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ABSTRACT

The average daily intake of folate, one of the B vitamins, falls below recommendations among
the Finnish population. Bread and cereals are the main sources of folate, rye being the most
significant single source. Processing is a prerequisite for the consumption of whole grain rye;
however, little is known about the effect of processing on folates. Moreover, data on the
bioavailability of endogenous cereal folates are scarce. The aim of this study was to examine the
variation in as well as the effect of fermentation, germination, and thermal processes on folate
contents in rye. Bioavailability of endogenous rye folates was investigated in a four-week human
intervention study. One of the objectives throughout the work was to optimise and evaluate
analytical methods for determining folate contents in cereals.

Affinity chromatographic purification followed by high-performance liquid chromatography
(HPLC) was a suitable method for analysing cereal products for folate vitamers, and
microbiological assay with Lactobacillus rhamnosus reliably quantified the total folate.
However, HPLC gave approximately 30% lower results than the microbiological assay.

The folate content of rye was high and could be further increased by targeted processing. The
vitamer distribution of whole grain rye was characterised by a large proportion of formylated
vitamers followed by 5-methyltetrahydrofolate. In sourdough fermentation of rye, the studied
yeasts synthesized and lactic acid bacteria mainly depleted folate. Two endogenous bacteria
isolated from rye flour were found to produce folate during fermentation. Inclusion of baker’s
yeast in sourdough fermentation raised the folate level so that the bread could contain more
folate than the flour it was made of. Germination markedly increased the folate content of rye,
with particularly high folate concentrations in hypocotylar roots. Thermal treatments caused
significant folate losses but the preceding germination compensated well for the losses. In the
bioavailability study, moderate amounts of endogenous folates in the form of different rye
products and orange juice incorporated in the diet improved the folate status among healthy
adults. Endogenous folates from rye and orange juice showed similar bioavailability to folic acid
from fortified white bread.

In brief, it was shown that the folate content of rye can be enhanced manifold by optimising and
combining food processing techniques. This offers some practical means to increase the daily
intake of folate in a bioavailable form.
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1. INTRODUCTION

In 1931 Dr. Lucy Wills successfully used yeast extract to treat macrocytic anaemia prevalent in

pregnant Indian patients (Wills, 1931). Yeast contained the same antianaemia factor that was

isolated from spinach in 1941, and the factor received the name folic acid after the Latin word

folium, meaning leaf. Folate compounds belong to the vitamin B group, and folate is a generic

term referring to derivatives of folic acid.

Megaloblastic anaemia is still a common consequence of folate deficiency, but recently more

attention has been given to the effect of folate on preventing foetal neural tube defects (NTD).

Folic acid supplementation is efficient in preventing the occurrence of NTDs (MRC Vitamin

Study Research Group, 1991), but since NTDs develop during the first four weeks of pregnancy,

prevention should be started before conception. Folate functionality is nowadays of great interest

for several other reasons. Folate decreases plasma homocysteine, which has been proposed as a

risk factor for cardiovascular disease (Boushey et al., 1995), ischemic heart disease, and stroke

(Homocysteine Studies Collaboration, 2002). However, recent re-evaluation has revealed that the

association of homocysteine with cardiovascular disease may be weaker than previously believed

(B-Vitamin Treatment Trialists’ Collaboration, 2006) but the role of homocysteine as a risk

factor for stroke is more pronounced (Wang et al., 2007). Interestingly, plasma homocysteine

seems to be a risk factor also for dementia and Alzheimer’s disease (Seshadri et al., 2002).

Dietary folate intake has been shown to be inversely associated with the risk of cardiovascular

disease and stroke (Bazzano et al., 2002). Adequate folate intake also protects against colorectal

cancer (Giovannucci et al., 1995). This said, the effect of folate on carcinogenesis may be of dual

nature, depending on the dose, the folate form, and the timing (Sanderson et al., 2007).

Folate in food exists as various vitamers differing in oxidation status and single carbon

substituents, and with a variable number of glutamyl residues. The labile nature of folate,

differences in stabilities of vitamers, and low concentration levels make reliable analysis

challenging. The properties of the food matrix also have to be addressed. Perhaps the most

commonly used method in food folate analysis is microbiological assay, which provides a single

figure, total folate, representing the sum of all folate derivatives. However, since vitamers differ

in their chemical characteristics and possibly in their bioavailability, it is important to examine

folate vitamer distribution. High-performance liquid chromatographic (HPLC) methods have

been developed for this purpose, but the lack of specific purification methods has hindered

effective use of HPLC. Affinity chromatography has been used with good results for purifying
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and concentrating sample extracts (Seyoum and Selhub, 1993; Pfeiffer et al., 1997; Konings,

1999). Nevertheless, information about natural folate vitamers in food and especially in cereals is

still scarce.

The average daily intake of folate among the Finnish population falls below recommendations.

The main sources of dietary folate are bread and cereals, contributing over one third to the daily

intake of folate (Männistö et al., 2003). Rye is the most significant single source of folate,

providing approximately 11% of its daily intake (Laurinen, 2000). Most rye is consumed as rye

bread baked from wholemeal flour. Consumers consider rye a healthy choice, and indeed,

consumption of whole grain has been associated with a reduced risk of several chronic diseases.

Processing is a prerequisite for the consumption of whole grain rye, and it may either negatively

or positively affect folate contents. There is evidence that folate levels can be raised by means of

selecting high-folate raw materials or applying certain bioprocesses (Liukkonen et al., 2003).

However, studies conducted with rye are rare: germination studies have mainly been conducted

with barley (Jägerstad et al., 2005), baking studies with wheat (Keagy et al., 1975), and

fermentation studies with dairy products (Crittenden et al., 2002). Little is known about the

effects of processing on rye. In countries such as Finland, where mandatory folic acid

fortification is not practised and voluntary fortification is very limited, enhancement of natural

folate contents could provide a means to improve the folate status of the population.

Bioavailability of food folate is not well understood and estimates of the bioavailability of

endogenous food folate compared to folic acid vary markedly. Approximately 50%

bioavailability has been reported for endogenous food folates (Hannon-Fletcher et al., 2004), but

in some studies this figure has been up to 80% (Winkels et al., 2007). Moreover, considering the

importance of cereals in the daily intake of folate, data on the bioavailability of cereal folates are

surprisingly scarce. Fenech et al. (1999) reported good bioavailability of folate in wheat aleurone

flour, and some studies have investigated the bioavailability of folic acid as a fortificant in cereal

matrix (e.g. Witthöft et al., 2006).

The first part of this thesis consists of a literature review focusing on the role of folate in human

nutrition, the characteristics of folate in cereals, and the determination of food folate. The second

part reviews the experimental section of the study. HPLC and microbiological methods were first

optimised and validated for the cereal matrix and these methods were then applied to study folate

contents in rye cultivars and processed rye. Finally, a human intervention study was conducted to

investigate the bioavailability of rye folate.



12

2. LITERATURE REVIEW

2.1 Nomenclature and chemistry of folates

Folate is a generic term for compounds exhibiting similar chemical characteristics and biological

activity to folic acid. The basic structure of folate is comprised of 2-amino-4-hydroxy-6-

methylpterin (pteridine ring) linked through a methylene bridge to para-aminobenzoate which is

conjugated with one or several L-glutamic acid residues with -peptide linkage (Figure 1).
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Chemically-related compounds within the same vitamin family with comparable metabolic

activities may be called vitamers (Combs, 1992). As regards folate, differences at three sites of

the structure result in a large number of chemically-related species. Firstly, the pteridine ring can

be fully oxidized (as in folic acid), partially reduced at the 7,8-position (H2folate), or fully

reduced. According to the recommendations of IUPAC, the reduced 5,6,7,8-

tetrahydropteroylglutamic acid is called tetrahydrofolate and is abbreviated as H4folate (Blakley,

1988). Secondly, tetrahydrofolate can be substituted at the N5 or N10 position to form 5-methyl,

5-formyl, 5-formimino, and 10-formyl derivatives. In addition, N5 and N10 can be bridged to

form 5,10-methylene and 5,10-methenyl derivatives. Thirdly, the number of glutamyl residues

varies greatly. Folates in vivo exist mainly as folylpolyglutamates that cannot pass membranes

easily and may thus be the main coenzyme forms intracellularly. Many enzymes show greater

affinity to folylpolyglutamates than to monoglutamates, and the length of the glutamyl side chain

may regulate the flux of one-carbon units to different biochemical reactions (Schirch and Strong,

1989). There are two chiral centres in the fully reduced folates, the C6 atom in the pteridine

moiety and the -C atom in the glutamyl moiety. The natural diastereoisomeres of H4folate, 5-

CH3-H4folate, and 5-HCO-H4folate are [6S, S] diastereoisomeres, whereas the naturally

occurring forms of 10-HCO-H4folate, 5,10-CH2-H4folate, and 5,10-CH+-H4folate are [6R, S]

diastereoisomeres.

All folates are sensitive to light. However, susceptibility to oxidative degradation varies: folic

acid, the form used for fortification and in the pharmaceutical industry, is more resistant to

oxidative stress than reduced folate forms (Hawkes and Villota, 1989). Substitution to the N5 or

N10 position increases the stability so that the order of stability in aqueous solutions is 5-HCO-

H4folate > 5-CH3-H4folate > 10-HCO-H4folate > H4folate (Eitenmiller and Landen, 1999).

Oxidative cleavage leads to biologically inactive compounds (Gregory, 1996).

In addition to the folate form, the rate of degradation depends on pH, temperature, the buffer,

and the presence of catalysts (e.g. trace elements) or antioxidants/reducing agents (Gregory,

1989). Depending on the pH, interconversions between folate forms are also possible. For

instance, 10-HCO-H4folate is prone to oxidation and is easily converted to 10-HCO-PGA and

10-HCO-H2folate (Robinson, 1971; Maruyama et al., 1978), and 5-CH3-H4folate is oxidised to

5-CH3-H2folate (Maruyama et al., 1978). At mildly acidic pH 5,10-CH2-H4folate is readily

dissociated to H4folate, and in acidic conditions, 5-HCO-H4folate and 10-HCO-H4folate form

5,10-CH+-H4folate (Pfeiffer et al., 1997). Although several factors affecting folate stability have

been recognised, knowledge of folate stability in complex systems such as foods is still limited.
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2.2 Folate nutrition

2.2.1 Functions

Folate coenzymes function in various biosynthetic reactions that involve transfer of one-carbon

units with different oxidation states. A one-carbon unit can be attached to either N5 or N10

position or it can form a methylene or methenyl bridge between N5 and N10.

Folates are needed in the biosynthesis of DNA and RNA through the nucleotide synthesis cycle

and in the metabolism of amino acids through the methylation cycle (Figure 2). The methylation

balance (SAM/SAH) is an important control point of many other reactions, such as methylation

of DNA, and phospholipid and neurotransmitter synthesis (Wagner, 1995). Synthesis of H4folate

from 5-CH3-H4folate is catalysed by a vitamin B12 -dependent enzyme, methionine synthase. If

B12 is lacking (for instance, due to pernicious anaemia), a functional folate deficiency may occur,

which leads to accumulation of 5-CH3-H4folate and homocysteine (Hcy). Synthetic folic acid is

reduced to H4folate without the functions of methylenetetrahydrofolate reductase (MTHFR) and

methionine synthase; its utilisation does not require vitamin B12. Folic acid may thus mask the

haematological clinical signs of vitamin B12 deficiency.

Figure 2. Methylation cycle.

Hcy  = homocysteine SAM = S-adenosyl methionine
Met = methionine SAH = S-adenosyl homocysteine
Ser = serine X = compound to be methylated
Gly = glycine X-CH3 = methylated compound
PLP = pyridoxal-5’-phosphate MTHFR = methylenetetrahydrofolate reductase
SHMT = serine hydroxymethyltransferase MS = methionine synthase

H4folate

5-CH3-H4folate5,10-CH2-H4folate Hcy
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Adenosine Hcy

X

X-CH3
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B12

PLP
MMSS
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2.2.2 Absorption and bioavailability

Folate bioavailability is mainly determined by the extent of absorption in the jejunum. Folate

polyglutamates need to be hydrolyzed with -glutamyl hydrolase in the mucosa before

absorption (Chandler et al., 1986). Monoglutamyl folates are absorbed mainly in jejunum by an

active carrier-mediated, pH-dependent mechanism. At high concentrations a non-saturable

diffusion-mediated transport dominates (Gregory, 2001). There are also high-affinity FBP folate

receptors but their expression in small intestine is neglible. Recently, Qiu et al. (2006) identified

a new proton-coupled folate transporter that, unlike the reduced folate carrier, is mutated in

folate malabsorption patients.

After absorption folates are reduced to tetrahydro derivatives and methylated in the mucosal cells

before entering the hepatic portal vein although it has been proposed that for folic acid the liver

is the initial site of metabolism (Wright et al., 2007). Approximately 10 to 20% of the circulating

5-CH3-H4folate is retained by the liver (first pass effect). Folate undergoes a notable

enterohepatic circulation and slow turnover with an estimated half-life of 100 days for the major

folate pool (Gregory, 1995).

Several genetic variants in enzymes controlling folate absorption, transport and metabolism can

have a significant effect on folate status and health (Gregory et al., 2005). For instance, Mitchell

et al. (1997) estimated that at least 46% of the variation in red blood cell folate is due to genetic

variance. Health-related and lifestyle factors also affect folate bioavailability. Some drugs such

as anticonvulsants, cancer chemotherapeutic agents, and sulphasalazine (Bailey, 1988) as well as

high chronic alcohol use and smoking (van den Berg et al., 2001) are known to affect folate

metabolism and status. Folate absorption can also be impaired by inflammation or damage in the

gastro-intestinal tract (Gregory, 1997).

Animal bioassays, mainly with rats, have been widely used to evaluate the bioavailability of

folate (e.g. Clifford et al., 1991). However, their relevance has been questioned as knowledge on

differences in folate deconjugation between animal species and humans has accumulated. In

addition, basal diets differ from human diets both in their composition and matrix (Gregory,

2001). In vitro methods have been used to study potential inhibitors of the brush border

hydrolase, and results have predicted a potential for reduced bioavailability (Gregory, 2001). An

interesting approach to in vitro studies is the use of a simulated, dynamic gastro-intestinal tract in

order to estimate the bioaccessibility of food folate (the fraction released from the food matrix

and available for absorption) (Verwei et al., 2003).
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In human volunteers, short-term studies with plasma folate or urinary excretion measurements

are used to evaluate the bioavailability of dietary or supplemental folate. Reliable estimation of

the response of plasma folate – the area under the curve (AUC) – requires several blood samples

along a sufficient monitoring time. The sensitivity of the methods remains a problem: only

foods/supplements with relatively high folate contents (> 300 g/dose) can be assessed (Gregory,

2001). Folic acid is often used as the reference folate to determine the relative absorption of

folate in test foods. However, Wright et al. (2005) recently showed that the kinetics of folic acid

differ from those of other folates, and a significant fraction of folic acid may enter the portal

circulation unaltered. In long-term protocols the folate status is reflected by changes in plasma

folate, plasma homocysteine, and red cell folate concentrations – often in this order. The main

advantage of long-term studies is that they are suitable for examining the bioavailability of the

compound as a part of the diet. Folate bioavailability studies conducted with ileostomy

volunteers (e.g. Konings et al., 2002; Witthöft et al., 2006) have further advantages, as they lack

the interfering effect of microbial folate synthesis in the colon.

Stable isotope methods have also been used in folate bioavailability studies (Gregory et al.,

1990a; Rogers et al., 1997; Finglas et al., 2002). Isotopic methods are specific and sensitive

provided that the analytical method in measurement of the labeled tracer is accurate and that

there is no loss of label during metabolism and analysis.

Estimates of the bioavailability of natural folates vary notably. Approximately 50%

bioavailability of naturally-occurring folate forms relative to folic acid has been reported

(Sauberlich et al., 1987; Hannon-Fletcher et al., 2004). However, higher estimates of 60 to 98%,

have also been achieved (Brouwer et al., 1999a; Winkels et al., 2007). According to several

human studies the bioavailability of folate polyglutamates is in the range of 50 to 80% relative to

that of monoglutamates (Gregory et al., 2005), but equivalent bioavailabilities have also been

determined (Wei et al., 1996). Much research has concentrated on the potential inhibition of

brush border conjugase inhibitors. Organic acids have inhibited conjugase in vitro (Bhandari and

Gregory, 1990; Wei and Gregory, 1998).  Dietary fibre sources have in most cases had no

adverse effect on folate bioavailability (Gregory, 1997). Interestingly, it has been proposed that

non-starch polysaccharides may actually promote microbial folate synthesis and improve the

folate status in human (Houghton et al., 1997).
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The food matrix, cellular structure, and the chemical instability of tetrahydrofolates in the gastro-

intestinal tract can also affect the bioavailability of folate (Seyoum and Selhub, 1998). In spinach

the bioavailability of folate was better if the spinach matrix was disrupted (van het Hof et al.,

1999). Binding to folate-binding proteins may protect folates and stabilise them (Jones and

Nixon, 2002) but opposite results have also been achieved, especially for folic acid (Verwei et

al., 2004; Witthöft et al., 2006).

2.2.3 Health impacts

Considering the crucial role that folate has in many biochemical reactions related to normal

growth and cell differentiation, it is quite understandable that suboptimal intake of folate may

lead to severe consequences. On the other hand, sufficient intake of folate has been shown to

offer protection against certain diseases. Perhaps the most common but nowadays less discussed

consequence of folate deficiency is megaloblastic anaemia, which is caused by the disruption of

red blood cell formation and is characterised by abnormally large red blood cells.

Sufficient folate intake is especially important during pregnancy and has important implications

for maternal, foetal and neonatal health. Folate especially decreases the risk of neural tube

defects (NTDs). NTDs are classified into spina bifida (opening in the vertebral column

protecting the spinal cord), anencephaly (absence of a major portion of the brain and skull), and

encephalocele (a hernia of part of the brain and the meninges). NTDs occur during the first four

weeks of pregnancy when neural plate closes and forms the neural tube. There is genetic

variation in NTD prevalence. In Finland, the total prevalence of spina bifida and anecephaly in

1993–2004 was on average 7.4 cases/10 000 pregnancies per year, which is relatively low

compared to other European populations (Stakes, 2006).

The mechanism underlying NTD is not well understood, but it is thought to be related to the

reduced production of methionine, S-adenosylmethionine and nucleotides. Folic acid

supplementation is efficient in preventing both the occurrence and recurrence of NTD (MRC

Vitamin Study Research Group, 1991; Czeizel and Dudas, 1992). Folate absorption tends to be

lower than normal among women with an NTD-affected pregnancy (Neuhouser et al., 1998;

Boddie et al., 2000). Interestingly, Taparia et al. (2007) presented a hypothesis that

homocysteinylation of the folate receptor may be associated with the formation of autoantibodies

against the folate receptor, inhibiting the transport of folate to the embryo. In addition, a

common polymorphism of the 5,10-methylenetetrahydrofolate reductase gene (MTHFR) –

thermolabile C677T – may increase the risk of NTD, but the evidence is not consistent (van der
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Put et al., 1997; Molloy et al., 1998). The homozygous genotype C677TT is associated with

lower folate and higher homocysteine levels than other variants of the MTHFR gene. Thus, some

population subgroups may need an increased intake of folate.

Dietary folate is independently and inversely associated with the risk of cardiovascular disease

and stroke (Bazzano et al., 2002). Folate administration decreases elevated plasma

homocysteine, which in several studies and meta-analyses has been proposed as a risk factor for

cardiovascular disease (Boushey et al., 1995; Wald et al., 2002), ischemic heart disease, and

stroke (Homocysteine Studies Collaboration, 2002). However, there is ongoing debate over

whether homocysteine is causally related to cardiovascular disease or whether it is merely a

cause or a marker of an unfavourable status underlying vascular disease or folate deficiency.

Recent evaluation of the randomised trials has casted doubts over the role of homocysteine as a

risk factor for cardiovascular disease (B-Vitamin Treatment Trialists’ Collaboration, 2006). In

addition, Bazzano et al. (2006) concluded in their meta-analysis of randomised controlled trials

that folic acid supplementation did not reduce risk for cardiovascular disease nor all-cause

mortality among participants with a history of vascular disease. On the other hand, homocysteine

is now more clearly viewed as a risk factor for stroke. Indeed, the U.S. mandatory folic acid

fortification program accelerated the decline in stroke mortality (Yang et al., 2006),  and a recent

meta-analysis showed that folic acid supplementation reduced the risk of stroke by 18% (Wang

et al., 2007).

The mechanism by which homocysteine could induce vascular disease, and a specific cut-off

point for homocysteine concentration as regards cardiovascular disease have not been confirmed.

Thus, estimates of the amount of folate needed for an optimum plasma homocysteine

concentration vary considerably. Often the recommended levels of folate cannot even be reached

by a normal, healthy diet. Wald et al. (2001a) recommended a daily dosage of 800 g folic acid

in order to prevent ischemic heart disease, whereas Ward et al. (1997) concluded that 200 g

supplemental folic acid per day was as effective in lowering plasma homocysteine as 400 g per

day. Brouwer et al. (1999a; 1999b) found that both supplemental folic acid  (250 g per day) and

additional dietary folate (350 g per day) were able to significantly reduce plasma homocysteine

concentrations. Venn et al. (2002) reported that additional 100 g of folic acid/day given as

fortified breakfast cereal was as effective in reducing homocysteine concentration as higher

levels, up to 300 g per day.
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The higher the starting homocysteine level is, the greater is the response to folate administration

(Ward et al.,1997; Schorah et al., 1998). In addition, some genotypes, such as C677TT variant of

MTHFR (Molloy et al., 1997; Silaste et al., 2001; Ashfield-Watt et al., 2002; Fohr et al., 2002)

and TYMS 3/3 variant of thymidylate synthase (Trinh et al., 2002), modulate homocysteine and

folate responses to supplemental and dietary folate. Individuals with C677TT genotype have a

higher risk of coronary heart disease, particularly when their folate status is low (Klerk et al.,

2002). Hyperhomocysteinaemia is also more common in elderly populations, which thus may

need higher folate intakes in order to significantly decrease the risk of cardiovascular diseases

(Rydlewicz et al., 2002). In Finland the prevalence of mild hyperhomocysteinaemia is 11% of

the population (Alfthan et al., 2002). Among the Finnish population a low dietary intake of folate

has been associated with a higher risk of acute coronary events (Voutilainen et al., 2001). High

homocysteine concentrations have been shown to result in an elevated risk of stroke and

cardiovascular disease mortality, whereas high serum folate levels decrease the risk of stroke and

acute coronary events (Voutilainen et al., 2004; Virtanen et al., 2005).

High folate intake may decrease the risk of certain cancers. Interestingly, folate antagonists,

methotrexate derivatives, are used in chemotherapy to prevent the replication and growth of

cancer cells. Folate-related mechanisms in carcinogenesis include for instance the

hypomethylation of DNA, miscorporation of uridylate for thymidylate in DNA, chromosome

fragility and diminished DNA repair, and secondary choline deficiency (Mason, 1995).

However, folate seems to have dual modulatory effects on carcinogenesis depending on the dose,

the form of folate, and the timing of folate administration (Sanderson et al., 2007). For instance,

Van Guelpen et al. (2005) found that low plasma folate concentration may protect against

colorectal cancer, whereas a high intake of folate (attributable to supplemental folic acid) has

been associated with an increased risk for breast cancer among postmenopausal women

(Stolzenberg-Solomon et al., 2006).

Evidence for the protective effect of folate is strongest for colorectal cancer. Lashner et al.

(1989) reported an inverse relationship between folate intake and the risk of colorectal adenomas

or cancer in a case-control study. Large, prospective studies have also been able to demonstrate

the protective effect of a sufficient folate intake against colorectal cancer (Giovannucci et al.,

1995, 1998). In addition, there are some evidence that consumption of foods containing folate

protect against pancreatic and oesophageal cancers (WCRF, 2007). However, the evidence for

other cancer types is inconsistent. Folate may affect the risk of uterine cervical cancer

(Butterworth et al., 1992) and breast cancer (Freudenheim et al., 1996). Cancers of the lungs and
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brain have also been associated with poor folate status (Choi and Mason, 2000). Carcinogenesis

seems to be modulated by gene-nutrient interactions. The thermolabile C677T variant of

MTHFR may decrease the risk of colorectal cancer, depending on the folate status (Ma et al.,

1997; Slattery et al., 1999), but increase the risk of endometrial cancer (Esteller et al., 1997).

Several other health benefits have recently aroused interest. In their large study with a long

follow-up period, Seshadri et al. (2002) observed that plasma total Hcy was an independent risk

factor for the development of dementia and Alzheimer’s disease. However, this has not been

confirmed universally (Ariogul et al., 2005). Ravaglia et al. (2005) stated that both elevated

plasma Hcy and folate deficiency independently predict dementia and Alzheimer’s disease, but

argued whether the folate deficiency was rather a consequence of the decline in dietary habits

among dementia patients. There are also indications that additional folate might improve age-

related immune functions (Kemp et al., 2002; Field et al., 2006); however, human studies are

still scarce. The effects may be different for dietary folate and folic acid supplements:

unmetabolised folic acid in serum has been found to be inversely associated with natural killer

cell cytotoxicity (Troen et al, 2006).

2.2.4 Recommendations and intake

Folate requirements change in the course of life due to physiological changes. In addition, as

mentioned earlier, certain variants of key enzymes in folate and homocysteine metabolism can

modulate the response of individuals to supplemental or food folate. The bioavailability of folate

from different food sources also varies. Thus, converting a minimum requirement for folate into

dietary recommendations is complicated.

In Finland the recommended daily intake of folate for adults is 300 g. Women of reproductive

age have a recommended a daily intake of 400 g (NNC, 2005). In Nordic recommendations the

recommended intake of folate for pregnant and lactating women is 500 g (NNR, 2004);

however, this recommendation has not been included in Finnish national nutritional

recommendations since the problems caused by folate deficiency are rare and the higher level

would have required a recommendation for the use of folic acid supplements. Table 1 presents

some folate recommendations.
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Table 1. Recommendations for intake of dietary folate ( g/day)
Nordic countries
(NNR, 2004)

United States
(Food and
Nutrition Board,
1998)
Recommended
daily allowance
(RDA, as DFEa)

United Kingdom
(Department of
Health, 1991;
2000)
Reference
nutrient intake
(RNI)

FAO/WHO,
2004

Adults 300 400 200 400

Women capable
of becoming
pregnant

400 400 folic acid
from
supplements or
fortified foods in
addition to food
folate

400 folic acid
prior to
conception and
until 12th week
of pregnancy;
medicinal or
food supplement

400

Pregnant women 500 600b 300 600

Lactating women 500 500 260 500
a Based on the estimated differences in the absorption of food folate and synthetic folic acid:
 1 DFE (dietary folate equivalent)

= 1 g food folate
= 0.6 g folic acid from fortified food or supplement consumed with food
= 0.5 g supplemental folic acid consumed without food

b 400 g folic acid from supplements or fortified foods in addition to intake of food folate

The estimated daily intake of folate among the Finnish population is lower than the

recommended level, being 273 ± 122 g/day for men and 224 ± 98 g/day for women. Intakes

fall below recommendations even when adjusted for energy intake. Folate intake is especially

low in the youngest adult groups (Männistö et al., 2003). The folate intake is close to the mean

folate intake in Europe, which is 291 g/day (197 to 326) for men and 247 g/day (168 to 320)

for women (de Bree et al., 1997). However, comparing intakes between countries is challenging

due to variations in the quality of the food database and the methods used in recording food

intake.

Cereal products are the main sources of dietary folate in Finland (Figure 3): they contribute 43%

of the daily intake of folate for men and 36% for women (Männistö et al., 2003).
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Men

Bread and
cereals; 43%

Meat and egg
dishes; 16%

Milk products;
11%

Fruit and berries;
10%

Vegetables; 9%

Potato; 7%

Other; 3%

Fish dishes; 2%

Women

Meat and egg
dishes; 14%

Bread and
cereals; 36%

Milk products;
11%

Fruit and berries;
14%

Vegetables; 14%

Potato; 5%

Other; 4%

Fish dishes; 2%

Figure 3. Contribution of different food groups to the folate intake among Finnish men and

women (Männistö et al., 2003).
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Rye is the single most significant source of folate in the Finnish diet, with a contribution of 11%

to the daily folate intake (Laurinen, 2000). Most rye is consumed as rye bread, which is typically

baked using wholemeal rye flour and wheat flour. Pregnant women and women planning

pregnancy are encouraged to consume more of foods that are good folate sources: whole grain

products, fresh vegetables, and fruits and berries (Männistö et al., 2003).

2.2.5 Fortification

Folic acid fortification has been launched or considered in several countries, including the UK,

Canada, Australia, New Zealand, Ireland, the Czech Republic, and Chile. The U.S. Food and

Drug Administration (FDA) started a folic acid fortification programme on 1 January 1998, in

order to reduce the number of NTD cases. The U.S. fortification programme, aimed at an

additional intake of 100 g folate/day, has improved the folate status assessed from plasma folate

and homocysteine values and reduced the prevalence of NTD. The fortification program virtually

eliminated folate deficiency and efficiently lowered plasma homocysteine in the U.S. population:

the prevalence of low serum folate concentrations decreased from 16% before to 0.5% after

fortification, and 79% of the population had plasma homocysteine concentrations below 9 mol/l

(Pfeiffer et al., 2005). After the large initial increase in serum and red cell folate concentrations

there was a slight decrease (Pfeiffer et al., 2007).

Honein et al. (2001) reported a 19% decline in the prevalence of NTD – less than the estimated

50%. The study of Williams et al. (2005) covered a longer period and characterised the

differences among racial/ethnic groups. Williams et al. (2005) reported that the prevalence of

spina bifida decreased 36% among Hispanic births and 34% among non-Hispanic white births

but the decrease was only borderline statistically significant among black births. The decreases

in the prevalence of anencephaly were 26% among Hispanic births and 29% among non-

Hispanic white births. In order to obtain further decreases in the occurrence of NTD, increased

fortification levels and encouragement of women to consume more folic acid have been

suggested (Wald et al., 2001b; Brent and Oakley, 2005).

Fortification is in many respects an effective way to decrease NTD occurrence, since it results in

a significant increase in folate intake from food sources without major dietary modifications. It

also avoids the problem of poor compliance related to another commonly recommended strategy,

supplementation with folic acid tablets. The proportion of unplanned pregnancies can be as high

as 50%, which means that without fortification, in many cases the malformations may occur
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before the pregnancy has been confirmed and sufficient folate intake secured (McNulty et al.,

2000).

There are, however, concerns over the possible adverse effects of synthetic folic acid. Since the

utilisation of folic acid does not require vitamin B12, folic acid may prolong the diagnosis of B12

anaemia which continues to progress until irreversible neurological disorders occur. In addition,

Stover and Garza (2002) raised the concern that excess folic acid may increase spontaneous

abortions and increase the prevalence of the C677TT variant of the MTHFR gene. The

thermolabile C677T variant of MTHFR is a risk factor for early pregnancy losses and may also

affect the risk of some chronic diseases, particularly when associated with low dietary folate

intake.

Biotransformation of folic acid is saturated in the region of 260 to 280 g (Kelly et al., 1997) but

regular intake of smaller doses may also result in the appearance of unmetabolised folic acid in

serum (Wright et al., 2007). The long-term effects of unmetabolised folic acid are largely

unknown (Lucock, 2004). However, some recent findings have raised debate over mandatory

folic acid fortification. For instance, Troen et al. (2006) reported that concentrations of free folic

acid in serum correlated with the reduction of natural killer cell cytotoxicity among

postmenopausal women, which might promote carcinogenesis, and Cole et al. (2007) found that

folic acid supplements may increase the risk for colorectal neoplasia.

There has been considerable variation in the folate contents of cereal products in the era of

fortification (Johnston and Tamura, 2004); in addition, analysed folate contents have often been

higher than labelled (Rader et al., 2000; Whittaker et al., 2001). The fortification programme

would benefit from a systematic monitoring system that would include determinations of food

folate contents, stability and bioavailability, the effect of fortification on the folate status, the

effect of long-term exposure to folic acid as well as the vitamin B12 deficiency history

(Neuhouser and Beresford, 2001; Rader, 2002; Johnston and Tamura, 2004).

2.3 Folate in cereals

2.3.1 Folate content of cereals and cereal products

Folate exists in foods as several vitamers, mostly in reduced forms. Unlike many vegetables that

contain mainly 5-methyltetrahydrofolate (Gregory et al., 1984; Vahteristo et al., 1997a; Konings

et al., 2001), cereal products often contain a large variety of vitamers including methyl and
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formyl derivatives as well as unsubstituted tetrahydrofolate (Pfeiffer et al., 1997; Konings et al.,

2001).

Folates in plant materials usually exist in polyglutamyl form, and cereals are no exception. Since

Lactobacillus rhamnosus, the organism used in the microbiological assay of folate, mainly gives

a response to mono-, di- and to a certain extent to triglutamates, the difference in samples

analysed with and without conjugase reflects the amount of polyglutamyl folates in the sample.

Konings et al. (2001) reported that 66 ± 27% of folates in breads exist in the polyglutamate form.

This is fairly consistent with results of Arcot et al. (2002) showing a 44% proportion of

undeconjugated folate in wheat bread and an average 60% proportion in twelve Australian

wheats. Müller (1993) recorded 76.5% free folate (monoglutamate folate) in grains and 65.6% in

bakery products, that is, 23.5% and 34.4% polyglutamates, respectively. However, as there are

many confounding factors in the concept of “free” folate, the results should be considered only

as rough and indicative estimates of the proportion of polyglutamyl folate.

Folate vitamers may differ in their polyglutamyl chain-length distributions and exist only with

certain chain lengths (Zheng et al., 1992; Seyoum and Selhub, 1998). The role of polyglutamate

synthesis is not well understood. The polyglutamate chain affects the affinity of the folate

molecule for folate-dependent enzymes as well as the retention of the molecule in the cells

(Schirch and Strong, 1989; Rebeille et al., 1994). Thus, the polyglutamyl chain length may have

an important role in metabolic regulation. Little information is available on the precise

polyglutamyl distribution in cereals. Ndaw et al. (2001) reported that in wheat flour the number

of polyglutamyl residues varied from one to six.

Cereals, and especially whole grain products, contribute greatly to the intake of dietary folate

and are generally rated as good sources of folate. There is considerable variation in folate

contents between different food composition databases (Table 2). Folate contents differ

markedly according to the grain species, cultivars, and growing conditions. In addition, sampling

and analytical methods also vary. The use of grains requires various types of processing such as

milling and fractionation, baking, and thermal treatments that have a significant effect on the

folate contents of the end products.
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Table 2. Total folate contents in selected cereals and cereal products according to Finnish, U.S.,
and UK food composition databases ( g/100 g edible part)a

Fineli, 2006 USDA, 2005 FSA, 2002
Rye flour 72 60 78
Wheat flour, whole grain 50 44 57
Barley flour 19 8 –
Oats 46 56 60
Rice, brown 49 20 49

Rye bran 72 – –
Wheat bran 195 79 260
Wheat germ 520 281 –
Oat bran 46 52 –

Rye bread 60.5 51b 24
Rye crispbread 73.1 22b 35
Wheat bread 37.2 41b 40

Pasta, cooked 6.9 7b 4
Rice, cooked 11.3 4 10
a Items chosen on the grounds of having similar ash contents
b Endogenous folate

Rye has a clearly higher folate content than the other main cereals. However, folate in rye has

not been investigated as intensively as folate in wheat. Many studies have reported considerably

higher folate contents in rye than those presented in Table 2: 92 g/100 g (Cerna and Kas, 1983);

135 µg/100 g (Gujska and Kuncewicz, 2005); and 143 g/100 g (Müller,1993).

Data on the variation between rye cultivars are almost non-existent, whereas the variation

between wheat cultivars has been investigated in some studies. Keagy et al. (1980) found that

wheat flours derived from soft wheat classes had significantly lower folate contents than those

derived from hard classes, whereas Mullin and Jui (1986) reported that folate contents in brans

derived from soft wheat classes were approximately 50% higher than in brans derived from hard

classes. Arcot et al. (2002) reported folate contents of 80 to 114 g/100 g for twelve Australian

wheats from different receival sites, and in four Polish wheat cultivars collected from the same

station folate contents varied from 33.6 g/100 g to 40.3 g/100 g (Gujska and Kuncewicz,

2005). In two Polish rye cultivars, folate contents were 123 and 135 g/100 g (Gujska and

Kuncewicz, 2005).

2.3.2 Effect of processing on cereal folates

Processing is a prerequisite for the increased consumption of whole grain rye. Along with the

traditional baking of rye bread, the demand for new kinds of products such as snacks and
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convenience foods is growing, which is offering challenges for food industry to maintain or

improve the nutritional quality of cereal products. This may be achieved by minimal processing,

but also by means of novel processing methods or combinations of processes.

Folates are not evenly distributed in the grain. For instance, Fenech et al. (1999) reported folate

concentrations of 94 g/100 g in wheat bran flour and 515 g/100 g in aleurone flour. According

to Arcot et al. (2002), wheat bran contained more than twice as much folate (160 g/100 g dry

matter) as the grains, and Mullin and Jui (1986) determined even higher folate contents (224 to

360 g/100 g dry matter) in brans from different wheat classes. High folate concentrations are

also found in the germ (Table 2). The large differences may be explained by differences in

milling and especially in the proportion of the folate-rich aleurone layer in the fractions. In wheat

milling the ash and protein contents of the flour generally correlate with the folate content

(Keagy et al., 1980).

Rye grain is harder and different from that of wheat, and requires special milling and

fractionation procedures. Although rye is mainly consumed as whole grain in Finland, in practice

rye is first fractionated and the “whole grain” flour is then assembled from several fractions in

order to obtain uniform quality. Rye bran has high folate contents, and folate contents between

milling fractions may vary by up to ten-fold (Liukkonen et al., 2003).  Hegedüs et al. (1985)

showed that with an 81% extraction rate the folate concentration of rye flour had decreased by

one third, and with a 75% extraction flour by almost two thirds compared to the folate

concentration of the whole grain (65 g/100 g dry matter).

The majority of rye in the Finnish diet is consumed as sourdough fermented bread and crisp

breads. Baking studies have mainly been conducted with wheat, and data on folates in sourdough

fermentation are scarce. It has been known for a long time that yeast contributes greatly to the

folate content: as much as 53 to 65% of folate in dough can be of yeast origin and as a result

bread can have a higher folate content than the flour it is made of (Butterfield and Calloway,

1972; Keagy et al., 1975). The folate content of yeast is high but also strain specific. Hjortmo et

al. (2005) screened 44 yeast strains for folate and found a range of 4000 to 14500 g/100 g dry

matter. The baking method (straight-dough or sponge-dough) does not seem to affect the folate

content of bread (Keagy et al., 1975). Folate losses during final bread baking typically vary

between 20 and 34%, despite the high baking temperatures (Butterfield and Calloway, 1972;

Osseyi et al., 2001; Arcot et al., 2002).
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Sourdough is traditionally made by mixing rye flour with water and allowing it to ferment with

or without added yeast. Commercial starters are readily available, and many bakeries use their

own sourdoughs that are maintained by back-slopping. In addition to yeasts, lactic acid bacteria

have been important microbes in sourdough baking. The production of lactic and acetic acids has

a significant effect on flavour and shelf life. A low pH increases the solubility of pentosans,

which improves the baking properties as rye flour is not able to form a gluten network (Lönner

and Ahrne, 1995). Sourdough lactic acid bacteria have been studied for their effects on bread

properties, but their role in folate production or consumption and interactions with other

microbes need to be elucidated. So far, the production of folate by lactic acid bacteria has mainly

been assessed in dairy products and in vitro experiments, and the results have been inconsistent.

For instance, Rao et al. (1984) and Lin and Young (2000) showed that Lactobacillus acidophilus

produced folate but Crittenden et al. (2002) found it to deplete folate. These differences might be

explained by different growing conditions or strain characteristics.

Germination (or malting) is known to be accompanied by an accelerated synthesis of folates.

Malting is mostly used in beer production, but malted cereals are also added to bakery products

in order to obtain a certain flavour, colour, or texture. According to Jägerstad et al. (2005),

malting of barley resulted in a 2- to 3-fold increase in the folate content, and folate levels in beer

malts were 200 to 300 µg/100 g fresh weight. In industrially malted oats and wheat, folate

concentrations were 70 µg and 140 µg/100 g, respectively, and in malted rye 140 to 330 µg/100

g.

Thermal treatments such as puffing or extrusion are used in order to create a crunchy texture or

to avoid microbiological spoilage of germinated grains. Losses of heat-sensitive vitamins are

inevitable, but strongly depend on the processing conditions, mostly on temperature, time, and

the presence of oxygen. Håkansson et al. (1987) examined the effect of autoclaving and popping

on folates in whole grain wheat and the effect of extrusion cooking on white flour. Autoclaving

resulted in folate losses of 33 to 39%, depending on process conditions, whereas losses in

popping were higher, 26 to 72%. Losses in extrusion cooking were moderate, 19 to 22%. In

conclusion, processes involving a short exposure to high temperatures or low-temperature

processes seem to retain folates better than those including a long exposure to high temperatures.

2.4 Determination of folates in food

Analysis of folates in foods is challenging due to several reasons that have to be addressed when

choosing the method of analysis. Folate concentrations in biological materials are relatively low
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and the folates occur in various forms exhibiting different stabilities. Folates are very susceptible

to heat, light, and oxygen. Moreover, the effect of the food matrix is important: folate may be

physically entrapped in the matrix, which can limit the extractability. Many biological materials

contain endogenous conjugases and other enzymes that are able to cause interconversion

between vitamers and changes in vitamer distribution.

The most commonly used techniques in food folate analysis are microbiological assays, ligand-

binding assays, and high-performance liquid chromatographic (HPLC) methods. Nevertheless,

the critical steps often take place well before the actual measurement. Ensuring folate stability

during the storage of samples, extraction, enzyme treatments, and purification requires special

attention. According to an inter-laboratory evaluation with 26 participating laboratories

(Puwastien et al., 2005), standardising the methods for extraction and detection, and the use of

certified reference materials are strongly recommended.

2.4.1 Sample extraction and enzyme treatments

Extraction of folates from the food matrix is typically performed by heat treatment (boiling in a

waterbath or autoclaving) in buffers with added reducing agents. The pH of the buffer is in the

range of neutral or alternatively mildly acidic or alkaline. A buffer-to-sample ratio of at least ten

is recommended (10 ml of buffer to 1 g sample, on a dry matter basis). Ascorbic acid is the most

commonly used reducing agent. The use of 2-mercaptoethanol together with ascorbate was first

recommended by Wilson and Horne (1984) to block formaldehyde formation from ascorbate.

Mercaptoethanol can form a hemithioacetal with formaldehyde and thus prevent interconversion

of folates.

Heat treatment releases folates from the food matrix and folate-binding proteins (Gregory et al.,

1990b). Samples can be homogenised either immediately before or right after the heat treatment.

Hyun and Tamura (2005) stated that heat extraction is not necessary if trienzyme treatment is

performed. Their procedure eliminates one step where folate destruction is possible; however, it

might not be suitable for all types of folate analysis. Homogenisation disrupts the food matrix

and releases folates as well as enzymes catalysing interconversion. Thus, if vitamer distribution

is to be determined, it is recommended to homogenise the samples after heat treatment

(denaturation of enzymes) or perform the homogenisation in hot buffer.

Most of the folates in foods are in polyglutamate forms. As many analytical methods can

measure only mono- and diglutamates, polyglutamates therefore need to be hydrolysed using
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conjugases ( -glutamylhydrolases; EC 3.4.22.12). Conjugases with different pH optima and end

products can be derived from several sources, the most common being human and rat plasma,

chicken pancreas, and hog kidney. Chicken pancreas conjugase, which mainly produces

diglutamates, is commercially available and is perhaps the most frequently used conjugase in

microbiological assays. Rat serum is also readily available, easy to use, and suitable for HPLC

analysis of monoglutamyl folates. Hog kidney conjugase, which produces folate

monoglutamates, requires extraction and purification steps. The activity of the conjugase may

vary considerably and some food components may inhibit the activity (Pedersen, 1988;

Engelhardt and Gregory, 1990). It is highly recommended to test the activity of a particular batch

of enzyme in the sample material and to use significantly more conjugase than theoretically

needed (Pedersen, 1988).

The proportion of matrix-bound folates may be significant. For instance, Cerna and Kas (1983)

found that approximately 40% of folates in wheat and rye are bound to starch, and Yon and

Hyun (2003) reported on average 41% matrix-bound folate in cereals and grain products (63%

for wheat flour and 39% for white bread). DeSouza and Eitenmiller (1990) and Martin et al.

(1990) demonstrated that the use of α-amylase and protease in addition to conjugase resulted in

higher measurable folate contents in microbiological and radioassays. The usefulness of the

trienzyme treatment has further been verified by Pfeiffer et al. (1997) in HPLC analysis of cereal

products, Rader et al. (1998) in microbiological assay of fortified cereals, DeVries et al. (2001)

in microbiological assay of cereal products, and by Yon and Hyun (2003) in microbiological

assay of several food items. However, some studies have not confirmed the necessity of

trienzyme treatment (Shrestha et al., 2000; Ndaw, 2001; Iwatani and Arcot, 2003).

There are several differences in the trienzyme treatment conditions that can affect the

effectiveness of the treatment: incubation time, optimum temperature and pH, and the order of

enzyme addition. Furthermore, the optimal conditions for enzyme action may not be optimal

regarding folate stability. For instance, overnight incubation with protease may destroy labile

folate vitamers (Pfeiffer et al., 1997). It has been stated that trienzyme treatment should be

optimised separately for each sample material (Aiso and Tamura, 1998; Engelhardt and Gregory,

1990), although Hyun and Tamura (2005) later presented a recommended procedure

summarising the results of several enzyme treatment studies and providing practical advice in

choosing the suitable method.
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2.4.2 Microbiological assay

Microbiological assay has been regarded as a tedious, time-consuming method requiring special

expertise (Tamura, 1998). However, a few modifications have greatly contributed to the

practicability of microbiological methods. Firstly, cryoprotection in glycerol reduces the time

needed for the assay, increases the reproducibility, and simplifies the maintenance of the

organism (Grossowicz et al., 1981; Wilson and Horne, 1982). Secondly, the use of microtiter

plates instead of test tubes increases the sample through-put, lowers the detection limit, and

reduces time and effort as the plates can be read and results calculated automatically (Newman

and Tsai, 1986; Horne and Patterson, 1988). Thirdly, the use of a chloramphenicol resistant

strain has reduced the need for aseptic working conditions (Chanarin et al., 1972; O’Broin and

Kelleher, 1992).

The microbiological method is the most widely used method in analysing the total folate content

in foods, and is the method of choice in the existing official methods of folate analysis (Table 3).

Microbiological assays are based on nutrient – in this case, folate – requirements of a certain

microorganism. The growth of the organism is dependent on the folate content of the sample and

can be measured turbidimetrically. The most common microorganism in folate analysis is

Lactobacillus rhamnosus ATCC 7469.

Table 3. Official methods for folate analysis
AOAC 944.12 AOAC 992.05 AACC 86-47 EN 14131

Application folic acid
(pteroylglutamic
acid) in vitamin
preparations

folic acid
(pteroylglutamic
acid) in infant
formula

total folate in
cereal products
(using trienzyme
extraction)

total folate in
foodstuffs

Microorganism Enterococcus hirae
ATCC 8043

L. rhamnosus
ATCC 7469

L. rhamnosus
ATCC 7469

L. rhamnosus
ATCC 7469

Reference AOAC, 2006 AOAC, 2006 AACC, 2000 EN 14131, 2003

L. rhamnosus ATCC 7469 gives a response to mono,- di, and triglutamates (Tamura et al.,

1972); thus, enzymatic deconjugation of long-chain folylpolyglutamates is necessary. The

microorganism may exhibit significantly different responses to different folate vitamers

(Newman and Tsai, 1986; Goli and Vanderslice, 1989). Phillips and Wright (1982) showed that

the response of L. rhamnosus ATCC 7469 to 5-methyltetrahydrofolate was lower than its

response to 5-formyltetrahydrofolate or folic acid, especially in low concentrations. However,

when pH was adjusted to 6.2 instead of 6.8, there was no difference in the responses. Rader et al.

(1998) also showed that the sensitivity was better at pH 6.2 than 6.7.
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The microbiological method is often used as a reference method, or “gold standard”, in the

validation of analytical methods measuring individual vitamers. This provides that equal

responses to different vitamers have been confirmed. However, there is a possibility that the

growth of the microorganism is either enhanced or inhibited by non-folate compounds in the

sample.

2.4.3 Ligand-binding methods

The competitive radio protein-binding assay (RPBA) is perhaps the most common ligand-

binding assay in folate determinations. It is based on competition between radiolabelled folate in

the analysis kit and unlabelled folate in the sample for the binding sites of folate binding protein

(FBP). In the non-competitive assay the sample is incubated with FBP, and the remaining

binding sites are then determined by titration with radiolabelled folate. The protein-binding assay

can also be performed by using enzyme-labelled FBP (EPBA; enzyme protein-binding assay) in

which the bound enzymatic activity is determined by measuring the conversion of substrate to

product (Finglas et al., 1988). Protein binding assays have been widely used for analysing folate

in serum and red blood cells. However, assay pH and matrix effects may strongly affect the

results (van den Berg et al., 1994). Purification of sample extracts prior to analysis may be

required to eliminate matrix effects (Strålsjö et al., 2003). On the other hand, the analysis of food

folate is complicated, since the affinities of folate vitamers to FBP vary (Rauch et al., 1989;

Finglas et al., 1993; Wigertz and Jägerstad, 1995; Strålsjö et al., 2002). Two folate forms not

occurring in the nature, PGA and (6R)-5-CH3-H4folate, have been reported to have the highest

affinities for bovine FBP (Nygren-Babol et al., 2005). Among natural folates, H4folate had the

highest affinity for bovine FBP, followed by 5-CH3-H4folate and 5-HCO-H4folate. The

dissociation rate constants also varied markedly (Nygren-Babol et al., 2005).

Ligand-binding methods also include immunoassays that are based on the interaction between an

antibody and its target molecule (antigen). The enzyme-linked immunosorbent assay (ELISA) is

highly specific and suitable for folate determination in a complex matrix (Finglas and Morgan,

1994), whereas the radioimmunoassay (RIA) is rather limited and mainly suitable for the

analysis of folic acid (Keagy, 1985). A biosensor-based, continuous flow system has been

validated for the determination of folic acid in fortified foods (Caselunghe and Lindeberg, 2000).

In general, biospecific assays are specific, rapid, and simple to perform. However, they are often

less sensitive than the microbiological assay. The kits tend to give lower responses for other

folate vitamers than folic acid, and several studies have reported poor correlations between
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ligand-binding and microbiological assays (Klein and Kuo, 1981; Gregory et al., 1982; Rauch et

al., 1989; Finglas et al., 1993).

2.4.4 Chromatographic assays

Chromatographic methods allow the determination of folate forms, either folate vitamers or

folates with different numbers of glutamyl residues. In addition, HPLC has been used for “total

folate” analysis. Several HPLC methods have been developed for the determination of folate

vitamers in food (e.g.Wigertz and Jägerstad, 1995; Vahteristo et al., 1996a; Vahteristo et al.,

1997a; Pfeiffer et al., 1997; Konings, 1999). The main limiting factor in the development of

HPLC methods in food folate determination has been the lack of suitable and specific

purification methods. The most common purification procedures include weak or strong anion

exchange, cation exchange, and affinity chromatography. Affinity chromatography has proved to

be an efficient method for concentrating and purifying sample extracts, especially in cereal folate

analysis. Table 4 presents some examples of HPLC methods in analysing cereals and cereal

products for folates.

Usually, HPLC methods are based on either reverse-phase or ion exchange separation.

Polyglutamates can be separated and vitamers determined by an ion-pair HPLC method (Varela-

Moreiras et al., 1991; Seyoum and Selhub, 1993). Chain length determination can also be

performed by the cleavage of the C9–N10 bond and analysis of the resulting para-

aminobenzoylglutamates (Shane, 1980; Eto and Krumdieck, 1982).

The most common detection principles are UV, diode array, fluorescence, and electrochemical

detection (see Table 4 and Bagley and Selhub, 2000). Fluorometric detection is more specific

and sensitive than UV detection; however, the fluorescence activities of PGA and 5-HCO-

H4folate are low. Detection methods can be used in combinations. For instance, Vahteristo et al.

(1997a) utilised UV and fluorescence dual detection in confirming peak identity and purity.
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The need for laborious purification can be bypassed by using microbiological detection (Belz

and Nau, 1998). In this method, folate vitamers are separated on an HPLC system equipped with

a fraction collector. Fractions are collected into microtiter plates and a microbiological assay is

then performed. The absorbances of fractions are plotted against fraction number, resulting in a

chromatogram. On the other hand, Ndaw et al. (2001) developed a sensitive, specific, and

quantitative HPLC method in which all the folate vitamers of the sample undergo a chemical

precolumn conversion to 5-CH3-H4folate, which is then detected fluorometrically. Naturally, this

method does not allow the determination of individual folate vitamers but offers a good

alternative to the microbiological assay of total folate.

The weak point in many HPLC methods has been the lack of suitable internal standard that could

correct for procedural losses. The development of mass spectrometric methods has provided

promising approaches to folate determination; however, applications to food folate analysis are

still scarce. Stokes and Webb (1999) developed an LC-MS method with negative ion

electrospray for the separation and identification of four folate vitamers and tested the method on

a multivitamin tablet, breakfast cereal, and beef and vegetable extract. Pawlosky et al. (2003)

determined PGA and 5-CH3-H4folate in five reference materials, and Freisleben et al. (2003) and

Rychlik (2004) have used stable isotope dilution assay for the quantification of five folate

vitamers in meat, vegetables, orange juice, and cereals. Mass spectrometric detection, although

requiring technical expertise, has the advantage of being accurate and highly specific, but low

sensitivity to some folate vitamers and matrix-specific problems limit its use.

Although HPLC methods have been recognised as specific and free of inherent uncertainty

related to biological measurements, their use requires good knowledge on the chemistry of folate

vitamers. In addition, folate vitamer concentrations in foods may be low, thus impeding reliable

determination. In summarising five intercomparison studies, Finglas et al. (1999) recommended

the use of spectrometrically calibrated standards and fluorescence detection, as well as ensuring

folate stability during extraction and clean-up procedures. They concluded that further work is

needed for the HPLC analysis of vitamers other than 5-CH3-H4folate. Most of the food

composition data for folate have been determined by microbiological assay, but HPLC has also

been successfully used for this purpose (Vahteristo et al., 1996a & b; Vahteristo et al., 1997a &

b;  Konings et al., 2001) and will probably become more popular in the future.
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3. OBJECTIVES OF THE STUDY

The main objective of the study was to examine how and to what extent it would be possible to

enhance folate contents in rye and rye products. Specific objectives were to:

1) optimise and evaluate methods for determining total folate and folate vitamer contents in

rye and rye products (I, II);

2) study genetic variation in folate contents in rye (I);

3) investigate the effect of food processing methods – fermentation, germination, and

thermal treatments – on folates in rye (II, III, IV); and

4) examine the ability of endogenous folates to improve the folate status in healthy human

volunteers (V).

4. MATERIALS AND METHODS

4.1 Study design and sampling

4.1.1 Variation in folate contents in rye (I)

Ten rye cultivars representing both population and hybrid cultivars were grown in two

successive years, 1999 and 2000, in Jokioinen, Finland. The effect of the cultivation method was

examined by determining total folates from four rye cultivars, Amilo, Anna, Bor 7068, and

Picasso, grown both organically and conventionally at the same location in the same year. Total

folate contents were measured microbiologically using chloramphenicol-resistant Lactobacillus

rhamnosus (NCIB 10463) as the growth indicator organism, and the vitamer distribution of a

commercial wholemeal rye flour was determined by HPLC.

4.1.2 Effect of processing on folates in rye (II–IV)

The samples in fermentation and baking experiments (II) are listed in Table 5. In the first

fermentation experiment (II), three rye breads were baked using different fermentations: yeast

fermentation, yeast and lactic acid bacteria fermentation, and lactic acid bacteria fermentation. In

addition, three wheat breads were baked using different baking methods: the sponge-dough

method, straight-dough method and straight-dough method with baking powder (without added

yeast). Commercial flours were obtained from a Finnish milling company, and breads were

baked in the Laboratory of Cereal Technology at the Department of Food Technology,
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University of Helsinki, using the multistrain starter available. Total folate contents were analysed

from flours and breads microbiologically by Lactobacillus rhamnosus ATCC 7469, and folate

vitamer distribution in breads was determined by HPLC..

In the second experiment (II), rye sourdough fermentations with and without added baker’s yeast

were compared. Samples were taken at six points of the baking procedure (flour, sourdough start,

sourdough end, dough, proofed dough, and bread) and analysed microbiologically for total

folate. Two different starters, one a multistrain laboratory starter without added yeast and the

other containing baker’s yeast, Lactobacillus brevis, and Lactobacillus plantarum, and slightly

different baking parameters were applied. In addition, fermentation with added baker’s yeast, L.

brevis, and L. plantarum was performed using two different rye cultivars, small-grain Akusti and

large-grain Amilo. Folate vitamers were determined by HPLC from sourdough fermentation with

added yeast.

Table 5. Sampling in the fermentation and baking experiments (II)

Experiment Samples Folate analysis
method

Wheat baking
   Sponge-dough method
   Straight-dough method
   Baking powder leavening

Rye baking
   Yeast fermentation
   Yeast and lactic acid bacteria fermentation
   Lactic acid bacteria fermentation

Wheat flour
Bread
Bread
Bread

Rye flour
Bread
Bread
Bread

Flours: MA
Breads: MA, HPLC

Flours: MA
Breads: MA, HPLC

Rye sourdough fermentation with
added baker’s yeast; cultivar 'Akusti'

Flour
Sourdough, start
Sourdough, end
Dough
Proofed dough
Bread

MA and HPLC

Rye sourdough fermentation with
added baker’s yeast; cultivar 'Amilo'

Flour
Sourdough, start
Sourdough, end
Dough
Proofed dough
Bread

MA

Rye sourdough fermentation without
added baker’s yeast

Flour
Sourdough, start
Sourdough, end
Dough
Proofed dough
Bread

MA and HPLC
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The microflora in rye sourdough fermentation was then studied at the test tube scale (III).

Baker’s yeast Saccharomyces cerevisiae, and three other yeasts, Candida milleri, Saccharomyces

cerevisiae TS 146, and Torulaspora delbrueckii as well as four Lactobacillus spp., L.

acidophilus, L. brevis, L. plantarum, and L. sanfranciscensis originally isolated from rye

sourdough were examined for their folate production or consumption. The microorganisms were

grown both in specific media (YPD or Elliker) and in sterile or non-sterile rye flour – water

mixtures. Some other lactobacilli strains and three bacteria isolated from the non-sterilised rye

flour were also screened for folate production. Total folates were analysed microbiologically by

L. rhamnosus ATCC 7469.

Germination was also examined as a potential way to increase folate contents of rye. The

increase in folate concentration during germination, the optimal germination conditions, and the

effect of thermal treatments (extrusion, autoclaving and puffing, and IR and toasting) were

studied (IV). Three germination variables, germination temperature (8, 15, and 22 ºC), time (3,

5, and 7 days) and drying temperature (50, 75, and 100 ºC), were included, and a central

composite design was applied to arrange the experiments. Results were analysed using multiple

regression methods. Thermal processing studies were performed with both native and

germinated rye. Extrusion was performed using an APV MPF 19/25 twin screw extruder with die

diameter of 3 mm. The temperatures of four heating/cooling barrel zones were 140ºC, 140ºC,

120ºC, and 20ºC, and the screw speed was 225 rpm. The retention time was about 30 s. The total

load was 60% for native and 76% for germinated rye. In autoclaving and puffing grains were

first mixed with water (1:1) and autoclaved at 120ºC for 0.5. The grains were then dried and

toasted in a rack oven (Sveba Dahlin 900) at 175ºC  for 30 min. In IR and toasting grains were

first moistened to a moisture content of 20 to 30% at 80ºC. Grains were then heat-treated under

radiated heat (375 W Osram lamps) for 5 min and heated in a rack oven at 200ºC for 10 min.

Folate analyses were performed using the microbiological method with Lactobacillus rhamnosus

ATCC 7469; in addition, vitamer distributions of selected germinated and heat-treated samples

were analysed by HPLC. From some germination batches the separated hypocotylar roots were

collected and analysed for folates, both microbiologically and by HPLC.

4.1.3 Functionality of endogenous folates in vivo (V)

Healthy volunteers participated in a four-week intervention study (V). The intervention was

conducted as a parallel study with two groups: a group receiving natural folates from rye and
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orange juice (33 volunteers) and another receiving folic acid fortified white bread and apple juice

(31 volunteers). Test foods, which were consumed as a part of the normal diet, provided the

subjects with 184 g folate/day in the rye group and 188 g folate/day in the wheat group. Rye-

based tests foods included different types of fresh and dried rye breads and a high-folate rye

muesli manufactured from malted rye grain flakes. The change in the folate status of the

volunteers was evaluated by the serum and red cell folate as well as plasma homocysteine at the

beginning and end of the study period.

4.2 Folate analysis

An outline of folate analysis is presented in Figure 4. Analytical procedures were carried out

under yellow or subdued light. Alternatively, samples and calibrants were covered with

aluminium foil. Sample extracts were kept under nitrogen atmosphere whenever feasible.

Figure 4. Schematic presentation of folate analysis.
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(& homogenisation)

Sample weighing

Tri-enzyme treatment

Centrifugation
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Affinity
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4.2.1 Calibrants

Tetrahydrofolate was obtained from either Dr Schirck’s Laboratories (Jona, Switzerland)

(tetrahydrofolate trihydrochloride) or Eprova AG (Schaffhausen, Switzerland; [6S]-

tetrahydrofolate, sodium salt). 5-Methyltetrahydrofolate ([6S]-5-CH3-H4folate, calcium salt) was

obtained from Dr Schirck’s Laboratories or Eprova AG. 5-Formyltetrahydrofolate ([6S]-5-HCO-

H4folate, sodium salt) was obtained from Eprova AG (Schaffhausen, Switzerland), and 10-

formylfolic acid (10-HCO-PGA) and folic acid (PGA) from Dr Schirck’s Laboratories (Jona,

Switzerland). Calibrants were dissolved as described by van den Berg et al. (1994), and the

purities were calculated using molar absorptivity coefficients at pH 7.0 (Table 6). Standard

solutions, typically 10 to 120 �g folate/ml, were flushed with nitrogen and stored in 0.01M

acetate buffer containing 1% (w/v) sodium ascorbate (pH 4.9) at –20 ºC.

10-Formyldihydrofolate (10-HCO-H2folate) was synthesised from 5,10-

methenyltetrahydrofolate hydrochloride ([6R,S]-5,10-CH+-H4folate, chlorine hydrochloride,

Eprova AG) according to Pfeiffer et al. (1997) with a somewhat longer reaction time (2.5 hours).

Standard solution was flushed with nitrogen and stored in 0.05M Tris/HCl (pH 8.4) at – 20 ºC.

Table 6. Molecular weights, molar absorption coefficients, and absorption maxima of folate
vitamers (Blakley, 1969; Baggott et al., 1995)
Vitamer Molecular weight

(g/mol)
�

(1xmmol-1xcm-1)
�max
(nm)

pH

H4folate 445.4 29.1 297 7.0
5-CH3-H4folate 459.4 31.7 290 7.0
10-HCO-H2folate 471.4 34 234 7.4
10-HCO-PGA 469.4 20.9 269 7.0
5-HCO-H4folate 473.4 37.2 285 7.0
PGA 441.4 27.6 282 7.0

4.2.2 Extraction and tri-enzyme treatment

The sample amount was 0.5 to 2 g, depending on the homogeneity of the sample and the

estimated folate content. Samples (usually in duplicate) were weighed to plastic tubes, and 10 to

35 ml of extraction buffer (50 mM Ches, 50 mM Hepes, containing 2% sodium ascorbate and 10

mM 2-mercaptoethanol, pH 7.85) was added. The buffer-to-sample ratio was always at least 10.

Samples were flushed with nitrogen, placed in a boiling water bath for 10 min, cooled on ice and

homogenised, if necessary. Then, pH was adjusted to 4.9 with HCl and the extracts were again

flushed with nitrogen. Extracts could be kept at –20 ºC for up to two weeks before analysis. A

blank sample was analysed in each set of samples and the results were corrected accordingly.
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Hog kidney conjugase (HK) was prepared from fresh kidneys according to Gregory et al. (1984)

and its activity was tested according to Vahteristo et al. (1996a). Other enzymes, -amylase

(EC3.2.1.1) and protease (EC3.4.24.31), were obtained from Sigma (St. Louis, MO). Sample

extracts were first incubated under a nitrogen atmosphere with -amylase and HK for 3 h at 37

ºC in a waterbath. After that, the pH was adjusted to 7.0 with KOH and protease was added.

Extracts were incubated under a nitrogen atmosphere for 1 h at 37 ºC, after which they were

boiled for 5 min in a boiling waterbath to inactivate the enzymes, and cooled on ice. Extracts or

aliquots of them for HPLC were centrifuged for 20 min at 13 000 rpm at 4 ºC. The remaining

residue was suspended in 10 ml of extraction buffer and recentrifuged. Supernatants were then

combined and filtered through 0.2 or 0.45 m syringe filters.

4.2.3 Microbiological assay (MA)

At first (I), a chloramphenicol-resistant strain, Lactobacillus rhamnosus NCIB 10463, was used

as the growth indicator organism. Cryoprotection and preparation of working inoculum were

performed according to Molloy and Scott (1997). Eleven levels of the calibrant, corresponding to

0 to 50 pg of PGA, were pipetted into 96-well microtiter plates (Tissue culture treated; Costar

Corporation, Cambridge, MA), four wells for each level. Sodium ascorbate (0.5%) was added to

the calibrant-containing wells so that the final volume in each well before adding the inoculated

medium was 100 μl. Two dilutions, typically varying from 1:400 to 1:50, were prepared from

each sample to 0.5% (w/v) sodium ascorbate, and 100 l of each dilution was pipetted into four

wells. Inoculated medium was then added into each well (200 l). After 42 h incubation at 37 ºC

the optical densities of the wells were measured with a microplate reader (iEMS Reader MF;

Labsystems, Helsinki, Finland) at 595 nm after 10 s mixing at 1150 rpm.

In studies II to IV , another Lactobacillus strain, L. rhamnosus ATCC 7469, was used as it was

easier to grow and the incubation time was shorter. Although no systematic method comparison

was performed, the two methods gave similar results for reference materials (data not published).

L. rhamnosus was glycerol-cryoprotected according to the draft of European Standard for the

determination of folate by microbiological assay (see EN 14131, 2003); however, instead of

autoclaving the culture medium was sterile filtered (Acrodisc Syringe filters, 0.2 μm; Pall

Gelman Laboratory, Ann Arbor, MI). Assay medium (Folic acid Casei Medium; Difco, Becton

Dickinson & Co, Sparks, MD, USA) was used at 75% of the recommended strength, and 0.075 g

of ascorbic acid was added to the medium after heating (Molloy and Scott, 1997). The pH was

adjusted to 6.1 with acetic acid. To 1 ml of cryoprotected inoculum, 2.5 ml of sterile saline was



43

added (EN 14131, 2003), and 100 ml of culture medium was inoculated with 300 μl of this

solution.

Sample extracts were diluted with 0.5% (w/v) sodium ascorbate, pH 6.1. Sample dilutions and

the calibrant (eight levels, 0 to 80 pg 5-HCO-H4folate/well) were pipetted as before. Inoculated

medium (200 μl/well) was then added, and the plates were incubated for 18 to 20 h at 37ºC.

Mixing the plates before the turbidometric measurement was not necessary.

4.2.4 Affinity chromatographic purification

 Affinity columns were prepared by coupling folate binding protein (FBP) from bovine milk

(Scripps Laboratories, CA, USA) to agarose (Affi-Gel 10; Bio-Rad Laboratories, Richmond,

CA, USA) as described by Konings (1999). The gel volume per column was approximately 1.8

to 2 ml.

Columns were equilibrated with 10 ml of 0.1M potassium phosphate buffer (pH 7.0). Filtered

sample extracts were applied to the columns slowly (0.35 to 0.6 ml/min). A vacuum manifolder

was not usually needed. Columns were then washed with 5 ml of 0.025M potassium

phosphate/1M NaCl (pH 7.0), followed by 5 ml of 0.025M potassium phosphate (pH 7.0).

Folates were eluted with 4.95 ml of 0.02M trifluoroacetic acid/0.01M dithiothreitol to 5 ml

volumetric flasks containing 30 μl 1M piperazine, 0.2% sodium ascorbate, and 5 μl 2-

mercaptoethanol. After elution, the columns were washed with 1.5 ml of elution solution and

with 10 ml of 0.1M potassium phosphate buffer (pH 7.0). Columns were stored in 0.1M

potassium phosphate buffer containing 0.2% sodium azide (pH 7.0) at 4 ºC.

4.2.5 High-performance liquid chromatography (HPLC)

A Varian Vista 5500 liquid chromatograph and Waters 712 Satellite Wisp Autosampler with a

cooler (Waters, Milford, MA, USA) were initially used (I). These were replaced by Waters 510

and 515 HPLC pumps and a Waters 717 plus Autosampler in later experiments (II, IV). In both

systems the detection was carried out by a Waters 2487 Dual λ Absorbance detector set at 290

nm and by a Waters 470 fluorescence detector. The fluorescence detector was set at 290 nm

excitation and 356 nm emission wavelengths for reduced folates, and 360 nm/460 nm for 10-

HCO-PGA. The Waters Millennium 2020 Chromatography Manager data acquisition system

was used to collect and calculate chromatographic data. Quantification of folate vitamers was

based on an external standard method with peak areas plotted against concentrations. Calibrants

(eight levels) were purified with affinity chromatography.
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Folate monoglutamates were separated on a Shandon (ThermoQuest; Cheshire, UK) Hypersil

ODS column (150 mm × 4.6 mm; 3 μm particle size). The column temperature was kept at 30

°C. Gradient elution was performed with acetonitrile and 30 mM potassium phosphate buffer,

pH 2.2 at a flow rate of 0.9 mL/min. The gradient started at 5% (v/v) acetonitrile, which was

maintained isocratically for the first 9 min and then raised to 7% within 13 min. Thereafter, the

acetonitrile concentration was raised to 16% within 9 min and maintained for 2 min. Injection

volumes were 25 to 200 μl. Peaks were identified by retention times, and their identities were

confirmed by spiking purified sample extracts and by comparing the ratio of fluorescence and

UV intensities of a certain peak to the respective ratio of the calibrant.

4.2.6 Method validation and quality assurance

The short-term stability of folates at different stages of analytical procedures was tested in order

to justify the storage conditions (II). Mixtures of calibrants in affinity chromatography elution

solution were kept at –20 ºC (freezer temperature) and 4 ºC (autosampler temperature), and the

loss of folates was determined by HPLC. Folate stability was also tested for mixtures of

calibrants in extraction buffer as such (pH 7.85) and after heat extraction with pH adjusted to 4.9.

Affinity chromatography testing included the FBP binding capacity tests with PGA, recoveries

of calibrants, and binding of formylated vitamers to FBP-affinity columns (I). Affinity columns

were loaded with different amounts of 5-HCO-H4folate, 10-HCO-PGA, and 10-HCO-H2folate,

alone or in combination with other vitamers, so that the total folate load was approximately 10 to

50% of the capacity determined by overloading the columns with PGA.

Different gradients were tested in HPLC in order to optimise the peak separation and shape.

Gradients were evaluated on the basis of resolution, relative retention, capacity factor, and tailing

factor. Other HPLC validation data included numbers of theoretical plates, detection limits

(signal-to-noise ratio  3; determined for calibrants), and linearity as well as within-day and

between-day variation of the detector response and retention times.

Recovery tests were performed for rye fermentation samples (II) by spiking the samples before

extraction with folate calibrants at a level of 60 to 120 g/100 g and analysing the spiked and

unspiked samples by HPLC. Recovery in the microbiological assay was studied by spiking

Certified Reference Material (CRM) 121 (wholemeal flour; obtained from the Institute for

Reference Materials and Measurements, Geel, Belgium) with a known amount of 5-HCO-
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H4folate; the latter was also analysed alone as a sample. Folate results for samples were not

corrected for recovery values. Based on multiple analysis of CRM 121 a control chart was

constructed and used in quality control of the microbiological assay (II, III, IV). Criteria for the

minimum turbidity of the highest calibrant level and the maximum turbidity of the lowest

calibrant level were also set in order to follow the repeatability of the growth of L. rhamnosus

(II). Moreover, an integral part of the evaluation of method performance was the comparison

between microbiological and HPLC results of both proficiency testing materials and processed

rye samples (II, IV).

Method accuracy was evaluated not only by analysing certified reference materials but also by

participating in proficiency tests organised by an EU-funded project “Folate: from food to

functionality and optimal health” (FolateFuncHealth, QLRT-1999-00576), a Nordic comparison

Norfolate, and FAO/INFOODS comparison. These intercomparisons included several foods with

different folate concentrations and vitamer distribution patterns (Table 7).

Table 7. Overview of the interlaboratory studies participated in
FolateFuncHealth Norfolate INFOODS

Year 2000 2000–2001 2001

Participants 8 European laboratories 6 Nordic laboratories 26 laboratories worldwide

Test materials Four CRMs:
121 Wholemeal flour
421 Milk powder
485 Mixed vegetables
487 Pig’s liver

Liver pate
Freeze-dried broccoli
Wholemeal flour (CRM)
Milk powder (CRM)

Soybean flour
Fish powder
Breakfast cereal

Rounds 1 2 1

Folate levels 30 to 1340 µg/100 g DM 40 to 1230 µg/100 g 81 to 498 µg/100 g (MA)

Methods used
by our
laboratory

HPLC MA MA

In the intercomparison organised by the FolateFuncHealth project, each laboratory used its own

method of analysis. The number of accepted results was 7 to 9 for each CRM, 3 to 4 of which

were obtained by microbiological assay (MA) and 4 to 5 by HPLC. Two of the HPLC

laboratories determined 5-methyltetrahydrofolate only, and one of the HPLC laboratories used

microbiological detection (FolateFuncHealth, 2005).
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In the Norfolate ring test, six laboratories analysed four samples, two of them CRMs, in two

rounds. In each round, samples were to be analysed in duplicate on two different days. All the

laboratories performed the analyses with the microbiological assay (Lindeberg et al., 2001).

In the proficiency test organised by FAO/INFOODS, three test materials were analysed, and the

methods used included microbiological assay (22 laboratories), HPLC, LC-MS, and radioassay

(Puwastien et al., 2005).

5. RESULTS

5.1 Validity of the analytical methods

5.1.1 Affinity chromatography and HPLC

The binding capacities of the affinity columns varied between 4.6 μg and 5.0 μg folic acid/

column, and the columns could be used for tens of times without considerable changes in the

capacity. Recoveries of different vitamers in affinity chromatography were satisfactory, 83 to

102% of the binding capacity. However, the binding of 5-HCO-H4folate was strongly affected by

the total folate load. The recovery of 5-HCO-H4folate was above 90% if the total folate load was

kept under 25% of the column capacity, but decreased sharply if the total folate load was

increased. 5-HCO-H4folate alone, without the presence of other vitamers, was well bound to the

FBP. The interfering effect of the total folate load on binding to FBP was not observed with

other formylated vitamers.

The chosen conditions for HPLC offered satisfactory separation of six folate vitamers (I).

Detection limits were 0.04 to 0.9 ng per injection, and the responses of the detectors were linear

in the routine working concentration range. The detectors used for different vitamers, detection

limits, and the main problems encountered are presented in Table 8. Between-day variations in

the detector response and retention times expressed as CV% from six injections during three

weeks were 1.7 to 10.4% and 2.4 to 7.4%, respectively. The HPLC method was to some extent

able to separate isomers in the racemic mixture (6R,S) of 5-HCO-H4folate. Thus, the natural 6S

isomer of 5-HCO-H4folate was chosen as the calibrant.
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Table 8. Detection of folate vitamers
Vitamer Detector Detection limits; UV/FL

(ng/injection)
Comments

H4folate UV/FL 0.6/0.08 FL more sensitive; UV
peak often masked by an
impurity (derived from
affinity chromatography?)

5-CH3-H4folate UV/FL 0.4/0.04 double peak in some
processed samples

10-HCO-H2folate UV 0.8/- UV only; sometimes
masked by impurities

10-HCO-PGA UV/FL 0.7/0.1 FL more sensitive; UV
offered support in
identification

5-HCO-H4folate UV/FL 0.6/0.6 FL more sensitive but
peak often masked by
impurities

PGA UV 0.2/- UV only

The stability of folates in the extraction buffer at –20 ºC was better after heat extraction and pH

adjustment to 4.9 than in the extraction buffer as such (pH 7.85) (II). No significant loss of any

folate vitamer occurred during the first two weeks. The short-term stability of folates in the

affinity chromatography elution solution was also good: two days at  4 ºC or five days at –20 ºC

did not result in folate losses.

5.1.2 Recovery studies and analysis of certified reference materials (CRMs)

Recovery of 5-HCO-H4folate added to CRM 121 (wholemeal flour) or analysed like a sample

was 105% in the microbiological assay (II). Recoveries of vitamers added to six rye

fermentation samples and analysed by HPLC (II) were 72 to 104% (Table 9).

Table 9. Average recoveries of folate vitamers in sourdough baking samples (n = 6)
Vitamer Recovery (%)

H4folate 72 ± 5
5-CH3-H4folate 104 ± 18
10-HCO-H2folate 84 ± 8
10-HCO-PGA 98 ± 16
5-HCO-H4folate 83 ± 39
PGA 96 ± 7
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In Study II a control chart was constructed based on microbiological analysis of CRM 121. The

average folate content of CRM 121 was 51.1 ± 6.5 µg/100g DM (n = 10). Other CRMs were also

analysed in proficiency testing programmes (Table 10).

Table 10. Analysed (our laboratory) and certified values for certified reference materials (µg/100
g DM)

FolateFuncHealth 2000
HPLC (n = 4)

Norfolate 2000–2001
MA (n = 4)

Certified value

CRM 121
Wholemeal flour

31 ± 1 51 ± 2 50 ± 7

CRM 421
Milk powdera

87 ± 8 134 ± 16 142 ± 14

CRM 485
Mixed vegetables

241 ± 4 not included 315 ± 28

CRM 487
Pig’s liver

1496 ± 76 not included 1340 ± 130

a Fortified with folic acid

Microbiological results agreed well with the certified values. Results obtained in our laboratory

by HPLC were lower than those obtained by microbiological assay for the two matrices tested.

5.1.3 Proficiency tests

In addition to the analysis of certified reference materials, accuracy and performance were

evaluated by participating in three proficiency tests.

In the intercomparison organised by the FolateFuncHealth project the average folate contents of

four certified reference materials were lower than the certified values, and results obtained by

HPLC were in most cases lower than results obtained by microbiological assay (Table 11).

Within-laboratory variation was generally small (4 to 8%) whereas between-laboratory variation

was large (22 to 39%; FolateFuncHealth, 2005). The values reported by our laboratory (obtained

by HPLC) were 23 to 38% lower than the certified values except for CRM 487 (pig’s liver).
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Table 11. Analysed and certified values for four certified reference materials (µg/100 g DM) in
the FolateFuncHealth intercomparison study

HPLC; our
laboratory

(n = 4)

HPLC

(n = 4–5)

MA

(n = 3–4)

All

(n = 7–9)

Certified
value

CRM 121
Wholemeal flour

31 ± 1 30 ± 13 50 ± 10 39 ± 15 50 ± 7

CRM 421
Milk powder

87 ± 8 97 ± 19 134 ± 21 116 ± 27 142 ± 14

CRM 485
Mixed vegetables

241 ± 4 217 ± 49 296 ± 22 252 ± 56 315 ± 28

CRM 487
Pig’s liver

1496 ± 76 1056 ± 540 1040 ± 170 1049 ± 400 1340 ± 130

In the Norfolate ring test the results obtained by our laboratory were highly repeatable and

comparable with others. All the participating laboratories used microbiological assay for folate

determination, and precision values were surprisingly good (Lindeberg et al., 2001).

In the proficiency test organised by FAO/INFOODS, among the 17 laboratories that used the

microbiological assay with L. rhamnosus, the inter-laboratory coefficients of variation were 19%

for soybean flour, 23% for fish powder and 18% for breakfast cereal after removal of extreme

values. The results reported by our laboratory (Table 12) were well within the range of average

values obtained by microbiological methods. Z-scores of our laboratory varied between -1.0 and

0.2 (Puwastien et al., 2005).

Table 12. Values for three test materials (µg/100 g) determined microbiologically with L.
rhamnosus in the INFOODS intercomparison study (Puwastien et al., 2005)

Mean of results
obtained by our

laboratory;
tri-enzyme extraction

(n = 3)

Mean of results with
tri-enzyme extraction

(n = 7)

Mean of all results with
tri-, di-, or single

enzyme extractiona

(n = 13–15)
Soybean flour 267 ± 7 288 ± 69 277 ± 52
Fish powder 74 ± 6 100 ± 34 81 ± 19
Breakfast cereal 471 ± 8 515 ± 171 498 ± 92
a Extreme values removed
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5.2 Folates in rye

5.2.1 Folates in rye grains (I)

Microbiologically determined folate contents of the ten rye cultivars grown at the same location

varied from 68.9 µg/100 g to 85.3 µg/100 g (on dry matter basis) in 1999 and from 64.3 µg/100

g to 93.4 µg/100 g in 2000 (Figure 5). Average folate contents were 77.2 ± 5.9 µg/100 g in 1999

and 81.8 ± 9.1 µg/100 g in 2000 (70.0 ± 5.5 µg/100 g fresh weight and 73.8 ± 8.3 µg/100 g fresh

weight, respecively). Coefficient of variation between the folate contents in rye cultivars was 8%

in 1999 and 11% in 2000, and there was no statistically significant difference between the years.
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Figure 5. Total folate contents and their means in ten rye cultivars in two successive years

(µg/100 g DM).

Total folate contents were somewhat higher in the organically than in conventionally grown

cultivars but the difference (3 to 12%) was not statistically significant (Figure 6).
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Figure 6. Total folate contents in organically and conventionally grown rye cultivars (µg/100 g

DM).

The sum of vitamers in wholemeal rye flour analysed by HPLC was 53.1 ± 5.1 µg/100 g (n = 8).

The predominant vitamers were 5-CH3-H4folate (26 ± 4% of the vitamer sum), 5-HCO-H4folate

(25 ± 5.4%), 10-HCO-H2folate (26 ± 7.2%), and 10-HCO-PGA (15 ± 5%). Minor amounts of

H4folate and PGA were also detected. Thus, the formylated folates were the main vitamers in

rye.

5.2.2 Fermentation and baking (II)

In the first experiment with rye and wheat breads baked using different fermentations and baking

methods, the lowest folate contents were found in breads that were baked without added yeast.

The total folate content of rye bread fermented with lactic acid bacteria was 29 µg/100 g DM,

whereas the other two rye breads (yeast fermented, yeast and lactic acid bacteria fermented)

contained 42 µg/100 g DM. Wheat bread leavened with baking powder had a folate content of 17

µg/100 g DM, and the other two wheat breads a folate level of 45 to 50 µg/100 g DM. Sponge-

dough and straight-dough methods resulted in similar folate contents in wheat breads (50 and

45µg/100 g DM, respectively) .

The predominant vitamer in rye breads was 5-HCO-H4folate, whereas in wheat breads 5-CH3-

H4folate and 10-HCO-H2folate were more abundant than 5-HCO-H4folate. In rye and wheat

breads baked without added yeast the concentrations of  5-CH3-H4folate and 5-HCO-H4folate

were low, and no H4folate could be detected.
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In the second experiment with rye sourdough fermentation the microbiologically determined

folate contents were highest at the end of the fermentation if yeast was added; the increases

during the fermentation phase were 54% and 128% in two separate fermentations. The two

vitamers mainly responsible for the increase were 10-HCO-H2folate and 5-CH3-H4folate. In

contrast to fermentation with added yeast, the folate concentration during fermentation without

added yeast remained unchanged (Figure 7).
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Figure 7. Total folate contents during sourdough baking of rye (µg/100 g DM).

The folate content decreased when the dough was mixed as the addition of other ingredients

diluted the folate concentration. Proofing did not seem to affect the total folate content; however,

the vitamer distribution pattern changed. For example, the amount of H4folate increased three-

fold and the amount of 10-HCO-H2folate dropped by a half.

Baking losses were approximately 25%. H4folate was almost completely destroyed, and the

losses of 5-CH3-H4folate and 5-HCO-H4folate were 67% and 76%, respectively. Levels of 10-

HCO-H2folate, PGA, and especially 10-HCO-PGA increased during the baking stage.

5.2.3 Yeasts and lactic acid bacteria in sourdough fermentation (III)

The four yeasts and four lactic acid bacteria did not excrete folates into the microbiological

growth medium in significant amounts. In test tube fermentation experiments with sterilised rye
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flour, S. cerevisiae ALKO 743 and C. milleri CBS 8195 produced similar amounts of folate:

from an initial concentration of 6.5 µg/100 g to 22.3 ± 3.2 µg/100 g and 22.8 ± 4.8 µg/100 g after

19-hour incubation, respectively (Figure 8). Folate productions of S. cerevisiae TS 146 and T.

delbrueckii TS 207 were significantly lower (15.4 ± 2.0 µg/100 g and 15.3 ± 4.2 µg/100 g). All

four of the mainly studied lactic acid bacteria depleted folates: the folate concentration after 19

hours ranged from 2.9 to 4.2 µg/100 g.

0 5 10 15 20 25 30 35 40

Non-sterile control

Sterile control

Pantoea agglomerans

Enterobacter cowanii

L. brevis

Torulaspora delbrueckii TS 207

S. cerevisiae TS 146

Saccharomyces cerevisiae ALKO 743

Candida milleri CBS 8195

L. sanfranciscensis TSB 299

L. plantarum TSB 304

L. brevis TSB 307

Lactobacillus acidophilus TSB 262

Folate content (µg/100 g)

Figure 8. Total folate contents (µg/100 g FW) of monocultures of yeasts and bacteria grown in

sterile rye flour – water at 30 °C for 19 h.

Only two of the additionally screened lactic acid bacteria, L. bulgaricus ABM 5096 and S.

thermophilus ABM 5097, produced folate (8.1 ± 3.1 µg/100 g and 10.4 ± 2.3 µg/100 g).

Folate productions with a yeast alone and in pairwise combination with lactic acid bacteria were

similar. Thus, combinations with the highest folate contents included S. cerevisiae ALKO 743 or

C. milleri CBS 8195 and those with the lowest contents S.  cerevisiae TS 146 or T. delbrueckii

TS 207. The only exception was the lower folate concentrations of C. milleri CBS 8195 in

cocultivation with L. brevis TSB 307 or L. plantarum TSB 304 than C. milleri CBS 8195 grown

alone.
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Fermentation of non-sterilised flour – water mixtures without any added microbes resulted in a

three-fold increase in the folate content (note: there is a 5-fold difference in the folate contents of

sterile and non-sterile controls in Fig. 8 but due to different starting levels, for non-sterile control

the increase during 19 h fermentation was “only” 3-fold). Three types of bacteria were isolated

and identified: L. brevis, Enterobacter cowanii and Pantoea agglomerans. L. brevis depleted

folate in the fermentation of sterilised flour – water mixture, but the two other bacteria raised the

folate level to that of the non-sterile control after 19 h of fermentation (Figure 8).

5.2.4 Germination and thermal processing (IV)

Germination increased the folate content by 1.7 to 3.8-fold, up to 250 µg/100 g DM ( IV: Figure

1). The highest folate contents were achieved when rye grains were germinated at a moderate

temperature (14 to 16°C) for 7 days. Increasing the drying temperature above 75 °C gradually

reduced the folate contents. Germination was accompanied by increased contents of 5-CH3-

H4folate and H4folate, accounting for 49 to 55% and 23 to 25% of the sum of vitamers.

The folate concentrations in hypocotylar roots were 600 to 1180 µg/100 g DM. Roots from

grains germinated at 22 °C contained less folates than those germinated at 15 °C. The main

folate in roots was 5-CH3-H4folate (67 to 77% of the sum of the folate forms), whereas H4folate

contributed only to 4 to 10%.

Autoclaving and puffing decreased the folate contents by 45 to 54% compared to either

germinated or non-germinated controls and IR followed by roasting by 35 to 50%. In extrusion

the folate losses were 26 to 28%. Thermal treatments increased the proportion of PGA and

decreased the amount of H4folate. The sum of 10-HCO-H2folate and 10-HCO-PGA constituted

20 to 22% of the sum of folate forms in germinated and heat-processed grains.

Folate levels in grains that were germinated and then heat-processed were higher than in native

(non-germinated) grains (IV: Figure 2). Germinated, heat-processed grains contained relatively

more 5-CH3-H4folate and less formylated folates than non-germinated grains. The relative

proportion of 5-CH3-H4folate in germinated, thermally-processed samples was roughly the same

as in the germinated, non-heat-processed control.

5.3 Bioavailability of endogenous folates in vivo (V)

Both in the group receiving natural folates from rye products and orange juice and in the group

receiving folic acid from fortified bread, a statistically significant increase in serum folate was
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observed after the four-week intervention period (Table 13). The increase was slightly greater in

the folic acid fortified bread group than in the rye and orange juice group, but the difference was

not statistically significant. The average increase in serum folate for those belonging to the

lowest serum folate tertile at the beginning of the study was as high as 59 to 68%, whereas in the

highest tertile the increase was only 12 to 14%. Red cell folate levels also increased significantly

in both groups but the effect was not as dependent on the starting level as in the case of serum

folate. Decreases in the plasma homocysteine concentrations were observed only in the highest

tertiles of both groups. However, neither of the decreases was statistically significant.

Table 13. Folate intakes, plasma folate, red cell folate, and plasma total homocysteine
concentrations before and after the intervention with either natural folates from rye & orange
juice or with folic acid from fortified white bread

Rye and orange juice group
(n = 33)

Folic acid fortified bread group
(n = 31)

Folate intake during the
run-in period (μg/d)

277 ± 96 273 ± 94

Folate provided by test
foods (μg/d)

184 ± 24 188 ± 8

Plasma folate (nmol/L)
    Beginning 9.9 ± 2.9 11.9 ± 5.3
    End of diet 12.5 ± 3.6*  15.6 ± 5.8*
    Difference 2.6 ± 3.2  3.7 ± 3.3
    Increase (%) 26.1% 31.2%

Red cell folate (nmol/L)
    Beginning 561 ± 190 606 ± 224
    End of diet   658 ± 227*   697 ± 250*
    Difference 97 ± 92 91 ± 79
    Increase (%) 17.3% 15.3%

Plasma Hcy (μmol/L)
    Beginning 8.5 ± 3.23 7.8 ± 2.37
    End of diet 8.8 ± 2.54 7.8 ± 1.79
    Difference 0.3 0
    Increase (%) 3.5% 0%
* Statistically significant increase (p<0.0001)

6. DISCUSSION

6.1 Evaluation of the chosen methods for folate analysis in cereals

6.1.1 Laboratory proficiency

Our HPLC results in the intercomparison study organised by FolateFuncHealth were somewhat

lower than the certified values and also lower than the average microbiological results, except for
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CRM 487 (pig’s liver), but nevertheless agreed well with the averages of all results and

especially with the average HPLC values. Thus, the capability of our laboratory to perform food

folate analysis (by HPLC) was in line with the general status of European laboratories.

The performance of our laboratory in microbiological assay was verified by the Nordic Norfolate

ring test, and the INFOODS intercomparison study confirmed the quality of our analytical

procedures on a broader scale. In the INFOODS proficiency test our results were well within the

range of average values and the standard deviations were small. Z-scores indicating laboratory

performance were good, -2 < z < 2 (Puwastien et al., 2005).

6.1.2 Comparison between the HPLC and microbiological methods

The detection limits in the optimised HPLC method were low and peak separation was generally

good, allowing the quantification of folate vitamers in the samples. However, measurement

uncertainty typically increases when working at low concentration levels, and even more so at

levels near the detection limits (Horwitz et al., 1980). Although the repeatabilities of detector

responses and retention times were good, even small changes in retention times occasionally

disturbed peak identification and integration. As specific and selective as the affinity

chromatography was, there were often peaks derived from sample impurities or reagents used in

the analysis (e.g. ascorbate and mercaptoethanol). In these cases the dual detection system

proved its usefulness: peak identification could be verified not only by spiking but also by

comparing the ratios of UV and fluorescence responses of sample and standard peaks.

In HPLC analysis of fermentation samples the recoveries of individual folate vitamers were

generally good, but somewhat low for H4folate and even lower for 5-HCO-H4folate in sponge

and bread samples, reflecting problems with sample-derived impurities that masked the 5-HCO-

H4folate peak. Results were not corrected with recoveries because the recovery test were

performed with folate monoglutamates, whereas a large proportion of folates in foods exist in the

polyglutamate form. This means that results obtained by HPLC may in some cases be markedly

below the true concentrations and should be considered rather as minimum values.

In the microbiological assay the repeatability of L. rhamnosus growth was generally good, and

problems with contamination were extremely rare. The accuracy of the microbiological assay

based on the analysis of CRM 121 (wholemeal flour) was good. The average folate content of

CRM 121 calculated from ten separate determinations (51.1 ± 6.5 µg/100g DM; 12.7% CV) was
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well within the certified value range (50 ± 7 µg/100g DM; 14% CV). The recoveries of 5-HCO-

H4folate, both added to CRM 121 and analysed as a sample, were also very good.

In the microbiological assay the total time required for the analysis was shorter and sample

through-put higher than in HPLC analysis, despite the 18-hour incubation. In HPLC analysis a

sample purification step was necessary, and sample runs as well as data processing required

more time. Furthermore, if there was 10-HCO-PGA in the samples the purified extracts had to be

re-run with a fluorescence detector set at different excitation and emission wavelengths. The

equipment needed was simpler in the microbiological assay than in HPLC. However, both

methods called for good laboratory skills, thoroughness, and expertise.

In general, there was a considerable, yet largely unidentified difference between microbiological

and HPLC results. Results obtained by HPLC were approximately one third lower than those

obtained by the microbiological method (Table 14). For instance, in CRM 121 (wholemeal flour)

the sum of folate vitamers was 61% of the microbiologically determined total folate content and

in CRM 421 (milk powder) 65%. Microbiological results were well in line with certified values.

In this context it should be noted that the certified values were originally determined by

microbiological assay.

The same pattern was found in the FolateFuncHealth intercomparison: it seemed that HPLC

methods may underestimate folate contents by approximately 20 to 30% (FolateFuncHealth,

2005). Results for CRMs obtained by HPLC were lower than the microbiological results, except

for CRM 487. Pig’s liver contains a high proportion of H4folate (Vahteristo et al., 1996b) that

may have been destroyed during the long incubation period in the microbiological assay. Again,

the microbiological results showed a relatively good agreement with certified values. Konings et

al. (2001) also reported that folate contents analysed by HPLC were approximately 25% lower

than contents in food composition tables established by using the microbiological method.

However, according Pfeiffer et al. (1997), folate contents in cereals determined by HPLC

correlated well with the microbiologically determined folate contents.



58

Table 14. Folate contents ( g/100 g DM) determined by HPLC and microbiological method, and
their ratios for selected samples
Sample HPLC result

g/100 g DM)a
MA result
g/100 g DM)

HPLC/MA
(%)

Samples without thermal treatments
CRM 121 31 51 61%
CRM 421 87 134 65%
Rye flour 71 66 108 %
Sourdough, start 75 77 97 %
Sourdough, end 86 119 72 %
Dough 73 94 78 %
Proofed dough 70 93 75 %
Germinated rye; 3 days at 15ºC 71 122 58 %
Germinated rye; 5 days at 15ºC 90 130 69 %
Germinated rye; 7 days at 15ºC 94 122 77 %
Average 76% ± 16%

Thermally treated samples
Wheat bread; sponge dough 41 50 82 %
Wheat bread; straight dough 42 45 93 %
Wheat bread; baking powder 21 17 124 %
Rye bread; yeast fermented 24 42 57 %
Rye bread; yeast and LAB fermentedb 30 42 71 %
Rye bread; LAB fermented 15 29 52 %
Rye bread 41 93 44 %
Extruded rye; native 38 48 79 %
Extruded rye; germinated 82 105 78 %
Autoclaved & puffed rye; native 18 30 60 %
Autoclaved & puffed rye; germinated 45 81 56 %
IR & roasted rye; native 14 42 33 %
IR & roasted rye; germinated 24 73 33 %
Average 66% ± 25%

Average of all 71% ± 22%
a Sum of vitamers; the figures would be somewhat higher if calculated as 5-HCO-H4folate
b LAB = lactic acid bacteria

In germinated samples (IV) the sum of the measured vitamers varied from 58 to 77% of the total

folate content obtained by microbiological assay (Table 14), but was lower in thermally-

processed samples (33 to 79%). Correlation coefficient between the results obtained by the two

methods was 0.79 for all the samples presented in Table 14 but only 0.59 for thermally treated

samples. Bland-Altman analysis confirmed that the two methods were producing different

results. The mean difference was 22.7 µg/100g (95% confidence interval 15.2 to 30.2 µg/100g;

limits of agreement -11.2 to 56.5 µg/100g). There was no systematic relationship between the

difference and the folate content.
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Folate concentrations approaching the quantitation limits cause uncertainty to the results but in

the thermally processed grain samples the difference between HPLC and microbiological results

was not dependent on low folate concentrations as such. The best agreement between the two

methods was found in samples with the smallest folate losses, regardless of the folate

concentrations. High temperatures may induce the formation of compounds, either folate or non-

folate, that are not quantitated by HPLC but give a response in the microbiological assay. In

samples taken at different stages of fermentation and baking (II) the sum of vitamers varied from

72 to 124% of the total folate content but was only 44 to 71% in rye breads, which also supports

the hypothesis of the role of elevated temperatures.

During food processing, in the extraction, and under the acidic conditions in HPLC some folate

vitamers may convert to others. Thus, unidentified folate vitamers may exist that are not

quantitated at all. Chromatographic methods with specific physical and chemical detection

principles do not share the weakness of inherent uncertainty related to biological measurements

such as in the microbiological assay. Nevertheless, they only measure the vitamers that they are

calibrated for. On the other hand, it is possible that L. rhamnosus used in the microbiological

assay gives unequal responses to different vitamers or gives response to non-folate compounds.

However, results obtained by the combined LC-MA assay in the FolateFuncHealth

intercomparison showed no non-folate peaks in the chromatograms of four CRMs (Kariluoto et

al., 2002).

HPLC methods may not be ideal for determining total folate contents and are not well suited to

routine folate determination, which was also a major finding of a set of intercomparison studies

(Finglas et al., 1999). If acquiring data on individual folate vitamers is not considered necessary,

microbiological assay is in most cases the method of choice. However, HPLC has certainly

proved its importance for various research purposes where data on folate vitamer concentrations

and distribution are needed. The wide variation among laboratories in intercomparison studies

obviously calls for further standardisation of methods, starting from the sample storage and pre-

treatments. Any laboratory performing food folate analysis should, if feasible, make use of

CRMs and participate in collaboration studies.

6.2 Folates in rye

6.2.1 Folates in rye grains (I)

The folate content of rye was generally high compared to other main cereals. The average of

folate contents of ten rye cultivars, 70.0 ± 5.5 µg/100 g fresh weight in 1999 and 73.8 ± 8.3
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µg/100 g in 2000, agreed well with the value 72 µg/100 g for rye flour in the Finnish national

food composition database (Fineli, 2006). Folate contents were generally higher in 2000 than in

1999 and the range of folate contents was wider in 2000. However, neither of these differences

was statistically significant. For wheats, large variations have been reported (Arcot et al., 2002:

80 to 114 g/100 g; Gujska and Kuncewicz, 2005: 34 to 40 g/100 g).

Cultivar Bor 9414 had the highest folate content both in 1999 and 2000, and cultivar Picasso had

the lowest folate content in 1999 and the second lowest in 2000. Thus, it seems that the effect of

genotype on folate content may in some cases be greater than the effect of growing conditions.

Conventionally and organically grown cultivars had similar folate contents.

The main vitamer in rye flour was 5-CH3-H4folate (approximately one fourth of the vitamer

sum), but the vitamer distribution pattern was distinctively characterised by a high proportion of

various formylated vitamers that altogether accounted for two thirds of the vitamer sum. This

pattern is very different from that of most vegetables, where the predominant vitamer is 5-CH3-

H4folate and other vitamers typically account for 0 to 20% of the vitamer sum (Vahteristo et al.,

1997a; Konings et al., 2001). The high proportions of formyl and methyl folates in cereal

products have also been shown by Pfeiffer et al. (1997) and Konings et al. (2001).

6.2.2 Effect of fermentation and baking on folates (II–III)

In Study II, the inclusion of added yeast clearly resulted in higher folate content of both rye and

wheat breads than would have been expected based on the folate content of flour. Thus, the

folates in bread derive not only from the flour but also from the added yeast. This has earlier

been shown in wheat breads (Butterfield and Calloway, 1972; Keagy et al., 1975) but now also

in rye baking, where the absence of gluten and acidity of the dough make it different from wheat

baking. The folate contents of rye breads baked with added yeast were 45% higher than the

folate content of bread baked without added yeast. In wheat breads the difference between breads

baked with and without added yeast was even greater, 165 to 194%. The folate content of

baker’s yeast is high. For instance, Patring and Jastrebova (2007) reported a folate content of

3520 g/100 g dry yeast. The increase in folate content during sourdough fermentation was

linked not only to adding folate-rich baker’s yeast per se, but also to folate synthesis during the

fermentation phase.

During the fermentation, the concentrations of 5-CH3-H4folate and 10-HCO-H2folate, in

particular, markedly increased. The 5-HCO-H4folate concentration also increased, but the
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difference was not statistically significant. The two most important vitamers of yeast are 5-CH3-

H4folate and H4folate (Seyoum and Selhub, 1998; Patring and Jastrebova, 2007). The increase in

the 5-CH3-H4folate concentration during fermentation and the strikingly low contents of  5-CH3-

H4folate in rye and wheat breads baked without added yeast agree with the finding that the

concentration of 5-CH3-H4folate increases with an increasing growth rate of yeast but the

concentration of H4folate remains rather constant (Hjortmo et al., 2007).

After fermentation the dough was mixed and the addition of other ingredients diluted the folate

concentration. Proofing modified the vitamer distribution pattern but did not affect the total

folate concentration. Baking losses in general (approximately 25%) were comparable with those

in previous studies (Butterfield and Calloway, 1972; Keagy et al., 1975; Osseyi et al., 2001;

Arcot et al., 2002). Although losses of H4folate, 5-CH3-H4folate, and 5-HCO-H4folate were

great, concentrations of 10-HCO-H2folate, 10-HCO-PGA, and PGA increased. In the analytical

system 10-HCO-H4folate could not be quantitated as such, but since 10-HCO-H4folate is easily

converted 10-HCO-PGA and 10-HCO-H2folate (Robinson, 1971; Maruyama et al., 1978), these

two vitamers reflect the original amount of 10-HCO-H4folate. The oxidation of 10-HCO-

H4folate may have taken place during processing or analysis, or both. The results were largely in

agreement with the study of Osseyi et al. (2001) reporting vitamer changes in wheat baking.

However, Osseyi et al. (2001) observed an increase in the 5-CH3-H4folate concentration after

baking, whereas we found a significant loss (67%). In thermally-processed rye grains the

concentration of 5-CH3-H4folate also decreased (IV). The reason for this discrepancy remains

unclear.

Study III further elucidated the role of yeasts and lactic acid bacteria in sourdough baking. The

yeasts and lactic acid bacteria studied differed in their abilities to produce or consume folates.

All the yeasts produced folate (from 6.5 µg/100 g in sterile rye flour – water mixture up to 22.8

µg/100 g after fermentation), S. cerevisiae ALKO 743 and C. milleri CBS 8195 being the best

producers. Lactic acid bacteria mainly depleted folate. L. bulgaricus ABM 5096 and S.

thermophilus ABM 5097 produced folate in the tested conditions, but still much less than yeasts.

Hjortmo et al. (2005) found that the folate production of cultivated yeast strains was highly strain

dependent, the total folate content varying 3.6-fold. It also seemed that S. cerevisiae and closely-

related species were better folate producers than the other species studied, which is in accordance

with the results of Study III. Large variations in yeast folate contents at different growth stages

have been reported.  Fast growing cells seem to have higher folate demands compared to slowly



62

growing cultures (Hjortmo et al., 2007). Thus, it would have been useful to measure the folate

content more often during the 19-hour incubation and possibly apply longer incubation times.

Data on folate production or consumption by lactic acid bacteria are rather scarce. The potential

of lactic acid bacteria as folate producers has mainly been studied in dairy products, but next to

nothing is known about their role in folate production during the fermentation of cereals.

Furthermore, results are often controversial since differences in strains and culture conditions

induce variability in the results (Lin and Young, 2000; Sybesma et al., 2003). For instance, in

Study IV, L. bulgaricus ABM 5096 and S. thermophilus ABM 5097 produced folates, whereas

in milk L. bulgaricus has been found to consume folates (Rao et al., 1984). However, folate

production by L. bulgaricus has also been reported (Lin and Young, 2000). Likewise, in Study

IV, L. acidophilus consumed folates as earlier observed by Alm (1982) and Crittenden et al.

(2002), but several studies have also reported folate production (Rao et al., 1984; Lin and Young,

2000). S. thermophilus has been shown to produce folates (Rao et al., 1984; Sybesma et al.,

2003).

Fermentation of sterile rye flour with pairwise combinations of yeasts and lactic acid bacteria

resulted in similar or slightly lower folate levels than in fermentations with yeasts alone. Thus, in

this test tube fermentation, yeasts were responsible for the increase in the folate concentration.

Although folate-consuming lactic acid bacteria were present in the sourdough, they could not

affect the folate concentration much. One reason is that yeasts did not excrete folates. This

observation is confirmed by Hjortmo et al. (2005), who reported very low folate concentrations

in spent media, probably originating from lysed cells. Another reason is that the consumption of

folate by lactic acid bacteria was moderate. In the sterile rye flour – water mixture lactic acid

bacteria depleted 0.8 to 1.7 μg folate, which is of same magnitude (0.9 to 2 μg) as previously

determined with L. rhamnosus LC-705 and L. rhamnosus GG (Turbic et al., 2002).

Folate levels after fermentation of sterile flour with Enterobacter cowanii ABM 5061 or Pantoea

agglomerans ABM 5062 were similar to levels in the fermented non-sterile control. These two

endogenous bacteria isolated from rye flour were as good folate producers as yeasts and seemed

to excrete folates into the medium. Nevertheless, non-sterile flour – water mixture inoculated

with lactic acid bacteria showed no increase in folate concentration in spite of the simultaneous

presence of folate-producing bacteria. Lactic acid bacteria may have consumed folates produced

by the endogenous bacteria or retarded their growth, for instance by lowering the pH and
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competing for nutrients. The latter option seems more likely, as the number of inoculated lactic

acid bacteria was after all higher than the number of endogenous bacteria.

Endogenous (lactic acid) bacteria may in certain circumstances have a significant effect on folate

levels. Katina et al. (2007) assessed folate contents during the fermentation of rye bran and

recorded the highest folate concentrations when the growth of endogenous lactic acid bacteria

was pronounced. The growth of yeast could not merely explain the observed increase in folate

concentration.

Fermentation affects also other vitamins. For instance, Batifoulier et al. (2005) reported that long

yeast fermentations in wheat breadmaking led to an increase in thiamine and riboflavine

contents, and the loss of pyridoxine occurring in baking was compensated with fermentation by

yeast or using sourdough fermentation. Tocopherol and tocotrienol concentrations, however,

have been found to decrease during rye sourdough fermentation (Liukkonen et al., 2003). Bread

and other cereals are the main sources of thiamine in Finland, with their 33% contribution to the

daily thiamine intake. Their contribution to riboflavine and pyridoxine intake is lower (18 to

19%) but still significant (Männistö et al., 2003). Increased consumption of fermented cereals

could thus improve the intake of several B vitamins.

6.2.3 Effect of germination and thermal processing on folates (IV)

Germination temperature affected the rate of germination, which in turn largely explained the

increase in folate content during germination. The higher the temperature, the less time was

needed to reach 100% germination. However, a prolonged germination time could also decrease

the folate content as a consequence of folate destruction by oxidation. In the subsequent drying,

moderate temperatures retained folates rather well. Folate contents of germinated rye grains were

higher than folate contents reported for malted wheat and oats and of same magnitude as barley

beer malts (Jägerstad et al., 2005). The maximum increase in folate content in germinated rye

(3.8-fold) was in good accordance with the 3.4-fold increase reported for germinated wheat

(Koehler et al., 2007).

The folate concentration in hypocotylar roots was high, and removal of roots clearly resulted in

lower folate contents in germinated rye grains. Folate contents of roots were 6- to10-fold higher

than in germinated grains and 10- to 19-fold higher than in native (non-germinated) grains.

Although the proportion of roots was only 5 to 10% of total germinated grain weight, they

contributed 30 to 50% of the folate content and thus markedly influenced the total folate content
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of germinated grain. Roots often loosen easily during processing and are then removed. From

another point of view, this indicates that a folate-rich fraction could be separated, collected and

perhaps used in other food products. The bitterness brings about some problems but, as shown by

Yang et al. (2001), steeping and germination conditions might be optimised to achieve

acceptable sensory properties.

Germination altered the folate vitamer distribution in rye grains by increasing the proportions of

5-CH3-H4folate and H4folate and decreasing the proportion of formylated folates. The folate

content and vitamer distribution pattern in roots were similar to those of other proliferating

tissues, such as pea cotyledons (Roos and Cossins, 1971), radish cotyledons, wheat leaves, pea

leaves, and spinach leaves (Spronk and Cossins, 1972).

As noticed earlier, formylated folates are often the main vitamers in cereal products whereas in

vegetables 5-CH3-H4folate typically dominates (approximately 90%). The content of 5-CH3-

H4folate in germinated grains and hypocotylar roots was higher than in cereal grains but lower

than in vegetables. In rye flour, 5-CH3-H4folate accounted for 26% of the vitamer sum, in

germinated grain for 49 to 55%, and in roots for 67 to 77%. Koehler et al. (2007) also noted that

the folate increase during germination was mainly attributable to the increasing amount of 5-

CH3-H4folate. The changes in 5-CH3-H4folate and H4folate proportions during germination

reflect the change of grain into a metabolically active photosynthetic organism. Interestingly, the

combined proportions of 5-CH3-H4folate and H4folate were similar in both roots and in the

respective germinated grains. Plants are capable of de novo synthesis of H4folate, which is then

converted to other folate compounds needed for normal growth. Various methylation reactions

and the biosynthesis of methionine use 5-CH3-H4folate as the coenzyme (Roos and Cossins,

1971; Rebeille et al., 2006).

All the thermal treatments resulted in significant folate losses in both germinated and non-

germinated rye grains. The greatest losses were caused by autoclaving and puffing, where high

temperatures were applied together with the presence of oxygen. IR treatment followed by

roasting also resulted in notable losses. In extrusion, however, the retention of folate was much

better, in spite of the high temperature, since the processing time was very short. This evidence

together suggests that processes with a short exposure to low or high temperatures retain folates

considerably better than processes involving longer exposure to high temperatures or a long

processing time. Studies on thermal processing of whole-grain wheat and white flour support this

conclusion (Håkansson et al., 1987).
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Compared to rye flour (I), non-germinated, heat-processed grains underwent similar changes in

folate vitamer distribution as in rye bread baking (II): the proportions of H4folate, 5-CH3-

H4folate, and 5-HCO-H4folate decreased, whereas the proportions of 10-HCO-H2folate, 10-

HCO-PGA, and PGA increased.

The amount of 5-CH3-H4folate markedly increased during germination, which could also be seen

in germinated, heat-processed grains: germinated, thermally-processed grains contained

relatively more 5-CH3-H4folate and less formylated folates than non-germinated, thermally-

processed grains. Although folates were very sensitive to heat, the rise in folate content during

germination ensured a high folate concentration in thermally-processed germinated rye grains.

Folate contents in germinated and subsequently thermally-processed grains always exceeded the

folate content of the native (non-germinated) grain.

6.3 Bioavailability of endogenous folates (V)

The results clearly demonstrated that a diet with natural folates of rye and orange juice

favourably affected the folate status in healthy volunteers. The amounts of folate provided by the

test foods were moderate, even rather small (184 g folate/day in rye group and 188 g

folate/day in wheat group), and the estimated increase in the daily intake of folate (endogenous

or added folic acid) was 120 to 130 g. Wald et al. (2001b) reported a change of 2.1 nmol/l in

serum folate levels for each 100 g of folic acid (administrated in tablet form). In Study V the

increases in serum folate concentrations were 2.6 nmol/l for the rye group and 3.7 nmol/l for the

fortified wheat group. The increases in serum folate were of the same magnitude or somewhat

higher than the 1.8 and 2.6 nmol/l reported for 200 g of spinach and yeast folate, respectively,

after a 30-day intervention period (Hannon-Fletcher, 2004), but lower than 4.3 nmol/l (after 30

days intervention) and 5.5 nmol/l (after 60 days intervention) reported for 166 g of folic acid

from fortified breakfast rolls (Johansson et al., 2002). Our results are also in line with those

reported by Ashfield-Watt et al. (2003): additional intake of 50 g folate from fruit and

vegetables resulted in a 2.76 nmol/l increase and additional intake of 100 g folic acid from

fortified foods in a 2.97 nmol/l increase in serum folate during 4-month intervention period.

The effect of the dietary intervention on red cell folate was not as constant and dependent on the

starting level as in the case of serum folate. This is understandable since the duration of the

treatment was only 3 to 4 weeks. However, there was a clear, significant increase in red cell

folate in both groups after the intervention whereas Johansson et al. (2002) found a significant

inrease in red cell folate only after 90 days intervention.
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Based on the changes in serum and red cell folate, endogenous folates showed good

bioavailability that was similar to folic acid from fortified white bread. This was somewhat

unexpected, as several studies have reported reduced bioavailability of natural folates compared

to folic acid (Cuskelly et al., 1996; Hannon-Fletcher et al., 2004). However, one of the few

clinical trials conducted with cereal products showed the bioavailability of folate in wheat

aleurone flour to be as good as the bioavailability of folic acid administered in a tablet with

wheat bran cereal (Fenech et al., 1999). Interestingly, non-starch polysaccharides in the diet may

also promote microbial folate synthesis in the gut and thus improve the folate status (Houghton

et al., 1997).

Study V failed to show a homocysteine lowering effect of additional folate intake. A daily folic

acid intake of the same magnitude (Ward et al., 1997; Venn et al., 2002; Johansson et al., 2002)

as well as an additional 350 g of natural folate from vegetables and citrus fruit (Brouwer et al.,

1999a) have earlier been shown to reduce plasma homocysteine. However, the homocysteine

lowering effect of folate/folic acid was not seen in the study of Ashfield-Watt et al. (2003). The

response is dependent on the starting homocysteine level (Schorah et al., 1998; Ward et

al.,1997). In our study the starting plasma homocysteine concentrations were already low and

were not lowered further by moderate amounts of additional folate.

6.4 Overview of the potential for enhancement of folate content

Processing, which is a prerequisite for the consumption of whole grain rye, is often accompanied

by folate losses. In addition to improving folate retention by optimising food processing methods

(in other words, minimising vitamin losses), folate contents may be maintained or even enhanced

by means of certain processes that increase the folate concentration. Traditional processes may

be transferred to new applications, novel processing methods may be developed, or different

types of process may be combined.

Folate contents in rye cultivars did not markedly differ. However, folate is unevenly distributed

in the rye kernel, and milling fractions of rye may have 10-fold differences in their folate

concentrations (Liukkonen et al., 2003). This enables the tailoring of rye flour or bran

ingredients for various purposes. Table 15 summarises the positive impacts of food processing

methods on the folate contents of rye that were investigated in this study.
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Table 15. Overview of processing methods for enhancing the folate contents of rye products
Folate increase Average folate

content
Remarks

Bread baking 1.3 to 1.4-fold 40 to 80 g/100 g DM Compared to flour

Sourdough
fermentation phase in
baking; with added
yeast

1.8 to 2.6-fold 120 to 160 g/100 g
DM

Compared to flour

In vitro fermentation
with added yeasts
(and lactic acid
bacteria)

1.9 to 3.4-fold 12 to 23 g/100 g FW

Spontaneous in vitro
fermentation

3.5-fold 26 g/100 g FW Large variation

Germination 1.7 to 3.8-fold 160 to 250 µg/100 g
DM

Germination and
successive thermal
treatments

1.1 to 1.6-fold 70 to 105 µg/100 g
DM

Compared to native
grain

Germination;
hypocotylar roots

6 to 10-fold

10 to 19-fold

600 to 1180 g/100 g
DM

Compared to
germinated grain
Compared to native
grain

Metabolic engineering of lactic acid bacteria offers promising possibilities to enhance folate

levels by the over-expression of enzymes related to tetrahydrofolate biosynthesis and by

decreasing the proportion of potentially less bioavailable polyglutamate folate (Sybesma et al.,

2003; Wegkamp et al., 2004). However, consumer attitudes towards genetically-modified

microorganisms are often doubtful, which may hamper the development of food applications.

Instead, as shown by the results in Table 15, folate contents can be significantly increased by

conventional food processing techniques. Additional enhancement is even possible by combining

processes. For instance, Katina et al. (2007) successfully applied fermentation of native and

peeled rye bran in order to improve the technological properties and to elevate the levels of

bioactive compounds, including folate. The fermentation of germinated rye may also result in

increased folate concentrations, considering that germinated grain offers good growing

conditions for yeasts. Clearly, specific attention has to be paid to avoiding any microbiological

risks.
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The average consumption of rye in Finland is 45 g/d per capita according to the Balance Sheet

for Food Commodities (2007). Slightly different figures were obtained in the national FINDIET

2002 Study, 61 g/d for men and 39 g/d for women (Männistö et al., 2003). Most of the rye is

consumed as rye bread, the average consumption being 100 g/d among men and 66 g/d among

women (Männistö et al., 2003). Enhancement of the folate content of bread by processing is

illustrated by Table 16, which compares the contribution of three types of rye bread to the

recommended daily intake of folate. The impact of increasing rye bread consumption by one

third is also calculated. Compared to the consumption of rye bread baked without fermentation

(without added baker’s yeast), the consumption of bread with fermentation including baker’s

yeast or bread with germinated rye results in a 1.7- to 1.8-fold increase in folate intake. A

simultaneous increase in bread consumption by one third would more than double the folate

intake.

Table 16. Contribution of rye bread consumption to the intake of folate
Folate provided

by 100 g of bread
(% of the

recommendation;
men)a

Folate provided
by 133 g of bread

(% of the
recommendation;

men)

Folate provided
by 66 g of bread

(% of the
recommendation;

women)

Folate provided
by 88 g of bread

(% of the
recommendation;

women)
Rye bread
without
sourdough
fermentation
with added yeastb

30 µg
(10%)

40 µg
(13%)

20 µg
(5%)

26 µg
(7%)

Rye bread with
sourdough
fermentation
with added yeastc

55 µg
(18%)

73 µg
(24%)

36 µg
(9%)

48 µg
(12%)

Rye bread with
one third of the
rye germinatedd

51 µg
(17%)

68 µg
(23%)

34 µg
(8%)

45 µg
(11%)

a Recommended daily intake of folate: 300 µg/d for men and 400 µg/d for women
b Estimated folate content 30 µg/100 g FW
c Estimated folate content 55 µg/100 g FW
d Estimated folate content 51 µg/100 g FW: 100 g of rye bread corresponds to approximately 63
g of rye flour. Folate content of rye flour is 70 µg/100 g, and germination is assumed to increase
the folate content 2.7-fold. If one third of the flour is germinated and baking loss is 25%, the
folate content of bread is approximately 51 µg/100 g.

Another possibility to increase the folate intake from rye could be the development of new types

of product, such as breakfast cereals or snacks with germinated and heat-processed rye, to

targeted population groups. For instance, the rye muesli developed for Study V had a folate
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content as high as 188 µg/100 g. Rye already has a positive, healthy image, and has been an

important source of whole grain in the Finnish diet for a long time.

7. CONCLUSIONS AND RECOMMENDATIONS

Affinity chromatography proved to be an efficient purification method allowing the use of HPLC

in analysing rye and rye products for folates, even though folate peaks, 5-HCO-H4folate

especially, were sometimes masked by compounds from the sample matrix or reagents. In

general, HPLC methods are not yet at the stage for routine folate analysis, but could surely be

more widely used provided that attention is paid to method validation. The development of mass

spectrometric methods will certainly reveal new information on food folates in the coming years.

Nevertheless, microbiological assay still has its place when there is no need for data on folate

vitamers.

Microbiological and HPLC results differed, and it seemed that HPLC methods may

underestimate total folate by approximately one third. Part of this underestimation in our results

could be due to not performing any recovery corrections. This and other reasons for the

discrepancy are evidently complex and require further examination. Based on the results of this

study, the use of reference materials, either certified or in-house, as well as participation in

interlaboratory studies can be regarded as essential for every laboratory determining food folate.

New data were obtaibed on the folate content and its variation in rye cultivars. The folate content

of rye was rather high, over 70 µg/100 g on dry matter basis. Results indicated that the genotype

may in some cases have a significant effect on the folate content. However, further studies are

needed to evaluate the degree of this variation. Conventionally and organically grown cultivars

had similar folate contents. The folate vitamer distribution pattern of rye was characterised by a

large proportion of formylated vitamers in addition to 5-CH3-H4folate typically found in plant

materials.

The folate content of rye products could be significantly enhanced by food processing. Yeasts

were able to synthesize folate in test tube fermentation, but most of the studied lactic acid

bacteria depleted folate. Nevertheless, the consumption of folate by lactic acid bacteria in co-

cultivations with yeasts seemed to be very moderate and affected folate concentration only to a

limited extent. Two endogenous bacteria isolated from rye flour produced similar amounts of

folate as yeasts. The potential of endogenous microorganisms that could be exploited in food
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applications is worthy of study. In addition, the effects of food matrix on folate production by

microorganisms requires further examination. The use of baker’s yeast (Saccharomyces

cerevisiae) in sourdough fermentation markedly increased the folate content of bread so that the

bread had a higher folate content than the flour it was made of. Thus, as regards folate intake, it

is recommendable to include yeast in baking.

Germination was even more efficient than fermentation in raising folate levels in rye. The

highest folate levels were achieved with long germination at moderate temperatures (14 to 16

°C) and drying temperatures below 75 °C. Germination also altered the folate vitamer

distribution: the most abundant vitamers in germinated grain were 5-CH3-H4folate and H4folate,

as compared to formylated vitamers in native grain. The folate concentration in hypocotylar

roots was particularly high, and the possible use of this folate-rich fraction would be an

interesting topic for further experimental research. All the thermal treatments studied caused

significant folate losses (26 to 54%). Despite losses, folate contents in germinated grains after

thermal processing exceeded the folate content of the native (non-germinated) grain. Folate

retention was fairly good in processes with a short-term exposure to low or high temperatures.

The results of the bioavailability study showed that a diet including natural folates of rye and

orange juice improved the folate status among healthy adults. In this study a favourable effect

was seen with rather small amounts of additional folate, either natural folates (rye group; 184 ±

24 g folate from test foods per day) or synthetic folic acid (wheat group; 188 ± 8 g folate from

test foods per day). Based on the results of this study, natural folates from rye and orange juice

are as bioavailable as folic acid from fortified white bread.

In summary, the folate contents of rye and rye products can be markedly increased by certain

food processing methods. Folate levels can be raised by fermentation or germination so that

enhanced folate concentrations may compensate for folate losses at later stages of food

processing. Further research on optimising and combining processing techniques is encouraged.



71

8. REFERENCES

AACC 2000. AACC method 86-47 Total folate in cereal products – microbiological assay using
trienzyme extraction. Approved Methods of the American Association of Cereal Chemists,  10th

ed., The Association, St. Paul, Minnesota.

Aiso, K. and Tamura, T. 1998. Trienzyme treatment for food folate analysis: optimal pH and
incubation time for -amylase and protease treatment. J. Nutr. Sci. Vitaminol. 44: 361-370.

Alfthan, G., Laurinen, M., Valsta, L., Pastinen, T., and Aro, A. 2002. Plasman folaatti- ja
homokysteiinipitoisuudet sekä folaattien saanti nuorilla aikuisilla. Suomen Lääkärilehti 17:
1895-1899.

Alm, L. 1982. Effect of fermentation on B-vitamin content of milk in Sweden. J. Dairy Sci. 65:
353-359.

AOAC 2006. Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists,
Washington, DC.

Arcot, J., Wootton, M., Alury, S., Chan, H.Y., and Shrestha, A.K. 2002. Folate levels in twelve
Australian wheats and changes during processing into bread. Food Aust. 54: 18-20.

Ariogul, S., Cankurtaran, M., Dagli, N., Khalil, M., and Yavuz, B. 2005. Vitamin B12, folate,
homocysteine and dementia: are they really related? Arch. Gerontol. Geriat. 40: 139-146.

Ashfield-Watt, P.A.L., Pullin, C.H., Whiting, J.M., Clark, Z.E., Moat, S.J., Newcombe, R.G.,
Burr, M.L., Lewis, M.J., Powers, H.J., and McDowell, I.F.W. 2002. Methylenetetrahydrofolate
reductase 677C T genotype modulates homocysteine responses to a folate-rich diet or a low-
dose folic acid supplement: a randomized controlled trial. Am. J. Clin. Nutr. 76: 180-186.

Ashfield-Watt, P.A.L., Whiting, J.M., Clark, Z.E., Moat, S.J., Newcombe, R.G., Burr, M.L., and
McDowell, I.F.W. 2003. A comparison of the effect of advice to eat either ‘5-a-day’ fruit and
vegetables or folic acid-fortified foods on plasma folate and homocysteine. Eur. J. Clin. Nutr. 57:
316-323.

Baggott, J.E., Johanning, G.L., Branham, K.E., Pronce, C.W., Morgan, S.L., Eto, I., and Vaughn,
W.H. 1995. Cofactor role for 10-formyldihydrofolic acid. Biochem. J. 308: 1031-1036.

Bagley, P. and Selhub, J. 2000. Analysis of folate form distribution by affinity followed by
reversed-phase chromatography with electrochemical detection. Clin. Chem. 46: 404-411.

Bailey, L.B. 1988. Factors affecting folate bioavailability. Food Technol. 10: 206-238.

Balance Sheet for Food Commodities 2005 and 2006 (preliminary), 2007. Information Centre of
the Ministry of Agriculture and Forestry, Helsinki, Finland.

Batifoulier, F., Verny, M-A, Chanliaud, E., Remesy, C., and Demigne, C. 2005. Effect of
different breadmaking methods on thiamine, riboflavin and pyridoxine contents of wheat bread.
J. Cereal Sci. 42: 101-108.

Bazzano, L.A., He, J., Ogden, L.G., Loria, C., Vupputuri, S., Myers, L., and Whelton, P.K. 2002.
Dietary intake of folate and risk of stroke in US men and women. NHANES I epidemiological
follow-up study. Stroke 33: 1183-1189.



72

Bazzano, L.A., Reynolds, K., Holder, K.N., and He, J. 2006. Effect of folic acid supplementation
on risk of cardiovascular diseases. JAMA 296: 2720-2726.

Belz, S. and Nau, H. 1998. Determination of folate patterns in mouse plasma, erythrocytes, and
embryos by HPLC coupled with a microbiological assay. Anal. Biochem. 265: 157-166.

van den Berg, H., Finglas, P.M., and Bates, C. 1994. FLAIR intercomparisons on serum and red
cell folate. Int. J. Vitam. Nutr. Res. 64: 288-293.

van den Berg, H., van der Gaag, M., and Hendriks, H. 2001. Influence of lifestyle on vitamin
bioavailability. Int. J. Vitam. Nutr. Res. 72: 53-59.

Bhandari, S.D. and Gregory, J.F. 1990. Inhibition by selected food components of human and
porcine intestinal pteroylpolyglutamate hydrolase activity. Am. J. Clin. Nutr. 51: 87-94.

Blakley, R.L. 1969. The Biochemistry of Folic Acid and Related Pteridines. North Holland
Publishing Company, Amsterdam.

Blakley, R.L. 1988. IUPAC-IUB joint commission on biochemical nomenclature (JCBN).
Nomenclature and symbols for folic acid and related compounds. Recommendations 1986. J.
Biol. Chem. 263: 605-607.

Boddie, A.M., Dedlow, E.R., Nackashi, J.A., Opalko, F.J., Kauwell, G.P.A., Gregory, J.F., and
Bailey, L.B. 2000. Folate absorption in women with a history of neural tube defect-affected
pregnancy. Am. J. Clin. Nutr. 72: 154-158.

Boushey, C.J., Beresford, S.A., Omenn, G.S., and Motulsky, A.G. 1995. A quantitative
assessment of plasma homocysteine as a risk factor for vascular disease. JAMA 274: 1049-1057.

de Bree, A., van Dusseldorp, M., Brouwer, I.A., van het Hof, K.H., and Steegers-Theunissen,
R.P.M. 1997. Review. Folate intake in Europe: recommended, actual and desired intake. Eur. J.
Clin. Nutr. 51: 363-660.

Brent, R.L. and Oakley, G.P. 2005. The Food and Drug Administration must require the addition
of more folic acid in “enriched” flour and other grains. Pediatrics 116: 753-755.

O’Broin, S. and Kelleher, B. 1992. Microbiological assay on microtiter plates of folate in serum
and red cells. J. Clin. Pathol. 45: 344-347.

Brouwer, I.A., van Dusseldorp, M., West, C.E., Meyboom, S., Thomas, C.M.G., Duran, M., van
het Hof, K.H.,  Eskes, T.K.A.B., Hautvast, J.G.A.J., and Steegers-Theunissen, R.P.M. 1999a.
Dietary folate from vegetables and citrus fruit decreases plasma homocysteine concentrations in
humans in a dietary controlled trial. J. Nutr. 129: 1135-1139.

Brouwer, I.A., van Dusseldorp, M., Thomas, C.M.G., Duran, M., Hautvast, J.G.A.J., Eskes,
K.A.B., and Steegers-Theunissen, R.P.M. 1999b. Low-dose folic acid supplementation decreases
plasma homocysteine concentrations: a randomized trial. Am. J. Clin. Nutr. 69: 99-104.

Butterfield, S. and Calloway, D.H. 1972. Folacin in wheat and selected foods. J. Am. Diet.
Assoc. 60: 310-314.



73

Butterworth, C., Hatch, K., Gore, H., Mueller, H., and Krumdieck, C. 1992. Improvement of
cervical dysplasia associated with folic acid therapy in users of oral contraceptives. Am. J. Clin.
Nutr. 35: 73-82.

B-Vitamin Treatment Trialists’ Collaboration 2006. Homocysteine-lowering trials for prevention
of cardiovascular events: a review of the design and power of the large randomized trials. Am.
Heart J. 151: 282-287.

Caselunghe, M.B. and Lindeberg, J. 2000. Biosensor-based determination of folic acid in
fortified food. Food Chem. 70: 523-532

Cerna, J. and Kas, J. 1983. Folacin in cereals and cereal products. Devel. Food Sci. 5A, 501-505.

Chanarin, I., Kyle, R., and Stacey, J. 1972. Experience with microbiological assay for folate
using a chloramphenicol-resistant L. casei strain. J. Clin. Pathol. 25: 1050-1053.

Chandler, C.J., Wang, T.T.Y., and Halsted, C.H. 1986. Pteroylpolyglutamate hydrolase from
human jejunal brush borders. Purification and characterization. J. Biol. Chem. 261: 928-933.

Choi, S-W and Mason, J.B. 2000. Folate and carcinogenesis: an integrated scheme. J. Nutr. 130:
129-132.

Clifford, A.J., Heid, M.K., Peerson, J.M., and Bills, N.D. 1991. Bioavailability of food folates
and evaluation of food matrix effects with a rat bioassay. J. Nutr. 121: 445-453.

Cole, B. F., Baron, J. A., Sandler, R. S., Haile, R. W.,  Ahnen, D. J., Bresalier, R. S., McKeown-
Eyssen, G., Summers, R. W., Rothstein, R. I., Burke, C. A., Snover, D. C., Church, T. R., Allen,
J. I., Robertson, D. J., Beck, G. J., Bond, J. H., Byers, T., Mandel, J. S., Mott, L. A., Pearson,
L.H., Barry, E. L., Rees, J. R., Marcon, N., Saibil, F., Ueland, P. M., Greenberg, E. R., Polyp
Prevention Study Group 2007. Folic acid for the prevention of colorectal adenomas: a
randomized clinical trial. JAMA 297: 2351-2359.

Combs, G.F. Jr. 1992. The Vitamins. Fundamental Aspects in Nutrition and Health. Acedemic
Press, San Diego, CA.

Crittenden, R.G., Martinez, N.R., and Plaune, M.J. 2002. Synthesis and utilisation of folate by
yoghurt starter cultures and probiotic bacteria. Int. J. Food Microbiol. 80: 217-222.

Cuskelly, G.J., McNulty, H., and Scott, J.M. 1996. Effect of increasing dietary folate on red cell
folate: Implications for prevention of neural tube defects. Lancet 347:657-659.

Czeizel, A.E. and Dudas, I. 1992. Prevention of the first occurrence of neural-tube defects by
periconceptional vitamin supplementation. N. Engl. J. Med. 327: 1832-1835.

Department of Health 1991. Dietary reference values for food energy and nutrients in the United
Kingdom. Report on health and social subjects 41. United Kingdom Department of Health,
London.

Department of Health 2000. Folic acid and the prevention of disease. Report on health and social
subjects 50. United Kingdom Department of Health, London.



74

DeSouza, S. and Eitenmiller, R. 1990. Effects of different enzyme treatments on extraction of
total folate from various foods prior to microbiological assay and radioassay. J. Micronutr. Anal.
7: 37-57.

DeVries, J.W., Keagy, P.M., Hudson, C.A., and Rader, J.I. 2001. AACC collaborative study of a
method for determining total folate in cereal products – microbiological assay using trienzyme
extraction (AACC Method 86–47). Cereal Foods World 46: 216-219.

Eitenmiller, E.R. and Landen, W.O. 1999. Folate. In: Vitamin Analysis for the Health and Food
Sciences, Eitenmiller, E.R. and Landen, W.O (eds.), pp. 411-466. CRC Press, Boca Raton,
Florida.

EN14131 2003. Foodstuffs. Determination of folate by microbiological assay. European
Standard, European Committee for Standardization.

Engelhardt, R. and Gregory, J.F. 1990. Adequacy of enzymatic deconjugation in quantification
of folate in foods. J. Agric. Food Chem. 38: 154-158.

Esteller, M., Garcia, A., Martinez-Palones, J.M., Xercavins, J., and Reventos, J. 1997. Germ line
polymorphisms in cytochrome-P450 1A1 (C4887 CYP1A1) and methylenetetrahydrofolate
reductase (MTHFR) genes and endometrial cancer susceptibility. Carcinogenesis 18: 2307-2311.

Eto, I. and Krumdieck, C.L. 1982. Determination of three different pools of reduced one-carbon-
substituted folates. III. Reversed-phase high performance liquid chromatography of the azo dye
derivatives of p-aminobenzoylpoly- -glutamates and its application to the study of unlabeled
endogenous pteroylpolyglutamates of rat liver. Anal. Biochem. 120: 323-329.

FAO/WHO 2004. Vitamin and mineral requirements in human nutrition. Second edition. Joint
FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements (Bangkok,
Thailand, 1998).

Fenech, M., Noakes, M., Clifton, P., and Topping, D. 1999. Aleurone flour is a rich source of
bioavailable folate in humans. J. Nutr. 129: 1114-1119.

Field, C.J., Van Aerde, A., Drager, K.L., Goruk, S., and Basu, T. 2006. Dietary folate improves
age-related decreases in lymphosyte function. J. Nutr. Biochem. 17: 37-44.

Fineli 2006. National Public Health Institute, Nutrition Unit. Fineli, Finnish food composition
database, Release 6. Helsinki 2006. http://www.ktl.fi/fineli/

Finglas, P.M., Faulks, R.M., and Morgan, M.R.A. 1988. The development and characterisation
of a protein-binding assay for the determination of folate – potential use in food analysis. J.
Micronutr. Anal. 4: 295-308.

Finglas, P.M., Faure, U., and Southgate, D.A.T. 1993. First BCR-intercomparison on the
determination of folates in food. Food Chem. 46: 199-213.

Finglas, P.M. and Morgan, M.R.A. 1994. Application of biospecific methods to the
determination of B-group vitamins in food – a review. Food Chem. 49: 191-201.



75

Finglas, P.M., Wigertz, K., Vahteristo, L., Witthöft, C., Southon, S., and de Froidmont-Görtz, I.
1999. Standardisation of HPLC techniques for the determination of naturally-occurring folates in
food. Food Chem. 64: 245-255.

Finglas, P.M., Witthöft, C.M., Vahteristo, L.,  Wright, A.J.A., Southon, S., Mellon, F.A., Ridge,
B., and Maunder, P. 2002. Use of an oral/intravenous dual-label stable-isotope protocol to
determine folic acid bioavailability from fortified cereal grain foods in women. J. Nutr. 132: 936-
939.

Fohr, I.P., Prinz-Langenohl, R., Brönstrup, A., Bohlmann, A.M., Nau, H., Berthold, H.K., and
Pietrzik, K. 2002. 5,10-Methylenetetrahydrofolate reductase genotype determines the plasma
homocysteine-lowering effect of supplementation with 5-methyltetrahydrofolate or folic acid in
healthy young women. Am. J. Clin. Nutr. 75: 275-282.

FolateFuncHealth 2005. Final report of the project “Folate: from food to functionality and
optimal health” (QLRT-1999-00576), pp. 18-24.

Food and Nutrition Board 1998. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin
B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC, National
Academy Press.

Freisleben, A., Schieberle, P., and Rychlik, M. 2003. Specific and sensitive quantification of
folate vitamers in foods by stable isotope dilution assays using high-performance liquid
chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 376: 149-156.

Freudenheim, J.L., Mashall, J.R., Vena, J.E., Laughlin, R., Brasure, J.R., Swanson, M.K.,
Nemoto, T., and Graham, S. 1996. Premenopausal breast cancer risk and intake of vegetables,
fruits, and related nutrients.  J. Natl. Cancer Inst. 88: 340-348.

FSA 2002. Food Standards Agency. McCance and Widdowson's The Composition of Foods,
Sixth summary edition. Royal Society of Chemistry, Cambridge and the Food Standards Agency,
London.

Giovannucci, E., Rimm, E.B., Ascherio, A., Stampfer, M.J., Colditz, G.A., and Willet, W.C.
1995. Alcohol, low-methionine-low-folate diets, and risk of colon cancer in men. J. Natl. Cancer
Inst. 87: 265-273.

Giovannucci, E., Stampfer, M.J., Colditz, G.A., Hunter, D.J., Fuchs, C., Rosner, B.A., Speizer,
F.E., and Willet, W.C. 1998. Multivitamin use, folate, and colon cancer in women in the Nurses’
Health Study. Ann. Intern. Med. 129: 517-524.

Goli, D.M. and Vanderslice, J.T. 1989. Microbiological assay of folacin using a CO2 analyzer
system. J. Micronutr. Anal. 6: 19-23.

Gregory, J.F., Day, B.P.F., and Ristow, K.A. 1982. Comparison of high performance liquid
chromatographic, radiometric, and Lactobacillus casei methods for the determination of folacin
in selected foods. J. Food Sci. 47: 1568-1571.

Gregory, J.F., Sartain, D.B., and Day, B.P.F. 1984. Fluorometric determination of folacin in
biological materials using high performance liquid chromatography. J. Nutr. 114: 341-353.



76

Gregory, J.F. 1989. Chemical and nutritional aspects of folate research: analytical procedures,
methods of folate synthesis, stability, and bioavailability of dietary folates. Adv. Food Nutr. Res.
33: 1-101.

Gregory, J.F., Bailey, L.B., Toth, J.P., and Cerda, J.J. 1990a. Stable isotope methods for
assessment of folate bioavailability. Am. J. Clin. Nutr. 51: 212-215.

Gregory, J.F., Engelhardt, R., Bhandari, S.D., Sartain, D.B., and Gustafson, S.K. 1990b.
Adequacy of extraction techniques for determination of folates in foods and other biological
materials. J. Food Comp. Anal. 3: 134-144.

Gregory, J.F. 1995. The bioavailability of folate. In: Folate in Health and Disease, Bailey, L.B.
(ed.), pp. 195-235. Marcel Dekker, New York.

Gregory, J.F. 1996. Vitamins. In: Food Chemistry, Fennema, O.R. (ed.), pp. 531-616. Marcel
Dekker, New York.

Gregory, J.F. 1997. Bioavailability of folate. Eur. J. Clin. Nutr. 51: S54-S59.

Gregory, J.F. 2001. Case study: folate bioavailability. J. Nutr. 131: 1376S-1382S.

Gregory, J.F., Quinlivan, E.P., and Davis, S.R. 2005. Integrating the issues of folate
bioavailability, intake and metabolism in the era of fortification. Trends Food Sci. Technol. 16:
229-240.

Grossowicz, N., Waxman, S., and Schreiber, C. 1981. Cryoprotected Lactobacillus casei: an
approach to standardization of microbiological assay of folic acid in serum. Clin. Chem. 27: 745-
747.

Gujska, E. and Kuncewicz, A. 2005. Determination of folate in some cereals and commercial
cereal-grain products consumed in Poland using trienzyme extraction and high-performance
liquid chromatography methods. Eur. Food Res. Technol. 221: 208-213.

Gujska, E. and Majewska, K. 2005. Effect of baking process on added folic acid and endogenous
folates stability in wheat and rye breads. Plant Food Hum. Nutr. 60: 37-42.

Hannon-Fletcher, M.P., Armstrong, N.C., Scott, J.M., Pentieva, K., Bradbury, I., Ward, M.,
Strain, J.J., Dunn, A.A., Molloy, A.M., Kerr, M.A., and McNulty, H. 2004. Determining folate
bioavailability of food folates in a controlled intervention study. Am. J. Clin. Nutr. 80: 911-918.

Hawkes, J.G. and Villota, R. 1989. Folates in foods: Reactivity, stability during processing, and
nutritional implications. Crit. Rev. Food Sci. Nutr. 28: 438-538.

Hegedüs, M., Pedersen, B., and Eggum, B.O. 1985. The influence of milling on the nutritive
value of flour from cereal grains. 7. Vitamins and tryptophan. Qual. Plant 35: 175-180.

Hjortmo, S., Patring, J., Jastrebova, J., and Andlid, T. 2005. Inherent biodiversity of folate
content and composition in yeasts. Trends Food Sci. Technol. 16: 311-316.



77

Hjortmo, S., Patring, J., and Andlid, T. 2007. Effect of cultivation conditions on folate contents
in S. cerevisiae. In: Development and Validation of Chromatographic Methods to Study Folate
Derivatives Produced by Yeasts, Patring, J. Doctoral thesis, Swedish University of Agricultural
Sciences. Acta Universitatis Agriculturae Sueciae 2007:31, Uppsala, Sweden.

van het Hof, K.H., Tijburg, L.B.M., Pietrzik, K., and Weststrate, J.A. 1999. Influence of feeding
different vegetables on plasma levels of carotenoids, folate and vitamin C. Effect of disruption of
the vegetable matrix. Brit. J. Nutr. 82: 203-212.

Homocysteine Studies Collaboration, 2002. Homocysteine and risk of ischemic heart disease and
stroke: a meta-analysis. JAMA 288: 2015-2022.

Honein, M.A., Paulozzi, L.J., Mathews, T.J., Erickson, J.D., and Wong, L-Y C. 2001. Impact of
folic acid fortification of the U.S. food supply on the occurrence of neural tube defects. J. Am.
Med. Assoc. 285: 2981-2986.

Horne, D.W. and Patterson, D. 1988. Lactobacillus casei microbiological assay of folic acid
derivatives in 96-well microtiter plates. Clin. Chem. 34: 2357-2359.

Horwitz, W., Kamps, R.L., and Boyer, W.K. 1980. Quality assurance in the analysis of foods for
trace constituents. J. Assoc. Off. Anal. Chem. 63:1344-1354.

Houghton, L.A., Green, T.J., Donovan, U.M., Gibson, R.S., Stephen, A.M., and O’Connor, D.L.
1997. Association between dietary fiber intake and the folate status of a group of female
adolescents. Am. J. Clin. Nutr. 66: 1414-1421.

Hyun, T.H. and Tamura, T. 2005. Trienzyme extraction in combination with microbiological
assay in food folate analysis: an updated review. Exp. Biol. Med. 230: 444-454.

Håkansson, B., Jägerstad, M., Öste, R., Åkesson, B., and Jonsson, L. 1987. The effects of
various thermal processes on protein quality, vitamins and selenium content in whole-grain
wheat and white flour. J. Cereal Sci. 6: 269-282.

Iwatani, Y. and Arcot, J. 2003. Determination of folate contents in some Australian vegetables. J.
Food Comp. Anal. 16: 37-48.

Johansson, M., Witthöft, C., Bruce, Å, and Jägerstad, M. 2002. Study of wheat breakfast rolls
fortified with folic acid. The effect on folate status in healthy women during a 3-month
intervention. Eur. J. Nutr. 41: 279-286.

Johnston, K.E. and Tamura, T. 2004. Folate content in commercial white and whole wheat
sandwich breads. J. Agric. Food Chem. 52: 6338-6340.

Jones, M.L. and Nixon, P.F. 2002. Tetrahydrofolates are greatly stabilized by binding to bovine
milk folate-binding protein. J. Nutr. 132: 2690-2694.

Jägerstad, M., Piironen, V., Walker, C., Ros, G., Carnovale, E., Holasova, M., and Nau, H. 2005.
Increasing natural food folates through bioprocessing and biotechnology. Trends Food Sci.
Technol. 16: 298-306.

Kariluoto, S., Vahteristo, L., Finglas, P.M. de Meer, K., Nau, H., and Kehlenbach, U. 2002.
Population estimates of folate intake from food analyses. Am. J. Clin. Nutr. 76: 689-690.



78

Katina, K., Laitila, A., Juvonen, R., Liukkonen, K-H, Kariluoto, S., Piironen, V., Landberg, R.,
Åman, P., and Poutanen, K. 2007. Bran fermentation as a means to enhance technological
properties and bioactivity of rye. Food Microbiol. 24: 175-186.

Keagy, P.M., Stokstad, E.L.R., and Fellers, D.A. 1975. Folacin stability during bread processing
and family flour storage. Cereal Chem. 52: 349-356.

Keagy, P.M., Borenstein, B., Ranum, P, Connor, M.A., Lorenz, K., Hobbs, W.E., Hill, G.,
Bachman, A.L., Boyd, W.A., and Kulp, K. 1980. Natural levels of nutrients in commercially
milled wheat flours. II. Vitamin analysis. Cereal Chem. 57: 59-65.

Keagy, P.M. 1985. Folacin. Microbiological and animal assays. In: Methods of Vitamin Assay,
Augustin, J., Klein, B.P., Becker, D.A., and Venugopal, P.B. (eds.), pp. 445-463. J. Wiley &
Sons, New York.

Kelly, P., McPartlin, J., Goggins, M., Weir, D.G., and Scott, J.M. 1997. Unmetabolized folic
acid in serum: acute studies in subjects consuming fortified food and supplements. Am. J. Clin.
Nutr. 65: 1790-1795.

Kemp, F.W., DeCandia, J., Li, W., Bruening, K., Baker, H., Rigassio, D., Bendich, A., and
Bogden, J.D. 2002. Relationships between immunity and dietary and serum antioxidants, trace
metals, B vitamins, and homocysteine in elderly men and women. Nutr. Res. 22: 45–53.

Klein, B.P. and Kuo, C.H. 1981. Comparison of microbiological and radiometric assays for
determining of total folacin in spinach. J. Food Sci. 46: 552-554.

Klerk, M., Verhoef, P., Clarke, R., Blom, H.J., Kok, F.J., and Schouten, E.G. 2002. MTHFR
677C T polymorphism and risk of coronary heart disease. A meta-analysis. JAMA 288: 2023-
2031.

Koehler, P., Hartmann. G., Wieser, H., and Rychlik, M. 2007. Changes of folate, dietary fiber,
and proteins in wheat as affected by germination. J. Agric. Food Chem. 55: 4678-4683.

Konings, E.J.M. 1999. A validated liquid chromatographic method for determining folates in
vegetables, milk powder, liver, and flour. J. AOAC Int. 82:119-127.

Konings, E.J.M., Roomans, H.H.S., Dorant, E., Goldbohm, R.A., Saris, W.H.M., and van den
Brandt, P.A. 2001. Folate intake of the Dutch population according to newly established liquid
chromatography data for foods. Am. J. Clin. Nutr. 73: 765-776.

Konings, E.J.M., Troost, F.J., Castenmiller, J.J.M., Roomans, H.H.S., van den Brandt, P.A., and
Saris, W.H.M. 2002. Intestinal absorption of different types of folate in healthy subjects with an
ileostomy. Brit. J. Nutr. 88: 235-242.

Lashner, B.A., Heidenreich, P.A., Su, G.L., Kane, S.V., and Hanauer, S.B. 1989. Effect of folate
supplementation on the incidence of dysplasia and cancer in chronic ulcerative colitis.
Gastroenterology 9: 255-259.

Laurinen, M.S. 2000. Plasman folaatit ja homokysteiini sekä folaattien saanti suomalaisilla
aikuisilla (Plasma folate and homocysteine and folate intake of Finnish adults). Master thesis,
University of Helsinki, 66 pp. In Finnish.



79

Lin, M.Y. and Young, C.M. 2000. Folate levels in cultures of lactic acid bacteria. Int. Dairy J.
10: 409-413.

Lindeberg, J., Witthöft, C., and Løken, E.B., 2001. Intercomparison of microbiological methods
for folate determinations in food. Fourth International Food Data Conference, 24–26 August
2001, Bratislava, Slovak Republic. Abstract.

Liukkonen, K-H, Katina, K., Wilhelmsson, A., Myllymäki, O., Lampi, A-M, Kariluoto, S.,
Piironen, V., Heinonen, S-M, Nurmi, T., Adlercreutz, H., Peltoketo, A., Pihlava, J-M,
Hietaniemi, V., and Poutanen, K. 2003. Process-induced changes on bioactive compounds in
whole grain rye. Proc. Nutr. Soc. 62: 117-122.

Lucock, M. 2004. Is folic acid the ultimate functional food component for disease prevention?
BMJ 328: 211-214.

Lönner, C. and Ahrne, S. 1995. Lactobacillus (Baking). In: Food Biotechnology
Microorganisms, Y.H. Hui and G.G. Khachatourians (eds.), pp. 797-844. VCH Publishers Inc.,
New York.

Ma, J., Stampfer, M.J., Giovannucci, E., Articas, C, Hunter, D.J., Fuchs, C., Willet, W.C., and
Selhub, J. 1997. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and
risk of colorectal cancer. Cancer Res. 57: 1098-1102.

Martin, J.I., Landen W.I., Soliman, A-GM., and Eitenmiller, R.R. 1990. Application of a tri-
enzyme extraction for total folate determination in foods. J. Assoc. Off. Anal. Chem. 73: 805-
808.

Maruyama, T., Shiota, T. and Krumdieck, C.L. 1978. The oxidative cleavage of folates. Anal.
Biochem. 84: 277-295.

Mason, J.B. 1995. Folate status: effects on carcinogenesis. In: Folate in Health and Disease,
Bailey, L.B. (ed.), pp. 361-378. Marcel Dekker, New York.

Mitchell, L.E., Duffy, D.L., Duffy, P., Bellingham, G., and Martin, N.G. 1997. Genetic effects
on variation in red-blood-cell folate in adults: implications for the familial aggregation of neural
tube defects. Am. J. Hum. Genet. 60: 433-438.

Molloy, A.M., Daly, S., Mills, J.L., Kirke, P.N., Whitehead, A.S., Ramsbottom, D., Conley,
M.R., Weir, D.G., and Scott, J.M. 1997. Thermolabile variant of 5,10-methylenetetrahydrofolate
reductase associated with low red-cell folates: implications for folate intake recommendations.
Lancet 349: 1591-1593.

Molloy, A.M. and Scott, J.M. 1997. Microbiological assay for serum, plasma, and red cell folate
using cryopreserved, microtiter plate method. Methods Enzymol. 281: 43-53.

Molloy, A.M., Mills, J.L., Kirke, P.N., Ramsbottom, D., McPartlin, J.M., Burke, H., Conley, M.,
Whitehead, A.S., Weir, D.G., and Scott, J.M. 1998. Low blood folates in NTD pregnancies are
only partly explained by thermolabile 5,10-methylenetetrahydrofolate reductase: low folate
status alone may be the critical factor. Am. J. Med. Genet. 78:155-159.

MRC Vitamin Study Research Group, 1991. Prevention of neural tube defects: results of the
Medical Research Council Vitamin Study. Lancet 338: 131-137.



80

Müller, H. 1993. Bestimmung der Folsäure-Gehalte von Getreide, Getreideprodukten,
Backwaren und Hülsenfrüchten mit Hilfe der Hochleistungsflüssigchromatographie (HPLC). Z.
Lebensm. Unters. Forsch. 197: 573-577.

Mullin, W.J. and Jui, P.Y. 1986. Folate content of bran from different wheat classes. Cereal
Chem. 63: 516-518.

Männistö, S., Ovaskainen, M-L, and Valsta, L. 2003. Finravinto 2002 –tutkimus (The National
FINDIET 2002 Study). Kansanterveyslaitoksen julkaisuja B3/2003. Kansanterveyslaitos
(National Public Health Institute), Helsinki.

Ndaw, S., Bergaentzlé, M., Aoudé-Werner, D., Lahély, S., and Hasselmann, C. 2001.
Determination of folates in foods by high-performance liquid chromatography with fluorescence
detection after precolumn conversion to 5-methyltetrahydrofolates. J. Chromatogr. A 928: 77-90.

Neuhouser, M.L., Beresford, S.A.A., Hickok, D.E., and Monsen, E.R. 1998. Absorption of
dietary and supplemental folate in women with prior pregnancies with neural tube defects and
controls. J. Am. Coll. Nutr. 17: 625-630.

Neuhouser, M.L. and Beresford, S.A.A. 2001. Folic acid: are current fortification levels
adequate? Nutrition 17: 868-872.

Newman, E.M. and Tsai, F.F. 1986. Microbiological analysis of 5-methytetrahydrofolic acid and
other folates using an automatic 96-well plate reader. Anal. Biochem. 154: 509-515.

NNC 2005. Finnish Nutrition Recommendations (Suomalaiset ravitsemussuositukset – ravinto ja
liikunta tasapainoon). National Nutrition Council (Valtion ravitsemusneuvottelukunta), Helsinki.

NNR 2004. Nordic Nutrition Recommendations. Integrating nutrition and physical activity. Nord
2004:13. Nordic Council of Ministers, Copenhagen.

McNulty, H., Cuskelly, G.J., and Ward, M. 2000. Response of red blood cell folate to
intervention: implications for folate recommendations for the prevention of neural tube defects.
Am. J. Clin. Nutr. 71: 1038S-1011S.

Nygren-Babol, L., Sternesjö, Å., Jägerstad, M., and Björck, L. 2005. Affinity and rate constants
for interactions of bovine folate-binding protein and folate derivatives determined by optical
biosensor technology. Effect of stereoselectivity. J. Agric. Food Chem. 53: 5473-5478.

Osseyi, E.S., Wehling, R.L., and Albrecht, J.A. 2001. HPLC determination of stability and
distribution of added folic acid and some endogenous folates during breadmaking. Cereal Chem.
78: 375-378.

Patring, J.D.M. and Jastrebova, J.A. 2007. Application of liquid chromatography-electrospray
ionisation mass spectrometry for determination of dietary folates: Effects of buffer nature and
mobile phase composition on sensitivity and selectivity. J. Chromatogr. A 1143: 72-82.

Pawlosky, R.J., Flanagan, V.P., and Doherty, R.F. 2003. A mass spectrometric validated high-
performance liquid chromatography procedure for the determination of folates in foods. J. Agric.
Food Chem. 51: 3726-3730.



81

Pedersen, J.C. 1988. Comparison of -glutamyl hydrolase (conjugase; EC 3.4.22.12) and
amylase treatment procedures in the microbiological assay for food folates. Br. J. Nutr. 59: 261-
271.

Pfeiffer, C.M., Rogers L.M., and Gregory J.F. 1997. Determination of folate in cereal-grain food
products using trienzyme extraction and combined affinity and reversed-phase liquid
chromatography. J. Agric. Food Chem. 45: 407-413.

Pfeiffer, C.M., Caudill, S.P., Gunter, E.W., Osterloh, J., and Sampson, E.J. 2005. Biochemical
indicators of B vitamin status in the US population after folic acid fortification: results from the
National Health and Nutrition Examination Survey 1999–2000. Am. J. Clin. Nutr. 82: 442-450.

Pfeiffer, C.M., Johnson, C.L., Jain, R.B., Yetley, E.A., Picciano, M.F., Rader, J.I., Fisher, K.D.,
Mulinare, J., and Osterloh, J.D. 2007. Trends in blood folate and vitamin B-12 concentrations in
the United States, 1988–2004. Am. J. Clin. Nutr. 86: 718-727.

Phillips, D.R. and Wright, A.J.A. 1982. Studies on the response of Lactobacillus casei to
different folate monoglutamates. Br. J. Nutr. 47: 183-189.

van der Put, N.M., Eskes, T.K., and Blom, H.J. 1997. Is the common 677C->T mutation in the
methylenetetrahydrofolate reductase gene a risk factor for neural tube defects? A meta-analysis.
QJM 90: 111-115.

Puwastien, P., Pinprapai, N., Judprasong, K., and Tamura, T. 2005. International inter-laboratory
analyses of food folate. J. Food Comp. Anal. 18: 387-397.

Qiu, A., Jansen, M., Sakaris, A., Min, S.H., Chattopadhyay, S., Tsai, E., Sandoval, C., Zhao, R.,
Akabas, M.H., and Goldman, I.D. 2006. Identification of an intestinal folate transporter and the
molecular basis for hereditary folate malabsorption. Cell 127: 917-928.

Rader, J.I., Weaver, C.M., and Angyal, G. 1998. Use of a microbiological assay with tri-enzyme
extraction for measurement of pre-fortification levels of folates in enriched cereal-grain
products. Food Chem. 62: 451-465.

Rader, J.I., Weaver, C.M., and Angyal, G. 2000. Total folate in enriched cereal-grain products in
the United States following fortification. Food Chem. 70: 275-289.

Rader, J.I. 2002. Folic acid fortification, folate status and plasma homocysteine. J. Nutr. 132:
2466S-2470S.

Rao, D.R., Reddy, A.V., Pulusani, S.R., and Cornwell, P.E. 1984. Biosynthesis and utilization of
folic acid and vitamin B12 by lactic acid cultures in skim milk. J. Dairy Sci. 67: 1169-1174.

Rauch, P., Kas, J., Strejcek, F., and Cerna, J. 1989. Radioassay of folacin in foodstuffs. J. Food
Biochem. 13: 21-29.

Ravaglia, G., Forti, P., Maioli, F., Martelli, M., Servadei, L., Brunetti, N., Porcellini, E., and
Licastro, F. 2005. Homocysteine and folate as risk factors for dementia and Alzheimer’s disease.
Am. J. Clin. Nutr. 82: 636-643.



82

Rebeille, F., Neuburger, M., and Douce, R. 1994. Interaction between glycine decarboxylase,
serine hydroxymethyltransferase and tetrahydrofolate polyglutamates in pea leaf mitochondria.
Biochem. J. 302: 223-228.

Rebeille, F., Ravanel, S., Jabrin, S., Douce, R., Storozhenko, S., and Van Der Straeten, D. 2006.
Folates in plants: biosynthesis, distribution, and enhancement. Physiol. Plantarum 126: 330–342.

Robinson, D.R. 1971. The nonenzymatic hydrolysis of N5, N10-methenyltetrahydrofolic acid and
related reactions. Methods Enzymol. 18(B): 716-725.

Rogers, L.M., Pfeiffer, C.M., Bailey, L.B., and Gregory, J.F. 1997. A dual-label stable-isotopic
protocol is suitable for determination of folate bioavailability in humans: evaluation of urinary
excretion and plasma folate kinetics of intravenous and oral doses of [13C5] and [2H2] folic acid.
J. Nutr. 127: 2321-2327.

Roos, A.J. and Cossins, E.A. 1971. Biosynthesis of cotyledonary tetrahydropteroylglutamates
during germination. Biochem. J. 125: 17-26.

Rychlik, M. 2004. Revised folate content of foods determined by stable isotope dilution assays.
J. Food Comp. Anal. 17: 475-483.

Rydlewicz, A., Simpson, J.A., Taylor, R.J., Bond, C.M., and Golden, M.H.N. 2002. The effect of
folic acid supplementation on plasma homocysteine in an elderly population. QJM 95: 27-35.

Sanderson, P., Stone, E., Kim, Y-I, Mathers, J.C., Kampman, E., Downes, C.S., Muir, K.R., and
Baron, J.A. 2007. Folate and colo-rectal cancer risk. Br. J. Nutr. 98: 1299-1304.

Sauberlich, H.E., Kretsch, M.J., Skala, J.H., Johnson, H.L., and Taylor, P.C. 1987. Folate
requirement and metabolism in nonpregnant women. Am. J. Clin. Nutr. 46: 1016-1028.

Schirch, V. and Strong, W.B. 1989. Interaction of folylpolyglutamates with enzymes in one
carbon metabolism. Arch. Biochem. Biophys. 269: 371-380.

Schorah, C.J., Devutt, H., Lucock, M., and Dowell, A.C. 1998. The responsiveness of plasma
homocysteine to small increases in dietary folic acid: a primary care study. Eur. J. Clin. Nutr. 52:
407-411.

Seshadri, S., Beiser, A., Selhub, J., Jacques, P.F., Rosenberg, I.H., D’Agostino, R.B., Wilson,
P.W.F., and Wolf, P.A. 2002. Plasma homocysteine as a risk factor for dementia and
Alzheimer’s disease. N. Engl. J. Med. 346: 476-483.

Seyoum, E. and Selhub, J. 1993. Combined affinity and ion-pair column chromatographies for
the analysis of food folate. J. Nutr. Biochem. 4: 488-494.

Seyoum, E. and Selhub, J. 1998. Properties of food folates determined by stability and
susceptibility to intestinal pteroylpolyglutamate hydrolase action. J. Nutr. 128: 1956-1960.

Shane, B. 1980. High performance liquid chromatography of folates: identification of poly- -
glutamate chain lenghts of labelled and unlabelled folates. Am. J. Clin. Nutr. 35: 599-608.

Shrestha, A.K., Arcot, J., and Paterson, J. 2000. Folate assay of foods by traditional and tri-
enzyme treatments using cryoprotected Lactobacillus casei. Food Chem. 71: 545-552.



83

Silaste, M-L, Rantala, M.,  Sämpi, M., Alfthan, G., Aro, A., and Kesäniemi, Y.A. 2001.
Polymorphisms of key enzymes in homocysteine metabolism affect diet responsiveness of
plasma homocysteine in healthy women. J. Nutr. 131: 2643-2647.

Slattery, M.L., Potter, J.D., Samowitz, W., Scaffer, D., and Leppert, M. 1999.
Methylenetetrahydrofolate reductase, diet, and risk of colon cancer. Cancer Epidemiol.
Biomarkers Prev. 8: 513-518.

Spronk, A.M. and Cossins, E.A. 1972. Folate derivatives of photosynthetic tissues.
Phytochemistry 11: 3157-3165.

Stakes, 2006. Congenital anomalies 1993–2004. Ritvanen, A. and Sirkiä, S. eds. Statistical
Summary 7/2006, National Research and Development Centre for Welfare and Health, Helsinki,
Finland.

Stokes, P. and Webb, K. 1999. Analysis of some folate monoglutamates by high-performance
liquid chromatography–mass spectrometry. J. Chromatogr. A 864: 59-67.

Stolzenberg-Solomon, R.Z., Chang, S.C., Leitzmann, M.F., Johnson, K.A., Johnson, C., Buys,
S.S., Hoover, R.N., and Ziegler, R.G. 2006. Folate intake, alcohol use, and postmenopausal
breast cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am. J.
Clin. Nutr. 83: 895-904.

Stover, P.J. and Garza, C. 2002. Bringing individuality to public health recommendations. J.
Nutr. 132: 2476S-2480S.

Strålsjö, L., Arkbåge, K., Witthöft, C., and Jägerstad, M. 2002. Evaluation of a radioprotein-
binding assay (RPBA) for folate analysis in berries and milk. Food Chem. 79: 525-534.

Strålsjö, L., Åhlin, H.. Witthöft, C.M., and Jastrebova, J. 2003. Folate determination in Swedish
berries by radioprotein-binding assay (RPBA) and high performance liquid chromatography
(HPLC). Eur. Food Res. Technol. 216: 264-269.

Sybesma, W., Starrenburg, M., Tijsseling, L., Hoefnagel, M.H.N., and Hugenholtz, J. 2003.
Effects of cultivation conditions on folate production by lactic acid bacteria. Appl. Environ.
Microbiol. 69: 4542-4548.

Tamura, T., Shin, Y.S., Williams, M.A., and Stokstad, E.L.R. 1972. Lactobacillus casei response
to pteroylpolyglutamates. Anal. Biochem. 49: 517-521.

Tamura, T. 1998. Determination of food folate. J. Nutr. Biochem. 9: 285-293.

Taparia, S., Gelineau-van Waes, J., Rosenquist, T.H., and Finnell, R.H. 2007. Importance of
folate-homocysteine homeostasis during early embryonic development. Clin. Chem. Lab. Med.
45: 1717-1727.

Trinh, B.N., Ong, C-N, Coetzee, G.A., Yu, M.C., and Laird, P.W. 2002. Thymidylate synthase: a
novel genetic determinant of plasma homocysteine and folate levels. Hum. Genet. 111: 299-302.



84

Troen, A.M., Mitchell, B., Sorensen, B., Wener, M.H., Johnston, A., Wood, B., Selhub, J.,
McTiernan, A., Yasui, Y., Oral, E., Potter, J.D., and Ulrich, C.M. 2006. Unmetabolised folic acid
in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal
women. J. Nutr. 136: 189-194.

Turbic, A., Ahokas, J.T., and Haskard, C.A., 2002. Selective in vitro binding of dietary
mutagens, individually or in combination, by lactic acid bacteria. Food Addit. Contam. 19: 144-
152.

USDA 2005. U.S. Department of Agriculture, Agricultural Research Service. USDA National
Nutrient Database for Standard Reference, Release 18. Nutrient Data Laboratory Home Page,
http://www.nal.usda.gov/fnic/foodcomp.

Vahteristo, L., Ollilainen, V., Koivistoinen, P., and Varo, P. 1996a. Improvements in the analysis
of reduced folate monoglutamates and folic acid in food by high-performance liquid
chromatography. J. Agric. Food Chem. 44: 477-482.

Vahteristo, L., Ollilainen, V., and Varo, P. 1996b. HPLC determination of folate in liver and
liver products. J. Food Sci. 61: 524-526.

Vahteristo, L., Lehikoinen, K., Ollilainen, V., and Varo, P. 1997a. Application of an HPLC assay
for the determination of folate derivatives in some vegetables, fruits and berries consumed in
Finland. Food Chem. 59: 589-597.

Vahteristo, L., Ollilainen, V., and Varo, P. 1997b. Liquid chromatographic determination of
folate monoglutamates in some fish, meat, egg, and dairy products consumed in Finland. J.
AOAC Int. 80: 373-378.

Van Guelpen, B., Hultdin, J., Johansson, I., Hallmans, G., Stenling, R., Riboli, E., Winkvist, A.,
and Palmqvist, R. 2005. Low folate levels may protect against colorectal cancer. Gut 55: 1461-
1466.

Varela-Moreiras, G., Seyoum, E., and Selhub, J. 1991. Combined affinity and ion pair column
chromatographies for the analysis of folate distribution in tissues. J. Nutr. Biochem. 2: 44-53.

Venn, B. J.,  Mann, J.I., Williams, S.M., Riddell, L.J.,  Chisholm, A., Harper, M.J.,  Aitken, W.,
and Rossaak, J.I. 2002. Assessment of three levels of folic acid on serum folate and plasma
homocysteine: a randomised placebo-controlled double-blind dietary intervention trial. Eur. J.
Clin. Nutr. 56: 748-754.

Verwei, M., Arkbåge, K., Havenaar, R., van den Berg, H., Witthöft, C., and Schaafsma, G. 2003.
Folic acid and 5-methyltetrahydrofolate in fortified milk are bioaccessible as determined in a
dynamic in vitro gastrointestinal model. J. Nutr. 133: 2377-2383.

Verwei, M., Arkbåge, K., Mocking, H., Havenaar, R., and Grooten, J. 2004. The binding of folic
acid and 5-methyltetrahydrofolate to folate-binding proteins during gastric passage differs in a
dynamic in vitro gastrointestinal model. J. Nutr. 134: 31-37.

Virtanen, J.K., Voutilainen, S., Happonen, P., Alfthan, G., Kaikkonen, J., Mursu, J., Rissanen,
T.H., Kaplan, G.A., Korhonen, M.J., Sivenius, J., and  Salonen, J.T. 2005. Serum homocysteine,
folate and risk of stroke: Kuopio Ischaemic Heart Disease Factor (KIHD) Study. Eur. J. Cardiov.
Prev. R. 12: 369-375.



85

Voutilainen, S., Rissanen, T.H., Virtanen, J., Lakka, T.A., and Salonen, J.T. 2001. Low dietary
folate intake is associated with an excess incidence of acute coronary events: the Kuopio
Ischemic Heart Disease Factor Study. Circulation 103: 2674-2680.

Voutilainen, S., Virtanen, J.K., Rissanen, T.H., Alfthan, G., Laukkanen, J., Nyyssönen, K.,
Mursu, J., Valkonen, V-P, Tuomainen, T-P, Kaplan, G.A., and Salonen, J.T. 2004. Serum folate
and homocysteine and incidence of acute coronary events: the Kuopio Ischaemic Heart Disease
Factor Study. Am. J. Clin. Nutr. 80: 317-323.

Wagner, C. 1995. Biochemical role of folate in cellular metabolism. In: Folate in Health and
Disease, Bailey, L.B. (ed.), pp. 23-42. Marcel Dekker, New York.

Wald, D.S., Bishop, L., Wald, N.J., Law, M., Hennessy, E., Weir, D., McPartlin, J., and Scott, J.
2001a. Randomized trial of folic acid supplementation and serum homocysteine levels. Arch.
Intern. Med. 16: 695-700.

Wald, N.J., Law, M.R., Morris, J.K., and Wald, D.S. 2001b. Quantifying the effect of folic acid.
Lancet 358: 2069-2073.

Wald, D.S., Law, M., and Morris, J.K. 2002. Homocysteine and cardiovascular disease: evidence
on causality from a meta-analysis. BMJ 325: 1202-1206.

Wang, X., Qin, X., Demirtas, H., Li, J., Mao, G., Huo, Y., Sun, N., Liu, L., and Xu, X. 2006.
Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet 369: 1876-
1882.

Ward, M., McNulty, H., McPartlin, J., Strain, J.J., Weir, D.G, and Scott, J.M. 1997. Plasma
homocysteine, a risk factor for cardiovascular disease, is lowered by physiological doses of folic
acid. QJM 90: 519-524.

WCRF 2006. World Cancer Research Fund/American Institute for Cancer Research. Food,
Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. AICR,
Washington. http://www.dietandcancerreport.org/

Wegkamp, A., Starrenburg, M., de Vos, W.M., Hugenholtz, J., and Sybesma, W. 2004.
Transformation of folate-consuming Lactobacillus gasseri into a folate producer. Appl. Environ.
Microb. 70: 3146-3148.

Wei, M-M, Bailey, L.B., Toth, J.P., and Gregory, J.F. 1996. Bioavailability for humans of
deuterium-labeled monoglutamyl and polyglutamyl folates is affected by selected foods. J. Nutr.
3100-3108.

Wei, M-M and Gregory, J.F. 1998. Organic acids in selected foods inhibit intestinal brush border
pteroylpolyglutamate hydrolase in vitro: potential mechanism affecting the bioavailability of
dietary polyglutamyl folate. J. Agric. Food Chem. 46: 211-219.

Whittaker, P., Tufaro, P.R., and Rader, J.I. 2001. Iron and folate in fortified cereals. J. Am. Coll.
Nutr. 20: 247-254.

Wigertz, K. and Jägerstad, M. 1995. Comparison of a HPLC and radioprotein-binding assay for
the determination of folates in milk and blood samples. Food Chem. 54: 429–436.



86

Williams, L.J., Rasmussen, S-A., Flores, A., Kirby, R.S., and Edmonds, L.D. 2005. Decline in
the prevalence of spina bifida and anencephaly by race/ethnicity: 1995–2002. Pediatrics 116:
580-586.

Wills, L. 1931. Treatment of “pernicious anaemia of pregnancy” and “tropical anaemia” with
special reference to yeast extract as a curative agent. BMJ 1: 1059-1064.

Wilson, S.D. and Horne, D.W. 1982. Use of glycerol-protected Lactobacillus casei for
microbiological assay of folic acid. Clin. Chem. 28: 1198-2000.

Wilson, S.D. and Horne, D.W. 1984. High-performance liquid chromatographic determination of
the distribution of naturally occurring folic acid derivatives in rat liver. Anal. Biochem. 142:
529-535.

Winkels, R.M., Brouwer, I.A., Siebelink, E., Katan, M.B., and Verhoef, P. 2007. Bioavailability
of food folates is 80% of that of folic acid. Am. J. Clin. Nutr. 85: 465-473.

Witthöft, C.M., Arkbåge, K., Johansson, M., Lundin, E., Berglund, G., Zhang, J-X, Lennernäs,
H., and Dainty, J.R. 2006. Folate absorption from folate-fortified and processed foods using a
human ileostomy model. Br. J. Nutr. 95: 181-187.

Wright, A.J.A., Finglas, P.M., Dainty, J.R., Wolfe, C.A., Hart, D.J., Wright, D.M., and Gregory,
J.F. 2005. Differential kinetic behavior and distribution for pteroylglutamic acid and reduced
folates: a revised hypothesis of the primary site of PteGlu metabolism in humans. J. Nutr. 135:
619-623.

Wright, A.J.A., Dainty, J.R., and Finglas, P.M. 2007. Folic acid metabolism in human subjects
revisited: potential implications for proposed mandatory folic acid fortification in the UK. Br. J.
Nutr. 98: 667-675.

Yang, F., Basu, T.K., and Ooraikul, B. 2001. Studies on germination conditions and antioxidant
contents of wheat grain. Int. J. Food Sci. Nutr. 52: 319-330.

Yang, Q., Botto, L.D., Erickson, J.D., Berry, R.J., Sambell, C., Johansen, H., and Friedman, J.M.
2006. Improvement in stroke mortality in Canada and the United States, 1990 to 2002.
Circulation 113: 1335-1343.

Yon, M. and Hyun, T.H. 2003. Folate content of foods commonly consumed in Korea measured
after trienzyme extraction. Nutr. Res. 23: 735-746.

Zheng, L-L., Lin, Y., Lin, S., and Cossins, E.A. 1992. The polyglutamate nature of plant folates.
Phytochem. 31: 2277-2282.


	ABSTRACT
	PREFACE
	LIST OF ORIGINAL PUBLICATIONS
	LIST OF ABBREVIATIONS
	CONTENTS
	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. OBJECTIVES OF THE STUDY
	4. MATERIALS AND METHODS
	5. RESULTS
	6. DISCUSSION
	7. CONCLUSIONS AND RECOMMENDATIONS
	8. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF0059006c0069006f0070006900730074006f007000610069006e006f006e00200064006900670069006e002000640069007300740069006c006c00650072002d00610073006500740075006b007300650074002e0020004b00e40079007400e40020006e00e40069007400e40020006b00610069006b0069006c006c006500200064006900670069006e0020007400f60069006c006c00650021>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.284 878.740]
>> setpagedevice




