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Immonen, K. 2000. Naudan lihasten glykogeenikonsentraatio suhteessa ruokintaan, teurastukseen ja lopulliseeen 
naudanlihan laatuun. Väitöskirja. EKT-sarja 1203. Helsingin Yliopisto. Elintarviketeknologian laitos. 64 + 44 s. 
 
 

TIIVISTELMÄ, FINNISH SUMMARY 
 
Tämän työn tarkoituksena oli tutkia: 1) naudan lihasten glykogeenikonsentraatiota kasvatustilalla, teuras-
kuljetuksen jälkeen sekä rigor mortis’n muodostumisen jälkeen suhteessa eri tyyppisiin ruokintoihin, 2) 
naudanlihan loppu-pH:n suhdetta jäännösglykogeenikonsentraatioon, sekä 3) jäännösglykogeenipitoisuu-
den vaikutuksia naudanlihan fysikaaliseen ja aistinvaraiseen laatuun. Työn tavoitteena oli tuottaa uutta 
tietoa integroitua ja kokonaisvaltaista naudanlihan laadunhallintaa varten. Tähän työhön liittyviä tutki-
muksia tehtiin kahdessa maassa: USA:ssa, Wisconsinin yliopistossa, Madisonissa, sekä Suomessa, Helsin-
gin yliopistossa. 

Näytteenottokohta vaikutti naudan longissimus thoracis et lumborum (LTL) lihaksesta mitattavaan 
glykogeenikonsentraatioon. Läheltä 10. kylkiluuta otetuissa näytteissä oli vähemmän glykogeenia (p≤0.05) 
kuin näytteissä, jotka oli otettu 11. kylkiluun kaudaaliselta puolelta. Naudan lihaksen toistuvaa näyt-
teenottoa voidaan varovasti pitää oikeutettuna sillä perusteella, että lihaksensisäinen hajonta oli 11.6% ja 
glykolyyttisen potentiaalin laskeminen poisti sijaintien välisten erojen merkitsevyyden. Saadut tulokset 
korostavat kuitenkin ko. lihaksen metabolisesti heterogeenistä luonnetta ja osoittavat, että LTL lihaksen 
toistuvassa näytteenotossa täytyy harjoittaa erityistä varovaisuutta ja harkintaa, etenkin jos biokemiallisia 
määrityksiä tehdään tuoreena pakastetuista lihasnäytteistä. 

Naudan lihaksen glykogeenikonsentraatio ei ollut ruokinnalla helposti manipuloitavissa. Etenkään li-
hakset, joiden glykogeenipitoisuus oli jo alussa suuri, eivät reagoineet ruokinnan energiapitoisuuden 
muuttumiseen. Mitä enemmän glykogeenia oli lähtötilanteessa, sitä vähemmän glykogeenia syntetisoitui 
lisää ruokintojen vaikutuksesta (r = −0.678 (FIN), r = −0.527 (USA), p<0.0001). Toisaalta, naudat kyke-
nivät lisäämään ja ylläpitämään lihasten glykogeenipitoisuutta jopa energiapitoisuudeltaan matalalla 
täyssäilörehuruokinnalla. Lisäksi lihasten glykogeenipitoisuus laski hyvin vähän, kun kuukauden 
energiapitoisuudeltaan korkealla rehulla ruokitut naudat vaihdettiin matalaenergiaruokinnalle. 
Luurankolihasten glykogeenipitoisuudelle näyttää olevan luonteenomaista se, että levossa ja 
stressittömissä olosuhteissa se pyrkii pysymään vakiona myös suhteellisen vaatimattomalla ruokinnalla. 

Maissi lisäsi härkien ja sonnien lihasten glykogeenipitoisuutta merkitsevästi paremmin kuin alfa-alfa 
säilörehu, kun lihasten glykogeenipitoisuus oli ensin laskettu adrenaliinilla keskimäärin tasolle 50 
mmol/kg. Urosstatuksella, sonni versus härkä, ei ollut johdonmukaista vaikutusta glykogeenipitoisuuteen 
eikä ruokinnan vaikutukseen glykogeenipitoisuuteen. Korkeaenergiaruokinta näytti kuitenkin suojaavan 
nautoja potentiaalisilta glykogeenia kuluttavilta stressitekijöiltä, kuten kylmiltä ja kuumilta säiltä, sekä 
toisaalta teuraskuljetukselta. Suomessa korkeanergiaruokitut sonnit menettivät glykogeenia 
teuraskuljetuksen aikana 7 ± 4.0 (se) mmol/kg keväällä (viileä ilma) ja 23 ± 3.9 mmol/kg kesällä (helle), 
kun taas mataenergiaruokittujen sonnien glykogeenipitoisuus laski teuraskuljetuksessa 16 ± 3.8 mmol/kg 
keväällä ja 33 ± 4.1 mmol/kg kesällä. Nämä vaikutukset heijastuivat aina lopullisiin pH-arvoihin (5.69 ± 
0.03 (korkeaenergia); 5.93 ± 0.03 (matalaenergia)) ja jäännösglykogeenipitoisuuksiin saakka. Ainakin 
Suomen olosuhteita ajatellen voidaan tehdä se johtopäätös, että lyhytkin (2 vk) teuraskuljetukseen asti 
kestänyt loppukunnostus paljon energiaa sisältävällä väkirehulla on toteuttamisen arvoinen toimenpide, 
sillä sen suojaavat vaikutukset suuntautuvat selvästi stressitilanteisiin liittyvän glykogeenikatabolian ja 
vaarana olevan pH:n nousun hillitsemiseen sekä näin ollen tervalihaisuuden ehkäisemiseen. 

Naudanlihan loppu-pH:n ja jäännösglykogeenikonsentraation riippuvuus oli epälineaarinen. Jäännös-
glykogeenipitoisuuden vaihtelu oli valtavan suuri, 10−83 mmol/kg, ja loppu-pH-arvosta riippumaton nor-
maalin pH:n alueella (pH≤5.75). Matalien jäännösglykogeenipitoisuuksien voidaan katsoa toimivan indi-
kaattoreina teurastusta edeltäneestä glykogeenikataboliasta. 

Jäännösglykogeenilla oli monia itsenäisiä, joskin merkitykseltään vaatimattomia vaikutuksia pH-arvol-
taan normaalin naudanlihan fysikaaliseen ja aistinvaraiseen laatuun. Jäännösglykogeenipitoisuus vaikutti 
lihan vedenpidätyskykyyn, mm. valuman ja sulatushävikin muodossa, kuten myös tuoreen lihan punai-
suuteen, leikkausvoimaan, sekä pihvin värin b*-arvoon. Ko. vaikutuksista valumaan, leikkausvoimaan ja 
pihvin b*-arvoon kohdistuneet olivat luonteeltaan positiivisia. Kaiken kaikkiaan jäännösglykogeenin 
laatuvaikutuksista voidaan todeta, että erittäin paljon tai vain vähän glykogeenia sisältäneet näytteet 
poikkesivat laadultaan hieman toisistaan. Sitä vastoin keskimääräisen runsaasti glykogeenia sisältäneiden 
näytteiden laatukäyttäytyminen oli jommankumman edellisen kaltainen. Jäännösglykogeenin negatiiviset 
vaikutukset laatuun, kuten sulatus- ja paistohävikkiin, pihvin mehukkuuteen sekä tuoreen lihan 
punaisuuteen, eivät olleet sitä suuruusluokkaa, että ne aiheuttaisivat mitään toimintatarpeita. 
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ABSTRACT  
 
The aims of this study were to investigate: 1) bovine muscle glycogen concentration on-farm, after 
transportation to slaughter and after rigor mortis development in relation to various types of diets, 2) the 
relationship between the ultimate pH and residual glycogen concentration, and 3) the effects of residual 
glycogen on the physical and sensory quality of beef. The ultimate goal of this work was to gain additional 
knowledge and tools for integrated beef quality control. The experiments of this study were conducted in 
two countries: USA, at the University of Wisconsin-Madison, and Finland, at the University of Helsinki. 

Glycogen concentration in bovine longissimus thoracis et lumborum (LTL) muscle was affected by in 

vivo sampling location. Cranial locations, which were close to the 10th rib, had less (p≤0.05) glycogen 
than locations in the mid-section and caudal to the 11th rib. Present results substantiate the metabolic 
heterogeneity of the LTL muscle, and indicate that special care has to be taken in exercising repeated 
sampling, particularly, if biochemical analyses are to be performed on fresh-frozen muscle specimen. 
However, because the overall variation within the LTL muscle was not more than 11.6% and also because 
the calculation of glycolytic potential (GP) rendered locational concentration differences insignificant, the 
use of LTL in experiments requiring repeated sampling can be cautiously encouraged. 

Bovine LTL and gluteus medius (GM) muscle glycogen could not be easily manipulated with diets. 
Initially high muscle glycogen concentrations were not readily affected by the change in the energy 
density/energy content of the feed. The more there was glycogen initially the less glycogen increased (r = 
−0.678 (FIN), r = −0.527 (USA), p<0.0001). Persistence seems to be a characteristic of skeletal muscle 
glycogen even when a relatively low energy diet is consumed, since cattle were able to gain and maintain 
high glycogen concentrations with a low energy diet of 100% silage. Furthermore, muscle glycogen 
decreased minimally when low energy diet was provided following a month on high-energy diet.  Corn 
was superior to alfalfa haylage in increasing glycogen content in the muscles of steers and bulls, when the 
initial glycogen content was depleted to 50 mmol/kg with one subcutaneous injection of adrenaline. Male 
status, i.e., bull versus steer, did not consistently affect glycogen concentration nor responsiveness to 
dietary treatment. However, high-energy diet seemed to protect cattle from potentially glycogen-depleting 
stressors such as very low and high temperatures as well as transportation to slaughter. In Finland, the 
cattle on high energy lost 7 ± 4.0 (se) mmol/kg and 23 ± 3.9 mmol/kg during transportation in spring (cool 
weather) and in summer (hot weather), respectively, whereas the cattle on low energy diet lost 16 ± 3.8 
mmol/kg in spring and 33 ± 4.1 mmol/kg in summer. These effects of diet were reflected all the way to 
ultimate pH values (5.69 ± 0.03 (high energy); 5.93 ± 0.03 (low energy)) and residual glycogen 
concentrations. As far as the beef production in Finland is concerned, it can be concluded that even a short 
finishing of two weeks with a concentrate-based high-energy diet is well worth applying, because its 
clearly protective effects were directed at glycogen depletion and elevation of pH. Thus, it is one of the 
many appropriate measures to take in the fight against bovine dark-cutting, which is a well-known quality 
problem causing reduced shelf life and unattractively dark color. 

The relationship between pH and residual glycogen concentration was curvelinear. At normal pH 
values (pH≤5.75) the variation in residual glycogen concentration was enormous, from 10 to 83 mmol/kg, 
and independent of ultimate pH. Low residual carbohydrate serves as an indicator of diminished glycogen 
content at the time of slaughter. 

The independent effects of residual glycogen concentration on the physical and sensory quality of 
normal-pH-beef were somewhat numerous but quite modest. The water holding capacity, characterized 
e.g., with drip loss, and weight loss in thawing, was affected as were fresh meat redness (Hunter’s a* 
value), shear force, and Hunter’s b-value of the steak, of which the effects on drip loss, shear force, and 
b*-value of the steak color can be considered positive. Of all the quality effects of residual glycogen 
concentration, it can be concluded that it is mainly the beef having either low or very high glycogen 
concentration that behave slightly differently from each other, the beef having intermediate (somewhat 
high) residual glycogen concentration mostly follows the pattern of one or the other. The negative effects 
of high residual glycogen on beef quality ie., on weight loss in thawing and frying, sensory juiciness, and 
fresh meat redness, are not of the magnitude to call for action. 
 
Key words: bovine, diet, gluteus medius, glycogen, longissimus thoracis et lumborum, meat quality, pHu, 
residual glycogen 
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adr adrenalin 
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DM dry matter 
E energy (as in High E) 
EUROP European Community scale for the classification of carcasses of adult 

bovine animals 
EXP experiment 
Ext extensive housing 
FG fast-twitch, glycolytic muscle fibre 
FOG fast-twitch, oxidative, glycolytic muscle fibre 
Gly-diet glycogen concentration after 14 days on diet (paper IV) 
Gly-kill calculated glycogen concentration at the time of slaughter (paper IV) 
Gly-resid residual glycogen concentration (paper IV) 
Gly-rest resting muscle glycogen concentration (paper IV) 
GM gluteus medius muscle 
GP glycolytic potential 
HK hexokinase 
In-pen animal´s rank order in sampling within its penmates 
Int intensive housing 
kgF force in kilograms needed to shear meat with Instron 
Kill-gly calculated glycogen concentration at the time of slaughter (II) = Gly-kill (IV) 
LA lactic acid 
LL longissimus lumborum muscle 
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ME metabolizable energy 
MG macroglycogen (M=106

 –107
 ) 

NAD+
 nicotinic adenine dinucleotide 

NADP+
 nicotinic adenine dinucleotide phosphate 
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PCA perchloric acid 
PG proglycogen (M=400000) 
pHu ultimate pH 
PM psoas major  muscle 
p.m. postmortem ie. after death 
QC quality control 
rmin smallest coefficient of correlation 
Res-gly residual glycogen concentration (paper II) = Gly-resid (IV) 
SD standard deviation (sd) 
SE standard error (se) 
SM semimembranosus muscle 
SO slow-twitch, oxidative muscle fibre 
SS supraspinatus muscle 
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Temp-1 first temperament recording at sampling 
VFA volatile fatty acid 
WHC water holding capacity 
X mean 
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INTRODUCTION 
 

Glycogen has a crucial role as a substrate for energy metabolism of living muscle as well as the 

muscle turning into meat after the animal has been slaughtered. Muscle glycogen concentration 

at the time of slaughter is one of the most important factors affecting ultimate meat quality. 
 

Glycogen is a branched polysaccharide of α-D-glucose units. Most glucose residues are linked 

together by α-1,4-glycosidic bonds. Branches are generated by α-1,6-glycosidic bonds (Beitz, 
1993). The bush-like glycogen molecules have molecular weights in the millions. In skeletal 
muscle, glycogen forms subcellular particles designated as “glycogen particles”. These small 
particles contain glycogen and high concentrations of the major enzymes that synthesize and 

break down glycogen. Glycogen can be viewed as stored glucose that is rapidly mobilized and 

used to produce energy (Bechtel and Best, 1985). The enzymes involved in the hydrolysis of 
glycogen are phosphorylase, mobilizing the long straight chains as glucose-1-phosphate; 
transferase, transferring a chain of three glucose residues at the end of another chain; and 

amylo-1,6-glucosidase, cleaving the last remaining glucose residue from the 1,6-linkage as free 

glucose (Lehninger, 1993). 
 

The glycogen content in skeletal muscle is approximately 1.5-1.8 % (Monin, 1981; McVeigh 

and Tarrant, 1982) but will vary with exercise and nutritional status (Bechtel and Best, 1985). 
The breakdown of glycogen can be triggered by increased circulating adrenaline or by strenuous 

muscular activity. In addition, glycogen is slowly depleted during starvation. After the death of 
the animal when oxygen is no longer available, the postmortem breakdown of muscle glycogen 

yields lactic acid, the accumulation of which is responsible for the normal low pH of meat (5.5), 
the essential prerequisite for good meat quality. 
 

A low at-death glycogen content results in a raised ultimate pH that, in extreme cases, can be 

near 7 (Howard and Lawrie, 1956). Meat is referred to as having a quality problem called dark-
cutting if the ultimate pH is 6.0 or above. Any behavior and environmental circumstances that 
trigger one or more of the glycogen breakdown mechanisms in a living animal will cause dark-
cutting if the stress is allowed to persist for sufficient time (Tarrant, 1989a). 
 

The incidence of dark-cutting beef varies widely. In the case of young dairy bulls in Finland, it 
used to be a serious problem (> 25% dark-cutters), until single pens were implanted to most 
slaughter houses in Finland during the 1980’s lowering the incidence to 1-5% (Puolanne and 

Aalto, 1981). The incidence of dark-cutting has decreased, but the proportionate amount of 
elevated pH values, ie., 5.7−5.9, has remained rather high (Honkavaara, 2000, personal 
communication). 
 

The properties of meat that are of most interest to the consumer, e.g., tenderness, juiciness and 

flavor, are strongly affected by perimortal treatments: the physical conditions that are imposed 

on the animal in the last few days of life and on the carcass in the first few hours post-mortem 

(Marsh, 1993). Domestic animals often experience physiological insults when they are 

transported and handled. Transport and handling stress reduces carcass yield, degrades well-
being and meat quality (Lahucky et al., 1999). Indeed, in beef, it is stress rather than under-
nutrition that lowers the glycogen content and consequently elevates ultimate pH; it is thus the 

prevention of stress (particularly in the few days preceding slaughter and during transportation 

to slaughter) that must be the goal if dark-cutting is to be eliminated. It is obvious, though, that 
animals vary widely in their individual abilities to resist stress. (Marsh, 1993). 
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Stress may be climatic, such as intensive cold or heat; nutritional, due to feed deprivation; 
social, resulting from a low rank in the pecking order or internal, due to some physiological 
disorders, pathogens or toxins (Hafez, 1968). From this point of view, the “stressed” animal is 

considered abnormal and the condition regarded as undesirable (Stott, 1981). 
 

Even though great attempt has been made to minimize animal stress during transportation to 

slaughter, farmers themselves have little direct control over the stressors that are presented to 

the animals after they leave the farm. However, they could implement on-farm practices aimed 

at minimizing glycogen depletion, or alternatively at providing a ‘glycogen buffer’ prior to 

trucking (Lambert et al., 1998). 
 

An attempt to create the glycogen buffer could be made by modifying the pre-slaughter feeding 

practices to supply appropriate gluconeogenic precursors, especially propionic acid, (Lister, 
1989) to maximize the availability of blood glucose for cattle. What complicates this issue, is 

that there may be substantially less glucose available for ruminants than for non-ruminants on a 

high-carbohydrate or any diet (Lindsay, 1981). 
 

Muscle glycogen concentration as well as residual glycogen concentration of ruminant muscles, 
as well as the ultimate pH of meat have, however, been successfully manipulated with dietary 

energy modifications (Pethick et al., 1994; Pethick and Rowe, 1996). Therefore, it seems clear 
that this research area is yet far from completely understood as far as the metabolic events and 

their control mechanisms associated with the ruminant muscle glycogen, as well as its effects on 

ultimate meat quality are concerned. 
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REVIEW OF THE LITERATURE 

Characteristics of bovine carbohydrate metabolism 

 

Ruminants, so named because they ruminate (chew the cud), have a stomach that consists of a 

nonsecretory forestomach and a secretory stomach compartment (the abomasum). The 

forestomach consists of three compartments (the rumen, the reticulum, and the omasum) and 

serves as fermentation vat for the microbiological fermentation of the ingesta, mainly by 

hydrolysis and anaerobic oxidation. The fermentation end products (mainly volatile fatty acids 

(VFA)) that the ruminant absorbs and uses as its prime metabolic substrates are quite different 
from the end products of carbohydrate digestion (mainly glucose) in nonruminants. The 

abomasum, like the stomach of nonruminant animals, is largely concerned with the hydrolysis 

of protein by pepsin in an acid medium. The forestomach system allows the ruminant the use of 
diets that may be too fibrous for nonruminant animal, confers the ability to break down cellulose 

and allowing cellulose, itself the most abundant carbohydrate form present in the plant, to 

become a major nutrient, as well as allows the synthesis of high-biological-value microbial 
protein from low-biological-value plant protein, from dietary nonprotein nitrogen, and from 

recycled nitrogenous metabolic end products (e.g., urea). The fermentative end products of all 
carbohydrates are mainly acetic, propionic, and butyric acids (Leek, 1993). 
 

Absorption of monosaccharides resulting from digestion of dietary carbohydrates constitutes a 

major, though variable, source of blood glucose in nonruminants. Although only small amounts 

of glucose are absorbed in most dietary situations in ruminants, glucose availability to ruminant 
tissues as measured by isotope dilution was shown to be substantial, indicating that 
gluconeogenesis is a major metabolic activity in both fed and fasted states (Annison and Bryden, 
1999). Blood glucose level is thus maintained with endogenous synthesis of glucose in the liver 
from glucogenic compounds, such as glycogen, glucogenic amino acids, and glycerol, and, 
additionally, propionate in ruminants and pre-ruminants, such as the horse. Not surprisingly, 
the glucose production is linearly related to the availability of its precursors in plasma (Lindsay, 
1978). The role of glucose in ruminant metabolism was recognized by D. B. Lindsay who 

concluded that glucose requirements in ruminants are similar in magnitude to those of non-
ruminants (Lindsay, 1959).  In ruminant animals, gluconeogenesis is of continual importance 

(Lindsay, 1978) because most dietary carbohydrates are fermented primarily to VFAs in the 

alimentary tract, and the propionate and the lesser amounts of valerate contribute to about half 
of the glucose synthesis in the liver (Bergman, 1973; Lindsay, 1978). Glucose availability for 
ruminants has thought to be limited because their blood glucose does not increase significantly 

after a meal (Lindsay, 1978). Furthermore, the mean blood glucose concentration of cows and 

mature sheep is only 2.2−4.4 mmol/l compared to pigs (4.4−6.7 mmol/l), horses (3.3−6.1 

mmol/l) or dogs (3.9−6.7 mmol/l) (Swenson, 1993). However, Ballard et al. (1969) concluded 

that the rate of glucose production was approximately proportional to a power of (W0.8) of body-
weight and that ruminants and non-ruminants showed little difference in this respect. 
 

On certain diets, particularly those containing ground corn or sorghum, appreciable amount of 
starch escape rumen fermentation so that up to 15−20% may be digested in the small intestine 

(Lindsay, 1981). In this case glucose is absorbed as such and contributes directly to the level of 
glucose in blood. For the diets, which contain ground corn, the glucose requirement could 

possibly be met by that absorbed from small intestine. Where the glucose supply is in any way 

precarious it would seem that the inclusion of ground corn in the diet might constitute a useful 
precaution (Lewis and Hill, 1983). However, even on diets containing high amounts of 
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concentrate, the absorption of glucose from the gut accounts for less than one-third of the 

whole-body glucose turnover (Bergman, 1973; van der Walt et al., 1983). 
 

In many species, glucose is recognized as the major source of glycerol used in triacylglycerol 
synthesis, and glucose oxidation provides much of the energy required for fatty acid synthesis 

(Vernon, 1981). In cattle fed grain, there is little uptake of glucose in the adipose tissue 

(Reynolds et al., 1988), suggesting that under normal feeding conditions, the contribution of 
glucose to fatty acid synthesis is low. The short-chain volatile fatty acids probably represent two-
thirds of the energy supply of the ruminant and are utilized in many ways that spare or form 

glucose. Acetic and butyric acids, on the other hand, do not give rise to blood glucose (Lewis 

and Hill, 1983). 
 

It may be relevant that insulin secretion in ruminants is stimulated not only by glucose but also 

by several volatile fatty acids (propionate, butyrate, isovalerate and valerate) (Horino et al., 
1968; Brockman, 1982). This insulin-stimulating effect of propionate seems odd, though, since 

insulin is an effective inhibitor of hepatic gluconeogenesis (Lehninger, 1993), by which 

propionate is converted to glucose. In fact, Pösö and Hyyppä (1999) showed that propionic acid 

given to horses by naso-gastric tube post-exercise prevented any rise in insulin concentration. It 
may also be relevant, that the molar ratio of insulin:glucagon in ruminants is approximately 2, 
whereas for monogastric animals consuming high carbohydrate diets this value is nearer 100 

(Lister, 1989). Glucagon stimulates the glycogenolysis and more importantly, the 

gluconeogenesis in the liver (Lehninger, 1993), and thus, increases the hepatic output of 
glucose, which is of much greater importance to ruminants than to monogastrics in the 

homeostasis of blood glucose. 
 

Other dietary constituents also contribute carbon for the ruminal VFA synthesis. For example, 
when cellulose rather than starch is the major dietary carbohydrate for cattle, acetate is the 

major VFA produced. Increasing the proportion of starch will increase ruminal production of 
propionate and valerate and decrease production of acetate and butyrate (Beitz, 1993). Rumen 

fermentation may be shifted towards more propionic acid when diets with a high concentration 

of degradable starch are used (Fiems et al., 1999). Clearly the proportions of different VFAs 

will vary with the quantity and quality of food consumed and the physiological status of the 

animal (Annison and Bryden, 1999). 
 

Acetate is a major source of energy. It has been demonstrated to have relatively high 

contribution to total oxidative metabolism in sheep (Annison and Lindsay, 1961). Acetate is 

rapidly metabolized by the body (Brockman, 1993), and its uptake by muscles is increased by 

insulin (Knowles et al., 1974). About 26% of respiratory CO2 of sheep is derived from acetate 

(Pethick et al., 1981). 
 

It is well recognized, however, that the carbohydrate economy of the ruminant is vulnerable and 

changes in an animal’s diet or demand for carbohydrate may alter carbohydrate balance in a 

devastating fashion (Lister, 1989). Acute and chronic acidosis, conditions that follow ingestion 

of excessive amounts of readily fermented carbohydrate, are prominent production problems for 
ruminants fed diets rich in concentrate (Owens et al., 1998). Rapidly degradable carbohydrate 

may provoke acidosis (Fiems et al., 1993). 
 

In the study of Fiems et al. (1999) dietary starch characteristics, ie., ingested levels, and 

degradability, did not modify blood concentrations of lactate and glucose, but the urea 

concentration was higher for the cattle consuming high amounts of starch with the highest 
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degradability. Preference for the offered silage was different between groups. Animals 

consuming high amount of starch with low degradability preferred to eat the concentrate before 

the silage, whereas the silage was mostly eaten before the concentrate by animals consuming 

high amount of starch of high degradability. It was concluded that diets having large amounts of 
highly digestible fiber or rapidly degradable starch, may impair intake, growth rate and some 

meat quality parameters, when both feeds are fed separately (Fiems et al., 1999). 
 

Glycogen in bovine muscle 

Concentration and metabolism at resting state 

Although muscle in general can utilize both carbohydrates and lipids, most of its energy at rest 
is derived from the oxidation of circulating free fatty acids (Lindsay, 1981) and no net glycogen 

consumption can be measured (Tarrant, 1989a). As metabolic demand increases, carbohydrates 

are more readily utilized (glycogen breakdown and glucose transport). Ruminant muscles differ 
from those of monogastrics to some extent, since the main metabolic substrate provided by 

ruminants’ digestive processes is acetate, which is taken up from the blood by muscles as well as 

adipose tissue and oxidized for energy as such (Vernon and Peaker, 1983), and may account for 
35-40% of oxygen consumption (Lindsay, 1981). In man, acetate is likely to be significant as a 

substrate only following alcohol ingestion (Lindsay, 1981). Skeletal muscles are also capable of 
deriving considerable amounts of their chemical energy needs from ketone bodies, and thus, are 

less dependent upon blood glucose than e.g., the brain (Beitz, 1993). This is especially relevant 
in ruminants for which keto acids are constantly available through conversion of butyric acid in 

the rumen epithelium, whereas in monogastrics keto acids are produced and ketosis of varying 

intensity induced by starvation, high-fat or low-carbohydrate diets, impaired liver function, 
anesthesia, and endocrine disorders, such as diabetes mellitus (Bergman, 1993). Ruminant 
muscles get nearly half of their energy from ketones and acetate (Lindsay, 1981). 
 

In resting cattle, muscle glycogen is restored primarily by synthesis from blood glucose and used 

stingily in metabolic processes. The average concentration glycogen is 80-100 mmol/kg (Table 

1). Not all muscle glycogen is synthesized from glucose originating directly from liver glycogen; 
some glucose absorbed from the alimentary tract may serve directly in muscle glycogen 

synthesis. Major part of the glucose uptake from blood by skeletal muscle is dependent upon 

insulin (Beitz, 1993), which appears to be able to increase the uptake as much as five-fold at 
very high concentrations (Prior et al., 1984). However, despite denial of food and water mature 

exhausted lambs (Chrystall et al., 1981), and adrenalin-treated heifers (McVeigh and Tarrant, 
1982) were able to replenish their muscle glycogen stores. 
 

In sheep, glucose uptake by the muscle is greatest in well-fed, non-pregnant, non-lactating 

animals. The amount taken up could account for 30-40% of the oxygen consumption, assuming 

that it is all oxidized. By using 
14C-glucose, Lindsay (1981) found, however, that on average 

only 6% of CO2 appeared to be derived from glucose. Possible explanation for this could be the 

synthesis of muscle glycogen, for which the glucose taken up could have primarily been used. 
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Table 1.  Resting bovine muscle glycogen concentrations measured by various authors. 
 

Muscle [Glycogen]  
(mmol/kg) 

Type of cattle  Reference 

    

LTL 82−86 Simmental, Hereford, Angus Crouse et al., 1984 

LTL 87 Irish Friesian bulls Lacourt & Tarrant, 1985 

LTL 58 French Friesian bulls Lacourt & Tarrant, 1985 

LTL 91−110 Beef breed x Friesian steers Lambert et al., 1998 

LTL 90 Friesian bulls McVeigh & Tarrant, 1981 

LTL 80−111 Hereford heifers McVeigh & Tarrant, 1982 

LTL 90−94 Friesian bulls McVeigh et al., 1982 

LTL 77, 80 Pirenaico, Brown Swiss bulls Sanz et al., 1996 
    

 

 

Entire muscles can be classified to red/white, slow/fast, oxidative/glycolytic (Ashmore and 

Doerr, 1971; Peter et al., 1972) according to the fiber types predominantly represented in the 

muscle. In well-fed and rested sheep, the glycogen level was markedly higher in the fast-red 

LTL and A (adductor) (90 to 105  mmol/kg) than in the fast-white (about 75 mmol/kg) or slow-
red (about 80 mmol/kg) muscles. In bovine muscles, however, the differences may not be quite 

so marked, but a trend for a higher glycogen level in faster muscles could be observed (Monin, 
1981; Lacourt and Tarrant, 1985). 
 

Zerouala and Stickland (1991) compared muscle fiber type characteristics in normal versus 

dark-cutting beef carcasses. They found that there were proportionately more slow, oxidative 

(SO) fibers in dark-cutting (DC) bulls and steers than in normal bulls. DC bulls also contained 

fewer of the fast, glycolytic (FG) fibers than DC steers and normal bulls. Furthermore, when all 
oxidative muscle fibers (SO and FOG) were taken into account, the two dark-cutting groups, 
and particularly the DC bulls, exhibited significantly more oxidative metabolism in the LTL 

muscle than the normal animals. 
 

Biochemical analysis of glycogen concentration 

The results on glycogen concentration were found to be very similar if the hydrolysis of 
glycogen was done by incubation in acidic medium (HCl) or enzymatically by amylo-α-1,4-α-
1,6-glucosidase, both followed by enzymatic analysis of the resulting glucose (Passoneau and 

Lauderdale, 1974). However, glucose is known to be slowly destroyed when heated in neutral 
solution and the rate of destruction is accelerated by sulphuric acid, but a much greater extent by 

hydrochloric acid (Desmecht et al., 1995). On the other hand, with the commonly used method 

of homogenizing muscle into perchloric acid (PCA) and analyzing glycogen from the precipitate 

has been reported to underestimate the total concentration of glycogen, since only a portion of 
the total glycogen is extracted during PCA treatment (Hultman, 1967; Karlsson, 1971; 
Hermansen and Vaage, 1977). Jansson (1981) compared this method to those based on glycogen 

hydrolysis with acid or enzyme and documented that about 15-25% of the glycogen was PCA 

soluble. 
 

Investigators studying glycogenin, the protein core of glycogen molecule, have recently found 

that there were two pools of glycogen in rodent muscle and other tissues such as liver and heart. 
One of the fractions was of smaller molecular weight (400,000) and relatively rich in protein, 
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and the other type was the “classic” glycogen of larger molecular weight (10,000,000) (Lomako 

et al., 1991; Lomako et al., 1993; Alonzo et al., 1995). These molecular forms are referred to as 

proglycogen (PG) and macroglycogen (MG), and they differ in the ratio of protein to 

carbohydrate. 
 

PG was found to precipitate in trichloroacetic acid because of its 10% protein component 
(Lomako et al., 1993), while MG was soluble because of its low protein content of 0.35%. 
Adamo and Graham (1998) compared the traditional glycogen methods, with acid or enzymatic 

hydrolysis, to macroglycogen and proglycogen analysis of glycogen using both rodent and 

human muscle. They found that the PG fraction was always in excess of MG, which was 6-10% 

of total glycogen in rodent muscle. In human samples, however, the molar proportion of 
macroglycogen as glucose residues increased to about 40% when total glycogen was high. At a 

total glycogen concentration of 11 mmol/kg, the MG:PG ratio was 13:87. As the total glycogen 

increased to 46 mmol/kg the ratio increased to 19:81. At glycogen concentrations of 85 

mmol/kg and 133 mmol/kg the ratios increased further to 25:75 and 38:62. 
 

Adamo and Graham (1998) also documented that the methods based on acid and enzymatic 

hydrolysis of glycogen did not give systematically and significally different results, and that the 

determination of total glycogen as MG + PG did not differ from either of the two. 
 

Utilization of glycogen 

Many details of the fine structure of the glycogen molecule are still unknown, but the model of 
Whelan, mainly derived from data on enzymic degradation of glycogen is generally accepted 

(for details, see Meléndez-Hevia et al., 1993). The degree of branching of glycogen molecule is 

equal to 2 so that in every B-chain, there are two branches creating new A- and B-chains (see 

Figure 1a.). There are four glucose residues between branches and a tail of four residues after 
the second branch in the B-chains. Every B-chain is, thus, in the inner tiers, whereas all the A-
chains are within the outer tier (Figure 1b.). 
 

It has been demonstrated by several groups that the availability of phosphorylated glucose (G-1-
P) is the most critical variable in controlling glycolytic flux (cf. Meléndez-Hevia et al., 1993). 
Furthermore, the limit for the action of phosphorylase is about 4 glucose residues (Walker and 

Whelan, 1960). From the above data it has been derived that there are the same number of A-
chains (all of them in the last tier) as B-chains, and that the amount of glucose directly available 

to be released from glycogen molecule by phosphorylase is 34.6% of the total molecule, 
independent of the size (number of tiers) of the glycogen particle (Meléndez-Hevia et al., 1993). 
Interestingly, Passonneau and Lauderdale (1974) analyzed the proportion of outer tiers of total 
glycogen concentration by digesting the sample with phosphorylase A but not with the 

debranching complex, and ended up with 32.2%. As it is also known that while phosphorylase 

is extremely abundant and active in skeletal muscle (Ryman and Whelan, 1971), the activity of 
glycogen debranching enzyme has, at the maximum, only 5−10% of the activity of glycogen 

phosphorylase. The weight ratio of phosphorylase to debranching enzyme is 10:1 in skeletal 
muscle, and this limited the rate of liberation of G-1-P from the in vitro substrate (limit dextrin) 
to 10% of the maximum speed (Taylor et al., 1975). 
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Figure 1. Scheme showing the 

structure of the glycogen molecule as 

stated in Whelan’s model (Gunja-
Smith et al., (1970; 1971); see also 

Goldsmith et al., (1982) and 

Meléndez-Hevia et al., (1993). 
 

The degree of branching (r) is 2; therefore, each tier has twice the number of chains as the previous one. Each A- or B-chain 

has 12-14 residues and there are 12 tiers (t=12) in the molecule, which means about 53 000 glucose residues. a) Extended 

structure to show the branching structure; b) a more realistic drawing showing the disposition of the successive branches 
forming concentric tier (numbered circles). Figure and the text are adapted from Meléndez-Hevia et al. (1993). 

 

 

The key regulatory enzyme involved in the breakdown of muscle glycogen is glycogen 

phosphorylase, which can be either in active (phosphorylase A) or inactive (phosphorylase B) 
form. This phosphorylation of glycogen yields glucose-1-phosphate (G-1-P), which is then 

rapidly converted to G-6-P by phosphoglucomutase. This degradation begins from the non-
reducing ends of each chain (A-chain) and continues until four glucose residues of a branch 

remains (B-chain). The branches of the glycogen molecule, on the other hand, are eliminated by 

a debranching enzyme complex of dual activity: first transferring (transferase) the chain of 
three glucose residues to another non-reducing end and then cleaving the last remaining residue 

at the α–1,6 linkage as free glucose (amylo-1,6-glucosidase) (Beitz, 1993). 
 

Glycogen is mobilized by unaccustomed physical exercise and also by acute or chronic 

environmental stressors. The degradation of glycogen can be induced by adrenaline (hormonal) 
binding to the β–adrenoreceptors on the muscle cell membrane; by electricity (contractile) either 
by a natural action potential leading to muscle contraction, or exogenous electrical stimulation; 
or by a combination of adrenergic and contractile mechanisms. Also fasting, if continuing long 

enough, depletes glycogen slowly (for a concise review, see Tarrant (1989a)). Thus, although 

the stimulus to glycogen metabolism may differ – physical, emotional or environmental – the 

metabolic response will have a common basis (Lister, 1989). All cattle subjected to a given 

stressor do not react the same. Temperament and excitability are hereditary (Stricklin et al., 
1980) and variation in animal temperament is common. 
 

It takes very little adrenaline to stimulate the initial enzyme, adenyl cyclase. Nanomolar 
concentrations of the hormone lead to micromolar concentrations of cAMP within the cell 
(Lehninger, 1993). In muscle, it has been estimated that a given concentration of cAMP 

initiates the formation of 25 000 times as much G-1-P per minute (Heffron, 1981). The effect of 
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adrenaline is to potentiate the activation caused by Ca2+ (Lehninger, 1993). This activation 

occurs at similar Ca2+
 concentrations, which initiate muscle contraction (about 10-6). The 

enzyme protease kinase has four binding sites for calcium ions, but is active already when only 

two calcium ions have been bound. 
 

Glycogen is used as fuel for the exercise of skeletal muscle. The rate of use depends on work 

intensity (Pethick, 1993). Exercise-induced depletion of muscle glycogen does not occur readily 

in cattle. Howard and Lawrie (1956) found that 1.5 h of exercise were insufficient on its own to 

cause a significant reduction of glycogen levels in the LTL muscles of hard driven steers. 
Exercise combined with long train journey did, however, cause a slight elevation in ultimate pH 

(Howard and Lawrie, 1956). Fasting, on the other hand, lowered the glycogen level in LTL of 
steers but not sufficiently to affect ultimate pH. Dark-cutting was not produced by fasting 7, 14 

or even 28 days (Howard and Lawrie, 1956). Lambert et al. (1998) walked steers over a 2.5 km 

course once or twice at a speed of either 4 km/h or 8 km/h and found that exercise did not affect 
glycogen concentration in the LTL muscle in any combination. The authors concluded that 
walking mature, well-fed steers of moderate live weight (400−500 kg) at a moderate speed for 
40 minutes is not likely to significantly deplete muscle glycogen content. They speculated that 
fast-walking of steers does not elicit the same generalized physiological effect as 

fighting/mounting activity of bulls; and/or they did not exercise the steers strenuously enough, 
or for long enough to deplete glycogen; and/or release of adrenaline may be required before the 

level of exercise they imposed would significantly reduce muscle glycogen. 
  

Glycogen utilization may be influenced by the concentration of glycogen. It has been suggested 

that preexercise glycogen concentration correlates positively with the rate of glycogen 

breakdown during exercise in man (Bergström et al., 1967; Gollnick et al., 1972; Galbo et al., 
1979; Gollnick et al., 1981) and rats (Richter and Galbo, 1986). 
 

However, it should be remembered that oxidative metabolism normally plays a dominant role in 

skeletal muscle ATP production. It is a well-established concept that oxidation of fat [mainly 

acetate and ketone bodies in ruminant muscles] can provide essentially all the energy required 

by working muscle during light to moderate exercise (Bechtel and Best, 1985). Furthermore, 
only working muscle groups utilized glycogen during the work period (Bergström and Hultman, 
1966) and no glycogen depletion was measured in the resting muscle groups. The beef muscles 

with the highest pH values, ie., LTL, semitendinosus, semimembranosus, adductor and gluteus 

medius, may be selectively active prior to slaughter, as could be the case in repetitive strenuous 

activity such as aggression and mounting (Tarrant and Sherington, 1980). 
 

McVeigh and Tarrant (1981) mixed bulls in pairs with an established group of bulls. One of 
each pair was given propranolol, a drug that blocks the β–adrenoreceptors of muscles and thus, 
prevents the effect of circulating adrenaline on glycogen metabolism. Muscle biopsy samples 

were taken 1, 3 and 5 h after initiation of the mixing during the stress and then again at 24 and 

72 h during recovery. The mixing resulted in a high level of physical activity, which eventually 

led to exhaustion and fatigue in both control and propranolol-treated animals. Muscle glycogen 

concentration got lower at all sampling points during the stress in both treated and untreated 

bulls. Propranolol had a small protective effect against glycogen depletion during the initial part 
of the stress, but was finally totally ineffective in preventing glycogen loss, which after 5 h of 
stress increased to 63% and 55% in propranolol-treated and control bulls, respectively. The 

authors concluded that glycogen depletion during mixing stress is not predominantly mediated 

by catecholamines (McVeigh and Tarrant, 1981). The glycogen depletion during mixing is most 
probably caused by the increased intracellular energy demand during muscle contraction, 
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combined with β–adrenergic activation of glycogenolysis. Propranolol was effective, however, 
in reducing muscle glycogen depletion during a 4 h transportation stress in lambs (Monin and 

Gire, 1980), which indicates that, contrary to mixing stress in young bulls, glycogen breakdown 

during transportation may be predominantly mediated by catecholamines (Tarrant, 1989a,b). 
 

In young bulls subjected to mixed penning, glycogen loss was greater in fast-twitch fibers than 

the slow-twitch fibers (Lacourt and Tarrant, 1985). On the contrary, adrenaline administration 

caused a greater loss of glycogen in the slow-twitch fibers, which may, thus, be more responsive 

to circulating adrenaline than the fast-twitch fibers (Lacourt and Tarrant, 1985). 
 

Crouse and Smith (1986) found, that in biopsies taken 0.5 and 24 h after a 15-min period of 
continuous muscle contraction, glycogen content of LTL muscle was not different from 

precontraction concentrations. Subcutaneous administration of adrenaline resulted in a 30−35% 

reduction of muscle glycogen. Reduction was slightly greater when the two treatments were 

combined compared to the effect of adrenaline alone. The authors concluded that the data 

indicates that reports of increased glycogenolysis observed in cattle subjected to mixing stress is 

due to dynamic muscle contraction and not due to isometric muscle contraction. 
 

In practice, stressful situations may have both physical and emotional effect in varying degree. 
An animal may experience emotional stress during transport followed by physical stress during 

mixed penning at the abattoir (Tarrant, 1989a,b). It has been suggested that the main cause of 
glycogen depletion and the occurrence of dark-cutting is the physical and emotional stress of 
mixing unfamiliar bulls overnight (Puolanne and Aalto, 1981; Sanz et al., 1996). 
 

The average rate of glycogen depletion is slower in ruminants compared to monogastrics. 
Whereas men during intensive exercise utilize glycogen at the rate of 64 µmol/g/h (Hultman et 
al., 1974) and horses during high-speed trotting at the rate of 678 µmol/g/h (Lindholm & 

Saltin, 1974), the average rate of glycogen breakdown in young bulls severely stressed by co-
mingling or adrenaline administration was reported to be 10−11 µmol/g/h (range 5 to 24) 
(McVeigh & Tarrant, 1983; Tarrant & Lacourt, 1984). Even though the maximum utilization 

rate of 24 µmol/g/h is sufficient to affect meat ultimate pH after only one hour of mixed penning 

(assuming an initial resting glycogen content of 80 µmol/g and an absolute requirement of about 
57 µmol of glycogen/g of muscle to achieve an ultimate pH of 5.5 in beef LTL muscle), it takes 

little over 2 h to affect meat ultimate pH with the average depletion rate (Tarrant, 1989a) or 
even 4 h if the initial glycogen content is around 100 µmol/g. It seems, therefore, that even 

when the energy demand of ruminant muscles increases, as in heavy exercise or in stress, their 
muscles are not likely to mobilize glycogen as fast as those of monogastrics. 
 

Dietary effects on glycogen resynthesis  

Attempts have been made to increase the availability of glucose to ruminants, and thus, enhance 

muscle glycogen synthesis, by causing intentional changes in ruminal fermentation. This 

modification may include 1) increase in the proportion of concentrate feed (in order to increase 

the amount of volatile fatty acids (VFA) and particularly the proportion of the only glucogenic 

VFA, propionate), 2) feeding of urea supplements along with concentrates (to promote microbial 
protein synthesis), 3) administration of selective antibiotics, such as monensin (to reduce methane 

energy losses and to promote increased propionate production), 4) use of probiotics, such as yeast 
cultures (to reduce the negative associative effect of concentrates on cellulolysis), and 5) feeding of 
nutrients in a form that will largely protect them from fermentation without affecting enzymic 

degradation lower down the gastrointestinal tract (Leek, 1993). 
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After depletion of glycogen levels due to fasting, strenuous physical exercise or stress of some 

sort, the repletion of muscle glycogen concentration starts. Transported and exercised 

(exhausted) lambs were able to slowly replenish their muscle glycogen despite denial of food 

and water (Chrystall et al., 1981). The mean ultimate pH values after 17h and 24h of rest, ie., 
5.85 and 5.71, were still higher than in the control groups (5.52 and 5.62) (Chrystall et al., 
1981). Howard and Lawrie (1956) concluded that resistance of steers to fasting appeared to be 

much greater than that of rabbit and other non-ruminants. Fasting for 96 h reduced the muscle 

glycogen concentration of bulls from 77 mmol/kg to 50 mmol/kg (35%) (Crouse et al., 1984). 
Muscle glycogen remained low until day 3 when it started to elevate at a rate of 3 mmol/kg/d. 
The authors concluded that attempting to attain a glycogen buffer by fasting and refeeding is not 
feasible. 
 

Cows fed high energy diets (metabolizable energy 200 MJ) with 50% of diet fed as concentrates 

have higher baseline serum glucose and insulin concentrations, compared with cows fed lower 
energy diets (metabolizable energy 110 MJ) with 10% of diet fed as concentrates (Holtenius et 
al., 1996). On the other hand, cows fed diets equal in energy and protein but with different 
ratios of concentrates and forages have similar serum glucose and insulin concentrations 

(Holtenius et al., 1996). Andersson et al., (2000) administered glucose intravenously in Holstein 

bulls to test their glucose tolerance and the insulin response curve, since an acute increase in 

blood glucose concentration is a stimulus for insulin secretion from the pancreas. Following the 

infusion, the blood glucose concentration increased in 30 min from the baseline value of 3.8 

mmol/l (range 3.6−4.1) to 10.2 mmol/l (range 8.8−11.5). In 240 min the glucose concentration 

slowly decreased back to the values similar to the baselines (3.2−4.7 mmol/l). The carbohydrate 

metabolism of ruminants does not allow extra storage of glycogen to be achieved in muscle even 

by feeding a diet rich in carbohydrate. However, glucose availability (for energy purposes or 
storage) could be, at the very least, increased by feeding diets containing ground corn (Lister, 
1989). The ruminal digestion of corn versus barley starch may be pertinent to a glycogen 

enhancement strategy. Up to 15-20% of the starch of ground corn escapes microbial digestion in 

the rumen (Lindsay, 1981) and is absorbed from the small intestine as glucose, which 

supplements gluconeogenic glucose and may further elevate muscle glycogen concentration. 
 

McVeigh and Tarrant (1982) fed heifers barley or hay, or alternatively fasted for 9 days, to 

achieve high, low and zero dietary energy intakes. During the control period, when all 
experimental animals were fed either hay or barley, the hay-fed animals had a glycogen 

concentration of 80−90 mmol/kg, whereas the barley-fed animals had significantly more 

glycogen, ie., 108-111 mmol/kg. Adrenalin treatment reduced the glycogen concentration to 

38%, 27% and 25% of the control values in the barley-fed, hay-fed or fasted heifers, 
respectively. The rate of glycogen repletion through days 1 to 7 was 7.6 mmol/kg/d in barley-
fed, 6.1 mmol/kg/d in hay-fed and 1.5 mmol/kg/d in fasted animals, respectively. The rate of 
repletion was not significantly different between the two fed groups. Nevertheless, feeding the 

high-energy diet led to a higher resting glycogen concentration in the muscle allowing glycogen 

to be synthesized somewhat in excess to the pre-stress concentrations. Furthermore, blood 

glucose was higher in animals fed barley compared to the hay-fed or fasted animals. The 

authors concluded that resting muscle glycogen concentration of beef heifers as well as the 

glycogen repletion rate are influenced by the type of diet (high versus low energy intake), and 

that the slow repletion rate in beef muscle was caused by a low glucose availability. They also 

noted that the fasting for 9 days lowered the rate of glycogen recovery to such an extent that is 

highly unlikely that a fasted, glycogen-depleted animal could recover sufficient glycogen after 
transportation to slaughter to ensure normal meat quality. 
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After mixing stress, the glycogen concentration of bulls increased at a rate of 6.6 mmol/kg/d for 
the first 7 days when feeding a concentrate barley diet (McVeigh et al., 1982). For the first 2 

days the rate was higher, ie., 14 mmol/kg/day. Muscle glycogen repletion rates reported in 

humans and rats are commonly at least 10 times higher than those of young bulls (cf. McVeigh 

and Tarrant, 1982). The authors concluded that slow repletion rates may be characteristic to 

ruminants, since Monin (1981) reported similar repletion values (19 mmol/kg/d) in sheep that 
had received adrenaline. 
 

Miller et al. (1987) fed bulls either a high-energy diet designed to accelerate growth or a low-
energy diet to defer growth. The accelerated dietary regimen contained 10.9 MJ of 
metabolizable energy (ME) per kgDM fed for the first 100 days followed by a finishing diet of 
12.7 MJ ME/kgDM for the last 110 days. The deferred dietary regimen consisted of good quality 

pasture for the first 110 days, followed by finishing for 180 days on a high-energy dietary 

regimen of 12.7 MJ ME/kgDM. They found that bulls fed at the accelerated rate of growth had 

higher postmortem pH, and lower muscle glycogen stores than the bulls on deferred diet. The 

authors concluded that the increase of glycogen seems to be age-dependent, since the animals on 

deferred diet were 90 days older than the animals on accelerated diet when slaughtered, or 
perhaps it was the combination of age-dependence and longer feeding time rather than the 

different energy levels of the diets, they reasoned, that was responsible for the increase in 

muscle glycogen. 
 

Pethick and Rowe (1996) investigated the effects of feed intake and exercise training on the 

level of glycogen in the muscles of 12-month-old Merino wethers. The diet was a pelleted ration 

consisting of cereal straw (20%), barley grain (53%) and lupin grain (26%), and provided 11.9 

MJ ME per kgDM. The authors found that increased feed intake significantly increased 

glycogen levels in both muscle groups (M. semimembranosus (SM) and M. semitendinosus 

(ST)) at both sampling times (week 6 when the sheep had received 2 weeks of exercise training, 
and at 48 h postmortem). There was a strong linear relationship between feed intake and 

glycogen level in sheep fed 1, 1.3, 1.5, or 2.2 times their maintenance energy requirement. The 

increasing level of feed intake also significantly reduced the ultimate pH values of all muscle 

groups, with the effects being most pronounced in the ST. 
 

In a study on the effect of diet and exercise on bovine glycogen levels, Pethick et al. (1994) 
found that the increase in ME intake was a major determinant of increased muscle glycogen 

concentration in barley supplemented cattle that had received 8 exercise sessions. After five 

more training sessions, the effect of nutrition was not significant anymore, since the effect of 
training exercise became more important on the increasing glycogen content than nutrition. 
 

Vestergaard et al. (2000) studied the effect of two production systems on various characteristics 

of Friesian bulls in Denmark.  In the extensive (Ext) system, animals were loose-housed and fed 

a roughage-based diet from October to May, followed by a grazing period from May to October. 
A group of Ext-bulls (at mean live weight of 360 kg) was slaughtered directly from the pasture 

and the rest were finished in tie-stalls for 10 more weeks with concentrates ad libitum, and 

slaughtered at mean live weight of 460 kg. In the intensive (Int) system, animals were tie-stall 
housed and ad libitum fed until slaughtered at live weights of 360 and 460 kg. The Ext-bulls 

had lower glycogen content than the Int-bulls at 360 kg, but the situation was reversed by 460 

kg following the finishing feeding. The proportionate amount of SO and FOG fibers in the ST 

and LTL muscles was larger in Ext-bulls compared with Int-bulls, and the amount of FG fibers 

was lower in all three muscles (ST, LTL and supraspinatus (SS)) of Ext- compared to Int-bulls. 
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Wajda et al. (1982) provided bulls with molasses at a ration of  3 kg/d for the 3 or 6 last days of 
finishing. They found that feeding the molasses improved the quality of meat in terms of 
increased glycogen content, decreased ultimate pH, and increased lightness of fresh meat color. 
Lengthening the feeding period to 6 days did not improve the quality any further. 
 

Wiklund et al. (1996) studied reindeer in relation to supplementary feeding (10 MJ ME /kgDM) 
and transportation prior to slaughter. Animals that received supplementary feeding for 2 months 

had average glycogen concentrations of 52, 68 and 47 mmol/kg across muscles (converted from 

dry weight concentration using the approximation that muscle contains 75% water), if they were 

not transported, transported for 500 km and slaughtered immediately, or transported and laired 

for 2 days with access to hay and water, respectively. The comparable concentrations across 

muscles for animals with no supplementary feeding were 25, 33 and 28 mmol/kg. Furthermore, 
reindeer that had been receiving 5 months of the supplementary feed and were slaughtered at 
the university facility with no pre-slaughter stress had average glycogen concentrations of 117, 
126 and 87 mmol/kg in LTL, biceps femoris and triceps brachii muscles, respectively. 
 

Yambayamba et al. (1996) subjected heifers to two dietary treatments. The ADLIB group was 

fed to appetite on a barley-based diet providing for 13.8 MJ ME/kgDM. The REST group was 

switched to maintenance ration at the beginning of the experiment (period 1), and back to ad 

libitum feeding on day 92 of the experiment (period 2). Some of the heifers at REST group were 

slaughtered after period 1. Muscle samples were obtained within 5 min following 

exanguination. There were no significant differences in the concentration of glycogen or its 

metabolites in the LTL (LL) muscle of REST compared with ADLIB heifers at the end of period 

2. However, heifers slaughtered after period 1 had lower glycogen concentration (55 mmol/kg) 
than heifers slaughtered after period 2 (77 mmol/kg). 
 

Recent results of Daly et al. (1999) offer an interesting insight into the control of muscle 

glycogen concentrations in cattle. They finished Angus steers (previously grown together on 

pasture) for the last nine weeks either on a good quality spring pasture (ryegrass/clover) or on a 

grain-based feedlot ration (corn, heat-treated soy, and hay). The provision of feed was restricted 

on the feedlot-finished steers in order to achieve comparable growth rates as well as prohibit the 

confounding effect of energy intake on the potential effect of the type of feed. The carbohydrate 

concentration was over five times higher in grain diet than in the pasture diet. While the 

attempt of producing cattle of equal weights was unsuccessful and the grain-fed cattle ended up 

with lower weight gains, slaughter weights, and body fat contents, the glycolytic potential as an 

estimate of pre-slaughter glycogen content was yet approximately 20% higher in the grain-fed 

steers compared to the pasture-fed steers, the residual glycogen content as much as five-fold in 

the grain-fed compared to the pasture-fed cattle. Ultimate pH values were low for both groups. 
Although the authors finally concluded that perhaps grain-based diets can increase glycogen 

concentration independent of the higher calorific intake normally associated with grain diets, 
probably in response to diet-induced alterations in rumen fatty-acid production, they did not 
exclude the possibility of greater glycogen depletion due to pre-slaughter handling in the 

pasture-fed steers from a supposedly equal on-farm concentration. After all, there was an 18-
hour feed withdrawal, 30-min transportation, overnight lairage at the abattoir facility, slaughter itself, 
and 48-hour refrigeration for the animals on either diet before the muscle samples were obtained. 
 

It seems, therefore, that in bovine animals the ruminal fermentation, the availability of 
gluconeogenic precursors for hepatic glucose production, the availability of glucose for potential 
elevation of blood glucose, as well as the concentration of muscle glycogen are at least to certain 

extent responsive to changes in dietary regimen. 
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Formation of ultimate pH 

Buffering capacity 

The relation of pH fall postmortem to lactic acid (LA) formation is conventionally expressed as 

the buffering capacity, BC, which is the slope of the curve relating the two parameters (BC = 

−dLA/dpH/g). In most of the muscles of mammals, BC is constant from about pH 7.0 down to 

the final pH (5.4-5.8) (Bendall, 1979). 
 

BC is an ability of weak acids to resist the change of pH when acid or alkali is added. Muscle 

fibres have this characteristic of weak acids mainly because they contain phosphate compounds 

and compounds carrying an imidazole group (Kivikari, 1996). After slaughter, BC of the 

muscle fibres determine the molar concentration of lactic acid (LA) needed to lower the pH of 
one kg of muscle by one pH unit. The buffering capacity of bovine muscles has been studied by 

several authors (for an excellent review, see Kivikari, 1996), and the arithmetic mean of their 
results is 57 mmol LA /(pH kg). According to Kivikari (1996), the mean BC of bovine LTL is 

51 mmol LA /(pH kg). Because every mole of glucose yields two moles of lactic acid, the 

amount of glycogen needed for the maximum pH fall from 7.2 to 5.5 would then be about 43 

mmol/kg expressed as glucose. 
 

Already Howard and Lawrie (1956) pointed out that there may be appreciable differences in the 

buffering capacity of bovine muscles from the mean of 49 LA eq./kg pH. Variations above or 
below the standard value would tend to shift points on the ‘initial glycogen-ultimate pH curve’ 
to right or left respectively (Howard and Lawrie, 1956). According to Bate-Smith (1938), 
muscles can differ in buffering capacity both quantitatively and in the substances contributing to 

it. Furthermore, BC is higher in muscles considered predominantly white compared to red ones 

(Davey, 1960; Kivikari, 1996). 
 

About 100 mmol/kg lactate is produced in muscle having a normally low ultimate pH (5.5) 
whereas only 40 mmol/kg lactate would be expected in a dark-cutting muscle with an ultimate 

pH 6.2 (Davey and Gilbert, 1976). 
 

Glycogen concentration at slaughter 

Howard and Lawrie (1956) studied the relationship between initial glycogen content of beef 
muscle and its ultimate pH of 5.44. They found that when a pH of 5.44 is attained there are 

generally considerable reserves of glycogen in beef psoas major (PM) and LTL muscles. From 

the mean ultimate pH of 5.44 and the slope (∆glycogen/∆pH ) of 0.396, the minimum quantity 

of glycogen necessary to attain this pH level, from the initial 7.2, is about 700 mg/100 g. Taking 

the authors’ error margins into account this equals to 34−45 mmol/kg. The highest initial 
glycogen concentrations measured by Howard and Lawrie (1956) were around 135 mmol/kg, 
and the concentrations between 39 to 84 mmol/kg giving the low ultimate pH around 5.44 to 5.5 

were well represented. 
 

McVeigh (1980 as reported by Tarrant, 1989b) developed a model to describe the dependence of 
ultimate pH on the pre-slaughter glycogen concentration in bovine LTL muscle. Based on his 

results, 57 mmol/kg was sufficient to lower the pH of beef from 7.1 to 5.5. 
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Warriss (1990) presented a figure on the relationship of ultimate pH to the concentration of 
glycogen present in the LTL muscle at death. His data on the curvelinear dependence consisted 

of 2345 observations and revealed that pH fall appears to be limited only approximately below 

the glycogen concentration of 45 mmol/kg. It can be noted from the figure that the lowest and 

highest glycogen concentrations of his data were approximately 8 and 104 mmol/kg, 
respectively. Similarly, Fernandez and Gueblez (1992) obtained the best prediction of the 

relationship between porcine glycolytic potential (GP) (an estimate of pre-slaughter glycogen 

concentration expressed as lactate equivalents as proposed by Monin and Sellier (1985): [GP] = 

[lactate] + 2([glycogen] + [glucose-6-phosphate] + [glucose])) and ultimate pH using a 

segmented quadratic model with plateau. They concluded that pHu decreases following a 

curvelinear regression when GP increases until the convergence point (GP=173mmol/kg). 
Above this threshold, pH remains at a constant value (5.50) regardless of GP. 
 

Various authors have reported glycogen concentrations at the time of slaughter and the 

corresponding ultimate pH values. Lahucky et al. (1998) measured glycogen concentration 

immediately prior to slaughter from control and stressed bulls. The glycogen concentrations 

were 61 and 33 mmol/kg, respectively, producing ultimate pH values of 5.66 and 6.70. Miller et 
al. (1987), on the other hand, took LTL samples immediately after exanguination (0 h) from 

control bull carcass sides and sides subjected to electrical stimulation within 1 h postmortem. 
The glycogen concentrations were 55 and 41 mmol/kg at 0 h in the control sides and the sides 

to-be-electrically stimulated, whereas after 2 h and thus, after electrical stimulation, the 

glycogen concentration had decreased to 35 and 21 mmol/kg ie., 36 and 49% of the initial 
values. Bidner et al. (1981) fed steers four diets varying in the type of pasture and in the amount 
of grain/concentrate supplemented with. The diets had no influence on the ultimate pH of meat. 
The facts about duration of transportation or holding time before slaughter were not given! 
 

Residual glycogen concentration 

Anaerobic glycolysis of bovine muscles ceases, when pH has reached 5.6 ... 5.3 (Howard and 

Lawrie, 1956; Greaser, 1986), even in the presence of large amounts of residual glycogen 

(Lawrie, 1955; Bendall, 1973). The reasons for this phenomenon are not clearly understood. 
According to Sahlin (1978), glycolytic enzymes are inactivated when pH reaches low values 

(<5.4). Consequently, the dependence of pH on the glycogen concentration of the time of 
slaughter is not linear, as has been demonstrated by several authors (Howard and Lawrie, 1956; 
Warriss et al., 1984; Warriss, 1990; Fernandez and Gueblez, 1992; Przybylski et al., 1993). 
Przybylski et al. (1993) concluded that pH decreases following a curvelinear regression when 

glycolytic potential increases, until a plateau value dependent on the animal species and muscle. 
 

Bousset (1982) formulated the dependence of residual glycogen on ultimate pH to an equation; 
pHu=7.0-log(glucose mg/100g). However, the data was based on few animals only, and the 

residual glycogen values were quite low, from the approximate minimum of 0.5 mmol/kg to the 

approximate maximum of 20 mmol/kg. Furhermore, normal low ultimate pH values of 5.4−5.5 

were not observed, the majority of data points represented pH range from 5.7 to 6.2. 
 

Residual glycogen concentrations have been reported by many authors, but they mainly concern 

pork. Aalhus et al. (1998) compared the characteristics of pale, soft and exudative (PSE) beef 
and pork. The determination of bovine PSE was based on a subjective rating carried out by an 

experienced research technician and meat grader. The residual glycogen concentrations were 

similar in normal and PSE beef, about 35−40 mmol/kg. Lahucky et al. (1998) presented residual 
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glycogen concentrations that were equally low in control bulls of low pH 5.66 (17.4 mmol/kg) 
and in stressed bulls of high pH 6.70 (18.3 mmol/kg). 
 

Residual glycogen concentrations of pork are somewhat lower in average than those of beef, but 
the high concentrations reported in pork at comparable level with beef. Seewer et al. (1996) 
studied some metabolic characteristics of LTL samples of specific pH24 values in Swiss Large 

white pigs. The mean residual glycogen-glucose concentrations for different pH groups were 

12.5 mmol/kg (pH≤5.36), 16.2 mmol/kg (pH 5.37−5.55), and 6.4 mmol/kg (pH≥5.56). The 

variation in glycogen level, from approximately 7 to 34 mmol/kg, was greatest at pH 5.37−5.55, 
whereas it was from 4 to 20 mmol/kg at pH≤5.36 and from 3 to 13 mmol/kg at pH≥5.56. In the 

study of Maribo et al. (1999), the mean residual glycogen concentrations were about 8 mmol/kg 

in porcine LTL muscle. The minimum and maximum concentrations observed were 0 and 61 

mmol/kg. 
 

Melton et al. (1982) studied the flavor and chemical characteristics of ground beef from steers 

finished with grass, forage-grain or grain either during winter or summer. The mean residual 
carbohydrate (glycogen + glucose) concentration in the ground beef varied between 34−44 

mmol/kg. Ground beef from grass-fed steers slaughtered in summer had a lower carbohydrate 

content (34 mmol/kg) than ground beef from limited grain-fed (41 mmol/kg) or grain-fed (43 

mmol/kg) steers slaughtered in summer as well as in ground beef from silage and limited grain-
fed (44 mmol/kg) or grain-fed (44 mmol/kg) steers slaughtered in winter. 
 

Pethick and Rowe (1996) reported of residual glycogen contents of 17−34 and 35−51 mmol/kg 

in SM, 17−34 and 28−45 mmol/kg in LTL and 0−10 and 7−17 mmol/kg in ST muscles of 
sedentary and regularly exercised sheep, respectively. They also noted that in meat ultimately 

having a pH of 5.6, glycogen concentration decreased 20 to 110 mmol/kg during the post-
slaughter period of 48 h. However, consumed concentrations above 50 mmol/kg postmortem are 

somewhat in disagreement with the concept of buffering capacity. 
 

Residual glycogen-glucose effects on the physical and sensory quality of beef 

 

Monin et al. (1987) hypothesized that the level of residual glycogen could influence the 

technological yield of cooked ham processing independently of its effect on ultimate pH. They 

suggested that the water bound by glycogen molecule is likely to be freed during postmortem 

glycogenolysis as well as during the processing of the meat, and that this could lead to an excess 

of free water relative to the protein network susceptible to hold it, thus inducing and extra 

release of water during cooking. Glycogen concentration is indeed a potential contributor to the 

water holding capacity of meat, because glycogen molecule binds 2 to 4 times its weight’s worth 

of water (Olsson and Saltin, 1970). 
 

In a review on glycogen metabolism and meat quality, Pethick et al. (1995) speculated with the 

many potential and positive effects of residual glycogen concentration on meat quality: “Firstly, 
glycogen allows for improved keeping qualities since the microbial population uses glycogen as 

a fuel rather than protein. Utilization of protein by bacteria results in the production of ammonia 

and “off” odors and flavors (Gill and Newton, 1981). Secondly, glycogen is a very hydrophilic 

(water loving) molecule (3−4 g water/g glycogen; Olsson and Saltin, 1970) and so contributes to 

the moisture content of meat. Meat with a high pHu and so low residual glycogen is not only 

dark in color but also dry in texture (i.e. DFD). Indeed a loss of glycogen preslaughter implies a 
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significant loss of carcass weight. Finally residual glycogen is thought to undergo browning 

reactions with protein during the cooking process and so further contribute to flavor – however 
the latter has not yet been scientifically tested”. 
 

Boers et al. (1994) suspected that the poor shelf life of pork compared to that of beef could be 

due to differences in residual carbohydrate concentration of the meat. To test this, they studied 

the shelf life of vacuum-packaged wild boar meat in relation to that of vacuum-packaged pork. 
Wild boar meat did, indeed, prove to have a much longer storage life than pork and resembled 

that of beef. The authors were surprised of the very high glucose content of the wild boar meat 
(2500−6000 µg/g) compared with average values of 1000 µg/g reported for pork (Fischer and 

Augustini, 1977; Gill and Newton, 1981; Kress-Rogers et al., 1988). The authors speculated 

that the reason for this could be a quick conversion of glycogen into glucose as a result of 
hunting stress, and thought that the fact that there were two loins, in which no glycogen could 

be detected at all, supports this view. They concluded that the LTL muscle of wild boars is rich 

in glucose, and this may contribute to its long shelf life through a delay in glucose limitation 

and subsequent amino acid breakdown by microorganisms. They also suggest that the onset of 
spoilage strongly depends on the glycogen/glucose evolution of the meat. 
 

Grain-feeding of steers have been found to result in increased free sugar content (Brown et al., 
1979), increased tenderness, more desirable flavor and increased overall palatability of beef than 

forage feeding of steers (Bowling et al., 1977; Dikeman et al., 1985). In addition, grain-finished 

beef had twice as much subcutaneous fat as forage-finished beef, the longest sarcomeres and the 

lowest shear force values (Bowling et al., 1977). In the study of Brown et al. (1979), the content 
of free sugars increased significantly during frozen storage (-34 °C) of 30 to 180 days. The 

authors did not speculate as to whether this increase was due to the hydrolysis of glycogen 

present in the meat. The free sugar concentrations were 64 and 147 µg/g in low-energy-grass-
fed, 81 and 175 µg/g in low-energy-grain-fed, and 78 and 162 µg/g in high-energy-grain-fed 

beef after 30 and 180 days of storage, respectively. Melton et al. (1982) found that the ground 

beef from steers finished in winter had the highest free sugar content and flavor scores. A 

desirable flavor in beef has been associated of higher intensities of a browned flavor (Berry et 
al., 1980; Melton et al., 1982). Contrary to these results, Bidner et al. (1981) observed that beef 
from steers finished on all-forage, forage-plus-grain or high energy did not differ from each 

other according to color of fat, Warner-Bratzler shear force values, or consumer evaluation of 
steaks for tenderness, juiciness, flavor and overall desirability. The color of lean muscle was 

darker, however, from forage cattle as measured by visual scores and by the Hunter Color 
Difference meter. Residual carbohydrate concentrations were not analyzed. 
 

The supposed tenderness of animals fed on a high-energy diet could also relate to the fact that 
such animals would have high muscle glycogen levels (Lister, 1989) compared with other 
animals, allowing them to maintain a lower ultimate pH in the face of stressors associated with 

slaughter (Devine et al., 1993). 
 

During the early days of postmortem the concentration of free glucose rises on the meat surface 

(Kress-Rogers et al., 1993), supposedly because of hydrolysis and diffusion of residual glycogen 

(Kress-Rogers et al., 1993) and other fermentable substrates (Gill, 1976) from the deeper layers 

of the meat. It is also known that a wide variety of microorganisms, mainly molds, bacilli and 

some other gram-positive bacteria produce and excrete exocellular starch depolymerizing 

enzymes (reviewed by Fogarty and Kelly, 1979; 1990; Vihinen and Mäntsälä, 1989), which are 

capable of rapid impairment of the technical and hygienic quality of starch (Maher and Cremer, 
1987). As a polymerized carbohydrate, the glycogen left over from the postmortem reaction 
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sequence of meat is most probably hydrolyzed to glucose during storage. All the answers are 

still not available. Are certain common bacteria perhaps capable of hydrolyzing glycogen 

efficiently in muscle? And if so, what enzymes are involved? To what extent could this 

microorganism-driven depolymerization of residual glycogen take place? How far does it 
continue? And does ground meat perhaps differ from a larger piece in this respect? 

 

 

 

OBJECTIVES OF THE PRESENT STUDY 
 

The ultimate goal of this work was to gain additional knowledge and tools for integrated beef 
quality control by attempting to maximize pre- and post-transportational glycogen reserves in 

order to secure the production of normal pH beef. Schematic illustrations present the 

relationship between the true variables (intentional, unintentional, treated, as well as varied) 
existing in the study (Figure 2.) and the concrete objectives related to the variables (Figure 3.). 
 

 

The objectives of the present study were to investigate: 
 

1. The effects and possible interactions of dietary energy density and male status on muscle 

glycogen concentration using the same set of animals for crossover dietary experiments 

(II). 
 

2. The relationship between ultimate pH and residual glycogen-glucose concentration in 

bovine muscles (III). 
 

3. The effects of a high-energy diet provided for a rather short time prior to transportation to 

slaughter on muscle glycogen concentration on the farm, after transportation, and after 
refrigeration of the carcasses (IV). 

 

4. The effects of residual glycogen-glucose concentration on the physical and sensory quality 

of normal pH beef (V). 
 

5. The variation of glycogen concentration according to biopsy location within bovine 

longissimus thoracis et lumborum muscle (I). 
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CLIMATE - Continental American 
 - Nordic 
 

SEASON - Fall 
 - Winter 
 - Spring 
 - Summer 
 

REARING - Intensive 
 - Semi-extensive 
 
 

DIET - Forage based 
 - Concentrate based 
 

ANIMAL 
Breed   - Ayrshire (Finland) 

- Charolais crossbred (USA) 
 - Aberdeen Angus (USA) 

Sex - Bull MUSCLE 
 - Steer - longissimus thoracis et lumborum 

 - Heifer - gluteus medius 

 

 

 

 

 

 

 

TRANSPORTATION to slaughter 
Inevitable stress stimuli 

SLAUGHTER 

 

 

 

 

 

 

 

 

AGEING 

 - none MEAT quality 

 - 28 days 

 

 

 

Figure 2.  The set of variables: true variables 
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CLIMATE 

 

 

SEASON 

 

 

 

 

REARING - minimal stress 

 

 

 

DIET - plenty of metabolizable energy 

- abundance of gluconeogenic precursors 

 

ANIMAL 
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- minimal glycogen loss 

- protective effect of diet 
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- positive quality effects of normal pH - high glycogen 

  

 

 

Figure 3.  The set of variables:  objectives associated with the true variables 
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MATERIALS AND METHODS 
 

The materials and methods used in this work are described in detail in the original papers I−V. 
 

Animals and diets 

 

A total of 184 bovine animals were used in studies I−V. Of these 133 were Ayrshire bulls in 

Finland (III−V), 19 Charolais crossbred bulls (II), 25 Charolais crossbred steers (I−II), and 7 

Angus heifers (I) in the U. S. 
 

Ethical permissions to conduct the experiments were issued by the Research Animal Resources 

Committee of the University of Wisconsin, Madison (I−II) and local Research Animal 
Committee with the Provincial Government in Finland (IV). 
 

Animals were housed in individual pens of 3 m2
 (I), in pens of 35 m2, each accomodating 4 or 5 

animals (II)  (University of Wisconsin, Beef Nutrition Unit, Arlington, Wisconsin, USA) or 
individually tied in stalls (IV) (Sugarbeet Research Center, Perniö, Finland). 
 

The diets in the experiments were: 
1. 100 % alfalfa haylage (diet AH) (II) 
2. 90 % (DM basis) corn and supplement : 10 % alfalfa haylage (diet C) (II) 
3. 100 % grass silage (Low energy diet) (IV) 
4. Compound feed and grass silage (High energy diet) (IV) 
The compound feed consisted of 39% steam rolled barley, 39% molassed sugarbeet pulp, 15% 

rapeseed expeller, 3% molasses, 2.2% mineral-trace element-vitamin supplement, and 1.8% 

rapeseed oil. 
 

All diets were offered ad libitum. 
 

The energy contents (MJ metabolizable energy/kg dry matter) of the feeds were 9.5 (1), 13.2 (2), 
10.8 (3) and 12.9 (4). 
 

For study II (Wisconsin, USA), a protocol for gentle handling was adopted (Grandin, 1996, 
personal communication) and followed strictly for all experiments of that study (paper II). 
Cattle were trained to enter the restraint chute where muscle biopsies were eventually to be 

collected. Prior to the first biopsy session, this training took place 3−4 times per week for four 
weeks. Animals were allowed time to voluntarily enter the chute to eat very palatable feed 

offered to them. The enticement provided to the cattle was a grain mixture consisting of (dry 

matter basis, %) 44.5 whole oats, 34.8 cracked corn, 7 whole roasted soybeans, 3.6 dehydrated 

alfalfa pellets, 8.3 liquid cane molasses and 1.8 salt-mineral-vitamin-lasalocid supplement. 
When animals had learned to willingly enter the chute, restraining was gradually applied at first 
without but later with brushing and clipping of the hair at the eventual incision sites. Clipping 

was accompanied by firm touching. The training continued with diminishing frequency 

throughout all experiments (II). 
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Experimental design and sampling 

 

An overview to the experimental design as well as muscle sampling and analysis in the studies 

I−V are presented in Tables 2 and 3, respectively. 
 

Muscle biopsies were obtained from longissimus thoracis et lumborum (LTL) and gluteus 

medius (GM) muscles of with a Bergström needle (inner diameter 6 mm) under local anesthesia 

(Lidocain 20 mg/ml, 3 ml per site) as described by Lindholm and Piehl (1974). Prior to driving 

an animal onto the restrainer (IV), an injection of tranquilizer (Xylazin 20 mg/ml (Rompun®)) 
at a dosage of 0.30 ml/100 kg was given intramuscularly. 
 

Animals were weighed at the time of sampling and their temperament was observed. In 

Wisconsin, the behavior of the animals was rated on a 4-point scale adopted from Grandin 

(1994) at the following times: 1) when entering the chute, 2) between anesthetization and 

sampling (5 min), 3) at the time of sampling, and 4) after sampling. In Finland, the behavior of 
the bulls during sampling was rated subjectively with a three-point scale designed for the 

present experiment (0=calm, 1=slightly restless, 2=totally beserk (=very aggressive). 
 

 

Table 2. Overview to the experimental design in the studies I-V: Treatments. 
 

Study Experiment Number of 
animals 

Treatment group Treatment 

     

I 1 7 p.m. sampling six per LTL at interval of 6−8 cm 

 2 6 biopsy sampling eight per LTL at interval of 6 cm 

     

II 1 38 Diet crossover 30d AH1 − 30d C2 

30d C − 30d AH 

   Male status Castrated, Intact 
     

 2 38 Diet crossover (adr inj.) − 37d AH − 37d C 

(adr inj.) − 37d C − 37d AH 

   Male status Castrated, Intact 
     

 3 38 Diet crossover (adr inj.) − 30d AH − 30d C − slaughter 
(adr inj.) − 30d C − 30d AH − slaughter 

   Male status Castrated, Intact 
     

III  133 N/A3  

     

IV  60 Diet High energy, Low energy 

   Season Spring, Summer 
     

V  42 Residual glycogen ≤ 25 mmol/kg 

25.1 − 49.9 mmol/kg 

≥ 50 mmol/kg 

   Ageing None, 28 d 

     
1   diet alfalfa haylage (100%) 
2 

 diet corn (90%) 
3 

 Not applicaple 
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Table 3. Overview to the experimental design in the studies I-V: Sampling and analyses. 

Study Experiment Sampling time Sampling location Analyses 

     

I 1 0−15 min after bleed  glycogen1), lactate 

 2 0−15 min after anesthetic  glycogen1), lactate 

     

II 1 prior to 

30d, at crossover 
60d 

LTL/12th rib, GM 

LTL/11th rib, GM 

LTL/10th rib, GM 

glycogen1), lactate 

glycogen1), lactate 

glycogen1), lactate 

     

 2 24h post adrenaline 

37d, at crossover 
74d 

LTL/12th rib, GM 

LTL/11th rib, GM 

LTL/1st sacral vertebra, 
GM 

glycogen1), lactate 

glycogen1), lactate 

glycogen1), lactate 

     

 3 48 h postmortem LTL/12th rib, GM, SM pH, glycogen1), lactate 

     

III  40-48h postmortem LTL/12th rib, GM, SM pH, glycogen1), lactate 

     

IV  prior to exp. diet 
after 14d on diet 

right: LTL/12th rib, GM 

left: LTL/12th rib, GM 

glycogen1), lactate 

glycogen1), lactate 

     

     

V  40−48h postmortem 

prior to storage 

 

after storage 

LTL/12th rib 

LTL, various portions 

 

LTL, various portions 

pH, glycogen1), lactate 

fresh meat color 
drip loss 

thawing loss 

shear force 

frying loss 

color of fried steaks 

sensory evaluation 

     
1)

 glycogen + glucose 

 

Transportation to slaughter 

 

Cattle were road transported to commercial slaughter houses with trucks. The transportation 

took 5−5.5 h.  In the USA, fighting among intact males was not prevented during loading of the 

truck (about 1 h), transportation, unloading and lairage prior to kill (about 1.5 h). In Finland, 
stress was kept to minimum at all stages, and fighting of bulls was prevented by driving each 

animal individually to the truck, by confining 2−4 animals tightly into a compartment, and by 

lairing the bulls in individual pens while in the abattoir (less than 1 h).  
 

Biochemical methods 

 

Each biopsy was assayed for glycogen-glucose and lactate concentrations. For glycogen and 

lactate determinations, muscle samples were homogenized in ice-cold phosphate buffer (pH 7.0) 
with a Polytron homogenizer (I−II) or a Tissuetech homogenizer with a teflon pestle (III−V). 
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Glycogen-glucose 

Ten µl of homogenate were hydrolyzed in 200 µl of 0.1 M HCl at 100 °C for 2 h, after which 

pH was adjusted to 6.5−7.5 (Lowry and Passoneau, 1973) and glucose was determined via 

NADP+
 reduction with a linked assay involving hexokinase and glucose-6-phosphate 

dehydrogenase (Glucose (HK) 16-50, Sigma Diagnostics). 
 

Lactic acid 

Lactate concentration was determined from the homogenate via NAD+
 reduction with a linked 

assay involving lactate dehydrogenase and glutamate pyruvate transaminase (Boehringer-
Mannheim no. 139 084). 
 

Quality control of the assays 

QC routines and procedures 

Muscle reference standards were included in all glycogen sample analysis sessions. Reference 

standards consisted of bovine semimembranosus (SM) and ovine psoas major (PM). Samples of 
these muscles were obtained soon after dehiding, frozen, ground in liquid nitrogen and stored at 
−80°C until aliquots were needed. At each analysis session, a small amount of either SM or PM 

was homogenized and assayed for glycogen along with other samples as described above.  
 

The repeatability of the lactate assay was determined two times over the course of the 

experiment using the muscle samples described above, ie., SM (n=20) and PM (n=20). A 

recovery test using a stabilized known concentration of lactic acid provided by the manufacturer 
of the kit was performed at every analysis session. 
 

Calculation of the glycogen concentration was based on a standard curve. The standards were 

prepared, tested for accuracy, divided into portions, frozen, held at −80°C, and used at each 

analysis session. 
 

The mean glycogen concentration of the bovine SM was 77.9 ± 7.9 (sd) mmol/kg (coefficient of 
variation (CV)=10.1%) and the ovine PM 38.2 ± 3.2 mmol/kg (CV=8.4%). The lactic acid 

concentrations (n=20) were 21.6 ± 1.2 mmol/kg (CV=5.6%) and 36.8 ± 2.4 mmol/kg 

(CV=6.6%), respectively. The mean recovery of lactic acid was 98.8 ± 2.7%. 
 
Laboratory intercalibration 

Since studies of this work were conducted in two places and thus, biochemical analyses were 

performed in two laboratories by two persons, a laboratory intercalibration was necessary. For 
this purpose, a bovine sample was prepared as described above, and analyzed for glycogen-
glucose and lactate concentrations ten times in Madison, Wisconsin, USA, as well as ten times 

in Helsinki, Finland. 
 

The glycogen-glucose and lactate concentrations were analyzed to be 86.0 ± 4.9 mmol/kg and 

13.0 ± 1.0 mmol/kg (Madison, Wisconsin, USA) and 85.8 ± 6.9 mmol/kg and 15.7 ± 1.4 

mmol/kg (Helsinki, Finland). The correspondent coefficients of variations (CV) where then 8.1, 
7.9, 8.0, and 9.2%, respectively. 
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Methods of assessing meat quality 

pH value 

Ultimate pH of left longissimus thoracis et lumborum (LTL) muscle from Ayrshire bull 
carcasses (n=57) weighing 279 ± 27 kg was measured (Knick Portamess, Mettler-Toledo 427 

electrode) immediately caudal to the 12th rib 48 h after slaughter. 

Color 

Color was measured from LTL cross-section at three (fresh beef) and two (fried steaks) random 

spots with a Minolta CR-200 (d65) device (Minolta Camera Co., Japan). The color values 

L*(lightness), a* (redness) and b* (yellowness) were expressed as means of these three or two 

measurements. 

Drip loss, thawing loss and frying loss 

Drip loss was measured according to Honikel (1985). LTL slices weighed 120 ± 18 g (mean ± 

sd). They were cut 52-58 h postmortem, weighed, immediately suspended with a thread, put in a 

plastic bag, sealed, placed to hang freely at +4 °C for 48 h, and weighed again. 
 

Slices of 15 mm in thickness were cut from semi-frozen meat pieces (thawed at +8 °C for 18 h) 
for sensory evaluation (V, Fig. 1), weighed, thawed to +18 °C while covered with plastic film, 
weighed and fried simultaneously on both sides (Palux Rotimat) at 300 °C for 3 min, and 

weighed again. Percent decrease in weight in thawing and frying were calculated, and weight 
losses were expressed as means of two or three slices. Sum of the weight losses in thawing and 

frying was also calculated. 

Shear force 

Shear values were measured using Instron Universal Testing Machine (Instron Corporation, 
MA, USA) equipped with a square blade. Meat pieces (V, Fig. 1) were thawed for 24 h at 0°C, 
but were still frozen when 4 to 6 sample pieces of 2 x 2 x 6 cm3

 (width x height x length) were 

cut parallel to the fiber orientation. The pieces were then equilibrated to +8 °C, cooked in 

plastic bags in a water bath (Cryovac ST 5, Grace GmbH, Germany) at 85 °C for 8 min to 

internal temperature of 70 °C. Pieces were again equilibrated to +8 °C and measured for shear 
force values at ambient temperature using a 10 or 20 kg load cell at the speed of 20 cm/min. 
Three shears were performed on each cubic piece. The shear values were expressed as means of 
these 12 to 18 measurements. 

Sensory evaluation and color of steaks 

The sensory evaluation of the steaks was performed on fried LTL slices. Each sample (2-3 

slices) was evaluated by a trained panel of six members. A continuous segment of a line was 

used on a scale from 0 to 100 for evaluation of the following variables: resistance to chewing on 

the first few bites (extremely low/high resistance), overall tenderness (extremely tough/tender), 
juiciness (extremely dry/juicy), intensity of beef flavor (extremely weak/strong flavor), intensity 

of fat flavor (extremely weak/strong flavor), intensity of off-flavors (no off-flavor/extremely 

strong off-flavor), and overall palatability (extremely unpalatable/palatable). 

Statistical analyses 

Data were analyzed using GLM procedure (I−V), REG procedure (IV), and CORR procedure 

(IV) of SAS/STAT program (SAS Institute 1990). 
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SUMMARY OF RESULTS 

Glycogen concentration in 8 locations of bovine LTL muscle 

 

The average glycogen concentration of the LTL muscle of Charolais crossbred steers (n=6) in 

study I varied from 89 to 105 mmol/kg. Cranial-caudal sampling location affected glycogen 

concentration (p<0.05) (I, Table 1). The area of the first lumbar vertebra had more glycogen 

than the three most cranial (p<0.005) and the last caudal (p<0.05) locations. When the eight 
sampling locations were aggregated into three location groups (cranial, mid-section, caudal) (I, 
Table 2), glycogen concentration of the cranial group (89 ± 3 mmol/kg) was lower (p<0.005) 
than that of the mid-section (97 ± 2 mmol/kg) and caudal (96 ± 2 mmol/kg) groups. 
 

However, the variation of glycolytic potential (GP), a commonly used estimator of resting 

glycogen concentration, was not significant between the 8 locations nor the aggregated locations 

(I, Table 1). Nevertheless, the tendency (p<0.15) for lower GP at the cranial area compared to 

mid-section and caudal part remained clear (I, Table 2). 
 

Resting muscle glycogen concentration in American Charolais crossbred bulls 
and steers, and Finnish Ayrshire bulls 

 

The average resting muscle glycogen concentration in LTL and GM muscles across 

experiments, dietary treatments, male statuses and seasons were 100 mmol/kg and 112 mmol/kg 

in American crossbred Charolais cattle (n=38) and 87 mmol/kg and 95 mmol/kg in Finnish 

Ayrshire bulls (n=60), respectively. The correspondent ranges were 28−157 mmol/kg, 30−187 

mmol/kg, 24−135 mmol/kg, and 34−160 mmol/kg, respectively. 
 

The baseline glycogen concentrations across muscles of all-forage fed cattle were 118 mmol/kg 

in American crossbred Charolais’ and 93 mmol/kg in Finnish Ayrshires. 
 

Effects of experimental feeding on resting muscle glycogen concentration 

 

Diet did not consistently affect the glycogen concentration in cattle that had initially high 

concentrations. Provision of feed high in energy/energy density for cattle previously receiving 

only forage did not result in increase in glycogen  (II, Table 2 (B2, B6); IV, Table 3). On the 

contrary, the initial glycogen concentration had a very significant negative correlation with the 

response of glycogen concentration to experimental diet in the Ayrshire bulls (r = −0.678,  
p<0.0001) as well as in the Charolais cattle (r = −0.527 , p<0.0001). 
 

Prior to the biopsy sampling B3 (II, Table 1 and 2), the American crossbred Charolais cattle lost 
glycogen. The magnitude of this loss was 28 mmol/kg on average. However, in cattle that had 

been receiving the feed high in energy density prior to sampling, this loss was only 8 mmol/kg, 
whereas in cattle that had been receiving the feed low in energy density, the loss was 46 

mmol/kg (II, Fig. 1 and 2). 
 

After adrenaline administration the repletion of the glycogen concentration was faster with the 

diet high in energy density than with the diet low in energy density. Even after 37 days on diet 
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(II, Table 3 (B5)) there was significantly more glycogen (p≤0.05) in the muscles of the corn-fed cattle 

(119 mmol/kg) compared to the forage-fed cattle (96 mmol/kg) across male status and muscle. 
 

The Finnish Ayrshire bulls on low energy feed during spring lost 17 mmol/kg of glycogen on 

the 14-day diet and were really the only group that responded to the diet. However, the high and 

low energy groups of spring and summer did not turn out to be identical in feed consumption. 
The summer cattle on low energy had such a good appetite compared to the spring cattle that 
they ultimately got 30% more energy per day from their 100% silage diet. 
 

Effect of muscle, male status and season on resting muscle glycogen concentration 

There was less glycogen across diets and seasons in the LTL (88 ± 3 mmol/kg) than GM (97 ± 3 

mmol/kg) muscle of Finnish Ayrshire bulls (IV, Table 3). The same appeared to be true for 
American crossbred Charolais cattle, although it was not rigorously assessed. 
 

Castrated (n=19) and intact males (n=19) did not differ significantly in muscle glycogen 

concentration nor in the responsiveness to the diets. 
 

Finnish Ayrshire bulls had more resting muscle glycogen in summer (103 ± 3 mmol/kg) (n=30) 
than in spring (82 ± 3 mmol/kg) (n=30). The difference was still significant after 14 days on 

experimental diets, and it persisted all the way to slaughter. 
 

Glycogen loss from farm to slaughter 

Finnish Ayrshire bulls lost significantly less (p<0.0001) glycogen on high-energy diet (11 ± 3 

mmol/kg) than on low energy diet (28 ± 3 mmol/kg) between farm and slaughter (included 

mainly the effect of transportation) (IV, Table 3). Season played a role as well. The cattle 

transported and slaughtered in spring lost only 15 ± 3 mmol/kg, whereas the summer cattle lost 
25 ± 3 mmol/kg. 
 

The cattle transported in spring (−5 °C) lost 7 ± 4.0 (se) mmol/kg and 23 ± 3.9 mmol/kg on 

high and low energy diets, respectively. The cattle transported and slaughtered in summer (> 

+25°C), on the other hand, lost 16 ± 3.8 mmol/kg on high-energy diet and 33 ± 4.1 mmol/kg on 

low-energy diet. 
 

Glycogen loss at transportation had a significant positive correlation with the concentration 

measured prior to transportation (Gly-diet) (r=0.649, p<0.0001) as well as with the change in 

glycogen, while on experimental diet (dGly-diet) (r=0.505, p<0.0001) (IV, Table 4). 
 

Glycogen concentration at the time of slaughter 

The retrospectively calculated concentration of glycogen (= [residual glycogen] including 

glycogen, G-1-P, G-6-P and free glucose + [lactic acid]−2) at the time of slaughter was in 81 

mmol/kg LTL and 100 mmol/kg in GM of Charolais crossbred cattle, across diet and male 

status, and 65 mmol/kg and 74 mmol/kg, respectively, in Finnish Ayrshire bulls, across diet and 

season. In the case of the former, the glycogen concentration was independent of diet. However, 
the latter had more glycogen at the time of slaughter, if they had received the high-energy diet 
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(73 ± 2 mmol/kg) than if they had received the low energy diet (66 ± 2 mmol/kg). There was a 

clear trend (II, Table 4) for lower glycogen concentrations in bulls (84 ± 2 mmol/kg) compared 

to steers (99 ± 3 mmol/kg), although the difference was significant only in LTL. 
 

Ultimate pH and residual glycogen concentration 

The relationship between ultimate pH and residual glycogen concentration was curvelinear (III, 
Fig. 1.) (n=399 across muscles). At normal pH values (≤ 5.75), the glycogen-glucose 

concentration was independent of pH, while the total range of values was as high as 73 

mmol/kg, maximum being 83 and minimum 10 mmol/kg. 
 

All of the Charolais crossbred cattle (n=36) produced meat of normal low ultimate pH, average 

being 5.47 ± 0.04 (range from 5.40 to 5.62). The residual glycogen concentrations in GM, LTL 

and SM (semimembranosus) were 66 ± 4 mmol/kg, 49 ± 3 mmol/kg and 58 ± 3 mmol/kg, 
respectively. Steers (64 ± 2 mmol/kg) appeared to have more glycogen left over than bulls (50 ± 

2 mmol/kg), but the difference was only significant in LTL. 
 

The average ultimate pH of the meat from Finnish Ayrshire bulls (n=60) was 5.82 ± 0.03 (range 

from 5.51 to 7.15) and the correspondent residual glycogen concentration was 33 ± 1 mmol/kg. 
These were independent of muscle and season, but diet affected them very significantly. Bulls 

on high energy produced meat of lower pH (5.69 ± 0.03) and higher residual glycogen 

concentration (40 ± 2 mmol/kg) than bulls on low energy, 5.93 ± 0.03 and 27 ± 2 mmol/kg, 
respectively. 
 

Physical and sensory quality of meat in relation to residual glycogen concentration 

The statistically significant effects of residual glycogen on the physical and sensory quality of 
beef were numerous (V, Tables 2 and 3). Several trends could also be observed in the effects that 
were not consistently significant. 
 

As residual glycogen concentration increased, the redness (a*) of fresh, oxygenated meat surface 

decreased, as did the redness of steak. Also drip loss decreased from 4.3% to 3.3% and further 
to 3%, but the effect failed to reach significance. On the other hand, with increasing residual 
glycogen concentration, the weight loss in thawing increased as did the calculated sum of 
weight losses in thawing and frying. Additionally, b* value of steak color increased as the 

concentration of glycogen increased from below 25 mmol/kg to 25−50 mmol/kg. However, there 

was no further increase, when the concentration increased to above 50 mmol/kg. Similarly, 
shear force and the sensory evaluated juiciness of steak decreased as the concentration of 
glycogen increased from below 25 mmol/kg to 25−50 mmol/kg, but not significantly more with 

further increase in glycogen. 
 

There was a significant interactive effect of residual glycogen and ageing on the lightness of 
steak as well as the sensory evaluated off-flavor. When fresh frozen meat was fried as steaks, the 

steak became lighter as the glycogen concentration increased, and the intensity of detected off-
flavors decreased. However, when the steak was fried from the beef aged for 28 days, there was 

a reduction in lightness, although not consistent, with increasing glycogen concentration. The 

intensity of off-flavors was strongest in the aged steaks, when there was above 50 mmol/kg 

glycogen. 
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DISCUSSION 

Resting muscle glycogen concentration in bovines 

Justification for repeated sampling of bovine LTL muscle 

Skeletal muscle is a heterogeneous collection of cells with different regional populations of 
fibers of various physiological and biochemical properties (Bruce and Turek, 1985; Suzuki and 

Tamate, 1988). Tarrant and McVeigh (1979a,b) studied the effect of skeletal muscle needle 

biopsy on bovine muscle glycogen in cattle and found that the procedure did not affect glycogen 

metabolism in LTL muscle during the 25-day trial during which each animal was sampled 10 

times. The maximum variations from the initial value of 88 mmol/kg were +5 and −9%, and 

these fluctuations were not significant. Furthermore, they concluded that needle muscle biopsy 

is useful for the investigation of muscle metabolism in cattle, since it is simple, rapid, and 

repeatable, and does not cause an unacceptable degree of stress. 
 

Percutaneous needle biopsy is commonly used for obtaining live-animal muscle samples for 
substrate determinations. As small as 40-80 mg samples (Harriss et al., 1974) have been taken 

as representative of a whole muscle. To avoid having to speculate about the small sample size as 

representative for the muscle, Desmecht et al. (1995) used larger muscle fragments (2.4−9.5 g) 
for validation of creatine, L−(+)−lactate and glycogen determinations. They found that when 

biopsies were carefully taken at resting conditions, methods of expressing lactate and glycogen 

concentrations (wet matter, dry matter, total creatine) never yielded different trends between 

sites and muscles. However, they did note that this is probably not the case if muscle works, e.g., 
during labored breathing in diaphragma (D). They also observed that in bovine LTL and D 

muscles the concentrations of glycogen were always significantly more variable from one site to 

the other than lactic acid and total creatine. 
 

Karlsson (1971) obtained biopsy samples from different parts of human Quadriceps femoris 

muscle at rest and after sub-maximal and short exhaustive work intensities, and concluded that 
the distribution of glycogen particles was sufficiently uniform to warrant analysis made on a 

single biopsy sample taken as representative of the muscle as a whole. Comparably, Desmecht et 
al. (1995) found that the glycogen content was homogenously distributed along bovine LTL 

muscle, since the results showed no significant systematic difference between sites, and 

concluded that even if concentration differences were present within muscles, the specimen 

itself was representative of the muscle investigated. 
 

In this study, considering the fact that GP failed to unambiguously invalidate locational 
differences in glycogen concentration, one is inclined to believe that these differences may be 

due to variation in intramuscular fat content. Intramuscular fat has been reported to be higher at 
the cranial end of the muscle (6th rib) when compared to the 12th/13th rib area (Cook et al., 
1964). However, Cross et al. (1975) found that marbling was most abundant at the 12th/13th rib 

interface of LTL muscle when compared to 5th/6th rib interface and loin-round interface. 
Marbling was more evenly distributed and finer in texture at the 12th/13th rib interface versus 

the other two locations. 
 

The confounding of muscle metabolite concentrations by adipose and connective tissues as well 
as blood can be eliminated by carefully removing those before biochemical analyses are 

performed, a routine of which is used by many muscle scientists (e.g., Essén-Gustavsson et al., 
1984). However, this procedure of dissecting freeze-dried muscle samples free from blood, fat 
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and connective tissue under a microscope in an environment with very low relative humidity is 

very expensive and time-consuming. Many times biochemical analyses have to be performed on 

fresh-frozen muscle specimen, and only visible foreign tissue can be rapidly removed at the time 

of sampling. 
 

In this study, nevertheless, the variation of glycogen concentration was 11.6% on average within 

the two LTL muscles of an animal, which can be cautiously interpreted to encourage the use of 
LTL muscle for experiments requiring repeated sampling of a bovine muscle. 
 

Resting muscle glycogen concentration 

Marsh (1993) stated in his review paper that “Despite significant advances in knowledge in 

recent years, we are still far from a complete understanding of the biological mechanisms 

involved: both those that control the glycogen content of muscle and those that are controlled by 

it. Feeding level is clearly not the primary determinant of ultimate pH; indeed, it is scarcely a 

determinant at all”. 
 

Taking into account that laboratory intercalibration was performed, and successful, it is 

probably safe to say that the Charolais crossbred cattle in Wisconsin had higher resting 

glycogen concentration in LTL and GM muscles than the Ayrshire bulls in Finland. The 

difference in all-forage-fed cattle (118 mmol/kg vs. 93 mmol/kg) justifies this comparison 

further, when the potentially superior effect of corn is excluded. This difference of 25 mmol/kg 

in glycogen concentration would correspond to over 2 h of severe stress (with the average rate of 
depletion 10-11 mmol/kg/h (McVeigh & Tarrant, 1983; Tarrant & Lacourt, 1984)), or 
alternatively, to 0.96 pH units postmortem (Kivikari, 1996, also see Buffering capacity in the 

Review of literature)). 
 

However, so many factors were different among the studies in these two countries that it is 

impossible to know the relative significance of each factor, in retrospect, without being able to 

perform combined analyses with these factors as reliably identified and quantified cofactors. 
One can, however, list the potentially relevant differences and speculate with caution. The 

intentional as well as the unintentional differences that existed between the experiments 

conducted in the USA and Finland included: climate, breed of cattle, type of rearing, types of 
feeds offered, experimental setup (handling, habituation), duration of experiment, level of 
exercise, and opportunity for social interaction with co-specifics as well as with humans. 
 

The difference between Ayrshire and Charolais is not just a breed difference. These breeds also 

represent the heterogeneous populations of dairy cattle and beef cattle. Dairy cattle seem to have 

a higher incidence of dark cutting meat (Morrisse et al., 1984; 1985, as cited by Sanz et al. 
(1996)), which could just as well be due to differences in general stress resistance, or 
temperament, than be a consequence of lower glycogen concentration. Breed and temperament 
difference in relation to dark-cutting were also studied by Sanz et al. (1996) who compared 

Brown Swiss bulls to a more nervous and hard-to-handle bulls of Pirenaico breed, and found 

that the glycogen concentration was similar in these two breeds, and despite the apparent 
difference in temperament, the breed did not influence the incidence of dark-cutting. 
 

The cattle in Wisconsin were housed semi-loosely compared to the tie-stall-housed cattle in 

Finland, and were therefore able to move around the moderate-sized pen, while the Finnish 

cattle were completely sedentary throughout the experiment, and throughout most of their lives, 
for that matter. Cattle that have been reared in close confinement experience less physical 
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activity than animals reared in large lots or pastures and therefore may have lower initial 
glycogen levels at slaughter (Hedrick, 1981). Vestergaard et al. (2000) found that the muscles of 
young Friesian bulls produced extensively (Ext) (loose-housed, roughage-based diet) had 

relatively more slow-contracting fibers, a better vascularization, higher oxidative metabolic 

potential and a darker meat color compared with muscles of intensively (Int) produced (tie-stall 
housed, concentrate-fed) bulls. Furthermore, the activity of lactate dehydrogenase (LdH) was 

lower in the Ext-bulls than in the Int-bulls. The glycogen content of LTL and ST muscles, on 

the other hand, was lower in the Ext-bulls at 360 kg, but higher at 460 kg compared to the Int-
bulls. The determination of different fibre types of the bovine breeds in question would have 

been interesting and beneficial also in this study, but unfortunately this was not carried out. 
 

The difference in the type of housing brings about additional differences. The Charolais cattle 

were exposed to seasonal temperatures, while the Ayrshires were housed indoors, and therefore, 
the surrounding climate had a much greater input in the effects of treatments in Wisconsin 

compared to Finland. Furthermore, while the Charolais cattle were reared in groups of 4−5 

animals in adjacent pens, the tie-stalled Ayrshires were able to socialize with two neighboring 

animals only. As a consequence to this, the establishment of hierarchy remained totally 

unfinished among the group of Ayrshires compared to the Charolais’, for which it was possible 

to a much greater extent, ie., among 12−15 animals. Cattle are herd animals, and interference 

with their natural instinct of dominance establishment, may not be irrelevant to this issue. One 

should not exclude the possible existence of chronic stress that the Ayrshire bulls may have been 

suffering from, although the presence and the effects of such stress are not well documented in 

the literature. Grandin (1992) and Smith et al. (1993) identified management practices, such as 

handling and working facilities that are unique to feedyards, as potentially stressful factors to 

cattle. Perhaps tie-stall housing could be a factor of that sort as well. Tarrant, in his review 

article (1989a), briefly mentions that muscle glycogen is also utilized in response to chronic 

stress. 
 

The Charolais’ were definitely able to use more of their muscles on a daily basis. According to 

Pethick and Rowe (1996), sheep that received exercise training for 5 weeks showed an elevated 

level of glycogen in muscle at the end of the 10-week experiment. These glycogen loading 

effects of exercise were not seen after 2 weeks of regular exercise, indicating a strong 

dependency on the time of exercise training. Their findings were similar in cattle (Pethick et al., 
1994). They found that the intake of metabolizable energy was a major determinant of muscle 

glycogen in barley-supplemented cattle that had received 8 exercise sessions. After five more 

training sessions, the effect of nutrition was not significant anymore, since the effect of training 

exercise became more important on the increasing glycogen content than nutrition. The 

Charolais cattle did receive additional, pre-arranged exercise, when they were slowly 

accustomed to tolerate human handling and the biopsy sampling procedure in the restraining 

facility. However, Pethick et al. (1995) also reported that there was a small, although 

significant, reduction in the level of glycogen in the commercial feedlot compared to the 

individually housed animals. Nevertheless, since the intensity and duration made the pre-
arranged exercise of this study rather light, the possible importance of gentle handling and slow 

customization to the sampling procedure is once again highlighted. 
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Dietary effects 

Resting muscle glycogen concentration 

In the present study, the effects of diets of different types and energy contents on the resting 

levels of glycogen were not by any means dramatic in either country, nor were they consistent 
throughout the setups. In the USA, diet C (corn; high energy density) tended to result in higher 
glycogen concentration although this effect was consistent across bulls and steers and both 

muscles only for B3 (II, Table 2) (see Discussion: Seasonal effects). Male status and interaction 

between male status and diet were insignificant in all comparisons. GM muscle appeared to be 

more sensitive than LTL muscle to the diet effect since diet C increased glycogen concentration 

significantly in six of eight comparisons (B2, B3, B5 and B6, II, Tables 2 and 3) involving GM 

muscle. In comparison, glycogen concentrations of the LTL muscle responded significantly to 

diet C in four of eight comparisons. Perhaps this difference in glycogen concentration could at 
least to some extent be explained by the relative activities of these muscles. Therefore, the 

relatively higher involvement of GM in general locomotion and exercise enhances the 

accumulation of the higher resting concentration of glycogen compared to the LTL. 
 

In Finland, on the other hand, the only group responding to the diets of different type and 

energy content was the spring group of cattle that lost glycogen on the low-energy diet. 
However, the high and low energy groups of spring and summer did not turn out to be identical 
in feed consumption. As mentioned earlier, the summer cattle on low energy ate so much better than 

the spring cattle that they ended up getting 30% more energy per day from their 100% silage diet. 
 

These results suggest that resting muscle glycogen concentration cannot easily be manipulated, 
since providing a diet high in energy does not inevitably result in increase in glycogen 

concentration. On the contrary, a very significant negative correlation between the initial 
glycogen concentration and response of glycogen concentration to diet was found both in the 

Ayrshire bulls and the Charolais cattle. Initially high glycogen concentrations were not 
particularly responsive to diet: the more glycogen there was initially, the less was gained during 

high-energy feeding. Perhaps the synthesis of glycogen is feedback regulated so that the 

glycogen concentration affects the need to synthesize more, which is typical for the utilization 

and synthesis of biochemical substrates. Indeed, Tarrant (in a review, 1989a) noted that the 

level of glycogen regulates the repletion rate in muscle. The lower the absolute concentration of 
glycogen after stress, the greater the rate of increase after stress. 
 

Furthermore, persistence seems to be a characteristic of skeletal muscle glycogen even when a 

relatively low energy diet is consumed. This applied to both countries, since the all-forage cattle 

had relatively high resting concentrations initially, and did not automatically respond to an 

increase in the energy content of diet. This phenomenon is in accordance with the studies of 
Howard and Lawrie (1956) and McVeigh and Tarrant (1982), in which glycogen concentration 

did not decrease dramatically in fasted cattle. 
 

Contrary to these results, Pethick and Rowe (1996) concluded that glycogen is a dynamic 

metabolite in the skeletal muscle of sheep, and highly responsive to nutrition and exercise 

training. Pethick et al. (1995) also reported that the level of glycogen was dramatically reduced 

in Australian steers grazing dry pasture in December when compared to those receiving the 

feedlot ration. Similarly, Daly et al. (1999) reported that the glycolytic potential (GP) as an 

estimate of pre-slaughter glycogen concentration was approximately 20% higher in the LTL 
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muscle of the corn-fed Angus-cross cattle compared to cattle grazing ryegrass/clover pasture. In 

their setup, feed intake of the grain-fed steers was restricted with the intention of producing 

equivalent growth rates in the two treatment groups. However, this attempt was unsuccessful, 
and during the 6-week trial the grain-fed cattle gained 0.84 kg/d, whereas the pasture-cattle 

gained 1.90 kg/d. After a thorough discussion, the authors concluded that the difference in GP 

is very probably due to greater accumulation of muscle glycogen in the steers fed grain 

concentrates and, thus, suggest that grain-based diets can increase muscle glycogen independent 
of the higher calorific intake normally associated with grain diets, probably in response to 

alterations in rumen VFA production. However, the cattle were off-feed for 18 h prior to 

slaughter, and of this time they were transported for 30 min and laired for 14 h at the abattoir 
facility. According to the authors, an alternative explanation not to be excluded for the 

differences in GP is that the two treatment groups had essentially equivalent muscle glycogen 

concentrations on-farm, but the pre-slaughter handling procedures stimulated greater glycogen 

depletion in the pasture-fed group. Indeed, the activity of creatine kinase and lactate 

dehydrogenase as indicators of pre-slaughter stress were significantly elevated in the pasture-fed 

steers compared to the grain-fed steers, even though both groups were accustomed to human 

handling. Based on the experience gained during this study in Finland, especially concerning 

the losses of muscle glycogen during 5 h transportation followed by immediate slaughter, the 

alternative explanation of the authors seems more likely (see Discussion: Loss of glycogen from 

farm to slaughter). 
 

In a study with Merino sheep, Pethick and Rowe (1996) observed a strong linear relationship 

between the feed intake and glycogen level in the SM and ST muscles. Pethick et al. (in a 

review, 1995) cautiously discourage the usage of LTL or SM muscles for dietary studies, since 

they may be less responsive to nutrition than the ST muscle. The responsiveness of ST muscle to 

diet, they say, is closely associated with the inherently low level of glycogen. 
 

Glycogen repletion after induced depletion 

The high-energy corn diet was more effective than the low-energy silage diet in repletion of 
glycogen content in both muscles for both steers and bulls following adrenaline depletion (B5, 
II, Table 3). There are good indications that feeding practices which supply appropriate 

gluconeogenic precursors may help to protect animals prior to slaughter or, with rest, to make 

for more rapid restoration of muscle glycogen in animals that have been stressed (Lister, 1989). 
However, slow repletion of glycogen concentration occurs even in exhausted animals despite 

denial of food and water as evidenced by decreasing ultimate pH values (Chrystall et al., 1981). 
 

The rate of repletion was extremely slow, since after 37 days (B5) on diet, the glycogen 

concentrations in silage-fed cattle were still slightly below the resting concentrations obtained in 

this study, and there was significantly more glycogen in the corn-fed cattle compared to the 

silage-fed cattle (II, Table 3). It can be calculated that the rates of repletion in GM muscle were 

1.6 and 2.3 mmol/kg/d in steers eating silage and corn, respectively, and 1.1 and 2.4 mmol/kg/d 

in bulls on those diets, respectively. The comparable rates in LTL muscle were 1.2 and 1.6 

mmol/kg/d in steers and 0.8 and 1.4 mmol/kg/d in bulls on silage and corn diets, respectively. 
Repletion of bovine muscle glycogen with a high-energy barley diet was superior to hay also 

according to McVeigh and Tarrant (1982). In their study, glycogen concentrations returned to 

pre-adrenaline-treatment concentrations after 11 d on barley or after 14 d on hay feeding at 
average rates of 7.6 and 6.1 mmol/kg/d, respectively. However, even fasted heifers gained 

glycogen at a rate of 1.5 mmol/kg/d. On the other hand, in a study of Crouse et al. (1984) 
muscle glycogen concentration of bulls fasted for 96 h was repleted at the rate of 3 mmol/kg/d 
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after returning to corn-based diet. The authors anticipated a higher rate, since testosterone has 

been observed to be important in establishing quantities of muscle glycogen in laboratory 

animals (Gillespie and Edgerton, 1970, cf. Crouse et al., (1984)). However, while the 

concentrations in this study as well as in the study of Crouse et al. (1984) were around 50 

mmol/kg, in the study of McVeigh and Tarrant (1982) they were close to 25 mmol/kg in the 

hay-fed and fasted heifers and about 40 mmol/kg in the barley-fed heifers. As a consequence to 

this, McVeigh and Tarrant (1982) were ultimately able to conclude that the lower the absolute 

concentration of glycogen after stress, the greater the rate of increase after stress. 
 

Tarrant (1989a) suggested, after combining data from McVeigh and Tarrant (1983) and Lacourt 
and Tarrant (1985), where the results for the rate of recovery of muscle glycogen after 
adrenaline treatment were only one-third to one-half of the rate after mixed penning, that the 

rate of glycogen recovery is influenced by the nature of stress. Exposure to adrenaline seems to 

inhibit muscle glycogen resynthesis by a mechanism that is unclear. Considering the very slow 

repletion rates of this study, if would have been interesting to measure the change in glycogen 

concentration at least once or twice during the 37 days. The initial rate of recovery during the 

first few days may have been significantly higher than the average rate in 37 days. 
 

Seasonal effects 

 

A possible explanation for the loss of glycogen in the Charolais cattle (II, Table 2) was seasonal 
cooling between the biopsies taken on October 7 (B2) and November 6 (B3), especially since 

dark-cutting condition has been reported to increase particularly in the fall of the year when 

sudden changes in environmental temperatures and humidity occur, and possibly coincide with 

a reduction in feed availability (Munns and Burrell, 1966; Tarrant and Sherington, 1980; 
Eldridge et al., 1986). The average daily low temperature during 14 d prior to B2 was +5°C, 
whereas during 14 d prior to B3 it was 0°C. Since ambient temperature and biopsy session were 

confounded in the study, ambient temperature could not be tested as a covariate. Nevertheless, 
cold temperatures can cause shivering which is known to deplete glycogen. Climatic stress may 

increase the energy metabolism of a ruminant by 30−50% (Lister, 1989). It is the rumination 

process that causes a much greater energy loss, over 6-fold on the average, as heat in ruminants 

compared with other species. Although under certain circumstances this process may help to 

maintain body heat and hence have a sparing effect on oxidative metabolism, it represents 

considerable energy loss, which appears to be difficult to control (Lewis and Hill, 1983). 
Animals subjected to progressive cold will increase heat production as they pass their so-called 

lower critical temperature that varies among species but may also vary considerable among 

individuals of the same species (Andersson and Jónasson, 1993), according to whether it is 

fasting, fed at maintenance or fully fed, and the metabolic response varies according to the 

stimulus. It is likely to be the change in temperature, which stimulates heat production and not 
necessarily the temperature alone (Webster, 1983). Indeed, the phenomenon of cold acclimation 

involves primarily a shift from shivering to nonshivering thermogenesis during the first 2 to 3 

weeks of cold exposure (Andersson and Jónasson, 1993). The cattle on 100% alfalfa diet most 
probably revealed the effects of cold stress. 
 

Grandin (1992) and Smith et al. (1993) reported that the incidence of dark-cutting beef is high 

during very cold and humid weather as well as in very warm weather or when there are great 
fluctuations in temperature over short periods of time. In a study of Kreikemeier et al. (1998) 
involving several states of the USA, the proportions of dark-cutters were highest in August 
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(1.43%), September (1.13%) and October (1.40%) compared with incidences of 0.4 to 0.7% 

during the other months. 
 

The greater glycogen loss observed in the Ayrshire bulls in summer compared to spring may, 
therefore, also be due to differences in seasonal temperatures, since the average temperature of 
the day of transportation and four days prior to transportation (six temperature recordings per 
each 24 h) were −5.8 ± 0.7 °C and 20.1 ± 2.1 °C in spring and summer, respectively. Extremes 

in temperature and humidity are effective stressors and can contribute to the dark-cutting 

condition. Unusually high temperatures and humidity put high demands on the animal’s cooler 
mechanisms. When cattle are transported in hot and humid conditions the level of discomfort 
and incidence of dark-cutters increases (Hedrick, 1981; Grandin, 1989). This has especially 

been found to apply to temperatures above 35 °C (Fischer, 1981; Grandin, 1992). Even though 

the temperatures of this experiment were far less than 35°C, the summer cattle may have 

suffered from hot weather, since during the 5-h-transportation the temperature was above 25°C, 
which is unusually high for the Finnish climate. 
 

Loss of glycogen from farm to slaughter 

 

In this study, glycogen loss from farm to slaughter, indicating mainly the effect of 
transportation, of Finnish Ayrshire bulls had a significant positive correlation with the 

concentration measured prior to transportation (Gly-diet) as well as with the change in 

glycogen, while on experimental diet (dGly-diet). Therefore, the more the bulls had glycogen 

prior to transportation and the more glycogen they had gained during the experimental diet, the 

more glycogen they lost during transportation. Similar observations have not previously been 

reported on cattle, but Richter and Galbo (1986) reported that in fast-twitch-red and white rat 
muscle fibers, increased muscle glycogen levels enhanced the breakdown of glycogen during 

muscle contraction. Comparable data is not available on American Charolais cattle, since biopsy 

samples were not obtained at the end of the last feeding trial prior to transportation to slaughter. 
 

Diet markedly affected the glycogen loss during transportation. Considering that it takes 

approximately 26 mmol of glycogen to lower the pH of 1 kg of bovine LTL muscle by one pH 

unit (at pH range 5.5 ... 7.0) (Kivikari, 1996) the difference in glycogen loss, which equals to 17 

mmol/kg, during transportation (IV, Table 3) in favor of the high energy diet would have 

corresponded to the average glycogen depletion within 1.5 hours of severe stress, or to 0.65 pH 

units of pH decline postmortem. This result clearly supports the suggestion that good feeding 

practices that provide appropriate gluconeogenic precursors may protect animals prior to 

slaughter (Lister, 1989). 
 

Interestingly, while the amount of straight-chain glycogen (A-chains; see Fig. 1 p. 20) that can 

be rapidly mobilized at any one time regardless of the size of the glycogen molecule is 34.6% 

(Meléndez-Hevia et al., 1993), the glycogen loss in Finnish bulls on low-energy diet either in 

spring or summer can be calculated (IV, Table 3, (dGly-diet/Gly-diet)⋅100%) to correspond 32% 

and 33%, respectively. There are not a lot of studies concerning glycogen losses during routine 

transportation to slaughter. In the study of Pethick and Rowe (1996) the decrease in the level of 
muscle glycogen between the biopsy sample and the sample taken 10 min post-slaughter 
represents the loss associated with pre-slaughter stressors. Although the level of stress was 

thought to be minimal, including 1-hour transportation and 0.5−3-hour-lairage, the losses of 
glycogen corresponded to about 30 mmol/kg or 30−40% of the pre-transport/slaughter level 



Kaisa Immonen 

 48

depending on muscle. The authors suggested that glycogen loss from muscle, even under 
situations of minimal stress, will be significant and that any further stressors will have heavy 

impact on glycogen level (Pethick and Rowe, 1996). Similarly, the on-farm glycogen level of 
steers grazing dry pasture, fasted for 18 h, transported to the abattoir and held for another 18 h 

off-feed, was compared to glycogen level immediately post-slaughter. The losses in glycogen 

equaled to about 20 mmol/kg or 30−40% depending on muscle type (Pethick et al., 1995). 
 

Even though covariates modifying the least square means were used in the statistical models of 
this study, and even though the precision of glycogen analysis may not warrant for this type of 
speculation, it may not have been a coincidence that the glycogen utilization on low-energy 

cattle in this study as well as in the studies of Pethick and Rowe (1996) and Pethick et al. (1995) 
was this much but not more. After the rapid hydrolysis of the straight chains of glycogen 

molecule by phosphorylase, the relatively low activity of the debranching enzyme complex 

probably causes a significant reduction in the rate of glycogen depletion until the branches have 

been eliminated. This may not be of great relevance to many species, such as human, horse and 

pig, which utilize glycogen at such a great speed, but it may have value in the energy 

metabolism of acetate-using muscles of lethargic ruminants. 
 

Knowles et al., (1999) transported steers and heifers of mixed breeds for 14, 21, 26 or 31 hours 

on trucks with a space allowance of 1.55 m2
 per animal. The animals had constant access to hay 

and water, and received 1 kg per animal per day of concentrate. Seven days prior to 

transportation, baseline values of different substrates were determined from blood and muscle 

specimen (adductor (AD), semimembranosus (SM), supraspinatus (SS), and LTL). A small 
gradual decline was observed in the glycogen concentration in the AD and SS muscles with 

increasing journey time, but no measurable changes in the LD and SM muscles. The glycogen 

levels throughout the experiment (observed from the figure) were approximately 73 mmol/kg 

(LTL), 90−67 mmol/kg (SS), 98 mmol/kg (SM), and 107 mmol/kg (AD). The ultimate pH 

values of all muscles were below 5.64, and did not differ from each other. The results suggest, 
the authors thought, that the journeys were not physically very demanding and did not draw 

greatly on short-term energy reserves. From the point of view of this study, it would have been 

interesting, if a group of bulls were included in the study to see, how they might have reacted. 
 

The paradox created by the results of concentration-enhanced utilization of glycogen and the 

effect of diet, amplifies the protective effect of high-energy diet even further. While the animals 

on low-energy diet had significantly lower glycogen concentration prior to transportation to 

slaughter (Gly-diet) and even lost glycogen on diet (dGly-diet) (IV, Table 3, effect of diet), they 

still ended up loosing more than the high-energy-fed animals during transportation to slaughter.  
Based on the concentration-enhanced utilization, one might have expected them to loose less 

than the high-energy cattle. Indeed, the higher amount of glycogen lost during transportation by 

the low-energy bulls (29.6 ± 3.6%) compared to the high-energy bulls (5.5 ± 3.6%) was equally 

significant (p<0.0001) when expressed in proportions compared to the absolute concentrations. 
On the other hand, the summer group of bulls, which for some reason had more glycogen than 

the spring group initially (Gly-rest) as well as prior to transportation (Gly_diet), did also loose 

more on transportation than the spring cattle. It appears, therefore, that the stimulating effect of 
low-energy diet on glycogen depletion is so powerful that it overrides the effect of 
concentration-enhanced utilization. 
 

The effect of summer, however, does not exist anymore, when the analysis of proportional losses 

(not yet performed for paper IV) is performed with the covariates. Thus, if the glycogen 

concentrations prior to transportation as well as the change in glycogen while on diet were 
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considered constant, the bulls lost just as much in spring (17.0 ± 3.7%) than in summer (18.1 ± 

3.7%). Therefore, it definitely seems that the increased glycogen loss at transportation in 

summer compared to spring, revealed the effect of enhanced glycogen utilization in greater 
glycogen concentrations. 
 

The questions remain: why did high-energy diet protect Finnish Ayrshire bulls from glycogen 

utilization during transportation? Or alternatively, why did all-roughage diet enhance glycogen 

utilization despite the lower pre-transportational concentration during transportation to 

slaughter? And why were the American Charolais crossbred bulls and steers protected against 
glycogen depletion associated with diet or male status? This issue may well be discussed using 

the same speculative factors as with discussing the differences in resting muscle glycogen 

concentration between the Charolais’ and Ayrshires. 
 

Well-fed animals are able to withstand the effects of mild stress (Devine et al., 1983), but the 

effect of cumulative stressors has not received much attention (Devine et al., 1993). Increased 

ultimate pH (Devine et al., 1993), and in this experiment also the loss of glycogen during 

transportation, reflect the unsatisfactory imposition of stressors on animals from farm to 

slaughter. The ease by which different stressors cause metabolic reactions in individual animals 

and the lack of ability to withstand and adapt to these stressors is directly related to the 

incidence of dark-cutting (Hedrick, 1981). 
 

According to Franc et al. (1986), social friction with the highest agonistic component can be 

expected in groups of bulls previously tethered individually compared with animals from loose 

housing conditions. Even though, undoubtedly, this contributes to the differences found between 

Finland and USA, this is not likely to be a primary cause of glycogen depletion, since the 

transported bulls in Finland should not be able to move around and “socialize” or fight in the 

truck nor in the abattoir lairage of single pens. On the contrary, the Charolais cattle were able to 

fight and move around before transportation, during transportation and after transportation, yet 
no elevated pH values or even low residual glycogen concentrations were observed. On the other 
hand, perhaps the Finnish Ayrshire bulls did not have enough room in the truck. After all, 
carcass bruising and plasma activity of creatine kinase have been found to increase with 

increasing stocking density (Tarrant et al., 1988; 1992). However, in a study of Kenny and 

Tarrant (1987), the motion of the truck was found to be a more stressful component of the 

transportation than close confinement, as characterized e.g. by heart rate, rectal temperature, 
and plasma activities of creatine kinase and cortisol, and no adverse reaction to 

loading/unloading was observed. Here, again, the fact that the Charolais’ were slowly 

accustomed to tolerate human handling and the biopsy sampling procedure in the restraining 

facility, and that they were able to socialize with 12−15 other animals, may have increased their 
general stress resistance. Furthermore, regular exercise may modify muscles towards increased 

oxidative activity (Saltin and Rowell, 1980), but this is rather unlikely to have taken place 

considering the intensity and duration of exercise in the experiments conducted in Wisconsin. 
 

Nevertheless, at this point, one is left with a list of speculative reasons as to what ultimately 

caused the susceptibility of the Ayrshire bulls on the low-energy diet to glycogen depletion 

during transportation to slaughter. These explanation candidates include the possible rumen fill-
effect associated with great amount of ingested forage creating extra agony, the possible 

cessation of rumination due to emotional stress, the possible shortage of gluconeogenic 

precursors in the blood to accommodate the increased energy metabolism, or the possible 

uncontrolled heat loss associated with the ruminal digestion of forage. 
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Effect of animal temperament 

The subjective temperament rating significantly explained the loss of glycogen in Finnish 

Ayrshire bulls during transportation, the loss being greater in the aggressive bulls. Furthermore, 
the temperament correlated significantly with several variables along the experiment (IV, Table 

4). The more temperamental the bull the more lactate accumulation during biopsy sampling 

(p<0.05), the less glycogen at the time of slaughter (p<0.05), the less residual glycogen 

(p<0.05), the worse the appetite (p<0.05), and the less weight gain (p<0.05). Voisinet et al. 
(1997b) have also reported of worse daily gains of the most temperamental cattle. In another 
study of Voisinet et al. (1997a) the temperament rating also had a significant effect on the 

incidence of borderline dark-cutters, which were downgraded by the USDA grader based on 

visual assessment of lean color. 
 

Even though the correlation between temperament and ultimate pH was not significant in the 

Ayrshires, the significant correlations with the glycogen concentrations indicate that it was only 

a matter of time and stress stimuli that pH remained unaffected. From the point of view of 
production efficiency, ease of handling as well as meat quality, cattle selection according to 

temperament might be worth considering. Hedrick (1981) suggested that one preventive 

measure against the dark-cutting problem could be the selection of breeding animals which have 

no related incidences of dark-cutting and especially animals that have temperament not 
associated with ready excitability. 
 

In Wisconsin, during EXP-1 (II, unpublished results), the first temperament rating (TEMP-1) 
(behavior when entering the squeeze chute) of the Charolais cattle at the three biopsy sampling 

sessions, correlated significantly (r = 0.160, p<0.05, n=228) with the animal’s rank order in 

sampling among its penmates (IN-PEN). The latter, on the other hand, also correlated 

significantly (r = 0.229, p<0.001) with lactate accumulation at the biopsy sample (LA). 
Therefore, the earlier the animal got sampled within its pen the calmer he behaved when he 

entered the scale, and the less lactate was accumulated in his muscles at the time of sampling. 
However, in EXP-2, while the significant correlation between TEMP-1 and IN-PEN was still 
there, the correlation with LA was not, indicating that the animals had gotten increasingly 

accustomed to the biopsy sampling procedure over time. In both experiments, all four 
temperament ratings had very significant negative correlations (rmin = −0.359 in EXP-1 and rmin 

= −0.270 in EXP-2, p<0.0001) with the animal’s appetite for the feed offered during the biopsy 

sampling procedure. The more restless and aggressive the animal behaved (larger TEMP value), 
the worse its appetite. Or, alternatively, the worse the animal’s appetite the more restlessness 

and the more aggressive the behavior. At-the-time-of-sampling-appetite also correlated 

significantly with the type of feed treatment (r = −0.310, p<0.0001) in both experiments: the all-
forage-fed animals having better appetite than the corn-fed animals. If nothing else, the 

correlations observed in Wisconsin have value in highlighting the importance of randomization 

in experimental designs. 
 

Ultimate pH and residual glycogen concentration 

Relationship between ultimate pH and residual glycogen concentration 

The relationship of pH and residual glycogen (III, Fig. 1) seems to follow the same curvelinear 
shape as that with glycolytic potential, as demonstrated by Fernandez and Gueblez (1992) and 

Przybylski et al. (1993), while the relationship of pH and lactic acid is linear (III, Fig. 2). The 
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highest residual glycogen concentrations in this data were above 80 mmol/kg, which can be 

calculated to correspond glycogen concentration of about 125 mmol/kg at the time of slaughter. 
Resting muscle glycogen concentrations of that level were frequently observed in American 

crossbred Charolais steers and bulls as well as in Finnish Ayshire bulls. On the other hand, the 

lowest residual glycogen values at the same pH range from 5.4 to 5.75 were only around 10 

mmol/kg, which corresponds to about 55 mmol/kg glycogen at the time of slaughter. The 

variation of residual glycogen at low pH seems to be enormous. Meat of normal pH (≤5.75) has 

high residual glycogen on average and differs significantly (p<0.0001) from meat of higher pH 

(III, Table 1). However, the lower the pH the larger the range between observed minimum and 

maximum residual glycogen concentration. 
 

It is also noteworthy that there were several observations where residual glycogen concentration 

at a somewhat high pH value was so high that it would have easily been sufficient for an 

additional pH fall of at least half a unit. For some reason this did not occur. Furthermore, Fig. 1 

(III) indicates that a minimum residual glycogen concentration seems to exist. Perhaps the 

denseness of the core of glycogen molecule is self-limiting in a way, and does not allow further 
degradation by phosphorylase, After all, the limit for the action of phosphorylase is a chain of 
four (1,4-bound) glucose units from every 1,6-bond (at the branching point) (Walker and 

Whelan, 1960). One can roughly estimate, bearing an error margin of analysis in mind that this 

“limit value” existed between 5 and 10 mmol/kg (III, Fig. 1). Perhaps proglycogen with the 

molecular weight of 400,000, being only 1/25 of the molecular weight of full macroglycogen 

(M=10,000,000) (Lomako et al., 1991) is as small as a glycogen particle can get in a living 

muscle as well as postmortem. It is interesting to speculate that if a maximum amount of full 
macroglycogen molecules of 12 tiers corresponded to a resting muscle glycogen concentration of 
120 mmol/kg in an average bovine animal, the postmortem hydrolysis to all-proglycogen level 
would in the very lowest case result in a residual glycogen concentration of 4.8 mmol/kg. In this 

case, though, the animal would have lost most of its glycogen already prior to slaughter, since 

only about 45 mmol/kg is needed for the maximum pH fall. 
 

Ultimate pH values and residual glycogen concentrations in the dietary studies 

The low ultimate pH values as well as high residual glycogen concentrations of American 

Charolais cattle were rather surprising considering that the animals had been transported for 
several hours and allowed to interact with each other without restriction. Perhaps the training to 

permit human contact and muscle sampling improved their ability to resist stress associated 

with transportation, or perhaps they just did not find the transportation particularly stressful. 
Animals will behave differently depending on their previous experience (Hutson, 1980). 
Hargreaves and Hutson (1990) reported that several exposures of sheep to gentle handling, 
including speaking to and touching the animal, reduced the fearfulness of the animals and 

improved their approachability during subsequent routine handling. 
 

It is obvious that the ultimate pH values and residual glycogen concentrations of Finnish 

Ayrshire bulls reflected the glycogen differences that were created by the diets already at the 

farm (IV, Table 3). These differences got amplified at the transportation to slaughter when 

various stressors were inevitably introduced (IV, Fig. 1). Indeed, the correlations between the 

amount of silage (sil-kgdm) and compound feed (comp-kgdm) consumed and the glycogen 

concentration at the time of slaughter (Gly-kill) are stronger, however both significant, than 

between those and the glycogen response to diet (dGly-diet) (Table 4). The low energy group of 
cattle in summer was the only one to produce dark-cutting (pH>6.00), but the ultimate pH of 
5.85 of the low energy group in spring can also be considered markedly elevated. The 
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corresponding residual glycogen concentration of the dark-cutting group was 25 mmol/kg (IV, 
Table 3), which would have easily accommodated an additional pH drop of the remaining 0.5 

units, and even then about 12 mmol/kg would have been left over. For some reason this did not 
occur. Similarly, the average residual glycogen concentrations of the other groups would have 

been sufficient for the maximum decrease in pH, but again, this did not happen and the 

glycolysis ceased when pH was 5.69 in the high-energy cattle and 5.85 in the low energy cattle 

in spring. Pethick and Rowe (1996) found that while decreasing the dietary intake of Merino 

sheep from above (2.5-fold) maintenance down to maintenance level the ultimate pH values of 
SM and LD were not much increased, the effect on ST was much greater. The increase of 
dietary level from maintenance to 2.5 times maintenance increased residual glycogen 

concentrations linerly from about 14 mmol/kg to 45 mmol/kg in SM and LD muscles, and from 

virtually non-existent to about 11 mmol/kg in ST. These linear increases were even greater in 

sheep that had received regular exercise, increasing from about 34 mmol/kg close to 51 

mmol/kg. Here again, the increase of residual glycogen was modest in ST, from 6 to 17 

mmol/kg.  They also reported that in meat ultimately having a pH of 5.6, the range of decrease 

in glycogen concentration was 0.35 to 1.9 %-units [20 to 110 mmol/kg] during the post-
slaughter period of 48 h. However, consumed concentrations above 50 mmol/kg are somewhat 
in disagreement with the concept of buffering capacity. 
 

In the study of Daly et al. (1999) the ultimate pH values produced by pasture- and grain-fed 

steers were equally low (5.32 and 5.35), but the residual glycogen concentrations were 

significantly higher in the grain-fed compared to the pasture-fed group of steers. The residual 
glycogen concentrations were, however, extremely low in their study. Expressed as lactate 

equivalents, there were 2.4 and 11.9 mmol/kg in the muscles of pasture-fed and grain-fed cattle, 
respectively. Expressed as glucose, these concentrations equal to 1.2 and 5.95 mmol/kg. 
 

Whereas the ultimate pH values of the Charolais steers and bulls were all low, the 

corresponding concentrations of residual glycogen were very high. The average concentrations 

across muscles were 66 mmol/kg in low-energy-fed and 63 mmol/kg in high-energy-fed steers, 
and 52 mmol/kg and 50 mmol/kg in low- and high-energy-fed bulls, respectively. While the 

average residual glycogen concentration in Finnish Ayrshires was 33 mmol/kg, ranging from 4 

to 83 mmol/kg, the minimum concentrations tended to be at that level in the Charolais cattle 

(range from 25 to 106 mmol/kg). The maximum residual glycogen concentration of 106 

mmol/kg seems enormous, but makes sense, when the maximum resting concentrations of 160-
180 mmol/kg are considered. When approximately 45 mmol/kg is consumed in postmortem 

glycolysis of 1.73 pH units (from 7.2 to 5.47), a glycogen buffer of 9 to 29 mmol/kg has yet been 

in excess to be used between farm and slaughter. Contrary to the Finnish results, the highest 
maximum residual glycogen concentration was in the group of steers fed low energy (100% 

alfalfa haylage) prior to the transportation, while the lowest maximum was in the group of bulls 

fed the high-energy ration of corn. However, the residual glycogen concentrations of the 

Charolais cattle were completely independent of diet and varied more according to the male 

status. 
 

The reasons for the marked difference in the ranges of ultimate pH values as well as in residual 
glycogen concentrations between the two countries of this study are worth of some 

consideration. Although all the same explanation candidates apply to this discussion as to the 

differences in resting muscle glycogen concentration in general, some deserve additional 
attention. It seems not likely that the primary causes for the differences lie in the energy content 
of the diets, since in that regard, the low and high-energy diets of the countries were quite 

compatible. Nor is it likely that the type of transportation makes all the difference. According to 
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Eldridge and Winfield (1988), cattle transported at low space allowances had 3.9-6.7% lower 
heart rates and 127-260% lower movement scores than the cattle transported at higher space 

allowances. In this study the space allowance of the somewhat tightly-packed Ayrshires was 

comparable to low, while the loose-compartment transportation of the Charolais’ was similar to 

the high space allowances. 
 

The most potential contributors to the differences are perhaps again the fact that the American 

Charolais cattle were accustomed to human handling, had participated in several studies over 
the course of one year, and as a consequence to their gained experience, just did not find 

transportation to the slaughter particularly stressful. In addition to this, the semi-loose housing 

of the Charolais’ cattle versus the tie-stall housing of the Ayrshire bulls, and the opportunity of 
the Charolais’ to exercise regularly compared to the Ayrshires that had to remain completely 

stationary may have been relevant. 
 

Independent quality effects of residual glycogen at ultimate pH below 5.75 

 

The mean pH values of all residual glycogen categories (V, Table 1) are so low that they could 

all be endpoints to a postmortem acidification of about 1.5 pH-units. Using the mean buffering 

capacity of 51 mmol LA /(pH kg) (at pH range from 5.5 to 7.0) of beef LTL muscle (Kivikari, 
1996) these pH values would have required about 38 mmol of glycogen at the time of slaughter 
to be formed. Thus, the correspondent glycogen categories at the time of slaughter would have 

been ≤ 63 mmol/kg, 63.1−87.9 mmol/kg, and ≥ 88 mmol/kg. 
 

Even though residual glycogen by itself or in interaction with ageing had various statistically 

significant effects on the physical and sensory quality of beef (V, Tables 2 and 3), ie., juiciness, 
shear force, thawing loss, frying loss, fresh meat color as well as fried meat color, the 

independent effects of residual glycogen on beef quality are hardly prominent. Nevertheless, the 

water holding capacity (WHC) of beef, as characterized with drip loss of fresh meat, juiciness of 
steak as well as weight losses in thawing and frying, was somewhat affected by residual 
glycogen concentration (V, Fig. 3). This is not a surprise considering the data from the porcine 

research (Monin and Sellier, 1985; Lundström et al., 1998). However, in beef having normal 
ultimate pH (5.50 ... 5.75), the effects were slightly different from the effects on pork. 
 

Whereas the drip loss (or another measure of WHC of fresh meat) of pork having high residual 
glycogen concentration has been found to be high (low WHC) (Monin and Sellier, 1985; 
Lundström et al., 1998), the drip losses of beef having high or intermediate residual glycogen 

concentration (V, Table 2) clearly tended to be lower than that of low residual glycogen 

(p<0.061). At least in fresh beef with this range of ultimate pH values glycogen molecule seems 

to be able hold on to its bound water.  It is noteworthy that in the study of Lundström et al. 
(1998) the pork groups that differed in residual glycogen concentration (21 and 58 mmmol/kg) 
and drip loss (3.8% and 5.1%) had also different ultimate pH values of 5.51 and 5.42. Perhaps 

the effect of ultimate pHs being closer to the isoelectric point of meat contributes to this 

discrepancy, since in this study not only were the pHs slightly higher, but also not all three 

residual glycogen groups differed in average pH (V, Table 1). 
 

The thawing loss of beef was significantly affected by the residual glycogen concentration. At 
thawing, or perhaps already at freezing, the water bound in glycogen molecules seemed to 

become loose. There was no obvious explanation as to why this would happen. Although the 

effect of residual glycogen on frying loss was insignificant, the sum of thawing and frying losses 
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was significantly affected. This is well in accordance with the results of Fernandez et al. (1991) 
who measured lower technological yield of Paris Ham (cured and cooked) on samples with high 

residual glycogen. 
 

The lower shear force values of the high and intermediate glycogen categories compared to the 

low glycogen category agree with the results of Lundström et al. (1996) who reported of lower 
shear force values on pork from RN−

 carriers which typically have high residual glycogen 

content compared to non-carriers with lower glycogen content. 
 

Residual glycogen categories did not differ in sensory evaluation of beef and fat flavor. 
Nevertheless, the increasing b* value of steak color could be considered as an indication of the 

enhanced Maillard reactions during frying (V, Table 3). The high off-flavor rating on the aged 

samples with the most residual glycogen is surprising. One possible explanation is that high 

acidity and abundance of lactic acid bacteria may have made a contribution. Unfortunately pH 

values were not measured again after thawing of the aged and frozen samples, and no 

microbiological evaluations were done, so there is no way to be sure. 
 

Concept of medium-stress beef 

 

From the pre-slaughter stress point of view the large variation of residual glycogen, even at the 

lowest pH values, presents an interesting concept (III, Fig. 3). The stress experienced by the 

animals having a combination of low pH and low residual glycogen (area II) has obviously not 
been severe enough to ultimately produce elevated pH values or dark-cutting. Yet they have 

clearly experienced stress of some level, since the glycogen concentrations at the time of 
slaughter have been below the typical resting glycogen concentration of bovine muscles, ie., 80 

to 100 mmol/kg (McVeigh and Tarrant, 1982). The phenomenon could be described as the 

medium-stress beef (II) as opposed to the low-stress (area I) and high-stress beef (area III) (III, 
Fig. 3). This seems particularly justified since the lowest residual glycogen concentrations of the 

area II are exactly comparable to the residual glycogen concentrations of the most severe dark-
cutters in the area III. Newton and Gill (1978) presented a table concerning the concentration 

ranges of glucose in DFD-suspected beef striploins (LTL). The concentrations of glucose seem 

to follow the same pattern, since the lowest concentrations of glucose in pH groups of 5.60−
5.69, 5.7−5.79 and 5.8−5.89, ie., 33, 25 and 10 µg/g, respectively, were equal to the highest 
concentrations of glucose in four pH groups of the range 6.00−6.39. 
 

What sort of problem does this medium-stress beef possess then? It is well known that meat of 
high pH (area III) has poor shelf life. Problems associated with microbiological stability may 

also arise in the case of medium-stress ground beef, since grinding increases the relative 

proportion of surface many-fold, causes further contamination, and spreads the surface flora 

allover the meat. In large meat pieces most of the residual glycogen may not be of much use for 
the microbial flora, since the hydrolysis of glycogen and the diffusion of glucose from the 

interior of the piece is too slow (Gill, 1976; Kress-Rogers et al., 1993). In ground meat, 
however, high residual glycogen could be a great advantage, and a very low residual glycogen, 
on the other hand, problematic. Shelef (1977) mixed ground beef with anhydrous D-glucose at 
levels of 0.5, 1.0, 1.5, 2.0, 5.0 and 10.0%. Samples with less than 2% glucose spoiled in his 

experiment in a manner similar to control samples (Table 4), but glucose additions of 2% and 

above declined the initial pH during early storage and thus, markedly prolonged the shelf life of 
ground beef. One may speculate with the reasons to why glucose did not have this effect at lower 
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levels, ie., 0.5, 1.0 and 1.5%. The average pH of the meat was 5.8, which cannot be considered 

low. The meat had been obtained from retail stores and some of it was also store-ground. It is 

thus likely that the samples carried a somewhat heavy bacterial load already before the 

experiment was initiated by adding the glucose. At the present study, the maximum residual 
glycogen concentration of 83 mmol/kg and the minimum of 10 mmol/kg at low pH values 

(<5.6) correspond to 1.5 and 0.2%. How these naturally occurring concentrations may affect the 

shelf life of ground beef, calls for further experimentation. 
 

Table 4. Effect of glucose additions to ground beef on pHa
  (Shelef, 1977) 

 Glucose concentration (% by wt) 

 0 2 5 10 

Minimum pH value of meat 5.6 5.2b 5.1b 4.8b 

No. days required to reach minimum pH 0 9 11 21 

No. days required to reach pH 6.0 (onset of spoilage) 5 14 20 25 

a
 Mean values for 8 different samples 

b
 Significantly different from the control samples (p<0.001) 
 

In addition to the potential effects associated with shelf life, the medium-stress beef from the 

edge of normal ultimate pH, ie., around pH 5.7−5.8, is likely to have representation in the 

population of tough beef known to be related to moderately elevated, intermediate pH values 

(5.8−6.2) (e.g., Devine et al., 1993; Purchas and Yan, 1997; Purchas et al., 1999). Devine et al. 
(1993) subjected lambs to various combinations of pre-slaughter stress regimen, such as 

shearing, restricted feed, and swim washing. The induced stress levels were characterized as 

low, low/medium, medium, high, and very high, and they resulted in corresponding ultimate pH 

values of 5.50, 5.84, 5.88, 6.29, and 6.38, respectively. The shear forces of the low/medium 

(13.2 kgF) and medium (12.4 kgF) stressed groups were significantly higher compared to the 

other groups of low (9.35 kgF), high (9.17 kgF) and very high (10.5 kgF) stress levels (Devine 

et al., 1993). 
 

The circumstances resulting in the development of medium-stress beef may, therefore, 
potentially have several important and far-reaching effects on the ultimate quality of beef in the 

forms of shelf-life, tenderness and overall palatability. 
 

 

CONCLUSIONS 
 

�� It is justified to use the LTL muscle of a bovine animal in repeated biopsy sampling on 

the longitudinal axis provided that the most cranial part of the muscle is avoided and 

that care is taken to obtain the samples while the muscle is at resting state. 

�� Resting American Charolais cross-bred cattle that are housed semi-loosely with a few 

co-specifics, are exposed to ambient temperatures, are accustomed to human handling, 
and are exercised regularly (but not intensively), have more glycogen in their LTL and 

GM muscles than resting, sedentary Finnish Ayrshire bulls that are individually tied in 

stalls indoors, unaccustomed to handling, and unable to interact with many co-specifics. 
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�� Bovine muscle glycogen concentration cannot be easily manipulated with diets. Initially 

high concentrations do not readily respond to changes in the energy content of the diet. 
The more there is glycogen initially, the less it increases with high-energy diet. 

�� Cattle are able to gain and maintain high glycogen concentrations even on an all-forage 

diet, but the repletion of low muscle glycogen concentrations is faster with feeds high in 

energy than with low-energy forage. 

�� Glycogen utilization in bovine muscle is enhanced by high glycogen concentrations. 

�� Consumption of diet high in energy protects bovine animals from potentially glycogen-
depleting stressors, such as onset of cold or hot weather, and transportation to 

slaughter. 

�� Finishing of dairy bulls with a high-energy concentrate diet for at least two weeks prior 
to transportation to slaughter is one of the appropriate measures to take against bovine 

dark-cutting, since its protective effects were directed against glycogen depletion and 

elevation of ultimate pH. 

�� The most aggressive bulls have worse weight gains, utilize more glycogen at 
transportation to slaughter, and are more prone to elevation of ultimate pH than normal 
bulls. 

�� Relationship between residual glycogen concentration and ultimate pH of beef is 

curvelinear, and independent of pH at normal pH values (≤5.75), where the range of 
glycogen concentration is enormous. 

�� Independent effects of residual glycogen concentration on the physical and sensory 

quality of beef are numerous, but hardly prominent. 
 

 

SUGGESTIONS FOR FUTURE EXPERIMENTS 

�� How the great, naturally occurring variation in residual glycogen affects the shelf life of 
beef, especially after it has been ground. 

�� How does refrigeration temperatures and gradually declining pH affect the postmortem 

activity of the glycogen debranching enzyme complex. 

�� What is the relationship between the concentration/debranching state of glycogen at 
slaughter and the rate and extent of postmortem glycolysis. 
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