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Abstract

Species of the genera Rhodococcus, Gordonia and Mycobacterium are known as 
degraders of recalcitrant pollutants. These bacteria are good survivors in harsh 
environments. Due to such properties these organisms are able to occupy a wide range of 
environmental niches. The members of these taxa have been suggested as tools for 
biotechnical applications such as bioremediation and biosynthesis. At the same time 
several of the species are known as opportunistic human pathogens. Therefore, the 
detailed characterization of any isolate that has potential for biotechnological applications 
is very important.

This thesis deals with several corynebacterial strains originating from different 
polluted environments: soil, water-damaged indoor walls, and drinking water distribution 
systems. A polyphasic taxonomic approach was applied for characterization of the 
isolates. We found that the strains degrading monoaromatic compounds belonged to 
Rhodococcus opacus, a species that has not been associated with any health problem. The 
taxonomic position of strain B293, used for many years in degradation research under 
different names, was clarified. We assigned it to the species Gordonia polyisoprenivorans.
This species is classified under European Biohazard grouping 1, meaning that it is not 
considered a health hazard for humans. However, there are reports of catheter-associated 
bacteraemia caused by G. polyisoprenivorans. Our results suggested that the ability of the 
organism to grow on phthalate esters, used as softeners in medical plastics, may be 
associated with the colonization of catheters and other devices. In this thesis 
Mycobacterium lentiflavum, a new emerging opportunistic human pathogen, was isolated 
from biofilms growing in public drinking water distribution systems. Our report on 
isolation of M. lentiflavum from water supplies is the second report on this species from 
drinking water systems, which may thus constitute a reservoir of M. lentiflavum. 
Automated riboprinting was evaluated for its applicability in rapidly identifying 
environmental mycobacteria. The technique was found useful in the characterization of 
several species of rapidly and slowly growing environmental mycobacteria. 

The second aspect of this thesis refers to characterization of the degradation and 
tolerance power of several R. opacus, M. murale and G. polyisoprenivorans strains. R.
opacus GM-14 utilizes a wide range of aromatic substrates, including benzene, 15 
different halobenzenes, 18 phenols and 7 benzoates. This study revealed the high tolerance 
of R. opacus strains toward toxic hydrophobic compounds. R. opacus GM-14 grew in 
mineral medium to which benzene or monochlorobenzene was added in amounts of 13 or 
3 g l-1, respectively. R. opacus GM-29 utilized toluene and benzene for growth. Strain 
GM-29 grew in mineral medium with 7 g l-1 of liquid toluene or benzene as the sole 
carbon source, corresponding to aqueous concentrations of 470 and 650 mg l-1,
respectively.

Most organic solvents, such as toluene and benzene, due to their high level of 
hydrophobicity, pass through the bacterial membrane, causing its disintegration. In this 
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thesis the mechanisms of adaptation of rhodococci to toxic hydrophobic compounds were 
investigated. The rhodococcal strains increased the level of saturation of their cellular fatty 
acids in response to challenge with phenol, chlorophenol, benzene, chlorobenzene or 
toluene. The results indicated that increase in the saturation level of cellular fatty acids, 
particularly that in tuberculostearic acid, is part of the adaptation mechanism of strains 
GM-14 and GM-29 to the presence of toxic hydrophobic compounds. 
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1. Introduction 

1.1 Classification of corynebacteria 

The current hierarchic classification for Actinobacteria was proposed by Stackebrandt 
et al. (1997) based on nucleotide sequences of the 16S rRNA genes. According to this 
classification phylogenetically related genera are clustered into families, suborders, orders 
and subclasses, and finally grouped together into the new phylum Actinobacteria.
Currently the phylum Actinobacteria comprises 6 orders, 39 families and more than 130 
genera (Garrity and Holt, 2001; http://www.bacterio.cict.fr). 

The order Actinomycetales is made up of Gram-positive organisms with a high ( > 
55%) mole% G+C content of their DNA. The taxon includes genera with a wide range of 
morphology: some organisms form highly differentiated branched arial mycelia 
(Streptomyces), others have hyphal forms that fragment (e.g. Nocardia, Rhodococcus),
whereas several have coccoid or rod-coccoid shapes (e.g. Gordonia, Mycobacterium).

Actinomycetes characterized by the presence of mycolic acids are classified in the 
suborder Corynebacterineae, which comprises eight families: Corynebacteriaceae,
Dietziaceae, Gordoniaceae, Mycobacteriaceae, Nocardiaceae, Tsukamurellaceae,
Williamsiaceae and `Segniliparaceae´ that include the genera Corynebacterium, Dietzia,
Gordonia, Segniliparus, Skermania, Mycobacterium, Nocardia, Rhodococcus,
Tsukamurella and Williamsia (Stackebrandt et al., 1997; Butler et al., 2005). Members of 
these taxa form a separate lineage in the 16S rRNA gene tree of the Corynebacterineae.

1.1.1 The genus Rhodococcus

The genus name Rhodococcus was first used by Zopf in 1891 to describe two species 
of red-pigmented bacteria and was redefined in 1977 to contain the `rhodococcus 
complex´ which consisted of various species that did not belong to the genera Nocardia,
Mycobacterium or Corynebacterium (Bell et al., 1998). Currently, the genus Rhodococcus
comprises more than 30 recognized species (http://www.bacterio.cict.fr/qr/rhodococcus. 
html).

In spite of the significant progress shown in recent years in determining the genome 
characteristics of members of the genus Rhodococcus (Gurtler et al., 2004), the current 
taxonomic status of Rhodococcus remains unclear. Within the genus Rhodococcus there 
are at least six distinct groups (Gurtler et al., 2004). Some authors suggested that the 
species R. equi should be recognized as a separate genus (McMinn et al., 2000; Gurtler et 
al., 2004).
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1.1.2 The genus Gordonia

The genus was initially known as Gordona. The present name, Gordonia, was 
proposed by Stackebrandt et al. (1997). The genus `Gordona´ was proposed in 1971 by 
Tsukamura for coryneform bacteria isolated from the sputa of patients with pulmonary 
disease or from soil (Tsukamura, 1971). Goodfellow and Alderson (1977), while 
rearranging the genus Rhodococcus, reclassified three original species (G. bronchialis, G.
rubra and G. terrae) as Rhodococcus. However, based on results of chemotaxonomic 
analysis and 16S rRNA gene similarities, the genus Gordona was revived including the 
three species of Rhodococcus originally assigned Gordona (G. bronchialis, G.
rubripertincta (formerly G. rubra) and G. terrae) and G. sputi (Stackebrandt et al., 1988). 

Within the last 5 years seven new species were described (Kim et al., 2000, Brandao et
al., 2001; Linos et al., 2002; Kim et al., 2003; Maldonado et al., 2003; Xue et al., 2003; 
Iida et al., 2005; Kageyama et al. 2006). Currently, the genus Gordonia contains 22 valid 
species (http://www.bacterio.cict.fr/g/gordonia.html). 

1.1.3 The genus Mycobacterium

The genus Mycobacterium comprises more than 100 valid species (http://www. 
bacterio.cict.fr/m/mycobacterium.html). At least 30 novel species have been described 
within the last 5 years.

Several classifications have been used for mycobacteria in the last 50 years. The 
mycobacteria may be divided into four groups based on pigmentation and growth rate 
according to the classification proposed by Runyon (1959). The distinction between rapid 
and slow growth is based on the ability of strains to develop clearly visible colonies in less 
or more than 7 days. Group 1 consists of the photochromogenic slow growers whose 
pigmentation is light-dependent. Group 2 are the scotochromogenic slow growers whose 
pigmentation is light-independent. Group 3 consists of the nonchromogenic 
(nonpigmented) slow growers. Group 4 consists of the rapidly growing mycobacteria. 

The division of mycobacteria into groups of slowly growing and rapidly growing 
organisms is supported by sequence analysis of 16S and 23S rRNA genes (Böddinghaus et
al., 1990; Stahl and Urbance, 1990). Some authors suggested that the differences in 16S 
rRNA genes and high in vivo resistance of rapidly growing mycobacteria to 
antimycobacterial drugs (Primm et al., 2004) may justify placing them in a different genus 
(Brown-Elliott and Wallace, 2002). 

1.2 The polyphasic approach in taxonomy

The modern polyphasic approach in bacterial taxonomy was first introduced 35 years 
ago (Colwell, 1970). The aim of polyphasic taxonomy is the integration of phenotypic and 
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genotypic data on microorganisms to generate well-defined taxonomic groups. Fig. 1.1 
presents the main methods used for polyphasic characterization of microorganisms. 

Even though the polyphasic approach in bacterial taxonomy is well established 
(Vandamme et al., 1996), there is still no generally accepted model of polyphasic species 
definition. The Ad Hoc Committee for the Re-Evaluation of the Species Definition in 
Bacteriology  recommends  that a  70%  DNA-DNA  reassociation value is a threshold for 
defining  a  bacterial species  (Stackebrandt et al., 2002).  The analysis of  16S rRNA gene 
sequences is considered as a standard in bacterial classification (Stackebrandt et al., 2002). 

Figure 1.1 Taxonomic resolution of some currently used techniques (reproduced from Vandamme 
et al. (1996) with kind permission of the American Society for Microbiology) 
AFLP - amplified fragment length polymorphism; API -Apareils et Procedes d'Identification; AP-PCR - 
arbitrarily primed polymerase chain reaction; ARDRA - amplified ribosomal DNA restriction analysis; 
DAF-DNA amplification fingerprinting; FAME - fatty acid methyl ester; LFRFA - low-frequency restriction 
fragment analysis; PFGE - pulsed field gel electrophoresis; RAPD - random amplification of polymorphic 
DNA; Rep-PCR - repetitive extragenic palindromic polymerase chain reaction; RFLP - restriction fragment 
length polymorphism; tDNA-PCR - tDNA intergenic spacer PCR. 
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But the 16S rRNA gene sequence should not be used as the only method in species 
delineation (Stackebrandt and Goebel, 1994). The 16S rRNA gene sequence has been 
determined for a large number of strains. More than 300,000 16S rRNA gene sequences 
are available in the Nucleotide Sequence Database of European Molecular Biology 
Laboratory (EMBL) (http://www.ebi.ac.uk/embl/) and in the Ribosomal Database Project 
(RDP) database (Kulikova et al., 2004). Sequencing of total genomic DNA is an important 
source for discovering novel molecular characteristics that are useful for biochemical, 
taxonomic and phylogenetic purposes. However, it is not yet done routinely. During the 
last 10 years with the aid of the polyphasic approach, the classification of the 
Corynebacterineae has been changed markedly. The combination of chemotaxonomic and 
molecular techniques allowed scientists to establish several new genera and clarified the 
taxonomic positions of some previously described genera (Rainey et al., 1995; Kämpfer et
al. 1999; Arenskötter, 2004; Gurtler et al., 2004; Butler at al., 2005). 

1.2.1 Chemotaxonomic markers of bacteria in the suborder 
Corynebacterineae

Bacteria of the suborder Corynebacterineae have cell wall chemotype IV, meaning 
that the only diamino acid of the peptidoglycan is meso-diaminopimelic acid, and glucose 
and arabinose are the major cell wall sugars (Lechevalier and Lechevalier, 1970). The 
fatty acid composition of most corynebacteria is characterized by the presence of 
tuberculostearic acid (TBSA). The only exception is the genus Corynebacterium, in which 
this acid was reported for some species only. Table 1.1 summarizes the main 
chemotaxonomic characteristics of the genera of the suborder Corynebacterineae.

Table 1.1 Differential chemotaxonomic characteristics of the mycolic acid-containing genera. 

Genus Major 

menaquinone

Presence of

TBSA

Mycolate size 

(number of 

carbons)

G+C content 

(mol%)

Gordonia MK-9(H2) + 48-66 63-69 

Skermania MK-8(H4 ω cyc) + 58-64 68 

Corynebacterium MK-8(H2) -a 22-36 51-67 

Segniliparus  +  68-72 

Dietzia MK-8(H2) + 34-38 73 

Mycobacterium MK-9(H2) + 60-90 70-72 

Nocardia MK-8(H4 ω cyc) + 44-60 64-72 

Rhodococcus MK-8(H2) + 34-52 63-73 

Tsukamurella MK-9 + 64-78 67-68 
a TBSA presents in C. ammoniagenes, C. bovis, C. minutissimum, C. urealyticum and C.
variabilis.
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All species of the suborder Corynebacterineae (with the exception of Turicella otitidis 
and Corynebacterium amycolatum) are characterized by the presence of mycolic acids in 
their cell envelopes (Funke et al., 1994; Sutcliffe, 1998). The mycolic acids are long-
chain, beta-hydroxy fatty acids with an aliphatic side chain at the alpha position. They 
differ in the number of carbon atoms, ranging from 22 (in Corynebacterium) to 90 (in 
Mycobacterium) and in the presence of different functional groups. Structures of the 
mycobacterial mycolic acids have been studied in more detail than those of the other 
corynebacterial species. The mycolic acid pattern of the mycobacterial cell wall varies 
with the species; however, some mycolic acid patterns are shared by more than one 
mycobacterial species (Tortoli, 2003). Analysis of cleavage products of the mycolic acids 
together with whole cell fatty acids was shown to be useful in the identification of slowly 
growing environmental mycobacteria (Torkko et al., 2003).

Limited data are available on the structural diversity of mycolic acids in species other 
than those of Mycobacterium (Butler et al., 2005). In most cases only information on the 
number of carbon atoms in mycolic acids as determined by thin-layer chromatography or 
gas chromatography (GC) is available. Polyamines as chemotaxonomic markers of the 
corynebacteria were introduced in 1997 (Altenburger et al., 1997). However, the analysis 
of polyamines is not usually used in characterization and differentiation of taxa within the 
suborder Corynebacterineae.

1.2.2 Molecular targets used in taxonomy of bacteria in the suborder 
Corynebacterineae

The 16S rRNA gene is the most widely accepted gene used for bacterial taxonomic 
studies. Five to 15-base differences in the 16S rRNA gene was proposed for some 
microorganisms to indicate distinct taxa (Fox et al., 1992). Other authors proposed that 
99% and higher similarity be used as a threshold in defining a species of Gram-positive 
rods and some coryneform bacteria (Bosshard et al., 2003). However, this cannot be 
applied for the genus Mycobacterium. The 16S rRNA gene sequences of some 
mycobacterial species differ in just a few nucleotides or are even identical (Tortoli, 2003; 
Vaerewijck et al., 2005). In contrast, some species present genetic heterogeneity (Tortoli, 
2003).

Sequence analysis of the 65-kDa heat-shock protein (HSP) gene (hsp65) was shown to 
be useful in identifying mycobacteria (Ringuet et al., 1999; Kim et al., 2005). Restriction 
enzyme pattern analysis of a 441-bp sequence in hsp65 has been used more often than 
analysis of its sequence since the former was introduced in 1993 (Telenti et al., 1993). 
However, research by Adekambi and Drancourt (2004) done on a set of 19 species of fast-
growing mycobacteria indicated that neither the 16S rRNA gene sequence nor the hsp65
gene and the sodA gene sequences discriminated between some species.
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In 1995 Yamamoto and Harayama suggested that the gyrB gene (encoding the β-
subunit of DNA gyrase) can be used as a phylogenetic marker in bacterial classification 
(Yamamoto and Harayama, 1995). Analysis of the gyrB sequence was applied for 
identification of 15 species of slowly growing mycobacteria (Kasai et al., 2000). Analysis 
of gyrB was recently reported to be useful for the taxonomy of Gordonia, providing a 
better discrimination of species within the genus Gordonia than the 16S rRNA gene (Shen 
et al., 2006). 

Recently, the entire genomes of at least 12 different corynebacteria were sequenced: 
six strains of Mycobacterium, five of Corynebacterium and one strain of Nocardia
farcinica. A Rhodocccus equi partial sequence was also released (Rahmana et al., 2003; 
http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi).

1.3 Cell envelope structure of the bacteria of the suborder 
Corynebacterineae

The structure of the mycobacterial cell wall has been studied intensively during the last 
20 years. Several models for the cell envelope organization have been proposed since the 
first model by Minnikin (1991). The general model for Rhodococcus cell envelope shown 
in Fig. 1.2 can also be applied to other members of the suborder Corynebacterineae
(Sutcliffe, 1998).

The plasma membrane is the innermost layer surrounded by the cell wall envelope. 
The cell envelope consists of arabinogalactans and mycolic acids, which are covalently 
assembled into a peptidoglycan-arabinogalactan-mycolic acid matrix. The mycolic acids 
are attached to the arabinogalactan and form together with trehalose mycolates a lipid 
layer outside of the peptidoglycan-arabinogalactan cell wall matrix (Sutcliffe, 1998). The 
plasma membrane of rhodococci and mycobacteria is mainly composed of polar 
phospholipids (Goren, 1972; Sutcliffe, 1998). The main fatty acids in phospholipids are 
straight-chain saturated, monounsaturated and 10-methyl-branched (Goren, 1972; 
Sutcliffe, 1998). 

Three different layers build the cell wall envelope. The first inside layer, common to 
all Gram-positive bacteria, is the thick peptidoglycan layer located next to the plasma 
membrane. The second layer is mostly represented by lipidated macroamphiphiles, the 
lipoglycans. Among them the most characterized are the lipoarabinomannans (LAMs) of 
mycobacteria (Nigou et al., 2003). LAM-like structures are present in the cell envelopes of 
Dietzia maris, Gordonia rubropertincta, G. bronchialis, G. terrae, Rhodococcus rodnii, R.
equi, R. ruber, and Tsukamurella paurometabolum (Flaherty and Sutcliffe 1999; Sutcliffe, 
2000; Garton et al., 2002; Gibson et al., 2003, 2004; Garton and Sutcliffe, 2006). The 
LAMs have three domains in their structure: a mannosyl-phophatidyl-myo-inositol anchor, 
a polysaccharide backbone and cap structures. The structure of the LAM varies between 
genera and species, mostly due to differences in the capping motifs (Nigou et al., 2003). 
There are also variations in the number, positions and nature of fatty acids in the anchor.
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Figure 1.2 A schematic representation of the proposed model for the cell wall organization of 
Rhodococcus sp. (reproduced from Sutcliffe (1998) with kind permission of Springer Science and 
Business Media). 

The most abundant fatty acids in the LAM and LAM-like glycolipids are palmitic 
(hexadecanoic) and TBSA (10-methyl octadecanoic), although other acids such as 
palmitoleic (hexadecenoic), stearic (octadecanoic), oleic (octadecenoic), heneicosanoic, 
and margaric (heptadecanoic) are present in minor amounts (Nigou et al., 2003; Garton 
and Sutcliffe, 2006). The position of the LAM in the cell envelope is still a matter for 
discussion. There is evidence that the LAM is attached by a phosphodiester link to the 
peptidoglycan or plasma membrane and goes through the cell envelope towards the outer 
lipid layer (Sutcliffe, 1998).

Mycolic acids are characteristic components of the third outer layer of the cell 
envelope. In mycobacteria mycolic acids have very long chains (C60-90) and may be 
oxygenated or hydroxylated, whereas in nocardia, corynebacteria, rhodococci and 
gordonia the alkyl chain is shorter and consists of a mixture of saturated and unsaturated 
fatty acids. Mycolic acids are linked to arabinogalactan to form arabinogalactan mycolate 
or cell wall-bound mycolate. The esterification of one or two mycolic acids with a 
molecule of trehalose gives trehalose monomycolate and trehalose dimycolate, 
respectively, which are part of the extractable mycolate. Thus, the inner lipid layer of the 
mycolate layer is composed mainly of arabinogalactan mycolate and minor amounts of 
extractable mycolate, whereas the outer layer consists of trehalose monomycolate and 
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trehalose dimycolate (Daffé and Draper, 1998; Sutcliffe, 1998). In addition to trehalose 
mycolates, a number of mycolic acid-containing glycolipids, sulpholipids, phenolic 
glycolipids and others are located in the outer layer of the cell envelope of mycobacteria 
and related organisms (Daffé and Draper, 1998; Sutcliffe, 1998).

1.4 Degradation power of corynebacteria 

The suborder Corynebacterineae harbours most of the xenobiotic degraders among the 
Gram-positive bacteria. Species of the genera Gordonia, Rhodococcus and 
Mycobacterium are well known for their metabolic versatility and capacity to degrade 
environmentally hazardous chemicals (Bell et al., 1998; Arenskötter et al., 2004; Larkin et
al., 2005). Examples of the classes and types of organic compounds that can be degraded 
by the members of these three genera are compiled in Table 1.2.

1.4.1 Degradation power of the genus Rhodococcus

Members of the genus Rhodococcus are often isolated from contaminated soils. Due to 
their metabolic versatility, the metabolic pathways of several isolates have been studied in 
detail. The mono- and dioxygenases were characterized biochemically and genetically in 
several members of the genus (Gurtler et al., 2004).

The halogenated aliphatic and aromatic hydrocarbons are toxic chemicals, and resistant 
to biological degradation. Although many organisms are able to degrade monochlorinated 
benzene, only a few Rhodococcus can utilize this substrate (Zaitsev et al., 1993; Rehfuss 
and Urban, 2005). Degradation of phthalate esters by Rhodococcus has been documented 
(Aleshchenkova et al., 1996; Nalli et al., 2002; Li et al., 2006). Some of the organisms were 
isolated from soil heavily contaminated with phthalates and terephthalates 
(Aleshchenkova et al., 1996). Rhodococci are known as degraders of alkanes. 
Psychrotolerant rhodococci were isolated from Arctic and Antarctic soils contaminated 
with oil (Yakimov et al., 1999; Bej et al., 2000; Aislabie et al., 2004; Ruberto et al., 2005; 
Saul et al., 2005). A number of Rhodococcus isolates degrade a wide range of resistant 
compounds. For instance, R. opacus SAO101 grows on phenol, benzene, 4-nitrophenol, 
biphenyl, naphthalene, dibenzofuran and dibenzo-p-dioxin (Kimura and Urushigawa, 
2001). R. opacus M213 degrades naphthalene, toluene, phenol and hydroxybenzoate (Uz 
et al., 2000).

The degradation versatility of rhodococci may be due to the presence of large linear 
plasmids that carry genes for the degradation of different compounds (van der Geize and 
Dijkhuizen, 2004; Konig et al., 2004). The presence of multiple pathways and genes also 
contributes to the catabolic versatility of the rhodococci (Larkin et al., 2005). An example 
of such organisms is Rhodococcus sp. RHA1, which uses multiple enzyme systems, 
including at least three ring-hydroxylating dioxygenases, to degrade biphenyl (Kitagawa et
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environmentally hazardous chemicals (Bell et al., 1998; Arenskötter et al., 2004; Larkin et
al., 2005). Examples of the classes and types of organic compounds that can be degraded 
by the members of these three genera are compiled in Table 1.2.

1.4.1 Degradation power of the genus Rhodococcus

Members of the genus Rhodococcus are often isolated from contaminated soils. Due to 
their metabolic versatility, the metabolic pathways of several isolates have been studied in 
detail. The mono- and dioxygenases were characterized biochemically and genetically in 
several members of the genus (Gurtler et al., 2004).

The halogenated aliphatic and aromatic hydrocarbons are toxic chemicals, and resistant 
to biological degradation. Although many organisms are able to degrade monochlorinated 
benzene, only a few Rhodococcus can utilize this substrate (Zaitsev et al., 1993; Rehfuss 
and Urban, 2005). Degradation of phthalate esters by Rhodococcus has been documented 
(Aleshchenkova et al., 1996; Nalli et al., 2002; Li et al., 2006). Some of the organisms were 
isolated from soil heavily contaminated with phthalates and terephthalates 
(Aleshchenkova et al., 1996). Rhodococci are known as degraders of alkanes. 
Psychrotolerant rhodococci were isolated from Arctic and Antarctic soils contaminated 
with oil (Yakimov et al., 1999; Bej et al., 2000; Aislabie et al., 2004; Ruberto et al., 2005; 
Saul et al., 2005). A number of Rhodococcus isolates degrade a wide range of resistant 
compounds. For instance, R. opacus SAO101 grows on phenol, benzene, 4-nitrophenol, 
biphenyl, naphthalene, dibenzofuran and dibenzo-p-dioxin (Kimura and Urushigawa, 
2001). R. opacus M213 degrades naphthalene, toluene, phenol and hydroxybenzoate (Uz 
et al., 2000).

The degradation versatility of rhodococci may be due to the presence of large linear 
plasmids that carry genes for the degradation of different compounds (van der Geize and 
Dijkhuizen, 2004; Konig et al., 2004). The presence of multiple pathways and genes also 
contributes to the catabolic versatility of the rhodococci (Larkin et al., 2005). An example 
of such organisms is Rhodococcus sp. RHA1, which uses multiple enzyme systems, 
including at least three ring-hydroxylating dioxygenases, to degrade biphenyl (Kitagawa et
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al., 2001) and has a duplicate set of genes encoding the degradation of phthalate 
(Patrauchan et al., 2005). 

1.4.2 Degradation power of the genus Gordonia

Much less has been reported on the degradation abilities of the genus Gordonia, possibly 
because the taxon was established much later than the genera Mycobacterium or 
Rhodococcus. In recent years several reports were published on Gordonia strains that 
degrade xenobiotic compounds. Gordonia isolates utilizes benzene, toluene, xylene, 
pyrene and phthalate diesters as the sole carbon and energy sources and transformed 
several sulphur-containing compounds (see references in Table 1.2). Two strains of
Gordonia were able to metabolize several phthalate diesters. Gordonia sp. MTCC 4818 
grows on dibutyl-, butyl benzyl- and  diphenyl phthalates, and strain P8219 grows on 
diethyl-, dinonyl-, dihexyl-  and di-2-ethylhexyl phthalates (Chatterjee and Dutta, 2003; 
Nishioka et al., 2006). Strain P8219 degraded di-ethylhexyl phthalate to phthalic acid; 
further metabolism was not investigated. The pathway of degradation of butyl benzyl 
phthalate by the strain MTCC 4818 was investigated in more detail. The initial reaction 
was hydroxylation that resulted in monoesters of phthalate, phthalic acid, benzyl alcohol 
and butanol; phthalic acid was a dead-end product. The strain used benzyl alcohol and 1-
butanol for growth. Benzyl alcohol was mineralized through benzaldehyde, benzoic acid 
and catechol, followed by ortho-cleavage of the aromatic ring (Chatterjee et al., 2005). 
Esterase activity involved in the hydrolysis of the ester bonds of butyl benzyl phthalate 
was induced in the presence of butyl benzyl phthalate and monobenzyl phthalate, 
indicating a specificity of the enzyme for this xenobiotic. So far there is only one report on 
a Gordonia-like strain growing on a PAH compound (pyrene) as the sole carbon and 
energy source in a mineral medium where the substrate as crystals was used (Mutnuri et
al., 2005).

One of the very interesting properties of Gordonia is its ability to degrade natural and 
synthetic isoprene rubber. Several strains of Gordonia disintegrated and mineralized 
natural rubber and latex gloves. Two novel species were described to accommodate the 
rubber-degrading isolates: G. polyisoprenivorans (Linos et al., 1999) and G. westfalica
(Linos et al., 2002). The biodegradation mechanism of the Gordonia strains involved 
reduction of the chain length of the polymer through oxidation at the cis-1,4 double bond. 
These strains were unable to grow or form clear zones on latex overlay plates, but showed 
adhesive growth on the rubber surface. This type of rubber degradation has been observed 
only in mycolic acid-containing organisms (Rose and Steinbuchel, 2005). 
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1.4.3 Degradation power of the genus Mycobacterium

A relatively small range of genera, considering the prevalence of PAHs in the 
environment, is capable of degrading PAHs: Pseudomonas, Alcaligenes, Mycobacterium,
Rhodococcus and Sphingomonas (Kanaly and Harayama, 2000, Mrozik et al., 2003). 
However, most of the isolates especially those capable of growth on four-ring PAHs, such 
as fluoranthene and pyrene, belong to the genus Mycobacterium (Mrozik et al., 2003).
Members of the genera Mycobacterium as well as Rhodococcus and Gordonia were 
reported to be a major part of the soil microflora able to mineralize PAH (Kastner et al.,
1994; Uyttebroek et al., 2006). Although a majority of the mycobacterial degraders of 
PAHs are isolated from polluted environments, there are only fragmented data available 
on the diversity of mycobacterial populations in heavily contaminated sites. For instance, 
contamination of soil with PAH decreased the diversity of mycobacteria (Cheung and 
Kinkle, 2001). Mycobacteria are present in higher numbers in PAH-contaminated soils 
containing low concentrations of mainly high-molecular-weight PAHs than in soils 
containing higher concentrations of PAHs (Leys et al., 2005). 

Several strains of the species M. chlorophenolicum (formerly R. chlorophenolicus)
degraded tri-, tetra- and pentachlorophenols (Apajalahti and Salkinoja-Salonen, 1987; 
Häggblom et al., 1988). Rapidly growing mycobacteria that degraded toluene were 
isolated from rock surface biomass in a freshwater stream contaminated with toluene (Tay 
et al., 1998). The authors suggested that these organisms were enriched by toluene, since 
any attempt to isolate mycobacteria from a pristine stream failed (Tay et al., 1998). In 
another study the same authors highlighted the important role of mycobacteria in the 
toluene-degrading community, mostly due to their persistence in the environment (Tay et
al., 2001). 

1.5 Pathogenic potentials of the corynebacteria 

Despite the fact that most members of the suborder Corynebacterineae are soil 
saprophytes, there has been in the last decade increasing evidence of infections caused by 
coryneform bacteria. This occurs most often in immunocompromised persons. 

1.5.1 Pathogenicity of environmental mycobacteria 

More than 40 out of about 130 validly described species of environmental 
mycobacteria are classified as Hazard Group 2 or 3 in the European Union classification 
and the hazard status of more than eight species is uncertain. There are a number of 
reviews that cover almost all species of environmental mycobacteria recognized as being 
of clinical importance (Falkinham III, 1996; Wallace et al., 1998; Phillips and von Reyn, 
2001; Brown-Elliott and Wallace Jr., 2002; Primm et al., 2004).
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containing low concentrations of mainly high-molecular-weight PAHs than in soils 
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A few species of mycobacteria are frequently isolated from human specimens but are 
not considered to be clinically significant. Examples of such are the M. terrae complex 
and M. gordonae. These species are found in many different environments, including
water (fresh, tap, bottled, swimming pools) and soil (Le Dantec et al. 2002; Primm et al.
2004; Vaerewijck et al., 2005), and thus may be incidental lung contaminants e.g. from 
dust or water aerosols. It is not always clear whether such bacteria are only contaminants 
or are active pathogens; e.g. mycobacteria are frequently isolated from the sputum of 
patients with cystic fibrosis. Some individuals tolerate the presence of the nontuberculous 
mycobacteria (NTM) without obvious disease, while others develop complications (Kilby 
et al. 1992, Saiman and Siegel 2004). Despite the information available on health-
associated environmental mycobacteria, their effects on humans are not fully understood. 
Mycobacteria that are not yet considered as pathogens and are believed to be contaminants 
in clinical specimens may prove to affect human health.

Recently, concern was raised over hypersensitivity pneumonitis caused by 
environmental mycobacteria in places where persons are exposed to water aerosols 
(Falkinham III, 2003). Mycobacterial cell envelope components such as LAM, trehalose 
mycolates, as well as some secondary metabolites and HSP can trigger inflammatory 
responses (Clark-Curtiss, 1998; Huttunen et al. 2000; Garton et al., 2002; Rha et al.
2002).

1.5.2 Pathogenicity in the genus Gordonia

Although bacteria of the genus Gordonia were only rarely isolated from clinical 
samples, there is increasing concern regarding Gordonia species that cause infections in 
immunocompromised persons or individuals with background diseases (Pham et al., 2003; 
Arenskötter et al., 2004; Bakker et al., 2004; Kempf, et al., 2004; Sng et al., 2004; 
Zardawi et al., 2004; Gil- Iida et al., 2005; Werno et al., 2005; Sande et al., 2006; Verma
et al., 2006). There is some evidence that blood infections related to Gordonia species are 
associated with intravenous catheters (Riegel et al., 1996; Lesens et al., 2000; Pham et al.,
2003; Kempf et al., 2004; Sng et al., 2004; Verma, P. et al., 2006). The number of clinical 
cases resulting from Gordonia infection may currently be underestimated due to the 
confusing taxonomic history of the genus and difficulties reported in correct identification 
of the members of this genus in clinical laboratories (Sng et al., 2004; Werno et al., 2005; 
Verma et al., 2006)

1.5.3 Pathogenicity in the genus Rhodococcus

Members of the genus Rhodococcus are mostly soil saprophytes; however, R. equi is 
known as a respiratory pathogen of foals. R. equi is becoming increasingly reported as an 
important pathogen for humans, mainly immunocompromised persons (Scott et al., 1995). 
Recently, R. equi was found to be a source of infections in immunocompetent individuals 
(Kedlaya et al., 2001). There is also a report of an eye infection by R. globerulus
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associated with surgery (Cuello et al., 2002). The problem in assessing the importance of 
Rhodococcus as hazardous organisms is similar to that in Gordonia and mostly relates to 
its taxonomy.

1.6 Organic solvent toxicity toward microorganisms 

1.6.1 Effects on membrane functioning

The toxic effects of aromatic and aliphatic hydrocarbons, phenols and alcohols due to 
interaction of these compounds with the membrane and membrane constituents have been 
studied for many years. Small hydrophobic molecules are highly toxic for microorganisms 
due to their partition into the cytoplasmic membrane (Sikkema et al., 1994, 1995). They 
interrupt the protein-lipid and lipid-lipid connections in the membrane and, as a result, 
cause functional disturbances and increase membrane fluidity and passive diffusion of the 
hydrophobic compounds into the cell (Sikkema et al, 1994, 1995). Pentachlorophenol 
(PCP), for instance, easily penetrates into the hydrocarbon core of the membrane and 
affects the phase of the lipid bilayer, converting it from a liquid crystalline phase to one 
that is more gel-like (Mukhopadhyay et al., 2004). 

The partition coefficient of lipophilic compounds in an octanol:water mixture 
(expressed as log Kow) has been used to predict the effect of different compounds on intact 
cells. The correlation between hydrophobicity of the compound and its toxicity toward 
microorganisms was observed in various studies and is summarized in the reviews 
(Sikkema et al., 1995; Ramos et al., 2002, Sardessai and Bhosle, 2002). Solvents with log 
Kow values between 1.5 and 3 are as a rule more toxic for microorganisms than those with 
high log Kow values ( > 4-5) (Aono and Inoue, 1998). The transition from toxic to nontoxic 
organic solvents usually occurs between log Kow 3 and 5 and is dependent on the homolog 
series (Vermuë et al, 1993). DeYoung and Dill (1988, 1990) showed, however, that 
partitioning of benzene and hexane into lipid bilayers differed from that into bulk 
hydrocarbons and was a function of the surface density of the bilayer. The specific lipid 
composition of a lipid bilayer also influences the solubility of compounds in the 
membrane (Antunes-Madeira and Madeira, 1987, 1989). 

1.6.2 Solvent adaptations in microorganisms: regulation of membrane 
fluidity

Most of the studies on mechanisms of bacterial adaptation to toxic hydrophobic 
compounds have been done on Gram-negative bacteria, mainly Pseudomonas spp. (Ramos 
et al., 2002). There are a number of mechanisms of adaptation of bacterial cells to toxic 
hydrophobic solvents. Among them are changes in the structure of lipopolysaccharides, in 
the composition of the fatty acids of lipids, alteration in cell wall structure and active 
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export of hydrophobic compounds from the cell (Sikkema et al., 1995; Ramos et al., 2002; 
Sardessai and Bhosle, 2002). An increase in the amount of lipid in the cell membrane was 
observed in several cases; e.g. cells of Sphingomonas sp. altered their phospholipid 
composition by increasing the cardiolipin content in responce to PCP (Sikkema et al.,
1995).

One of the best studied mechanisms of adaptation to the presence of hydrophobic 
compounds is an increase in the level of saturated fatty acids in the lipids of the 
cytoplasmic membrane (Ramos et al., 2002; Sardessai and Bhosle, 2002). Increase in the 
level of saturation of the fatty acids as a mechanism for decreasing the fluidity of the cell 
membrane to tolerate benzene was also shown for the corynebacterium, Rhodococcus sp. 
33 (Gutierrez et al., 1999). Another mechanism involved in adaptation and protection of 
the bacterial cell against the toxic effects of hydrophobic compounds is isomerization of 
the cis form of unsaturated fatty acids to their trans isomers (Heipieper and deBont, 1994; 
Weber et al., 1994; Pinkart et al., 1996). This phenomenon has been described only for the 
members of the species Pseudomonas. The trans isomers of unsaturated fatty acids have a 
configuration similar to that of saturated acids (Cevc, 1991). Thus, replacement of the cis
form with the trans form of fatty acids leads to tighter packing of the lipid layer and 
decreases the fluidity of the membrane. Staphylococcus haemolyticus, which may tolerate 
saturated levels of toluene, benzene and p-xylene in liquid cultures, uses a different 
strategy to tolerate hydrophobic toxic compounds, i.e. it increases the relative amounts of 
anteiso-branched fatty acids (Nielsen et al., 2005).
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2. Aims of this study 

The aims of the study were 

1. Isolate from polluted environments bacteria capable of degrading and/or tolerating 
recalcitrant hydrophobic substrates and characterize these abilities 

2. Clarify the taxonomic position of selected bacteria with the capacities mentioned 
in 1 

3. Isolate and characterize mycobacteria with potential health risk from  biofilms in 
drinking water distribution systems and water-damaged buildings

4. Assess the suitability of an automated DNA typing method for identifying 
environmental mycobacterial isolates

5. Increase the level of understanding of the mechanisms of  adaptation of selected 
actinobacterial cells for tolerating or degrading hydrophobic toxic substances
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3. Materials and methods 

3.1 Methods used in this thesis 

The reference strains used in this study were supplied by culture collections as 
indicated by a collection code: National Collection of Type Cultures (NCTC), HPA Centre 
for Infection, London, UK; Deutsche Sammlung von Mikroorganismen und Zellkulture 
GmbH (DSM), Braunschweig, Germany; Culture Collection of the University of Göteborg 
(CCUG), Göteborg, Sweden; American Type Culture Collection (ATCC), 12301 
Parklawn Drive, Rockville, Maryland, USA. 

The experimental procedures used in this study are described in the original 
publications as listed in Table 3.1 or in Chapter 3.2. References to published methods can 
be found in the articles.

3.2 Methods other than those described in I-V 

3.2.1 Measurement of toluene and benzene in the aqueous phase

To determine the concentrations of toluene and benzene in the aqueous phase of 
cultures, a 0.1-2-ml sample was placed in a headspace vial, made up with water to a final 
volume of 2 ml and NaCl added to a final concentration of 30%. Equilibrium headspace 
analysis was performed with an HS 40XL Headspace sampler (Perkin Elmer, Uberlingen, 
Germany), connected to a gas chromatograph HP 6890A with mass-selective detector HP 
5972A (Hewlett Packard, Palo Alto, CA, USA) and an HP-volatile organic 
compound/mass spectrometry (VOC/MS) capillary column (60 m, 0.32-mm inner 
diameter; 1.8-μm film thickness). The headspace sampler parameters were as follows: 
equilibration 30 min at 60 °C; pressurization 5 min; injection 0.2 min; needle temperature 
70 °C. The transfer line from the sampler to the chromatograph was set at 120 °C and the 
oven temperature was programmed as follows: 5-min hold at 40 °C, followed by an 
increase to 100 °C at 25 °C min-1, then to 160 °C at 5 °C min-1. The mass detector was 
operated at electron ionization energy of 70 eV. The peaks (total ion current 
chromatogram) were quantified by comparing injections with external standards that were 
prepared by adding defined amounts of toluene or benzene to headspace vials.
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Table 3.1 Experimental procedures used in this study.

Experimental procedures Article 

Isolation of bacteria by enrichment culture I 

Decontamination of biofilm specimens for isolation of mycobacteria III 

Identification and characterization of bacteria  

Oxidation of organic compounds (microtitre plate technique)  IV 

Utilization of carbon sources by bacteria in batch culture I 

Analysis of catalase and hydrolytic activities  I 

Analysis of whole cell fatty acids I, IV, V, this thesis 

Analysis of menaquinones I, IV 

Analysis of mycolic acids  I, IV, this thesis 

Analysis of polar lipids  IV 

G+C content of DNA  I, IV 

Antibiotic susceptibility testing III 

Automated riboprinting III, IV 

16S rRNA gene sequence analysis I, III, IV 

DNA:DNA hybridization IV 

           Clustering analyses by Bionumerics 4.1 (Applied Math BVBA,

           Kortijk, Belgium)  

III, this thesis 

Degradation of aromatic compounds  I, II, IV 

Microscopic methods  

Negative staining electron microscopy  I 

Epifluorescence microscopy IV 

Transmission electron microscopy II, this thesis 

Analytical methods  

Gas chromatography-mass spectrometry I, IV, V 

Halide ion concentration  I 

Esterase activity using fluorogenic substrates IV 

Protein concentration  IV 

3.2.2 Conditions for assaying the tolerance of Rhodococcus to organic 
solvents

Experiments on the tolerance of bacteria to organic solvents were conducted in 500-ml 
flasks containing 10 ml of the medium. The inoculum was grown overnight in acetate-
malt-yeast extract (AMYE) medium, then diluted with the same medium to an initial 
optical density (OD) of 0.1 (OD540). The solvents were added directly to the flasks, which 
were then sealed tightly with Teflon stoppers to prevent evaporation and incubated at 22 
°C for 48 h on a gyratory shaker (150 rpm). Growth of the cultures was monitored by 
determining the increase in OD540. When the solvent concentrations exceeded the 
solubility and a two-phase system developed, growth of the strains was recorded by 
measuring ATP. Growth was recorded as positive when the concentration of ATP in the 
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cultures with solvent was equal to or higher than in cultures with no solvent at OD540 = 
0.2.

The AMYE medium contained 1.0 g sodium acetate, 1.0 g malt extract and 0.5 g yeast 
extract per liter of KSN mineral medium. The composition of the KSN medium is 
described elsewhere (I).

3.2.3 Assay for growth in liquid culture by ATP content measurement

ATP was extracted by adding one volume of ice-cold 10% (wt/vol) trichloroacetic acid 
containing 4 mM ethylenediaminetetraacetic acid to the culture flask. The aqueous phase was 
harvested and the trichloroacetic acid removed by extraction with diethyl ether. The water 
phase of the resulting two-phase system was collected and bubbled with nitrogen gas to 
remove the dissolved diethyl ether. The ATP content was measured using a luciferin-
luciferase assay with a 1243-102 ATP monitoring kit (BioOrbit, Turku, Finland). The 
bioluminescence was read using a BioOrbit 1253 luminometer (BioOrbit). 

3.2.4 Hydrophobicities of cells and solvents

The cell-surface hydrophobicity was measured with a microbial adhesion to 
hydrocarbon (MATH) method, using hexadecane as the hydrophobic phase (Rosenberg et
al., 1980). The difference between the ODs of the aqueous phase before and after mixing 
with n-hexadecane was used to calculate the hydrophobicity as a percentage: 100 × [1-
(OD600 after mixing/OD600 before mixing)]. Each experiment was performed in triplicate 
with independently growing cultures.

Log Kow values of the organic solvents tested as substrates were taken from the 
literature (Verschueren, 1983; Mackay et al., 1992) or calculated using the KowWin 
program, version 1.66 (Syracuse Research Corporation, Environmental Science Center, 
North Syracuse, NY, USA). 

3.2.5 Scanning electron microscopy 

For scanning electron microscopy (SEM) and field-emission scanning electron 
microscopy (FESEM), 10-μl samples were taken from the aqueous phase and the organic-
aqueous interface of the culture, suspended in 0.1 M phosphate buffer (pH 7.2), filtered 
onto Nuclepore  filters (13 mm in diameter; pore size 0.2 μm) and fixed on the filters with 
2.5% (v/v) glutaraldehyde in 0.1 M phosphate buffer (pH 7.2) for 2 h. The filters were 
then washed three times with the same buffer, dehydrated in a graded series of ethanol 
(20%, 40%, 60%, 80% and 100%) and dried in hexamethyldisilazane (Fluka, Buchs, 
Switzerland). The filters were coated with gold-palladium and analysed with SEM using a 
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2.5% (v/v) glutaraldehyde in 0.1 M phosphate buffer (pH 7.2) for 2 h. The filters were 
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30

Zeiss DSM 962 (Jena, Germany) microscope at operating voltages of 10-20 kV and with 
FESEM using a Jeol JSM-6335F at an operating voltage of 15 kV. 

4. Results and discussion 

4.1 Isolation history of the actinobacteria studied in this thesis 

The bacteria that degraded the recalcitrant compounds, strains GM-14 and GM-29, 
were isolated using enrichment cultures with chlorobenzene (CB) and toluene, 
respectively (I, V; Zaitsev et al., 1993). The strains originated from rice field soil that had 
been treated with organochlorine pesticides for several years. Strain B293 was isolated 
from oil-contaminated soil, using paraffin as the substrate for enrichment (Eroshina and 
Golovlev, 1979). 

The initial identification of the isolates GM-14 and B293 was done based on 
morphological and limited physiological characteristics. Isolate GM-14 was originally 
placed in the species Rhodococcus rhodochrous (Zaitsev et al., 1993). Strain B293 was 
published by several authors under different names: `Nocardia erythropolis´ (Eroshina and 
Golovlev, 1979), `Nocardia minima´ (Baryshnikova et al., 1979) and `Rhodococcus
minimus´ (Baryshnikova et al., 1988).

Biofilms retrieved from water meters in the cities of Tampere and Helsinki (Finland) 
were analysed for the presence of mycobacteria (III). For isolation of slowly growing 
mycobacteria from environmental samples, decontamination of the specimen is necessary 
to reduce contamination of the mycobacterial culture by fast-growing organisms. In this 
study 5% H2SO4 was used for decontaminating the biofilm samples before culturing (III).

4.2 Characterization of the actinobacteria selected for this study 

The taxonomic positions of strains GM-14, GM-29 and B293 were evaluated in a 
polyphasic study including the examination of phenotypic properties, nutritional 
characteristics, the cell wall, composition of whole cell fatty acids, menaquinones and 
polar lipids, determination of the G+C content of DNA and sequence analysis of the 16S 
rRNA gene (I, IV).

The cell morphology of strain B293 is shown in Fig. 4.1 and that of strain GM-14 in 
Fig. 1 (I). Strain GM-14 showed cyclic changes in morphology from cocci to branched 
filaments, followed by fragmentation into cocci with aging (Fig.1 in I). The rod-shaped 
cells of strain B293 were from 0.3 to 0.5 μm wide and 1.6 to 3.0 μm long, slightly curved 
and sometimes with rounded ends (Fig. 4.1).
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The results of polyphasic analysis (I) showed that strain GM-14 belonged to the 
species R. opacus. Chemotaxonomic analysis and 16S rRNA gene sequencing indicated 
that strain B293 belonged to the genus Gordonia (IV). DNA:DNA hybridization showed 
84% similarity to G. polyisoprenivorans DSM44302T. Therefore, strain B293 was 
reassigned to the species G. polyisoprenivorans (IV). Strain GM-29 was identified as a 
member of the species R. opacus based on the 16S rRNA gene sequence and 
chemotaxonomic characteristics as follows. The strain possessed mycolic acids of the 
same size as the type strain of R. opacus. Whole cell fatty acid analysis showed that the 
main fatty acids of strain GM-29 were pentadecanoic acid (15:0) 8%, hexadecanoic acid 
(16:0) 28%, hexadecenoic acid (C16:1ω7) 18%, heptadecanoic acid (17:0) 6%, 
heptadecenoic acid (17:1ω8) 13%, octadecenoic acid (18:1ω9) 15%, and TBSA (10-
methyl-18:0) 2%. This fatty acid profile is very close to those of the type strain of R.
opacus and strain GM-14 (I). At the time of publication in 1999, the strain closest to GM-
29 was R. opacus DSM 43205T with a 16S rRNA gene similarity of 99.6%. In 2002 the 
new species R. wratislaviensis was described that differed from R. opacus only by a 
DNA:DNA relatedness value of 69% and by combination of carbon-source utilization and 
enzymatic testing (Goodfellow et al., 2002). No chemotaxonomic marker was described as 
discriminating between the species R. wratislaviensis and R. opacus. It remains unclear 
whether strain GM-29 should be named R. opacus or R. wratislaviensis. 

Figure 4.1 Electron micrographs of thin sections of strain B293 grown on tryptic soy agar at 28°C
for 2 days.

Strains obtained from biofilms growing in public drinking water distribution systems 
were subjected to sequencing of the 16S rRNA gene (from 448 to 1525 bp in length). The 
sequence of one isolate was identical with that of the type strain of M. lentiflavum ATCC 
51985T, those of four strains had 100% similarity to M. lentiflavum ATCC 51988; and one 
was 100% identical to M. gordonae ATCC 14470T. One sequence (strain MH1) showed 
100% identity to Mycobacterium sp. (AJ550515) isolated by another research group from 
deposits in a drinking water distribution system elsewhere in Finland (Torvinen et al.,
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2004). The closest (99.3% similarity) sequence was that of a slowly growing pathogen of 
moray eels, M. montefiorense, related to M. triplex (Levi et al., 2003). 

We evaluated automated riboprinting by the RiboPrinter® microbial characterization 
system as a tool for rapid identification of environmental mycobacteria. Previously, 
automated riboprinting was shown by us and other teams to be a useful means of 
identifying several genera and species (Busse et al., 2000; Suihko et al., 2006).  In our 
laboratory a limited set of NTMs were earlier analysed (Vuorio et al., 1999). 

The RiboPrinter system has so far no commercial database for mycobacteria. In fact, 
the lack of adequate databases has also hampered its use for other types of hazardous 
bacteria (Grif et al., 2003). We constructed a database of ribopatterns of selected 
environmental mycobacteria. As a first step the type strains of 30 mycobacterial species 
were analysed with two restriction enzymes EcoRI and PvuII. All strains were 
successfully typed with satisfactory reproducibility of the ribopatterns with fragments 
ranging between 1.1 kb and 25 kb in size. Bands larger than 25 kb in size were poorly 
reproducible, which may be attributed to the method of biomass preparation (III).

All strains, except M. septicum DSM 44393T, yielded ribopatterns with one or two 
bands after digestion with PvuII (Fig. 1 in III). The type strains of M. aichiense, M. aurum 
and M. terrae had identical PvuII ribopatterns and thus could not be separated by this 
enzyme. This was also found for the type strains of M. celatum and M. obuense as well as 
M. abcessus and M. parafortuitum. When the combined EcoRI and PvuII ribopatterns 
were considered, all type strains of the 30 mycobacterial species analysed had unique 
patterns and were easily distinguished (Fig. 4.2), although the clustering based on 
ribopatterns differed from that of 16S rRNA gene sequences (Fig. 4.3).

Restriction fragments that hybridize with the ribosomal operon probe in the 
RiboPrinter ranged in size from 1 to 50 kb. This means that the fragments obtained 
represented genetic information not only within the rRNA operons, but also of flanking 
areas upstream or downstream of the ribosomal operons. This may explain the differences 
between clustering based on the 16S rRNA gene sequences and that based on the 
ribopatterns.

The database of 30 environmental mycobacterial species was used to analyse isolates 
from biofilms in the drinking water distribution systems and the clinical strains identified 
as M. lentiflavum in the Finnish Mycobacterial Reference Laboratory, National Public 
Health Institute, Turku, Finland. M. chlorophenolicum CP-2 and CG-1 earlier isolated and 
studied in our laboratory (Häggblom et al., 1988) and three strains of the species M.
murale (Vuorio et al., 1999) were also included in the ribopattern analysis. A total of 60 
isolates representing 30 species of slowly and rapidly growing NTMs were analysed and 
the ribopatterns obtained were included in our database (Fig. 1 in III).
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Figure 4.2 Dendrogram generated from combined EcoRI and PvuII ribopatterns of the type strains 
of 30 mycobacterial species. The percentage of similarity among strains was determined using the 
Pearson correlation coefficient and clustering was performed with UPGMA. The scale bar 
indicates the percentage of similarity. 
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Figure 4.3 Dendrogram comparing 16S rRNA gene sequences (1200 bp). Genebank accession 
numbers of the deposited sequences are given in parentheses. Clustering was performed with 
UPGMA.

Three strains published as M. chlorophenolicum (formerly R. chlorophenolicus) PCP-
1, CP-2 and CG-1 differed in the ribopatterns. Of these strains only the 16S rRNA gene 
sequence of strain PCP-1T (Briglia et al., 1994) was available when the novel species M.
chlorophenolicum was described (Häggblom et al., 1994). We found that the nearly full-
length 16S rRNA gene sequences of strains CP-2 and CG-1 were only distantly related to 
type strain PCP-1 (in III). The strain closest to CG-1, with a similarity of 99.6%, was 
Mycobacterium sp. SM7.6.1 (AF247497), a degrader of PAHs (Friedrich et al., 2000). 
Strain CP-2 showed highest similarity (99.9%) to the mycobacterial isolate TA27 
(AB028482) a degrader of 1,1,1-trichloroethane, oil and PAHs (Yagi et al., 1999). Thus, 
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the results form a framework for the further taxonomic characterization of strains CP-2 
and CG-1. 

Ribopattern analysis of clinical isolates named M. lentiflavum and deposited at the 
Finnish Mycobacterial Reference Laboratory showed that two strains HO184/97 and 
HO850/95 differed from the entire M. lentiflavum group. The initial identification was 
based on the sequencing of hypervariable region B (E. coli positions 430-500) of the 16S 
rRNA gene. However, the species M. lentiflavum has 100% sequence homology with 
hypervariable region B of the 16S rRNA gene in seven other species, including M. simiae,
M. palustre and M. triplex (Torkko et al., 2002; Tortoli, 2003). As a result of the nearly 
full-length sequencing of the 16S rRNA genes, the strains HO184/97 and HO850/95 were 
assigned to the species M. palustre and M. simiae, respectively (Table 2 in III).

The clustering of the combined EcoRI and PvuII ribopatterns of seven species that are 
represented by at least two strains (30 in all) is shown in Fig. 2 (III). All strains are 
clustered according to the identification based on 16S rRNA gene analysis. Table 4.1 
contains the strains whose taxonomic position was evaluated in this study. 

35

the results form a framework for the further taxonomic characterization of strains CP-2 
and CG-1. 

Ribopattern analysis of clinical isolates named M. lentiflavum and deposited at the 
Finnish Mycobacterial Reference Laboratory showed that two strains HO184/97 and 
HO850/95 differed from the entire M. lentiflavum group. The initial identification was 
based on the sequencing of hypervariable region B (E. coli positions 430-500) of the 16S 
rRNA gene. However, the species M. lentiflavum has 100% sequence homology with 
hypervariable region B of the 16S rRNA gene in seven other species, including M. simiae,
M. palustre and M. triplex (Torkko et al., 2002; Tortoli, 2003). As a result of the nearly 
full-length sequencing of the 16S rRNA genes, the strains HO184/97 and HO850/95 were 
assigned to the species M. palustre and M. simiae, respectively (Table 2 in III).

The clustering of the combined EcoRI and PvuII ribopatterns of seven species that are 
represented by at least two strains (30 in all) is shown in Fig. 2 (III). All strains are 
clustered according to the identification based on 16S rRNA gene analysis. Table 4.1 
contains the strains whose taxonomic position was evaluated in this study. 



T
ab

le
 4

.1
 S

tr
ai

ns
 w

ith
 id

en
tif

ic
at

io
n 

ex
ec

ut
ed

 o
r 

cl
ar

if
ie

d 
in

 th
is

 s
tu

dy
. T

he
 n

uc
le

ot
id

e 
se

qu
en

ce
s 

of
 th

e 
16

S 
rR

N
A

 g
en

es
 w

er
e 

co
m

pa
re

d 
us

in
g 

B
la

st
 

Se
ar

ch
 o

n 
A

ug
us

t 8
, 2

00
6 

w
ith

 s
eq

ue
nc

es
 p

ub
lis

he
d 

in
 th

e 
N

C
B

I.

S
tr

ai
n

N
ew

 a
n

d
 f

o
rm

er
 

id
en

ti
fi

ca
ti

o
n

s

M
et

h
o

d
s 

u
se

d
 in

 t
h

is
 s

tu
d

y 
fo

r 
id

en
ti

fi
ca

ti
o

n
  

S
o

u
rc

e 
o

f 

is
o

la
ti

o
n

P
h

ys
io

lo
g

ic
al

ch
ar

ac
te

ri
st

ic
s

D
es

cr
ib

ed

in

 
 

A
n

al
ys

es
 p

er
fo

rm
ed

 
L

en
g

th
 o

f 

th
e 

16
S

 

rR
N

A
 g

en
e 

se
q

u
en

ce
d

fr
ag

m
en

t

16
S

 r
R

N
A

 g
en

e 

w
it

h
 c

lo
se

st
 m

at
ch

 

(E
M

B
L

 n
u

m
b

er
, 

si
m

ila
ri

ty
 %

) 

 
 

 

1
2

3 
4 

5 
6 

7 
8 

G
M

-1
4

R
. o

pa
cu

s 
G

M
-1

4 

(f
or

m
er

ly

R
. r

ho
do

ch
ro

us
 G

M
-1

4)

M
or

ph
ol

og
y,

ph
ys

io
lo

gy
, G

+
C

 m
ol

%
 

of
 D

N
A

, m
yc

ol
ic

 a
ci

ds
, 

m
en

aq
ui

no
ne

s,
 w

ho
le

 

ce
ll 

fa
tty

 a
ci

ds

14
60

 
D

S
M

 4
32

05
T

(X
80

63
0,

 1
00

%
) 

C
on

ta
m

in
at

ed

so
il

D
eg

ra
de

r 
of

 

be
nz

en
e,

ph
en

ol
,

ch
lo

ro
be

nz
en

e,

ch
lo

ro
ph

en
ol

I

G
M

-2
9

R
. o

pa
cu

s 
M

yc
ol

ic
 a

ci
ds

, 

m
en

aq
ui

no
ne

s,
 w

ho
le

 

ce
ll 

fa
tty

 a
ci

ds
 

14
85

 
D

S
M

 4
32

05
T

(X
80

63
0,

 9
9.

6%
);

 

D
S

M
 4

41
07

T

(Z
37

13
8,

 9
9.

6%
)a

C
on

ta
m

in
at

ed

so
il

D
eg

ra
de

r 
of

 

to
lu

en
e,

be
nz

en
e

V

B
29

3
G

. p
ol

yi
so

pr
en

iv
or

an
s

B
29

3 
(f

or
m

er
ly

 

`N
oc

ar
di

a 
er

yt
hr

op
ol

is
´,

`N
oc

ar
di

a
m

in
im

a´
,

`R
ho

do
co

cc
us

m
in

im
us

´)

M
or

ph
ol

og
y,

ph
ys

io
lo

gy
, m

yc
ol

ic
 

ac
id

s,
 w

ho
le

 c
el

l f
at

ty
 

ac
id

s,
 p

ol
ar

 li
pi

ds
, 

po
ly

am
in

es
;

rib
op

rin
tin

g,
 D

N
A

:D
N

A
 

hy
br

id
iz

at
io

n

60
0 

D
S

M
 4

43
02

T

(Y
18

31
0,

 1
00

%
) 

S
oi

l

co
nt

am
in

at
ed

w
ith

 o
il 

D
eg

ra
de

r 
of

 

ph
th

al
ic

 a
ci

d 

es
te

rs

V

 
 

 
 

 
 

36

T
ab

le
 4

.1
 S

tr
ai

ns
 w

ith
 id

en
tif

ic
at

io
n 

ex
ec

ut
ed

 o
r 

cl
ar

if
ie

d 
in

 th
is

 s
tu

dy
. T

he
 n

uc
le

ot
id

e 
se

qu
en

ce
s 

of
 th

e 
16

S 
rR

N
A

 g
en

es
 w

er
e 

co
m

pa
re

d 
us

in
g 

B
la

st
 

Se
ar

ch
 o

n 
A

ug
us

t 8
, 2

00
6 

w
ith

 s
eq

ue
nc

es
 p

ub
lis

he
d 

in
 th

e 
N

C
B

I.

S
tr

ai
n

N
ew

 a
n

d
 f

o
rm

er
 

id
en

ti
fi

ca
ti

o
n

s

M
et

h
o

d
s 

u
se

d
 in

 t
h

is
 s

tu
d

y 
fo

r 
id

en
ti

fi
ca

ti
o

n
  

S
o

u
rc

e 
o

f 

is
o

la
ti

o
n

P
h

ys
io

lo
g

ic
al

ch
ar

ac
te

ri
st

ic
s

D
es

cr
ib

ed

in

 
 

A
n

al
ys

es
 p

er
fo

rm
ed

 
L

en
g

th
 o

f 

th
e 

16
S

 

rR
N

A
 g

en
e 

se
q

u
en

ce
d

fr
ag

m
en

t

16
S

 r
R

N
A

 g
en

e 

w
it

h
 c

lo
se

st
 m

at
ch

 

(E
M

B
L

 n
u

m
b

er
, 

si
m

ila
ri

ty
 %

) 

 
 

 

1
2

3 
4 

5 
6 

7 
8 

G
M

-1
4

R
. o

pa
cu

s 
G

M
-1

4 

(f
or

m
er

ly

R
. r

ho
do

ch
ro

us
 G

M
-1

4)

M
or

ph
ol

og
y,

ph
ys

io
lo

gy
, G

+
C

 m
ol

%
 

of
 D

N
A

, m
yc

ol
ic

 a
ci

ds
, 

m
en

aq
ui

no
ne

s,
 w

ho
le

 

ce
ll 

fa
tty

 a
ci

ds

14
60

 
D

S
M

 4
32

05
T

(X
80

63
0,

 1
00

%
) 

C
on

ta
m

in
at

ed

so
il

D
eg

ra
de

r 
of

 

be
nz

en
e,

ph
en

ol
,

ch
lo

ro
be

nz
en

e,

ch
lo

ro
ph

en
ol

I

G
M

-2
9

R
. o

pa
cu

s 
M

yc
ol

ic
 a

ci
ds

, 

m
en

aq
ui

no
ne

s,
 w

ho
le

 

ce
ll 

fa
tty

 a
ci

ds
 

14
85

 
D

S
M

 4
32

05
T

(X
80

63
0,

 9
9.

6%
);

 

D
S

M
 4

41
07

T

(Z
37

13
8,

 9
9.

6%
)a

C
on

ta
m

in
at

ed

so
il

D
eg

ra
de

r 
of

 

to
lu

en
e,

be
nz

en
e

V

B
29

3
G

. p
ol

yi
so

pr
en

iv
or

an
s

B
29

3 
(f

or
m

er
ly

 

`N
oc

ar
di

a 
er

yt
hr

op
ol

is
´,

`N
oc

ar
di

a
m

in
im

a´
,

`R
ho

do
co

cc
us

m
in

im
us

´)

M
or

ph
ol

og
y,

ph
ys

io
lo

gy
, m

yc
ol

ic
 

ac
id

s,
 w

ho
le

 c
el

l f
at

ty
 

ac
id

s,
 p

ol
ar

 li
pi

ds
, 

po
ly

am
in

es
;

rib
op

rin
tin

g,
 D

N
A

:D
N

A
 

hy
br

id
iz

at
io

n

60
0 

D
S

M
 4

43
02

T

(Y
18

31
0,

 1
00

%
) 

S
oi

l

co
nt

am
in

at
ed

w
ith

 o
il 

D
eg

ra
de

r 
of

 

ph
th

al
ic

 a
ci

d 

es
te

rs

V

 
 

 
 

 
 

36



1
2

3 
4 

5 
6 

7 
8 

M
2

M
. l

en
tif

la
vu

m
 

A
ci

d 
fa

st
ne

ss
, 

rib
op

rin
tin

g

48
8 

A
T

C
C

 5
19

88
 

(X
93

99
5,

 1
00

%
) 

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

M
3

M
. l

en
tif

la
vu

m
 

A
ci

d 
fa

st
ne

ss
, 

rib
op

rin
tin

g

48
3 

A
T

C
C

 5
19

88
 

(X
93

99
5,

 1
00

%
)

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

M
4

M
. l

en
tif

la
vu

m
 

A
ci

d 
fa

st
ne

ss
, 

rib
op

rin
tin

g

13
85

 
A

T
C

C
 5

19
88

 

(X
93

99
5,

 1
00

%
)

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

M
6

M
. l

en
tif

la
vu

m
 

A
ci

d 
fa

st
ne

ss
, 

rib
op

rin
tin

g

13
85

 
A

T
C

C
 5

19
88

 

(X
93

99
5,

 1
00

%
)

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

A
H

G
A

13
M

. l
en

tif
la

vu
m

 
A

ci
d 

fa
st

ne
ss

, 

rib
op

rin
tin

g

44
8 

A
T

C
C

 5
19

85
T

(X
80

76
9,

 1
00

%
) 

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

M
H

1
M

yc
ob

ac
te

riu
m

 s
p.

  
A

ci
d 

fa
st

ne
ss

, 

rib
op

rin
tin

g

13
60

M
yc

ob
ac

te
riu

m
 s

p.
 

S
A

39
4 

(A
J5

50
51

5,
 

10
0%

),
M

.

m
on

te
fio

re
ns

e

A
T

C
C

 B
A

A
-2

56
T

(A
F

33
00

38
, 9

9.
3%

)

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

 
 

 
 

 
 

37

1
2

3 
4 

5 
6 

7 
8 

M
2

M
. l

en
tif

la
vu

m
 

A
ci

d 
fa

st
ne

ss
, 

rib
op

rin
tin

g

48
8 

A
T

C
C

 5
19

88
 

(X
93

99
5,

 1
00

%
) 

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

M
3

M
. l

en
tif

la
vu

m
 

A
ci

d 
fa

st
ne

ss
, 

rib
op

rin
tin

g

48
3 

A
T

C
C

 5
19

88
 

(X
93

99
5,

 1
00

%
)

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

M
4

M
. l

en
tif

la
vu

m
 

A
ci

d 
fa

st
ne

ss
, 

rib
op

rin
tin

g

13
85

 
A

T
C

C
 5

19
88

 

(X
93

99
5,

 1
00

%
)

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

M
6

M
. l

en
tif

la
vu

m
 

A
ci

d 
fa

st
ne

ss
, 

rib
op

rin
tin

g

13
85

 
A

T
C

C
 5

19
88

 

(X
93

99
5,

 1
00

%
)

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

A
H

G
A

13
M

. l
en

tif
la

vu
m

 
A

ci
d 

fa
st

ne
ss

, 

rib
op

rin
tin

g

44
8 

A
T

C
C

 5
19

85
T

(X
80

76
9,

 1
00

%
) 

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

M
H

1
M

yc
ob

ac
te

riu
m

 s
p.

  
A

ci
d 

fa
st

ne
ss

, 

rib
op

rin
tin

g

13
60

M
yc

ob
ac

te
riu

m
 s

p.
 

S
A

39
4 

(A
J5

50
51

5,
 

10
0%

),
M

.

m
on

te
fio

re
ns

e

A
T

C
C

 B
A

A
-2

56
T

(A
F

33
00

38
, 9

9.
3%

)

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

 
 

 
 

 
 

37



1 
2 

3 
4 

5 
6 

7 
8 

A
G

H
A

3
M

. g
or

do
na

e 
A

ci
d 

fa
st

ne
ss

, 

rib
op

rin
tin

g

15
25

 
A

T
C

C
 1

44
70

T

(1
00

%
)

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

H
01

84
/9

7
M

. p
al

us
tr

e 
(M

. 

le
nt

ifl
av

um

R
ib

op
rin

tin
g 

12
60

 
E

84
6T

 (
A

J3
08

60
3,

 

10
0%

)

C
lin

ic
al

sp
ec

im
en

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

H
08

50
/9

5
M

. s
im

ia
e 

(M
. 

le
nt

ifl
av

um
)

R
ib

op
rin

tin
g 

13
50

 
A

T
C

C
 2

52
75

 T
 

(1
00

%
)

C
lin

ic
al

sp
ec

im
en

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

C
G

-1
M

yc
ob

ac
te

riu
m

 s
p.

(M
. c

hl
or

op
he

no
lic

um
) 

A
ci

d 
fa

st
ne

ss
, 

rib
op

rin
tin

g

14
00

M
yc

ob
ac

te
riu

m
 s

p.
 

S
M

7.
6.

1 
(A

F
24

74
97

, 

99
.6

%
)

 
D

eg
ra

de
r 

of
 

P
C

P

III

C
P

-2
M

. c
hl

or
op

he
no

lic
um

 
A

ci
d 

fa
st

ne
ss

, 

rib
op

rin
tin

g

14
00

M
yc

ob
ac

te
riu

m
 s

p.
 

T
A

27
 B

02
84

82
, 

99
.9

%
)

 
D

eg
ra

de
r 

of
 

P
C

P

III

a-
 th

e 
sp

ec
ie

s 
R

. w
ra

ti
sl

av
ie

ns
is

 w
as

 d
es

cr
ib

ed
 in

 2
00

2 
to

 a
cc

om
m

od
at

e 
th

e 
st

ra
in

 o
f 

T
su

ka
m

ur
el

la
 w

ra
ti

sl
av

ie
ns

is
.

38

1 
2 

3 
4 

5 
6 

7 
8 

A
G

H
A

3
M

. g
or

do
na

e 
A

ci
d 

fa
st

ne
ss

, 

rib
op

rin
tin

g

15
25

 
A

T
C

C
 1

44
70

T

(1
00

%
)

B
io

fil
m

 in
 

dr
in

ki
ng

 w
at

er
 

di
st

rib
ut

io
n

sy
st

em

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

H
01

84
/9

7
M

. p
al

us
tr

e 
(M

. 

le
nt

ifl
av

um

R
ib

op
rin

tin
g 

12
60

 
E

84
6T

 (
A

J3
08

60
3,

 

10
0%

)

C
lin

ic
al

sp
ec

im
en

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

H
08

50
/9

5
M

. s
im

ia
e 

(M
. 

le
nt

ifl
av

um
)

R
ib

op
rin

tin
g 

13
50

 
A

T
C

C
 2

52
75

 T
 

(1
00

%
)

C
lin

ic
al

sp
ec

im
en

R
es

is
ta

nc
e 

to
 

m
ul

tip
le

an
tib

io
tic

s

III

C
G

-1
M

yc
ob

ac
te

riu
m

 s
p.

(M
. c

hl
or

op
he

no
lic

um
) 

A
ci

d 
fa

st
ne

ss
, 

rib
op

rin
tin

g

14
00

M
yc

ob
ac

te
riu

m
 s

p.
 

S
M

7.
6.

1 
(A

F
24

74
97

, 

99
.6

%
)

 
D

eg
ra

de
r 

of
 

P
C

P

III

C
P

-2
M

. c
hl

or
op

he
no

lic
um

 
A

ci
d 

fa
st

ne
ss

, 

rib
op

rin
tin

g

14
00

M
yc

ob
ac

te
riu

m
 s

p.
 

T
A

27
 B

02
84

82
, 

99
.9

%
)

 
D

eg
ra

de
r 

of
 

P
C

P

III

a-
 th

e 
sp

ec
ie

s 
R

. w
ra

ti
sl

av
ie

ns
is

 w
as

 d
es

cr
ib

ed
 in

 2
00

2 
to

 a
cc

om
m

od
at

e 
th

e 
st

ra
in

 o
f 

T
su

ka
m

ur
el

la
 w

ra
ti

sl
av

ie
ns

is
.

38



39

4.3 Conclusions and comments on the isolation and 
identification of the selected actinobacteria

Many species of the genera Rhodococcus, Gordonia and Mycobacterium play 
important roles in the biotechnology of bioremediation and synthesis of various organic 
compounds. At the same time many species are opportunistic pathogens in humans and 
animals. Before these organisms are used in any biotechnical applications, risk assessment 
for these strains should be applied. Biohazard legislation is based on genus and species 
names; therefore, reliable identification is essential to assess the safety status. The 
polyphasic approach used in the present study, which was based on chemotaxonomic 
analysis, 16S rRNA gene sequencing and DNA:DNA hybridization, helped to clarify the 
taxonomic positions for many strains isolated from polluted soils or biofilms in water. 
Strains GM-14 and GM-29, degraders of monoaromatic compounds, belong to the species 
R. opacus. This species is included in Hazard Group 1 in the European Union 
classification and to our knowledge has not yet been reported from clinical specimens. A 
third degrader (strain B 293) used for many years under different names, was identified as 
G. polyisoprenivorans. This species is listed under Hazard Group 1. Nevertheless, two 
cases of bacteraemia caused by G. polyisoprenivorans were recently reported (Kempf et
al., 2004; Verma et al 2006). In accounting the novelty of this species and the difficulties 
in identifying Gordonia in clinical laboratories, the number of G. polyisoprenivorans-
associated infections may currently be underestimated. The present study provides 
examples of the importance of correctly identifying bacteria with biotechnological 
potential.

The numbers of NTM patient isolates in Finland in the National Mycobacterial 
Reference Laboratory during 1996-2003 ranged from 288 to 379 per year (Table 1 in III). 
Although water was suggested as a source of potentially pathogenic environmental 
mycobacteria, especially M. avium (Vaerewijck et al., 2005), the reservoirs of most NTMs 
are still unclear. In the present study we isolated several strains of M. lentiflavum from 
biofilms growing in water meters of public drinking water distribution systems. 
Decontamination of environmental samples during the isolation of pure cultures aiming at 
removing  most  of the  contaminants  may have  resulted in  loss in  numbers  and  species 
diversity of mycobacteria as well (Buijtels and Petit, 2005; Vaerewjik et al., 2005). The 
isolation procedure and cultivation parameters also select for certain organisms. Sulphuric 
acid decontamination increased the amount of M. lentiflavum recovered from clinical 
specimens in comparison to treatment with NaOH-N-acetyl cystein (Buijtels and Petit, 
2005). Thus, other species of slowly growing mycobacteria in biofilm samples may have 
been lost due to the decontamination protocol used here. 

The M. lentiflavum found in this study in biofilms formed in water meters, as well as 
the recent report by Torvinen with coauthors (2004), point out that M. lentiflavum is 
deposited in drinking water networks in Finland. Thus, drinking water calls for attention 
as a potential source of opportunistic pathogens. 
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Accurate identification of mycobacteria from environmental sources is one of the steps 
necessary for tracing their environmental reservoir. The rapid and reliable identification of 
mycobacterial isolates poses a challenge, mostly due to the slow growth of the organisms. 
There are a number of identification methods useful for NTMs, including 16S rRNA gene 
sequencing and several commercial systems based on DNA hybridization with specific 
probes (Wagner and Young, 2004). However, none of the currently available methods 
alone can distinguish between all mycobacterial species. The other approach for 
identifying bacteria in environmental samples is direct DNA amplification followed by 
cloning and sequencing. This approach requires time-consuming sequence analysis. 
Moreover, some species of NTMs cannot be distinguished by sequencing 16S rRNA, or 
the hsp65 or sodA genes (Tortoli, 2003; Adekambi and Drancourt, 2004). 

In the present study we showed that automated riboprinting, when using two restriction 
enzymes, was a useful means for identifying environmental and clinical isolates of M.
lentiflavum. Moreover, the ribopattern analysis of several other environmental NTMs 
showed the necessity for clarifying the taxonomic position of several M.
chlorophenolicum strains. Thus, automated riboprinting may constitute a simple and rapid 
procedure for the differentiation of environmental mycobacteria.

4.4 Degradation and surviving properties of selected strains of 
Rhodococcus, Mycobacterium and Gordonia

4.4.1 Degradation of aromatic compounds by strains of R. opacus, G.
polyisoprenivorans and M. murale 

The degradation capacities of R. opacus GM-14 and GM-29 isolated from 
contaminated soil, G. polyisoprenivorans B293 isolated from an oil field and two strains 
of M. murale isolated from a children's day care centre (Andersson et al., 1997; Vuorio et
al., 1999) were assessed (I, II, IV). R. opacus GM-14 used a wide range of aromatic 
substrates for growth, including benzene, 15 different halobenzenes, 18 phenols and 7 
benzoates (Table 3 in I). Toluene, aniline and the four PAH compounds checked 
(biphenyl, anthracene, phenanthrene and pyrene) were not utilized as substrates for 
growth. The suitability of various halogenated substrates for growth was dependent on the 
substituents in the aromatic ring. Of the five dichlorophenol (diCP) isomers, only 2,4-diCP 
supported growth of strain GM-14. Of the dichlorobenzenes (diCBs) two isomers (1,3- 
and 1,4-diCB) but not 1,2-diCB, were utilized by the strain. Strain GM-14 grew on all 
three isomers of monoCPs; the highest concentration of 2-CP and of 4-CP supporting 
growth of strain GM-14 was 0.25 g l-1. 3-CP was more toxic and the organism grew only 
when this substrate was added to a concentration not higher than 0.1 g l-1 (Fig. 9 and Table 
4 in I). The amount of chlorine ions released into the medium during growth on all 
isomers of monoCPs was 100% of the theoretical level (Fig. 10 in I), indicating 
mineralization of the organically bound chlorine. 
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Strain R. opacus GM-14 grew at high concentrations of benzene and CB. As shown in 
Fig. 4 of (I) and in Table 4 (I), strain GM-14 grew well in mineral medium in which 
benzene or CB were added in concentrations of 3 g l-1 or 0.5 g l-1, respectively, when the 
air-to-liquid ratio in the flask was 4:1. When the air-to-liquid ratio was increased up to 
94:1 the concentrations of benzene and CB tolerated by the strain were as high as 13 and 3 
g l-1, respectively (Figs. 5 and 6 in I).

The other strain of R. opacus studied for its ability to utilize toxic aromatic solvents, 
GM-29, grew after a lag period of 4 days on toluene or benzene added as the sole carbon 
sources to mineral salts medium KSN in amounts of up to 7 g l-1. In the batch culture 
experiments (50 ml of KSN medium in 2-l gastight flasks closed with Teflon-lined rubber 
stoppers), addition of 7 g l-1 of toluene or benzene resulted in initial aqueous 
concentrations of 470 and 650 mg l-1, respectively. The solubilities of toluene and benzene 
in the KSN medium, as checked by GC, were 517 mg l-1 and 1560 mg l-1, respectively. 
These data show that R. opacus GM-29 grew in KSN media that were >90 % saturated 
with toluene and 41% saturated with benzene. 

A number of bacteria, mainly Pseudomonas spp., capable of growing in high 
concentrations of toluene (50-90%) were reported (Ramos et al., 2002). Members of the 
genera Rhodococcus and Mycobacterium can grow on toluene as the carbon source, when 
provided at low concentrations or via a gas phase (Burback et al., 1994; Duetz et al., 2001; 
Malachowsky et al., 1994; Tay et al., 1998). Recently rhodococcal strains that can grow in 
high concentrations of benzene or toluene were described (Paje et al., 1997; Na et al.,
2005). Rhodococcus sp. 33 grew in medium saturated with benzene (Paje et al., 1997). R.
opacus strain B-4 utilized many aromatic and aliphatic substrates: benzene, toluene, 
styrene, xylene, propylbenzene, n-octanol and n-decane. It was reported to grow when 
liquid benzene was added to the basal medium at 10-90% (Na et al., 2005). However, 
when the strain was cultivated in liquid medium with 10% benzene, the increase in OD 
from less than 0.1 up to 1.5 corresponded to only a 4-fold increase in the cell number 
(from 1 × 107 to 4 × 107 cfu ml-1), probably from emulsification of the solvent. 

G. polyisoprenivorans B293 was studied for its ability to utilize phthalic acid esters for 
growth (IV). Strain B293 grew on benzyl-butyl phthalate, di-butyl phthalate, di-benzyl 
phthalate and di-n-octyl phthalate, but not on the branched phthalate esters bis-(2-ethyl)-
hexyl phthalate, di-isoheptyl phthalate or di-isononyl phthalate. The degradation 
proceeded through hydrolysis of the ester bonds. The organism grew using the carbon 
chains of the alcohols octanol, butanol and benzyl alcohol released by hydrolysis. The 
phthalic acid not utilized for growth accumulated as a dead-end product (IV).

The species G. polyisoprenivorans has so far only been described as degrading rubber. 
The ability to degrade phthalate esters is an additional property that we showed here for 
the species. A clinical isolate of G. polyisoprenivorans was reported capable of degrading 
latex and synthetic cis-1,4-polyisoprene (Kempf et al., 2004). These authors associated the 
ability of the strain to degrade the natural rubber with the ability to colonize catheters. Our 
isolate degraded the phthalate diesters used as softeners in polyvinyl chloride (PVC) 
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plastics, including those used for medical purposes. The ability to utilize phthalate esters 
for growth, together with high level of hydrophobicity of the cell surface, may promote 
colonization of medical plastic devices resulting in increased infection risk in the patient. 

The strains of M. murale were isolated from the water-damaged wall material in a 
children's day care centre it amounts of 106 cfu g-1 (II). We hypothesized that the ability to 
use toluene, or other components of the cleansing formula, used at that site, for growth 
may explain the abundance of this organism. Growth of two strains of M. murale in
toluene as a sole carbon source was checked in two different systems: toluene was added 
directly to the KSN medium or was supplied as a vapour. We found that strain MA-112 
was able to grow when toluene was directly added in to KSN medium (II). At the same 
time, another strain (MA-168) isolated from the same water-damaged wall did not grow 
on toluene. Thus, factors other than simple utilization of toluene for growth must exist to 
explain the high level of colonization of the water-damaged wall by M. murale. It is 
possible that M. murale may utilize another compound used in the cleansing formulas.

4.4.2 Tolerance of R. opacus strains to water-miscible and water-immiscible 
organic solvents

The ability of R. opacus GM-14 and GM-29 to grow in rich media in the presence of 
organic solvents was investigated. Growth of the strains in the presence of 1-10 vol% of 
the organic solvents was tested in AMYE medium (Table 4.2). The hydrophobicities of 
the tested solvents, expressed as log Kow values, ranged from -0.66 to 9.44. Strains GM-29 
and GM-14 grew in the presence of 18 and 19 (1 vol%) of the 39 organic solvents tested , 
respectively. The solvents tolerated included those commonly used in cleansing formulas 
and disinfectants (trichloroethane, ethanol, acetone, 2-propanol, ethanol and methanol) 
(Russell et al., 1999). Both strains grew in AMYE medium in which 10 vol% of n-
pentane, ethanol, methanol, hexadecane, 1-chlorotetradecane or 1-chlorooctadecane were 
added. Several authors have suggested that the tolerance of microorganisms to solvents 
correlates with the log Kow values of the solvents. For instance, all solvents tested with log 
Kow values < 2.3-2.4 were reported as toxic for Pseudomonas strains in liquid culture 
(Cruden et al., 1992; Inoue and Horikoshi, 1989, 1991; Ogino et al., 1995). Some 
Rhodococcus strains did not grow on solid medium in the presence of solvents with log 
Kow  values < 6.0 (Inoue and  Horikoshi, 1991). In our study no correlation between the 
log Kow values of the solvents and the level of tolerance of R. opacus strains was seen. Our 
results support the conclusions of other authors that in a two-phase liquid system, bacterial 
growth inhibition caused by solvents is not always correlated with the log Kow value 
(Vermuë et al, 1993; Aono et al., 2001). 
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4.5 Growth of R. opacus and G. polyisoprenivorans in biphasic 
liquids

We observed that strains GM-14 and GM-29 formed clumps of cells when grown in 
liquid media in the presence of hydrophobic organic solvents with a two-phase system 
(water-organic solvent). When strain GM-29 was cultivated in AMYE medium in the 
presence of 10 vol% of chlorotetradecane (log Kow 7.47), practically all cells accumulated 
in the organic-aqueous interface. Clump development was the reason for using the ATP 
content for measuring growth (Table 4.2). The cell surface of both strains GM-14 and 
GM-29 was highly hydrophobic (86-88%). The cell hydrophobicity was not dependent on 
culture conditions and remained the same regardless of whether the cultures were 
pregrown in AMYE medium with no solvent added or in KSN medium supplied with 
benzene, phenol or toluene (only for GM-29). We propose that the clumpy growth may be 
associated with the high level of cell wall hydrophobicity that resulted in migration of the 
cells from the aqueous to the organic phase. 

SEM was performed to assess whether the observed clumps were the result of 
accumulation of dead debris or represented living cell agglomerates. The SEM revealed 
that the cells were in flocks tightly adhered to one another (Fig. 4.4 A, B). The flocculated 
cells had smooth surfaces (Fig. 4.4 C) and were morphologically similar to those grown in 
the same medium in the absence of solvent (Fig. 4.4 D).

When strain GM-29 was grown in mineral KSN medium with toluene as the sole 
carbon source in amounts of 7 g l-1, the biomass mostly floated on the surface of the 
culture medium. There were more cells per 10-μl sample taken from the film floating on 
the aqueous medium surface (Fig. 4.5 A) than in that taken from the submerged aqueous 
phase (Fig. 4.5 C). When viewed at a magnification of 50,000×, the cells from the aqueous 
phase containing 470 mg l-l of dissolved toluene appeared wrinkled (Fig. 4.5 D). The cells 
harvested from the toluene-water interface had bleb-like structures visible on the surface 
(Fig. 4.5 B). Several authors observed similar appearances of blebs on the surface of M.
tuberculosis and M. smegmatis treated with membrane-active antimicrobial peptides 
(Miyakawa et al., 1996; Stenger et al., 1998), or  isoniazid (Vilcheze et al., 2000) or as the 
results of aging and/or nutrient depletion (Dahl, 2004). Similar change in morphology of 
R. opacus was observed under conditions of water stress (Alvarez et al., 2004).

When toluene was added in an amount of 1.5 vol% exceeding the aqueous solubility in 
KSN medium, the culture fragmented into short forms (Fig. 4.6 A). The cell surfaces were 
rough and the cells appeared to be collapsing (Fig. 4.6 B). The cells appeared extensively 
covered with blebs that may present fragments from damaged cells, indicating that toluene 
at high concentrations caused alteration of the cell envelope. 
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Figure 4.4 SEM and FESEM micrographs of R. opacus GM-29 grown in AMYE medium in the 
presence of 10 vol% of chlorotetradecane.
Micrographs at magnifications of 1,000× and 5,000× (A, B) were taken with SEM; those at 
magnification of 50,000× (C, D) with FESEM. Panels A, B, and C show samples taken from 
organic solvent-water interface. Panel D shows cells from AMYE medium with no organic 
solvent. The FESEM pictures were taken by Dr. K. Lounatmaa. 

We observed clumpy growth of G. polyisoprenivorans B293 on 1 g l-1 of benzyl-butyl 
phthalate (log Kow 4.84 ) or di-n-octyl phthalate (log Kow 8.54). In 5 days of cultivation 
almost all cells were in tight agglomerates (Fig. 1 in IV). Epifluorescence microscopy 
showed that the cells of B293 grew attached to droplets of the phthalate ester (Fig. 2 in 
IV).
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Figure 4.5 SEM and FESEM micrographs of R. opacus GM-29 grown in KSN medium with 
toluene as the sole carbon source.
Micrographs at 1,000× and 5,000× magnifications (A, C) were taken with SEM; those at 
magnification of 50,000× (B, D) with FESEM. Panels A and B show samples taken from the 
toluene-aqueous interface of a culture with 7 g l-1 of toluene (the concentration of toluene in the 
aqueous phase was 470 mg l-1). Panels C and D show samples taken from the aqueous phase of the 
same culture. The FESEM pictures were taken by Dr. K. Lounatmaa. 

From the results presented above we draw the following conclusions. R. opacus and R.
polyisoprenivorans strains were able to degrade resistant aromatic compounds at high 
concentrations. R. opacus was able to grow on a wide range of aromatic, including 
halogenated, compounds. The strains of R. opacus and G. polyisoprenivorans tended to 
grow on hydrophobic substrates by direct attachment to the liquid-liquid interphase. The 
ability of R. opacus GM-14 and GM-29 to grow in the presence of high concentrations of 
organic solvents and to form aggregates indicates that R. opacus is potentially able to 
degrade solvent-containing technical products and to biofoul instruments and surfaces.
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Figure 4.6 SEM and FESEM micrographs of R. opacus strain GM-29 cells adhered to toluene-
water interface from the culture where aqueous (mineral medium) phase was saturated with 
toluene (1.5 vol% toluene added). Micrographs were taken with SEM with 5,000× magnification 
(A) and with FESEM (B) using 25,000× magnification. The FESEM pictures were taken by Dr. K. 
Lounatmaa.

4.6 Toxic compound-induced changes in whole cell fatty acids of 
R. opacus GM-14 and GM-29

We attempted to determine the mechanisms of adaptation of R. opacus to toxic 
aromatic substances (V). The experiments were designed to observe any changes in the 
cells of R. opacus strains GM-14 and GM-29 in response to a challenge with phenol, CP, 
benzene or toluene (V). The relative proportion of saturated fatty acids in the whole cell 
fatty acids of R. opacus GM-14 and GM-29 increased when the bacteria grew on the 
aromatic compounds, as compared with cells grown on fructose (Figs. 4.7 and 4.8; Table 1 
in V). The increase in relative amounts of saturated fatty acids observed in cells of strain 
GM-14 grown on phenol or 4-CP, compared with those grown on fructose, was mainly 
due to the increased abundance of 10-methyl-branched fatty acids (from 2.4% to 15.4% or 
24.1%). The increase in contribution of 10-methyl-branched fatty acids from 2.4% 
(fructose) to 24.1% (4-CP) was mainly by TBSA (10-methyl-octadecanoic) (Table 1 in V). 
The relative amount of straight-chain saturated fatty acids remained constant: 48.8%, 
49.9% or 48.5%, in cells grown on fructose, phenol or 4-CP, respectively. When the cells 
of strain GM-14 were grown on benzene or CB, the relative amounts of both straight-
chain and of 10-methyl-branched saturated acids increased compared with cells grown on 
fructose (Fig. 4.7, Table 1 in V). Unlike the cells of strain GM-14 there was an increase in 
the amount of straight-chain-saturated acids in the cells of GM-29 grown on phenol 
compared with those grown on fructose (from 42.9% to 51.1%). When GM-14 was 
cultivated in various concentrations of phenol, there was a dose-related increase in 
abundance of saturated fatty acids (Fig. I A in V). This increase was mostly due to TBSA. 
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Similar dose-related increases in TSBA were observed in the cells of strain GM-14 grown 
in the presence of toluene (Fig.1 B in V).

These results show that fatty acid alteration, particularly the increase in TBSA, is 
associated with the adaptation of R. opacus strains GM-14 and GM-29 to the presence of 
hydrophobic toxic compounds. Gutierrez et al. (1999) proposed that increase in the 
abundance of saturated fatty acids in cells of Rhodococcus sp. 33 grown in the presence of 
benzene was a possible mechanism for tolerating benzene. These authors found 
hexadecenoic acid (16:1 6cis), witch is uncommon in Rhodococcus, but known to occur 
in some methanotrophs (Bowman et al., 1993), M. phlei (Suutari and Laakso, 1993) and 
Bacillus spp. (Moss and Daneshvar, 1992). We observed an increase in 16:1 7trans in the 
cells of R. opacus GM-14 grown on phenol (8.3%) and 4-CP (10.8%) compared with 
those grown on fructose (4.8%). This fatty acid was analysed with GC-MS and identified 
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Figure 4.8 Histogram showing the relative amounts  of the three major classes of fatty acids 
(straight-chain saturated, 10-methyl-branched saturated and unsaturated) in whole cell fatty acid 
composition of R. opacus GM-29 grown in KSN medium supplemented with fructose (1 g l-1),
phenol (0.5 g l-1), benzene (1 g l-1), and toluene (1 g l-1) as carbon sources.

The results of this study indicate a role played by fatty acids, particularly 10-methyl-
branched TSBA, in adaptation of the cells of R. opacus to toxic aromatic compounds.
An increase in 10-methyl-branched fatty acids was also observed as a response of M. phlei
and M. murale to increase in growth temperature (Suutari and Laakso, 1993; Vuorio et al.,
1999). Since hydrophobic solvents cause an increase in membrane fluidity, adjusting the 
degree of saturation of the cellular fatty acids plays a role in reduction of fluidity that in 
term result in lower permeability of toxic compounds into the cell (Sikkema et al., 1995; 
Ramos et al., 2002). The role of TBSA in such adaptation is presently unclear. 
Methylation of cis-unsaturated fatty acids to the corresponding, more stable 10-methyl-
branched acids, may help in maintaining a functional membrane under stressful 
conditions, such as ageing (Dhariwal et al., 1976; Kroppenstedt and Kutzner, 1976; Hallas 
and Vestal, 1978). An increase in the total amount of phospholipids and 
lipoarabinomannan, which contain TBSA, may also be one of the explanations.
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5. Conclusions 

The following conclusions summarize the main findings of this work: 

1. The taxonomic positions of strains isolated for their ability to grow on monoaromatic 
compounds and previously published strains were clarified in a polyphasic approach. 
Strains GM-14 and GM-29, isolated from contaminated soil as degraders of benzene and 
toluene, were identified as Rhodococcus opacus. The position of strain B 293, published 
earlier under different names, was clarified as a member of the species Gordonia
polyisoprenivorans.

2. Potentially hazardous bacteria were shown as significant parts of biofilms in man-
made environments. Several species of slowly growing mycobacteria were isolated from 
biofilms growing in water meters of public drinking water distribution systems, including 
Mycobacterium gordonae and M. lentiflavum, a species that is recognized as an important 
emerging pathogen. M. murale colonized the indoor walls of water-damaged buildings. G.
polyisoprenivorans B293 from contaminated soil utilized the phthalate esters used as PVC 
softeners, showing its potential to form biofilm on medical plastics.

3. Automated riboprinting with two restriction enzymes, EcoRI and PvuII, was a useful 
means for rapid characterization of several species of environmental mycobacteria, 
particularly M. lentiflavum. The database containing the EcoRI and PvuII ribopatterns of 
60 strains representing 32 species of slowly and rapidly growing environmental 
mycobacteria was constructed. 

4. R. opacus strains GM-14 and GM-29, G. polyisoprenivorans B293 and M. murale 
degraded a number of toxic organic solvents and other resistant compounds. Strain GM-14 
used as the sole source of carbon and energy a wide range (48 compounds) of aromatic 
substrates, including 15 different mono- and dihalogenated benzenes and 11 halogenated 
phenols. During growth of strain GM-14 on CB, 1,3-diCB, and all isomers of monoCP, 
stoichiometric amounts of chloride were released. R. opacus GM-29 and one strain of M.
murale degraded toluene. G. polyisoprenivorans B293 used four phthalic acid esters 
(benzyl-butyl phthalate, di-butyl phthalate, di-benzyl phthalate and di-n-octyl phthalate) as 
the sole carbon sources. The organism grew at the expense of the alcoholic side chains, 
accumulating phthalic acid as the dead-end product. 

5. This study revealed interesting characteristics of R. opacus GM-14 and GM-29 with 
respect to their tolerance to high concentrations of aromatic compounds. The strains grew 
in liquid medium in which organic solvents were added in excess of their solubility in 
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water. Strain GM-14 grew in aqueous solutions saturated with benzene or CB, 13 and 3 g 
l-1, respectively. Strain GM-29 grew in KSN medium supplemented with 7 g l-1 of liquid 
toluene or benzene as the sole carbon source, corresponding to aqueous concentrations of 
470 and 650 mg l-1, respectively. R. opacus GM-14 and GM-29 tolerated the presence in 
rich media of 19 different organic solvents at concentrations of 1%. Both strains grew 
when 10 vol% of n-pentane, ethanol, methanol, hexadecane, 1-chlorotetradecane, or 1-
chlorooctadecane were added to the liquid medium. In biphasic water/organic solvent 
systems, R. opacus GM-14, GM-29 and G. polyisoprenivorans B23 grew in water-solvent 
interfaces.

6. R. opacus GM-14 and GM-29 adapted to the presence of hydrophobic compounds in 
their growth environment by changing the lipid structure of their cell envelope. The most 
remarkable was change in the amount of TBSA from 2.4% in GM-14 grown on fructose to 
24.1% when grown on 4-CP. The content of this 10-methyl-branched fatty acid in GM-14 
increased in a dose-related manner in response to phenol or toluene in the medium even 
though toluene was not utilized for growth. The results suggest that the cell envelope 
lipids that contain 10-methyl branched-fatty acids are involved in the adaptation of R.
opacus to membrane-damaging compounds. 
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