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Kumpulan tiedekirjasto

Vesi-etanoliseoksia käytetään hyvin yleisesti sekä teollisuudessa että kotitalouksissa. Siksi on ehkä
hieman yllättävää, että niiden mikroskooppinen, molekyylitason rakenne ei ole vieläkään täydel-
lisesti tunnettu. Tutkimuksissa on erityisesti tullut ilmi, että paikalliset molekyylitason rakenteet
riippuisivat seossuhteesta. Tämän tutkimuksen tarkoituksena on pyrkiä saamaan lisätietoa vesi-
etanoliseosten molekyylitason rakenteesta käyttäen kahta eri laskennallista menetelmää. Valitut
menetelmät ovat klassinen molekyylidynamiikka (MD), jonka avulla voidaan tutkia molekyylien lii-
kettä, sekä Compton-sironta, jossa sironnan vaikutusala riippuu elektronien liikemäärätiheydestä.
Tehdyissä MD-simulaatioissa alkoholipitoisuudet olivat välillä 0-100%. Vesimolekyylille ja etano-
limolekyylille käytettiin niille yleisesti hyväksi osoittautuneita vuorovaikutusmalleja (TIP4P ja
OPLS-AA). Lisäksi simulaatioissa käytettiin etanolin sidoksille kahta eri mallia, jäykkää ja jousta-
vaa. Jäykässä mallissa molekyylien sisäiset sidospituudet ovat rajoitettuja, kun taas joustavassa mal-
lissa sidospituudet määritetään harmonisella potentiaalilla. Kokeellisesti saatava suure, Compton-
profiili, laskettiin kolmelle eri konsentraatiolle käyttäen sekä jäykkää että joustavaa etanolia.
Simulaatiot tuottivat hieman aliarvioidun tiheyden verrattuna kokeellisiin tuloksiin. Lisäksi sekä
vesi- että etanolimolekyylien solmimien vetysidosten määrä poikkesi ideaalitapauksesta siten, että
sidoksia muodostui enemmän veden kuin etanolin kanssa. Tutkimuksessa huomattiin myös, että
seoksella oli järjestyneempi rakenne, kun etanolipitoisuus oli suurempi. Ero etanolimallien välillä
oli merkityksetön MD-simulaatioissa.
Compton-sirontalaskut sen sijaan tuottivat selkeän eron eri etanolimallien välille. Jäykälle eta-
nolille Compton-erotusprofiilit olivat kaikille etanolipitoisuuksille samat, mutta joustavalle etano-
lille ne erosivat toisistaan. Tämän perusteella sekoittumisprosessille on kaksi vaihtoehtoa. Vesi-
etanoliseokset sekoittuvat samalla tavalla kaikilla konsentraatioilla (jäykän mallin tapaus) tai se-
koittuminen muuttuu eri konsentraatioilla (joustavan mallin tapaus). Tämä tutkimus osoittaakin,
että vuorovaikutusmallin valinnalla on merkittävä vaikutus MD-simulaatioista saatavan mikros-
kooppisen rakenteen muodostumiseen.
Kun Compton-profiilien laskennan tarkkuuteen vaikuttavia lähteitä arvoitiin, huomattiin, että las-
kuissa käytettävien MD-simulaatioista saatavien paikallisten rakenteiden otosmäärää on lisättä-
vä, jotta tilastollinen virhe lopputuloksissa pienenisi. Tässä tutkimuksessa esitettyjä Compton-
sirontatuloksia voidaankin pitää jossain määrin alustavina, mutta kuitenkin selkeästi suuntaa-
antavina tuloksina vesi-etanoliseosten käyttäytymisestä, kun vuorovaikutusmallia muutetaan.
Tulevaisuudessa tutkimusta voidaan jatkaa lisäämällä näytteiden määrää ja vertaamalla tuloksia
kokeellisiin mittauksiin, jolloin voidaan päättää, kumpi etanolimalleista kuvaa seosta paremmin.
Siten on mahdollista saada merkittävää tietoa vesi-etanoliseosten mikroskooppisen tason raken-
teesta. Sen lisäksi tietoa saadaan MD-simulaatioiden vuorovaikutusmallien valinnasta ja siitä, onko
MD-simulaatiolla mahdollista luoda oikeita mikroskooppisia rakenteita kaksikomponenttinesteille.
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Kumpulan tiedekirjasto

Water-ethanol mixtures are commonly used in industry and house holds. However, quite surprisingly
their molecular-level structure is still not completely understood. In particular, there is evidence
that the local intermolecular geometries depend significantly on the concentration. The aim of this
study was to gain information on the molecular-level structures of water-ethanol mixtures by two
computational methods. The methods are classical molecular dynamics (MD), where the movement
of molecules can be studied, and x-ray Compton scattering, in which the scattering cross section is
sensitive to the electron momentum density.
Firstly, the water-ethanol mixtures were studied with MD simulations, with the mixture concent-
ration ranging from 0 to 100%. For the simulations well-established force fields were used for the
water and ethanol molecules (TIP4P and OPLS-AA, respectively). Moreover, two models were used
for ethanol, rigid and non-rigid. In the rigid model the intramolecular bond lengths are fixed, whe-
reas in the non-rigid model the lengths are determined by harmonic potentials. Secondly, mixtures
with three different concentrations employing both ethanol models were studied by calculating the
experimentally observable x-ray quantity, the Compton profile.
In the MD simulations a slight underestimation in the density was observed as compared to expe-
riment. Furthermore, a positive excess of hydrogen bonding with water molecules and a negative
one with ethanol was quantified. Also, the mixture was found more structured when the ethanol
concentration was higher. Negligible differences in the results were found between the two ethanol
models.
In contrast, in the Compton scattering results a notable difference between the ethanol models was
observed. For the rigid model the Compton profiles were similar for all the concentrations, but for
the non-rigid model they were distinct. This leads to two possibilities of how the mixing occurs.
Either the mixing is similar in all concentrations (as suggested by the rigid model) or the mixing
changes for different concentrations (as suggested by the non-rigid model). Either way, this study
shows that the choice of the force field is essential in the microscopic structure formation in the
MD simulations.
When the sources of uncertainty in the calculated Compton profiles were analyzed, it was found that
more statistics needs to be collected to reduce the statistical uncertainty in the final results. The
obtained Compton scattering results can be considered somewhat preliminary, but clearly indicative
of the behaviour of the water-ethanol mixtures when the force field is modified.
The next step is to collect more statistics and compare the results with experimental data to decide
which ethanol model describes the mixture better. This way, valuable information on the microscopic
structure of water-ethanol mixtures can be found. In addition, information on the force fields in the
MD simulations and on the ability of the MD simulations to reproduce the microscopic structure
of binary liquids is obtained.
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1 Introduction

Water-ethanol mixtures are commonly used in industry and house holds. However,

quite surprisingly their molecular-level structure is still not completely understood.

Ethanol is easily soluble to water as its polar hydroxyl group can participate in the

hydrogen bonded network and the hydrophobic ethyl group is relatively small. How-

ever, it has been shown experimentally that the water-alcohol mixing is incomplete

at the molecular level, as there is negative excess entropy involved [1]. In this work

classical molecular dynamics (MD) and x-ray Compton scattering (CS) are used to

shed light on the microscopic structure of water-ethanol mixtures.

Water-ethanol mixtures have been used as drinking beverages for a long time. The ear-

liest �ndings of alcohol production date back to Neolithic period, cir. 10 000 B.C. [2].

The �rst alcoholic beverages were made of fermented berries or honey [3]. Beer and

wine have been everyday food products at least from 4 000 B.C. [4], providing �uid,

calories and vitamins. Besides, because of ethanol's antiseptic properties, they were

often safer to drink than water, which was often polluted and was dangerous or even

fatal to drink. [5] Alcohol can be produced naturally up to concentration of only 14 vol-

%, above which ethanol destroys the zymase enzyme, which is an enzyme from yeast

that changes sugars into ethanol and carbon dioxide in the fermentation reaction [6].

In middle ages (circa 12th century) distillation was invented, which made it possible

to produce alcohol products with signi�cantly higher alcohol concentration [2, 5].

Alcohol has had a huge in�uence also as a medicine. Beer and wine were used for

medicinal purposes as early as 2 000 B.C. in Sumer [7]. The main medicinal e�ects of

alcohol were pain reduction and mood enhancement. Ethanol is also a good antiseptic,

by being capable of destroying organisms by denaturing their proteins and dissolving

their lipids. Ethanol is e�ective against most bacteria and fungi as well as many

viruses. [8] After the invention of synthetic drugs, alcohol beverages have lost their

place as a medicine [5], but still many medicines contain alcohol as a component (e.g.

cough syrup), partly because of the antiseptic properties of ethanol and partly of the

high ethanol solubility in many organic solvents [9].

Nowadays water-ethanol mixtures are widely used in industry. One of the new uses of

water-ethanol mixtures is to replace fossil fuels [10]. Water-ethanol mixtures are good

solvents and are used, for example, for perfumes, paints, deodorants and cleaning

products.
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Even though water-ethanol mixtures have been so widely used, still only little is

known about the microscopic, atomic scale structure of the mixtures. The taste

and smell of water-ethanol mixture depend strongly on the additional components

and the mixing technique [11]. Also some properties of the mixtures show non-ideal

behavior, meaning that the properties don't change according to the change in the

concentration. Besides the negative excess entropy for water-ethanol mixtures, there

is also, for example, large excess viscosity upon mixing [12]. This work focuses on

the study of molecular-level mixing properties of water-ethanol solutions, in order to

clarify the microscopic structures of the mixtures as obtained from a commonly used

simulation methodology.

There has been several computational studies of water-ethanol mixtures [12�20]. The

main focus of these studies has been structural or thermodynamical properties of the

mixtures. For example, Wensink et al. [12] have reported excess heat, excess den-

sity, viscosity and mobility of water-ethanol mixtures. Noskov et al. [13] studied the

hydration, dielectric and dynamic properties of water-ethanol mixtures, and discussed,

for example, the role of hydrogen bonds. Hydrogen bonds in water-ethanol mixture

have also been studied by van Erp et al. [19], and Zhang et al. [20]. Fidler et al. [16]

studied the structure of water around ethanol via the radial distribution functions

and coordination numbers.

Firstly, in this work classical molecular dynamics is used to study the molecular-level

structure of water-ethanol mixtures. In classical molecular dynamics the movement

of 10x, with x usually less than 8, atoms is calculated numerically with classical

(Newtonian or Lagrangian) dynamics. Molecular dynamics is often used to solve

problems at the atomic scale which are hard to study experimentally or solve purely

theoretically. [21] It can be used to compare results of model systems with experiments

or compare theoretical predictions with results of model systems. Nowadays many new

theories are �rst tested with simulations, before applying them in practise. [22]

The �rst molecular dynamics simulations were made in the late 1950's. The �rst

simulations were accomplished for hard spheres [23, 24]. The �rst realistic molecular

dynamics simulation was done in 1970's on liquid water [25]. Since then the molecular

dynamics methodology has improved a lot, and because of the computing capacity

nowadays it can, in some contexts, be even considered to be reliable enough to be a

predictive tool [21].

In this work molecular dynamics simulations are used to study speci�cally the micro-

scopic structure of water-ethanol mixtures which lay background to the macroscopic
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properties of those liquids. Also, because of its ability to follow the coordinates of

the atoms, molecular dynamics is used to obtain realistic local molecular geometries,

which are then used as an input for the subsequent analysis.

Molecular level structure can be probed by various x-ray methods. Compton scat-

tering, for example, is a well-established inelastic x-ray scattering technique [26]. In

this technique, the experimentally observed scattering cross section can be interpreted

using the electron momentum density of the system through the so-called Compton

pro�le (CP). This way, detailed information on the local molecular and electronic

structures can be obtained [27,28].

Compton scattering was discovered already in 1920's by A. H. Compton, when he

studied the scattering of γ-rays, but only in 1970's it has become a standard x-ray

method [29]. Today Compton scattering experiments are done almost solely with

synchrotron radiation, which produces high-�ux and high-energy x-rays, making high-

accuracy experiments possible [30].

The aim of this work is to study the microscopic structure of water-ethanol mixtures

using, �rstly, classical molecular dynamics and, secondly, computational Compton

scattering methods. Combining these methods, additional information about the

molecular dynamics method and on the accuracy of both methods will be received. In

future these computational results could be compared with experimental data, which

then will tell whether classical molecular dynamics can produce correct microscopical

structures for the mixtures.
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2 Classical molecular dynamics simulations

In classical molecular dynamics (MD) simulations the basic idea is to calculate how

a system of particles evolves in time under the Newton's equations of motions. In

MD one sets up a simulation cell with atoms or molecules. Every atom or molecule

is assigned a force �eld, which is used to calculate the interactions between the other

atoms and molecules. Also, temperature and pressure are controlled, scaling the

velocities and positions of the atoms, respectively. With every time step the atoms

are moved according to the forces of the current con�guration. The movement of

atoms is calculated using Newtonian or Lagrangian dynamics. The new coordinates,

energies and other physical quantities may be stored. This way all the information

can be saved over the whole simulation, and, for example, it is possible to see how

the atom positions change during the simulation. In this section the principles of

molecular dynamics method is discussed in more detail.

2.1 Simulation cell

The simulation cell (Fig. 1) can be generated in various ways. One of the most

commonly used methods to create the initial con�guration is to replicate and shift

the already known monomer as many times as necessary. With binary systems the

same procedure can be repeated with both of the monomers. Some of the MD software

have ready-made tools to create the initial con�guration [31]. The structures of the

molecules can be obtained e.g. from the RCSB Protein Data Bank [32].

The initial atom velocities vi are needed for certain algorithms, e.g. the leap-frog

(discussed in Section 2.4) [33]. If the initial atom velocities are not known, they

are created generally by using the Maxwell-Boltzmann distribution, with the given

temperature T :

p(vi) =

√
mi

2πkT
e−

miv2
i

2kT (1)

where k is the Boltzmann's constant and mi the mass of the atom i. This can be done

with random numbers. The resulting total kinetic energy, Ekin, can also be adjusted

by scaling the velocities so that it corresponds to the required temperature,
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Figure 1: Simulation cell containing 500 water molecules and 192 ethanol molecules.

1

2
NdfkT = Ekin, (2)

where Ndf is the number of the degrees of freedom in the system. [34]

Since the computing capacity is limited, the simulation cell is always of �nite size.

The state of the art supercomputers can calculate simulations with up to order of

1010 atoms [35], but for a commonly doable simulation the amount of atoms is at

maximum of the order of 108 [21], which is still a small system from a macroscopic

point of view. To avoid interactions at the simulation cell boundaries with the vacuum,

periodic boundary conditions can be implemented. When using the periodic boundary

conditions, the simulation cell is duplicated in�nite times in every direction. In prac-

tice it means that when a molecule crosses the boundary, it will come back to the

simulation cell from the other side. This is illustrated in Fig. 2. This also applies to

interactions. There can be periodic boundaries in every direction, which corresponds

to simulation of bulk material, or only in some directions. With two directions, the

system corresponds to an in�nite surface and with one direction to an in�nite rod. [33]

The distance between two atoms is needed e.g. in force calculations. If the distances

between every atom is calculated at every time step, the scaling of the algorithm is

O(N2), where N is the amount of atoms [35]. However, in one time step, the atoms

move only a small distance compared to the cut-o� distance (i.e. the distance of how
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Figure 2: Movement through a periodic boundary.

far the interactions between the atoms are calculated, discussed in Section 2.4). So

most of the neighbours stay approximately at the same positions during one time

step, ∆t, and there is no need for calculating them every step. The Verlet neighbour

list [36] can be used to keep track of the neighbours. It is a list of the indices of the

atoms j which are closer to atom i than a given distance R, which is larger than the

cut-o� distance rcut. The list is updated every Nm time steps. The distance R and

the interval Nm are chosen so that

R− rcut > Nmv̄∆t (3)

where v̄ is a typical atom velocity and ∆t the time step. Using this method a factor

of Nm can be saved in time but still the whole algorithm is O(N2). [33]

The algorithm can be made to O(N) by using a cell method, in which the simulation

cell is divided into M ×M ×M subcells. The size of one subcell l is chosen so that

l =
L

M
> R (4)

where L is the size of the simulation cell and R is the Verlet list distance. To search

the neighbours of atom i, only the subcell where the atom is and the neighbouring

subcells has to be searched through. When the average number of atoms in a subcell

is Nc = N/M3, only 27NNc atom pairs have to be gone through instead of N(N − 1).

This way the algorithm scales as O(N). [33]
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Figure 3: Key contributions to the force �elds. [37]

2.2 Force �elds

The interactions between the atoms can be divided into two groups, bonded and

nonbonded interactions. Bonded interactions are interactions of atoms which are

bonded to each other i.e. are in the same molecule. Nonbonded interactions are

interactions between atoms in di�erent molecules, but these interactions are generally

also applied to bonded atoms, especially in long molecules. The interactions are

presented in Fig. 3. The total potential generally consists of �ve parts

V = Vbonds + Vangles + Vtorsional + Velectrostatic + VLennard−Jones, (5)

where the �rst term is the bond stretching potential, second the bond angle potential

and third the torsional potential, i.e., the rotation of the molecule bonds. These three

are the bonded interactions. In equation 5 the remaining two terms are nonbonded

interactions. The �rst is the electrostatic potential and the last one the Lennard-Jones

potential. [37]

One of the simplest ways to describe the bond stretching potential is the harmonic

potential

Vbonds =
1

2

∑
bonds

ki(li − li,0)
2, (6)
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where ki is a force constant and the bond length, li, oscillates around the reference

length li,0. [37]

The bond angle potential is generally treated similarly to bond stretching potential

as a harmonic potential,

Vbond angles =
1

2

∑
bond angles

k′i(θi − θi,0)
2, (7)

where k′i is a force constant and the bond angle, θi, oscillates similarly around the

reference angle θi,0. [37]

The torsional potential has a substantial e�ect in the bond energy especially in long

molecules [38]. It is generally described as a cosine expansion

Vtorsion =
1

2

∑
torsion

Vn(1 + cos(nϕ− δ)), (8)

where ϕ is the torsion angle and Vn a constant. In equation 8 n is the multiplicity,

i.e., it describes how many minimum points there are in the function as the bond is

rotated through 360◦. [37]

Di�erent electronegativity in atoms causes uneven charge distribution in the molecules.

The most common way to describe this interaction is the Coulomb potential

VCoulomb =
∑
i,j

1

4π

qiqj

ε0rij

, (9)

where qi and qj are point charges, ε0 the permittivity of free space and rij the distance

between the point charges.

All nonbonded interactions cannot be explained via electronegativity, so something

else is needed. These interactions are called van der Waals interactions and are com-

monly described using the Lennard-Jones potential

10



VLJ =
1

2

∑
i,j

4εij((
σij

rij

)12 − (
σij

rij

)6). (10)

When binary systems are studied, where there are atoms of di�erent types i and j,

the two atom type Lennard-Jones parameters, εij and σij, can be calculated following

Lorentz and Bertelot, where [31, 39]

εij = (εiiεjj)
1
2 , (11)

and

σij =
1

2
(σii + σjj), (12)

where εii, εjj,σii and σjj are the Lennard-Jones parameters for interactions between

the same atom types. These interactions are discussed in more detail in the author's

bachelor thesis [40].

Basically all the interactions range to in�nity. However, the bonded interactions are

restricted to the closests neighbours, so only the non-bonded interactions can range to

in�nity. Because of the limited computing capacity and the �nite size simulation cell,

the interactions must be in practice truncated. This is generally solved by using cut-

o�s with the interactions. The interactions are calculated only up to a certain distance

and after this cut-o� distance the potential of the interaction goes to zero. The size of

the simulation cell restricts the cut-o� distance, because due to the periodic boundaries

a molecule can interact with itself if the cut-o� distance is too large. Basically the

cut-o� distance has to be smaller than half of the shortest unit vector of the simulation

cell. [33]

In classical molecular dynamics the forces are calculated in the Newtonian way and

the force is a negative gradient of the total potential

−∇Vi = Fi = miai = mi
d2ri

dt2
, (13)

where Fi is the force acting on atom i with mass mi [33].
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2.3 Energy minimization

Before the actual molecular dynamics run, the energy of the initial con�guration has

to be minimized, otherwise there can be huge e�ects from e.g. two atoms which are

too close to each other. One of the ways to minimize energy is the steepest descent

-method, where �rst the forces and the potential energy are calculated, and after that

the new positions for the atoms (ri) are calculated by

rn+1
i = rn

i +
Fn

i

max(|Fn
i |)

hn, (14)

where hn is the maximum displacement from the previous position, Fn
i is the force

and max(|Fn
i |) is the largest of absolute values of the force components. Above, n

denotes the steepest descent step. The initial maximum displacement h0 must be

given. Then the forces and the potential energies are calculated for the new positions

and if the potential is smaller than in the previous step (V n+1 < V n) the new positions

are accepted and hn+1 = 1.2 · hn or if the potential is larger than in the previous step

(V n+1 ≥ V n) the new positions are rejected and hn+1 = 0.2 · hn. The method is

repeated until a speci�ed number of iterations or until the forces are smaller than a

speci�ed value. [31,41]

Another way to minimize energy is the conjugate gradients method, where instead

of moving the atom to the direction of the force, it is moved with two vectors, one

perpendicular to the force, and another one perpendicular to that. The atoms are

moved by [42]

rn+1
i = rn

i + κ · ln+1
i , (15)

where κ is constant and

ln+1
i = F(rn+1

i ) + γn
i lni , (16)

and γ is updated as

γn
i =

F(rn+1
i ) · F(rn+1

i )

F(rn
i ) · F(rn

i )
. (17)
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Figure 4: Leap-frog algorithm, where the system evolves over one time step ∆t ≡ δt.

Firstly from the atom positions at time t one calculates the accelerations. Then using

the velocity from the previous half-time step (at time t − ∆t/2) and acceleration at

time t the new velocity at time t + ∆t/2 is calculated. Then using that velocity and

position from time t, the new position at time t + ∆t is calculated. [33]

2.4 Equations of motion

The main goal in the MD simulation is to solve the equations of motion. There are

several numerical algorithms to do it. One commonly used is the leap-frog algorithm,

where the positions and the accelerations are calculated at times t and the velocities

at times t− ∆t
2
, where ∆t is the time step of the simulation [33]

ri(t + ∆t) = ri(t) + ∆tvi(t +
1

2
∆t), (18)

vi(t +
1

2
∆t) = vi(t−

1

2
∆t) + ∆tai(t). (19)

The accelerations are obtained from the forces of the current time according to equa-

tion 13.

The way to calculate the accelerations, velocities and positions is illustrated in Fig. 4.

To calculate e.g. the energy at time t, the velocities at that time are needed. The

velocities at time t are averages of the previous and the following half time steps [33]

vi(t) =
1

2
(vi(t +

1

2
∆t) + vi(t−

1

2
∆t)). (20)
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2.5 Temperature and pressure control

In order to make the simulation correspond to a realistic case, one has to characterize

the macroscopic equilibrium state by the state parameters like temperature. Often the

MD simulations are done in the isothermal-isobaric ensemble, also called the NTP-

ensemble [21], where the number of atoms, the temperature and the pressure are kept

constant. There are many methods to keep the temperature constant, one of which

is the Berendsen temperature scaling.

The Berendsen temperature scaling method is essentially a direct scaling but it is

softened with a time constant [43]. When coupled to a heat bath, the temperature is

corrected according to

dT

dt
=

1

τ
(T0 − T ), (21)

where T0 is the desired temperature and τ is a time constant. So the temperature

deviation decays exponentially with τ . [31, 43]

To make the heat �ow into or out of the system, the particle velocities are scaled. At

every time step the particle velocities are scaled by a time dependent factor

λ =

[
1 +

∆t

τT

{
T0

T (t− ∆t
2

)

}] 1
2

, (22)

where ∆t is the time step and the parameter τT is proportional to the time constant τ ,

τ =
2CV τT

Ndfk
, (23)

where CV is the total heat capacity of the system. [31,43]

Similarly to temperature, also pressure can be scaled. Pressure is controlled by scaling

the coordinates and vectors de�ning the simulation cell at every time step. One of the

commonly used methods to control the pressure is the Berendsen pressure coupling.
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The Berendsen method scales the coordinates and the simulation cell vectors every

time step with a matrix µ. The pressure, P, is scaled similarly to temperature (equa-

tion 21) towards the given reference pressure P0

dP

dt
=

1

τp

(P0 −P). (24)

The scaling matrix is given by the elements

µlm = δlm −
∆t

3τp

βlm(P0lm − Plm(t)), (25)

where β is the isothermal compressibility of the system, δlm the Kronecker delta and

l and m represent the cartesian directions x, y and z. [31, 44]

2.6 Analysis tools

There are lots of di�erent quantities that can be studied from the MD simulation. In

this section those relevant to this work are described.

The radial distribution function (RDF) (also called the pair correlation function)

describes how the density of the surrounding matter varies as a function of the distance

from a particular point [45]. Experimentally it can be obtained e.g. with x-ray or

neutron di�raction [46]. In a binary system the radial distribution between two atom

species A and B can be de�ned as

gAB(r) =
〈ρB(r)〉
〈ρB〉local

=
1

〈ρB〉local

1

NA

NA∑
i∈A

NB∑
j∈B

δ(rij − r)

4πr2
, (26)

where 〈ρB(r)〉 is the atom density of atom species B at a distance r around atoms A,

〈ρB〉local is the atom density of atoms B averaged over all spheres around atoms A

within the maximum distance rmax and NA and NB are the number of atoms A and

B, respectively. The maximum distance rmax is usually half of the simulation cell

length. [31]
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Figure 5: De�nition of hydrogen bond used in this work. The indicated distance must

be less than 3.5 Å and the angle less than 30 degrees. The water molecule to the left

is the donor and the molecule to the right the acceptor.

The coordination number describes how many closest neighbours an atom has. It can

be estimated from the RDF by integrating over the �rst peak to the �rst minimum

at Rmin. The coordination number of the atom species B around those of A is

N coord
AB = 4πρB

∫ Rmin

0

R2gAB(R)dR, (27)

where ρB is the mean density of atoms B in the system. [47]

There are also methods for calculating the average number of hydrogen bonds, NHB.

There is no universally agreed de�nition of what is a hydrogen bond. In this work

the hydrogen bond is de�ned in the following way, which is often used: the distance

between the oxygens is less than 3.5 Å and the angle acceptor-donor-hydrogen is less

than 30◦. See Fig. 5 for the de�nition of the distances, angles and the de�nition of an

acceptor and a donor molecule.

From the simulations the hydrogen bonds can be calculated so that the number of

hydrogen bonds per time step is calculated, and then average of those over the simula-

tion time is the total average number of hydrogen bonds in the simulation cell. From

the total number of hydrogen bonds the number of hydrogen bonds per one molecule

can be calculated by dividing the total number by the amount of the molecules of the

desired molecule type in the simulation cell. This number has to be multiplied by the

factor of two if the bond is calculated between same type of molecules.
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Figure 6: Left: TIP4P water molecule with the virtual charge M. Right: OPLS-AA

ethanol molecule.

2.7 Molecular dynamics setup

In this work for water the TIP4P (Transferable Intermolecular Potential, 4 Points) [48]

force �eld was used. In this model the water molecule is described with four point

charges; in addition to the atom charges (oxygen and hydrogens) there is a virtual

chargeM, which shifts the total charge (Fig. 6). For ethanol the OPLS-AA (Optimized

Potential for Liquid Simulation - All Atom) [49] force �eld was used, where all the

atoms are treated individually (Fig. 6). Two approaches were studied for ethanol,

denoted as 'rigid' and 'non-rigid'. For the rigid ethanol the LINCS-algorithm [50]

was used to maintain the geometry of the molecule. For the non-rigid ethanol no

constraints were used, except those de�ned explicitly in the topology, i.e. bonds were

represented by a harmonic potential. More information about the water and the

ethanol models can be found in the author's bachelor thesis [40].

For all the MD simulations the Gromacs software [51] was used. All the simulations

were for 2 ns and prior to that there was an equilibration simulation for 2 ns. The time

step was 1 fs for non-rigid ethanol and 2 fs for rigid ethanol both with the leap-frog

integrator. The cut-o�s for the potentials and the neighbourlists were 1.1 nm, except

for the mixtures with 0.5% of ethanol concentration this was chosen to be 0.9 nm

(the simulation cells were not large enough for longer cut-o� lengths). To keep the

temperature and pressure constant the Berendsen algorithm was used. The reference

temperature was 300 K and the reference pressure 1 bar. The coupling constant

was 0.1 ps for the temperature and 0.5 ps for the pressure. The neighbourlists were

updated every 5th time step and the energies and coordinates were stored every 100 fs.

The ethanol concentration in the simulations ranged from 0% to 100% (mass percents).

Table 1 lists the used concentrations (both mass and molar concentrations). Also in

Table 1 are listed the used ethanol model, the amount of ethanol and water molecules,

the cut-o�-lengths, and the densities obtained from the simulations. These results are

discussed in Section 4.1.
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Table 1: Setup used in the MD simulations. The ethanol model, amounts of ethanol

and water molecules in the simulation cell, ethanol molar and mass concentration,

cut-o� and the obtained density and the standard deviation from the simulation are

given.
EtOH-

model

#EtOH #H2O EtOH

mol-%

EtOH

m-%

Cut-o�

(nm)

Density

(g/l)

- 0 1016 0 0 1,1 (1003,2±5,4)
Non-rigid 1 211 0.5 1.2 0.9 (1001.6±11.4)
Non-rigid 36 782 4.4 10.53 1.1 (979.2±5.3)
Non-rigid 75 745 9.1 20.47 1.1 (958.2±5.1)
Non-rigid 120 620 16.2 33.11 1.1 (931.7±5.5)
Non-rigid 160 519 23.6 44.08 1.1 (909.9±5.6)
Non-rigid 192 538 26.3 47.71 1.1 (903.4±5.7)
Non-rigid 240 400 37.5 60.54 1.1 (876.8±5.5)
Non-rigid 280 300 48.3 70.47 1.1 (856.0±5.8)
Non-rigid 315 200 61.2 80.11 1.1 (835.5±5.8)
Non-rigid 360 100 78.3 90.20 1.1 (812.3±5.7)
Non-rigid 360 20 94.7 97.87 1.1 (792.5±6.0)
Non-rigid 392 0 100 100 1.1 (787.3±5.5)
Rigid 1 211 0.5 1.2 0.9 (1003.1±11.5)
Rigid 36 842 4.1 9.86 1.1 (983.6±5.4)
Rigid 75 729 9.3 20.83 1.1 (962.7±5.3)
Rigid 118 597 16.5 34.26 1.1 (938.0±5.3)
Rigid 158 600 20.8 40.24 1.1 (925.4±5.3)
Rigid 192 500 27.7 49.54 1.1 (906.2±5.3)
Rigid 239 400 37.4 60.44 1.1 (884.2±5.1)
Rigid 280 300 48.3 70.47 1.1 (863.7±5.4)
Rigid 315 200 61.2 80.11 1.1 (843.3±5.1)
Rigid 360 100 78.3 90.20 1.1 (819.5±5.2)
Rigid 360 20 94.7 97.87 1.1 (799.7±5.9)
Rigid 392 0 100 100 1.1 (794.1±5.5)
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3 X-ray Compton scattering

X-ray Compton scattering (CS) is inelastic scattering far from the resonances of the

system when there is a large energy and momentum transfer from the photon to the

target electron [52]. X-ray Compton scattering can be used to study the structure

of materials at the atomic scale, since it probes the electronic orbitals of the system

in the momentum space. [29] In this section the theoretical model for calculating

Compton scattering cross sections is presented.

3.1 Theoretical model

Inelastic x-ray scattering is a photon-in photon-out process described schematically in

Fig. 7 [26]. A photon of energy h̄ω1, which has the wave vector k1 and the polarization

unit vector ε̂1, collides with a target which is characterized by a state vector |I〉
and initial energy EI . The outgoing photon has an energy h̄ω2, wave vector k2 and

polarization unit vector ε̂2. This leaves the target in the �nal state |F 〉 with energy

EF . An energy h̄(ω1 − ω2) = h̄ω and a momentum h̄k = h̄(k1 − k2) are transferred

to the target. Energy conservation requires that

h̄ω = EF − EI . (28)

The amount of transferred momentum is connected with the scattering angle φ by

k =
1

c
(ω2

1 + ω2
2 − 2ω1ω2 cos φ)

1
2 , (29)

where c is the speed of light. If the transferred energy is much smaller than the initial

photon energy, ω � ω1, equation 29 reduces to

k ≈ 2k1 sin

(
φ

2

)
. (30)
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Figure 7: Schematic picture of Compton scattering.

In typical Compton scattering experiments the incoming beam is well-collimated and

consists of monochromatic photons. A certain solid angle dΩ is selected of the scat-

tered beam (this �xes k according to equation 30). So the double di�erential scattering

cross-section d2σ
dΩdω2

is measured as a function of k and ω. In the non-relativistic limit

the double di�erential scattering cross-section for inelastic x-ray scattering consists of

two factors,

d2σ

dΩdω2

=

(
dσ

dΩ

)
0

S(k, ω), (31)

where S(k, ω) is the dynamic structure factor, which re�ects the properties of the tar-

get without the perturbing probe, and
(

dσ
dΩ

)
0
is the Thomson scattering cross-section,

which describes the coupling of the electron to the electromagnetic �eld. The sepa-

ration in equation 31 can be made provided that the coupling to the electromagnetic

�eld is weak enough to be treated in the lowest-order Born approximation (�rst or-

der perturbation theory) and the resonance phenomena can be neglected. [26] The

Thomson scattering cross-section can be written in the following way [26,53,54]

(
dσ

dΩ

)
0

= r0

(
ω2

ω1

)
(ε̂1 · ε̂2)

2, (32)

where r0 is the classical electron radius.

For many-electron systems the Fermi's golden rule leads to the formula

S(k, ω) =
∑

F

∣∣∣∣∣〈F |
Z∑

l=1

eik·rl|I〉

∣∣∣∣∣
2

δ(EF − EI − h̄ω), (33)
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where rl is the position of the lth electron [29]. For the delta function an integral

representation can be used [26]

δ(EF − EI − h̄ω) =
1

2πh̄

∫ ∞

−∞
e−it/h̄(EF−EI−h̄ω)dt. (34)

With this the following expression for the dynamic structure factor can be obtained [26]

S(k, ω) =
1

2πh̄

∫ ∞

−∞
dte−iωt

∑
F

〈I|
∑

l

e−ik·rl|F 〉 × 〈F |eiHt/h̄
∑

l

eik·rle−iHt/h̄|I〉. (35)

Above, H|x〉 = Ex|x〉 is used, where H is the Hamiltonian and the state |x〉 is either
|I〉 or |F 〉.The Hamiltonian operator H in equation 35 can be divided into the kinetic

energy term H0 and the potential energy term V . The exponent function in equation

35 can be expanded in the following way

eiHt/h̄ = eiH0t/h̄eiV t/h̄e−[H0,V ]t2/(2h̄2)... (36)

The high order terms contain multiple commutators and are of higher order in t. In

the impulse approximation it is assumed that whenever

h̄ω � (〈[H0, V ]〉)
1
2 , (37)

one can approximate

e−[H0,V ]t2/(2h̄2) ∼= 1, (38)

since signi�cant contribution to the time integral in equation 35 occur only for

t ≤ 1/ω. [26]

For clarity, in the following we consider a one-electron atom and drop the sum
∑

l.

Since the potential V commutes with r, by using equation 38, the dynamic structure

factor will be
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S(k, ω) =
1

2πh̄

∫ ∞

−∞
dte−iωt〈I|e−ik·reiH0t/h̄ek·re−iH0t/h̄|I〉. (39)

When the complete set of eigenfunctions |pf〉 of the kinetic energy part of the Hamil-
tonian with

eiH0t/h̄|pf〉 = eiE(pf )t/h̄|pf〉, (40)

where

E(pf ) = p2
f/2m (41)

is applied to equation 39, it will transform into

S(k, ω) =
∑
pf

∣∣〈I|e−ik·r|pf〉
∣∣2 δ[E(pf )− E(pf − h̄k)− h̄ω]. (42)

If p is de�ned as

p ≡ pf − h̄k (43)

and the sum over the �nal states |pf〉 is switched to a p integration, the dynamic

structure factor becomes

S(k, ω) =

(
1

2πh̄

)3 ∫
|〈I|p〉|2δ(h̄2k2/2m + h̄p · k/m− h̄ω)dp. (44)

When ϕ(r) is the single particle position space wave function representing the initial

state |I〉, then its Fourier transform is χ(p) and we have

(
1

2πh̄

)3

|〈I|p〉|2 = |χ(p)|2. (45)
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With this, the dynamic structure factor becomes

S(k, ω) =

∫
|χ(p)|2δ(h̄2k2/2m + h̄p · k/m− h̄ω)dp. (46)

The same result (equation 46) can be obtained also in another way, which is here

brie�y reviewed [29]. In the Van Hove representation [55] the dynamic structure

factor of equation 35 is described as

S(k, ω) =
1

2π

∫ +∞

−∞
e−iωt〈I|ρk(t)ρ−k(0)|I〉dt. (47)

The density operator is de�ned by

ρk ≡
∑

l

eik·rl , (48)

ρk(t) = eiHt/h̄ρke
−iHt/h̄. (49)

Assuming equations 37 and 38 and noticing that the terms in eiV t/h̄ cancel out, the

time dependent density operator can be estimated by approximation of the Hamilto-

nian. The density operator is then

ρk(t) ≈ eiH0t/h̄ρke
−iH0t/h̄, (50)

where H0 is the free electron Hamiltonian. [29]

With annihilation ap and creation a+
p operators for free electrons with momentum p,

the density operator becomes

∑
l

eik·rl =
∑

p

a+
pap+h̄k. (51)
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The time dependence of the annihilation and the creation operators can be approxima-

ted similarly to equation 50. Using these approximations the dynamic structure factor

becomes

S(k, ω) =
∑
p

∑
p′

δ(h̄2k2/2m + h̄p · k/m− h̄ω)〈a+
pap+h̄ka

+
p′+h̄kap′〉. (52)

Both p and p′ are of order pc, which is a characteristic ground state momentum,

and the momentum transfer h̄k is large compared to the ground state momentum

h̄k � pc. The last part of equation 52 then becomes

∑
p′

〈a+
pap+h̄ka

+
p′+h̄kap′〉 ≈ 〈a+

pap〉, (53)

which is just the momentum density 〈a+
pap〉 = n(p).

So now the dynamic structure factor is

S(k, ω) =

(
1

2πh̄

)3 ∫
n(p)δ(h̄2k2/2m + h̄p · k/m− h̄ω)dp, (54)

which is the same as equation 46 if n(p) = |χ(p)|2. [29]

Let us now proceed to calculate n(p) for an electron system in an ionic potential.

The basic idea in the density functional theory is to describe the electron system by

its density instead of using the many-body wave function. It is generally used to

describe the system in the ground state. For N electrons the bene�t of using the

density functional theory is that the basic variable depends only on three degrees of

freedom instead of 3N . The ground state density in the Kohn-Sham density functional

theory is calculated as

n(r) =
∑

|ϕj(r)|2, (55)

where {ϕj(r)} is the orthonormal set of Kohn-Sham single particle wave functions

in the ground state and the sum is over occupied states. The same formulation also
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follows from the Hartree-Fock approximation. [56] The momentum density is the sum

of the Fourier-transformed wave functions [27]:

n(p) =
∑

j

(2πh̄)−3

∣∣∣∣∫ e−ip·r/h̄ϕj(r)dr

∣∣∣∣2 =
∑

j

|χj(p)|2. (56)

The method of calculation described in this section is called the impulse approxima-

tion, where the scattering takes place so quickly that other electrons cannot participate

in the process and the incoming photon only collides with a moving single electron [57].

Integrating the equation 54 of the dynamic structure factor is easy and if k is chosen

to be in z-direction, one can de�ne the Compton pro�le (CP)

J(pz) =

∫
px

∫
py

n(p)dpxdpy. (57)

If the system is isotropic, n(p) ≡ n(p), a spherically averaged Compton pro�le is

obtained as

J(q) =
1

2

∫ ∞

|q|

∫ 2π

0

∫ π

0

n(p) sin θdθdφpdp =
1

2

∫ ∞

|q|
4πpn(p)dp. (58)

The Compton pro�le is generally normalized as

∫ ∞

−∞
J(q)dq = Z, (59)

where Z is the number of electrons in one molecule. [26,57]

So �nally we get for the cross-section of Compton scattering [29]

d2σ

dΩdω2

=

(
dσ

dΩ

)
0

m

|h̄k|
J(q). (60)
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Relativistic kinematics a�ects the connection between the scalar variable q and the

experimental parameters, the photon energies h̄ω1 and h̄ω2, and the scattering angle

φ. A good approximation of the connection is

q ' h̄|k|
2

− h̄(ω1 − ω2)

c

√
1

4
− m2c4

2h̄2ω1ω2(1− cosφ)
, (61)

where c is the speed of light. [53]

At this level of approximation these equations can be used to interpret experimental

data [29]. In the cross-section (equation 60) everything except the Compton pro�le

depends only on the experimental set-up [27].

3.2 Calculation of Compton pro�les from MD structures

Since one of the bene�ts of using MD simulation is that the coordinates of the atoms

are recorded over the simulations, it is convenient to use the local geometries from

the MD simulations as an input for the Compton pro�le calculations.

Compton pro�les are calculated using quantum mechanical description for the elec-

tronic structure, but the calculations are much heavier than for classical molecular

dynamics. Because of the limited computing time, in the Compton pro�le calcula-

tions only small clusters extracted from the simulation cell can be calculated. For pure

liquids, clusters with 20 water molecules (for pure water) or 8 ethanol molecules (for

pure ethanol) were randomly selected at 5-10 di�erent time steps. For mixtures the

clusters are sampled so that all molecules within the radius of 5.5 Å are included at

5-10 di�erent time steps. Altogether, about 100 clusters have been randomly selected

for one mixture. This means that the amount of the molecules in one mixture cluster

varies, and also the geometries vary. This way an overall sampling of the molecular

con�gurations can be obtained. A representative cluster from the mixture is shown

in Fig. 8.

The Compton pro�le calculation is done with the StoBe-deMon software [58], which

employs localized molecular orbitals, density-functional theory and Kohn-Sham single

particle states.
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Figure 8: Representative cluster used in the Compton pro�le calculation.

In this work the main focus on Compton pro�les is in the di�erence pro�les

∆J(q) = J(q)− J ′(q), (62)

where J(q) is the Compton pro�le of the mixture and J ′(q) is the weighted sum of

the Compton pro�les of pure water and ethanol. This is the quantity that can be

obtained from experiments with high statistical precision. For example, recently a

precision of 0.01%-units has been obtained for the ratio ∆J(q)
J(0)

[28].

3.3 Bootstrap method

The bootstrap method is suitable to roughly estimate the statistical errors in a set

of variables. In this work the bootstrap method is used to approximate errors in the

Compton pro�les. The procedure is the following:

Let there be a set of N spectra, {Sn(ω)}N
n=1. An average spectrum is calculated as

〈S(ω)〉 =
1

N

N∑
n=1

Sn(ω). (63)

Then M bootstrap spectra are calculated from the N spectra (creating a set of boot-

strap spectra {Bn(ω)}M
n=1). The bootstrap spectra are averages of groups of randomly
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selected original spectra, so that N spectra from the group {Sn(ω)}N
n=1 are selected

randomly, discarding that one spectrum can be selected multiple times. Then from

that group of spectra the average spectrum is the bootstrap spectrum. The M boot-

strap spectra can be statistically analyzed or drawn in the same �gure. The standard

deviation from the average spectrum can be then used as an error estimate. [59]
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Figure 9: Density of the water-ethanol mixture with di�erent ethanol concentrations.

Rigid model (blue circles), non-rigid model (red squares) and experimentally obtained

values (solid line) [60].

4 Results for molecular dynamics simulations

4.1 Density

In Fig. 9 are the densities obtained from the simulations. The experimental values [60]

are also shown in the �gure. In addition, the obtained densities are listed in Table 1.

The values are average densities over the whole simulation and the errors are rms(root

mean square)-�uctuations. Both the non-rigid and the rigid models give the trend in

the density similar to the experimental value. Both models slightly underestimate the

density, especially in concentrations between 10-40%. The non-rigid model underes-

timates the density to higher concentrations, up to 95%. The non-rigid model has

a lower density than the rigid model in all concentrations, but overall the di�erence

between the models is rather small. Wensink et. al. [12] calculated the density of

water-ethanol mixtures using OPLS and TIP4P force �elds. Also, in their study, the

density was underestimated in lower concentrations, up to 40%.
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4.2 Radial distribution functions

The studied radial distribution functions are distance distributions of water oxygen

to water oxygen, OwOw, (Fig. 10), water oxygen to ethanol oxygen, OwOH, (Fig. 11)

and ethanol oxygen to ethanol oxygen, OHOH, (Fig. 12). The RDF:s are averaged

over the whole simulation run.

All the RDF:s show one sharp and high peak at around 2.8 Å and much smaller

and smoother structures after that. After about 6 Å the radial distribution func-

tions approach unity. The systematic e�ect is that the �rst peaks get higher and

slightly narrower when ethanol concentration grows. It is notable that the shape of

the radial distribution function is di�erent for the three studied cases. To emphasize

the di�erence in the �rst peak of the RDF, all three are plotted in the same �gure

(Fig. 13), which corresponds to a mixture of about 16% of ethanol. The basic features

are the same for all the radial distribution functions, but the �rst peak is highest and

narrowest for the water-water distribution and lowest and broadest for the ethanol-

ethanol distribution, and the water-ethanol distribution lies in between. Altough the

example is from the solution with 16% ethanol concentration, a similar trend applies

for all concentrations.

As can be seen from Fig. 10-13 there is no signi�cant di�erence between the non-rigid

and rigid models. Some of the di�erences might be partly explained by the di�erences

in the ethanol concentration which vary a little for the rigid and non-rigid models (in

Fig. 10-13 or Table 1).
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Figure 10: Radial distribution functions from water oxygen to water oxygen for dif-

ferent ethanol concentrations. Solid lines are for non-rigid ethanol (N) and dashed

lines for rigid ethanol (R). O�sets are 1.0 units in the y-axis.

Figure 11: Radial distribution functions from water oxygen to ethanol oxygen for

di�erent ethanol concentrations. Solid lines are for non-rigid ethanol (N) and dashed

lines for rigid ethanol (R). O�sets are 1.0 units in the y-axis.

31



Figure 12: Radial distribution functions from ethanol oxygen to ethanol oxygen for

di�erent ethanol concentrations. Solid lines are for non-rigid ethanol (N) and dashed

lines for rigid ethanol (R). O�sets are 1.0 units in the y-axis.

Figure 13: Radial distribution functions for a mixture with 16,2% of non-rigid ethanol

(N) and 16,5% of rigid ethanol (R): water oxygen to water oxygen (OwOw), water

oxygen to ethanol oxygen (OwOH) and ethanol oxygen to ethanol oxygen (OHOH).
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Figure 14: Coordination numbers for di�erent ethanol concentrations. From top

to bottom (small concentrations): water around water (w-w), water around ethanol

(w-e/ethanol), ethanol around water (w-e/water) and ethanol around ethanol (e-e)

coordination numbers. Note that the �rst point is for 0.5% of ethanol.

4.3 Coordination numbers

The studied coordination numbers are water around water (w-w), ethanol around

ethanol (e-e), ethanol around water (w-e/water) and water around ethanol (w-e/ethanol).

In Fig. 14 the coordination numbers for di�erent ethanol concentrations are plotted.

It is observed that the change in the number of neighbours is almost linear. The

ethanol molecules have overall less neighbours than the water molecules. Similarly

as in the radial distribution functions there is only a small di�erence between the

non-rigid and rigid models.

In this study the coordination number for pure water is 4.79 and for pure ethanol

1.96 and 1.97 for the non-rigid and rigid models, respectively. In a study of water-

ethanol mixtures by Noskov et al. [13], where a polarizable force �eld for ethanol and

SWM4-DP model for water was used, the results of coordination numbers were similar

to this study. Noskov et al. found for pure water the coordination number of 4.63

and for pure ethanol 1.94, which both are close to the values obtained in this study,
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which indicates that even with di�erent models used in the calculation the amount of

close neighbours for pure water and ethanol is constant.

4.4 Number of hydrogen bonds

In Fig. 15 the hydrogen bonds for a water molecule with di�erent ethanol concentra-

tions and in Fig. 16 the hydrogen bonds for an ethanol molecule with di�erent ethanol

concentrations are shown. In both �gures the bonds with ethanol molecules and water

molecules are plotted separately, as well as the total amount of bonds, which is the

sum of the two. The linear lines represent the ideal mixing [13].

The number of hydrogen bonds for pure water is 3.50, and for non-rigid ethanol 1.82

and for rigid ethanol 1.80. These are close to the values received in other calculations.

With the same hydrogen bond de�nition as used here, Zhang et al. [20] received 3.62

hydrogen bonds for pure water. With O-O distance less than 3.4 Å, van Erp et al. [19]

received 3.4 hydrogen bonds for pure water. With a hydrogen bond de�nition of the

H-O distance less than 2.4 Å, Zhang et al. received for pure water 3.04 hydrogen

bonds and 1.69 hydrogen bonds for pure ethanol and Noskov et al. [13] 3.03 hydrogen

bonds for pure water and 1.65 hydrogen bonds for pure ethanol. In a simulation

calibrated against neutron di�raction data, Soper et al. [61] received 3.58 hydrogen

bonds for pure water, with the de�nition of hydrogen bond of the O-O distance less

than 3.5 Å.

The number of hydrogen bonds is smaller than the coordination number, which is

expected, since not all the neighbouring molecules are hydrogen bonded to the central

molecule. The di�erence between coordination number and number of hydrogen bonds

is larger when there is more water in the mixture, than with more ethanol in the

mixture. This means that the closest ethanol molecules are more likely to be hydrogen

bonded with the centering molecule, whereas the closest water molecules are less likely

to be bonded with the centering molecule.

Another interesting observation is that the total number of hydrogen bonds per water

molecule and per ethanol molecule decreases as the ethanol fraction increases. For

water the di�erence is about 15% and for ethanol 28%. The increase in ethanol

hydrogen bonds when ethanol concentration decreases is therefore almost two times

larger than the bonds water loses when ethanol concentration increases.
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Figure 15: Number of hydrogen bonds for water for di�erent ethanol concentrations.

Blue for total amount of hydrogen bonds, green for bonds with water and light blue

for bonds with ethanol. Black dashed lines are linear. Both rigid (R) and non-rigid

(N) models.

Figure 16: Number of hydrogen bonds for ethanol for di�erent ethanol concentrations.

Blue for total amount of hydrogen bonds, green for bonds with water and light blue

for bonds with ethanol. Black dashed lines are linear. Both rigid (R) and non-rigid

(N) models.
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One notable feature in the hydrogen bonds is that the results are not linear as it

would be for ideal mixing. There is positive excess for bonds with water (water-

water, ethanol-water) and negative excess for bonds with ethanol (water-ethanol,

ethanol-ethanol).

There is also a small di�erence between the ethanol models. The di�erence is most

notable when both �gures (Fig. 15 and 16) are compared. In Fig. 15 the total number

of hydrogen bonds is slightly greater for rigid ethanol, and in Fig. 16 the total number

of hydrogen bonds is slightly greater for non-rigid ethanol. This indicates that rigid

ethanol bonds more with water and non-rigid ethanol more with ethanol.

4.5 Discussion

The good accordance with experimental values in densities of the water-ethanol mix-

tures gives a good starting point for further studies of the atomic-scale structure. The

water model TIP4P and the ethanol model OPLS-AA are both �tted to give correct

densities for pure liquids [40], and it is not surprising that they both together in mix-

tures give densities that are close to experimental values, although this is not always

guaranteed. The small deviations from experimental values can be due to the use of

cut-o�s in the force �elds. It is suggested that density is a�ected by the long-range

interactions [12]. For pure water it was found that correlations exist at least up to

1.4 nm [62], which suggests that the cut-o�s used in this study are insu�cient to

produce correct long-range correlations.

The smaller density of non-rigid ethanol model in all concentrations can be understood

by the intramolecular vibrations, which make the molecules on the average a bit larger

and so the density is smaller. The rigid model, which vibrates less, can be packed

more densely. However, overall the di�erence between the models is small.

The radial distribution functions show that there is a clear �rst and second hydra-

tion shell in the mixtures. Especially the �rst hydration shell (the �rst peak) is very

clear. The sharpening of the peak when ethanol concentration grows indicates that

the mixture is more structured when more ethanol is involved. Also, when comparing

di�erent oxygen to oxygen radial distribution functions, the peak is higher and nar-

rower for the water to water distribution than for the water to ethanol or ethanol to

ethanol distributions, which indicates that water has more ordered structure in its

nearest neighbouring area.
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Although the coordination number changes linearly as the ethanol concentration

grows, the behaviour of the number of hydrogen bonds is not linear. The positive

excess bonding with water and negative excess bonding with ethanol indicates that

water is a better solvent than ethanol, since bonds are preferably formed with water.

The same conclusion can be made from that ethanol gains totally almost 30% of more

bonds when water concentration increases, but water only loses totally about 15%

of bonds when water concentration decreases. The di�erences between the ethanol

models in the total number of hydrogen bonds indicate that when rigid ethanol is

mixed with water, water bonds more with water, and with non-rigid ethanol water

bonds less with water. However the di�erence in bonding is overall very small.

Some di�erences between the non-rigid and rigid ethanol models can be found, but

they are rather small. This indicates that the �exibility in bond lengths a�ects the

simulation, but these studied quantities gave only a small hint of the di�erence and

more accurate methods are needed to fully investigate the deviation between the

ethanol models.

However, since the di�erences between the models are so small, it can be said that

in the MD simulations the non-rigid and rigid ethanol model give the same results

in these studied quantities. If thought time-wise, it takes twice the time to run the

simulations for non-rigid ethanol, since the time step is smaller than for the rigid

model. That way, if fast simulations are needed, it is always reasonable to use rigid

ethanol, since the time step can be longer.
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Figure 17: Sample Compton pro�le for pure water. The pro�le is an average obtained

from 80 snapshots.

5 Results for Compton pro�les

5.1 Compton pro�les for pure liquids

To start the study of the Compton pro�les, it is useful to �rst discuss the estimation

of the errors in the results. The �rst step is to study pure liquids. The pure liquid

Compton pro�les are then later on used in the calculation of di�erence Compton

pro�les.

Fig. 17 shows an example of a computationally obtained Compton pro�le. It is an

average of 80 Compton pro�les for pure water. All the Compton pro�les (including

the mixture pro�les) have a similar shape.

The errors in the Compton pro�les of pure liquids are estimated by the bootstrap

method (Section 3.3). For pure water there were 80 clusters, from which 1000 boot-

strap pro�les and the average pro�le were calculated. In Fig. 18 are plotted the

di�erence between the bootstrap pro�les and the average pro�le. This kind of plot is

similar also for pure ethanol and to the mixtures.

From the bootstrap pro�les a standard deviation error pro�le can be calculated. For

the error estimate, this standard deviation in the bootstrap pro�le is used. As a
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Figure 18: Example of 1000 bootstrap pro�les compared to average pro�le from 80

clusters of pure water. The black dashed line is the standard error deviation pro�le.

Table 2: Statistical errors for the Compton pro�les of pure liquids calculated with

the bootstrap method. The substance/model, the amount of clusters, the number of

bootstraps, and the error at J (0) is given.
Amount of

clusters

Amount of

bootstraps

Error (%-units) at J (0)

Water 80 1000 0.0108

Rigid ethanol 100 1000 0.0059

Non-rigid ethanol 100 1000 0.0141

conservative estimate, the biggest di�erence to zero (typically occurring at q = 0 a.u.)

in standard deviation pro�le is then taken to be the error in the Compton pro�le. For

pure water the error in the Compton pro�le is 0.0108%-units. This is also listed in

Table 2.

The errors for pure ethanol are calculated similarly for both the non-rigid and rigid

models. There were 100 clusters for both non-rigid and rigid models, from which 1000

bootstrap pro�les and the average pro�le were calculated. For rigid ethanol the error

is 0.0059%-units and for non-rigid the error is 0.0141%-units. These results are also

listed in Table 2.

A notable thing in the Compton pro�les for pure liquids is that the error estimate

is over two times larger for the non-rigid than for the rigid ethanol. The error in
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the water Compton pro�le is between the di�erent ethanol models, but there are also

less clusters for water, which a�ects the error estimate calculated with the bootstrap

method.

5.2 Di�erence Compton pro�les

In this section the di�erence Compton pro�les for water-ethanol mixtures are studied.

Subsequently the errors are estimated.

The di�erence Compton pro�les were studied for mixtures with 4.4%, 17% and 95%

rigid ethanol concentration (in Fig. 19) and for mixtures with 4.4%, 18% and 93% of

non-rigid ethanol concentration (in Fig. 20). For all the calculations 100 clusters have

been used.

For rigid ethanol all the di�erence Compton pro�les look rather similar. They all begin

from the negative side and then go to the positive side before going to zero. Although

there are di�erences between the curves, no consistent trend can be observed. For the

17% concentration the deviations from zero are largest, and for the 95% concentration

smallest.

The case is very di�erent for non-rigid ethanol. In this case the di�erence Compton

pro�les are dissimilar. For the 4.4% concentration the di�erence Compton pro�le

begins from the negative side and then goes to positive side and back to negative side

before going to zero with some �uctuation. At the 18% concentration the di�erence

Compton pro�le has similar shape as the 4.4% concentration, but it begins from

the positive side, and there is still a peak at the positive side. Both of the lower

concentration cases are overall very close to zero (the deviation from zero is less then

0.01%-units). The 93% concentration is completely di�erent shape-wise. It begins

from the positive side and then goes to the negative side before going to zero. There

are no peaks at the positive side.

In order to emphasize the di�erences between the ethanol models, Fig. 21 shows

the di�erence Compton pro�les for both models with the same concentration in the

same �gure. The non-rigid and rigid models give rather similar di�erence Compton

pro�les when the concentration is small, but with larger concentrations the di�erence

Compton pro�les are quite distinct. For the 17-18% concentration the non-rigid model
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Figure 19: Di�erence Compton pro�les of mixtures with 4.4%, 17% and 95% of rigid

(R) ethanol.

Figure 20: Di�erence Compton pro�les of mixtures with 4.4%, 18% and 93% of non-

rigid (N) ethanol.
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Figure 21: Di�erence Compton pro�les for mixtures with a) 4.4% rigid and non-rigid

ethanol, b) 17% of rigid and 18% of non-rigid ethanol and c) 95% of rigid and 93% of

non-rigid ethanol. Solid lines for rigid (R) model and dashed lines for non-rigid (N)

models.
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Table 3: Error estimates for the di�erence Compton pro�les calculated with the boot-

strap method. Model and concentration of ethanol, Compton pro�le error, average

ethanol concentration in the bootstrap pro�les and the error in the concentration of

the bootstrap pro�les are given.
Error

(%-units)

at J (0)

Bootstrap

average

concentration

Bootstrap

concentration

error

Rigid 4.4% 0.0094 4.09 0.29

Rigid 17% 0.0095 17.32 0.67

Rigid 95% 0.0071 95.21 0.489

Non-rigid 4.4% 0.0101 4.72 0.34

Non-rigid 18% 0.0109 18.03 0.74

Non-rigid 93% 0.0145 93.07 0.49

gives a pro�le very close to zero, but the rigid model has the largest deviations from

zero. Also the rigid model begins from the negative side, but the non-rigid from the

positive side. Otherwise the shapes are similar with the peaks in the positive side.

The biggest di�erence is in the 93-95% concentration. There the non-rigid pro�le is

of completely di�erent shape and the pro�les begin from the di�erent sides of zero,

the rigid model from the negative and the non-rigid from the positive.

The error estimation is a bit more challenging for di�erence Compton pro�les, since

in the bootstrap method the concentration for the di�erent bootstrap pro�les varies.

The error estimates are made for all the concentrations and for the both ethanol

models. In all calculations there has been 100 clusters and 1000 bootstraps. The

bootstrap pro�le di�erences to the average pro�le di�erence look similar to the pure

water case (Fig. 18).

The Compton pro�le error estimation is made the same way as for the pure liquids

using the bootstrap method. In Table 3 are listed the Compton pro�le errors for the

di�erent ethanol concentrations and models. In this error estimate it is assumed that

there is no error in the pure liquid pro�les. Notably, the concentrations obtained

by the bootstrap method are very close to the actual concentration. There is still

some additional error occurring from the fact that the pro�les are weighted according

to the concentration. For the rigid model, the Compton pro�le error decreases as

the concentration increases, but for the non-rigid model the situation is completely

opposite. The di�erence between the models increases when there is more ethanol in

the mixture.
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5.3 Discussion

When studying the di�erence Compton pro�les for binary liquids, there are three

conceivable scenarios. Firstly, if the liquids do not mix or the mixing structure is

similar to the bulk structure of pure liquids, the di�erence Compton pro�les should

be zero. Secondly, if the mixing is similar in all the concentrations, the di�erence

Compton pro�les should be the same. Finally, if the mixing is not similar in di�erent

concentrations, the di�erence Compton pro�les should be distinguishable.

It is obvious that in this study two di�erent scenarios are seen depending on the

ethanol model. For rigid model the di�erence Compton pro�les are very similar. The

shape of the pro�les is uniform, although the magnitude varies a little. This would

mean that for the rigid ethanol the water-ethanol mixing is similar in all concentra-

tions. The same does not apply to the non-rigid ethanol. There is a di�erence between

the low and the high ethanol concentration in the di�erence Compton pro�les. Both

the shape and the magnitude of the di�erence Compton pro�le changes when there is

more ethanol in the mixture. This would indicate that for the non-rigid ethanol the

mixing changes when the ethanol concentration grows. For high ethanol concentration

the structure created in the mixing process is di�erent from the lower ethanol con-

centrations. Also for the non-rigid ethanol the low-concentration di�erence Compton

pro�les are very close to zero, which would indicate that the hydrogen bonded net-

work of molecules is similar to the bulk liquids i.e. adding small amount of (non-rigid)

ethanol to the mixture does not a�ect the structure of water.

The systematic error in the Compton pro�les comes from several sources. Firstly,

the used molecular con�gurations are made without using quantum mechanics. This

can lead to the molecular structures being incorrect. Secondly, there are several

approximations in the calculation of the Compton pro�les. Also, the used cluster

size, which is far from bulk material surely a�ects the result.

The statistical error occurs from the limited number of chosen clusters. From the

Compton pro�les of pure liquids the errors for the pro�les are estimated to be of

the order of 0.01%-units. However, these are ignored in the error estimation of the

di�erence Compton pro�les, for which the errors are estimated to be of the same

order. The smallest di�erence Compton pro�le deviates from zero about 0.01%-units

and the biggest deviation is only 0.025%-units.

Due to these uncertainties, which are of the order of typical experimental inaccuracy,

the results of this study can be considered preliminary. To con�rm these results more
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statistics is needed. Thus for further and more accurate studies more clusters must

be calculated.

The di�erence in statistical �uctuation in the Compton pro�les when using the rigid

and non-rigid models for ethanol is remarkable. The error is almost 1,5 times larger

for the non-rigid ethanol. Compton scattering is highly dependent on the bond length

[63]. Since the non-rigid ethanol, without restrictions in the bond length, has a greater

amount of �uctuations in the intramolecular bond lengths, the atomic structures vary

more for the non-rigid ethanol than for the rigid ethanol. This causes more changes

in the Compton pro�les and thus gives larger statistical �uctuation.

Also the di�erence in the Compton pro�les of the mixtures with higher ethanol con-

centration for the non-rigid ethanol can be explained by the �uctuations in the bond

lengths. This does not show at low ethanol concentrations, where the non-rigid and

rigid cases are similar, because there water is the dominant substance in the mixture,

but when the ethanol concentration grows, and ethanol becomes dominant, the bond

length �uctuations start to a�ect the Compton pro�le signi�cantly.

However, there are not many data points for the mixture Compton pro�les as only

three concentrations are studied. To be certain of the higher ethanol concentration

behaviour, more than one high ethanol concentration mixture should be studied. Also

the intermediate concentrations are worth studying, because that would bring more

information on the mixing behaviour.
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6 Conclusions

Combining simulation results from classical molecular dynamics with x-ray Compton

scattering analysis new information will be received on structural properties of liquids.

Although the MD method used in this study does not include quantum mechanical

phenomena explicitly, by using Compton scattering as a further analysis tool, new

insight into the structures created by the molecular dynamics method can be found.

From this study some important �ndings can be extracted for both the structure of

water-ethanol mixtures and for the molecular dynamics method itself.

Firstly, from the MD simulations, the mixture densities were studied. The results

slightly underestimated the experimental values. Then the microscopic, atomic-scale

properties of the mixtures were studied. The radial distribution functions suggest that

there would be more ordered structure when ethanol concentration grows, and water

has more ordered structure in mixtures than ethanol. The study of hydrogen bonding

shows that there is excess bonding with water and de�cient bonding with ethanol in

the mixture. Both ethanol and water form bonds preferably with water, which shows

that water is a better solvent than ethanol, which is expected, since water is known for

its solvation properties. These quantities showed only little or no di�erence between

the non-rigid and the rigid ethanol model.

When Compton scattering was used to focus on the atomic-scale and electronic

properties, there was a notable di�erence between the models. This indicates that

the choice of the force �eld model is critical in microscopic structure formation in

molecular dynamics. Even though some of the MD results could be considered similar

for both models, others hinted that there is some di�erences between the models. This

was then clearly visible with the Compton calculations, since the Compton pro�les

depend not only on the local intermolecular geometries but also on the intramolecular

bond lengths [63]. Firstly, there was a clear di�erence between the ethanol models in

di�erence Compton pro�les for high ethanol concentration. Secondly, the size of the

errors in pure ethanol and at high ethanol concentration showed di�erences between

the models.

It also seems that the rigid ethanol mixes similarly to water in all concentrations, but

non-rigid does not. The models mix similarly in low ethanol concentrations, where

water is the dominant substance, but when there is more ethanol in the mixture,

non-rigid ethanol mixes di�erently than rigid and the low concentration cases. This

46



would mean that something is di�erent in the mixing process for non-rigid ethanol

with high ethanol concentrations.

However these results are preliminary, since the statistics are not su�cient enough,

which is shown in the error scales for the Compton pro�les. This means that more

than 100 clusters are needed for binary liquid mixtures to get good enough statistics.

For non-rigid ethanol the Compton pro�le errors were notably larger than for rigid

ethanol. This means that for non-rigid ethanol even more clusters are needed to get

su�cient statistics, and the time needed for calculations grows large. With one MD

simulation run taking several days on desktop computer, and every Compton pro�le

calculation for one cluster taking on average three hours, the use of non-rigid model

will be time-consuming. With the rigid model the MD simulation is faster and less

clusters are needed, so the whole process is much faster. So if only low concentration

calculations are needed, using rigid ethanol model is more sensible.

After getting more statistics to the present results, they can be compared to experi-

mental data. Then valuable information about the models and the mixing process is

obtainable, which will show whether the MD simulations can produce correct micro-

scopic structures. If some of the MD structure data will �t the experimental data, it

is also possible to see which model produces the correct structure. This will be a very

interesting task in the future.

With adding more concentrations in the Compton pro�le calculations, more informa-

tion about the mixing behaviour can be obtained. It will be possible to see at which

concentration the mixture Compton pro�les of non-rigid ethanol changes and whether

the change is gradual or sudden. It will be interesting to see if the rigid model mixes

in fact similarly for all the concentrations, including the intermediate ones. This is

another important subject to be studied in the future.

All in all, with furthering this study a bit and doing the experimental work, it is pos-

sible to obtain valuable information about binary liquids. It is possible to see whether

classical molecular dynamics is enough to produce correct microscopic structures or

if there is something else needed for accuracy. If the method gives proper results, it

can be then applied to other systems. Also the amount of rigidity needed in the force

�elds for the MD simulation can be solved.
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