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Introdution". . . you don't want to do it unless there is a sweet way to do it. That is sort of theway I feel about topologial quantum omputation, that the word topologial isgoing to make it sweet, that we are not going to take some system and just makeit more and more isolated, older and older and fore one or two more qubits ina year out of it. We are going to do something that is beautiful and elegant andthen even if we fail, we have at least pursued the right ourse and will probablylearn something interesting about solid state physis on the way."-Mihael H. Freedman, [23℄It maybe a lihé to start with a quotation, but there is hardly a better way to express theattitude for exploring the topi of this thesis. Words suh as 'sweet', 'beautiful' and 'elegant'are a bit too poeti and vague to be used in a sienti� ontext, but there are good reasonswhy suh words of praise are not out of plae, as opposed to the more onventional approahesto quantum omputation, when used in onnetion with topologial quantum omputation.To fully understand these reasons, it is in plae to take a quik look on the brief history ofquantum omputation.The lassial omputer siene, the study of information proessing with omputers, hasbeen a ruial asset for the rise of the modern information soiety. The development ofomputers during the 20th entury has been extremely rapid. This progression is maybe bestaptured by a variant of the famous Moore's law, whih states that the number of transistorsper entral proessing unit doubles in approximately in every 24 months [40℄. Even thoughthis is more like an observation than a rigorous law, it has been shown to hold with amazinglygood auray sine the 1960s. This progress has been made possible by the development ofminiaturization tehniques, whih have allowed squeezing the physial size of the transistorsever smaller. However, it is natural that there will be a limit on the size of transistors.As the size diminishes, one approahes sales where the quantum e�ets an not be ignoredanymore. This is where the quantum omputer omes into play by promising to turn thephysial limitation into a new resoure, whih allows more powerful, and even totally new kindof information proessing. The introdution of this revolutionary idea ould be attributed tothe two seminal physiists David Deutsh and Rihard Feynman, who in the mid 1980's werethe �rst to speulate the apabilities of quantum mehanis as omputation [13, 17℄. However,3



the motivations for onsidering the omputational power of quantum mehanis were quitedi�erent. The �rst was onerned about how suh new kind of omputation would ontrastwith the Churh-Turing priniple, the pillar of lassial information siene, whereas thelatter onsidered the omplex task of simulating quantum mehanial systems with lassialomputers and how quantum omputers would hange the situation. These two perspetivesan still today be used to roughly divide the study of quantum omputation into two branhesof study.First, there is the abstrat theoretial branh known as quantum information siene,whih is onerned with the information proessing apaity of quantum mehanis [38℄. It isa blooming interdisiplinary �eld of researh bringing together both theoretial physiists aswell as omputer sientists and muh progress has been made in understanding the relevane ofdi�erent aspets of the quantum theory to omputation. Although muh of this work strives tounderstand the omputational power of the quantum omputer, there is also a more physialside involved in swithing to studying quantum systems in terms of the language of omputersientists. It is a quite modern and daring idea that the onept of information, whih onlyreently has penetrated into the realm of physis through the study of quantum omputation,might atually have a role to play in the desription of the physial reality [39℄. Whethersuh speulations prove to have any relevane for a serious physiists, is a subjet of furtherresearh. Yet, it is a very motivating idea, that the study of quantum omputation is notonly about building a new super-omputer, but also about learning something relevant aboutfundamental physis. These speulations aside, the progress in quantum information sienehas been rapid and a good overview about onsidering quantum mehanis as omputationhas been obtained [40, 42℄. From this purely theoretial point of view, one ould even go asfar as to laim that the problem has been solved and onentrate on studying what new triksone an perform with this new toy. However, as often is the ase, bridging theoretial andexperimental onsiderations is a non-trivial and even a daunting task. This is what the seondbranh of study is onerned about - �nding suitable physial systems to serve as quantumomputers. As andidates, there exists a wide variety of suggestions ranging from NMRsystems to more exoti ondensed matter systems suh as superondutors or quantum dots[15, 16, 40, 44℄. The multitude of suggestions is a lear re�etion of the fat that at the presentlevel of knowledge, one is still unertain whih of the proposed systems, if any, would serve thebest as a large-sale quantum omputer. However, one is sure of few general properties, whihare demanded from all andidate systems: to retain salability and ontrol over the system,and most importantly, at the same time ope with the arh-enemy of quantum omputation- deoherene.Deoherene is the reason why quantum mehanial e�ets are not observed in everyday life. Sine a quantum omputer relies on these e�ets to operate properly, to promote itfrom a theoretial onstrution to a funtioning marosopi omputer, one most overome thehallenge imposed by deoherene. In priniple, this an be ahieved by isolating the quantumomputer from the environment, but in pratie suh isolation is never perfet and beomes4



inreasingly di�ult with the growing size of the omputer. To deal with small errors, thetheory of quantum error-orreting odes was developed. These allow quantum informationto be enoded in a redundant way, whih tolerates errors up to some �nite error rate, andthus allows quantum omputation to be performed fault-tolerantly [40, 43℄. Unfortunately, thelevel of tolerated error is still well beyond anything that an be ahieved in any of the proposedphysial systems. Yet, the study of quantum error-orreting odes has not been in vain, buthas shed muh light on how quantum information an be enoded and stored in a robustmanner. As a urious o�spring, it also spawned the idea of onsidering topologial features tostore quantum information [12℄. In the form they were �rst suggested, these topologial error-orreting odes were a purely theoretial onstrution. However, they involved onsideringquantum information organized on surfaes of non-trivial topology, whih ould be thought ofas latties. Suh onstrutions bear an analogy with the spin models of statistial mehanis[5℄, and inspired Alexei Kitaev to onsider ondensed matter systems, where the topologialdegrees of freedom would be manifest as physial degrees of freedom [31℄. If one ould enodequantum information by using them, the information would be intrinsially proteted fromdeoherene, beause the topologial properties are by de�nition robust in the presene ofsmall perturbations. In priniple, there would be no need for additional error-orretion.Realizing a quantum omputer using suh topologially ordered systems would indeed be asweet way to deal with deoherene.Remarkably enough, ondensed matter systems exhibiting suh topologial properties hadalready earlier been proposed in onnetion with superondutors. The sweetness omes witha prie though. These physial systems are available only in two spatial dimensions wherethe topologial degrees of freedom manifest themselves as quasipartile exitations alledanyons [11, 47℄. Anyons have the exoti property that they obey neither bosoni or fermionistatistis, but something in between. Clearly suh genuinely two dimensional systems arehard to manufature, but it an be done. Muh pioneering work has been done relatedto the Quantum Hall e�et and the existene of so-alled abelian anyons has already beenon�rmed [47℄. Unfortunately, to perform quantum omputation with anyons, i.e. topologialquantum omputation, one needs non-abelian anyons [34, 42℄, whose existene remains to beon�rmed. Though no system exhibiting them has been found yet, high hopes are plaed onertain frational Quantum Hall states [36, 37℄, and preliminary researh has been done forutilizing them as topologial quantum omputer [7, 22, 45℄. While the experimental searhfor non-abelian anyons is still in progress, the theory of topologial quantum omputation iswell worth a loser look. The main reason is that the underlying topologial and algebraistruture of non-abelian anyons is losely related to various topis in ontemporary theoretialphysis: topologial quantum �eld theories [19℄, knot theory [27, 30, 48℄ as well as to Hopfalgebras [3, 4, 32, 11℄. Therefore, even though quantum omputation with anyons usingurrent tehnology might sound a bit far-fethed, there is de�nitely enough inentive to pursuethis path. Also, as a sign that these ideas are really started to be taken seriously, the �rstpopular artile ever on topologial quantum omputation was reently featured on Sienti�5



Amerian [10℄.The outline of this thesis is as follows. Chapter 1 gives a brief introdution to the ba-si onepts and terminology to translate quantum mehanis into quantum omputation.Chapter 2 forms the ore by disussing the nature of anyons and the algebrai struture un-derlying them. A spei� example will be given in the form of an anyon model based on thegauge group S3. Using this model as an example, Chapter 3 pulls the two preeding hapterstogether by disussing how the anyons an be used to perform quantum omputation withintrinsi fault-tolerane.
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Chapter 1Quantum Mehanis as ComputationThe study of quantum omputation an be regarded as the study of the struture of prepara-tion, evolution and measurement of quantum systems. Sine these three steps essentially formthe ore of quantum theory, quantum omputation an be onsidered as quantum mehanisrephrased in the terminology of omputation. Broadly speaking, the theory of omputation isinterested in what resoures are required to perform a given omputational task. Speifyingthese resoures, whih in general orrespond to some initial information and some elementaryoperations, forms a omputation, whih simulates the task with some preision. To translatequantum mehanis into quantum omputation, one should adopt a similar way of thinking.More preisely, one should �nd a way to express a given quantum system and its evolution asthis kind of a omputation, whih ould be expressed in terms of some elementary quantummehanial objets and operations. Now, instead of onsidering a given task, one ould askwhat resoures are required to perform an arbitrary task. Speifying these resoures enablethen one to perform universal omputation and a systems where suh resoures are avail-able are onsequently referred to as universal omputers. In diret analogue, the problemof transforming quantum mehanis into quantum omputation breaks down to speifyingthe elementary elements and operations out of whih an arbitrary quantum system and itsevolution an be onstruted with arbitrary preision. A system with these operations at therepertoire would then be a universal quantum omputer. The big questions then are: what arethe elementary quantum mehanial objets and operations and in whih quantum systemsthey are available, i.e. what quantum systems are apable of universal quantum omputation?To answer these questions, one needs the language of quantum omputation. The aim of thishapter is to provide the voabulary and way of thinking to transform quantum mehanis intoquantum omputation, and thereby identify the general riteria whih all quantum omputerandidate systems have to meet.Before proeeding, it is useful to brie�y reall the key onepts of quantum mehanis.Assoiated with eah quantum system there is a state spae, whih is a Hilbert spae H. Thequantum system is fully desribed by the state vetor |ψ〉 ∈ H, 〈ψ|ψ〉 = 1, a unit vetorin the state spae, whih is a funtion of the system's observables M . The observables are7



Hermitian operators on the state spae of the system. Eah observable has a spetrum ofeigenvalues {m}, whih are the possible outomes when measuring M , and assoiated witheah m there is an eigenspae Hm ⊂ H of M . The quantum measurements are desribed bya set of measurement operators {Mm}, suh that the probability that m ours is given by
pm = 〈ψ|M †

mMm|ψ〉, (1.1)and the properly normalized state |ψ′〉 right after the measurement is given by
|ψ′〉 =

Mm|ψ〉√
〈ψ|M †

mMm|ψ〉
. (1.2)The evolution of the state |ψ〉 is desribed by unitary operators U , suh that the states |ψ〉and |ψ′〉 at two distint times t1 and t2 are related by

|ψ′〉 = U |ψ〉, (1.3)where U depends only on the times t1 and t2. Therefore, the evolution as desribed by suhunitary operators is disrete in time. Moreover, the evolution of the state |ψ〉 in ontinuoustime is desribed by the Shrödinger equation
H|ψ〉 = i~

d|ψ〉
dt

, (1.4)where H is the Hamiltonian of the system, whih ompletely spei�es the dynamis of thesystem, at least in priniple [40℄.1.1 Qubits and QuditsIn lassial omputation, the elementary indivisible unit of information is a bit, a binaryvalued integer. To promote the onept of the bit into quantum mehanis, the integers 0 and
1 are replaed by the orthonormal states |0〉 and |1〉 in a two dimensional vetor spae. Then,instead of a bit with a �xed binary value, a normalized linear ombination an be de�ned by

|φ〉 = a|0〉 + b|1〉, a, b ∈ C, |a|2 + |b|2 = 1. (1.5)A general state of the form (1.5) is known as the qubit, the quantum bit, whih is an objetin two dimensional omplex vetor spae with an inner produt, namely the two dimensionalHilbert spae C2. The basis spanned by the state vetors {|0〉, |1〉} is known as the omputa-tional basis of the qubit.The qubit is the basi and most widely used unit of information in quantum omputation.However, also higher dimensional objets an be onsidered. These objets are known asqudits and they take the general form
|φ〉 =

d−1∑

i=0

αi|i〉, αi ∈ C,

d−1∑

i=0

|αi|2 = 1, (1.6)8



where d is the dimension of the qudit. Hene, qudits are objets in a d-dimensional Hilbertspae Cd. d is assumed to be prime, beause qudits of non-prime dimension an in priniplealways be expressed as a tensor produt of qudits of smaller, but prime dimension. In thissense the qubit (1.5) is the indivisible unit of quantum information. However, the qudit (1.6)is a more general and �exible onept, whih is better suited for platform-independent generaldisussion.A quantum state of N qudits an be expressed as a vetor in the spae
C ≡

(
Cd
)⊗N

, dim(C) = dN . (1.7)This spae is referred to as the omputational spae of the quantum omputer. The orthornor-mal basis given by the tensor produt of the single qudit basis states
{|i1〉|i2〉 · · · |iN 〉}i1,i2,...,iN=0,1,...,d−1, (1.8)where one has adopted a onvention to suppress the expliit tensor produt notation, |i〉|j〉 ≡

|i〉⊗|j〉. The normalized state vetor of a general N -qudit state |Φ〉 ∈ C an then be expressedas
|Φ〉 =

d−1∑

i1,i2,...iN=0

αi1,i2,...iN |i1〉|i2〉 · · · |iN 〉,
d−1∑

i1,i2,...iN=0

|αi1,i2,...iN |2 = 1, (1.9)where αi1,i2,...iN ∈ C.Enoding Quantum InformationWhen onsidering a quantum mehanial system in terms of quantum omputation, one wantsto express every quantum state |ψ〉 ∈ H of the system as a oupled state of some n qudits
|φi〉 ∈ C

|ψ〉 ≡ |Φ〉 = |φ1〉|φ2〉 · · · |φn〉, (1.10)for some |φ1〉, |φ2〉, . . . , |φn〉 (1.6), and the study the evolution of this |ψ〉 in terms of theevolution of the multi-qudit state |Φ〉. The oneptual hange in thought is the treatment ofqudits as elementary quantum mehanial objets out of whih an arbitrary quantum state,at least in priniple, ould be onstruted.This idea underlies one of the ruial riteria for a given quantum mehanial systemto serve as a quantum omputer: the omputational spae C, the alulational arena of thequantum omputer, should be identi�ed somehow with the state spae H of the system,
C ⊆ H, suh that the tensor produt struture (1.7) exists for some d,N ∈ R. In general,this riterion expresses the demand that in the quantum system there should exist some Ndegrees of freedom, usually meaning some N independent observables Mi, whih eah have
d eigenspaes Hmi

. Letting Hi ⊂ H be the spae spanned by the eigenspaes of Mi, theomputational spae of a single qudit would then be identi�ed with it
Cd ≡ Hi = (Hmi

)⊗d. (1.11)9



When identifying qudits with suh degrees of freedom, one talks of enoding the quantuminformation on the quantum mehanial system. For example, in nature there exists wellstudied physial systems, whih behave as two-level systems o�ering natural ways of enodingqubits. Simple examples are for example the eletron spin or the photon polarization, wherethe enoded qubits would be identi�ed with the observables orresponding to spin or wavepolarizations, respetively. These ases are also illustrative in the sense that the qubit anthen be onsidered loalized on the partile and an be thought as moving in spae-time muhin analogy with lassial iruits. However, suh simple intuitive systems are not often themost pratial for large-sale implementation, and in general the exat way of enoding thequantum information always depends on the physial system in question. Hene, for a generalplatform-independent disussion, it is useful to treat the qudit as a purely mathematialobjet, an internal spae identi�ed with some subspae of the whole state spae, whih doesnot neessarily have any loal physial orrespondent.1.2 EntanglementEntanglement is maybe the most urious feature of quantum mehanis. In quantum ompu-tation it is onsidered as an extra resoure, whih an be utilized to perform omputationaltasks not possible with lassial omputers. However, it is more than just a resoure. Ithas been proven that the ability to entangle states is required by any quantum system andtherefore the onept of entanglement lies at the very heart of quantum mehanis [9℄ - with-out entanglement, there is no quantum mehanis. To better understand the role played byentanglement, the onnetions between quantum entanglement and topologial entanglementhave been studied [26, 28, 29℄. These topis might have a role to play also in the theory ofquantum omputation, espeially in topologial quantum omputation due to the role playedby the braid group [30, 48℄, but sine the researh is still very muh a work in progress, thistopi will not be touhed upon here.So, entanglement is a ruial ingredient in quantum omputation, but it does not appearoften expliitly unless spei�ally looked for. As a general rule of thumb, if an N -qudit state
|Φ〉 (1.9) annot be expressed as tensor produt of single qudits,

|Φ〉 =
d−1∑

i1,i2,...iN=0

αi1,i2,...iN |i1〉|i2〉 · · · |iN 〉 6= |φ1〉|φ2〉 · · · |φN 〉, (1.12)the state is said to be entangled [40℄. Similarly, an operator G is said to be entangling if
G|φ1〉|φ2〉 · · · |φN 〉 6= |φ′1〉|φ′2〉 · · · |φ′N 〉. (1.13)In more asual language, to say that a state is entangled is to say that there exists non-lassial orrelations between the onstituent states. These orrelations an be non-loal andmay be used to gain information about the possibly spatially separated individual states. Thisextra information transmission hannel is the resoure, whih enables quantum omputation10



to outperform lassial omputation on various, although urrently very seleted tasks. In thedisussion to follow, only very little expliit attention needs to be paid to entanglement. Yet,it is an essential onept looming everywhere beneath the surfae. It is responsible for mostof the non-lassial features and no text on quantum omputation should pass on it arelessly.1.3 The Quantum Gates and the Universal Gate SetIn lassial omputation, all possible logial operations, the logi gates, an be formed out ofa small number of elementary operations. Similarly, in quantum omputation one wishes toonstrut all possible quantum gates out of a small set of elementary quantum gates. The ob-vious di�erene to lassial gate set is that instead of lassial (usually irreversible) logi gates,unitary (reversible) gates are required to preserve the probability interpretation of quantummehanis [40℄. Therefore, all quantum gates G will be assumed to be unitary operators.This means that the quantum gates G are elements of the group of unitary transformations
G ∈ U(dN ) ating in the omputational spae (1.7) as

G : C 7→ C, G ∈ U(dN ). (1.14)The unitary group is a ontinuous group having an in�nite number of elements, and thus onean at best approximate an arbitrary gate with an arbitrary preision. To do this, one shouldgive a set of elements
G = {A1, . . . , An}, A1, . . . , An ∈ U(dN ), (1.15)suh that every G ∈ U(dN ) an be expressed as

G ≈ Am1
i1

· · ·Amk

ik
, (1.16)for some k, m1, . . . ,mk ∈ Z and i1, . . . , ik = 1, . . . , n. Then, the elements A1, . . . , An wouldbe the generators of the group and the set G would form the universal gate set for quantumomputation. In diret analogy with qudits, whih in quantum omputation are taken asthe elementary quantum mehanial objets (1.10), the elements of the universal gate set

G are to be treated as the most elementary unitary transformations out of whih, at leastpriniple, an arbitrary unitary transformation G ould be onstruted. This idea gives theseond riterion for given system to be able to exeute universal quantum omputation: thequdits must be enoded on the system suh that by performing some unitary transformations
Ui (1.3) on the systems state spae H, one should be able to apply the universal gate set Gin the omputational spae C. In pratie this breaks down to speifying a set of physialoperations {U1, U2, . . . , Un} on the state spae H suh that

Ui : |φ〉 7→ Ai|φ〉, ∀Ai ∈ G, (1.17)or to put the riterion in more general form, the set {U1, U2, . . . , UN} should generate U(dN )in C. 11



In order to speify the Ui, whih an be used to implement the universal gate set, oneshould know whih Ai onstitute G. There is �exibility, sine the hoie for G (1.15) is notunique and various suggestions have been onsidered [40℄. Di�erent hoies arise naturally indi�erent experimental platforms, and the implementational e�ieny varies from one platformto another. Still, as already antiipated in onnetion with entanglement, all the valid univer-sal gate sets have to share one ommon feature: at least one of the gates has to be entangling(1.13). A general theorem proven in [9℄ states that a single entangling gate, when appendedwith all the possible single qudit gates, is universal for quantum omputation. Usually alluniversal gate sets are strutured in this way. Hene, hoosing a universal gate set breaksdown to hoosing a set elementary single qudit gates
Ai : Cd 7→ Cd, Ai ∈ G, (1.18)whih generate in the sense of (1.16) all unitary mappings from Cd to itself, and a singleentangling two-qudit gate

A : Cd ⊗ Cd 7→ Cd2
, A ∈ G. (1.19)By forming tensor produts of these elementary elements, one an extend the ation of G tothe whole omputational spae and thereby approximate an arbitrary G ∈ U(dn) gate.Only a few simple and illustrative universal gate sets have been expliitly onstruted.Their main funtion is to serve as a basis for theoretial onsiderations, and it is a rare oasionthat one ould atually implement these most elementary gate sets on a given quantummehanial system [40, 42℄. In a realisti setting the available unitary transformations aredetermined by the dynamis of the system, and in pratie, one has to resort to studyingase-wise whether the given unitary operations allow universal quantum omputation. Yet,as an example of the presented abstrat disussion, it is illustrative to brie�y onsider onepartiular universal gate set for qubits (d = 2), whih, surprisinly enough, will be partiallyenountered later on. For a more rigorous disussion about the universality, gate sets forqubits have been disussed in more detail in [14, 42, 40℄, and gate sets for qudits of arbitrary

d in [8, 25, 46℄.The universal gate set in question onsists of the unitary gates
G = {H,T,not }, (1.20)whose ation on the qubit basis |j〉 ∈ C2, j ∈ {0, 1}, is de�ned by
H|j〉 =

1√
2

(
|0〉 + (−1)j |1〉

)
, (1.21)

T |j〉 = (ei
π
4 )j|j〉, (1.22)not |j〉|k〉 = |j〉|j + k (mod 2)〉. (1.23)In literature, H is known as the Hadamard gate, T is known as the π

8 -phase gate and notas the ontrolled-not. It has been expliitly proven in [40℄, that modulo the relations
HT 4 = T 4H, H2 = 1, T 8 = 1, (1.24)12



where 1 is an identity gate, H and T freely generate U(2) to an arbitrary auray. Hene,when appended with an entangling not gate, they form a universal gate set. Consequently,the elements of U(4) are freely generated, modulo some further relations, by not togetherwith the tensor produts 1 ⊗ Hm, 1 ⊗ T n, T k ⊗ 1 and H l ⊗ 1 for all m, l ∈ {0, 1} and
n, k ∈ {0, . . . , 7}.1.4 Quantum MeasurementsThe qudit |φ〉 as the elementary unit of information and the universal gate set G as thetoolkit for quantum omputation are diret generalizations of their lassial orrespondents.However, having aess to a omputational spae (1.7) and a universal gate set (1.15) is stillnot enough to exeute quantum omputation. One needs an extra piee of struture, whihis the quantum measurement (1.1). Classial omputation is deterministi in the sense thatgiven an input and a a set of logial operations, the outome of the omputation is alwaysuniquely de�ned. Also quantum omputation is deterministi in the sense that given aninput state |Ψ〉 ∈ C and a omputation C, a set of unitary transformations performed in�xed order C = G1 · · ·Gn ∈ U(dN ), the output state |Ψ′〉 = C|Ψ〉 is uniquely de�ned (1.3).However, the di�erene is that whereas the output of the lassial omputation is a �xedstring of bits, in general the output C|Ψ〉 is now an entangled superposition, and to extratany information from it, one must projet it onto the omputational basis. The real outomeof the omputation is then the probability pi for projeting onto the omputational basis state
|i〉. Therefore, the quantum measurement to be performed at the end of the omputation is anas essential ingredient of quantum omputation as are the omputational spae and universalgate set. A riterion for quantum omputer andidates is then that the enoding of quantuminformation must be allowed in suh a way that by performing measurements {Mm} (1.2) onthe quantum system, one an apply projetors Pi in the omputational spae,

Mm : |Φ〉 7→ Pi|Φ〉. (1.25)That is, performing a measurement desribed by Mm and observing the outome m with theprobability pm (1.1) should in the omputational spae C uniquely orrespond to projetingonto |i〉 with the probability pi = pm.This kind of orrespondene arises naturally when qudits are enoded in the physial de-grees of freedom of some observable M (1.11), whih onsequently leads to the omputationalbasis being identi�ed with the eigenspaes Hm of M , i.e. one an de�ne |i〉 ≡ |m〉. The mea-surement of M an be formulated as projetive measurements, meaning that the Hermitianoperators {Mm} desribing the measurement are orthogonal projetors, Mm ≡ Pm, whihsatisfy the projetor algebra
PmPn = Pmδm,n,

∑

m

Pm = I. (1.26)13



The observable M has then a spetral deomposition
M =

∑

m

mPm, (1.27)where Pm are the projetors onto eigenspaes Hm of M orresponding to the eigenvalue m.Then, performing a measurement of M and observing the outome m is equivalent in theomputational spae to projeting the assoiated qudit onto the omputational basis state
|m〉.Given a omputation C, the output of a quantum omputation, i.e. the probability pm toprojet onto the state |m〉, is then given by the expression

pm = 〈Ψ|C†PmC|Ψ〉, (1.28)whih niely summarizes a single run of the quantum omputer as the expetation value ofthe operator C†PmC in the initial state |Ψ〉. Of ourse, with the single run of a quantumomputer one an only infer the information whether the projetion onto the state |m〉 sueedsor not, whih is a binary yes-no information. Whether this piee of information is su�ient todedue the result depends on the arhiteture of omputation. In same ases, it is also worthonsidering measurements, if suh are available, whih in the omputational spae translateto projetions onto some other orthogonal basis than the omputational basis. This freedomo�ers muh �exibility when designing quantum omputations, and with lever designs onean enhane the information gained from single projetive measurements.One might also ponder whether performing intermediate measurements and onditioningthe omputation on them would improve the omputation. However, aording to the prinipleof deferred measurement, without any loss of generality, all measurements an be postponed tillthe end of omputation [40℄. No omputation requires intermediate measurements and nothingis gained by using them. This means that the state of the system after the measurement playsno role, sine all the information lies in the probabilities to obtain the di�erent outomes atthe end of the omputation. It is in the measurement statistis where all the informationresides.1.5 The Framework for a Quantum ComputerOne is now ready to present the very general theoretial framework for the quantum omputer.In order for a given quantum system to serve as a universal quantum omputer, the neessaryrequirements for enoding quantum information are:1. The omputational spae C has a tensor produt deomposition in terms of d-dimensionalsubspaes (qudits) (1.7).2. By performing unitary transformations on the system, one an, to an arbitrary preision,generate an arbitrary element of U(dN ) on C, whih is equivalent to showing that onean implement some universal quantum gate set (1.15).14



3. By performing measurements on the system, one an perform projetive measurementsin C.These are the strutures, whih one sets out to look for in the anyoni system to be presented inthe next hapter. The aim is to try to disover some physial degrees of freedom, whih exhibitthe promised intrinsi fault-tolerane and whih at the same time allow the implementationof the properties listed above.
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Chapter 2Non-Abelian Anyons and theAlgebrai StrutureTo make a long story short, anyons are idential partiles whih do not obey the usualFermi-Dira or Bose-Einstein statistis, but something in between. Hene, the term frationalstatistis is also often used in onnetion with anyons. The aim of this hapter is to give aompat aount of lassi�ation of di�erent anyons and desribe their exoti interations.The relevant aspets to performing quantum omputation will be made transparent whenenountered, but the disussion on performing quantum omputation with anyons, that istopologial quantum omputation, will have to wait till the next hapter.There exist two prominent approahes to takle the anyoni behavior. The �rst inorpo-rates the frational statistis through �titious Chern-Simons gauge �elds, whih transmutethe statistis into the partiular topologial interations [18, 35, 47℄. The seond one makesuse of quantum symmetries as desribed by Hopf algebras, whih o�er a uni�ed desriptionof the partile properties [2, 11, 31, 32, 42℄. Of ourse, both apture the same physis, butthe argumentation leading to the existene of anyons and the emphasis on di�erent featuresvary. From the point of view of the appliability of anyons to quantum omputation, it isthe latter approah whih provides more insight to the problem. However, before proeedingto the abstrat algebrai treatment, motivation will be derived from physial onsiderations,whih will provide the grounds for the rather abstrat mathematial framework.The de�ning property of anyons arises when one onsiders the symmetry properties of an
N -partile system of varying spatial dimension. Under the ation of SN , the permutationgroup of N partiles, the Hamiltonian of the system remains invariant, but the eigenstates
|ψj〉 are transformed aording to an irreduible representation. Letting ψj(1, 2, . . . , N) =

〈1, 2, . . . , N |ψj〉 denote an N -partile wave funtion and U(π) an operator implementing apartiular permutation π, this an be expressed as the transformation
U(π)ψj(1, 2, . . . , N) =

∑

k

ψk(π(1), π(2), . . . , π(N))Dkj(π), (2.1)where Dkj(π) are the matries representing the permutation π. In most quantum mehanial17



systems the Fermi-Dira and Bose-Einstein statistis are su�ient to desribe the symmetryproperties of the wave funtion. These two ases are the two one-dimensional representa-tions: the trivial representation D(π) = 1 and the alternating representation D(π) = (−1)|π|,with |π| the number of interhanges in π [35℄. These orrespond to bosons and fermions,respetively.Anyons orrespond to irreduible representations taking other forms than the two afore-mentioned ones. They ome about when one onsiders partiles on manifolds of varyingspatial dimension. The symmetry group to whih the permutation π belongs to depends onthe topology of the on�guration spae MD
N of the D-dimensional N -partile system, andespeially on the struture of the fundamental group π1(M

D
N ). The on�guration spae MD

Nis not simply onneted, beause indistinguishable partiles are not allowed to oinide, andthus the fundamental group is non-trivial [11, 35℄. This is re�eted in the struture of the�rst homotopy group, whih now depends on the dimension D of the spae. Namely, in twospatial dimensions it is known to be isomorphi to the N-string braid group,
π1(M

2
N ) ≃ BN , (2.2)whereas for D ≥ 3 it is isomorphi to the permutation group of N-objets,

π1(M
D
N ) ≃ SN , D ≥ 3. (2.3)The one-dimensional irreduible representations of SN orrespond to the aforementioned triv-ial and alternating representations, but it is known that there are also higher dimensional ir-reduible representations. However, these would orrespond to so alled parastatistis, whihare not observed and, at the present knowledge, are not assumed to exist in nature [35℄. Onthe other hand, there are no suh onstraints on the dimensionality of the representationsof the braid group. Therefore, it follows that the anyoni behavior is manifest only in twospatial dimensions and the symmetry properties of the N -anyon wavefuntion are desribedby the braid group BN . If the wave funtion transforms in some one-dimensional irreduiblerepresentation of BN , one talks of abelian anyons. Wavefuntions transforming in some higherdimensional irreduible representation are said to desribe non-abelian anyons.The Emergene of AnyonsThe emergene of anyons in only 2+1 dimensions, the additional dimension being time, greatlyrestrits the possible quantum mehanial systems where they ould be found. Currently themost promising systems involve the frational Quantum Hall states [36, 37, 47℄, but there arealso proposals for engineering suitable systems [15, 16℄. Construting and ontrolling suhsystems will be a great hallenge to experimentalists, but the exat details are not the itemof interest here. The existene of anyons will be taken for granted and one will settle witha toy model to disuss their properties. Yet, to put the model in a physial ontext, a verybrief overview of one theory underlying the emergene of anyons will be presented also here.A omprehensive review of these so alled disrete gauge theories an be found in [11℄.18



As usually with gauge theories, one starts with a Lagrangian, whih is invariant under aontinuous symmetry group G and whih involves Higgs �elds, whih may be oupled to someexternal matter �elds. By performing spontaneous symmetry breaking in a suitable manner,one �nds a set of degenerate ground states, whih are invariant only under some disretesubgroup H ⊂ G. Consequently, the ground state manifold is assumed to be isomorphi to
G/H. The broken phase supports topologial defets whih are �ngerprints of the brokensymmetry, and whih an be lassi�ed by the fundamental group π1 of the ground statemanifold. For a disrete and �nite H, and for a ontinuous and simply onneted G, thefundamental group is isomorphi to the residual symmetry group

π1(G/H) ≃ H. (2.4)The topologial defets an be treated as quasipartiles, whih by (2.4) are lassi�ed by theelements h ∈ H. In addition, when one inludes also matter �elds oupled to the Higgs �eld,the broken phase supports also exitations, whih, as usual with theories involving symmetrybreaking, are labeled by the unitary irreduible representations Γ of the residual symmetrygroup H. These two seemingly di�erent types of exitations an be treated on equal footingby onsidering them both to be in aordane with the irreduible representations of a largersymmetry group, namely a quantum group. This uni�ed approah will be disussed in a while.It is a feature of the broken phase that all the physial harges of the unbroken phase,both magneti and eletri, are sreened and therefore there are no eletromagneti long-rangeinterations [11℄. However, the peuliar statistis of the anyons an be interpreted as a kindof interation, whih is of topologial nature. In the physis literature, these topologial inter-ations are usually known as the famous Aharonov-Bohm interations taking plae betweenbetween magneti �ux and eletri harge [1℄. It derives from this analogy, that the h and
Γ are often referred to as �ux and harge, respetively, arried by the quasipartiles. Thetopologial exitations an be treated as partiles on the plane, but the way they are to beunderstood as physial objets is very muh model dependent. For example the �ux-hargeanalogy may in some ases be an aurate desription, sine in some superondutor-likesystems the �uxes are magneti vorties arrying quantized magneti �ux, and the hargesare ondensates of matter �elds arrying some quantized eletri harge as their olletiveproperty. On the other hand, in other models the quasipartiles may manifest themselvesas olletive exitations bearing no diret orrespondene to the elementary magneti and/oreletri harge. The topologial interations still exist as if the quasipartiles were arryingsome �ux and harge, but these are to be regarded merely as �titious properties havingnothing to do with ordinary eletromagnetism [47℄.The Toy Anyon ModelFor the purposes of the theory of topologial quantum omputation, the exat nature of theanyoni quasipartiles is not of importane. The theory of topologial quantum omputationis only interested in whih residual gauge groups H give anyons, whih are suited for quantum19



omputation. It has been shown that universal quantum omputation is possible only withnon-abelian groups [34℄ and hene it will be assumed that H is non-abelian. To study theproperties of these non-abelian anyons, it su�es to use a toy model, whih onsists of N pointlike partiles on a two-dimensional surfae. The symmetry properties of the wavefuntion oftheN partiles are desribed by the braid group BN . This is not to be onfused with symmetrygroup of the system, whih is some �nite disrete group H. The di�erent partiles are labeledby the elements h ∈ H and/or the irreduible representations Γ of H. The partiles arryalso onserved quantum numbers, whih depending on the group H, may or may not be inaordane with the labels h and Γ. This will be studied in detail in the setions to ome.All the long-range interations of the model are of Aharonov-Bohm type and there are noother long-range interation mehanisms. Finally, when two partiles are brought together,they an fuse to yield a new partile, whih arries new quantum numbers, suh that the totalquantum numbers are onserved in the proess.2.1 The Braid Group and the Topologial InterationsThe topologial interations ome about when a multi-partile wavefuntion undergoes apermutation (2.1), whih in two spatial dimensions is desribed by the ation of the braidgroup (2.2). Physially this orresponds to moving the partiles around eah other. The mostelementary of suh permutations would be the interhange of the relative positions of twopartiles, whih would orrespond to the ation of a generator of the BN . Finding how thesegenerators at on the states appearing in the model would then be equivalent to speifying howtwo partiles interat. Generalizing this observation, �nding the irreduible representation of
BN , in whih the wavefuntion of multi-anyon system transforms, fully aptures all the long-range interations in the model.Before proeeding, it is useful to adopt suitable notation and onventions for desribingthe quasipartiles. The notations |h〉, |q〉 and |h, q〉 will be used to denote partiles arrying�ux h, harge q and a ombination of both, respetively. The state vetor form is takeninto use, beause it will later be shown that the partiles will arry an internal vetor spaewith a basis given by the di�erent �ux/harge eigenstates. However, for the time being, thisstate vetor notation is to be regarded merely as labels for di�erent partiles. Also, it isuseful to adopt a gauge onvention that a system of N partiles is organized on a line, the
x-axis for example, on the (x, y)-plane so that the spatial loation and the plaement onthe tensor produt desribing the whole system are in one-to-one orrespondene. That is, if
x1 < x2 < . . . < xN denote the positions on the line, the diret produt of the labels expressesalso the relative positions by

|a1, x1〉 ⊗ |a2, x2〉 ⊗ · · · ⊗ |aN , xN 〉 ≡ |a1〉|a2〉 · · · |aN 〉. (2.5)Further, interhanges are only allowed between partiles oupying adjaent positions. Theseonventions are su�ient to desribe the nature of the topologial interations.20



The Aharonov-Bohm InterationsThe Aharonov-Bohm e�et is a purely quantum mehanial e�et whih is of topologialnature. What is ommonly meant by it, following the lassi paper [1℄, is that when an eletriharge q enirles a magneti �ux h, the wave funtion of the harge piks up a quantum phase
eiqhw with w the winding number. The topologial nature has several peuliar onsequenes.First, it is a non-loal e�et, beause there is no partile mediating the interation. Thismeans that it persists, regardless of the spatial separation of the harge and �ux, even at verylarge distanes. Seond, the phase piked up by the wave funtion is indi�erent to variationsof the path travelled, but depends only on the number of times the path winds around the�ux [47℄.All the long-range interations of the onsidered anyon model are of this type. Reall thatthe �uxes and harges are labeled by the elements h and irreduible representations Γ of thegauge group H, respetively. Then, in general, the harges Γ arry a harge vetor spaes V Γ,whih has the dimension of the representation Γ, and the state vetor in V Γ is given by |q〉.When a harge enirles a �ux, the Aharonov-Bohm e�et in the present formalism is thenthe rotation of this state vetor by the matrix Γ(h) assigned to the group element h in therepresentation Γ. In general, this is the transformation

|h〉|q〉 → |h〉|Γ(h)q〉, (2.6)whih in the ase of one dimensional representations boils down to the aforementioned quan-tum phase.The lassi Aharonov-Bohm interation takes plae between a �ux and a harge. In thease of non-abelian gauge group H, there exists also an e�et alled the non-abelian Aharonov-Bohm e�et or the �ux metamorphosis [42, 11℄. Consider a two-partile state with two �uxes
a, b ∈ H with total �ux given by ab ∈ H. Sine both a and b are elements of a non-abeliangroup, they do not in general ommute. However, the long-range properties of the ombinedsystem, the total �ux, should not be altered if the positions of the partiles arrying �ux wereinterhanged. This means that under the interhange of the �uxes, b should be onjugatedby a. The �ux metamorphosis is thus equivalent to the transformation

|a〉|b〉 → |aba−1〉|a〉. (2.7)After the interhange, the total �ux is (aba−1)(a) = ab and is onserved. Both (2.6) and (2.7)an be aptured in a uni�ed way via the ation of the braid group.The Braid GroupThe braid group of N partiles, BN , is generated by the abstrat relations
σiσj = σjσi, |i− j| ≥ 2, i, j = 1, . . . , N − 1, (2.8)

σiσi+1σi = σi+1σiσi+1, i = 1, . . . , N − 2. (2.9)21



1 4321432Figure 2.1: Pitorial presentation of (2.8) [11℄
31 2 3 1 2Figure 2.2: Pitorial presentation of (2.9) [11℄Altogether there are N − 1 generators σi. Their inverses σ−1

i are given by
σiσ

−1
i = σ−1

i σi = e,where e denotes the unit element. Eah of the N partiles an be thought as moving ona trajetory in the 2+1 dimensional spae-time. Sine in two spatial dimensions the oun-terlokwise and lokwise rotations an be distinguished, the generators σi and σ−1
i an bethought as generating the interhange of the positions of ith and (i+ 1)th partile by a rota-tion in a ounterlokwise and lokwise diretion, respetively. The hoie for the diretionof rotations is arbitrary, but this partiular hoie is ommonly used in the literature andwill also be adopted here. With these onventions, the relations (2.8) and (2.9) are mostvividly illustrated by the Figures 2.2 and 2.1. In mathematial language, the trajetories areonsidered as strands whih are braided by applying the generators. The elements b ∈ BN ,the braids, are generated by taking all possible produts of all possible powers, positive ornegative, of the generators. Therefore, BN is a group of in�nite order with eah element borresponding to a ertain braiding.The abstrat generators σi an be represented in anN -partile spae by the braid operators

σi 7→ Ri = I⊗(i−1) ⊗R⊗ I⊗(N−i−1), (2.10)where I is the identity operator and R the braid operator interhanging the positions of22



|a〉 |b〉

|a〉 |b〉 |a〉|aba−1〉

|b〉 |b−1ab〉

R

R−1Figure 2.3: The transformation onventionadjaent partiles oupying plaes i and i + 1 in a ounterlokwise manner. Beause therepresentations have to respet the group properties (2.8) and (2.9), the braid operators haveto satisfy
RiRj = RjRi, |i− j| ≥ 2,

RiRi+1Ri = Ri+1RiRi+1, i = 1, . . . , N − 2. (2.11)Of partiular importane is the latter relation, whih is known as the Yang-Baxter equation,whih serves as a onsisteny ondition for all possible matrix representations of braidingoperators. From the point of view of quantum omputation, the interest will be lying par-tiularly on the unitary solutions of (2.11), beause as will be shown later, unitary braidingsan be utilized as unitary quantum gates.Before proeeding, it is useful to adopt a further gauge onvention. Reall that the partileswere organized in a line in x-diretion (2.5) and that interhanges were allowed only betweenneighboring partiles. The topologial interations take plae when the partiles enirleeah other, but to allow a onsistent desription of the phenomena, one should speify whenexatly do the transformations (2.6) and (2.7) our. Sine the braiding in lokwise andounterlokwise diretion are inverse operations of eah other, they should also orrespondto inverse transformations. A onvention to be adopted here is illustrated by two �uxes inFigure 2.3. When partiles a and b, a being to the left of b, are braided ounterlokwise, thestate of b is transformed by a. On the other hand, under lokwise braiding the state of a istransformed by b−1, the inverse of b. Then, in terms of the braid operator R implementing aounterlokwise interhange, the non-abelian Aharonov-Bohm e�et (2.7) between two �uxes
|a〉 and |b〉 an be summarized by

R|a〉|b〉 = |aba−1〉|a〉, R−1|a〉|b〉 = |b〉|b−1ab〉,
R2|a〉|b〉 = |(aba−1)a(aba−1)−1〉|aba−1〉 = |(ab)a(ab)−1〉|aba−1〉.

(2.12)Similarly the abelian Aharonov-Bohm interation between a pure �ux |h〉 and pure harge
|q〉 an be summarized by

R|h〉|q〉 = |Γ(h)q〉|h〉, R−1|h〉|q〉 = |q〉|h〉,
R|q〉|h〉 = |h〉|q〉, R−1|q〉|h〉 = |h〉|Γ−1(h)q〉,
R2|h〉|q〉 = |h〉|Γ(h)q〉.

(2.13)23



Two pure harges |q〉 and |p〉 do not interat topologially and hene the ation of braiding istrivial
R|q〉|p〉 = R−1|q〉|p〉 = |p〉|q〉. (2.14)These formal, but simple expressions apture all the long-range interations of partiles ar-rying only either �ux or harge. The treatment of partiles arrying both �ux and harge isslightly trikier and it will be disussed in a while.2.2 The Quasipartile SpetrumIt has been illustrated above how would the partiles arrying only the elements h ∈ H orthe representations Γ of H as their quantum numbers transform under the ation of the braidgroup. If these were the good quantum numbers, the given expressions would apture all thetopologial interations. However, they are not good quantum numbers, beause one has notyet aounted for the existene of the residual non-abelian symmetry group H, whih impliesthat the physis should remain invariant under all global g ∈ H transformations

g ∈ H : |h〉 7→ |ghg−1〉, |q〉 7→ |Γ(g)q〉. (2.15)This is equivalent to demanding that the good quantum numbers, the partile labels, remainunhanged and that g ommutes with the braiding operator R,
gR = Rg, ∀ g ∈ H. (2.16)As an learly be seen from (2.15), unless h and g ommute and the representation Γ istrivial for all g ∈ H, the |h〉, |q〉 labeling is not in general invariant under global symmetrytransformations and does not therefore bear a gauge-invariant meaning. To �nd the physiallymeaningful partiles of a non-abelian anyon model, some other labeling should be used. Still,beause of (2.4), this new labeling should aount somehow for the fat that h ∈ H labelsthe distint topologial exitations. Most insight to the problem is obtained when eah of thethree general partile types are onsidered separately.The Pure FluxesThe pure �uxes are partiles, whih were originally assumed to be labeled with some h ∈ H.To �nd the good quantum numbers for pure �uxes, one should �nd the the invariant featuresof H under onjugation (2.15). By de�nition, these are the onjugay lasses
C(h) = {ghg−1|g ∈ H}, (2.17)Therefore, the pure �uxes manifest in a non-abelian model should be labeled by the onjugaylasses C of H. This means that the partiles are organized into degenerate multiplets labeledby the onjugay lasses C, and for a given onjugay lass, there are altogether |C| di�erent24



representatives of the same physial partile [11, 42℄. Therefore, a partile labeled by C anbe thought as arrying a |C|-dimensional internal �ux vetor spae V C . The basis in thisinternal spae is given by the �ux eigenstates
{|h〉}h∈C , 〈h′|h〉 = δh′,h ∀ h′, h ∈ C. (2.18)A general state an be expressed as a superposition of the form

|a〉 =
∑

h∈C

ah|h〉. (2.19)Although the emergene of the internal spaes V C is a onsequene of the topologial degen-eray of the system, they are not the proteted subspaes one is looking for. Even thoughno small loal perturbation an a�et the state in this internal spae, global transformations(2.15) beome rotations in V C , and thus states of the form (2.19) are not in general invari-ant under g ∈ H transformations. The topologially proteted subspae, whih is the majormotivation for studying anyons, still awaits to reveal itself.The Pure ChargesThe pure harges of an anyon model were assumed to be labeled by the unitary irreduiblerepresentations Γ of H. Depending on the dimensions of the representations Γ, there is aninternal |Γ|-dimensional harge vetor spae V Γ assoiated with eah partile arrying harge.A basis in this spae is given by some set of harge eigenvetors
{|i〉}, 〈i|j〉 = δi,j, i, j = 1, . . . , |Γ|, (2.20)and a general state is a superposition of the form

|q〉 =

|Γ|∑

i=1

ai|i〉. (2.21)Unlike with the �uxes, the existene of the residual gauge group does not introdue anymodi�ation in the labeling, i.e. the pure harges are still labeled by the di�erent irreduibleunitary representations Γ of H. For the same reasoning as with the pure �uxes, states in theinternal spae V Γ arried by a pure harges are resistant to small loal perturbations, but notonserved under global transformations (2.15).The DyonsIn addition to the pure �uxes and harges, there exists also partiles arrying both �ux andharge. These �ux/harge omposites are alled dyons and their quantum numbers omeabout in a slightly di�erent way. The relevant remark is that for �ux arrying partiles, theinvariane under (2.15) does not ompletely �x the quantum numbers to oinide with theonjugay lasses (2.17). The reason is that there may be global transformations g, whih25



ommute with a given �ux h, and whih an therefore be used to �x an additional internalharge degree of freedom [11℄. These g ∈ H form the normalizer subgroup N(h) ⊂ H,
N(h) = {g ∈ H|gh = hg}. (2.22)Beause the N(h) and N(ghg−1) are isomorphi, the normalizer group an be assoiated withthe orresponding onjugay lass C of the element h and denoted just by NC . It followsthat the harges arried by the dyons are labeled by the irreduible representations ΓNC

andthus by ombining both the gauge invariant �ux and harge labels, the distint dyons shouldbe labeled by the pairs (C,ΓNC
) as their good quantum numbers. As the pure �uxes andharges, also dyons arry an internal vetor spae, whih now is a diret produt of the �uxand harge vetor spaes
V C

Γ ≡ V C
ΓNC

= VC ⊗ VΓNC
, (2.23)with the basis given by the tensor produt of the bases (2.18) and (2.20)

{|h, i〉}h∈C
i=1,...,|Γ|, 〈h, i|h′, j〉 = δh,h′δi,j . (2.24)The Full Partile SpetrumThe dyons o�er a natural generalization of the partile spetrum of the anyon model. Thedi�erent physial partiles are organized into degenerate multiplets, whih are labeled by thethe onjugay lasses C and irreduible normalizer representations ΓNC

of the gauge group
H. The pairs (C,ΓNC

) are the good quantum numbers, whih are usually said to de�nethe superseletion setors of the model. All partiles arrying same quantum numbers aretreated as indistinguishable partiles, whih eah arry an internal �ux and/or harge vetorspae V C
Γ . The pure �ux and harge setors appear as speial ases orresponding to trivialonjugay lass and trivial representations, respetively.Sine eah superseletion setor is always labeled by two di�erent quantum numbers, bothwhih may or may not be trivial, but whih are always di�erent for di�erent setors, thenotation an be simpli�ed by labeling eah partile with only a single label

a := (C,ΓNC
). (2.25)In every model there is one speial setor, the superseletion setor orresponding to the on-jugay lass C(e) of the trivial element and the trivial representation ΓNC(e) of its normalizer.This unique setor will labeled by

1 :=
(
C(e),ΓNC(e)

)
. (2.26)It is known as the vauum setor, beause it orresponds to having no partile at all. The fullpartile spetrum M is then formally given by the set of labels

M =
{
1, a1, a2, . . . , a|M |−1

}
, (2.27)26



where |M | denotes the number the di�erent superseletion setors.Using the dyons as the most general partile types allows also the generalization of theglobal symmetry transformations (2.15) as well as of the the topologial interations (2.12) -(2.14). To aount for the possible harge degrees of freedom, every g ∈ H transformation,ating on some �ux state |h〉, should be deomposed suh that
g = g′g̃, g′ /∈ NC(h), g̃ ∈ NC(h). (2.28)If suh deomposition exists for some g̃ 6= e, the g̃ part of g ommutes with h, and an beimplemented as a non-trivial transformation in the harge setor. Then, the ation of globalsymmetry transformations (2.15) on arbitrary states of the model an be summarized by

g ∈ H : |h, q〉 7→ |ghg−1,Γ(g̃)q〉, g̃ ∈ NC(h). (2.29)Similarly, all the topologial interations (2.13) - (2.14) an now be aptured by the ompatexpressions
R|h, q〉|h′, q′〉 = |hh′h−1,Γ(h̃)q′〉|h, q〉, h̃ ∈ NC(h′), (2.30)

R−1|h, q〉|h′, q′〉 = |h′, q′〉|h′−1hh′,Γ−1(h̃′)q〉, h̃′ ∈ NC(h).Using these results one an �nally hek that braiding also bears a gauge invariant meaning,i.e. that (2.16) is satis�ed
Rg|h, q〉|h′, q′〉 = R|ghg−1,Γ(g̃)q〉 |gh′g−1,Γ′(g̃)q′〉,

= |ghh′h−1g−1,Γ′(g̃hg−1)Γ′(g̃)q′〉 |ghg−1,Γ(g̃)q〉,

gR|h, q〉|h′, q′〉 = g|hh′h−1,Γ′(h̃′)q′〉 |h, q〉,
= |ghh′h−1g−1,Γ′(g̃)Γ′(h̃)q′〉 |ghg−1,Γ(g̃)q〉.

(2.31)
These expressions are equal, beause the isomorphy of the normalizers, N(h) ≃ N(ghg−1),implies

g̃hg−1 = g̃h̃g̃−1. (2.32)Using then the representation properties Γ(ab) = Γ(a)Γ(b) and Γ(a−1) = Γ−1(a), it followsthat
Γ′(g̃hg−1)Γ′(g̃) = Γ′(g̃)Γ′(h̃)Γ′−1(g̃)Γ′(g) = Γ′(g̃)Γ′(h̃), (2.33)whih ompletes proving that the ation of BN ommutes with global g ∈ H symmetrytransformations (2.16).After all this work, one still has not even got a glimpse of the topologially protetedsubspaes, whih was the main motivation for onsidering quantum omputation with anyons.The losest thing resembling them are the internal �ux/harge vetor spaes (2.23), whih,27



however, were not robust storages for quantum information. The genuine invariant featuresof the model are the partile types M (2.27), whih an hange only under the proess offusion [11℄. Hene, what remains in the disussion are the fusion rules whih ditate whathappens when two anyons are brought together. It will be shown that related to them, thereexist a further internal spae whih is �nally the one proteted by topology. All this is mostonveniently disussed in terms of Hopf algebras, whih o�er a natural desription of anyonsby unifying the given physially motivated arguments in terms of more rigorous mathematialformalism.2.3 The Algebrai Struture of Non-Abelian AnyonsAll the preeding disussion an be uni�ed by extending the residual H symmetry into aquantum group symmetry. By doing so, instead of treating the di�erent exitations appearingin the model as having fundamentally a di�erent origin, the topologial exitations beinglassi�ed by the fundamental group (2.4), but the matter exitations being lassi�ed therepresentations Γ of H, they an be lassi�ed by the unitary irreduible representations ofthis single extended symmetry struture.There is a physial way of motivating the appearane of this quantum symmetry byonsidering the allowed physial operations, i.e. the ones ommuting with the ation ofthe residual symmetry group. These are the independent measurements of both �ux andharge by using quantum interferene experiments [11℄. They are aptured by �interfereneamplitudes� of the form 〈h, q|〈h′, q′|R2|h′, q′〉|h, q〉, whih, beause of (2.16), are invariantunder global symmetry transformations. However, the measurements of �ux or harge aredesribed in di�erent ways. First, the measurements of �ux orrespond to projeting ontosome �ux eigenstate in the vetor spae Va arried by a partile a. They are desribed byprojetors Ph, whih satisfy the �ux projetor algebra
PhPh′ = δh,h′Ph, h, h′ ∈ H. (2.34)On the other hand, the measurement of harge orresponds to determining the representation

Γ in whih a given partile a transforms. These an be determined, at least in priniple, by thetransformation properties under all the g ∈ H transformations. Therefore, the struture ofallowed physial operations in an anyon system is, in priniple, fully aptured by the projetors(2.34) and the g ∈ H transformations. However, sine g ∈ H transformations at on general�ux states by (2.29), Ph and g do not in general ommute
gPh = Pghg−1g. (2.35)All the possible ombinations of these two elementary physial operations form the set ofelements
{Ph g}h,g∈H , (2.36)28



whose elements, due to the non-ommutativity of Ph and g, do not ommute either. Instead,they obey the relation
Phg · Ph′g′ = δh,gh′g−1Ph g g

′, (2.37)whih an taken as a multipliation rule for the elements Phg. The idea is now to treatthe set of elements (2.36) as the elements of the extended symmetry algebra D(H). Indeed,these elements are known to generate a so alled quantum double D(H) of H, whih is aquasitriangular Hopf algebra [2, 11, 31℄. It arises naturally as an extended symmetry algebraon any systems where the fundamental group oinides with the the residual gauge group(2.4).The full quasitriangular Hopf algebra struture is given by {D(H), ·,∆, ǫ,S,R}, wherethe mappings are formally given by [24, 33℄
· : D(H) ⊗D(H) → D(H), (2.38)

∆ : D(H) → D(H) ⊗D(H), (2.39)
ǫ : D(H) → C, (2.40)
S : D(H) → D(H), (2.41)

R : D(H) ⊗D(H) → D(H) ⊗D(H). (2.42)There are a number of de�ning relations these strutures have to obey in order to onstitutea Hopf algebra. First, from the multipliation · one assumes assoiativity
(D(H) ·D(H)) ·D(H) = D(H) · (D(H) ·D(H)) . (2.43)Analogously, the o-multipliation ∆ has to satisfy oassoiativity

(∆ ⊗ id)∆ (D(H)) = (id⊗ ∆)∆ (D(H)) . (2.44)The oassoiativity tells how the ation of D(H) an be extended on tensor produts ofvetor spaes. The quasitriangular struture of D(H) is given by the unique element R ∈
D(H)⊗D(H), the universal R-matrix, whih has to satisfy the quasitriangularity onditions

R∆ (D(H)) = (σ ◦ ∆ (D(H)))R,
(id⊗ ∆)(R) = R13R12, (2.45)
(∆ ⊗ id)(R) = R13R23,where σ is a transposition map, σ ◦ (a⊗ b) = b⊗ a, and the Rij at on the ith and jth fatorof D(H) ⊗D(H) ⊗D(H) [33℄. When ombined, the the last two imply that R satis�es alsothe abstrat Quantum Yang-Baxter equation

R12R13R23 = R23R13R12. (2.46)29



Finally, the o-unit ǫ and the antipode S are de�ned as mappings obeying the respetiverelations
(ǫ⊗ id)∆(D(H)) = (id⊗ ǫ)∆(D(H)) = D(H), (2.47)

·(S ⊗ id)∆(D(H)) = ·(id⊗ S)∆(D(H)) = ǫ(D(H)). (2.48)The ounit ǫ plays the role of unit mapping with respet to omultipliation, whereas theantipodal map S serves to provide the inverse elements of D(H).Now, for the quantum double D(H) with the set of elements (2.36), these objets aregiven by [2, 11, 33℄
∆(Phg) =

∑

h′·h′′=h

Ph′g ⊗ Ph′′g, (2.49)
R =

∑

h,g∈H

Pg ⊗ Phg, (2.50)
ǫ(Phg) = δh,e, (2.51)
S(Phg) = Pg−1h−1gg

−1, (2.52)with the multipliation · already given by (2.37). To show that the struture of D(H) isindeed given by these objets, one should prove that they satisfy the de�nitions above. First,the oassoiativity (2.44) is nearly trivial, sine by just using the de�nition (2.49) and thenrenaming the indies suitably, one an immediately write both sides as
(id⊗ ∆)∆(Phg) = (∆ ⊗ id)∆(Phg) =

∑

h′·h′′·h′′′=h

Ph′g ⊗ Ph′′g ⊗ Ph′′′g. (2.53)The quasitriangularity onditions (2.45) an be proven as follows
R∆(Pab) =


∑

h,g

Pg ⊗ Phg



(
∑

a′·a′′=a

Pa′b⊗ Pa′′b

)
,

=
∑

h,g

∑

a′·a′′=a

δg,a′δg−1hg,a′′Pgb⊗ Phgb,

=
∑

h,g

δa,hgPgb⊗ Phgb,

=
∑

x,y

δa,bxb−1byb−1Pbyb−1b⊗ Pbxb−1byb−1b, (2.54)
=
∑

x,y

∑

a′·a′′=a

δa′,bxb−1δa′′,byb−1Pa′′b⊗ Pa′by,

=

(
∑

a′·a′′=a

Pa′′b⊗ Pa′b

)(
∑

x,y

Py ⊗ Pxy

)
,

= (σ ◦ ∆(Pab))R,where the summation indies have been relabeled as h = bxb−1 and g = byb−1. This is allowed,beause the sums run over all the elements h, g ∈ H, and thus relabeling only permutes the30



terms in the sum. Likewise,
R13R12 =


∑

h,g

Pg ⊗ 1 ⊗ Phg




∑

a,b

Pa ⊗ Pba⊗ 1


 ,

=
∑

h,g

∑

a,b

δg,aPg ⊗ Pba⊗ Phg,

=
∑

g,h,b

Pg ⊗ Pbg ⊗ Phg, (2.55)
=
∑

x,g

∑

x=x′·x′′

Pg ⊗ Px′g ⊗ Px′′g,

= (id⊗ ∆)(R),and
R13R23 =


∑

h,g

Pg ⊗ 1 ⊗ Phg




∑

a,b

1 ⊗ Pa ⊗ Pba


 ,

=
∑

h,g

∑

a,b

δh,gbg−1Pg ⊗ Pa ⊗ Phga,

=
∑

g,a,b

Pg ⊗ Pa ⊗ Pgbg−1ga, (2.56)
=
∑

y,x

∑

x=x′·x′′

Px′ ⊗ Px′′ ⊗ Pyx,

= (∆ ⊗ id)(R),where the summation indies have again in both been relabeled suitably. Finally, the de�ni-tions for the ounit ǫ (2.47) and the antipode S (2.48) an be proven by
(ǫ⊗ id)∆(Phg) = (ǫ⊗ id)( ∑

h′h′′=h

Ph′g ⊗ Ph′′g

)
,

=
∑

h′h′′=h

δh′,e ⊗ Ph′′g = Phg, (2.57)
=

∑

h′h′′=h

Ph′g ⊗ δh′′,e,

= (id⊗ ǫ)∆(Phg),31



where one an write δh,ePhg = Phg ⊗ δh,e = δh,e ⊗ Phg, and
·(S ⊗ id)∆(Phg) = ·

∑

h′h′′=h

Pg−1h′−1gg
−1 ⊗ Ph′′g,

=
∑

h′,h′′

δh′h′′,hδh′−1,h′′Pg−1h′−1g,

=
∑

h′

δh,ePg−1h′−1g = δh,e = ǫ(Phg),

=
∑

h′

δh,ePh′ , (2.58)
=

∑

h′h′′=h

δh′,h′′−1Ph′ ,

= ·
∑

h′h′′=h

Ph′g ⊗ Pg−1h′′−1gg
−1,

= ·(id⊗ S)∆(Phg),where the ompleteness of the projetors, ∑h Ph =
∑

h Pg−1h−1g = 1, has been used.This onludes the summary of the algebrai struture of the quantum doubleD(H). How-ever, although one ould loosely argue for the rise of D(H) in physial terms, by themselvesthese abstrat strutures o�er only very little insight to how they an be used to deal withthe anyons in a holisti manner. To get bak to physis, one must onsider the representationtheory of D(H).2.3.1 Representation Theory for the Quantum Double D(H)It is known from the general theory of Hopf algebras that the representation spae, the left
D(H)-module, of a quantum doubleD(H) is given by aH-graded vetor spae, V =

⊕
h∈H Vh,where H also ats in a ompatible way aording to [33℄

|g · v| = g|v|g−1, ∀v ∈ V, g ∈ H. (2.59)Here g· denotes the ation of g ∈ H, v ∈ Vh ⊂ V is a vetor and |v| = h is the degree of v.Realling that g ∈ H are the residual symmetry transformations, this abstrat ompatibilityondition expresses that the representation spae V deomposes into the irreduible subspaestransforming onto themselves under the ation of H. Suh spaes were already enounteredduring the preliminary disussion, whih paved the way for the algebrai treatment, and witha slight reinterpretation, these results an now be diretly taken into use.It was argued how the superseletion setors, or the partile spetrum M (2.27), of theanyon model are formed when the gauge group of the system is the non-abelian group H. Itwas found that they are in general degenerate, whih implied that eah partile a ould bethought as arrying an internal vetor spae Va. Now, the quantum double D(H) expressesthe extended symmetry algebra of a model with the gauge group H. Therefore, it should atirreduibly in these internal vetor spaes, whih an now be mathematially interpreted as32



the subspaes, whih orrespond to the gradation of the D(H)-module and whih are simulta-neously ompatible with (2.59). Hene, in the language of the present algebrai treatment, thepartile spetrum M should be understood as a olletion of vetor spaes Va eah arrying apartiular irreduible representation Πa of D(H)

M = {(Va,Πa)}a=1,...,|M |. (2.60)Having already onsidered the spaes Va in onnetion with dyons (2.23), the basis in eahbeing given by |k, i〉 ∈ Va (2.24), one should now �nd how the ation of D(H) is representedin them.Reall that for an element Phg ∈ D(H) one assigned the physial interpretation of a global
g ∈ H transformation followed by a projetion onto the �ux eigenstate |h〉. To preserve thisinterpretation, for a state |k, i〉 ∈ Va, the ation of D(H) should be represented by

Phg : |k, i〉 → Πa(Phg)|k, i〉 = δh,gkg−1|gkg−1,Γa(g̃)i〉, (2.61)where g̃ ∈ N(k) is the part of g ommuting with k (2.28). In order this to be a validrepresentation in Va, it should respet the group algebra (2.37) of D(H)

Πa(Phg)Πa(P
′
hg

′)|k, i〉 = δh,gh′g−1Πa(Phgg
′)|k, i〉. (2.62)This an heked by onsidering the following ations of D(H):

Πa(Phg)Πa(Ph′g′)|k, i〉 = δh,gg′kg′−1g−1 δh′,g′kg′−1︸ ︷︷ ︸
=δ

h,gh′g−1

|gg′kg′−1g−1,Γa(g̃)Γa(g̃′)i〉, (2.63)
δh,gh′g−1Πa(Phgg

′)|k, i〉 = δh,gh′g−1 δh,gg′kg′−1g−1︸ ︷︷ ︸
=δ

h′,g′h′g′−1

|gg′kg′−1g−1, Γa(g̃g′)︸ ︷︷ ︸
=Γa(g̃)Γa(g̃′)

i〉. (2.64)These expressions are equal if the values of the delta funtions are equal for a �xed k and forall g, g′, h, h′ ∈ H. This is true, beause if either δh,gh′g−1 = 0 or δh′,g′hkg′−1 = 0, both sidesof (2.62) are immediately zero. It an be seen from the two di�erent expressions for the deltafuntions above, that it is not possible to have other equal to unity and simultaneously theother equal to zero. To only alternative to having both equal to zero is to have both equal tounity, whih again satis�es (2.62). The identity Γa(g̃g′) = Γa(g̃)Γa(g̃′) follows again from theisomorphism N(k) ≃ N(gkg−1) (2.32). Therefore, (2.61) is indeed a viable representation of
D(H) in the spae Va.The extension of the ation of D(H) on multi-partile states is given formally by theomultipliation (2.49). Partiularly, in terms of the representation (2.61), the ation ontwo-partile state |k, i〉|k′, j〉 ∈ Va ⊗ Vb is given by

Πa ⊗ Πb (∆(Phg)) |k, i〉|k′, j〉 =
∑

h′·h′′=h

δh′,gkg−1δh′′,gk′g−1 |gkg−1,Γa(g̃)i〉|gk′g−1,Γb(g̃)j〉,

= δh,gkk′g−1 |gkg−1,Γa(g̃)i〉|gk′g−1,Γb(g̃)j〉. (2.65)33



Physially this orresponds to implementing a residual g transformation separately on eahpartile and subsequently projeting out the total �ux of the ombined system. Therefore, theation (2.49) of D(H) determines the globally onserved properties of the two partile quan-tum system and the oassoiativity (2.44) implies that the ation of D(H) an be extendedthrough omultipliation to an arbitrary number of states with similar interpretation.Using (2.61), the representations for the ounit ǫ (2.51) and the antipode S (2.52) aregiven by
Πa (ǫ(Phg)) |k, i〉 = δh,e|k, i〉, (2.66)
Πa (S(Phg)) |k, i〉 = δh−1,k|g−1kg,Γa(g̃

−1)i〉. (2.67)One an see that the ation of ǫ is represented trivially in an arbitrary spae Va, and thereforethe ounit implements a trivial symmetry transformation. Physially this signals the existeneof vauum 1 ∈ M . The representation of the antipode ats non-trivially, but the physis anbe extrated by onsidering the following
Πa(Phg)Πa (S(Phg)) |k, i〉 = Πa(Phg)

(
δh−1,k|g−1kg,Γa(g̃

−1)i〉
)
,

= δh,kδh−1,k|k,Γa(g̃)Γa(g̃
−1)i〉, (2.68)

= δh,h−1|k, i〉.The ombined ation of the elements Phg and S(Phg) is proportional to the trivial transfor-mation, and thus as expeted from the general theory of Hopf algebras [33℄, the antipode playsthe role of inverse. Physially this orresponds to the implementation of inverse transforma-tions and hene of also to the existene of anti-partiles ā ∈M . Generally one an de�ne theanti-partiles as transforming in the onjugate representation, whih an be de�ned with theaid of the antipode [2℄
Πa(Phg) ≡ ΠT

a (S(Phg)), (2.69)where T denotes transposition. The anti-partiles are unique in a sense that for eah partile
a, there is only one other partile ā, whih an fuse to give the vauum. However, beauseof the topologial degeneray, this does not mean that a fusion with an anti-partile wouldalways give the vauum, but that there are no partiles b, other than the anti-partile ā, whihwhen fused with a may give the vauum [32℄. This urious property will play a key role inthe next setion.The �nal piee of struture is the universal R-matrix (2.50). It is of primary interest sineit satis�es the quantum Yang-Baxter equation (2.46), and hene representations of R an beused to de�ne representations of the braid group. Beause R ∈ D(H) ⊗ D(H), it ats in
Va ⊗ Vb, and one an therefore de�ne physial braid operator R by

Rab = σ ◦ (Πa ⊗ Πb)(R), (2.70)34



where the σ is an operator performing the spatial exhange of the partile positions. Using(2.61), the ation of Rab on a two partile state is then given by
Rab|k, i〉|k′, j〉 = σ ◦


(Πa ⊗ Πb)(

∑

h,g

Pg ⊗ Phg)|k, i〉|k′, j〉


 ,

= σ ◦


∑

h,g

δg,kδh,gk′g−1 |k, i〉|gk′g−1,Γb(g̃)j〉


 ,

= σ ◦
(
∑

h

δh,kk′k−1|k, i〉|kk′k−1,Γb(k̃)j〉
)
, (2.71)

= σ ◦
(
|k, i〉|kk′k−1,Γb(k̃)j〉

)
,

= |kk′k−1,Γb(k̃)j〉|k, i〉.Comparing this to (2.30), one an see that the ation of the universal R-matrix in the spae
Va⊗Vb, as de�ned by (2.70), oinides with the ation of the braid operator on the �ux/hargeeigenstates by implementing the Aharonov-Bohm e�et (2.6) and the �ux metamorphosis (2.7)on all oneivable states in the model. Beause of the transposition map σ in the de�nition
R, it does not satisfy the abstrat quasitriangularity onditions (2.45), but the onditions [11℄

R∆ (D(H)) = (∆ (D(H)))R,

(id⊗ ∆)(R) = (1 ⊗R)(R⊗ 1), (2.72)
(∆ ⊗ id)(R) = (R ⊗ 1)(1 ⊗R),The �rst of these expresses the already familiar property (2.16), i.e. that braiding ommuteswith residual symmetry transformations and onserves the total �ux. When ombined, thelast two imply that R satis�es the Yang-Baxter equation (2.11)

(R ⊗ 1)(1 ⊗R)(R⊗ 1) = (1 ⊗R)(R⊗ 1)(1 ⊗R), (2.73)and thus the representations (2.70) indeed de�ne representations of the braid group.To summarize, in an anyon model based on a �nite gauge group H, an internal vetor spaeof N partiles arries representations of both D(H) and BN given by ((Πa)
⊗N ,( Va)

⊗N ) and
Rab, respetively, for eah a, b ∈ M . Therefore, the algebrai onstrution with the quantumdouble D(H) as an extended symmetry algebra, aptures all the features of an anyon model asderived based on purely quantum mehanial onsiderations. However, it also allows one to gofurther by providing a way to takle the theory of fusion whih was unaessible before. Thiswill be the topi of the next setion where the long sought topologially proteted subspaeswill �nally be disovered.
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2.3.2 The Topologial Hilbert SpaeWhen two partiles are fused together, the quantum numbers M should be onserved. How-ever, as one is now onsidering an anyon model with degenerate superseletion setors, i.e. anon-abelian model, it is not at all obvious how the quantum numbers should be added up. Onethe other hand, sine the irreduible representations Πa of D(H) are used to lassify the dis-tint partiles, it is natural to demand that the outome of the fusion has to transform also insome irreduible representations of D(H). Now, in addition to assigning quantum numbers todistint partiles, the Πa desribe also the transformation properties under D(H) transforma-tions, and thus one ould as well onsider the tensor produts of single partile representations
Πa ⊗Πb, whih ould be thought of as desribing the transformation properties and quantumnumbers of a omposite two-partile system. However, the �rst quasitriangularity ondition(2.72) shows that D(H) and BN ommute and an thus be simultaneously diagonalized. This,on the other hand, means that the N -partile representations ((Πa)

⊗N ,( Va)
⊗N ) are in gen-eral reduible and hene under the ation of D(H) × BN , the multi-partile representationsbreaks down to a diret sum of irreduible representations [11℄. The possible outomes of afusion of two partiles are then determined by the deomposition of Πa ⊗ Πb into irreduiblerepresentations, i.e. the Clebsh-Gordan series

Πa ⊗ Πb =
⊕

c

N c
abΠc, (2.74)where N c

ab stands for the multipliity of the irreduible representation Πc in the deomposition.These numbers are determined by using the orthogonality of the haraters of irreduiblerepresentations [11, 24℄
N c

ab =
1

|H|
∑

h,g

tr (Πa ⊗ Πb(∆(Phg))) tr (Πc(Phg))
∗ . (2.75)In more physial terms, given two partiles a and b, the deomposition (2.74) state whihpartiles c an be be formed, i.e. it provides the fusion rules of the model. If for somepartiles N c

ab ≥ 2, there exist N c
ab ways of obtaining the partile c. The fusion rules are themost interesting feature of the representation theory of D(H), at least as far as topologialquantum omputation is onerned, beause they enode the robust features of multi-partilesystems. The whole preeding disussion has been presented to argue for their emergene,and muh of it will not play a role anymore. Yet, the disussion has not been in vain,beause to atually alulate the fusion multipliities (2.75) for a given model, one still needsto understand how to derive the representation spaes Va (2.60) and the representations Πa(2.61).The Fusion Algebra and the Fusion SpaesThe new starting point is to onsider the deomposition (2.74) as an abstrat fusion algebra,

a× b =
∑

c

N c
ab c, (2.76)36



whih is both ommutative and assoiative [32, 42℄
a× b = b× a, ⇔ N c

ab = N c
ba, (2.77)

(a× b) × d = a× (b× d), ⇔
∑

x

Nx
abN

c
xd =

∑

x

N c
axN

x
bd.The physis underlying these two properties is the onservation of the quantum numbers:given that the outome will be c, it does not matter in whih order the partiles are fused.The fusion algebra an be thought as assigning eah label set {a, b, c} ∈M a fusion spae

V c
ab of dimension dim(V c

ab) = N c
ab. (2.78)The vetor spae V c

ab is spanned by so alled fusion states, whih form the orthonormal basis
{|ab; c, µ〉}µ=1,...,Nc

ab
, 〈ab; c, µ|ab; c, µ′〉 = δµ,µ′ , (2.79)and have the physial interpretation of orresponding to the inequivalent and distinguishableways a and b an fuse to form c. One an as well onsider more general fusion spaes Vabarried by partiles a and b and where the fusion outome is not �xed. The struture ofsuh spaes is given by the diret sum over all the subspaes indexed by the possible fusionoutomes c

Vab =
⊕

c

V c
ab, dim(Vab) =

∑

c

N c
ab. (2.80)Sine for eah c there is a proper subspae, the orthonormal basis in Vab is given by

{|ab; c, µ〉}c
µ=1,...,Nc

ab
, 〈ab; c, µ|ab; c′, µ′〉 = δc,c′δµ,µ′ . (2.81)From the de�nition (2.80), one an see that dim(Vab) > 1 only for non-abelian models. Inan abelian model there would be no topologial degeneray and the outome of every fusionwould always be unique. The topologial Hilbert spae would oinide with the only subspaelabeled by a single c, Vab ≃ V c

ab, and thus dim(Vab) = N c
ab = 1 for all a and b. Sine one wantsto onsider the fusion spaes as an arena for quantum omputation, this reinfores the notionthat quantum omputation with anyons is only possible for a non-abelian model [42℄.The two-partile fusion spaes (2.78) and (2.80) serve as simple examples of what aresometimes alled topologial Hilbert spaes. However, they are hardly of partiular interest,beause unless there is fusion degeneray, i.e. N c

ab ≥ 2, V c
ab an not be used to enode quantuminformation. Consequently, the fusion spaes Vab are diretly out of the question, beause oneannot form superpositions of states belonging to di�erent superseletion setors [32℄. Tooverome these restritions, one must onsider the more general fusion spaes V c

a1,...,aN
arriedby some N -partiles, whose total harge has been restrited to c. To study their struture,one needs to deompose them in terms of the elementary fusion spaes V c

ab. Beause thefusion algebra is assoiative (2.77), multi-partile fusion spaes V c
a1,...,aN

an be deomposed37



as a diret sum of subspaes orresponding to di�erent fusion orders. For example, onedeomposition is realized by fusing always the two left most partiles
V c

a1...aN
≃

⊕

b1,b2,...,bN−2

V b1
a1a2

⊗ V b2
b1a3

⊗ · · · ⊗ V c
bN−2aN

, (2.82)where b1, b2, . . . , bN are partiles whih may our during intermediate stages of fusing allthe partiles together. From this expression, one an immediately read o� the dimension of
V c

a1,...,aN
,

dim(V c
a1...aN

) = N c
a1...aN

=
∑

b1,b2,...,bN−2

N b1
a1a2

N b2
b1a3

· · ·N c
bN−2aN

. (2.83)Of ourse, this partiular fusion order is not the only possible hoie for the deomposition.Any other hoie would give as viable alternative deomposition. Yet, regardless of howone does the deomposition, the N -partile fusion spae always deomposes as a diret sumof N − 2 two-partile fusion spaes, and all the di�erent hoies orrespond to isomorphirepresentations of the same spae V c
a1,...,aN

. Sine one needs to pik one to proeed withthe analysis, the deomposition (2.82) is as good as any. It is known as the standard basisdeomposition, whih often serves as the most pratial hoie due to its simple struture [42℄.The standard basis orresponding to this deomposition is given by the tensor produt of thesubspae bases
{|a1a2; b1, µ1〉|b1a3; b2, µ2〉 · · · |bN−2aN ; c, µN−1〉}. (2.84)The orthonormality of these spaes is given by the orthonormality of the individual basisstates (2.81). Working with basis of this form a rather awkward due to the large number ofindies, and thus in analogy with (2.79), it is useful to adopt a more ompat notation bydenoting these basis states by

{|a1a2 · · · aN ; c, µ〉}µ=0,1,...,Nc
a1a2···aN

, 〈a1a2 · · · aN ; c, µ|a1a2 · · · aN ; c, µ′〉 = δµ,µ′ , (2.85)where the index µ ounts now both the fusion state degeneraies as well as the distintintermediate fusion outomes.The observation above that the fusion algebra is assoiative allowed one to deomposethe N -partile fusion spaes in terms of smaller subspaes. There are also quite a few otherrelations between di�erent fusion spaes that the fusion algebra implies [32, 42℄. First, theommutativity implies a natural fusion spae isomorphism
V c

ab ≃ V c
ba. (2.86)This observation an be extended to N partiles by saying that all fusion spaes orrespondingto permutations of the lower indies are isomorphi. The label c an therefore be said tode�ne the superseletion setor of the fusion spae V c

a1,...,aN
, whih an not hange in anyphysial proess in whih only the partiles a1, . . . , aN partiipate. Seond, the existene of38



unique anti-partiles indues further natural isomorphisms between the fusion spaes V c
ab. Thestarting point is the fusion spae V a

a1 where no fusion ours. This spae an be thought asorresponding to free propagation and hene it is one-dimensional by de�nition, dim(V a
a1) =

Na
a1 = 1. Sine the anti-partile ā is unique for a given a, the spae V 1

aā where total annihilationours must also be one-dimensional, dim(V 1
aā) = N1

aā = 1. More spei�ally, these spaes areisomorphi [32℄
V a

a1 ≃ V 1
aā ≃ V aā

1 . (2.87)The last isomorphism in (2.87) also implies that a pair of partiles reated out of vauumalways arries onjugate labels. These isomorphisms an be generalized to arbitrary fusionspaes by adopting a onvention that the indies an be raised and lowered by replaing themwith their onjugates
V c

ab ≃ V 1
abc̄ ≃ V b̄

ac̄ ≃ · · · . (2.88)All fusion spaes isomorphi to eah other are also of same dimension. The physis underlyingthese isomorphisms is still the onservation of total harge - all the fusion spaes orrespondingto fusion proesses onserving the same total harge are isomorphi.The fusion algebra an also be used to partition M into various useful subsets. Forexample, the fusion outomes of the partiles a and b form the set
Mab = {c}∀c∈M,Nc

ab
6=0, Mab ⊂M. (2.89)Another kinds of partitions, if suh exist in a given model, are the subsets Mi ⊂ M , whihare losed under the fusion algebra (2.76)

Mi ×Mi →Mi. (2.90)The existene of suh sets is of interest, beause partiles in suh Mi would span a subalgebraof the omplete fusion algebra, and they ould therefore be treated independently of any otherpartiles appearing in the model. Consequently, the fusions spaes arried by partile in Miform a proper subspae of the full fusion spae, whih is losed under operations involvingonly these partiles. From the point of view of quantum omputation, these subalgebras area desirable feature, beause the possibility to restrit to dealing with only a limited numberof partiles types an signi�antly simplify the disussion.The primary reason to study topologial quantum omputation is that the fusion spaes areproteted from deoherene by topology. The states in V c
a1,...,aN

are robust in the presene ofloal external perturbations. By external perturbations one means for example interationswith environment suh as photons or ordinary matter, whih an ause deviataions in thequasipartile trajetories, but an not hange the superseletion setor in the topologialHilbert spae. Only interations or fusions with external quasipartiles an ause this andthus the primary error soure to be ontrolled is the spontaneous reation of partile - anti-partile pairs. Otherwise, in priniple, there are no other soures of error. The pair reation is39



not assumed to be a signi�ant obstale, beause it is exponentially suppressed with dereasingtemperature and thus one an deal with it with su�ient ooling [31, 42℄. Having now �nallyidenti�ed the arena for topologial quantum omputation, it is time to onsider what one ando there, i.e. how the braid group is represented.Braiding in the Topologial Hilbert SpaeThe ommutativity of the fusion algebra (2.76) implied the fusion spae isomorphisms (2.86).This, on the other hand, implies that there exists a unique unitary intertwiner map
R : V c

ab → V c
ba, (2.91)whih relates the isomorphi fusion spaes. Absorbing the onvention of the plaement ofthe partiles on a line (2.5) on the plaement of the indies in V c

ab, R then has an additionalinterpretation of implementing the transposition of adjaent partiles. The isomorphism (2.91)relating two representation tensor produts ofD(H) should be map ommuting with the ationof D(H), and suh a map is already familiar. It is the braid operator (2.70) obtained fromthe universal R-matrix, whih by (2.72) satis�es this property and whih hene ats in thefusion spaes as (2.91) [24, 32, 33℄. In general, the appliations of R will be referred to asR-moves, whih an be onsidered as the ations of braid group generators on two-partilefusion spaes. When expressed as a matrix ating on the basis states of the isomorphi fusionspaes, an R-move relates the two bases |ab; c, µ〉 ∈ V c
ab and |ba; c, µ′〉 ∈ V c

ba by the expansion
|ab; c, µ〉 = Rc

ba|ba; c, µ〉 =
∑

µ′

(Rc
ba)

µ′

µ |ba; c, µ′〉. (2.92)This is a very general expression, but the exat form of the unitary matrix Rc
ab is onstrainedby ertain onsisteny onditions to be disussed in a while.There exists also a seond intertwiner map relating the isomorphi N -partile fusionspaes. The assoiativity of the fusion algebra allowed one to deompose multi-partile fusionspaes by di�erent fusion orders with no fusion order being singled out by any physial prin-iple. Sine all the possible deompositions are still representations of the same fusion spae[32℄, the alternative representations should be related by some unique unitary map

F d
abc : V d

abc ≃
⊕

x∈Mab

V x
ab ⊗ V d

xc → V d
abc ≃

⊕

x∈Mbc

V d
ax ⊗ V x

bc, (2.93)In analogy to the R-moves (2.91), these maps are known as the F -moves, whih at on thebasis states as
|ab; e, µ〉|ec; d, ν〉 =

∑

x∈Mbc,
µ′,ν′

(
F d

abc

)xµ′ν′

eµν
|ax; d, µ′〉|bc;x, ν ′〉. (2.94)Sine the anonial basis in the fusion spaes was hosen to oinide with the distint fusionhannels, an F -move an be interpreted as implementing a basis hange in the fusion spaes40



by swithing between the possible fusion orders. As the R-moves, also the F -moves areonstrained by ertain onsisteny onditions.These onsisteny onditions arise, beause R- and F -moves de�ne isomorphisms betweendi�erent spaes and therefore ertain ombinations of them have to be ompatible with eahother. These onditions go under the names of pentagon and hexagon equations. Consider �rstthe fusion spae V e
abcd =

⊕
x∈Mab,y∈Mxc

V x
ab ⊗ V y

xc ⊗ V e
yd in the standard basis deomposition.Both of the F -move sequenes,

⊕

x∈Mab,
y∈Mxc

V x
ab ⊗ V y

xc ⊗ V e
yd

F e
xcd−→

⊕

x∈Mab,
y′∈Mcd

V x
ab ⊗ V e

xy′ ⊗ V y′

cd

F e
aby′−→

⊕

x′∈Mby′ ,

y′∈Mcd

V e
ax′ ⊗ V x′

by′ ⊗ V y′

cd , (2.95)and
⊕

x∈Mab,y∈Mxc

V x
ab ⊗ V y

xc ⊗ V e
yd

F
y

abc−→
⊕

x′∈Mbc,y∈Max′

V y
ax′ ⊗ V x′

bc ⊗ V e
yd

F e
ax′d−→

⊕

x′∈Mbc,y′∈Mx′d

V e
ay′ ⊗ V x′

bc ⊗ V y′

x′d (2.96)
F

y′

bcd−→
⊕

x′′∈Mcd,y′∈Mbx′′

V e
ay′ ⊗ V y′

bx′′ ⊗ V x′′

cd ,yield the same deomposition and thus in terms of the matrix elements (2.94), the F have tosatisfy
∑

y′∈Mcd

x′∈Mby′

(
F e

aby

)x′

x
(F e

xcd)
y′

y =
∑

x′∈Mbc

y′∈Mx′d,x′′∈Mcd

(
F y

bcd

)x′′

x′
(F e

ax′d)
y′

y

(
F y

abc

)x′

x
. (2.97)This is the pentagon equation with the summation over the fusion state indies µ, ν, . . . sup-pressed.Similarly one an onsider the fusion spae V d

abc ≃
⊕

x∈Mab
V x

ab ⊗V d
xc ≃

⊕
x∈Mbc

V d
ax ⊗ V x

bc.Starting from the �rst one, the latter deomposition an then be reahed either by
⊕

x∈Mab

V x
ab ⊗ V d

xc

Rx
ab
⊗id−→

⊕

x∈Mab

V x
ba ⊗ V d

xc

F d
bac−→

⊕

x′∈Mac

V d
bx′ ⊗ V x′

ac

id⊗Rx′

ac−→
⊕

x′∈Mac

V d
bx′ ⊗ V x′

ca ,(2.98)or by
⊕

x∈Mab

V x
ab ⊗ V d

xc

F d
abc−→

⊕

x′∈Mbc

V d
ax′ ⊗ V x′

bc

(id⊗Rd
ax′

)·σ
−→

⊕

x′∈Mbc

V x′

bc ⊗ V d
x′a

F d
bca−→

⊕

x′′∈Mca

V d
bx′′ ⊗ V x′′

ca .(2.99)This means that in terms of the matrix elements (2.94) and (2.92), the hexagon equation reads
∑

x′∈Mac

Rx′

ac

(
F d

bac

)x′

x
Rx

ab =
∑

x′∈Mbc,
x′′∈Mca

(
F d

bca

)x′′

x′

Rd
ax′

(
F d

abc

)x′

x
. (2.100)41



By the so alled MaLane's oherene theorem, there are no further onsisteny onditions[32, 42℄, and thus (2.97) and (2.100) de�ne viable and onsistent anyon models, whih areompletely haraterized by their solutions.From the point of view of quantum omputation, it is assuring that viable anyon modelsare de�ned by solutions to only two polynomial equations. On the other hand, sine thesesolutions give the representations of the R- and F -moves as the only fundamental struture,the tools to onstrut various transformations in the fusion spaes are very limited. Parti-ularly, one wishes to onstrut the representation of the braid group in an N -partile fusionspae V c
a1,...,aN

, i.e. �nd how the braid group ats on the standard basis (2.85). However, sinethe this spae is assoiated with only one partiular arrangement of the indies a1, . . . , aN , itan not by itself arry a representation of braid group. In ontrast, the viable spae shouldinlude all the spaes assoiated with di�erent permutations of the lower indies, whih anin general be written as
V c =

⊕

a1,...,aN

V c
a1,...,aN

. (2.101)Antiipating the things to ome, this is also the general struture one assumes from the poten-tial omputational spaes. Beause braiding is in pratie the only way to apply transforma-tions, one must inlude all the permutations of the labels in order to prevent transformationstaking states out of the omputational spae.Considering the V d
abc in the standard basis as the simplest non-trivial multi-partile fusionspae, an R-move, as de�ned by (2.91), implements then the transformation

R : V d
abc → V d

bac, (2.102)whih ats only on the two left most partiles. As argued earlier, R an be interpreted as agenerator of the braid group σ1 → R, but to onstrut an arbitrary braid on three partilesas the tensor produt (2.10), one needs also a seond generator σ2 → B whih together with(2.102) satis�es the Yang-Baxter equation (2.11). This meas that one wishes to �nd an unitaryoperator implementing the transformation
B : V d

abc → V d
acb. (2.103)Considering the limited number of tools at disposal, it is evident that the F -move has to beutilized. The solution is to �rst apply an F -move to swith into a basis where the R-movesare well de�ned, applying an R-move there and return to the standard basis by applying theinverse F−1-move [42℄. Using this proedure the B-move, the ation of an arbitrary generator42



of the braid group in the standard basis, an be onstruted as suessive R- and F -moves
|abc; d〉 = |ab;x, µ〉|xc; d, ν〉,

=
∑

x′∈Mbc,µ′,ν′

|ax′; d, µ′〉|bc;x′, ν ′〉
(
F d

abc

)x′µ′ν′

xµν
,

=
∑

x′∈Mbc,µ′,ν′,ν′′

|ax′; d, µ′〉|cb;x′, ν ′′〉
(
Rx′

cb

)ν′′

ν′

(
F d

abc

)x′µ′ν′

xµν
, (2.104)

=
∑

x′∈Mbc,µ′,ν′,ν′′

x′′∈Mac,µ
′′,ν′′′

|ac;x′′, µ′′〉|x′′b; d, ν ′′′〉
(
[F−1]dacb

)x′′,µ′′,ν′′′

x′,µ′,ν′′

(
Rx′

cb

)ν′′

ν′

(
F d

abc

)x′µ′ν′

xµν
,

=
∑

x′′∈Mac,µ′′,ν′′′

|ac;x′′, µ′′〉|x′′b; d, ν ′′′〉
(
Bd

acb

)x′′,µ′′,ν′′′

x,µ,ν
,

= Bd
acb|acb; d〉.Suppressing the fusion state indies over whih one always sums, the elements of the matrixrepresentation Bd

acb in the spae V d
acb an be de�ned by

(
Bd

acb

)x′′

x
=

∑

x′∈Mbc

(
[F−1]dacb

)x′′

x′

(
Rx′

cb

)(
F d

abc

)x′

x
, (2.105)whih means that the ation of BN in the standard basis is ompletely haraterized by R-and F -moves.This onludes the overview of the non-abelian anyon model based on a �nite residualgauge group H. The model is fully desribed by the quasitriangular Hopf algebra D(H), thequantum double ofH. The de�ning strutures are the partile spetrumM (2.60), whih labelthe superseletion setors arising as the irreduible representations of D(H), the fusion rules(2.76) spei�ed by the fusion multipliities {N c

ab}a,b,c∈M (2.75), and the R- (2.50) and F -moves(2.93) desribing braiding properties. The disussion has in no way been a rigorous treatmentof the algebrai struture of anyons and the presented topis have been hosen due to theirrelevane in the light of topologial quantum omputation. For a more rigorous and detailedtreatment, one is referred to [18, 20℄ and [32℄. The reason to go through all this trouble isthe disovery of the topologial Hilbert spae, whih has the exeptional property for beinginsensitive to loal perturbations. Quantum information enoded there would be intrinsiallyproteted from deoherene. With the topologial Hilbert spae as the playground and the Rand F as the tools at the repertoire, it now remains to be studied how quantum omputationan be exeuted in this long-sought arena. To put things into a bit more onrete setting, aspei� anyon model will be presented next.
43



S3 e x xy xy2 y y2

e e x xy xy2 y y2

x x e y y2 xy xy2

xy xy y2 e y xy2 x

xy2 xy2 y y2 e x xy

y y xy2 x xy y2 e

y2 y2 xy xy2 x e yTable 2.1: Multipliation table of S32.4 The S3 Anyon ModelAs an example of the abstrat onstrution of the previous setion, an anyon model based onthe non-abelian group S3 will be onsidered. This partiular example was hosen, beause S3is the simplest non-abelian group and its appliation to topologial quantum omputation,although in quite a di�erent setting, has been onsidered in [34℄. Unlike the Chern-Simonstype models, whih seem to rise naturally in frational Quantum Hall states [22, 42, 45℄,no natural systems exhibiting S3 symmetry are urrently known. However, there has beenproposals for preparing suh experimentally [15℄, and the simple struture of S3 may well beone whih an be arti�ially onstruted in the future.
S3 is the symmetry group of an equilateral triangle, whih is generated by the re�etionswith respet to any one of the three diagonals and by the 120 deg rotations around theirintersetion point. The respetive symmetry groups are the yli groups Z2 and Z3, whihare generated by x and y satisfying x2 = e and y3 = e, respetively. Mathematially, S3 anthen be expressed as the diret produt

S3 = Z2 × Z3, (2.106)with the elements given by
S3 = {xnym}m=0,1,2

n=0,1 = {e, x, xy, xy2, y, y2}. (2.107)The generators x and y satisfy the relations
xy = y2x, x2 = e, y3 = e (2.108)whih enable one to onstrut the multipliation table of S3 (Table 2.1).The onjugay lasses (2.17) and normalizers (2.22) are summarized in Table 2.2. Onean see that there are only two distint non-trivial onjugay lasses

Cx ≡ {x, xy, xy2}, Cy ≡ {y, y2}. (2.109)The �rst one ontains all the three elements whih are generated by both x and y whereasthe seond ontains the two elements whih are generated by y alone. Hene, there are also44



Ca = {gag−1 | g ∈ S3} Na = {ag = ga | g ∈ S3}
Ce = {e} Ne = {e, x, xy, xy2, y, y2} ≃ S3

Cx = {x, xy, xy2} Nx = {e, x} ≃ Z2

Cxy = {x, xy, xy2} Nxy = {e, xy} ≃ Z2

Cxy2 = {x, xy, xy2} Nxy2 = {e, xy2} ≃ Z2

Cy = {y, y2} Ny = {e, y, y2} ≃ Z3

Cy2 = {y, y2} Ny2 = {e, y, y2} ≃ Z3Table 2.2: Conjugay lasses and normalizers of S3

S3 e x xy xy2 y y2

Γ1 1 1 1 1 1 1
Γ−1 1 -1 -1 -1 1 1
Γ2

(
1 0

0 1

) (
0 1

1 0

) (
0 ω

ω̄ 0

) (
0 ω̄

ω 0

) (
ω̄ 0

0 ω

) (
ω 0

0 ω̄

)Table 2.3: Unitary irreduible representation of S3two distint non-trivial internal �ux vetor spaes: the three-dimensional Vx with basis givenby the states {|x〉, |xy〉, |xy2〉} and the two-dimensional Vy with the basis given by the states
{|y〉, |y2〉}. Likewise, there are only two non-trivial normalizers, whih will be denoted by

Nx ≡ Nx ≃ Nxy ≃ Nxy2 ≃ Z2, Ny ≡ Ny ≃ Ny2 ≃ Z3. (2.110)Stritly speaking, the normalizers Nx, Nxy and Nxy2 are di�erent groups, but they are isomor-phi and for the purposes here, they an be treated in pratie as being equal. To establishthe partile spetrum (2.60), one must onsider the unitary irreduible representations ofeah of the normalizers. Their multipliity is given by the number of onjugay lasses of therespetive normalizer. It was already noted that S3 has 3 onjugay lasses. Furthermore,
Z2 and Z3 have 2 and 3 onjugay lasses, respetively, beause they are abelian groups,whih means that eah element forms its own onjugay lass. One partiular hoie for theunitary irreduible representations of these three groups is given in Tables 2.3 and 2.4, where
ω = exp( iπ

3 ) is the primitive ube root of unity. One an see that there is only one higher di-mensional irreduible representation, the Γ2 of S3, to whih one assoiates a two-dimensionalharge vetor spae V2 with the basis given by some orthonormal states {|1〉, |2〉} (2.20). Allthe other irreduible representations, and hene also the assoiated harge vetor spaes areone-dimensional.Forming the tensor produts of the �ux and harge spaes (2.23), one an establish thesuperseletion setors, whih de�ne the partile spetrum of the model (Table 2.5). Altogetherthere are eight superseletion setors, whih means that in addition to the vauum 1, there areseven distint partiles. The internal �ux and/or harge spaes assoiated with eah setortransform irreduibly under the ation of D(S3), and to study the struture of the fusionspaes of the model, one should �nd these irreduible representations Πa of D(S3) (2.61).45



Z2 e x Z3 e y y2

Γ1 1 1 Γ1 1 1 1
Γ−1 1 -1 Γω 1 ω ω̄

Γω̄ 1 ω̄ ωTable 2.4: Unitary irreduible representations of Z2 and Z3There are a few things whih help in onstruting the representations. First, instead of therepresentations Π(Phg), it is enough to �nd the separately the representations Π(Ph) and Π(g).The elements Phg ∈ D(H) were interpreted as implementing a global g ∈ H transformationand subsequently projeting onto the �ux eigenstate |h〉, and the representations should alsorespet this struture by obeying
Πa(Phg)|k, i〉 = Πa(Ph)Πa(g)|k, i〉, g ∈ S3, h ∈ Ca, (2.111)where Πa(Ph) forms a representation of the projetor algebra in Va and the matrix Πa(g)fully spei�es how the state transforms. The values of h have been restrited to the onjugaylass Ca of H, beause other ases would be identially zero. The reason for this is thatsine arbitrary g ∈ S3 transformations an not hange the superseletion setor, one an onlyprojet onto those �ux eigenstates whih span the �ux spae. In terms of the representationsof D(H) this means

Πa(Phg) = Πa(Ph)Πa(g) = 0, ∀h /∈ Ca. (2.112)The seond helpful piee of information is that the representations Π(Phg), h, g ∈ S3 re-spet the group omposition. Sine S3 is generated by the elements x and y, also all therepresentations should be generated by the representations of the group generators
Πa(x

mym) = Πa(x
m)Πa(y

m) = (Πa(x))
m (Πa(y))

n . (2.113)Therefore, sine the internal spaes V C
Γ are either one-, two- or three-dimensional, it is enoughto �nd the one-, two- and three-dimensional representations Π(x) and Π(y). Representationsfor all other elements an be onstruted by multiplying them aording to Table 2.1. Third,when forming representations for eah superseletion setor, there should exist a onjugaterepresentation Πa(g) = ΠT

a (g−1) (2.69) for eah representation Πa(g), suh that
Πa(g)Πa(g) = 1, ∀h, g ∈ S3. (2.114)The onjugate representations ould be onstruted by using the de�nition of the antipodalmap, but there is no spei� need for this. Finding the irreduible representations arriedby eah setor exhausts the model ompletely. Having found all the representations, onean then hek whih representations are onjugate and whether there are self-onjugaterepresentations. 46



M V C
Γ = VC ⊗ VΓ dim(VC) · dim(VΓ) = dim(V C

Γ )

1 V1 ≡ V e
1 1 · 1 = 1

Λ1 VΛ1 ≡ V e
−1 1 · 1 = 1

Λ2 VΛ2 ≡ V e
−1 1 · 2 = 2

Φ0 VΦ0 ≡ V x
1 3 · 1 = 3

Φ1 VΦ1 ≡ V x
−1 3 · 1 = 3

Ω0 VΩ0 ≡ V y
1 2 · 1 = 2

Ω+ VΩ+ ≡ V y
ω 2 · 1 = 2

Ω− VΩ−
≡ V y

ω̄ 2 · 1 = 2Table 2.5: The partile spetrum M of the S3 anyon modelThe di�erent superseletion setors are best disussed separately, but before proeeding,one should hoose representations for the bases. The simplest and most onvenient hoieis to represent the basis states in the two-dimensional spaes V y
1 , V

y
ω and V y

ω̄ by the olumnvetors
|y〉 =

(
1

0

)
, |y2〉 =

(
0

1

)
, (2.115)and in the three dimensional spaes V x

1 and V x
−1 by the olumn vetors

|x〉 =




1

0

0


 , |xy〉 =




0

1

0


 , |xy2〉 =




0

0

1


 . (2.116)On these bases the projetor representations Πa(Ph) are given by the diagonal matries

Πy(Py) =

(
1 0

0 0

)
, Πy(Py2) =

(
0 0

0 1

)
, (2.117)

Πx(Px) =




1 0 0

0 0 0

0 0 0


 , Πx(Pxy) =




0 0 0

0 1 0

0 0 0


 , Πx(Pxy2) =




0 0 0

0 0 0

0 0 1


 , (2.118)respetively. Stritly speaking, also the basis in the pure harge spae V e

2 is representedsimilarly as in (2.115), |1〉 = (1, 0)T and |2〉 = (0, 1)T . However, sine the �ux part is trivial,one does not apply the projetors Ph in this spae.Consider �rst the vauum V e
1 and the spaes V e

−1 and V e
2 . Beause the �ux spae is trivial,there is no �ux degree of freedom, and every g ∈ S3 transformation orbit is idential

g : |e, i〉 → |e,Γ(g)i〉, ∀g ∈ S3. (2.119)Hene, the representations of D(S3) oinide exatly with the irreduible representations of
S3

Πe
a(g) = Γa(g), a = 1,−1, 2, (2.120)47



whih are already given in Table 2.3.Consider then the three-dimensional spaes V x
1 and V x

−1, with the bases |k, i〉 ∈ V x
a ,

k ∈ Cx, a ∈ {1,−1}. Here the ruial observation is that by using (2.108), the elements
g ∈ Cx an be written in the form (2.28)

x = y xy = y2 xy2,

xy = y xy2 = y2 x,

xy2 = y x = y2 xy,

(2.121)whereas for the elements in Cy there is no suh deomposition. This means that every g ∈ Cxan be written as g = g′g̃, where the g̃ ∈ N(k) part an be implement in the harge spae.The representations an then be inferred by onsidering the following transformation orbits
x : |xy, i〉 → |xy2,Γa(xy)i〉 → |xy,Γa(xy

2)Γa(xy)i〉, |x, i〉 → |x,Γa(x)i〉,
xy : |x, i〉 → |xy2,Γa(x)i〉 → |x,Γa(xy

2)Γa(x)i〉, |xy, i〉 → |xy,Γa(xy)i〉,
xy2 : |x, i〉 → |xy,Γa(x)i〉 → |x,Γa(xy)Γa(x)i〉, |xy2, i〉 → |xy2,Γa(xy

2)i〉,(2.122)
y : |x, i〉 → |xy, i〉 → |xy2, i〉 → |x, i〉,
y2 : |x, i〉 → |xy2, i〉 → |xy, i〉 → |x, i〉.

(2.123)One an aee that eah of the g ∈ Cx transformations ommutes trivially with itself, and thusimplements a transformation only in the harge setor, but maps the other two states intoeah other. Likewise, (2.123) shows how the g ∈ Cy transformations only ylially permutethe basis states.Analogously with the treatment above, the representations in the remaining three two-dimensional spaes V y
1 , V y

ω and V y
ω̄ , with the bases |k, i〉 ∈ V y

a , k ∈ Cy, a ∈ {1, ω, ω̄}, an beinferred by onsidering the following g ∈ S3 transformation orbits
x : |y, i〉 → |y2, i〉 → |y, i〉,
xy : |y, i〉 → |y2,Γa(y), i〉 → |y,Γa(y

2)i〉,
xy2 : |y, i〉 → |y2,Γa(y

2), i〉 → |y,Γa(y)i〉,
(2.124)

y : |y, i〉 → |y,Γa(y)i〉, |y2, i〉 → |y2,Γa(y)i〉,
y2 : |y, i〉 → |y,Γa(y

2)i〉, |y2, i〉 → |y2,Γa(y
2)i〉.

(2.125)This time there is no need to deompose the transformations as in (2.121), beause the g ∈ Cxare already of the desired form with x /∈ N(k), but y, y2 ∈ N(k). Also, the last two just statethe obvious result that y ommutes with itself and thus implements a transformation only inthe harge spae.The matrix representations Πa(g), g ∈ S3, implementing the ations (2.119) and (2.122) -(2.125) on the basis states representations (2.115) and (2.116) are shown in Table 2.6. One ansee that exept for the representations Πy
ω and Πy

ω̄, whih are onjugate to eah other, all theother are self-onjugate. Realling that partiles transforming in onjugate representationsare regarded as anti-partiles, one an onlude that in an S3 anyon model (Table 2.5), the48



Πa(g) e x xy xy2 y y2

Πe
1 1 1 1 1 1 1

Πe
−1 1 -1 -1 -1 1 1

Πe
2

(
1 0

0 1

) (
0 1

1 0

) (
0 ω

ω̄ 0

) (
0 ω̄

ω 0

) (
ω̄ 0

0 ω

) (
ω 0

0 ω̄

)

Πx
1




1 0 0

0 1 0

0 0 1







1 0 0

0 0 1

0 1 0







0 0 1

0 1 0

1 0 0







0 1 0

1 0 0

0 0 1







0 0 1

1 0 0

0 1 0







0 1 0

0 0 1

1 0 0




Πx
−1




1 0 0

0 1 0

0 0 1







−1 0 0

0 0 −1

0 −1 0







0 0 −1

0 −1 0

−1 0 0







0 −1 0

−1 0 0

0 0 −1







0 0 1

1 0 0

0 1 0







0 1 0

0 0 1

1 0 0




Πy
1

(
1 0

0 1

) (
0 1

1 0

) (
0 1

1 0

) (
0 1

1 0

) (
1 0

0 1

) (
1 0

0 1

)

Πy
ω

(
1 0

0 1

) (
0 1

1 0

) (
0 ω

ω 0

) (
0 ω̄

ω̄ 0

) (
ω 0

0 ω

) (
ω̄ 0

0 ω̄

)

Πy
ω̄

(
1 0

0 1

) (
0 1

1 0

) (
0 ω̄

ω̄ 0

) (
0 ω

ω 0

) (
ω̄ 0

0 ω̄

) (
ω 0

0 ω

)Table 2.6: The irreduible representations Π(g) of D(S3)tr(Πa(Phg)) e x xy xy2 y y2

Πe
1 Pe 1 1 1 1 1 1

Πe
−1 Pe 1 -1 -1 -1 1 1

Πe
2 Pe 2 0 0 0 -1 -1

Πx
1, Px 1 1 0 0 0 0

Pxy 1 0 1 0 0 0
Pxy2 1 0 0 1 0 0

Πx
−1 Px 1 -1 0 0 0 0

Pxy 1 0 -1 0 0 0
Pxy2 1 0 0 -1 0 0

Πy
1 Py 1 0 0 0 1 1

Py2 1 0 0 0 1 1
Πy

ω Py 1 0 0 0 ω ω̄

Py2 1 0 0 0 ω ω̄

Πy
ω̄ Py 1 0 0 0 ω̄ ω

Py2 1 0 0 0 ω̄ ωTable 2.7: The non-zero haraters tr(Πa(Phg)) of D(S3)49



partiles Ω+ and Ω− are anti-partiles of eah other, Ω+ = Ω−, but all other partiles aretheir own anti-partiles.These results an also be inferred from the fusion rules (2.74), whih are the real item ofinterest. To alulate them, one needs the fusion multipliities N c
ab. They an be obtained byusing (2.75), whih in the ase of S3 an be written as

N c
ab =

1

6

∑

g∈S3

∑

h∈Cc

h′∈Ca

tr (Πa(Ph′g)) tr (Πb(Ph′−1hg)) tr (Πc(Phg))
∗ . (2.126)Here one has simpli�ed the expression by using the de�nition of the omultipliation (2.49)and the trae property tr(Πa ⊗Πb(g⊗h)) = tr(Πa(g))tr(Πb(h)). Also, beause of (2.112), thesums over h and h′ have been expliitly restrited to values in the onjugay lasses Ca and

Cc. Any other values would give identially zero. Having found the representations Πa(g)displayed in Table 2.6, all the representations Πa(Phg) an be formed by using the property(2.111) and the appropriate projetor representations (2.117) or (2.118). To alulate to fusionmultipliities using (2.126), one needs their haraters tr(Πa(Phg)). The ones whih are nottrivially zero are summarized in Table 2.7. Plugging the haraters in (2.126), one obtainsthe fusion rules (2.74) of the S3 anyon model:
Πe

1 ⊗ Πe
1 = Πe

1, Πe
1 ⊗ Πb

a = Πb
a, ∀a, b, (2.127)

Πe
−1 ⊗ Πe

−1 = Πe
1, Πe

−1 ⊗ Πe
2 = Πe

2,

Πe
2 ⊗ Πe

2 = Πe
1 ⊕ Πe

−1 ⊕ Πe
2,

(2.128)
Πx

1 ⊗ Πx
1 = Πe

1 ⊕ Πe
2 ⊕ Πy

1 ⊕ Πy
ω ⊕ Πy

ω̄,

Πx
−1 ⊗ Πx

−1 = Πe
1 ⊕ Πe

2 ⊕ Πy
1 ⊕ Πy

ω ⊕ Πy
ω̄,

Πx
1 ⊗ Πx

−1 = Πe
−1 ⊕ Πe

2 ⊕ Πy
1 ⊕ Πy

ω ⊕ Πy
ω̄,

(2.129)
Πy

1 ⊗ Πy
1 = Πe

1 ⊕ Πe
−1,

Πy
ω ⊗ Πy

1 = Πe
2 ⊕ Πy

ω, Πy
ω̄ ⊗ Πy

1 = Πe
2 ⊕ Πy

ω̄,

Πy
ω ⊗ Πy

ω = Πe
2 ⊕ Πy

ω̄, Πy
ω̄ ⊗ Πy

ω̄ = Πe
2 ⊕ Πy

ω,

Πy
ω ⊗ Πy

ω̄ = Πe
1 ⊕ Πe

−1 ⊕ Πy
1,

(2.130)
Πe

−1 ⊗ Πx
1 = Πx

−1, Πe
−1 ⊗ Πx

−1 = Πx
1 ,

Πe
−1 ⊗ Πy

1 = Πy
1, Πe

−1 ⊗ Πy
ω = Πy

ω, Πe
−1 ⊗ Πy

ω̄ = Πy
ω̄,

(2.131)
Πe

2 ⊗ Πx
1 = Πx

1 ⊕ Πx
−1, Πe

2 ⊗ Πx
−1 = Πx

1 ⊕ Πx
−1,

Πe
2 ⊗ Πy

1 = Πy
ω ⊕ Πy

ω̄, Πe
2 ⊗ Πy

ω = Πy
1 ⊕ Πy

ω̄, Πe
2 ⊗ Πy

ω̄ = Πy
1 ⊕ Πy

ω,
(2.132)

Πx
±1 ⊗ Πy

1 = Πx
1 ⊕ Πx

−1, Πe
±1 ⊗ Πy

ω = Πx
1 ⊕ Πx

−1, Πe
±1 ⊗ Πy

ω̄ = Πx
1 ⊕ Πx

−1. (2.133)There are a number of general remarks one an make. First, as expeted, the trivial setor
Πe

1 (2.128) plays the role of the vauum and all other partiles are their own anti-partilesexept for the partiles arrying the onjugate representations Πy
ω and Πy

ω̄ (2.130). Seond,all the fusion multipliities are either zero or one, N c
ab = 0 or 1,∀a, b, c ∈M , meaning there is50



no degeneray assoiated with the fusion states and thus all the two-partile fusion spaes V c
ab(2.78) with a �xed fusion outome c are one-dimensional. Third, one an notie that somesets of the fusions rules lose on themselves meaning that the S3 fusion algebra has threenon-trivial subalgebras (2.90) spanned by the following sets of elements

M1 = {Πe
1,Π

e
−1,Π

e
2}, (2.134)

M2 = {Πe
1,Π

e
−1,Π

y
1}, (2.135)

M3 = {Πe
1,Π

e
−1,Π

e
2,Π

y
1,Π

y
ω,Π

y
ω̄}. (2.136)To fully speify the S3 anyon model, one should �nd the maps R (2.91) and F (2.93) in allthe fusion spaes appearing in the model. However, sine for the purposes of the topologialquantum omputation one an settle with one of the subalgebras, muh of this umbersomework would be in vain. Instead, one should speify the spaes utilized as the omputationalspae and �nd the matries representing R and F there. Sine this would nearly ompletedemonstrating the omputational power of the anyon model, it is better to move on andonsider them in onnetion with the theory of quantum omputation in the topologialHilbert spae.
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Chapter 3Quantum Computation in theTopologial Hilbert SpaeIn the previous hapter it was disussed how the representation theory of the quantum double
D(H) an be used desribe the non-abelian anyons, and how the fusion rules give rise todeoherene-free topologial Hilbert spaes. The aim of this hapter is to demonstrate howthese topologial Hilbert spaes an be utilized as the omputational spae of a quantumomputer. As outlined in the �rst hapter, the illustration breaks down to (1) speifyingthe omputational spae C and showing how qudits are enoded, (2) showing how braiding ofanyons an simulate quantum gates and (3) showing how to perform projetive measurements.To address these problems in more onrete terms, it is useful to antiipate how a quan-tum omputation ould be exeuted in pratie. The omputational spae is initialized byspeifying the number, type and relative loations of the partiles in the plane. One ouldonsider drawing partile - anti-partile pairs (a, ā), some N partiles altogether, out of thevauum so that the total harge of the system is trivial. The initial state of the system wouldthen reside in V 1

a1a2...aN
. The omputation is arried out by braiding the anyons in some way,whih orresponds to the desired unitary transformations. After the braiding, some or allthe anyons are fused together, and observing whether they fuse to vauum or leave residualpartiles behind orresponds to the output of the omputation.Anyons arising from the S3 gauge theory introdued in the last hapter will be used asan example of the theoretial framework for a topologial quantum omputer. The ommonfeatures whih all topologial quantum omputer andidate systems should exhibit will beemphasized when enountered, but the disussion is at most illustrative in onnetion witha partiular model. Now, the fusion rules (2.127) - (2.133) of the whole S3 anyon model aretoo ompliated to serve as an illustrative model. Hene, the simplest fusion subalgebra M2(2.135)

M2 = {1,Λ,Φ}, (3.1)will be hosen as the model underlying the topologial quantum omputer. For notational53



larity one has rede�ned Λ ≡ Λ1 and Φ ≡ Φ0. The respetive fusion rules, in the partilenotation of fusion algebra 2.76, an be inferred from (2.127) - (2.133)
1 × 1 = 1, 1 × Λ = Λ, 1 × Φ = Φ, (3.2)

Λ × Λ = 1, Λ × Φ = Φ, (3.3)
Φ × Φ = 1 + Λ, (3.4)The fusion rule for two Φ partiles states that this subalgebra is indeed a non-abelian one,beause there exist two possible fusion outomes. Sine all the other fusion rules determinethe outomes uniquely, higher dimensional fusion spaes are always arried by Φ partiles.Using (3.4) suessively gives the fusion rules for a N Φ partiles

Φ × Φ × Φ = 2Φ,

Φ × Φ × Φ × Φ = 2 · 1 + 2Λ,

Φ × Φ × Φ × Φ × Φ = 4Φ, (3.5)
· · ·

(Φ)×N =

{
2

N−2
2 · 1 + 2

N−2
2 Λ, N even

2
N−1

2 Φ, N oddFrom these one an read o� the smallest non-trivial fusion spaes
V Φ

Φ3 ≡ V Φ
ΦΦΦ, dim(V Φ

ΦΦΦ) = NΦ
Φ3 = 2, (3.6)

V 1
Φ4 ≡ V 1

ΦΦΦΦ, dim(V 1
ΦΦΦΦ) = N1

Φ4 = 2, (3.7)
V Λ

Φ3 ≡ V Λ
ΦΦΦΦ, dim(V Λ

ΦΦΦΦ) = NΛ
Φ4 = 2. (3.8)Sine one antiipates that the omputational spae should belong to the vauum setor, theinterest lies partiularly in the spaes (3.7), beause they ould be used to enode a singleunit of quantum information. Sine the dimension of this spae is two, the qubit (1.5) arisesnaturally as the elementary unit of quantum information.3.1 The Computational SpaeThere are a number of general riteria whih onstrain the identi�ation of the omputationalspae with the fusion spaes. First, the identi�ation should be made suh that C has adeomposition in terms of subspaes Cd of some dimension d ≥ 2 (1.7), with d determining thedimension of the qudits to be used. Seond, the physis behind the topologial Hilbert spaeonstrains the identi�ation further by stating that all the quantum states in the model shouldbelong to the same superseletion setor, beause otherwise they an not form superpositions[32℄. Third, the omputational spae should inlude all the states whih an be obtained whenunitary transformations are performed on the system, i.e. when the partiles are braided.Beause the fusion spaes (3.7) are arried by only one types of partiles, all the statesorresponding to di�erent permutations of the partiles are automatially ontained therein.54



Therefore, as antiipated, one may identify this spae with the omputational spae of a singlequbit
C2 ≡ V 1

Φ4 ≃ V Φ
Φ3 ≃

⊕

x∈{1,Λ}
V x

Φ2 ⊗ V Φ
xΦ ≃

⊕

x∈{1,Λ}
V x

Φ2 ⊗ V Φ
xΦ ⊗ V 1

Φ2 . (3.9)It follows that the omputational basis has to be identi�ed with
|i〉 ≡ |Φ4; 1, i〉 ≃ |Φ2;xi〉|xiΦ;Φ〉, i = 0, . . . , N1

Φ4 − 1 = 0, 1, (3.10)where xi ∈ {1,Λ}. Consequently, the m-qubit omputational spae should then be de�ned by
C ≡

(
V 1

Φ4

)⊗m
, (3.11)given that suh spae atually exists in the model, i.e. it orresponds to some fusion spae ar-ried by N Φ-partiles for some N . Using the standard basis deomposition (2.82) bakwards,one an see that C orresponds in the standard basis to the fusion spae

C ≡
(
V 1

Φ4

)⊗m
,

=
(
V Φ

Φ3

)⊗m
, (3.12)

=
⊕

x1,...,xm−1=Φ

V x1

Φ3 ⊗ V x2

x1Φ2 ⊗ · · · ⊗ V 1
xm−1Φ3 ,

≃ V 1
Φ2m+2 ,where one has used the observation that the fusion of three Φ-partiles, although in twodistint ways, always gives another Φ-partile (3.5). Hene, to enode m qubits, one needs afusion spae arried by N = 2m+2 Φ-partiles. In general, the dimension of the fusion spaearried by N partiles an be read o� by using the fusion algebra (3.4) suessively
N = 1 2 3 4 5 6 7 8 9 10 11 12 . . .

N1
ΦN = 0 1 0 2 0 4 0 8 0 16 0 32 . . . (3.13)

⇒ dim(V 1
ΦN ) = 2

N−2
2 , N even, (3.14)whih means that the topologial Hilbert spae grows exponentially with N . Sine the fusionmultipliities are zero for all odd N , one an restrit to onsider only spaes arried by aneven number of partiles. This is in line with the antiipated initialization of the quantumomputer, where one draws some number of partile - anti-partile pairs out of the vauum,whih implies that one always ends up with an even number of partiles.The basis in C is given by the tensor produt of the omputational basis states. Using thedeomposition (3.10), an arbitrary m-qubit basis state |i1〉|i2〉 · · · |im〉 ∈ C an be expressedin the standard basis of the underlying fusion spae V 1

Φ2m+2 as
|i1〉|i2〉 · · · |im〉 = |Φ4; 1, i1〉|Φ4; 1, i2〉 · · · |Φ4; 1, im〉, (3.15)

≃ |Φ2;xi1〉|xi1Φ;Φ〉|Φ2;xi2〉|xi2Φ;Φ〉 · · · |Φ2;xim〉|ximΦ;Φ〉.55



Sine the braiding was de�ned in the standard basis through the R- and B-moves, (2.102) and(2.103) respetively, they are the deompositions (3.9) and (3.15) whih will have to be usedto determine to how is braiding in the standard basis related to the unitary transformationsin C.3.2 Braiding and Quantum GatesTo �nd out how braiding ats in the standard basis of the present model, one should �nd the
R- and F -moves as unitary solutions to the pentagon (2.97) and hexagon (2.100) equations.On the single qubit spae V 1

Φ4 ≃ V Φ
Φ3 , the F -move (2.93) is the map

F :
⊕

x∈{1,Λ}
V x

Φ2 ⊗ V Φ
xΦ →

⊕

x∈{1,Λ}
V Φ

Φx ⊗ V x
Φ2 , (3.16)whih relates two possible bases. Using the seond deomposition of (3.9) and onsidering thetwo distint ways (2.95) and (2.96) to implement the transformation

⊕

x∈{1,Λ}
V x

Φ2 ⊗ V Φ
xΦ ⊗ V 1

Φ2 →
⊕

x∈{1,Λ}
V 1

Φ2 ⊗ V Φ
Φx ⊗ V x

Φ2, (3.17)one an derive the pentagon equation for the model
∑

y∈{1,Λ}

(
F 1

Φ2y

)Φ

x

(
F 1

xΦ2

)y
Φ

=
∑

y,y′∈{1,Λ}

(
FΦ

Φ3

)y′

y

(
F 1

ΦyΦ

)Φ
Φ

(
FΦ

Φ3

)y
x
, (3.18)where x ∈ {1,Λ} is now a free index. This polynomial equation states that there are altogetherseven di�erent F -moves appearing in the model

{F 1
Φ2y, F

1
yΦ2 , F

1
ΦyΦ, F

Φ
Φ3}y=1,Λ. (3.19)However, only one of them, FΦ

Φ3 , is a genuine matrix, beause it is the only one ating in anon-trivial fusion spae. As an be seen from the deompositions
V 1

ΦyΦ ≃ V Φ
Φy ⊗ V 1

ΦΦ ≃ V 1
ΦΦ ⊗ V Φ

yΦ, (3.20)
V 1

ΦΦy ≃ V y
ΦΦ ⊗ V 1

yy ≃ V 1
ΦΦ ⊗ V Φ

Φy, (3.21)
V 1

yΦΦ ≃ V Φ
yΦ ⊗ V 1

ΦΦ ≃ V 1
yy ⊗ V y

ΦΦ, (3.22)all the intermediate fusion spaes are one-dimensional for ∀y ∈ {1,Λ}. Hene, beause ofunitarity, the F -moves ating in these spaes have to be proportional to some omplex onstantof unit norm
(
F 1

Φ2y

)Φ

x
= ayδx,y,

(
F 1

xΦ2

)y
Φ

= byδx,y, F 1
ΦyΦ = cy, |ay|2 = |by|2 = |cy|2 = 1 (3.23)for some ay, by, cy ∈ C, meaning that these F -moves introdue only overall phases, whih arenon-physial and an be set to unity, ai = bi = ci = 1. The real item of interest is then56



the F -move FΦ
Φ3 , whih implements an F -move in the omputational spae of a single qubit.Writing all the indies down, it is represented by a 2 × 2 unitary matrix,

F ≡ FΦ
Φ3 =

(
F11 F1Λ

FΛ1 FΛΛ

)
, (3.24)where the omponents have to satisfy the onstraints following from unitarity





|F11|2 + |F1Λ|2 = 1,

|FΛΛ|2 + |FΛ1|2 = 1,

F11(FΛ1)
∗ + F1Λ(FΛΛ)∗ = 0.

(3.25)Then, simplifying the pentagon equation (3.18) using (3.23), the omponents are determinedas solutions to the polynomial equations
{

1 = F11(F11 + F1Λ) + F1Λ(FΛ1 + FΛΛ)

1 = FΛ1(F11 + F1Λ) + FΛΛ(FΛ1 + FΛΛ),
. (3.26)The set of equations has four types of general solutions

±
(

1 0

0 1

)
, ±

(
1 0

0 −1

)
,

(
0 eiφ

e−iφ 0

) and ± 1√
2

(
1 eiφ

e−iφ −1

)
, (3.27)where φ = [0, 2π] is an undetermined arbitrary parameter. Of these the three �rst are trivial inthe sense that they only rede�ne the basis up to some overall phase. Fixing the arbitrary phaseby setting φ = 0 and hoosing the solution with an overall '+'-sign, the matrix implementingthe non-trvial F -move in the standard basis of the model is

F =
1√
2

(
1 1

1 −1

)
. (3.28)This solution is of partiular interest, beause it is the Hadamard gate, whih was alreadyenountered as one of the gates in one partiular universal gate set (1.20). In the generaltheory of quantum omputation, it is known to implement a anonial basis hange [40℄, andtherefore the F -moves in the underlying fusion spaes have in the omputational spae Clear interpretations as basis hanging unitary gates. Still, it should be kept on mind that

F -moves are not physial operations as suh, but mathematial tools to tell how do the fusionstates look like when studied in a basis other than the standard basis. The genuine physialoperation is the braiding, through whih one might, or might not be able to implement atransformation of the form (3.28). To show whether this is the ase, one should �nd thematrix representations for the braid group generators.To �nd how the braid group ats in the fusion spae of the model, one should �nd theunitary matries representing the R-moves as solutions to the hexagon equation (2.100), whihfor the present model reads
∑

y∈{1,Λ}
Ry

ΦΦ

(
FΦ

Φ3

)y
x
Rx

ΦΦ =
∑

y,y′∈{1,Λ}

(
FΦ

Φ3

)y′

y
RΦ

Φy

(
FΦ

Φ3

)y
x
. (3.29)57



This time all the RΦ
Φy, y ∈ {1,Λ}, are omplex onstants with unit norm. This is beause thespaes V Φ

Φy are one-dimensional, whih implies that braiding an only ontribute non-physialoverall phases, whih an again be set to unity. As an be seen from the de�nition of R-moves(2.91), also Ry
ΦΦ, y ∈ {1,Λ} are phases, beause there are no fusion degeneraies. However,the fusion spae of a single qubit (3.9) is two-dimensional, and the ation of braiding dependswhether one braids partiles whih fuse to yield either 1 or Λ [42℄. Therefore, these phasesare physial and orrespond to the eigenvalues of a matrix implementing an R-move in C2

R ≡
(
R1

ΦΦ 0

0 RΛ
ΦΦ

)
. (3.30)Simplifying (3.29) by substituting the elements of F from (3.28), and assuming that R isunitary, the eigenvalues are then determined from the set of equations





1√
2
(R1

ΦΦ)2 + 1√
2
R1

ΦΦR
Λ
ΦΦ = 1,

− 1√
2
(RΛ

ΦΦ)2 + 1√
2
R1

ΦΦR
Λ
ΦΦ = 1,

|RΛ
ΦΦ|2 = |R1

ΦΦ|2 = 1.

(3.31)The solutions to these polynomial equations is given by all omplex numbers with unit normobeying the relation
(R1

ΦΦ)2 = eiπ(RΛ
ΦΦ)2. (3.32)Sine all the solutions give a di�erent representation of the same model, the simplest one willbe hosen to represent the R-moves in Cd

R =

(
1 0

0 i

)
. (3.33)This partiular matrix appears also in the theory of quantum omputation, where it is knownas the phase gate S [40℄.The R forms a representation of the braid group B2, the braid group on two strands. Toonstrut the representation of BN , one needs also a representation of a seond generator,whih is given in the fusion spaes by a B-move (2.103), whih an be onstruted aordingto (2.105). Now, sine there is only a single F and a single R ating in C2, B is given simplyby the matrix produt

B ≡ F−1RF =
ei

π
4

√
2

(
1 −i
−i 1

)
. (3.34)It an be heked that the R- and B-moves, as represented by (3.33) and (3.34), indeed formthe representation of the braid group in C2, i.e. that they satisfy the Yang-Baxter equation(2.11)

RBR = BRB. (3.35)58



Considering both sides separately, one �nds
RBR =

ei
π
4√
2

(
1 1

1 −1

)
= ei

π
4 F = BRB, (3.36)verifying that (3.35) is indeed satis�ed. In addition, as it happens that both sides are pro-portional to F (3.28), this also demonstrates that F -moves are physially meaningful trans-formations, whih an indeed be implemented by braiding partiles.Another thing to be notied is

R4 = B4 = 1, (3.37)whih means that one is not dealing with the pure braid group BN of in�nite number ofelements, but with a trunated version BN,4, i.e. with a group de�ned by (2.8), (2.9) and anadditional relation σ4 = 1 [11℄. The trunated braid group has a �nite number of elementsand this sets a limit on the number of di�erent braidings, whih ould be implemented. Forexample, the braid group in the fusion spae V Φ
Φ3 , whih underlies the single qubit spae C2,is B3,4, whih is freely generated by R and B modulo the relations (3.35) and (3.37). Sinebraiding is the only tool to perform unitary transformations in C, dealing with trunatedbraid groups implies that there is also only a limited number of unitary transformationsavailable. However, models with trunated braid groups are not automatially invalid foruniversal quantum omputation sine some may generate subgroups whih are dense in theunitary group. For instane, even though single qubit unitary transformations are limited tothe elements in B3,4, even this relatively simple group is of order 96 [11℄ and it is far fromobvious whether it admits universal quantum omputation.Summarizing, all the single qubit operations are given by the elements b ∈ B3,4, whih aregenerated by R and B. Using the universal gate set (1.20) as a referene, the two elementarysingle qubit quantum gates (1.18) appearing in the model, up to an overall phase, an behosen to orrespond to the braids {R,RBR}

R : |i〉 7→ T 2|i〉, (3.38)
RBR : |i〉 7→ H|i〉 (3.39)Unfortunately, suh a model is not universal for quantum omputation. Even though theHadamard gate H an be realized, instead of the π

8 -phase gate T , one an only produe thephase gate R = T 2. Beause R and B are the physial braid group generators arising asthe solutions to the pentagon and hexagon equations, they are the most elementary unitarytransformations implementable implemented on the system. There an not exist a T ∈ B3,4,beause then R ould be deomposed as two suessive even more elementary operations T ,whih should satisfy the pentagon and hexagon equations. However, no suh solutions wereobtained and thus even without onsidering the entangling gates arising through braidinganyons, it an be onluded that the fusion subalgebra (3.1) of the full S3 anyon model doesnot admit universal quantum omputation. 59



3.3 Fusion as Projetive MeasurementTo omplete the demonstration of quantum omputation in the topologial Hilbert spaes,one should show how to perform projetive measurements. By braiding the partiles one ouldprodue unitary transformations on the system, but no information about the state of thesystem ould be obtained in this way. The topologial robustness ensures that the quantuminformation is not only proteted from deoherene, but also well hidden from any outsideobserver. To get any information out of the fusion spae, one must break the topologialprotetion by fusing some or all the partiles together. The information residing in thetopologial Hilbert spae an then be inferred by observing the outome, whih is either a Λpartile or the vauum 1. In the �rst ase one should not observe anything whereas in theseond ase the annihilation produes photons, whih arry the ombined energy of the fusedpartiles, and whih ould be easily deteted by onventional means. Beause there are onlythese two possibilities, the outome of the fusion an be unambiguously dedued.Sine one has identi�ed the omputational basis with the di�erent fusion outomes (3.10),determining outome is equivalent to projeting onto the omputational basis. More preisely,the fusion of the two left-most of the four Φ partiles realizing the qubit, and the observationof the outome xi ∈ {1,Λ}, i.e. either photons or nothing, is equivalent to applying a projetor
Pi = |i〉〈i| in C2

xi : |ψ〉 → Pi|ψ〉, |ψ〉 ∈ C2. (3.40)Comparing this to (1.25), it an be seen that this exatly of the type of orrespondenebetween the physial system and the omputational spae one set out to look for. Projetionsonto m-qubit omputational spae C an be realized in a similar manner by fusing sequentiallyfrom left to right all the 2m+ 2 partiles. Observing the outome of eah fusion is equivalentto reording the string xi1xi2 · · · xim , whih in the in the omputational spae translates intothe projetor
xi1xi2 · · · xim : |ψ〉 → Pi1 ⊗ Pi2 ⊗ · · · ⊗ Pim |ψ〉, |ψ〉 ∈ C. (3.41)The disussed model o�ers also a natural measurements on a ertain superposition state.The only non-trivial F -move, whih relates the two possible bases in the fusion spae underly-ing the qubit (3.9), was solved and found to have the form (3.28). This form was reognized asthe Hadamard gate H ating on basis states as (1.20). Beause the omputational basis wasidenti�ed exatly with the standard basis, the basis |̃i〉 orresponding to fusing the partilesfrom right to left an be expressed in terms of the standard basis by using the F -move

|̃i〉 =
1√
2
(|0〉 + |1〉), |̃i〉 =

1√
2
(|0〉 − |1〉). (3.42)Therefore, depending whether photons are observed or not, fusing the two right most partilesorresponds to applying the projetor Pĩ = |̃i〉〈̃i|, i.e. projeting in C onto either of the states

1√
2
(|0〉 ± |1〉). 60



For performing projetive measurements at the end of the omputation, one needs only toonsider the fusion of neighboring partiles: Fusion of non-neighboring partiles would �rstrequire braiding whih implies a transformation on the system. Therefore, projetions ontothe omputational basis (3.9) take in the presented model always either of the two forms(3.40) or (3.42). The sheme of using fusion to perform projetive measurements works well,beause there are only possible outomes, whih an be unambiguously distinguished. Inmore ompliated models, i.e. in ones with multiple non-vauum fusion outomes, one mightwant more �exibility and ontrol over the measurement proedure. Suh an be providedby the use of quantum interferene experiments, whih an be used to distinguish betweenvarious di�erent quasipartiles. For the ase of non-abelian anyons, suh experiments havebeen disussed in detail in [41℄, but for the present model they o�er no additional ontrol andneed not be onsidered here.
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ConlusionsIt is perhaps a bit of an anti-limax that after investing muh e�ort in obtaining an adequateunderstanding for onsidering quantum omputation with anyons, the hosen model turns outnot to be universal for quantum omputation. Atually, without even alulating the braidgroup representations R and B, the non-universality of the model ould have been immediatelyinferred from the struture of the fusion subalgebra (3.1). These rules are known desribe aso alled Ising anyons, arising from SU(2)2 Chern-Simons theories [42℄, whose appliation toquantum omputation has been onsidered in detail in [7℄ and [22℄, beause they desribe asan e�etive �eld theory the topologial exitations whih are expeted to be found in ν = 5/2frational Quantum Hall systems. As demonstrated, these partiular anyons do not admituniversal quantum omputation through purely topologial means, i.e. by relying only onbraiding to produe unitary transformations. However, even with this severe imperfetion,they are at the present knowledge the best andidate for a topologial quantum omputer, andvarious supplementary non-topologial [6℄, or even topology altering operations [21℄ have beensuggested for promoting these anyon systems to the status of a universal quantum omputer.If an anyon system based on the gauge group S3 an ever be realized, in priniple, these samesupplementary operations ould be used to overome the non-universality provided by purebraiding.It is a small onsolation that the presented model is not totally useless for topologialquantum omputation. However, it is not the searh for new implementational platformswhih has been the objetive in this thesis, but the presentation of the anyoni systems, theirproperties and use as topologial quantum omputers in as physially motivated and illustra-tive manner as possible. Apart from John Preskill's exemplary leture notes [42℄, there arehardly any aessible introdutions to the theory of topologial quantum omputation. Mostof the ontemporary researh papers takle the theory of topologial quantum omputation interms of mathematis of the most abstrat kind and often without any obvious onnetion toatual physial systems. Even though the mathematial rigor is formidable, suh an abstratapproah an be very disouraging for newomers in the �eld. Therefore, rooting the anyonmodel in gauge theories and taking the time to argue for the emergene of the fusion spaeswere personal hoies for addressing the problem in terms more familiar to physiists, andhopefully thereby providing an aessible introdution to the basi onepts of topologialquantum omputation. One one got to the fusion spaes, the general theory overed here63



has muh in ommon with [42℄, but topis whih were found onfusing or laking in physialexplanation have now been attempted to be presented in more detail. It is beause of thisillustrative approah that one also hose as an example a model, whih was known not to beuniversal for quantum omputation, but whih allowed expliit alulations to be arried outwith the most transpareny.However, it should be pointed out that the potential ontribution to quantum ompu-tation of the anyon model based on the quantum double D(S3) was not exhausted by thedemonstration that the subalgebra spanned by the partiles M2 (2.135) does not admit uni-versal quantum omputation. There were also two other fusion subalgebras M1 (2.134) and
M3 (2.136), and ultimately the full fusion algebra (2.127) - (2.133), whose properties were notinvestigated. The last two are likely to ontain too many partiles for any realizable e�ientpratial implementation, but the braiding properties the partiles spanning M1, however,ould well be worth a loser investigation. The reason is that their fusion subalgebra (2.128)losely resembles the fusion rules of the so alled Fibonai anyons, whose braiding propertiesare known to be universal for quantum omputation [42℄. It ould be an interesting topi offurther researh to study whether the braiding properties of the partiles inM1 allow universalquantum omputation.Another open question, although more on the tehnial side, is the onstrution of therepresentations of arbitrary braid group generators out of the R- and F -moves. In the presentwork only two braid group generators R and B were onsidered, beause it was alreadyfound based on single qubit transformations that the model is not universal for quantumomputation. If entangling gates would have been onsidered, one should have onstrutedthe representations of all the four braid group generators in the spae V Φ

Φ5 underlying the two-qubit spae. In priniple, all the representations should be onstrutable out of the R- and
F -moves, but nowhere in the literature was it disussed how this is done in pratie. On theother hand, there have been attempts to �nd all the four-dimensional unitary representationsof the braid group [48℄, i.e. potential two-qubit gates, but even though these studies onstrainthe form of the representations, they say nothing about their availability in a given anyonsystem. Therefore, it ould be another topi of further researh to develop methods foronstruting a representation of an arbitrary braid group generator on a given fusion spae.
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