
ted.This idea underlies one of the 
ru
ial 
riteria for a given quantum me
hani
al systemto serve as a quantum 
omputer: the 
omputational spa
e C, the 
al
ulational arena of thequantum 
omputer, should be identi�ed somehow with the state spa
e H of the system,
C ⊆ H, su
h that the tensor produ
t stru
ture (1.7) exists for some d,N ∈ R. In general,this 
riterion expresses the demand that in the quantum system there should exist some Ndegrees of freedom, usually meaning some N independent observables Mi, whi
h ea
h have
d eigenspa
es Hmi

. Letting Hi ⊂ H be the spa
e spanned by the eigenspa
es of Mi, the
omputational spa
e of a single qudit would then be identi�ed with it
Cd ≡ Hi = (Hmi

)⊗d. (1.11)9



When identifying qudits with su
h degrees of freedom, one talks of en
oding the quantuminformation on the quantum me
hani
al system. For example, in nature there exists wellstudied physi
al systems, whi
h behave as two-level systems o�ering natural ways of en
odingqubits. Simple examples are for example the ele
tron spin or the photon polarization, wherethe en
oded qubits would be identi�ed with the observables 
orresponding to spin or wavepolarizations, respe
tively. These 
ases are also illustrative in the sense that the qubit 
anthen be 
onsidered lo
alized on the parti
le and 
an be thought as moving in spa
e-time mu
hin analogy with 
lassi
al 
ir
uits. However, su
h simple intuitive systems are not often themost pra
ti
al for large-s
ale implementation, and in general the exa
t way of en
oding thequantum information always depends on the physi
al system in question. Hen
e, for a generalplatform-independent dis
ussion, it is useful to treat the qudit as a purely mathemati
alobje
t, an internal spa
e identi�ed with some subspa
e of the whole state spa
e, whi
h doesnot ne
essarily have any lo
al physi
al 
orrespondent.1.2 EntanglementEntanglement is maybe the most 
urious feature of quantum me
hani
s. In quantum 
ompu-tation it is 
onsidered as an extra resour
e, whi
h 
an be utilized to perform 
omputationaltasks not possible with 
lassi
al 
omputers. However, it is more than just a resour
e. Ithas been proven that the ability to entangle states is required by any quantum system andtherefore the 
on
ept of entanglement lies at the very heart of quantum me
hani
s [9℄ - with-out entanglement, there is no quantum me
hani
s. To better understand the role played byentanglement, the 
onne
tions between quantum entanglement and topologi
al entanglementhave been studied [26, 28, 29℄. These topi
s might have a role to play also in the theory ofquantum 
omputation, espe
ially in topologi
al quantum 
omputation due to the role playedby the braid group [30, 48℄, but sin
e the resear
h is still very mu
h a work in progress, thistopi
 will not be tou
hed upon here.So, entanglement is a 
ru
ial ingredient in quantum 
omputation, but it does not appearoften expli
itly unless spe
i�
ally looked for. As a general rule of thumb, if an N -qudit state
|Φ〉 (1.9) 
annot be expressed as tensor produ
t of single qudits,

|Φ〉 =
d−1∑

i1,i2,...iN=0

αi1,i2,...iN |i1〉|i2〉 · · · |iN 〉 6= |φ1〉|φ2〉 · · · |φN 〉, (1.12)the state is said to be entangled [40℄. Similarly, an operator G is said to be entangling if
G|φ1〉|φ2〉 · · · |φN 〉 6= |φ′1〉|φ′2〉 · · · |φ′N 〉. (1.13)In more 
asual language, to say that a state is entangled is to say that there exists non-
lassi
al 
orrelations between the 
onstituent states. These 
orrelations 
an be non-lo
al andmay be used to gain information about the possibly spatially separated individual states. Thisextra information transmission 
hannel is the resour
e, whi
h enables quantum 
omputation10



to outperform 
lassi
al 
omputation on various, although 
urrently very sele
ted tasks. In thedis
ussion to follow, only very little expli
it attention needs to be paid to entanglement. Yet,it is an essential 
on
ept looming everywhere beneath the surfa
e. It is responsible for mostof the non-
lassi
al features and no text on quantum 
omputation should pass on it 
arelessly.1.3 The Quantum Gates and the Universal Gate SetIn 
lassi
al 
omputation, all possible logi
al operations, the logi
 gates, 
an be formed out ofa small number of elementary operations. Similarly, in quantum 
omputation one wishes to
onstru
t all possible quantum gates out of a small set of elementary quantum gates. The ob-vious di�eren
e to 
lassi
al gate set is that instead of 
lassi
al (usually irreversible) logi
 gates,unitary (reversible) gates are required to preserve the probability interpretation of quantumme
hani
s [40℄. Therefore, all quantum gates G will be assumed to be unitary operators.This means that the quantum gates G are elements of the group of unitary transformations
G ∈ U(dN ) a
ting in the 
omputational spa
e (1.7) as

G : C 7→ C, G ∈ U(dN ). (1.14)The unitary group is a 
ontinuous group having an in�nite number of elements, and thus one
an at best approximate an arbitrary gate with an arbitrary pre
ision. To do this, one shouldgive a set of elements
G = {A1, . . . , An}, A1, . . . , An ∈ U(dN ), (1.15)su
h that every G ∈ U(dN ) 
an be expressed as

G ≈ Am1
i1

· · ·Amk

ik
, (1.16)for some k, m1, . . . ,mk ∈ Z and i1, . . . , ik = 1, . . . , n. Then, the elements A1, . . . , An wouldbe the generators of the group and the set G would form the universal gate set for quantum
omputation. In dire
t analogy with qudits, whi
h in quantum 
omputation are taken asthe elementary quantum me
hani
al obje
ts (1.10), the elements of the universal gate set

G are to be treated as the most elementary unitary transformations out of whi
h, at leastprin
iple, an arbitrary unitary transformation G 
ould be 
onstru
ted. This idea gives these
ond 
riterion for given system to be able to exe
ute universal quantum 
omputation: thequdits must be en
oded on the system su
h that by performing some unitary transformations
Ui (1.3) on the systems state spa
e H, one should be able to apply the universal gate set Gin the 
omputational spa
e C. In pra
ti
e this breaks down to spe
ifying a set of physi
aloperations {U1, U2, . . . , Un} on the state spa
e H su
h that

Ui : |φ〉 7→ Ai|φ〉, ∀Ai ∈ G, (1.17)or to put the 
riterion in more general form, the set {U1, U2, . . . , UN} should generate U(dN )in C. 11



In order to spe
ify the Ui, whi
h 
an be used to implement the universal gate set, oneshould know whi
h Ai 
onstitute G. There is �exibility, sin
e the 
hoi
e for G (1.15) is notunique and various suggestions have been 
onsidered [40℄. Di�erent 
hoi
es arise naturally indi�erent experimental platforms, and the implementational e�
ien
y varies from one platformto another. Still, as already anti
ipated in 
onne
tion with entanglement, all the valid univer-sal gate sets have to share one 
ommon feature: at least one of the gates has to be entangling(1.13). A general theorem proven in [9℄ states that a single entangling gate, when appendedwith all the possible single qudit gates, is universal for quantum 
omputation. Usually alluniversal gate sets are stru
tured in this way. Hen
e, 
hoosing a universal gate set breaksdown to 
hoosing a set elementary single qudit gates
Ai : Cd 7→ Cd, Ai ∈ G, (1.18)whi
h generate in the sense of (1.16) all unitary mappings from Cd to itself, and a singleentangling two-qudit gate

A : Cd ⊗ Cd 7→ Cd2
, A ∈ G. (1.19)By forming tensor produ
ts of these elementary elements, one 
an extend the a
tion of G tothe whole 
omputational spa
e and thereby approximate an arbitrary G ∈ U(dn) gate.Only a few simple and illustrative universal gate sets have been expli
itly 
onstru
ted.Their main fun
tion is to serve as a basis for theoreti
al 
onsiderations, and it is a rare o

asionthat one 
ould a
tually implement these most elementary gate sets on a given quantumme
hani
al system [40, 42℄. In a realisti
 setting the available unitary transformations aredetermined by the dynami
s of the system, and in pra
ti
e, one has to resort to studying
ase-wise whether the given unitary operations allow universal quantum 
omputation. Yet,as an example of the presented abstra
t dis
ussion, it is illustrative to brie�y 
onsider oneparti
ular universal gate set for qubits (d = 2), whi
h, surprisinly enough, will be partiallyen
ountered later on. For a more rigorous dis
ussion about the universality, gate sets forqubits have been dis
ussed in more detail in [14, 42, 40℄, and gate sets for qudits of arbitrary

d in [8, 25, 46℄.The universal gate set in question 
onsists of the unitary gates
G = {H,T,
not }, (1.20)whose a
tion on the qubit basis |j〉 ∈ C2, j ∈ {0, 1}, is de�ned by
H|j〉 =

1√
2

(
|0〉 + (−1)j |1〉

)
, (1.21)

T |j〉 = (ei
π
4 )j|j〉, (1.22)
not |j〉|k〉 = |j〉|j + k (mod 2)〉. (1.23)In literature, H is known as the Hadamard gate, T is known as the π

8 -phase gate and 
notas the 
ontrolled-not. It has been expli
itly proven in [40℄, that modulo the relations
HT 4 = T 4H, H2 = 1, T 8 = 1, (1.24)12



where 1 is an identity gate, H and T freely generate U(2) to an arbitrary a

ura
y. Hen
e,when appended with an entangling 
not gate, they form a universal gate set. Consequently,the elements of U(4) are freely generated, modulo some further relations, by 
not togetherwith the tensor produ
ts 1 ⊗ Hm, 1 ⊗ T n, T k ⊗ 1 and H l ⊗ 1 for all m, l ∈ {0, 1} and
n, k ∈ {0, . . . , 7}.1.4 Quantum MeasurementsThe qudit |φ〉 as the elementary unit of information and the universal gate set G as thetoolkit for quantum 
omputation are dire
t generalizations of their 
lassi
al 
orrespondents.However, having a

ess to a 
omputational spa
e (1.7) and a universal gate set (1.15) is stillnot enough to exe
ute quantum 
omputation. One needs an extra pie
e of stru
ture, whi
his the quantum measurement (1.1). Classi
al 
omputation is deterministi
 in the sense thatgiven an input and a a set of logi
al operations, the out
ome of the 
omputation is alwaysuniquely de�ned. Also quantum 
omputation is deterministi
 in the sense that given aninput state |Ψ〉 ∈ C and a 
omputation C, a set of unitary transformations performed in�xed order C = G1 · · ·Gn ∈ U(dN ), the output state |Ψ′〉 = C|Ψ〉 is uniquely de�ned (1.3).However, the di�eren
e is that whereas the output of the 
lassi
al 
omputation is a �xedstring of bits, in general the output C|Ψ〉 is now an entangled superposition, and to extra
tany information from it, one must proje
t it onto the 
omputational basis. The real out
omeof the 
omputation is then the probability pi for proje
ting onto the 
omputational basis state
|i〉. Therefore, the quantum measurement to be performed at the end of the 
omputation is anas essential ingredient of quantum 
omputation as are the 
omputational spa
e and universalgate set. A 
riterion for quantum 
omputer 
andidates is then that the en
oding of quantuminformation must be allowed in su
h a way that by performing measurements {Mm} (1.2) onthe quantum system, one 
an apply proje
tors Pi in the 
omputational spa
e,

Mm : |Φ〉 7→ Pi|Φ〉. (1.25)That is, performing a measurement des
ribed by Mm and observing the out
ome m with theprobability pm (1.1) should in the 
omputational spa
e C uniquely 
orrespond to proje
tingonto |i〉 with the probability pi = pm.This kind of 
orresponden
e arises naturally when qudits are en
oded in the physi
al de-grees of freedom of some observable M (1.11), whi
h 
onsequently leads to the 
omputationalbasis being identi�ed with the eigenspa
es Hm of M , i.e. one 
an de�ne |i〉 ≡ |m〉. The mea-surement of M 
an be formulated as proje
tive measurements, meaning that the Hermitianoperators {Mm} des
ribing the measurement are orthogonal proje
tors, Mm ≡ Pm, whi
hsatisfy the proje
tor algebra
PmPn = Pmδm,n,

∑

m

Pm = I. (1.26)13



The observable M has then a spe
tral de
omposition
M =

∑

m

mPm, (1.27)where Pm are the proje
tors onto eigenspa
es Hm of M 
orresponding to the eigenvalue m.Then, performing a measurement of M and observing the out
ome m is equivalent in the
omputational spa
e to proje
ting the asso
iated qudit onto the 
omputational basis state
|m〉.Given a 
omputation C, the output of a quantum 
omputation, i.e. the probability pm toproje
t onto the state |m〉, is then given by the expression

pm = 〈Ψ|C†PmC|Ψ〉, (1.28)whi
h ni
ely summarizes a single run of the quantum 
omputer as the expe
tation value ofthe operator C†PmC in the initial state |Ψ〉. Of 
ourse, with the single run of a quantum
omputer one 
an only infer the information whether the proje
tion onto the state |m〉 su

eedsor not, whi
h is a binary yes-no information. Whether this pie
e of information is su�
ient todedu
e the result depends on the ar
hite
ture of 
omputation. In same 
ases, it is also worth
onsidering measurements, if su
h are available, whi
h in the 
omputational spa
e translateto proje
tions onto some other orthogonal basis than the 
omputational basis. This freedomo�ers mu
h �exibility when designing quantum 
omputations, and with 
lever designs one
an enhan
e the information gained from single proje
tive measurements.One might also ponder whether performing intermediate measurements and 
onditioningthe 
omputation on them would improve the 
omputation. However, a

ording to the prin
ipleof deferred measurement, without any loss of generality, all measurements 
an be postponed tillthe end of 
omputation [40℄. No 
omputation requires intermediate measurements and nothingis gained by using them. This means that the state of the system after the measurement playsno role, sin
e all the information lies in the probabilities to obtain the di�erent out
omes atthe end of the 
omputation. It is in the measurement statisti
s where all the informationresides.1.5 The Framework for a Quantum ComputerOne is now ready to present the very general theoreti
al framework for the quantum 
omputer.In order for a given quantum system to serve as a universal quantum 
omputer, the ne
essaryrequirements for en
oding quantum information are:1. The 
omputational spa
e C has a tensor produ
t de
omposition in terms of d-dimensionalsubspa
es (qudits) (1.7).2. By performing unitary transformations on the system, one 
an, to an arbitrary pre
ision,generate an arbitrary element of U(dN ) on C, whi
h is equivalent to showing that one
an implement some universal quantum gate set (1.15).14



3. By performing measurements on the system, one 
an perform proje
tive measurementsin C.These are the stru
tures, whi
h one sets out to look for in the anyoni
 system to be presented inthe next 
hapter. The aim is to try to dis
over some physi
al degrees of freedom, whi
h exhibitthe promised intrinsi
 fault-toleran
e and whi
h at the same time allow the implementationof the properties listed above.
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Chapter 2Non-Abelian Anyons and theAlgebrai
 Stru
tureTo make a long story short, anyons are identi
al parti
les whi
h do not obey the usualFermi-Dira
 or Bose-Einstein statisti
s, but something in between. Hen
e, the term fra
tionalstatisti
s is also often used in 
onne
tion with anyons. The aim of this 
hapter is to give a
ompa
t a

ount of 
lassi�
ation of di�erent anyons and des
ribe their exoti
 intera
tions.The relevant aspe
ts to performing quantum 
omputation will be made transparent whenen
ountered, but the dis
ussion on performing quantum 
omputation with anyons, that istopologi
al quantum 
omputation, will have to wait till the next 
hapter.There exist two prominent approa
hes to ta
kle the anyoni
 behavior. The �rst in
orpo-rates the fra
tional statisti
s through �
titious Chern-Simons gauge �elds, whi
h transmutethe statisti
s into the parti
ular topologi
al intera
tions [18, 35, 47℄. The se
ond one makesuse of quantum symmetries as des
ribed by Hopf algebras, whi
h o�er a uni�ed des
riptionof the parti
le properties [2, 11, 31, 32, 42℄. Of 
ourse, both 
apture the same physi
s, butthe argumentation leading to the existen
e of anyons and the emphasis on di�erent featuresvary. From the point of view of the appli
ability of anyons to quantum 
omputation, it isthe latter approa
h whi
h provides more insight to the problem. However, before pro
eedingto the abstra
t algebrai
 treatment, motivation will be derived from physi
al 
onsiderations,whi
h will provide the grounds for the rather abstra
t mathemati
al framework.The de�ning property of anyons arises when one 
onsiders the symmetry properties of an
N -parti
le system of varying spatial dimension. Under the a
tion of SN , the permutationgroup of N parti
les, the Hamiltonian of the system remains invariant, but the eigenstates
|ψj〉 are transformed a

ording to an irredu
ible representation. Letting ψj(1, 2, . . . , N) =

〈1, 2, . . . , N |ψj〉 denote an N -parti
le wave fun
tion and U(π) an operator implementing aparti
ular permutation π, this 
an be expressed as the transformation
U(π)ψj(1, 2, . . . , N) =

∑

k

ψk(π(1), π(2), . . . , π(N))Dkj(π), (2.1)where Dkj(π) are the matri
es representing the permutation π. In most quantum me
hani
al17



systems the Fermi-Dira
 and Bose-Einstein statisti
s are su�
ient to des
ribe the symmetryproperties of the wave fun
tion. These two 
ases are the two one-dimensional representa-tions: the trivial representation D(π) = 1 and the alternating representation D(π) = (−1)|π|,with |π| the number of inter
hanges in π [35℄. These 
orrespond to bosons and fermions,respe
tively.Anyons 
orrespond to irredu
ible representations taking other forms than the two afore-mentioned ones. They 
ome about when one 
onsiders parti
les on manifolds of varyingspatial dimension. The symmetry group to whi
h the permutation π belongs to depends onthe topology of the 
on�guration spa
e MD
N of the D-dimensional N -parti
le system, andespe
ially on the stru
ture of the fundamental group π1(M

D
N ). The 
on�guration spa
e MD

Nis not simply 
onne
ted, be
ause indistinguishable parti
les are not allowed to 
oin
ide, andthus the fundamental group is non-trivial [11, 35℄. This is re�e
ted in the stru
ture of the�rst homotopy group, whi
h now depends on the dimension D of the spa
e. Namely, in twospatial dimensions it is known to be isomorphi
 to the N-string braid group,
π1(M

2
N ) ≃ BN , (2.2)whereas for D ≥ 3 it is isomorphi
 to the permutation group of N-obje
ts,

π1(M
D
N ) ≃ SN , D ≥ 3. (2.3)The one-dimensional irredu
ible representations of SN 
orrespond to the aforementioned triv-ial and alternating representations, but it is known that there are also higher dimensional ir-redu
ible representations. However, these would 
orrespond to so 
alled parastatisti
s, whi
hare not observed and, at the present knowledge, are not assumed to exist in nature [35℄. Onthe other hand, there are no su
h 
onstraints on the dimensionality of the representationsof the braid group. Therefore, it follows that the anyoni
 behavior is manifest only in twospatial dimensions and the symmetry properties of the N -anyon wavefun
tion are des
ribedby the braid group BN . If the wave fun
tion transforms in some one-dimensional irredu
iblerepresentation of BN , one talks of abelian anyons. Wavefun
tions transforming in some higherdimensional irredu
ible representation are said to des
ribe non-abelian anyons.The Emergen
e of AnyonsThe emergen
e of anyons in only 2+1 dimensions, the additional dimension being time, greatlyrestri
ts the possible quantum me
hani
al systems where they 
ould be found. Currently themost promising systems involve the fra
tional Quantum Hall states [36, 37, 47℄, but there arealso proposals for engineering suitable systems [15, 16℄. Constru
ting and 
ontrolling su
hsystems will be a great 
hallenge to experimentalists, but the exa
t details are not the itemof interest here. The existen
e of anyons will be taken for granted and one will settle witha toy model to dis
uss their properties. Yet, to put the model in a physi
al 
ontext, a verybrief overview of one theory underlying the emergen
e of anyons will be presented also here.A 
omprehensive review of these so 
alled dis
rete gauge theories 
an be found in [11℄.18



As usually with gauge theories, one starts with a Lagrangian, whi
h is invariant under a
ontinuous symmetry group G and whi
h involves Higgs �elds, whi
h may be 
oupled to someexternal matter �elds. By performing spontaneous symmetry breaking in a suitable manner,one �nds a set of degenerate ground states, whi
h are invariant only under some dis
retesubgroup H ⊂ G. Consequently, the ground state manifold is assumed to be isomorphi
 to
G/H. The broken phase supports topologi
al defe
ts whi
h are �ngerprints of the brokensymmetry, and whi
h 
an be 
lassi�ed by the fundamental group π1 of the ground statemanifold. For a dis
rete and �nite H, and for a 
ontinuous and simply 
onne
ted G, thefundamental group is isomorphi
 to the residual symmetry group

π1(G/H) ≃ H. (2.4)The topologi
al defe
ts 
an be treated as quasiparti
les, whi
h by (2.4) are 
lassi�ed by theelements h ∈ H. In addition, when one in
ludes also matter �elds 
oupled to the Higgs �eld,the broken phase supports also ex
itations, whi
h, as usual with theories involving symmetrybreaking, are labeled by the unitary irredu
ible representations Γ of the residual symmetrygroup H. These two seemingly di�erent types of ex
itations 
an be treated on equal footingby 
onsidering them both to be in a

ordan
e with the irredu
ible representations of a largersymmetry group, namely a quantum group. This uni�ed approa
h will be dis
ussed in a while.It is a feature of the broken phase that all the physi
al 
harges of the unbroken phase,both magneti
 and ele
tri
, are s
reened and therefore there are no ele
tromagneti
 long-rangeintera
tions [11℄. However, the pe
uliar statisti
s of the anyons 
an be interpreted as a kindof intera
tion, whi
h is of topologi
al nature. In the physi
s literature, these topologi
al inter-a
tions are usually known as the famous Aharonov-Bohm intera
tions taking pla
e betweenbetween magneti
 �ux and ele
tri
 
harge [1℄. It derives from this analogy, that the h and
Γ are often referred to as �ux and 
harge, respe
tively, 
arried by the quasiparti
les. Thetopologi
al ex
itations 
an be treated as parti
les on the plane, but the way they are to beunderstood as physi
al obje
ts is very mu
h model dependent. For example the �ux-
hargeanalogy may in some 
ases be an a

urate des
ription, sin
e in some super
ondu
tor-likesystems the �uxes are magneti
 vorti
es 
arrying quantized magneti
 �ux, and the 
hargesare 
ondensates of matter �elds 
arrying some quantized ele
tri
 
harge as their 
olle
tiveproperty. On the other hand, in other models the quasiparti
les may manifest themselvesas 
olle
tive ex
itations bearing no dire
t 
orresponden
e to the elementary magneti
 and/orele
tri
 
harge. The topologi
al intera
tions still exist as if the quasiparti
les were 
arryingsome �ux and 
harge, but these are to be regarded merely as �
titious properties havingnothing to do with ordinary ele
tromagnetism [47℄.The Toy Anyon ModelFor the purposes of the theory of topologi
al quantum 
omputation, the exa
t nature of theanyoni
 quasiparti
les is not of importan
e. The theory of topologi
al quantum 
omputationis only interested in whi
h residual gauge groups H give anyons, whi
h are suited for quantum19




omputation. It has been shown that universal quantum 
omputation is possible only withnon-abelian groups [34℄ and hen
e it will be assumed that H is non-abelian. To study theproperties of these non-abelian anyons, it su�
es to use a toy model, whi
h 
onsists of N pointlike parti
les on a two-dimensional surfa
e. The symmetry properties of the wavefun
tion oftheN parti
les are des
ribed by the braid group BN . This is not to be 
onfused with symmetrygroup of the system, whi
h is some �nite dis
rete group H. The di�erent parti
les are labeledby the elements h ∈ H and/or the irredu
ible representations Γ of H. The parti
les 
arryalso 
onserved quantum numbers, whi
h depending on the group H, may or may not be ina

ordan
e with the labels h and Γ. This will be studied in detail in the se
tions to 
ome.All the long-range intera
tions of the model are of Aharonov-Bohm type and there are noother long-range intera
tion me
hanisms. Finally, when two parti
les are brought together,they 
an fuse to yield a new parti
le, whi
h 
arries new quantum numbers, su
h that the totalquantum numbers are 
onserved in the pro
ess.2.1 The Braid Group and the Topologi
al Intera
tionsThe topologi
al intera
tions 
ome about when a multi-parti
le wavefun
tion undergoes apermutation (2.1), whi
h in two spatial dimensions is des
ribed by the a
tion of the braidgroup (2.2). Physi
ally this 
orresponds to moving the parti
les around ea
h other. The mostelementary of su
h permutations would be the inter
hange of the relative positions of twoparti
les, whi
h would 
orrespond to the a
tion of a generator of the BN . Finding how thesegenerators a
t on the states appearing in the model would then be equivalent to spe
ifying howtwo parti
les intera
t. Generalizing this observation, �nding the irredu
ible representation of
BN , in whi
h the wavefun
tion of multi-anyon system transforms, fully 
aptures all the long-range intera
tions in the model.Before pro
eeding, it is useful to adopt suitable notation and 
onventions for des
ribingthe quasiparti
les. The notations |h〉, |q〉 and |h, q〉 will be used to denote parti
les 
arrying�ux h, 
harge q and a 
ombination of both, respe
tively. The state ve
tor form is takeninto use, be
ause it will later be shown that the parti
les will 
arry an internal ve
tor spa
ewith a basis given by the di�erent �ux/
harge eigenstates. However, for the time being, thisstate ve
tor notation is to be regarded merely as labels for di�erent parti
les. Also, it isuseful to adopt a gauge 
onvention that a system of N parti
les is organized on a line, the
x-axis for example, on the (x, y)-plane so that the spatial lo
ation and the pla
ement onthe tensor produ
t des
ribing the whole system are in one-to-one 
orresponden
e. That is, if
x1 < x2 < . . . < xN denote the positions on the line, the dire
t produ
t of the labels expressesalso the relative positions by

|a1, x1〉 ⊗ |a2, x2〉 ⊗ · · · ⊗ |aN , xN 〉 ≡ |a1〉|a2〉 · · · |aN 〉. (2.5)Further, inter
hanges are only allowed between parti
les o

upying adja
ent positions. These
onventions are su�
ient to des
ribe the nature of the topologi
al intera
tions.20



The Aharonov-Bohm Intera
tionsThe Aharonov-Bohm e�e
t is a purely quantum me
hani
al e�e
t whi
h is of topologi
alnature. What is 
ommonly meant by it, following the 
lassi
 paper [1℄, is that when an ele
tri

harge q en
ir
les a magneti
 �ux h, the wave fun
tion of the 
harge pi
ks up a quantum phase
eiqhw with w the winding number. The topologi
al nature has several pe
uliar 
onsequen
es.First, it is a non-lo
al e�e
t, be
ause there is no parti
le mediating the intera
tion. Thismeans that it persists, regardless of the spatial separation of the 
harge and �ux, even at verylarge distan
es. Se
ond, the phase pi
ked up by the wave fun
tion is indi�erent to variationsof the path travelled, but depends only on the number of times the path winds around the�ux [47℄.All the long-range intera
tions of the 
onsidered anyon model are of this type. Re
all thatthe �uxes and 
harges are labeled by the elements h and irredu
ible representations Γ of thegauge group H, respe
tively. Then, in general, the 
harges Γ 
arry a 
harge ve
tor spa
es V Γ,whi
h has the dimension of the representation Γ, and the state ve
tor in V Γ is given by |q〉.When a 
harge en
ir
les a �ux, the Aharonov-Bohm e�e
t in the present formalism is thenthe rotation of this state ve
tor by the matrix Γ(h) assigned to the group element h in therepresentation Γ. In general, this is the transformation

|h〉|q〉 → |h〉|Γ(h)q〉, (2.6)whi
h in the 
ase of one dimensional representations boils down to the aforementioned quan-tum phase.The 
lassi
 Aharonov-Bohm intera
tion takes pla
e between a �ux and a 
harge. In the
ase of non-abelian gauge group H, there exists also an e�e
t 
alled the non-abelian Aharonov-Bohm e�e
t or the �ux metamorphosis [42, 11℄. Consider a two-parti
le state with two �uxes
a, b ∈ H with total �ux given by ab ∈ H. Sin
e both a and b are elements of a non-abeliangroup, they do not in general 
ommute. However, the long-range properties of the 
ombinedsystem, the total �ux, should not be altered if the positions of the parti
les 
arrying �ux wereinter
hanged. This means that under the inter
hange of the �uxes, b should be 
onjugatedby a. The �ux metamorphosis is thus equivalent to the transformation

|a〉|b〉 → |aba−1〉|a〉. (2.7)After the inter
hange, the total �ux is (aba−1)(a) = ab and is 
onserved. Both (2.6) and (2.7)
an be 
aptured in a uni�ed way via the a
tion of the braid group.The Braid GroupThe braid group of N parti
les, BN , is generated by the abstra
t relations
σiσj = σjσi, |i− j| ≥ 2, i, j = 1, . . . , N − 1, (2.8)

σiσi+1σi = σi+1σiσi+1, i = 1, . . . , N − 2. (2.9)21



1 4321432Figure 2.1: Pi
torial presentation of (2.8) [11℄
31 2 3 1 2Figure 2.2: Pi
torial presentation of (2.9) [11℄Altogether there are N − 1 generators σi. Their inverses σ−1

i are given by
σiσ

−1
i = σ−1

i σi = e,where e denotes the unit element. Ea
h of the N parti
les 
an be thought as moving ona traje
tory in the 2+1 dimensional spa
e-time. Sin
e in two spatial dimensions the 
oun-ter
lo
kwise and 
lo
kwise rotations 
an be distinguished, the generators σi and σ−1
i 
an bethought as generating the inter
hange of the positions of ith and (i+ 1)th parti
le by a rota-tion in a 
ounter
lo
kwise and 
lo
kwise dire
tion, respe
tively. The 
hoi
e for the dire
tionof rotations is arbitrary, but this parti
ular 
hoi
e is 
ommonly used in the literature andwill also be adopted here. With these 
onventions, the relations (2.8) and (2.9) are mostvividly illustrated by the Figures 2.2 and 2.1. In mathemati
al language, the traje
tories are
onsidered as strands whi
h are braided by applying the generators. The elements b ∈ BN ,the braids, are generated by taking all possible produ
ts of all possible powers, positive ornegative, of the generators. Therefore, BN is a group of in�nite order with ea
h element b
orresponding to a 
ertain braiding.The abstra
t generators σi 
an be represented in anN -parti
le spa
e by the braid operators

σi 7→ Ri = I⊗(i−1) ⊗R⊗ I⊗(N−i−1), (2.10)where I is the identity operator and R the braid operator inter
hanging the positions of22



|a〉 |b〉

|a〉 |b〉 |a〉|aba−1〉

|b〉 |b−1ab〉

R

R−1Figure 2.3: The transformation 
onventionadja
ent parti
les o

upying pla
es i and i + 1 in a 
ounter
lo
kwise manner. Be
ause therepresentations have to respe
t the group properties (2.8) and (2.9), the braid operators haveto satisfy
RiRj = RjRi, |i− j| ≥ 2,

RiRi+1Ri = Ri+1RiRi+1, i = 1, . . . , N − 2. (2.11)Of parti
ular importan
e is the latter relation, whi
h is known as the Yang-Baxter equation,whi
h serves as a 
onsisten
y 
ondition for all possible matrix representations of braidingoperators. From the point of view of quantum 
omputation, the interest will be lying par-ti
ularly on the unitary solutions of (2.11), be
ause as will be shown later, unitary braidings
an be utilized as unitary quantum gates.Before pro
eeding, it is useful to adopt a further gauge 
onvention. Re
all that the parti
leswere organized in a line in x-dire
tion (2.5) and that inter
hanges were allowed only betweenneighboring parti
les. The topologi
al intera
tions take pla
e when the parti
les en
ir
leea
h other, but to allow a 
onsistent des
ription of the phenomena, one should spe
ify whenexa
tly do the transformations (2.6) and (2.7) o

ur. Sin
e the braiding in 
lo
kwise and
ounter
lo
kwise dire
tion are inverse operations of ea
h other, they should also 
orrespondto inverse transformations. A 
onvention to be adopted here is illustrated by two �uxes inFigure 2.3. When parti
les a and b, a being to the left of b, are braided 
ounter
lo
kwise, thestate of b is transformed by a. On the other hand, under 
lo
kwise braiding the state of a istransformed by b−1, the inverse of b. Then, in terms of the braid operator R implementing a
ounter
lo
kwise inter
hange, the non-abelian Aharonov-Bohm e�e
t (2.7) between two �uxes
|a〉 and |b〉 
an be summarized by

R|a〉|b〉 = |aba−1〉|a〉, R−1|a〉|b〉 = |b〉|b−1ab〉,
R2|a〉|b〉 = |(aba−1)a(aba−1)−1〉|aba−1〉 = |(ab)a(ab)−1〉|aba−1〉.

(2.12)Similarly the abelian Aharonov-Bohm intera
tion between a pure �ux |h〉 and pure 
harge
|q〉 
an be summarized by

R|h〉|q〉 = |Γ(h)q〉|h〉, R−1|h〉|q〉 = |q〉|h〉,
R|q〉|h〉 = |h〉|q〉, R−1|q〉|h〉 = |h〉|Γ−1(h)q〉,
R2|h〉|q〉 = |h〉|Γ(h)q〉.

(2.13)23



Two pure 
harges |q〉 and |p〉 do not intera
t topologi
ally and hen
e the a
tion of braiding istrivial
R|q〉|p〉 = R−1|q〉|p〉 = |p〉|q〉. (2.14)These formal, but simple expressions 
apture all the long-range intera
tions of parti
les 
ar-rying only either �ux or 
harge. The treatment of parti
les 
arrying both �ux and 
harge isslightly tri
kier and it will be dis
ussed in a while.2.2 The Quasiparti
le Spe
trumIt has been illustrated above how would the parti
les 
arrying only the elements h ∈ H orthe representations Γ of H as their quantum numbers transform under the a
tion of the braidgroup. If these were the good quantum numbers, the given expressions would 
apture all thetopologi
al intera
tions. However, they are not good quantum numbers, be
ause one has notyet a

ounted for the existen
e of the residual non-abelian symmetry group H, whi
h impliesthat the physi
s should remain invariant under all global g ∈ H transformations

g ∈ H : |h〉 7→ |ghg−1〉, |q〉 7→ |Γ(g)q〉. (2.15)This is equivalent to demanding that the good quantum numbers, the parti
le labels, remainun
hanged and that g 
ommutes with the braiding operator R,
gR = Rg, ∀ g ∈ H. (2.16)As 
an 
learly be seen from (2.15), unless h and g 
ommute and the representation Γ istrivial for all g ∈ H, the |h〉, |q〉 labeling is not in general invariant under global symmetrytransformations and does not therefore bear a gauge-invariant meaning. To �nd the physi
allymeaningful parti
les of a non-abelian anyon model, some other labeling should be used. Still,be
ause of (2.4), this new labeling should a

ount somehow for the fa
t that h ∈ H labelsthe distin
t topologi
al ex
itations. Most insight to the problem is obtained when ea
h of thethree general parti
le types are 
onsidered separately.The Pure FluxesThe pure �uxes are parti
les, whi
h were originally assumed to be labeled with some h ∈ H.To �nd the good quantum numbers for pure �uxes, one should �nd the the invariant featuresof H under 
onjugation (2.15). By de�nition, these are the 
onjuga
y 
lasses
C(h) = {ghg−1|g ∈ H}, (2.17)Therefore, the pure �uxes manifest in a non-abelian model should be labeled by the 
onjuga
y
lasses C of H. This means that the parti
les are organized into degenerate multiplets labeledby the 
onjuga
y 
lasses C, and for a given 
onjuga
y 
lass, there are altogether |C| di�erent24



representatives of the same physi
al parti
le [11, 42℄. Therefore, a parti
le labeled by C 
anbe thought as 
arrying a |C|-dimensional internal �ux ve
tor spa
e V C . The basis in thisinternal spa
e is given by the �ux eigenstates
{|h〉}h∈C , 〈h′|h〉 = δh′,h ∀ h′, h ∈ C. (2.18)A general state 
an be expressed as a superposition of the form

|a〉 =
∑

h∈C

ah|h〉. (2.19)Although the emergen
e of the internal spa
es V C is a 
onsequen
e of the topologi
al degen-era
y of the system, they are not the prote
ted subspa
es one is looking for. Even thoughno small lo
al perturbation 
an a�e
t the state in this internal spa
e, global transformations(2.15) be
ome rotations in V C , and thus states of the form (2.19) are not in general invari-ant under g ∈ H transformations. The topologi
ally prote
ted subspa
e, whi
h is the majormotivation for studying anyons, still awaits to reveal itself.The Pure ChargesThe pure 
harges of an anyon model were assumed to be labeled by the unitary irredu
iblerepresentations Γ of H. Depending on the dimensions of the representations Γ, there is aninternal |Γ|-dimensional 
harge ve
tor spa
e V Γ asso
iated with ea
h parti
le 
arrying 
harge.A basis in this spa
e is given by some set of 
harge eigenve
tors
{|i〉}, 〈i|j〉 = δi,j, i, j = 1, . . . , |Γ|, (2.20)and a general state is a superposition of the form

|q〉 =

|Γ|∑

i=1

ai|i〉. (2.21)Unlike with the �uxes, the existen
e of the residual gauge group does not introdu
e anymodi�
ation in the labeling, i.e. the pure 
harges are still labeled by the di�erent irredu
ibleunitary representations Γ of H. For the same reasoning as with the pure �uxes, states in theinternal spa
e V Γ 
arried by a pure 
harges are resistant to small lo
al perturbations, but not
onserved under global transformations (2.15).The DyonsIn addition to the pure �uxes and 
harges, there exists also parti
les 
arrying both �ux and
harge. These �ux/
harge 
omposites are 
alled dyons and their quantum numbers 
omeabout in a slightly di�erent way. The relevant remark is that for �ux 
arrying parti
les, theinvarian
e under (2.15) does not 
ompletely �x the quantum numbers to 
oin
ide with the
onjuga
y 
lasses (2.17). The reason is that there may be global transformations g, whi
h25




ommute with a given �ux h, and whi
h 
an therefore be used to �x an additional internal
harge degree of freedom [11℄. These g ∈ H form the normalizer subgroup N(h) ⊂ H,
N(h) = {g ∈ H|gh = hg}. (2.22)Be
ause the N(h) and N(ghg−1) are isomorphi
, the normalizer group 
an be asso
iated withthe 
orresponding 
onjuga
y 
lass C of the element h and denoted just by NC . It followsthat the 
harges 
arried by the dyons are labeled by the irredu
ible representations ΓNC

andthus by 
ombining both the gauge invariant �ux and 
harge labels, the distin
t dyons shouldbe labeled by the pairs (C,ΓNC
) as their good quantum numbers. As the pure �uxes and
harges, also dyons 
arry an internal ve
tor spa
e, whi
h now is a dire
t produ
t of the �uxand 
harge ve
tor spa
es
V C

Γ ≡ V C
ΓNC

= VC ⊗ VΓNC
, (2.23)with the basis given by the tensor produ
t of the bases (2.18) and (2.20)

{|h, i〉}h∈C
i=1,...,|Γ|, 〈h, i|h′, j〉 = δh,h′δi,j . (2.24)The Full Parti
le Spe
trumThe dyons o�er a natural generalization of the parti
le spe
trum of the anyon model. Thedi�erent physi
al parti
les are organized into degenerate multiplets, whi
h are labeled by thethe 
onjuga
y 
lasses C and irredu
ible normalizer representations ΓNC

of the gauge group
H. The pairs (C,ΓNC

) are the good quantum numbers, whi
h are usually said to de�nethe supersele
tion se
tors of the model. All parti
les 
arrying same quantum numbers aretreated as indistinguishable parti
les, whi
h ea
h 
arry an internal �ux and/or 
harge ve
torspa
e V C
Γ . The pure �ux and 
harge se
tors appear as spe
ial 
ases 
orresponding to trivial
onjuga
y 
lass and trivial representations, respe
tively.Sin
e ea
h supersele
tion se
tor is always labeled by two di�erent quantum numbers, bothwhi
h may or may not be trivial, but whi
h are always di�erent for di�erent se
tors, thenotation 
an be simpli�ed by labeling ea
h parti
le with only a single label

a := (C,ΓNC
). (2.25)In every model there is one spe
ial se
tor, the supersele
tion se
tor 
orresponding to the 
on-juga
y 
lass C(e) of the trivial element and the trivial representation ΓNC(e) of its normalizer.This unique se
tor will labeled by

1 :=
(
C(e),ΓNC(e)

)
. (2.26)It is known as the va
uum se
tor, be
ause it 
orresponds to having no parti
le at all. The fullparti
le spe
trum M is then formally given by the set of labels

M =
{
1, a1, a2, . . . , a|M |−1

}
, (2.27)26



where |M | denotes the number the di�erent supersele
tion se
tors.Using the dyons as the most general parti
le types allows also the generalization of theglobal symmetry transformations (2.15) as well as of the the topologi
al intera
tions (2.12) -(2.14). To a

ount for the possible 
harge degrees of freedom, every g ∈ H transformation,a
ting on some �ux state |h〉, should be de
omposed su
h that
g = g′g̃, g′ /∈ NC(h), g̃ ∈ NC(h). (2.28)If su
h de
omposition exists for some g̃ 6= e, the g̃ part of g 
ommutes with h, and 
an beimplemented as a non-trivial transformation in the 
harge se
tor. Then, the a
tion of globalsymmetry transformations (2.15) on arbitrary states of the model 
an be summarized by

g ∈ H : |h, q〉 7→ |ghg−1,Γ(g̃)q〉, g̃ ∈ NC(h). (2.29)Similarly, all the topologi
al intera
tions (2.13) - (2.14) 
an now be 
aptured by the 
ompa
texpressions
R|h, q〉|h′, q′〉 = |hh′h−1,Γ(h̃)q′〉|h, q〉, h̃ ∈ NC(h′), (2.30)

R−1|h, q〉|h′, q′〉 = |h′, q′〉|h′−1hh′,Γ−1(h̃′)q〉, h̃′ ∈ NC(h).Using these results one 
an �nally 
he
k that braiding also bears a gauge invariant meaning,i.e. that (2.16) is satis�ed
Rg|h, q〉|h′, q′〉 = R|ghg−1,Γ(g̃)q〉 |gh′g−1,Γ′(g̃)q′〉,

= |ghh′h−1g−1,Γ′(g̃hg−1)Γ′(g̃)q′〉 |ghg−1,Γ(g̃)q〉,

gR|h, q〉|h′, q′〉 = g|hh′h−1,Γ′(h̃′)q′〉 |h, q〉,
= |ghh′h−1g−1,Γ′(g̃)Γ′(h̃)q′〉 |ghg−1,Γ(g̃)q〉.

(2.31)
These expressions are equal, be
ause the isomorphy of the normalizers, N(h) ≃ N(ghg−1),implies

g̃hg−1 = g̃h̃g̃−1. (2.32)Using then the representation properties Γ(ab) = Γ(a)Γ(b) and Γ(a−1) = Γ−1(a), it followsthat
Γ′(g̃hg−1)Γ′(g̃) = Γ′(g̃)Γ′(h̃)Γ′−1(g̃)Γ′(g) = Γ′(g̃)Γ′(h̃), (2.33)whi
h 
ompletes proving that the a
tion of BN 
ommutes with global g ∈ H symmetrytransformations (2.16).After all this work, one still has not even got a glimpse of the topologi
ally prote
tedsubspa
es, whi
h was the main motivation for 
onsidering quantum 
omputation with anyons.The 
losest thing resembling them are the internal �ux/
harge ve
tor spa
es (2.23), whi
h,27



however, were not robust storages for quantum information. The genuine invariant featuresof the model are the parti
le types M (2.27), whi
h 
an 
hange only under the pro
ess offusion [11℄. Hen
e, what remains in the dis
ussion are the fusion rules whi
h di
tate whathappens when two anyons are brought together. It will be shown that related to them, thereexist a further internal spa
e whi
h is �nally the one prote
ted by topology. All this is most
onveniently dis
ussed in terms of Hopf algebras, whi
h o�er a natural des
ription of anyonsby unifying the given physi
ally motivated arguments in terms of more rigorous mathemati
alformalism.2.3 The Algebrai
 Stru
ture of Non-Abelian AnyonsAll the pre
eding dis
ussion 
an be uni�ed by extending the residual H symmetry into aquantum group symmetry. By doing so, instead of treating the di�erent ex
itations appearingin the model as having fundamentally a di�erent origin, the topologi
al ex
itations being
lassi�ed by the fundamental group (2.4), but the matter ex
itations being 
lassi�ed therepresentations Γ of H, they 
an be 
lassi�ed by the unitary irredu
ible representations ofthis single extended symmetry stru
ture.There is a physi
al way of motivating the appearan
e of this quantum symmetry by
onsidering the allowed physi
al operations, i.e. the ones 
ommuting with the a
tion ofthe residual symmetry group. These are the independent measurements of both �ux and
harge by using quantum interferen
e experiments [11℄. They are 
aptured by �interferen
eamplitudes� of the form 〈h, q|〈h′, q′|R2|h′, q′〉|h, q〉, whi
h, be
ause of (2.16), are invariantunder global symmetry transformations. However, the measurements of �ux or 
harge aredes
ribed in di�erent ways. First, the measurements of �ux 
orrespond to proje
ting ontosome �ux eigenstate in the ve
tor spa
e Va 
arried by a parti
le a. They are des
ribed byproje
tors Ph, whi
h satisfy the �ux proje
tor algebra
PhPh′ = δh,h′Ph, h, h′ ∈ H. (2.34)On the other hand, the measurement of 
harge 
orresponds to determining the representation

Γ in whi
h a given parti
le a transforms. These 
an be determined, at least in prin
iple, by thetransformation properties under all the g ∈ H transformations. Therefore, the stru
ture ofallowed physi
al operations in an anyon system is, in prin
iple, fully 
aptured by the proje
tors(2.34) and the g ∈ H transformations. However, sin
e g ∈ H transformations a
t on general�ux states by (2.29), Ph and g do not in general 
ommute
gPh = Pghg−1g. (2.35)All the possible 
ombinations of these two elementary physi
al operations form the set ofelements
{Ph g}h,g∈H , (2.36)28



whose elements, due to the non-
ommutativity of Ph and g, do not 
ommute either. Instead,they obey the relation
Phg · Ph′g′ = δh,gh′g−1Ph g g

′, (2.37)whi
h 
an taken as a multipli
ation rule for the elements Phg. The idea is now to treatthe set of elements (2.36) as the elements of the extended symmetry algebra D(H). Indeed,these elements are known to generate a so 
alled quantum double D(H) of H, whi
h is aquasitriangular Hopf algebra [2, 11, 31℄. It arises naturally as an extended symmetry algebraon any systems where the fundamental group 
oin
ides with the the residual gauge group(2.4).The full quasitriangular Hopf algebra stru
ture is given by {D(H), ·,∆, ǫ,S,R}, wherethe mappings are formally given by [24, 33℄
· : D(H) ⊗D(H) → D(H), (2.38)

∆ : D(H) → D(H) ⊗D(H), (2.39)
ǫ : D(H) → C, (2.40)
S : D(H) → D(H), (2.41)

R : D(H) ⊗D(H) → D(H) ⊗D(H). (2.42)There are a number of de�ning relations these stru
tures have to obey in order to 
onstitutea Hopf algebra. First, from the multipli
ation · one assumes asso
iativity
(D(H) ·D(H)) ·D(H) = D(H) · (D(H) ·D(H)) . (2.43)Analogously, the 
o-multipli
ation ∆ has to satisfy 
oasso
iativity

(∆ ⊗ id)∆ (D(H)) = (id⊗ ∆)∆ (D(H)) . (2.44)The 
oasso
iativity tells how the a
tion of D(H) 
an be extended on tensor produ
ts ofve
tor spa
es. The quasitriangular stru
ture of D(H) is given by the unique element R ∈
D(H)⊗D(H), the universal R-matrix, whi
h has to satisfy the quasitriangularity 
onditions

R∆ (D(H)) = (σ ◦ ∆ (D(H)))R,
(id⊗ ∆)(R) = R13R12, (2.45)
(∆ ⊗ id)(R) = R13R23,where σ is a transposition map, σ ◦ (a⊗ b) = b⊗ a, and the Rij a
t on the ith and jth fa
torof D(H) ⊗D(H) ⊗D(H) [33℄. When 
ombined, the the last two imply that R satis�es alsothe abstra
t Quantum Yang-Baxter equation

R12R13R23 = R23R13R12. (2.46)29



Finally, the 
o-unit ǫ and the antipode S are de�ned as mappings obeying the respe
tiverelations
(ǫ⊗ id)∆(D(H)) = (id⊗ ǫ)∆(D(H)) = D(H), (2.47)

·(S ⊗ id)∆(D(H)) = ·(id⊗ S)∆(D(H)) = ǫ(D(H)). (2.48)The 
ounit ǫ plays the role of unit mapping with respe
t to 
omultipli
ation, whereas theantipodal map S serves to provide the inverse elements of D(H).Now, for the quantum double D(H) with the set of elements (2.36), these obje
ts aregiven by [2, 11, 33℄
∆(Phg) =

∑

h′·h′′=h

Ph′g ⊗ Ph′′g, (2.49)
R =

∑

h,g∈H

Pg ⊗ Phg, (2.50)
ǫ(Phg) = δh,e, (2.51)
S(Phg) = Pg−1h−1gg

−1, (2.52)with the multipli
ation · already given by (2.37). To show that the stru
ture of D(H) isindeed given by these obje
ts, one should prove that they satisfy the de�nitions above. First,the 
oasso
iativity (2.44) is nearly trivial, sin
e by just using the de�nition (2.49) and thenrenaming the indi
es suitably, one 
an immediately write both sides as
(id⊗ ∆)∆(Phg) = (∆ ⊗ id)∆(Phg) =

∑

h′·h′′·h′′′=h

Ph′g ⊗ Ph′′g ⊗ Ph′′′g. (2.53)The quasitriangularity 
onditions (2.45) 
an be proven as follows
R∆(Pab) =


∑

h,g

Pg ⊗ Phg



(
∑

a′·a′′=a

Pa′b⊗ Pa′′b

)
,

=
∑

h,g

∑

a′·a′′=a

δg,a′δg−1hg,a′′Pgb⊗ Phgb,

=
∑

h,g

δa,hgPgb⊗ Phgb,

=
∑

x,y

δa,bxb−1byb−1Pbyb−1b⊗ Pbxb−1byb−1b, (2.54)
=
∑

x,y

∑

a′·a′′=a

δa′,bxb−1δa′′,byb−1Pa′′b⊗ Pa′by,

=

(
∑

a′·a′′=a

Pa′′b⊗ Pa′b

)(
∑

x,y

Py ⊗ Pxy

)
,

= (σ ◦ ∆(Pab))R,where the summation indi
es have been relabeled as h = bxb−1 and g = byb−1. This is allowed,be
ause the sums run over all the elements h, g ∈ H, and thus relabeling only permutes the30



terms in the sum. Likewise,
R13R12 =


∑

h,g

Pg ⊗ 1 ⊗ Phg




∑

a,b

Pa ⊗ Pba⊗ 1


 ,

=
∑

h,g

∑

a,b

δg,aPg ⊗ Pba⊗ Phg,

=
∑

g,h,b

Pg ⊗ Pbg ⊗ Phg, (2.55)
=
∑

x,g

∑

x=x′·x′′

Pg ⊗ Px′g ⊗ Px′′g,

= (id⊗ ∆)(R),and
R13R23 =


∑

h,g

Pg ⊗ 1 ⊗ Phg




∑

a,b

1 ⊗ Pa ⊗ Pba


 ,

=
∑

h,g

∑

a,b

δh,gbg−1Pg ⊗ Pa ⊗ Phga,

=
∑

g,a,b

Pg ⊗ Pa ⊗ Pgbg−1ga, (2.56)
=
∑

y,x

∑

x=x′·x′′

Px′ ⊗ Px′′ ⊗ Pyx,

= (∆ ⊗ id)(R),where the summation indi
es have again in both been relabeled suitably. Finally, the de�ni-tions for the 
ounit ǫ (2.47) and the antipode S (2.48) 
an be proven by
(ǫ⊗ id)∆(Phg) = (ǫ⊗ id)( ∑

h′h′′=h

Ph′g ⊗ Ph′′g

)
,

=
∑

h′h′′=h

δh′,e ⊗ Ph′′g = Phg, (2.57)
=

∑

h′h′′=h

Ph′g ⊗ δh′′,e,

= (id⊗ ǫ)∆(Phg),31



where one 
an write δh,ePhg = Phg ⊗ δh,e = δh,e ⊗ Phg, and
·(S ⊗ id)∆(Phg) = ·

∑

h′h′′=h

Pg−1h′−1gg
−1 ⊗ Ph′′g,

=
∑

h′,h′′

δh′h′′,hδh′−1,h′′Pg−1h′−1g,

=
∑

h′

δh,ePg−1h′−1g = δh,e = ǫ(Phg),

=
∑

h′

δh,ePh′ , (2.58)
=

∑

h′h′′=h

δh′,h′′−1Ph′ ,

= ·
∑

h′h′′=h

Ph′g ⊗ Pg−1h′′−1gg
−1,

= ·(id⊗ S)∆(Phg),where the 
ompleteness of the proje
tors, ∑h Ph =
∑

h Pg−1h−1g = 1, has been used.This 
on
ludes the summary of the algebrai
 stru
ture of the quantum doubleD(H). How-ever, although one 
ould loosely argue for the rise of D(H) in physi
al terms, by themselvesthese abstra
t stru
tures o�er only very little insight to how they 
an be used to deal withthe anyons in a holisti
 manner. To get ba
k to physi
s, one must 
onsider the representationtheory of D(H).2.3.1 Representation Theory for the Quantum Double D(H)It is known from the general theory of Hopf algebras that the representation spa
e, the left
D(H)-module, of a quantum doubleD(H) is given by aH-graded ve
tor spa
e, V =

⊕
h∈H Vh,where H also a
ts in a 
ompatible way a

ording to [33℄

|g · v| = g|v|g−1, ∀v ∈ V, g ∈ H. (2.59)Here g· denotes the a
tion of g ∈ H, v ∈ Vh ⊂ V is a ve
tor and |v| = h is the degree of v.Re
alling that g ∈ H are the residual symmetry transformations, this abstra
t 
ompatibility
ondition expresses that the representation spa
e V de
omposes into the irredu
ible subspa
estransforming onto themselves under the a
tion of H. Su
h spa
es were already en
ounteredduring the preliminary dis
ussion, whi
h paved the way for the algebrai
 treatment, and witha slight reinterpretation, these results 
an now be dire
tly taken into use.It was argued how the supersele
tion se
tors, or the parti
le spe
trum M (2.27), of theanyon model are formed when the gauge group of the system is the non-abelian group H. Itwas found that they are in general degenerate, whi
h implied that ea
h parti
le a 
ould bethought as 
arrying an internal ve
tor spa
e Va. Now, the quantum double D(H) expressesthe extended symmetry algebra of a model with the gauge group H. Therefore, it should a
tirredu
ibly in these internal ve
tor spa
es, whi
h 
an now be mathemati
ally interpreted as32



the subspa
es, whi
h 
orrespond to the gradation of the D(H)-module and whi
h are simulta-neously 
ompatible with (2.59). Hen
e, in the language of the present algebrai
 treatment, theparti
le spe
trum M should be understood as a 
olle
tion of ve
tor spa
es Va ea
h 
arrying aparti
ular irredu
ible representation Πa of D(H)

M = {(Va,Πa)}a=1,...,|M |. (2.60)Having already 
onsidered the spa
es Va in 
onne
tion with dyons (2.23), the basis in ea
hbeing given by |k, i〉 ∈ Va (2.24), one should now �nd how the a
tion of D(H) is representedin them.Re
all that for an element Phg ∈ D(H) one assigned the physi
al interpretation of a global
g ∈ H transformation followed by a proje
tion onto the �ux eigenstate |h〉. To preserve thisinterpretation, for a state |k, i〉 ∈ Va, the a
tion of D(H) should be represented by

Phg : |k, i〉 → Πa(Phg)|k, i〉 = δh,gkg−1|gkg−1,Γa(g̃)i〉, (2.61)where g̃ ∈ N(k) is the part of g 
ommuting with k (2.28). In order this to be a validrepresentation in Va, it should respe
t the group algebra (2.37) of D(H)

Πa(Phg)Πa(P
′
hg

′)|k, i〉 = δh,gh′g−1Πa(Phgg
′)|k, i〉. (2.62)This 
an 
he
ked by 
onsidering the following a
tions of D(H):

Πa(Phg)Πa(Ph′g′)|k, i〉 = δh,gg′kg′−1g−1 δh′,g′kg′−1︸ ︷︷ ︸
=δ

h,gh′g−1

|gg′kg′−1g−1,Γa(g̃)Γa(g̃′)i〉, (2.63)
δh,gh′g−1Πa(Phgg

′)|k, i〉 = δh,gh′g−1 δh,gg′kg′−1g−1︸ ︷︷ ︸
=δ

h′,g′h′g′−1

|gg′kg′−1g−1, Γa(g̃g′)︸ ︷︷ ︸
=Γa(g̃)Γa(g̃′)

i〉. (2.64)These expressions are equal if the values of the delta fun
tions are equal for a �xed k and forall g, g′, h, h′ ∈ H. This is true, be
ause if either δh,gh′g−1 = 0 or δh′,g′hkg′−1 = 0, both sidesof (2.62) are immediately zero. It 
an be seen from the two di�erent expressions for the deltafun
tions above, that it is not possible to have other equal to unity and simultaneously theother equal to zero. To only alternative to having both equal to zero is to have both equal tounity, whi
h again satis�es (2.62). The identity Γa(g̃g′) = Γa(g̃)Γa(g̃′) follows again from theisomorphism N(k) ≃ N(gkg−1) (2.32). Therefore, (2.61) is indeed a viable representation of
D(H) in the spa
e Va.The extension of the a
tion of D(H) on multi-parti
le states is given formally by the
omultipli
ation (2.49). Parti
ularly, in terms of the representation (2.61), the a
tion ontwo-parti
le state |k, i〉|k′, j〉 ∈ Va ⊗ Vb is given by

Πa ⊗ Πb (∆(Phg)) |k, i〉|k′, j〉 =
∑

h′·h′′=h

δh′,gkg−1δh′′,gk′g−1 |gkg−1,Γa(g̃)i〉|gk′g−1,Γb(g̃)j〉,

= δh,gkk′g−1 |gkg−1,Γa(g̃)i〉|gk′g−1,Γb(g̃)j〉. (2.65)33



Physi
ally this 
orresponds to implementing a residual g transformation separately on ea
hparti
le and subsequently proje
ting out the total �ux of the 
ombined system. Therefore, thea
tion (2.49) of D(H) determines the globally 
onserved properties of the two parti
le quan-tum system and the 
oasso
iativity (2.44) implies that the a
tion of D(H) 
an be extendedthrough 
omultipli
ation to an arbitrary number of states with similar interpretation.Using (2.61), the representations for the 
ounit ǫ (2.51) and the antipode S (2.52) aregiven by
Πa (ǫ(Phg)) |k, i〉 = δh,e|k, i〉, (2.66)
Πa (S(Phg)) |k, i〉 = δh−1,k|g−1kg,Γa(g̃

−1)i〉. (2.67)One 
an see that the a
tion of ǫ is represented trivially in an arbitrary spa
e Va, and thereforethe 
ounit implements a trivial symmetry transformation. Physi
ally this signals the existen
eof va
uum 1 ∈ M . The representation of the antipode a
ts non-trivially, but the physi
s 
anbe extra
ted by 
onsidering the following
Πa(Phg)Πa (S(Phg)) |k, i〉 = Πa(Phg)

(
δh−1,k|g−1kg,Γa(g̃

−1)i〉
)
,

= δh,kδh−1,k|k,Γa(g̃)Γa(g̃
−1)i〉, (2.68)

= δh,h−1|k, i〉.The 
ombined a
tion of the elements Phg and S(Phg) is proportional to the trivial transfor-mation, and thus as expe
ted from the general theory of Hopf algebras [33℄, the antipode playsthe role of inverse. Physi
ally this 
orresponds to the implementation of inverse transforma-tions and hen
e of also to the existen
e of anti-parti
les ā ∈M . Generally one 
an de�ne theanti-parti
les as transforming in the 
onjugate representation, whi
h 
an be de�ned with theaid of the antipode [2℄
Πa(Phg) ≡ ΠT

a (S(Phg)), (2.69)where T denotes transposition. The anti-parti
les are unique in a sense that for ea
h parti
le
a, there is only one other parti
le ā, whi
h 
an fuse to give the va
uum. However, be
auseof the topologi
al degenera
y, this does not mean that a fusion with an anti-parti
le wouldalways give the va
uum, but that there are no parti
les b, other than the anti-parti
le ā, whi
hwhen fused with a may give the va
uum [32℄. This 
urious property will play a key role inthe next se
tion.The �nal pie
e of stru
ture is the universal R-matrix (2.50). It is of primary interest sin
eit satis�es the quantum Yang-Baxter equation (2.46), and hen
e representations of R 
an beused to de�ne representations of the braid group. Be
ause R ∈ D(H) ⊗ D(H), it a
ts in
Va ⊗ Vb, and one 
an therefore de�ne physi
al braid operator R by

Rab = σ ◦ (Πa ⊗ Πb)(R), (2.70)34



where the σ is an operator performing the spatial ex
hange of the parti
le positions. Using(2.61), the a
tion of Rab on a two parti
le state is then given by
Rab|k, i〉|k′, j〉 = σ ◦


(Πa ⊗ Πb)(

∑

h,g

Pg ⊗ Phg)|k, i〉|k′, j〉


 ,

= σ ◦


∑

h,g

δg,kδh,gk′g−1 |k, i〉|gk′g−1,Γb(g̃)j〉


 ,

= σ ◦
(
∑

h

δh,kk′k−1|k, i〉|kk′k−1,Γb(k̃)j〉
)
, (2.71)

= σ ◦
(
|k, i〉|kk′k−1,Γb(k̃)j〉

)
,

= |kk′k−1,Γb(k̃)j〉|k, i〉.Comparing this to (2.30), one 
an see that the a
tion of the universal R-matrix in the spa
e
Va⊗Vb, as de�ned by (2.70), 
oin
ides with the a
tion of the braid operator on the �ux/
hargeeigenstates by implementing the Aharonov-Bohm e�e
t (2.6) and the �ux metamorphosis (2.7)on all 
on
eivable states in the model. Be
ause of the transposition map σ in the de�nition
R, it does not satisfy the abstra
t quasitriangularity 
onditions (2.45), but the 
onditions [11℄

R∆ (D(H)) = (∆ (D(H)))R,

(id⊗ ∆)(R) = (1 ⊗R)(R⊗ 1), (2.72)
(∆ ⊗ id)(R) = (R ⊗ 1)(1 ⊗R),The �rst of these expresses the already familiar property (2.16), i.e. that braiding 
ommuteswith residual symmetry transformations and 
onserves the total �ux. When 
ombined, thelast two imply that R satis�es the Yang-Baxter equation (2.11)

(R ⊗ 1)(1 ⊗R)(R⊗ 1) = (1 ⊗R)(R⊗ 1)(1 ⊗R), (2.73)and thus the representations (2.70) indeed de�ne representations of the braid group.To summarize, in an anyon model based on a �nite gauge group H, an internal ve
tor spa
eof N parti
les 
arries representations of both D(H) and BN given by ((Πa)
⊗N ,( Va)

⊗N ) and
Rab, respe
tively, for ea
h a, b ∈ M . Therefore, the algebrai
 
onstru
tion with the quantumdouble D(H) as an extended symmetry algebra, 
aptures all the features of an anyon model asderived based on purely quantum me
hani
al 
onsiderations. However, it also allows one to gofurther by providing a way to ta
kle the theory of fusion whi
h was una

essible before. Thiswill be the topi
 of the next se
tion where the long sought topologi
ally prote
ted subspa
eswill �nally be dis
overed.

35



2.3.2 The Topologi
al Hilbert Spa
eWhen two parti
les are fused together, the quantum numbers M should be 
onserved. How-ever, as one is now 
onsidering an anyon model with degenerate supersele
tion se
tors, i.e. anon-abelian model, it is not at all obvious how the quantum numbers should be added up. Onethe other hand, sin
e the irredu
ible representations Πa of D(H) are used to 
lassify the dis-tin
t parti
les, it is natural to demand that the out
ome of the fusion has to transform also insome irredu
ible representations of D(H). Now, in addition to assigning quantum numbers todistin
t parti
les, the Πa des
ribe also the transformation properties under D(H) transforma-tions, and thus one 
ould as well 
onsider the tensor produ
ts of single parti
le representations
Πa ⊗Πb, whi
h 
ould be thought of as des
ribing the transformation properties and quantumnumbers of a 
omposite two-parti
le system. However, the �rst quasitriangularity 
ondition(2.72) shows that D(H) and BN 
ommute and 
an thus be simultaneously diagonalized. This,on the other hand, means that the N -parti
le representations ((Πa)

⊗N ,( Va)
⊗N ) are in gen-eral redu
ible and hen
e under the a
tion of D(H) × BN , the multi-parti
le representationsbreaks down to a dire
t sum of irredu
ible representations [11℄. The possible out
omes of afusion of two parti
les are then determined by the de
omposition of Πa ⊗ Πb into irredu
iblerepresentations, i.e. the Clebs
h-Gordan series

Πa ⊗ Πb =
⊕

c

N c
abΠc, (2.74)where N c

ab stands for the multipli
ity of the irredu
ible representation Πc in the de
omposition.These numbers are determined by using the orthogonality of the 
hara
ters of irredu
iblerepresentations [11, 24℄
N c

ab =
1

|H|
∑

h,g

tr (Πa ⊗ Πb(∆(Phg))) tr (Πc(Phg))
∗ . (2.75)In more physi
al terms, given two parti
les a and b, the de
omposition (2.74) state whi
hparti
les c 
an be be formed, i.e. it provides the fusion rules of the model. If for someparti
les N c

ab ≥ 2, there exist N c
ab ways of obtaining the parti
le c. The fusion rules are themost interesting feature of the representation theory of D(H), at least as far as topologi
alquantum 
omputation is 
on
erned, be
ause they en
ode the robust features of multi-parti
lesystems. The whole pre
eding dis
ussion has been presented to argue for their emergen
e,and mu
h of it will not play a role anymore. Yet, the dis
ussion has not been in vain,be
ause to a
tually 
al
ulate the fusion multipli
ities (2.75) for a given model, one still needsto understand how to derive the representation spa
es Va (2.60) and the representations Πa(2.61).The Fusion Algebra and the Fusion Spa
esThe new starting point is to 
onsider the de
omposition (2.74) as an abstra
t fusion algebra,

a× b =
∑

c

N c
ab c, (2.76)36



whi
h is both 
ommutative and asso
iative [32, 42℄
a× b = b× a, ⇔ N c

ab = N c
ba, (2.77)

(a× b) × d = a× (b× d), ⇔
∑

x

Nx
abN

c
xd =

∑

x

N c
axN

x
bd.The physi
s underlying these two properties is the 
onservation of the quantum numbers:given that the out
ome will be c, it does not matter in whi
h order the parti
les are fused.The fusion algebra 
an be thought as assigning ea
h label set {a, b, c} ∈M a fusion spa
e

V c
ab of dimension dim(V c

ab) = N c
ab. (2.78)The ve
tor spa
e V c

ab is spanned by so 
alled fusion states, whi
h form the orthonormal basis
{|ab; c, µ〉}µ=1,...,Nc

ab
, 〈ab; c, µ|ab; c, µ′〉 = δµ,µ′ , (2.79)and have the physi
al interpretation of 
orresponding to the inequivalent and distinguishableways a and b 
an fuse to form c. One 
an as well 
onsider more general fusion spa
es Vab
arried by parti
les a and b and where the fusion out
ome is not �xed. The stru
ture ofsu
h spa
es is given by the dire
t sum over all the subspa
es indexed by the possible fusionout
omes c

Vab =
⊕

c

V c
ab, dim(Vab) =

∑

c

N c
ab. (2.80)Sin
e for ea
h c there is a proper subspa
e, the orthonormal basis in Vab is given by

{|ab; c, µ〉}c
µ=1,...,Nc

ab
, 〈ab; c, µ|ab; c′, µ′〉 = δc,c′δµ,µ′ . (2.81)From the de�nition (2.80), one 
an see that dim(Vab) > 1 only for non-abelian models. Inan abelian model there would be no topologi
al degenera
y and the out
ome of every fusionwould always be unique. The topologi
al Hilbert spa
e would 
oin
ide with the only subspa
elabeled by a single c, Vab ≃ V c

ab, and thus dim(Vab) = N c
ab = 1 for all a and b. Sin
e one wantsto 
onsider the fusion spa
es as an arena for quantum 
omputation, this reinfor
es the notionthat quantum 
omputation with anyons is only possible for a non-abelian model [42℄.The two-parti
le fusion spa
es (2.78) and (2.80) serve as simple examples of what aresometimes 
alled topologi
al Hilbert spa
es. However, they are hardly of parti
ular interest,be
ause unless there is fusion degenera
y, i.e. N c

ab ≥ 2, V c
ab 
an not be used to en
ode quantuminformation. Consequently, the fusion spa
es Vab are dire
tly out of the question, be
ause one
annot form superpositions of states belonging to di�erent supersele
tion se
tors [32℄. Toover
ome these restri
tions, one must 
onsider the more general fusion spa
es V c

a1,...,aN

arriedby some N -parti
les, whose total 
harge has been restri
ted to c. To study their stru
ture,one needs to de
ompose them in terms of the elementary fusion spa
es V c

ab. Be
ause thefusion algebra is asso
iative (2.77), multi-parti
le fusion spa
es V c
a1,...,aN


an be de
omposed37



as a dire
t sum of subspa
es 
orresponding to di�erent fusion orders. For example, onede
omposition is realized by fusing always the two left most parti
les
V c

a1...aN
≃

⊕

b1,b2,...,bN−2

V b1
a1a2

⊗ V b2
b1a3

⊗ · · · ⊗ V c
bN−2aN

, (2.82)where b1, b2, . . . , bN are parti
les whi
h may o

ur during intermediate stages of fusing allthe parti
les together. From this expression, one 
an immediately read o� the dimension of
V c

a1,...,aN
,

dim(V c
a1...aN

) = N c
a1...aN

=
∑

b1,b2,...,bN−2

N b1
a1a2

N b2
b1a3

· · ·N c
bN−2aN

. (2.83)Of 
ourse, this parti
ular fusion order is not the only possible 
hoi
e for the de
omposition.Any other 
hoi
e would give as viable alternative de
omposition. Yet, regardless of howone does the de
omposition, the N -parti
le fusion spa
e always de
omposes as a dire
t sumof N − 2 two-parti
le fusion spa
es, and all the di�erent 
hoi
es 
orrespond to isomorphi
representations of the same spa
e V c
a1,...,aN

. Sin
e one needs to pi
k one to pro
eed withthe analysis, the de
omposition (2.82) is as good as any. It is known as the standard basisde
omposition, whi
h often serves as the most pra
ti
al 
hoi
e due to its simple stru
ture [42℄.The standard basis 
orresponding to this de
omposition is given by the tensor produ
t of thesubspa
e bases
{|a1a2; b1, µ1〉|b1a3; b2, µ2〉 · · · |bN−2aN ; c, µN−1〉}. (2.84)The orthonormality of these spa
es is given by the orthonormality of the individual basisstates (2.81). Working with basis of this form a rather awkward due to the large number ofindi
es, and thus in analogy with (2.79), it is useful to adopt a more 
ompa
t notation bydenoting these basis states by

{|a1a2 · · · aN ; c, µ〉}µ=0,1,...,Nc
a1a2···aN

, 〈a1a2 · · · aN ; c, µ|a1a2 · · · aN ; c, µ′〉 = δµ,µ′ , (2.85)where the index µ 
ounts now both the fusion state degenera
ies as well as the distin
tintermediate fusion out
omes.The observation above that the fusion algebra is asso
iative allowed one to de
omposethe N -parti
le fusion spa
es in terms of smaller subspa
es. There are also quite a few otherrelations between di�erent fusion spa
es that the fusion algebra implies [32, 42℄. First, the
ommutativity implies a natural fusion spa
e isomorphism
V c

ab ≃ V c
ba. (2.86)This observation 
an be extended to N parti
les by saying that all fusion spa
es 
orrespondingto permutations of the lower indi
es are isomorphi
. The label c 
an therefore be said tode�ne the supersele
tion se
tor of the fusion spa
e V c

a1,...,aN
, whi
h 
an not 
hange in anyphysi
al pro
ess in whi
h only the parti
les a1, . . . , aN parti
ipate. Se
ond, the existen
e of38



unique anti-parti
les indu
es further natural isomorphisms between the fusion spa
es V c
ab. Thestarting point is the fusion spa
e V a

a1 where no fusion o

urs. This spa
e 
an be thought as
orresponding to free propagation and hen
e it is one-dimensional by de�nition, dim(V a
a1) =

Na
a1 = 1. Sin
e the anti-parti
le ā is unique for a given a, the spa
e V 1

aā where total annihilationo

urs must also be one-dimensional, dim(V 1
aā) = N1

aā = 1. More spe
i�
ally, these spa
es areisomorphi
 [32℄
V a

a1 ≃ V 1
aā ≃ V aā

1 . (2.87)The last isomorphism in (2.87) also implies that a pair of parti
les 
reated out of va
uumalways 
arries 
onjugate labels. These isomorphisms 
an be generalized to arbitrary fusionspa
es by adopting a 
onvention that the indi
es 
an be raised and lowered by repla
ing themwith their 
onjugates
V c

ab ≃ V 1
abc̄ ≃ V b̄

ac̄ ≃ · · · . (2.88)All fusion spa
es isomorphi
 to ea
h other are also of same dimension. The physi
s underlyingthese isomorphisms is still the 
onservation of total 
harge - all the fusion spa
es 
orrespondingto fusion pro
esses 
onserving the same total 
harge are isomorphi
.The fusion algebra 
an also be used to partition M into various useful subsets. Forexample, the fusion out
omes of the parti
les a and b form the set
Mab = {c}∀c∈M,Nc

ab
6=0, Mab ⊂M. (2.89)Another kinds of partitions, if su
h exist in a given model, are the subsets Mi ⊂ M , whi
hare 
losed under the fusion algebra (2.76)

Mi ×Mi →Mi. (2.90)The existen
e of su
h sets is of interest, be
ause parti
les in su
h Mi would span a subalgebraof the 
omplete fusion algebra, and they 
ould therefore be treated independently of any otherparti
les appearing in the model. Consequently, the fusions spa
es 
arried by parti
le in Miform a proper subspa
e of the full fusion spa
e, whi
h is 
losed under operations involvingonly these parti
les. From the point of view of quantum 
omputation, these subalgebras area desirable feature, be
ause the possibility to restri
t to dealing with only a limited numberof parti
les types 
an signi�
antly simplify the dis
ussion.The primary reason to study topologi
al quantum 
omputation is that the fusion spa
es areprote
ted from de
oheren
e by topology. The states in V c
a1,...,aN

are robust in the presen
e oflo
al external perturbations. By external perturbations one means for example intera
tionswith environment su
h as photons or ordinary matter, whi
h 
an 
ause deviataions in thequasiparti
le traje
tories, but 
an not 
hange the supersele
tion se
tor in the topologi
alHilbert spa
e. Only intera
tions or fusions with external quasiparti
les 
an 
ause this andthus the primary error sour
e to be 
ontrolled is the spontaneous 
reation of parti
le - anti-parti
le pairs. Otherwise, in prin
iple, there are no other sour
es of error. The pair 
reation is39



not assumed to be a signi�
ant obsta
le, be
ause it is exponentially suppressed with de
reasingtemperature and thus one 
an deal with it with su�
ient 
ooling [31, 42℄. Having now �nallyidenti�ed the arena for topologi
al quantum 
omputation, it is time to 
onsider what one 
ando there, i.e. how the braid group is represented.Braiding in the Topologi
al Hilbert Spa
eThe 
ommutativity of the fusion algebra (2.76) implied the fusion spa
e isomorphisms (2.86).This, on the other hand, implies that there exists a unique unitary intertwiner map
R : V c

ab → V c
ba, (2.91)whi
h relates the isomorphi
 fusion spa
es. Absorbing the 
onvention of the pla
ement ofthe parti
les on a line (2.5) on the pla
ement of the indi
es in V c

ab, R then has an additionalinterpretation of implementing the transposition of adja
ent parti
les. The isomorphism (2.91)relating two representation tensor produ
ts ofD(H) should be map 
ommuting with the a
tionof D(H), and su
h a map is already familiar. It is the braid operator (2.70) obtained fromthe universal R-matrix, whi
h by (2.72) satis�es this property and whi
h hen
e a
ts in thefusion spa
es as (2.91) [24, 32, 33℄. In general, the appli
ations of R will be referred to asR-moves, whi
h 
an be 
onsidered as the a
tions of braid group generators on two-parti
lefusion spa
es. When expressed as a matrix a
ting on the basis states of the isomorphi
 fusionspa
es, an R-move relates the two bases |ab; c, µ〉 ∈ V c
ab and |ba; c, µ′〉 ∈ V c

ba by the expansion
|ab; c, µ〉 = Rc

ba|ba; c, µ〉 =
∑

µ′

(Rc
ba)

µ′

µ |ba; c, µ′〉. (2.92)This is a very general expression, but the exa
t form of the unitary matrix Rc
ab is 
onstrainedby 
ertain 
onsisten
y 
onditions to be dis
ussed in a while.There exists also a se
ond intertwiner map relating the isomorphi
 N -parti
le fusionspa
es. The asso
iativity of the fusion algebra allowed one to de
ompose multi-parti
le fusionspa
es by di�erent fusion orders with no fusion order being singled out by any physi
al prin-
iple. Sin
e all the possible de
ompositions are still representations of the same fusion spa
e[32℄, the alternative representations should be related by some unique unitary map

F d
abc : V d

abc ≃
⊕

x∈Mab

V x
ab ⊗ V d

xc → V d
abc ≃

⊕

x∈Mbc

V d
ax ⊗ V x

bc, (2.93)In analogy to the R-moves (2.91), these maps are known as the F -moves, whi
h a
t on thebasis states as
|ab; e, µ〉|ec; d, ν〉 =

∑

x∈Mbc,
µ′,ν′

(
F d

abc

)xµ′ν′

eµν
|ax; d, µ′〉|bc;x, ν ′〉. (2.94)Sin
e the 
anoni
al basis in the fusion spa
es was 
hosen to 
oin
ide with the distin
t fusion
hannels, an F -move 
an be interpreted as implementing a basis 
hange in the fusion spa
es40



by swit
hing between the possible fusion orders. As the R-moves, also the F -moves are
onstrained by 
ertain 
onsisten
y 
onditions.These 
onsisten
y 
onditions arise, be
ause R- and F -moves de�ne isomorphisms betweendi�erent spa
es and therefore 
ertain 
ombinations of them have to be 
ompatible with ea
hother. These 
onditions go under the names of pentagon and hexagon equations. Consider �rstthe fusion spa
e V e
abcd =

⊕
x∈Mab,y∈Mxc

V x
ab ⊗ V y

xc ⊗ V e
yd in the standard basis de
omposition.Both of the F -move sequen
es,

⊕

x∈Mab,
y∈Mxc

V x
ab ⊗ V y

xc ⊗ V e
yd

F e
xcd−→

⊕

x∈Mab,
y′∈Mcd

V x
ab ⊗ V e

xy′ ⊗ V y′

cd

F e
aby′−→

⊕

x′∈Mby′ ,

y′∈Mcd

V e
ax′ ⊗ V x′

by′ ⊗ V y′

cd , (2.95)and
⊕

x∈Mab,y∈Mxc

V x
ab ⊗ V y

xc ⊗ V e
yd

F
y

abc−→
⊕

x′∈Mbc,y∈Max′

V y
ax′ ⊗ V x′

bc ⊗ V e
yd

F e
ax′d−→

⊕

x′∈Mbc,y′∈Mx′d

V e
ay′ ⊗ V x′

bc ⊗ V y′

x′d (2.96)
F

y′

bcd−→
⊕

x′′∈Mcd,y′∈Mbx′′

V e
ay′ ⊗ V y′

bx′′ ⊗ V x′′

cd ,yield the same de
omposition and thus in terms of the matrix elements (2.94), the F have tosatisfy
∑

y′∈Mcd

x′∈Mby′

(
F e

aby

)x′

x
(F e

xcd)
y′

y =
∑

x′∈Mbc

y′∈Mx′d,x′′∈Mcd

(
F y

bcd

)x′′

x′
(F e

ax′d)
y′

y

(
F y

abc

)x′

x
. (2.97)This is the pentagon equation with the summation over the fusion state indi
es µ, ν, . . . sup-pressed.Similarly one 
an 
onsider the fusion spa
e V d

abc ≃
⊕

x∈Mab
V x

ab ⊗V d
xc ≃

⊕
x∈Mbc

V d
ax ⊗ V x

bc.Starting from the �rst one, the latter de
omposition 
an then be rea
hed either by
⊕

x∈Mab

V x
ab ⊗ V d

xc

Rx
ab
⊗id−→

⊕

x∈Mab

V x
ba ⊗ V d

xc

F d
bac−→

⊕

x′∈Mac

V d
bx′ ⊗ V x′

ac

id⊗Rx′

ac−→
⊕

x′∈Mac

V d
bx′ ⊗ V x′

ca ,(2.98)or by
⊕

x∈Mab

V x
ab ⊗ V d

xc

F d
abc−→

⊕

x′∈Mbc

V d
ax′ ⊗ V x′

bc

(id⊗Rd
ax′

)·σ
−→

⊕

x′∈Mbc

V x′

bc ⊗ V d
x′a

F d
bca−→

⊕

x′′∈Mca

V d
bx′′ ⊗ V x′′

ca .(2.99)This means that in terms of the matrix elements (2.94) and (2.92), the hexagon equation reads
∑

x′∈Mac

Rx′

ac

(
F d

bac

)x′

x
Rx

ab =
∑

x′∈Mbc,
x′′∈Mca

(
F d

bca

)x′′

x′

Rd
ax′

(
F d

abc

)x′

x
. (2.100)41



By the so 
alled Ma
Lane's 
oheren
e theorem, there are no further 
onsisten
y 
onditions[32, 42℄, and thus (2.97) and (2.100) de�ne viable and 
onsistent anyon models, whi
h are
ompletely 
hara
terized by their solutions.From the point of view of quantum 
omputation, it is assuring that viable anyon modelsare de�ned by solutions to only two polynomial equations. On the other hand, sin
e thesesolutions give the representations of the R- and F -moves as the only fundamental stru
ture,the tools to 
onstru
t various transformations in the fusion spa
es are very limited. Parti
-ularly, one wishes to 
onstru
t the representation of the braid group in an N -parti
le fusionspa
e V c
a1,...,aN

, i.e. �nd how the braid group a
ts on the standard basis (2.85). However, sin
ethe this spa
e is asso
iated with only one parti
ular arrangement of the indi
es a1, . . . , aN , it
an not by itself 
arry a representation of braid group. In 
ontrast, the viable spa
e shouldin
lude all the spa
es asso
iated with di�erent permutations of the lower indi
es, whi
h 
anin general be written as
V c =

⊕

a1,...,aN

V c
a1,...,aN

. (2.101)Anti
ipating the things to 
ome, this is also the general stru
ture one assumes from the poten-tial 
omputational spa
es. Be
ause braiding is in pra
ti
e the only way to apply transforma-tions, one must in
lude all the permutations of the labels in order to prevent transformationstaking states out of the 
omputational spa
e.Considering the V d
abc in the standard basis as the simplest non-trivial multi-parti
le fusionspa
e, an R-move, as de�ned by (2.91), implements then the transformation

R : V d
abc → V d

bac, (2.102)whi
h a
ts only on the two left most parti
les. As argued earlier, R 
an be interpreted as agenerator of the braid group σ1 → R, but to 
onstru
t an arbitrary braid on three parti
lesas the tensor produ
t (2.10), one needs also a se
ond generator σ2 → B whi
h together with(2.102) satis�es the Yang-Baxter equation (2.11). This meas that one wishes to �nd an unitaryoperator implementing the transformation
B : V d

abc → V d
acb. (2.103)Considering the limited number of tools at disposal, it is evident that the F -move has to beutilized. The solution is to �rst apply an F -move to swit
h into a basis where the R-movesare well de�ned, applying an R-move there and return to the standard basis by applying theinverse F−1-move [42℄. Using this pro
edure the B-move, the a
tion of an arbitrary generator42



of the braid group in the standard basis, 
an be 
onstru
ted as su

essive R- and F -moves
|abc; d〉 = |ab;x, µ〉|xc; d, ν〉,

=
∑

x′∈Mbc,µ′,ν′

|ax′; d, µ′〉|bc;x′, ν ′〉
(
F d

abc

)x′µ′ν′

xµν
,

=
∑

x′∈Mbc,µ′,ν′,ν′′

|ax′; d, µ′〉|cb;x′, ν ′′〉
(
Rx′

cb

)ν′′

ν′

(
F d

abc

)x′µ′ν′

xµν
, (2.104)

=
∑

x′∈Mbc,µ′,ν′,ν′′

x′′∈Mac,µ
′′,ν′′′

|ac;x′′, µ′′〉|x′′b; d, ν ′′′〉
(
[F−1]dacb

)x′′,µ′′,ν′′′

x′,µ′,ν′′

(
Rx′

cb

)ν′′

ν′

(
F d

abc

)x′µ′ν′

xµν
,

=
∑

x′′∈Mac,µ′′,ν′′′

|ac;x′′, µ′′〉|x′′b; d, ν ′′′〉
(
Bd

acb

)x′′,µ′′,ν′′′

x,µ,ν
,

= Bd
acb|acb; d〉.Suppressing the fusion state indi
es over whi
h one always sums, the elements of the matrixrepresentation Bd

acb in the spa
e V d
acb 
an be de�ned by

(
Bd

acb

)x′′

x
=

∑

x′∈Mbc

(
[F−1]dacb

)x′′

x′

(
Rx′

cb

)(
F d

abc

)x′

x
, (2.105)whi
h means that the a
tion of BN in the standard basis is 
ompletely 
hara
terized by R-and F -moves.This 
on
ludes the overview of the non-abelian anyon model based on a �nite residualgauge group H. The model is fully des
ribed by the quasitriangular Hopf algebra D(H), thequantum double ofH. The de�ning stru
tures are the parti
le spe
trumM (2.60), whi
h labelthe supersele
tion se
tors arising as the irredu
ible representations of D(H), the fusion rules(2.76) spe
i�ed by the fusion multipli
ities {N c

ab}a,b,c∈M (2.75), and the R- (2.50) and F -moves(2.93) des
ribing braiding properties. The dis
ussion has in no way been a rigorous treatmentof the algebrai
 stru
ture of anyons and the presented topi
s have been 
hosen due to theirrelevan
e in the light of topologi
al quantum 
omputation. For a more rigorous and detailedtreatment, one is referred to [18, 20℄ and [32℄. The reason to go through all this trouble isthe dis
overy of the topologi
al Hilbert spa
e, whi
h has the ex
eptional property for beinginsensitive to lo
al perturbations. Quantum information en
oded there would be intrinsi
allyprote
ted from de
oheren
e. With the topologi
al Hilbert spa
e as the playground and the Rand F as the tools at the repertoire, it now remains to be studied how quantum 
omputation
an be exe
uted in this long-sought arena. To put things into a bit more 
on
rete setting, aspe
i�
 anyon model will be presented next.
43



S3 e x xy xy2 y y2

e e x xy xy2 y y2

x x e y y2 xy xy2

xy xy y2 e y xy2 x

xy2 xy2 y y2 e x xy

y y xy2 x xy y2 e

y2 y2 xy xy2 x e yTable 2.1: Multipli
ation table of S32.4 The S3 Anyon ModelAs an example of the abstra
t 
onstru
tion of the previous se
tion, an anyon model based onthe non-abelian group S3 will be 
onsidered. This parti
ular example was 
hosen, be
ause S3is the simplest non-abelian group and its appli
ation to topologi
al quantum 
omputation,although in quite a di�erent setting, has been 
onsidered in [34℄. Unlike the Chern-Simonstype models, whi
h seem to rise naturally in fra
tional Quantum Hall states [22, 42, 45℄,no natural systems exhibiting S3 symmetry are 
urrently known. However, there has beenproposals for preparing su
h experimentally [15℄, and the simple stru
ture of S3 may well beone whi
h 
an be arti�
ially 
onstru
ted in the future.
S3 is the symmetry group of an equilateral triangle, whi
h is generated by the re�e
tionswith respe
t to any one of the three diagonals and by the 120 deg rotations around theirinterse
tion point. The respe
tive symmetry groups are the 
y
li
 groups Z2 and Z3, whi
hare generated by x and y satisfying x2 = e and y3 = e, respe
tively. Mathemati
ally, S3 
anthen be expressed as the dire
t produ
t

S3 = Z2 × Z3, (2.106)with the elements given by
S3 = {xnym}m=0,1,2

n=0,1 = {e, x, xy, xy2, y, y2}. (2.107)The generators x and y satisfy the relations
xy = y2x, x2 = e, y3 = e (2.108)whi
h enable one to 
onstru
t the multipli
ation table of S3 (Table 2.1).The 
onjuga
y 
lasses (2.17) and normalizers (2.22) are summarized in Table 2.2. One
an see that there are only two distin
t non-trivial 
onjuga
y 
lasses

Cx ≡ {x, xy, xy2}, Cy ≡ {y, y2}. (2.109)The �rst one 
ontains all the three elements whi
h are generated by both x and y whereasthe se
ond 
ontains the two elements whi
h are generated by y alone. Hen
e, there are also44



Ca = {gag−1 | g ∈ S3} Na = {ag = ga | g ∈ S3}
Ce = {e} Ne = {e, x, xy, xy2, y, y2} ≃ S3

Cx = {x, xy, xy2} Nx = {e, x} ≃ Z2

Cxy = {x, xy, xy2} Nxy = {e, xy} ≃ Z2

Cxy2 = {x, xy, xy2} Nxy2 = {e, xy2} ≃ Z2

Cy = {y, y2} Ny = {e, y, y2} ≃ Z3

Cy2 = {y, y2} Ny2 = {e, y, y2} ≃ Z3Table 2.2: Conjuga
y 
lasses and normalizers of S3

S3 e x xy xy2 y y2

Γ1 1 1 1 1 1 1
Γ−1 1 -1 -1 -1 1 1
Γ2

(
1 0

0 1

) (
0 1

1 0

) (
0 ω

ω̄ 0

) (
0 ω̄

ω 0

) (
ω̄ 0

0 ω

) (
ω 0

0 ω̄

)Table 2.3: Unitary irredu
ible representation of S3two distin
t non-trivial internal �ux ve
tor spa
es: the three-dimensional Vx with basis givenby the states {|x〉, |xy〉, |xy2〉} and the two-dimensional Vy with the basis given by the states
{|y〉, |y2〉}. Likewise, there are only two non-trivial normalizers, whi
h will be denoted by

Nx ≡ Nx ≃ Nxy ≃ Nxy2 ≃ Z2, Ny ≡ Ny ≃ Ny2 ≃ Z3. (2.110)Stri
tly speaking, the normalizers Nx, Nxy and Nxy2 are di�erent groups, but they are isomor-phi
 and for the purposes here, they 
an be treated in pra
ti
e as being equal. To establishthe parti
le spe
trum (2.60), one must 
onsider the unitary irredu
ible representations ofea
h of the normalizers. Their multipli
ity is given by the number of 
onjuga
y 
lasses of therespe
tive normalizer. It was already noted that S3 has 3 
onjuga
y 
lasses. Furthermore,
Z2 and Z3 have 2 and 3 
onjuga
y 
lasses, respe
tively, be
ause they are abelian groups,whi
h means that ea
h element forms its own 
onjuga
y 
lass. One parti
ular 
hoi
e for theunitary irredu
ible representations of these three groups is given in Tables 2.3 and 2.4, where
ω = exp( iπ

3 ) is the primitive 
ube root of unity. One 
an see that there is only one higher di-mensional irredu
ible representation, the Γ2 of S3, to whi
h one asso
iates a two-dimensional
harge ve
tor spa
e V2 with the basis given by some orthonormal states {|1〉, |2〉} (2.20). Allthe other irredu
ible representations, and hen
e also the asso
iated 
harge ve
tor spa
es areone-dimensional.Forming the tensor produ
ts of the �ux and 
harge spa
es (2.23), one 
an establish thesupersele
tion se
tors, whi
h de�ne the parti
le spe
trum of the model (Table 2.5). Altogetherthere are eight supersele
tion se
tors, whi
h means that in addition to the va
uum 1, there areseven distin
t parti
les. The internal �ux and/or 
harge spa
es asso
iated with ea
h se
tortransform irredu
ibly under the a
tion of D(S3), and to study the stru
ture of the fusionspa
es of the model, one should �nd these irredu
ible representations Πa of D(S3) (2.61).45



Z2 e x Z3 e y y2

Γ1 1 1 Γ1 1 1 1
Γ−1 1 -1 Γω 1 ω ω̄

Γω̄ 1 ω̄ ωTable 2.4: Unitary irredu
ible representations of Z2 and Z3There are a few things whi
h help in 
onstru
ting the representations. First, instead of therepresentations Π(Phg), it is enough to �nd the separately the representations Π(Ph) and Π(g).The elements Phg ∈ D(H) were interpreted as implementing a global g ∈ H transformationand subsequently proje
ting onto the �ux eigenstate |h〉, and the representations should alsorespe
t this stru
ture by obeying
Πa(Phg)|k, i〉 = Πa(Ph)Πa(g)|k, i〉, g ∈ S3, h ∈ Ca, (2.111)where Πa(Ph) forms a representation of the proje
tor algebra in Va and the matrix Πa(g)fully spe
i�es how the state transforms. The values of h have been restri
ted to the 
onjuga
y
lass Ca of H, be
ause other 
ases would be identi
ally zero. The reason for this is thatsin
e arbitrary g ∈ S3 transformations 
an not 
hange the supersele
tion se
tor, one 
an onlyproje
t onto those �ux eigenstates whi
h span the �ux spa
e. In terms of the representationsof D(H) this means

Πa(Phg) = Πa(Ph)Πa(g) = 0, ∀h /∈ Ca. (2.112)The se
ond helpful pie
e of information is that the representations Π(Phg), h, g ∈ S3 re-spe
t the group 
omposition. Sin
e S3 is generated by the elements x and y, also all therepresentations should be generated by the representations of the group generators
Πa(x

mym) = Πa(x
m)Πa(y

m) = (Πa(x))
m (Πa(y))

n . (2.113)Therefore, sin
e the internal spa
es V C
Γ are either one-, two- or three-dimensional, it is enoughto �nd the one-, two- and three-dimensional representations Π(x) and Π(y). Representationsfor all other elements 
an be 
onstru
ted by multiplying them a

ording to Table 2.1. Third,when forming representations for ea
h supersele
tion se
tor, there should exist a 
onjugaterepresentation Πa(g) = ΠT

a (g−1) (2.69) for ea
h representation Πa(g), su
h that
Πa(g)Πa(g) = 1, ∀h, g ∈ S3. (2.114)The 
onjugate representations 
ould be 
onstru
ted by using the de�nition of the antipodalmap, but there is no spe
i�
 need for this. Finding the irredu
ible representations 
arriedby ea
h se
tor exhausts the model 
ompletely. Having found all the representations, one
an then 
he
k whi
h representations are 
onjugate and whether there are self-
onjugaterepresentations. 46



M V C
Γ = VC ⊗ VΓ dim(VC) · dim(VΓ) = dim(V C

Γ )

1 V1 ≡ V e
1 1 · 1 = 1

Λ1 VΛ1 ≡ V e
−1 1 · 1 = 1

Λ2 VΛ2 ≡ V e
−1 1 · 2 = 2

Φ0 VΦ0 ≡ V x
1 3 · 1 = 3

Φ1 VΦ1 ≡ V x
−1 3 · 1 = 3

Ω0 VΩ0 ≡ V y
1 2 · 1 = 2

Ω+ VΩ+ ≡ V y
ω 2 · 1 = 2

Ω− VΩ−
≡ V y

ω̄ 2 · 1 = 2Table 2.5: The parti
le spe
trum M of the S3 anyon modelThe di�erent supersele
tion se
tors are best dis
ussed separately, but before pro
eeding,one should 
hoose representations for the bases. The simplest and most 
onvenient 
hoi
eis to represent the basis states in the two-dimensional spa
es V y
1 , V

y
ω and V y

ω̄ by the 
olumnve
tors
|y〉 =

(
1

0

)
, |y2〉 =

(
0

1

)
, (2.115)and in the three dimensional spa
es V x

1 and V x
−1 by the 
olumn ve
tors

|x〉 =




1

0

0


 , |xy〉 =




0

1

0


 , |xy2〉 =




0

0

1


 . (2.116)On these bases the proje
tor representations Πa(Ph) are given by the diagonal matri
es

Πy(Py) =

(
1 0

0 0

)
, Πy(Py2) =

(
0 0

0 1

)
, (2.117)

Πx(Px) =




1 0 0

0 0 0

0 0 0


 , Πx(Pxy) =




0 0 0

0 1 0

0 0 0


 , Πx(Pxy2) =




0 0 0

0 0 0

0 0 1


 , (2.118)respe
tively. Stri
tly speaking, also the basis in the pure 
harge spa
e V e

2 is representedsimilarly as in (2.115), |1〉 = (1, 0)T and |2〉 = (0, 1)T . However, sin
e the �ux part is trivial,one does not apply the proje
tors Ph in this spa
e.Consider �rst the va
uum V e
1 and the spa
es V e

−1 and V e
2 . Be
ause the �ux spa
e is trivial,there is no �ux degree of freedom, and every g ∈ S3 transformation orbit is identi
al

g : |e, i〉 → |e,Γ(g)i〉, ∀g ∈ S3. (2.119)Hen
e, the representations of D(S3) 
oin
ide exa
tly with the irredu
ible representations of
S3

Πe
a(g) = Γa(g), a = 1,−1, 2, (2.120)47



whi
h are already given in Table 2.3.Consider then the three-dimensional spa
es V x
1 and V x

−1, with the bases |k, i〉 ∈ V x
a ,

k ∈ Cx, a ∈ {1,−1}. Here the 
ru
ial observation is that by using (2.108), the elements
g ∈ Cx 
an be written in the form (2.28)

x = y xy = y2 xy2,

xy = y xy2 = y2 x,

xy2 = y x = y2 xy,

(2.121)whereas for the elements in Cy there is no su
h de
omposition. This means that every g ∈ Cx
an be written as g = g′g̃, where the g̃ ∈ N(k) part 
an be implement in the 
harge spa
e.The representations 
an then be inferred by 
onsidering the following transformation orbits
x : |xy, i〉 → |xy2,Γa(xy)i〉 → |xy,Γa(xy

2)Γa(xy)i〉, |x, i〉 → |x,Γa(x)i〉,
xy : |x, i〉 → |xy2,Γa(x)i〉 → |x,Γa(xy

2)Γa(x)i〉, |xy, i〉 → |xy,Γa(xy)i〉,
xy2 : |x, i〉 → |xy,Γa(x)i〉 → |x,Γa(xy)Γa(x)i〉, |xy2, i〉 → |xy2,Γa(xy

2)i〉,(2.122)
y : |x, i〉 → |xy, i〉 → |xy2, i〉 → |x, i〉,
y2 : |x, i〉 → |xy2, i〉 → |xy, i〉 → |x, i〉.

(2.123)One 
an aee that ea
h of the g ∈ Cx transformations 
ommutes trivially with itself, and thusimplements a transformation only in the 
harge se
tor, but maps the other two states intoea
h other. Likewise, (2.123) shows how the g ∈ Cy transformations only 
y
li
ally permutethe basis states.Analogously with the treatment above, the representations in the remaining three two-dimensional spa
es V y
1 , V y

ω and V y
ω̄ , with the bases |k, i〉 ∈ V y

a , k ∈ Cy, a ∈ {1, ω, ω̄}, 
an beinferred by 
onsidering the following g ∈ S3 transformation orbits
x : |y, i〉 → |y2, i〉 → |y, i〉,
xy : |y, i〉 → |y2,Γa(y), i〉 → |y,Γa(y

2)i〉,
xy2 : |y, i〉 → |y2,Γa(y

2), i〉 → |y,Γa(y)i〉,
(2.124)

y : |y, i〉 → |y,Γa(y)i〉, |y2, i〉 → |y2,Γa(y)i〉,
y2 : |y, i〉 → |y,Γa(y

2)i〉, |y2, i〉 → |y2,Γa(y
2)i〉.

(2.125)This time there is no need to de
ompose the transformations as in (2.121), be
ause the g ∈ Cxare already of the desired form with x /∈ N(k), but y, y2 ∈ N(k). Also, the last two just statethe obvious result that y 
ommutes with itself and thus implements a transformation only inthe 
harge spa
e.The matrix representations Πa(g), g ∈ S3, implementing the a
tions (2.119) and (2.122) -(2.125) on the basis states representations (2.115) and (2.116) are shown in Table 2.6. One 
ansee that ex
ept for the representations Πy
ω and Πy

ω̄, whi
h are 
onjugate to ea
h other, all theother are self-
onjugate. Re
alling that parti
les transforming in 
onjugate representationsare regarded as anti-parti
les, one 
an 
on
lude that in an S3 anyon model (Table 2.5), the48



Πa(g) e x xy xy2 y y2

Πe
1 1 1 1 1 1 1

Πe
−1 1 -1 -1 -1 1 1

Πe
2

(
1 0

0 1

) (
0 1

1 0

) (
0 ω

ω̄ 0

) (
0 ω̄

ω 0

) (
ω̄ 0

0 ω

) (
ω 0

0 ω̄

)

Πx
1




1 0 0

0 1 0

0 0 1







1 0 0

0 0 1

0 1 0







0 0 1

0 1 0

1 0 0







0 1 0

1 0 0

0 0 1







0 0 1

1 0 0

0 1 0







0 1 0

0 0 1

1 0 0




Πx
−1




1 0 0

0 1 0

0 0 1







−1 0 0

0 0 −1

0 −1 0







0 0 −1

0 −1 0

−1 0 0







0 −1 0

−1 0 0

0 0 −1







0 0 1

1 0 0

0 1 0







0 1 0

0 0 1

1 0 0




Πy
1

(
1 0

0 1

) (
0 1

1 0

) (
0 1

1 0

) (
0 1

1 0

) (
1 0

0 1

) (
1 0

0 1

)

Πy
ω

(
1 0

0 1

) (
0 1

1 0

) (
0 ω

ω 0

) (
0 ω̄

ω̄ 0

) (
ω 0

0 ω

) (
ω̄ 0

0 ω̄

)

Πy
ω̄

(
1 0

0 1

) (
0 1

1 0

) (
0 ω̄

ω̄ 0

) (
0 ω

ω 0

) (
ω̄ 0

0 ω̄

) (
ω 0

0 ω

)Table 2.6: The irredu
ible representations Π(g) of D(S3)tr(Πa(Phg)) e x xy xy2 y y2

Πe
1 Pe 1 1 1 1 1 1

Πe
−1 Pe 1 -1 -1 -1 1 1

Πe
2 Pe 2 0 0 0 -1 -1

Πx
1, Px 1 1 0 0 0 0

Pxy 1 0 1 0 0 0
Pxy2 1 0 0 1 0 0

Πx
−1 Px 1 -1 0 0 0 0

Pxy 1 0 -1 0 0 0
Pxy2 1 0 0 -1 0 0

Πy
1 Py 1 0 0 0 1 1

Py2 1 0 0 0 1 1
Πy

ω Py 1 0 0 0 ω ω̄

Py2 1 0 0 0 ω ω̄

Πy
ω̄ Py 1 0 0 0 ω̄ ω

Py2 1 0 0 0 ω̄ ωTable 2.7: The non-zero 
hara
ters tr(Πa(Phg)) of D(S3)49



parti
les Ω+ and Ω− are anti-parti
les of ea
h other, Ω+ = Ω−, but all other parti
les aretheir own anti-parti
les.These results 
an also be inferred from the fusion rules (2.74), whi
h are the real item ofinterest. To 
al
ulate them, one needs the fusion multipli
ities N c
ab. They 
an be obtained byusing (2.75), whi
h in the 
ase of S3 
an be written as

N c
ab =

1

6

∑

g∈S3

∑

h∈Cc

h′∈Ca

tr (Πa(Ph′g)) tr (Πb(Ph′−1hg)) tr (Πc(Phg))
∗ . (2.126)Here one has simpli�ed the expression by using the de�nition of the 
omultipli
ation (2.49)and the tra
e property tr(Πa ⊗Πb(g⊗h)) = tr(Πa(g))tr(Πb(h)). Also, be
ause of (2.112), thesums over h and h′ have been expli
itly restri
ted to values in the 
onjuga
y 
lasses Ca and

Cc. Any other values would give identi
ally zero. Having found the representations Πa(g)displayed in Table 2.6, all the representations Πa(Phg) 
an be formed by using the property(2.111) and the appropriate proje
tor representations (2.117) or (2.118). To 
al
ulate to fusionmultipli
ities using (2.126), one needs their 
hara
ters tr(Πa(Phg)). The ones whi
h are nottrivially zero are summarized in Table 2.7. Plugging the 
hara
ters in (2.126), one obtainsthe fusion rules (2.74) of the S3 anyon model:
Πe

1 ⊗ Πe
1 = Πe

1, Πe
1 ⊗ Πb

a = Πb
a, ∀a, b, (2.127)

Πe
−1 ⊗ Πe

−1 = Πe
1, Πe

−1 ⊗ Πe
2 = Πe

2,

Πe
2 ⊗ Πe

2 = Πe
1 ⊕ Πe

−1 ⊕ Πe
2,

(2.128)
Πx

1 ⊗ Πx
1 = Πe

1 ⊕ Πe
2 ⊕ Πy

1 ⊕ Πy
ω ⊕ Πy

ω̄,

Πx
−1 ⊗ Πx

−1 = Πe
1 ⊕ Πe

2 ⊕ Πy
1 ⊕ Πy

ω ⊕ Πy
ω̄,

Πx
1 ⊗ Πx

−1 = Πe
−1 ⊕ Πe

2 ⊕ Πy
1 ⊕ Πy

ω ⊕ Πy
ω̄,

(2.129)
Πy

1 ⊗ Πy
1 = Πe

1 ⊕ Πe
−1,

Πy
ω ⊗ Πy

1 = Πe
2 ⊕ Πy

ω, Πy
ω̄ ⊗ Πy

1 = Πe
2 ⊕ Πy

ω̄,

Πy
ω ⊗ Πy

ω = Πe
2 ⊕ Πy

ω̄, Πy
ω̄ ⊗ Πy

ω̄ = Πe
2 ⊕ Πy

ω,

Πy
ω ⊗ Πy

ω̄ = Πe
1 ⊕ Πe

−1 ⊕ Πy
1,

(2.130)
Πe

−1 ⊗ Πx
1 = Πx

−1, Πe
−1 ⊗ Πx

−1 = Πx
1 ,

Πe
−1 ⊗ Πy

1 = Πy
1, Πe

−1 ⊗ Πy
ω = Πy

ω, Πe
−1 ⊗ Πy

ω̄ = Πy
ω̄,

(2.131)
Πe

2 ⊗ Πx
1 = Πx

1 ⊕ Πx
−1, Πe

2 ⊗ Πx
−1 = Πx

1 ⊕ Πx
−1,

Πe
2 ⊗ Πy

1 = Πy
ω ⊕ Πy

ω̄, Πe
2 ⊗ Πy

ω = Πy
1 ⊕ Πy

ω̄, Πe
2 ⊗ Πy

ω̄ = Πy
1 ⊕ Πy

ω,
(2.132)

Πx
±1 ⊗ Πy

1 = Πx
1 ⊕ Πx

−1, Πe
±1 ⊗ Πy

ω = Πx
1 ⊕ Πx

−1, Πe
±1 ⊗ Πy

ω̄ = Πx
1 ⊕ Πx

−1. (2.133)There are a number of general remarks one 
an make. First, as expe
ted, the trivial se
tor
Πe

1 (2.128) plays the role of the va
uum and all other parti
les are their own anti-parti
lesex
ept for the parti
les 
arrying the 
onjugate representations Πy
ω and Πy

ω̄ (2.130). Se
ond,all the fusion multipli
ities are either zero or one, N c
ab = 0 or 1,∀a, b, c ∈M , meaning there is50



no degenera
y asso
iated with the fusion states and thus all the two-parti
le fusion spa
es V c
ab(2.78) with a �xed fusion out
ome c are one-dimensional. Third, one 
an noti
e that somesets of the fusions rules 
lose on themselves meaning that the S3 fusion algebra has threenon-trivial subalgebras (2.90) spanned by the following sets of elements

M1 = {Πe
1,Π

e
−1,Π

e
2}, (2.134)

M2 = {Πe
1,Π

e
−1,Π

y
1}, (2.135)

M3 = {Πe
1,Π

e
−1,Π

e
2,Π

y
1,Π

y
ω,Π

y
ω̄}. (2.136)To fully spe
ify the S3 anyon model, one should �nd the maps R (2.91) and F (2.93) in allthe fusion spa
es appearing in the model. However, sin
e for the purposes of the topologi
alquantum 
omputation one 
an settle with one of the subalgebras, mu
h of this 
umbersomework would be in vain. Instead, one should spe
ify the spa
es utilized as the 
omputationalspa
e and �nd the matri
es representing R and F there. Sin
e this would nearly 
ompletedemonstrating the 
omputational power of the anyon model, it is better to move on and
onsider them in 
onne
tion with the theory of quantum 
omputation in the topologi
alHilbert spa
e.
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Chapter 3Quantum Computation in theTopologi
al Hilbert Spa
eIn the previous 
hapter it was dis
ussed how the representation theory of the quantum double
D(H) 
an be used des
ribe the non-abelian anyons, and how the fusion rules give rise tode
oheren
e-free topologi
al Hilbert spa
es. The aim of this 
hapter is to demonstrate howthese topologi
al Hilbert spa
es 
an be utilized as the 
omputational spa
e of a quantum
omputer. As outlined in the �rst 
hapter, the illustration breaks down to (1) spe
ifyingthe 
omputational spa
e C and showing how qudits are en
oded, (2) showing how braiding ofanyons 
an simulate quantum gates and (3) showing how to perform proje
tive measurements.To address these problems in more 
on
rete terms, it is useful to anti
ipate how a quan-tum 
omputation 
ould be exe
uted in pra
ti
e. The 
omputational spa
e is initialized byspe
ifying the number, type and relative lo
ations of the parti
les in the plane. One 
ould
onsider drawing parti
le - anti-parti
le pairs (a, ā), some N parti
les altogether, out of theva
uum so that the total 
harge of the system is trivial. The initial state of the system wouldthen reside in V 1

a1a2...aN
. The 
omputation is 
arried out by braiding the anyons in some way,whi
h 
orresponds to the desired unitary transformations. After the braiding, some or allthe anyons are fused together, and observing whether they fuse to va
uum or leave residualparti
les behind 
orresponds to the output of the 
omputation.Anyons arising from the S3 gauge theory introdu
ed in the last 
hapter will be used asan example of the theoreti
al framework for a topologi
al quantum 
omputer. The 
ommonfeatures whi
h all topologi
al quantum 
omputer 
andidate systems should exhibit will beemphasized when en
ountered, but the dis
ussion is at most illustrative in 
onne
tion witha parti
ular model. Now, the fusion rules (2.127) - (2.133) of the whole S3 anyon model aretoo 
ompli
ated to serve as an illustrative model. Hen
e, the simplest fusion subalgebra M2(2.135)

M2 = {1,Λ,Φ}, (3.1)will be 
hosen as the model underlying the topologi
al quantum 
omputer. For notational53




larity one has rede�ned Λ ≡ Λ1 and Φ ≡ Φ0. The respe
tive fusion rules, in the parti
lenotation of fusion algebra 2.76, 
an be inferred from (2.127) - (2.133)
1 × 1 = 1, 1 × Λ = Λ, 1 × Φ = Φ, (3.2)

Λ × Λ = 1, Λ × Φ = Φ, (3.3)
Φ × Φ = 1 + Λ, (3.4)The fusion rule for two Φ parti
les states that this subalgebra is indeed a non-abelian one,be
ause there exist two possible fusion out
omes. Sin
e all the other fusion rules determinethe out
omes uniquely, higher dimensional fusion spa
es are always 
arried by Φ parti
les.Using (3.4) su

essively gives the fusion rules for a N Φ parti
les

Φ × Φ × Φ = 2Φ,

Φ × Φ × Φ × Φ = 2 · 1 + 2Λ,

Φ × Φ × Φ × Φ × Φ = 4Φ, (3.5)
· · ·

(Φ)×N =

{
2

N−2
2 · 1 + 2

N−2
2 Λ, N even

2
N−1

2 Φ, N oddFrom these one 
an read o� the smallest non-trivial fusion spa
es
V Φ

Φ3 ≡ V Φ
ΦΦΦ, dim(V Φ

ΦΦΦ) = NΦ
Φ3 = 2, (3.6)

V 1
Φ4 ≡ V 1

ΦΦΦΦ, dim(V 1
ΦΦΦΦ) = N1

Φ4 = 2, (3.7)
V Λ

Φ3 ≡ V Λ
ΦΦΦΦ, dim(V Λ

ΦΦΦΦ) = NΛ
Φ4 = 2. (3.8)Sin
e one anti
ipates that the 
omputational spa
e should belong to the va
uum se
tor, theinterest lies parti
ularly in the spa
es (3.7), be
ause they 
ould be used to en
ode a singleunit of quantum information. Sin
e the dimension of this spa
e is two, the qubit (1.5) arisesnaturally as the elementary unit of quantum information.3.1 The Computational Spa
eThere are a number of general 
riteria whi
h 
onstrain the identi�
ation of the 
omputationalspa
e with the fusion spa
es. First, the identi�
ation should be made su
h that C has ade
omposition in terms of subspa
es Cd of some dimension d ≥ 2 (1.7), with d determining thedimension of the qudits to be used. Se
ond, the physi
s behind the topologi
al Hilbert spa
e
onstrains the identi�
ation further by stating that all the quantum states in the model shouldbelong to the same supersele
tion se
tor, be
ause otherwise they 
an not form superpositions[32℄. Third, the 
omputational spa
e should in
lude all the states whi
h 
an be obtained whenunitary transformations are performed on the system, i.e. when the parti
les are braided.Be
ause the fusion spa
es (3.7) are 
arried by only one types of parti
les, all the states
orresponding to di�erent permutations of the parti
les are automati
ally 
ontained therein.54



Therefore, as anti
ipated, one may identify this spa
e with the 
omputational spa
e of a singlequbit
C2 ≡ V 1

Φ4 ≃ V Φ
Φ3 ≃

⊕

x∈{1,Λ}
V x

Φ2 ⊗ V Φ
xΦ ≃

⊕

x∈{1,Λ}
V x

Φ2 ⊗ V Φ
xΦ ⊗ V 1

Φ2 . (3.9)It follows that the 
omputational basis has to be identi�ed with
|i〉 ≡ |Φ4; 1, i〉 ≃ |Φ2;xi〉|xiΦ;Φ〉, i = 0, . . . , N1

Φ4 − 1 = 0, 1, (3.10)where xi ∈ {1,Λ}. Consequently, the m-qubit 
omputational spa
e should then be de�ned by
C ≡

(
V 1

Φ4

)⊗m
, (3.11)given that su
h spa
e a
tually exists in the model, i.e. it 
orresponds to some fusion spa
e 
ar-ried by N Φ-parti
les for some N . Using the standard basis de
omposition (2.82) ba
kwards,one 
an see that C 
orresponds in the standard basis to the fusion spa
e

C ≡
(
V 1

Φ4

)⊗m
,

=
(
V Φ

Φ3

)⊗m
, (3.12)

=
⊕

x1,...,xm−1=Φ

V x1

Φ3 ⊗ V x2

x1Φ2 ⊗ · · · ⊗ V 1
xm−1Φ3 ,

≃ V 1
Φ2m+2 ,where one has used the observation that the fusion of three Φ-parti
les, although in twodistin
t ways, always gives another Φ-parti
le (3.5). Hen
e, to en
ode m qubits, one needs afusion spa
e 
arried by N = 2m+2 Φ-parti
les. In general, the dimension of the fusion spa
e
arried by N parti
les 
an be read o� by using the fusion algebra (3.4) su

essively
N = 1 2 3 4 5 6 7 8 9 10 11 12 . . .

N1
ΦN = 0 1 0 2 0 4 0 8 0 16 0 32 . . . (3.13)

⇒ dim(V 1
ΦN ) = 2

N−2
2 , N even, (3.14)whi
h means that the topologi
al Hilbert spa
e grows exponentially with N . Sin
e the fusionmultipli
ities are zero for all odd N , one 
an restri
t to 
onsider only spa
es 
arried by aneven number of parti
les. This is in line with the anti
ipated initialization of the quantum
omputer, where one draws some number of parti
le - anti-parti
le pairs out of the va
uum,whi
h implies that one always ends up with an even number of parti
les.The basis in C is given by the tensor produ
t of the 
omputational basis states. Using thede
omposition (3.10), an arbitrary m-qubit basis state |i1〉|i2〉 · · · |im〉 ∈ C 
an be expressedin the standard basis of the underlying fusion spa
e V 1

Φ2m+2 as
|i1〉|i2〉 · · · |im〉 = |Φ4; 1, i1〉|Φ4; 1, i2〉 · · · |Φ4; 1, im〉, (3.15)

≃ |Φ2;xi1〉|xi1Φ;Φ〉|Φ2;xi2〉|xi2Φ;Φ〉 · · · |Φ2;xim〉|ximΦ;Φ〉.55



Sin
e the braiding was de�ned in the standard basis through the R- and B-moves, (2.102) and(2.103) respe
tively, they are the de
ompositions (3.9) and (3.15) whi
h will have to be usedto determine to how is braiding in the standard basis related to the unitary transformationsin C.3.2 Braiding and Quantum GatesTo �nd out how braiding a
ts in the standard basis of the present model, one should �nd the
R- and F -moves as unitary solutions to the pentagon (2.97) and hexagon (2.100) equations.On the single qubit spa
e V 1

Φ4 ≃ V Φ
Φ3 , the F -move (2.93) is the map

F :
⊕

x∈{1,Λ}
V x

Φ2 ⊗ V Φ
xΦ →

⊕

x∈{1,Λ}
V Φ

Φx ⊗ V x
Φ2 , (3.16)whi
h relates two possible bases. Using the se
ond de
omposition of (3.9) and 
onsidering thetwo distin
t ways (2.95) and (2.96) to implement the transformation

⊕

x∈{1,Λ}
V x

Φ2 ⊗ V Φ
xΦ ⊗ V 1

Φ2 →
⊕

x∈{1,Λ}
V 1

Φ2 ⊗ V Φ
Φx ⊗ V x

Φ2, (3.17)one 
an derive the pentagon equation for the model
∑

y∈{1,Λ}

(
F 1

Φ2y

)Φ

x

(
F 1

xΦ2

)y
Φ

=
∑

y,y′∈{1,Λ}

(
FΦ

Φ3

)y′

y

(
F 1

ΦyΦ

)Φ
Φ

(
FΦ

Φ3

)y
x
, (3.18)where x ∈ {1,Λ} is now a free index. This polynomial equation states that there are altogetherseven di�erent F -moves appearing in the model

{F 1
Φ2y, F

1
yΦ2 , F

1
ΦyΦ, F

Φ
Φ3}y=1,Λ. (3.19)However, only one of them, FΦ

Φ3 , is a genuine matrix, be
ause it is the only one a
ting in anon-trivial fusion spa
e. As 
an be seen from the de
ompositions
V 1

ΦyΦ ≃ V Φ
Φy ⊗ V 1

ΦΦ ≃ V 1
ΦΦ ⊗ V Φ

yΦ, (3.20)
V 1

ΦΦy ≃ V y
ΦΦ ⊗ V 1

yy ≃ V 1
ΦΦ ⊗ V Φ

Φy, (3.21)
V 1

yΦΦ ≃ V Φ
yΦ ⊗ V 1

ΦΦ ≃ V 1
yy ⊗ V y

ΦΦ, (3.22)all the intermediate fusion spa
es are one-dimensional for ∀y ∈ {1,Λ}. Hen
e, be
ause ofunitarity, the F -moves a
ting in these spa
es have to be proportional to some 
omplex 
onstantof unit norm
(
F 1

Φ2y

)Φ

x
= ayδx,y,

(
F 1

xΦ2

)y
Φ

= byδx,y, F 1
ΦyΦ = cy, |ay|2 = |by|2 = |cy|2 = 1 (3.23)for some ay, by, cy ∈ C, meaning that these F -moves introdu
e only overall phases, whi
h arenon-physi
al and 
an be set to unity, ai = bi = ci = 1. The real item of interest is then56



the F -move FΦ
Φ3 , whi
h implements an F -move in the 
omputational spa
e of a single qubit.Writing all the indi
es down, it is represented by a 2 × 2 unitary matrix,

F ≡ FΦ
Φ3 =

(
F11 F1Λ

FΛ1 FΛΛ

)
, (3.24)where the 
omponents have to satisfy the 
onstraints following from unitarity





|F11|2 + |F1Λ|2 = 1,

|FΛΛ|2 + |FΛ1|2 = 1,

F11(FΛ1)
∗ + F1Λ(FΛΛ)∗ = 0.

(3.25)Then, simplifying the pentagon equation (3.18) using (3.23), the 
omponents are determinedas solutions to the polynomial equations
{

1 = F11(F11 + F1Λ) + F1Λ(FΛ1 + FΛΛ)

1 = FΛ1(F11 + F1Λ) + FΛΛ(FΛ1 + FΛΛ),
. (3.26)The set of equations has four types of general solutions

±
(

1 0

0 1

)
, ±

(
1 0

0 −1

)
,

(
0 eiφ

e−iφ 0

) and ± 1√
2

(
1 eiφ

e−iφ −1

)
, (3.27)where φ = [0, 2π] is an undetermined arbitrary parameter. Of these the three �rst are trivial inthe sense that they only rede�ne the basis up to some overall phase. Fixing the arbitrary phaseby setting φ = 0 and 
hoosing the solution with an overall '+'-sign, the matrix implementingthe non-trvial F -move in the standard basis of the model is

F =
1√
2

(
1 1

1 −1

)
. (3.28)This solution is of parti
ular interest, be
ause it is the Hadamard gate, whi
h was alreadyen
ountered as one of the gates in one parti
ular universal gate set (1.20). In the generaltheory of quantum 
omputation, it is known to implement a 
anoni
al basis 
hange [40℄, andtherefore the F -moves in the underlying fusion spa
es have in the 
omputational spa
e C
lear interpretations as basis 
hanging unitary gates. Still, it should be kept on mind that

F -moves are not physi
al operations as su
h, but mathemati
al tools to tell how do the fusionstates look like when studied in a basis other than the standard basis. The genuine physi
aloperation is the braiding, through whi
h one might, or might not be able to implement atransformation of the form (3.28). To show whether this is the 
ase, one should �nd thematrix representations for the braid group generators.To �nd how the braid group a
ts in the fusion spa
e of the model, one should �nd theunitary matri
es representing the R-moves as solutions to the hexagon equation (2.100), whi
hfor the present model reads
∑

y∈{1,Λ}
Ry

ΦΦ

(
FΦ

Φ3

)y
x
Rx

ΦΦ =
∑

y,y′∈{1,Λ}

(
FΦ

Φ3

)y′

y
RΦ

Φy

(
FΦ

Φ3

)y
x
. (3.29)57



This time all the RΦ
Φy, y ∈ {1,Λ}, are 
omplex 
onstants with unit norm. This is be
ause thespa
es V Φ

Φy are one-dimensional, whi
h implies that braiding 
an only 
ontribute non-physi
aloverall phases, whi
h 
an again be set to unity. As 
an be seen from the de�nition of R-moves(2.91), also Ry
ΦΦ, y ∈ {1,Λ} are phases, be
ause there are no fusion degenera
ies. However,the fusion spa
e of a single qubit (3.9) is two-dimensional, and the a
tion of braiding dependswhether one braids parti
les whi
h fuse to yield either 1 or Λ [42℄. Therefore, these phasesare physi
al and 
orrespond to the eigenvalues of a matrix implementing an R-move in C2

R ≡
(
R1

ΦΦ 0

0 RΛ
ΦΦ

)
. (3.30)Simplifying (3.29) by substituting the elements of F from (3.28), and assuming that R isunitary, the eigenvalues are then determined from the set of equations





1√
2
(R1

ΦΦ)2 + 1√
2
R1

ΦΦR
Λ
ΦΦ = 1,

− 1√
2
(RΛ

ΦΦ)2 + 1√
2
R1

ΦΦR
Λ
ΦΦ = 1,

|RΛ
ΦΦ|2 = |R1

ΦΦ|2 = 1.

(3.31)The solutions to these polynomial equations is given by all 
omplex numbers with unit normobeying the relation
(R1

ΦΦ)2 = eiπ(RΛ
ΦΦ)2. (3.32)Sin
e all the solutions give a di�erent representation of the same model, the simplest one willbe 
hosen to represent the R-moves in Cd

R =

(
1 0

0 i

)
. (3.33)This parti
ular matrix appears also in the theory of quantum 
omputation, where it is knownas the phase gate S [40℄.The R forms a representation of the braid group B2, the braid group on two strands. To
onstru
t the representation of BN , one needs also a representation of a se
ond generator,whi
h is given in the fusion spa
es by a B-move (2.103), whi
h 
an be 
onstru
ted a

ordingto (2.105). Now, sin
e there is only a single F and a single R a
ting in C2, B is given simplyby the matrix produ
t

B ≡ F−1RF =
ei

π
4

√
2

(
1 −i
−i 1

)
. (3.34)It 
an be 
he
ked that the R- and B-moves, as represented by (3.33) and (3.34), indeed formthe representation of the braid group in C2, i.e. that they satisfy the Yang-Baxter equation(2.11)

RBR = BRB. (3.35)58



Considering both sides separately, one �nds
RBR =

ei
π
4√
2

(
1 1

1 −1

)
= ei

π
4 F = BRB, (3.36)verifying that (3.35) is indeed satis�ed. In addition, as it happens that both sides are pro-portional to F (3.28), this also demonstrates that F -moves are physi
ally meaningful trans-formations, whi
h 
an indeed be implemented by braiding parti
les.Another thing to be noti
ed is

R4 = B4 = 1, (3.37)whi
h means that one is not dealing with the pure braid group BN of in�nite number ofelements, but with a trun
ated version BN,4, i.e. with a group de�ned by (2.8), (2.9) and anadditional relation σ4 = 1 [11℄. The trun
ated braid group has a �nite number of elementsand this sets a limit on the number of di�erent braidings, whi
h 
ould be implemented. Forexample, the braid group in the fusion spa
e V Φ
Φ3 , whi
h underlies the single qubit spa
e C2,is B3,4, whi
h is freely generated by R and B modulo the relations (3.35) and (3.37). Sin
ebraiding is the only tool to perform unitary transformations in C, dealing with trun
atedbraid groups implies that there is also only a limited number of unitary transformationsavailable. However, models with trun
ated braid groups are not automati
ally invalid foruniversal quantum 
omputation sin
e some may generate subgroups whi
h are dense in theunitary group. For instan
e, even though single qubit unitary transformations are limited tothe elements in B3,4, even this relatively simple group is of order 96 [11℄ and it is far fromobvious whether it admits universal quantum 
omputation.Summarizing, all the single qubit operations are given by the elements b ∈ B3,4, whi
h aregenerated by R and B. Using the universal gate set (1.20) as a referen
e, the two elementarysingle qubit quantum gates (1.18) appearing in the model, up to an overall phase, 
an be
hosen to 
orrespond to the braids {R,RBR}

R : |i〉 7→ T 2|i〉, (3.38)
RBR : |i〉 7→ H|i〉 (3.39)Unfortunately, su
h a model is not universal for quantum 
omputation. Even though theHadamard gate H 
an be realized, instead of the π

8 -phase gate T , one 
an only produ
e thephase gate R = T 2. Be
ause R and B are the physi
al braid group generators arising asthe solutions to the pentagon and hexagon equations, they are the most elementary unitarytransformations implementable implemented on the system. There 
an not exist a T ∈ B3,4,be
ause then R 
ould be de
omposed as two su

essive even more elementary operations T ,whi
h should satisfy the pentagon and hexagon equations. However, no su
h solutions wereobtained and thus even without 
onsidering the entangling gates arising through braidinganyons, it 
an be 
on
luded that the fusion subalgebra (3.1) of the full S3 anyon model doesnot admit universal quantum 
omputation. 59



3.3 Fusion as Proje
tive MeasurementTo 
omplete the demonstration of quantum 
omputation in the topologi
al Hilbert spa
es,one should show how to perform proje
tive measurements. By braiding the parti
les one 
ouldprodu
e unitary transformations on the system, but no information about the state of thesystem 
ould be obtained in this way. The topologi
al robustness ensures that the quantuminformation is not only prote
ted from de
oheren
e, but also well hidden from any outsideobserver. To get any information out of the fusion spa
e, one must break the topologi
alprote
tion by fusing some or all the parti
les together. The information residing in thetopologi
al Hilbert spa
e 
an then be inferred by observing the out
ome, whi
h is either a Λparti
le or the va
uum 1. In the �rst 
ase one should not observe anything whereas in these
ond 
ase the annihilation produ
es photons, whi
h 
arry the 
ombined energy of the fusedparti
les, and whi
h 
ould be easily dete
ted by 
onventional means. Be
ause there are onlythese two possibilities, the out
ome of the fusion 
an be unambiguously dedu
ed.Sin
e one has identi�ed the 
omputational basis with the di�erent fusion out
omes (3.10),determining out
ome is equivalent to proje
ting onto the 
omputational basis. More pre
isely,the fusion of the two left-most of the four Φ parti
les realizing the qubit, and the observationof the out
ome xi ∈ {1,Λ}, i.e. either photons or nothing, is equivalent to applying a proje
tor
Pi = |i〉〈i| in C2

xi : |ψ〉 → Pi|ψ〉, |ψ〉 ∈ C2. (3.40)Comparing this to (1.25), it 
an be seen that this exa
tly of the type of 
orresponden
ebetween the physi
al system and the 
omputational spa
e one set out to look for. Proje
tionsonto m-qubit 
omputational spa
e C 
an be realized in a similar manner by fusing sequentiallyfrom left to right all the 2m+ 2 parti
les. Observing the out
ome of ea
h fusion is equivalentto re
ording the string xi1xi2 · · · xim , whi
h in the in the 
omputational spa
e translates intothe proje
tor
xi1xi2 · · · xim : |ψ〉 → Pi1 ⊗ Pi2 ⊗ · · · ⊗ Pim |ψ〉, |ψ〉 ∈ C. (3.41)The dis
ussed model o�ers also a natural measurements on a 
ertain superposition state.The only non-trivial F -move, whi
h relates the two possible bases in the fusion spa
e underly-ing the qubit (3.9), was solved and found to have the form (3.28). This form was re
ognized asthe Hadamard gate H a
ting on basis states as (1.20). Be
ause the 
omputational basis wasidenti�ed exa
tly with the standard basis, the basis |̃i〉 
orresponding to fusing the parti
lesfrom right to left 
an be expressed in terms of the standard basis by using the F -move

|̃i〉 =
1√
2
(|0〉 + |1〉), |̃i〉 =

1√
2
(|0〉 − |1〉). (3.42)Therefore, depending whether photons are observed or not, fusing the two right most parti
les
orresponds to applying the proje
tor Pĩ = |̃i〉〈̃i|, i.e. proje
ting in C onto either of the states

1√
2
(|0〉 ± |1〉). 60



For performing proje
tive measurements at the end of the 
omputation, one needs only to
onsider the fusion of neighboring parti
les: Fusion of non-neighboring parti
les would �rstrequire braiding whi
h implies a transformation on the system. Therefore, proje
tions ontothe 
omputational basis (3.9) take in the presented model always either of the two forms(3.40) or (3.42). The s
heme of using fusion to perform proje
tive measurements works well,be
ause there are only possible out
omes, whi
h 
an be unambiguously distinguished. Inmore 
ompli
ated models, i.e. in ones with multiple non-va
uum fusion out
omes, one mightwant more �exibility and 
ontrol over the measurement pro
edure. Su
h 
an be providedby the use of quantum interferen
e experiments, whi
h 
an be used to distinguish betweenvarious di�erent quasiparti
les. For the 
ase of non-abelian anyons, su
h experiments havebeen dis
ussed in detail in [41℄, but for the present model they o�er no additional 
ontrol andneed not be 
onsidered here.
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Con
lusionsIt is perhaps a bit of an anti-
limax that after investing mu
h e�ort in obtaining an adequateunderstanding for 
onsidering quantum 
omputation with anyons, the 
hosen model turns outnot to be universal for quantum 
omputation. A
tually, without even 
al
ulating the braidgroup representations R and B, the non-universality of the model 
ould have been immediatelyinferred from the stru
ture of the fusion subalgebra (3.1). These rules are known des
ribe aso 
alled Ising anyons, arising from SU(2)2 Chern-Simons theories [42℄, whose appli
ation toquantum 
omputation has been 
onsidered in detail in [7℄ and [22℄, be
ause they des
ribe asan e�e
tive �eld theory the topologi
al ex
itations whi
h are expe
ted to be found in ν = 5/2fra
tional Quantum Hall systems. As demonstrated, these parti
ular anyons do not admituniversal quantum 
omputation through purely topologi
al means, i.e. by relying only onbraiding to produ
e unitary transformations. However, even with this severe imperfe
tion,they are at the present knowledge the best 
andidate for a topologi
al quantum 
omputer, andvarious supplementary non-topologi
al [6℄, or even topology altering operations [21℄ have beensuggested for promoting these anyon systems to the status of a universal quantum 
omputer.If an anyon system based on the gauge group S3 
an ever be realized, in prin
iple, these samesupplementary operations 
ould be used to over
ome the non-universality provided by purebraiding.It is a small 
onsolation that the presented model is not totally useless for topologi
alquantum 
omputation. However, it is not the sear
h for new implementational platformswhi
h has been the obje
tive in this thesis, but the presentation of the anyoni
 systems, theirproperties and use as topologi
al quantum 
omputers in as physi
ally motivated and illustra-tive manner as possible. Apart from John Preskill's exemplary le
ture notes [42℄, there arehardly any a

essible introdu
tions to the theory of topologi
al quantum 
omputation. Mostof the 
ontemporary resear
h papers ta
kle the theory of topologi
al quantum 
omputation interms of mathemati
s of the most abstra
t kind and often without any obvious 
onne
tion toa
tual physi
al systems. Even though the mathemati
al rigor is formidable, su
h an abstra
tapproa
h 
an be very dis
ouraging for new
omers in the �eld. Therefore, rooting the anyonmodel in gauge theories and taking the time to argue for the emergen
e of the fusion spa
eswere personal 
hoi
es for addressing the problem in terms more familiar to physi
ists, andhopefully thereby providing an a

essible introdu
tion to the basi
 
on
epts of topologi
alquantum 
omputation. On
e one got to the fusion spa
es, the general theory 
overed here63



has mu
h in 
ommon with [42℄, but topi
s whi
h were found 
onfusing or la
king in physi
alexplanation have now been attempted to be presented in more detail. It is be
ause of thisillustrative approa
h that one also 
hose as an example a model, whi
h was known not to beuniversal for quantum 
omputation, but whi
h allowed expli
it 
al
ulations to be 
arried outwith the most transparen
y.However, it should be pointed out that the potential 
ontribution to quantum 
ompu-tation of the anyon model based on the quantum double D(S3) was not exhausted by thedemonstration that the subalgebra spanned by the parti
les M2 (2.135) does not admit uni-versal quantum 
omputation. There were also two other fusion subalgebras M1 (2.134) and
M3 (2.136), and ultimately the full fusion algebra (2.127) - (2.133), whose properties were notinvestigated. The last two are likely to 
ontain too many parti
les for any realizable e�
ientpra
ti
al implementation, but the braiding properties the parti
les spanning M1, however,
ould well be worth a 
loser investigation. The reason is that their fusion subalgebra (2.128)
losely resembles the fusion rules of the so 
alled Fibona

i anyons, whose braiding propertiesare known to be universal for quantum 
omputation [42℄. It 
ould be an interesting topi
 offurther resear
h to study whether the braiding properties of the parti
les inM1 allow universalquantum 
omputation.Another open question, although more on the te
hni
al side, is the 
onstru
tion of therepresentations of arbitrary braid group generators out of the R- and F -moves. In the presentwork only two braid group generators R and B were 
onsidered, be
ause it was alreadyfound based on single qubit transformations that the model is not universal for quantum
omputation. If entangling gates would have been 
onsidered, one should have 
onstru
tedthe representations of all the four braid group generators in the spa
e V Φ

Φ5 underlying the two-qubit spa
e. In prin
iple, all the representations should be 
onstru
table out of the R- and
F -moves, but nowhere in the literature was it dis
ussed how this is done in pra
ti
e. On theother hand, there have been attempts to �nd all the four-dimensional unitary representationsof the braid group [48℄, i.e. potential two-qubit gates, but even though these studies 
onstrainthe form of the representations, they say nothing about their availability in a given anyonsystem. Therefore, it 
ould be another topi
 of further resear
h to develop methods for
onstru
ting a representation of an arbitrary braid group generator on a given fusion spa
e.
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