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Abstract 

 

This thesis concentrates on bioavailability of organic soil contaminants in the context of 

bioremediation of soil contaminated with volatile or non-volatile hydrophobic pollutants. 

Bioavailability and biodegradation was studied from four viewpoints: (i) Improvement of 

bioavailability and biodegradation of volatile hydrocarbons in contained bioremediation 

systems at laboratory - and pilot-scale. (ii) Improvement of bioavailability of non-volatile, 

hydrophobic compounds in such systems. (iii) Biodegradation of a non-volatile 

hydrophobic compound in soil organic matter in microcosms. (iiii) Bioavailability of 

nitrogen in an open, full-scale bioremediation system. 

 

It was demonstrated that volatility of organic compounds can be controlled by amending 

the soil with adsorbents. The sorbed hydrocarbons were shown to be available to soil 

microbiota. As the result, biodegradation of the volatile hydrocarbons was greatly favored 

at the expense of volatilization. 

 

PAH compounds were shown to be mobilized and their bioavailability improved by a 

hydrophobic, non-toxic additive, vegetable oil. Bioavailability of the PAHs was recorded 

as an increased toxicity of the soil. In spite of the increased bioavailability, 

biodegradation of the PAHs decreased. 

 

In microcosms simulating boreal forest organic surface soil, PAH-compound (pyrene) 

was shown to be removed from soil biologically. Therefore hydrophobicity of the 

substrate does not necessarily mean low availability and biodegradation in organic soil. 

 

Finally, in this thesis it was demonstrated that an unsuitable source of nitrogen or its 

overdose resulted in wasteful spending of this nutrient and even harmful effects on soil 

microbes. Such events may inhibit rather than promote the bioremediation process in soil. 
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Abbreviations 

 

Ki  Partition constant of compound i 

Kow  Octanol-water partition coefficient 

Kilipw  Lipid-water partition coefficient of compound i 

K ioc  Organic matter-water partition coefficient of compound i 

Kitriow  Triolen-water partition coefficient of compound i 

Kih  Henry´s law constant of compound i 

Ci  Concentration of compound i 

ph  Phase 

Diw  Diffusion coefficient of compound i in water 

η  Viscosity 

iV   Molar volume of compound i 

Bp  Boiling point 

t½  Half-life time 

σx  Diffusion distance 

k  Rate constant 

OC  Organic compound 

DOC  Dissolved organic carbon 

COD  Chemical oxygen demand 

VOC  Volatile organic compound 

PAH  Polyaromatic hydrocarbon 

OC  Organic compund 

MTBE  Methyl-tert-butyl ether 

L  Diffusion distance 

tdiff  Diffusion time 
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1. Background 

 

Anthropogenic environmental contamination has been part and parcel of the mankinds 

way of life in the industrialized world. The 19th century industrial revolution brought not 

only material welfare but also emissions of harmful substances to the environment. These 

emissions have led to local and global deterioration of the environment when the 

contaminants have accumulated in air, water, sediments, soils and biota, including man 

(Schwarzenbach et al. 2003). 

 

According to current thinking all naturally occurring organic compounds may ultimately 

be degradable by microorganisms under favorable conditions (Leung et al. 2007). The 

metabolic diversity of natural microbial communities has, so far, saved mankind from 

self-intoxication. As nature´s self-purifying characteristic is composed of many abiotic 

and biotic factors, understanding these factors is essential to avoid exceeding nature´s 

self-purifying capability. 

 

Hydrophobic organic compounds are a major group of environmental contaminants. 

Those considered to be harmful in the environment, are usually acutely or chronically 

toxic and recalcitrant. Hydrophobicity means low water solubility and may be the major 

factor behind these properties (Stokes et al. 2006). This work concentrates mainly on the 

factors affecting the biodegradation of hydrophobic organic compounds in soil 

environment. 
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2. Review of the literature 

2.1. Contaminant biodegradation - definitions and determinations 

Biodegradation can be defined as the process by which organic substances (or in context 

of bioremediation, contaminants) are decomposed by micro-organisms or their 

extracellular enzymes into simpler substances (OECD 2002A). Biodegradation may or 

may not occur when microbial activity is present, i.e. in water, soils, sediment and 

organisms. Mineralization or "ultimate" biodegradation (OECD 2001A), the process 

preferred for environmental remediation, means conversion of organic compounds to 

inorganic. Organic compounds are used by microbes as carbon and electron source. 

Biotransformation means conversion of organic compounds into other organic 

compound(s). Unlike in mineralization, the products of biotransformation can be even 

more harmful than the starting compounds (Alexander 1999). Biodegradation and 

biotransformation can therefore be also a detrimental process for soil biota or humans. 

 

To predict the environmental fate of an organic compound, several standardized methods 

for determining biodegradation have been developed for water, sediment and soil 

environments (Tables 1-5.). In these methods biodegradation is classified as "ready", if 

the compound undergoes rapid ultimate degradation in most environments including 

biological sewage treatment plants. "Inherent" biodegradation means that the compound 

has the potential to be biodegraded. "Simulation tests" aim at examining the rate and the 

extent of biodegradation in a laboratory system representing environmental conditions of 

interest (OECD 2003). 

 

The ISO and OECD biodegradation tests sharing the same cell in tables 1-5 have similar 

principles and technical procedures as compared to each other. If the studied compound is 

proven to be recalcitrant, there is rather limited number of OECD tests for evaluating the 

effects of such compounds in the environment. ISO has wider selection of tests when, for 

example, ecotoxicological properties of an organic compound is the matter of interest. 
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Table 1. Standardized methods for the determination of ready biodegradation in aqueous environment. 
 
Standardized method 

 
Test conditions 

 
Measurement 

 
Duration 

 
Inoculum 

 
SFS-EN ISO 7827 / OECD 301A: Water quality. Evaluation 
in an aqueous medium of the "ultimate" aerobic 
biodegradability of organic compounds. Method by analysis 
of dissolved organic carbon (ISO 1994A / OECD 1992A) 

 
Agitation in dark, aerobic conditions 
at 20-24oC. Test material 
concentration 10-40 mg DOC l-1 

 
DOC 
removal 

 
28 d 

 
Micro-organisms (~107-
108 cells l-1) from 
surface water or 
activated sludge 

SFS-EN ISO 10707: Water quality. Evaluation in an aqueous 
medium of the "ultimate" aerobic biodegradability of organic 
compounds. Method by analysis of biochemical oxygen 
demand (closed bottle test) (ISO 1994B) 

Agitation in dark, aerobic conditions 
at 20-24oC. Test material 
concentration 10-40 mg l-1 

O2 
consumption 

28 d Micro-organisms (~104-
106) from surface water 
or sewage treatment 
works effluent 

SFS-EN ISO 14593 / OECD 310: Water quality. Evaluation of 
ultimate aerobic biodegradability of organic compounds in 
aqueous medium. Method by analysis of inorganic carbon in 
sealed vessels (CO2 HS test) (ISO 1999A/OECD 2006A) 

Agitation in dark, aerobic conditions 
at 20-24oC. Test material 
concentration 2-40 mg C l-1 

CO2 
production 

28 d Micro-organisms (~107-
108 cells l-1) from 
surface water or 
activated sludge 

SFS-EN ISO 9408/OECD 301F: Water quality. Evaluation of 
ultimate aerobic biodegradability of organic compounds in 
aqueous medium by determination of oxygen demand in a 
closed respirometer (ISO 1999B/OECD 1992B) 

Agitation in dark or diffuse light, 
aerobic conditions at 20-25oC. Test 
material concentration 100 mg l-1 

O2 
consumption 

28 d 
 

Micro-organisms (~102-
105 cells l-1) from 
surface water or 
activated sludge 

SFS-EN ISO 9439 / OECD 301B:Water quality. Evaluation of 
ultimate aerobic biodegradability of organic compounds in 
aqueous medium. Carbon dioxide evolution test (ISO 1999C / 
OECD 1992C) 

Agitation in dark or diffuse light, 
aerobic conditions at 20-24oC. Test 
material concentration 10-20 mg 
DOC l-1 

CO2 
production 

28 d 
 

Micro-organisms (~107-
108 cells l-1) from 
surface water or 
activated sludge 

OECD 301C: Modified MITI test (OECD 1992D). Agitation in dark, aerobic conditions 
at 20-24oC. Test material 
concentration 100 mg l-1 

O2 
consumption 

28 d Micro-organisms (~104-
106) from surface water 
or sewage treatment 
works effluent 
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Table 2. Standardized simulation tests for determination of biodegradation in water and sediment 
 
Standardized method 

 
Test conditions 

 
Measurement 

 
Duration 

 
Inoculum 

 
OECD 306. Biodegradability in seawater (OECD 
1992E) 

 
Agitation in dark or diffuse light under 
aerobic conditions at 15-20oC. Test 
material concentration 5-40 mg DOC l-1 

 
DOC removal 

 
< 60 days 

 
Microrganisms in 
seawater 

SFS-EN ISO 11734 / OECD 311: Water quality. 
Evaluation of the "ultimate" anaerobic 
biodegradability of organic compounds in digested 
sludge. Method by measurement of the biogas 
production (ISO 1995 / OECD 2006B) 

Batch culture in dark under anaerobic 
cultures at 35oC . Test material 
concentration 20-100 mg OC l-1 

Gas (CH4+CO2) 
production 

< 60 days Washed anaerobic 
digester sludge (total 
solids 1-3 g l-1) 

SFS-EN ISO 11733 / OECD 303A Water quality. 
Determination of the elimination on 
biodegradability of organic compounds in an 
aqueous medium. Activated sludge simulation test 
(ISO 2004A / OECD 2001B) 

Activated sludge plant model (Hussman 
unit) or porous pot unit at 20 - 25oC. 
Test material concentration 20 mg l-1 

Elimination of test 
compounds 

< 12 
weeks 

Aerobic sewage 
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Table 2. (Continues). Standardized simulation tests for determination of biodegradation in water and sediment 
 
Standardized method 

 
Test conditions 

 
Measurement 

 
Duration 

 
Inoculum 

 
OECD 308: Aerobic and anaerobic transformation 
in aquatic sediment systems (OECD 2002B) 

 
Static test with natural water and 
sediment in dark at 10 - 30oC. Test 
material concentration of interest. Use of 
14C-labelled model compound is 
recommended 

 
Formation of 
14CO2 or chemical 
analysis of 
transformation 
products. 

 
< 100 days 

 
Microorganisms in 
sediment 

OECD 309. Aerobic mineralisation in surface 
water (OECD 2004) 

Agitation in dark or diffuse light, aerobic 
conditions at temperature of interest or 
20-24oC. Test material concentration 1 - 
100 µg l-1. Use of 14C-labelled model 
compound is recommended.  

Reduction of the 
test compound or 
formation of 14CO2 

< 90 days Microorganisms in 
surface water 

ISO 14592-1: Water quality. Evaluation of the 
aerobic biodegradability of organic compounds at 
low concentrations Part 1: Shake-flask batch test 
with surface water or surface water/ sediment 
suspensions (ISO 2002A) 

Agitation in dark or diffuse light, aerobic 
conditions at temperature of interest or 
20-25oC. Test material concentration 1–
100 µg -1. Use of 14C-labelled model 
compound is recommended. 

Reduction of the 
test compound or 
formation of 14CO2 

No fixed 
duration 

Microorganisms in 
surface water and/or 
sediment 

ISO 14592-2: Water quality. Evaluation of the 
aerobic biodegradability of organic compounds at 
low concentrations Part 2. Continuous flow river 
model with attached biomass. (ISO 2002B) 

Flow through system under natural 
diffuse daylight or constant illumination 
of artificial white light Test material 
concentration < 200 µg -1. 

Reduction of the 
test compound 

< 60 days Microorganisms in 
surface water 
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Table 3. Standardized methods for determination of inherent biodegradation in water 
 
Standardized method 
 

 
Test conditions 

 
Measurements 

 
Duration 

 
Inoculum 

 
ISO 9888 / OECD 302B: Water quality. 
Evaluation of ultimate aerobic biodegradability 
of organic compounds in aqueous medium. 
Static test (Zahn-Wellens method) (ISO 
1999D/OECD 1992F) 

 
Aerated batch culture in dark or diffuse light 
at 20 - 25oC. Test material concentration 50 - 
100 mg l-1. 
 

 
DOC or COD 
removal or specific 
analysis for 
primary 
transformations 

 
28 days 

 
Activated sludge (200 - 
1000 mg l-1 total solids) 

SFS-EN ISO 9887/OECD 302A Water quality. 
Evaluation of the aerobic biodegradability of 
organic compounds in an aqueous medium. 
Semi-continuous activated sludge medium 
(SCAS) (ISO 1992/OECD 1981A) 

Repeated aeration interrupted by settling 
period during which sampling and addition 
of fresh sewage and test chemical in semi-
continuous activated sludge unit at 20-25oC. 
Test material concentration 20 mg DOC l-1. 

DOC removal Months (at 
least 12 
weeks) 

Settled activated sludge 

OECD 306. Zahn-wellens / EMPA test (OECD 
1992F) 

Agitation in dark or diffuse light under 
aerobic conditions at 20-25oC. Test material 
concentration 50-400 mg DOC l-1 

DOC removal < 28 days Microrganisms activated 
sludge 

OECD 302C MITI (I) (OECD 1981B) Agitated batch culture in dark at 23 - 27oC. 
Test material concentration 30 mg l-1 

O2 consumption 14 - 28 
days 

Aerobic, specially 
grown mixed, unadapted 
microorganisms 3 x 107 
- 3 x 108 cells l-1 
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Table 4. Standardized simulation tests for determination of biodegradation in soil 
Standardized method 

 
Test conditions Measurement Duration Inoculum 

 
OECD 307: Aerobic and anaerobic 
transformation in soil (OECD 2002C) 

 
Soil batch tests in constant moisture at 
temperature of interest. Use of 14C-
labelled model compound is 
recommended. 
 

 
Formation of 14CO2 or 
chemical analysis of 
transformation products. 

 
< 120 days 

 
Indigenous soil 
microbes 

 
Table 5. Standardized methods for determination of inherent biodegradation in soil 

Standardized method Test conditions Measurement Duration Inoculum 

 
ISO 14239 / OECD 304A. Soil quality. 
Laboratory incubation systems for measuring 
the mineralization of organic chemicals in soil 
under aerobic conditions (ISO 1997A / OECD 
1981C) 

 
Soil (alfisol, spodosol or entisol spiked 
with 14C-labelled model compound) batch 
tests in dark at 20 - 24oC. 

 
Formation of 14CO2 or 
chemical analysis of 
transformation products. 

 
< 64 days 

 
Indigenous soil 
microbes 

 
ISO 11266 Soil quality. Guidance on 
laboratory testing for biodegradation of organic 
chemicals in soil under aerobic conditions (ISO 
1994C) 

 
Static test with soil, test material 
concentration and temperature of interest 
in dark. 

 
Formation of 14CO2 or 
chemical analysis of 
parent compound or 
transformation products 

 
< 120 days 

 
Indigenous soil 
microbes 

ISO 15473 Soil quality. Guidance on 
laboratory testing for biodegradation of organic 
chemicals in soil under anaerobic conditions 
(ISO 2002C) 
 

Static test with soil, test material 
concentration and temperature of interest 
in dark. Anaerobicity is checked with 
occasional redox measurements. 

Formation of 
14CO2/

14CH4 or chemical 
analysis of parent 
compound or 
transformation products. 

< 100 days Indigenous soil 
microbes 
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Standardized tests measuring ready or inherent biodegradation can give only crude 

indications of the fate of the investigated organic compound in soil. Most tests are targeted 

for water environments and the standardized conditions of tests may remarkably deviate 

from the real-life conditions. For example, the temperature typical for the biodegradation 

tests is above 20oC, which seldom prevail in subsurface soil. Simulation tests give more 

liberty for choosing the conditions of interest. 

 

Another element causing uncertainty to the biodegradation estimations based on tests 

presented in Tables 1-5 is how the compound is introduced to the matrix. In soils the 

biological removal of a compound varies considerably depending on the period of time 

that soil has been exposed to the compound, as many contaminants degrade slowly. For 

testing biodegradation, the soil (or water or sediment) is spiked with the compound of 

interest at the onset of the test period. The duration of the test seldom exceeds a few 

months (see Tables 1-5). Such a spiking practice differs from the real-world, in which the 

compound of interest remains in the environment for years or decades. 

 

Microbes have had several billions of years to develop enzymatic apparatuses for 

degrading compounds emanating from natural processes (Leung et al. 2007). In contrast, 

the chemical industry has discharged its products to the environment for only about one 

hundred years. Many of the man-made "xenobiotic" compounds possess molecular 

structures not found in natural chemicals and therefore are foreign to the microbial 

degrader enzymes. Greater difference in the structure of a xenobiotic as compared to a 

naturally occurring substance often predicts lower likelihood for extensive biodegradation. 

The chemical structure of a xenobiotic compound often mimicks that of the "natural" 

molecules, but the substituents, called "xenophores", are physiologically rare or entirely 

non-physiological. This may result in a poorly biodegradable compound. Typical 

xenophores are halogens, NO2, SO3H, CN and CF3 when directly bonded to carbon atoms 

(Alexander 1999). 

 

Xenobiotics may be biodegraded when (i) compatible with the catabolic enzymatic 

apparatus of a degrader microbe (Alexander 1999, Leung et al. 2007), (ii) the enzymatic 

apparatus of a microbe has a wide specificity (Hesselsoe et al. 2005, Baldrian 2006), (iii) 
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genetic adaptation occurs in a microbe leading to a new catabolic pathway for the 

xenobiotic (Janssen et al. 2005). 

2.2. Soil compartments and their properties 

Organic compounds, when released in soil, face a heterogeneous environment composed 

of soil minerals, soil organic matter, soil water and soil vapors. Figure 1 is a simplified 

presentation of soil compartments. In reality, the soil environment is a three-dimensional 

labyrinth of water- or gas-filled pores and soil particles of different sizes, forms and 

compositions. The dimensions of particles and pores vary from several centimeters to 

nanometers. The small scales and spatial heterogeneity of soil makes the estimations of 

physical and physicochemical conditions that surround organic compounds and soil 

microorganisms extremely challenging (Chenu & Stotzky 2002). 

 

 

Figure 1. Schematic presentation of soil compartments 
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Mineral soil particles originate from rock which has undergone physical or chemical 

weathering. Particle size distribution determines mineral soil texture (stones > 2 mm, sand 

grains 0.05 - 2 mm, silt 0.002 - 0.05 mm, clay particles < 0.002 mm) and is often used in 

the classification of soil (McRae 1988, Ehrlich 2002). A decrease of particle size increases 

soil surface (Table 6). In most soils the sand and silt consist largely of grains of resistant 

minerals, mainly quartz. The clay is made up of clay minerals, which usually have silicate 

structures. Surfaces and edges of soil inorganic particles are covered with negative electric 

charges (McRae 1988). 

 

As can be seen from the table 6, share of soil external surface area decreases with 

decreasing particle size. This is due to increasing share of soil internal surface. Clay 

particles are composed of sheet-like crystal layers separated by interlayer spaces. This 

interlayer area is called soil (clay) internal surface. Diameter of the interlayer space is, 

depending on clay type, between 1 - 2 nm (10 - 20 Å) (Hartikainen 2001), making it 

inaccessible to soil microbes and poorly accessible to large organic molecules. 

 

Table 6. Selected characteristics of soil with different mineral soil textures (Chenu & Stotzky 
2002) 

Dominant texture 
Characteristic 

Sand Silt Clay 

Total surface area (m2g-1) 3 55 208 

External surface area (m2g-1) 3 17 60 

% of external surface area covered by soil bacteria (*) 2.26 0.40 0.11 

% of total surface area covered by soil bacteria 2.26 0.12 0.03 

(*) Assuming 1010 bacteria g-1 population with cells being 1 µm long and 0.5 µm in 
diameter. 
 

Soil organic matter is composed of plant and animal debris and intermediates and end-

products of the decomposing debris (McRae 1988). Soil biota is not considered to be a 

part of the soil organic matter (Hartikainen 2001). The rate of decomposition depends on 

the origins of the debris and the conditions in soil. Eventually an amorphous substance 

which has lost all its original structure, humus, is formed. The humus fraction, which is 
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soluble in or extractable into aqueous base (and insoluble to organic solvents), is 

commonly referred to as humic substances. The water insoluble and organic solvent 

soluble part of humus is referred as humin or kerogen (Schwarzenbach et al. 2003). The 

humic substances are further divided into humic acids that precipitate at acid pH and 

fulvic acids which do not (Ehrlich 2002, Schwarzenbach et al. 2003). Humus contains 

numerous oxygen-containing functional groups including carboxy-, phenoxy-, hydroxy- 

and carbonyl substituents. Depending on the type of humus, the number of such polar 

groups may vary significantly, affecting the polarity of humus. Highly polar fulvic acids 

may have oxygen-to carbon (O/C) molar ratios of near 0.5, whereas humin/kerogen has 

O/C ratios around 0.2 to 0.3 (Schwarzenbach et al. 2003). In general, less polar humus 

fractions (low O/C ratio) are located on surfaces of soil mineral particles, and water-

soluble fractions of humus can be dissolved in soil water. The share of organic matter in 

soil varies, peat soils are practically 100% organic, whereas deep subsurface layers of 

moraine soil are practically 100% inorganic. Organic matter surface area depends on its 

particle or aggregate size (Table 7). 

 

Table 7. External surface area of soil organic matter (Chenu & Stotzky 2002) 

Organic matter particle size 
 

> 50 µm 0.2 - 2 µm < 0.2 µm  

Surface area (m2g-1) 0.9 - 8.3 24 - 42 48 - 73 

 

Solid matter constitutes about 50% of the volume of mineral soil, the other 50% is pore 

space occupied by soil gases or water (Ehrlich 2003). As soil particles are negatively 

charged and water molecules are dipoles, electro-molecular forces between the soil and 

water molecules create a thin layer of water with ordered molecules called hygroscopic 

water surrounding soil particles (McRae 1988, Ehrlich 2002). The thickness of the 

hygroscopic water layer depends on the size of the particle it surrounds, for sand particles 

it is about 30 nm and clay particles 3 nm (Kuznetsov et al. 1963). This water does not 

move as a liquid. Hygroscopic water is surrounded by a layer of pellicular water, which 

may move from one soil particle to another by intermolecular attraction, but not by gravity 

nor hydrostatic pressure (Kuznetsov et al. 1963, Ehrlich 2002). Free liquid phase water 
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or gravitational water moves freely in soil pores (transmission pores) by capillary forces or 

gravity. 

 

The soil pores, which are not water filled, are occupied by soil vapor. As soil pores are 

not connected to open atmosphere, the composition of soil vapors is regulated by gaseous 

diffusion and soil respiration. Therefore soil vapor composition varies, but typically the 

CO2 concentration is 0.5 - 5.0% and the O2 concentration 15 - 20 % (McRae 1988). 

 

An organic compound that enters the soil can remain as a free phase or it can be 

distributed among the soil compartments described above. It can be adsorbed to inorganic 

particles or to organic matter surfaces, sorbed to organic matter, dissolved to soil water or 

vaporized in soil air. This distribution is a dynamic state, in which an individual molecule 

transfer constantly from one soil compartment to another, as shown in Figure 2. 

 

 

W = soil water 
OM = soil organic matter 
V = soil vapor 
IM = soil inorganic matter. 
 
Figure 2. Possible locations and dynamics of an organic compound (OC) in soil.  
 

In principle, organic compound transfer directly between organic and inorganic matter 

(Fig. 2, dotted lines) is possible by solid phase diffusion, but this process is slow 

(Schwarzenbach et al. 2003). In static conditions an equilibrium between the 

OCOM 

OCIM 

OCV 
OCW 
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concentrations of the organic compound located in different soil compartments is finally 

achieved, which means that there is no net flow of the compound from one phase to 

another. The equilibrium can be described by the equilibrium partition constant Ki, 

calculated with Equation 1: 

 

2

1

iph

iph
i C

C
K =  (Eq. 1) 

 

Ciph1 = Concentration of compound i in phase 1 
Ciph2 = Concentration of compound i in phase 2 
 

Generally the transfer of an organic compound from one phase to another is controlled by 

the dissolved species of the compound in soil environments when water is present 

(Schwarzenbach et al. 2003).This is because soil particles are always surrounded by water 

films. Organic molecules may move by advection dissolved in the free liquid phase water 

or by diffusion in the hygroscopic and the pellicular waters. Diffusion is the only mode of 

molecular transfer in pores, which are separated from free liquid water by connecting 

pores, pore necks, smaller than 0.3 µm (Standing & Killham 2007). Soil bacteria are 

actually "aquatic" organisms in the sense that they rely on organic and inorganic 

compounds dissolved in soil water for their nutrition (Chenu & Stotzky 2002). Therefore 

water filled transmission pores which offer rapid transfer of dissolved compounds is the 

major location for microbial activity in soil (Standing & Killham 2007). 
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2.3. Bioavailability and biodegradation 

In order to degrade an organic compound the degrading microbe or its extracellular 

enzymes need a physical contact with the compound (Rosenberg et al. 1992). To attain 

this contact, the compound has to be available for the degrading microbe (Reid et al. 2000, 

Semple et al. 2003). Generally it is postulated that only the molecules dissolved in soil 

water are biodegraded (White & Alexander 1996, Cornelissen et al. 1998, Gomez-Lahoz 

& Ortega-Calvo 2005). This non-bioavailability of sorbed compound to soil microbes is 

valid whether the sorbent is a soil particle (Ehlers & Loibner 2006) or an artificial sorbent, 

such as activated carbon (Aktas & Cecen 2007). In addition to bioavailability of the 

compound to be degraded, also other factors (electron acceptor, inorganic nutrients) 

required for biodegradation have to be available. The soil water dissolved molecules can 

also be poorly or not bioavailable if the molecule is dissolved in non-advecting water. 

Such water is hygroscopic or pellicular or water located in a soil pore with a neck pore 

diameter smaller than 0.3 µm (Standing & Killham 2007). Generally, the contact between 

a hydrophobic compound and microbial cell may be improbable even in absence of 

physical obstacles because soil microbes can occupy only small fraction of the soil surface 

area (Table 6). 

 

The accessibility of a compound to a biological entity, i.e. bioavailability is one of the key 

factors affecting contaminant biodegradation in soils (Mihelcic et al. 1993, Reid et al. 

2000, Semple et al. 2003). Unlike biodegradation, there is no general definition for 

bioavailability. There are numerous different definitions varying in details and complexity, 

the shortest being “Bioavailability is the flux of contaminants to biota”, as reviewed by 

Semple et al. (2007). Due to lack of consistency of clear definition, bioavailability 

measurements are not as standardized as biodegradation measurements. Numerous 

approaches have been developed to estimate sequestration and bioavailability of a 

contaminant in soil. Often these methods are based on liquid- or solid-phase extraction of 

contaminants from soil, aimed to mimic cellular uptake, but also living organisms are 

used. Some examples of such methods are presented in Table 8. Estimation of 

bioavailability is of great importance because it is a major factor determining not only 
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biodegradation, but also toxicity and ecological risk of an organic compound in soil. 

However, there are great variations in estimations of bioavailability depending on the 

selected test method (Sun & Li 2005, Bergknut et al. 2007). 

 

Table 8. Some bioavailability determination methods. 

Extraction vehicle Reference 

Supercritical CO2 in direct contact with soil Weber & Young 1997 

Liquid (water and/or organic solvent) in direct contact with soil Kelsey et al. 1997 

Liquid (cyclodextrin solution) in direct contact with soil Reid et al. 2000 

C18 membrane disk in direct contact with soil Tang et al. 1999 

Liquid (water) in contact with soil mediated by dialysis membrane Woolgar & Jones 1999 

Earthworm (Eisenia foetida) in direct contact with soil Belfroid et al. 1995 
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2.4 Factors affecting contaminant bioavailability and biodegradation in soil 

2.4.1. Impact of the contaminant water solubility on its bioavailability and 

biodegradability 

The aqueous solubility of an organic compound is the maximum concentration of the 

given compound that can be dissolved in pure water at a given temperature and pressure 

(Schwarzenbach et al. 2003). As the water molecule is a strong dipole, forming 

intermolecular hydrogen bonds, while hydrophobic (literally "water-fearing") compounds 

are only weak dipoles or apolar, they can not interact with polar water molecules and tend 

therefore to escape from water to more hydrophobic environments. 

 

In the natural soil environment, where water is always present, water solubility is one of 

the key factors determining the fate of an organic compound in soil. As previously 

mentioned, phase transfers in soil are controlled by the dissolved species of a chemical. 

Water miscible, electrically neutral or negatively charged compounds remain in the soil 

water phase and move in soil with the advection of soil water. Positively charged organic 

compounds may interact with negative charges of soil particles through cation exchange, 

but these interactions are readily reversible (Li et al. 2000). As the major fraction of soil 

microbes are attached to surfaces of wider soil pores in microcolony- or biofilm-like 

structures (Standing & Killham 2007, van Elsas et al. 2007), water movement in these 

pores promote contacts between the dissolved organic molecules and degrading microbes. 

Therefore inherently biodegradable, water soluble organic compounds are usually 

bioavailable and not persistent in soil if other conditions favor biodegradation (Semple et 

al. 2003). 

 

When an organic compound is hydrophobic, i.e. its water solubility is low, partition of the 

compound between aqueous and water-immiscible bulk liquid can be used to describe its 

behaviour in aqueous environments. The water-immiscible liquid most widely used is n-
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octanol. The partition constant of an organic compound, i, between n-octanol and water 

phases, the octanol-water coefficient (Kow), is calculated with Equation 2: 

 

iw

io
iow C

C
K =   (Eq. 2) 

iowK  = Octanol-water coefficient for compound i 

ioC  = Concentration of compund i in n-octanol phase 

iwC  = Concentration of compound i water phase 

 

Kow is usually presented as the logarithmic value of the coefficient, denoted as log Kow 

or Pow. For example, log Kow of anthracene is 4.68, meaning that the concentration of 

anthracene in n-octanol is 48 000 - fold higher than in water in a two-phase system. As 

Kow can be determined with numerous methods (Table 9), significant variations in the 

Kow values found for a single compound in the literature are not uncommon. 

 

Table 9. Some Kow measuring and estimation methods. 
 
Shake flask method 
(OECD 1995) 

 
Partitioning of compound between n-octanol 
and water phases in closed vessel placed in a 
mechanical shaker, suitable for -2 < log Kow < 4 

Slow-Stirring method 
(OECD 2006C) 

Partitioning of compound between n-octanol 
and water phases in closed stirring-vessel, 
suitable for log Kow < 8.2 

Generator column 
method (U.S. EPA 1996) 

Partition of compound between solid support 
sorbed n-octanol and eluting water, suitable for 
1.0 < log Kow < 6.0 

 
Experimental 
methods 

Chromatographic method 
(OECD 1989) 

Retaining of compound in hydrophobic 
stationary phase of HPLC column, suitable for 
0 < log Kow < 6.0 

 
Fragment method 
(Rekker 1977) 

Computerized fragment 
method (CLOGP, Chow 
& Jurs 1979) 

 
Structure-based 
estimations 

Atom/fragment 
contribution method 
(AFC, Meylan & Howard 
1995) 

Values for "fundamental" fragments of 
molecule are given from experimental Kow 
values via multiple linear regressions and 
summarized with correction factors. 
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A hydrophobic molecule can leave soil water by volatilization or sorption. The sorption of 

an organic compound from water to soil solid matter is usually directly proportional to its 

Kow (Schwarzenbach et al. 2003). As mentioned in section 2.2., sorbed molecules are not 

bioavailable and therefore non-biodegradable. Therefore high Kow values indicate limited 

bioavailability and biodegradation of an organic compound in soil (Cerniglia et al. 1992, 

Reid et al. 2000, Semple et al. 2001, 2003). 

2.4.2. Impact of the contaminant molecular size on its bioavailability and biodegradability 

With increasing molecular size, the boiling point, Kow and sorption of the compound to 

soil particles increases. These trends are obvious in homologous molecular series, such as 

aromatic hydrocarbons (Table 10). 

 

Table 10. Boiling points (Bp), log Kows and diffusion coefficients (Diw ) of selected aromatic 
compounds 

Compound 
Aromatic 
subunits 

Molecular 
weight (D) 

Molar volume  
(cm3 mol-1)  

Bp (2) 
(oC) 

Diw  
(3) 

cm2s-1 
log 

Kow (4) 

Benzene 1 78.1 71.6 80.1 10.7 x 10-6 2.17 

Naphthalene 2 128.2 108.5 218.0 8.4 x 10-6 3.33 

Anthracene 3 178.2 145.4 341.0 7.0 x 10-6 4.68 

Pyrene 4 202.3 158.5 403.0 6.7 x 10-6 5.13 

Benzo(a)pyrene 5 252.3 215.0 496.0 5.6 x 10-6 6.13 

(1) Calculated value (Schwarzenbach et al. 2003) 

(2) Schwarzenbach et al. 2003 
(3) Calculated value (Eq. 2) 
(4) Schwarzenbach et al. 2003 
 

The molecular size of an organic compound determines to some extent also its migration 

in soil pores. Organic molecules may diffuse also in the smallest pores of soil, including 

the residual pores (pore diameter < 0.3 µm), which are not accessible for the degrading 

microbes. The diffusion coefficient (Diw) of a molecule in water can be calculated using 

Equation 3 (Othmer & Thakar 1953, Hayduk & Laudie 1974, Scwarzenbach et al. 2003): 
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Diw = Diffusion coefficient for compound i in water 
η  = Water viscosity (1.002 x 10-2 g cm-1s-1 at 20oC) 

iV  = Molar volume of the compound (cm3mol-1) 

 

Einstein-Smoluchowski equation (Schwarzenbach et al. 2003) is used to calculate 

transport time by diffusion: 

 

iw
diff D

L
t

2

≈  (Eq. 4) 

L = Diffusion distance 
tdiff = Diffusion time 
 

It can be seen from Table 10 and Equation 4 that the time required for benzo(a)pyrene to 

diffuse over constant distance in water is about two-fold as compared to benzene. 

 

The molecular size is a major factor determining the volatility of an organic compound. 

Volatility is often described as the boiling point or the vapor pressure, which are measures 

of the volatility of the condensed, pure compound. However, these parameters give only a 

rough estimation of the compounds´ behavior in soil, since water is practically always 

involved in soil environments. A better parameter under such conditions is the Henry´s 

Law Constant, which describes partition of a compound i between water dissolved and air 

phases and can be presented as a dimensionless variable calculated with Equation 5: 

 

iw

ia
ih

C

C
K =  (Eq. 5) 

ihK  = Henry´s Law Constant for compound i 

iaC  = Concentration of i in air phase 

iwC  = Concentration of i water phase 

 

As can be seen from Equation 5, Henry´s law constant decreases when water solubility 

increases. Benzene, for example has higher boiling point (80.1oC) than MTBE (55.2oC), 
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making MTBE more volatile than benzene when present as pure compound. However, as 

the water solubility of benzene (1.79 g l-1) is lower than MTBE (42 g l-1), the dimensioless 

Henry´s law constant for benzene (0.224) is greater than that for MTBE (0.029). The low 

Henry´s law constant combined with poor biodegradability of MTBE has made it 

persistent in gasoline-contaminated soils (Davis & Erickson 2004, Iturbe et al. 2005, 

Häggblom et al 2007). 

 

Volatility of a hydrophobic compound makes it usually rather non-persistent in soil due to 

volatilization. The uncontrolled volatilization of VOCs is not a preferred process, as 

VOCs represent a direct (Hutcheson et al. 1996) and an indirect human health hazard 

because they enhance ozone formation in the troposphere (Olivotto & Bottenheim 1998). 

2.4.3. Impact of the contaminant toxicity on its biodegradability 

Hydrophobic organic compounds are often toxic due to interaction of these compounds 

with the cellular membranes and membrane constituents (Sikkema et al. 1995). The 

partition of a hydrophobic compound i between water and cellular membranes can be 

calculated with Equation 6 (Schwarzenbach et al. 2003): 

 

50.0log91.0log +×= iowilipw KK  (Eq. 6) 

ilipwK  = partition coefficient between water and cellular membrane for compound i 

 

A high octanol-water coefficient of a hydrophobic organic compound thus indicates 

favored partition from water to biological membranes and increased membrane toxicity. 

Increase in Kilipw indicates increased biomagnification characteristics of the organic 

compound in water or in soil/water environments (Fisk et al. 1998, Armitage & Gobas 

2007). However, the range where Equation 6 can be applied is limited, as the partition of a 

hydrophobic organic compound to cellular membranes is most preferred when Kow is 1.5 

- 4.0, as reviewed by Sikkema (1995) and Ramos et al. (2002). This is due to the 

multiphase nature of water-membrane lipid bilayers, which differs from water-octanol 

two-phase system. The water-lipid bilayer system has a hydrophilic interfacial phase 
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which creates surface tension between water and lipid "bulk" phases, whereas the water-

octanol system has water and "bulk" (octanol) phases only (De Young & Dill 1988). 

 

Toxicity of an organic contaminant can limit biodegradation if the toxic effect of the 

compound is strong enough to limit the microbe´s degrading activity (Alexander 1999). 

There are numerous standardized microbial toxicity assays, but only few of them are 

meant for the soil environments. Most tests are intended for testing of aqueous elutriates 

or other extracts (Ahtiainen 2002). Some solid phase microbial toxicity tests used for 

sediment and soil testing are presented in Table 11. There are numerous other soil toxicity 

tests in which the target organism is a plant or soil animal. These tests are meant for 

general ecotoxicological evaluation of soil properties (ISO TC 190). 

 

Table 11. Microbial toxicity tests applicable for soil environment 

Test Principle 
Microbes 
involved 

 
Luminescent bacteria flash test (Lappalainen et 
al. 1999) 

 
Kinetic measurement of 
luminescence inhibition 
during exposure 

 
Vibrio fischeri 

Toxi-Chromo Pad test (Kwan 1995) β-galactosidase synthesis 
inhibition after/during 
exposure 

Escherichia coli 

B. cereus contact test (Rönnpagel et al. 1995) Inhibition of 
dehydrogenase activity 

Bacillus cereus 

OECD 216: Soil microorganisms: Nitrogen 
transformation test (OECD 2000A). 

Nitrate evolution from 
organic substrate 

Indigenous 
nitrifying 
microbes 

OECD 217: Soil microorganisms: Carbon 
transformation test (OECD 2000B) 

CO2 evolution from 
spiked glucose or O2 
consumption  

Indigenous 
heterotrophic 
microbes 

ISO 14238: Soil quality: Biological methods. 
Determination of nitrogen mineralization and 
nitrification in soils and the influence of 
chemicals on these processes (ISO 1997B). 

Nitrate evolution from 
organic substrate 

Indigenous 
nitrifying 
microbes 

ISO 15685: Soil quality: Determination of 
potential nitrification and inhibition of 
nitrification. Rapid test by ammonium oxidation. 
(ISO 2004) 

Nitrite evolution from 
ammonium 

Indigenous 
nitrifying 
microbes 
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If a major part of organic carbon in soil comes from the contaminant, the carbon 

transformation test (Table 11) is poorly applicable especially with long-term 

contamination. A non-polluted control is usually required when performing toxicity tests. 

The indigenous microbes in soil are adapted to such contamination and it is impossible to 

have a non-polluted control soil with identical soil properties. 

2.4.4. Impact of the soil type and soil constituents on contaminant bioavailability and 

biodegradability 

As explained in section 2.2., an organic compound may be dissolved in soil water, 

volatilized into soil vapor or sorbed to soil minerals or organic matter. When soil mineral 

particle size decreases, the soil surface area increases, creating more surface for 

adsorption. Small soil particles decrease soil pore volumes and reduce the hydraulic 

conductivity ("filtration speed") of advecting water (Table 12) allowing more time for 

dissolved molecules to interact with soil particles and microbes. 

 

Table 12. Filtration speeds of advecting water in different soils (McRae 1988) 

Texture Indicative hydraulic conductivity (cm h-1) 

Coarse sand, gravel > 50 

Fine sand 12 – 25 

Silt 2-6 

Clay 0.5 – 2 

Heavy clay < 0.25 

 

The soil organic matter in soil is usually hydrophobic, because hydrophilic materials leach 

with advecting water from the soil. Therefore the dissolved hydrophobic organic 

molecules sorb readily to hydrophobic soil organic matter. This sorption may be 

adsorption to the surfaces of soil organic matter particles or absorption into the organic 

matter, depending on the properties of the soil organic matter. It is generally assumed that 
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sorption of an organic compound to soil organic matter plays a significant role in sorption 

for soils (Schwarzenbach et al. 1981, Murphy et al. 1990, Doucette 2003), although some 

contradicting claims have been proposed (Ran et al. 2003). The sorption coefficients for 

hydrophobic organic compounds onto purified soil organic materials can be several orders 

of magnitude greater than those measured for mineral model sorbents (Celis et al. 2006). 

Therefore it can be expected that organic matter is generally the major contributor of 

bioavailability of a hydrophobic organic compound in soil. 

 

The partition of an organic compound between soil water and soil organic matter can be 

estimated with the Equation 7 (Schwarzenbach et al. 2003): 

 

bKaK iowioc +×= log  (Eq. 7) 

iocK  = Organic carbon sorption coefficient for the compound i 

ba,  = constants 
 

As can be seen from equation 7, the sorption of an organic compound to organic carbon 

(soil organic matter) will depend greatly on its octanol-water coefficient. The slope a and 

intercept b are compound-group specific constants, which can be determined 

experimentally (Schwarzenbach et al. 2003). 

 

In addition to the hydrophobic characteristic of a compound, soil organic matter quality 

also has an effect on the solid-water distribution and the bioavailability of the compound. 

It has been shown that sorption of a hydrophobic organic to soil organic matter may be 

controlled by aromatic carbon (Perminova et al. 1999, Abelmann et al. 2005), aliphatic 

carbon (Simpson et al. 2003, Kang and Xing 2005, Chen et al. 2007), or polarity of the 

soil organic matter (Tanaka et al. 2005). 

 

The particle- or aggregate state of the organic matter includes portions with both fluid and 

rigid characters referred to as "rubbery" and "glassy", respectively (Leboeuf & Weber 

1997, Xing & Pignatello 1997). Hydrophobic organic compounds may thus both adsorb 

onto surfaces and micropores of "glassy" and absorb into "rubbery" portions of soil 

organic matter, resulting in different sorption kinetics (Schwarzenbach et al. 2003, Pan et 

al. 2007). 
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Sorption of a compound to soil is time-dependent. Long exposure time results in 

pronounced sequestration of the compound, since molecular diffusion to the smallest 

pores of soil particles takes time, as reviewed by Pignatello et al. (1996). Desorption of 

these sequestered molecules is time consuming or nonexisting. This results in decreased 

biodegradation of an organic compound when soil contact time increases (McLeod & 

Semple 2000). 

 

Sorption and desorption processes may differ in extent or time as reviewed by Doucette 

(2003). This difference, hysteresis, has been proposed to be caused by the entrapment of 

molecules in soil nanopores or different sorbent properties of "rubbery" and "glassy" 

portions of organic matter (LeBoeuf & Weber 1997, Luthy et al. 1997, Weber et al. 1998). 

The sorption-desorption process is assumed to be fast in "rubbery" domains and slow in 

"glassy" domains. It has been suggested that soil organic matter may change its 

conformation between "rubbery" and "glassy" when, for example, pH changes (Feng et al. 

2006). If such a change in environmental conditions of soil occurs, the conformation 

change of the organic matter may result in different desorption as compared to sorption if 

an organic molecule has already sorbed onto it. 

2.4.5. Soil microbial populations 

The diversity of soil microbial communities is enormous. It has been proposed that soil 

may contain 109 - 1010 microbial cell cm-3. Estimations about the number of distinct 

genomes vary from 104 to 106 different genomes g-1 of soil (Torsvik et al. 2002, Gans et 

al. 2005, Roesch et al. 2007). The vast majority of this diversity is uncharacterized. These 

estimations are based on direct analyses of soil DNA and RNA. Information on the 

physiological properties of the non-cultured soil bacteria is limited. A good example on 

this is the bacterial phylum Acidobacteria, which dominates in many molecular soil 

surveys (Kuske et al. 1997, Dunbar et al. 1999, McRae et al. 2000). However, at the time 

of this writing the most recently described genus, Terriglobus with Terriglobus roseus 

defined as the type species, is only the fourth described member of Acidobacteria phylum 

(Eichorst et al. 2007). 
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The microbial populations of soil capable of degrading the organic contaminants have 

received a substantial amount of research, as reviewed by El Fantroussi & Agathos (2005). 

The soil microbiology pioneers stated already at the turn of the 19th to the 20th century 

that "everything is everywhere, and the environment selects" (O´Malley 2007). In other 

words, if the contaminants are natural products, like crude oil or compounds resembling 

natural products, the spontaneous development of a microbial population capable of 

degrading it in soil is only a matter of time. Bioaugmentation, which is a bioremediation 

protocol in which the degrader microbes are added to the soil faces serious challenges 

because the inoculant microbes are likely to be affected by the stressful conditions in soil 

to which they are not adapted (van Elsas et al. 2007). Some success has been achieved 

when the microbial inoculum has been applied in intensively controlled conditions like 

above-ground bioreactors under controlled conditions (Alexander 1999). Successful 

bioaugmentations even in in situ conditions have also been performed when the conditions 

of the environment in which the inoculum is supposed to function have carefully been 

taken into account, as reviewed by Jørgensen (2007). 

 

As mentioned, most of the soil microbes are attached to soil particle surfaces as 

microcolonies or biofilms. Microbial adhesion depends on surface properties of the cells 

and extracellular polymers, anchoring the cells to surfaces (Chenu & Stotzky 2002). 

Attached cells depend on substrates dissolved in soil which move with advecting water or 

by diffusion. Sorbed substrate molecules are not available for microbes even in close 

proximity without desorption. Microbes can enhance desorption of hydrophobic substrates 

by producing biosurfactants. Biosurfactants are amphiphilic compounds that reduce 

surface tension of water and form micelles, thus increasing mobilization and 

bioavailability of the hydrophobic organic compounds. Biosurfactants can be extracellular 

or remain attached to the cell (Lang & Philp 1998). Biosurfactants are grouped as 

glycolipids, lipopeptides, phospholipids, fatty acids, neutral lipids, polymeric and 

particulate compounds (Mulligan 2005). Addition of surfactants to soil contaminated by 

hydrophobic organic compounds may increase biodegradation of the contaminant as 

reviewed by Mulligan (2005), but also opposite effects have been observed (Vipulanadan 

& Ren 2000, Wong et al. 2004, KyungHee et al. 2005). If a hydrophobic contaminant is 
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present as a bulk phase or it is dispersed as droplets in soil, a direct contact between 

degrading bacteria and the contaminant phase is possible depending on the surface 

properties of the microbial cell. In general, it seems that under such conditions bacteria 

with hydrophilic surfaces produce biosurfactants, whereas bacteria with hydrophobic 

surfaces act by direct contact to the free contaminant phase (Bouchez-Naitali et al. 1999). 

2.4.6. Impact of the soil moisture on contaminant bioavailability and biodegradability 

Water is the most significant feature of soil as the habitat for microbial life (Standing & 

Killham 2007). As every other form of life, soil microbes require water. Gases, heat, 

microbes, predators and nutrients move with water, but water also acts as a barrier 

especially in transport of gases. The diffusion coefficient of O2 in water is 1.8 x 10-4 cm2 s-

1, meaning that it takes over one hour for oxygen to diffuse through a 1 cm water layer (eq. 

4). Soil pores in subsurface layers of soil do not have a direct contact to the atmosphere. 

Therefore, the aerobic activity in soil subsurface layers is totally dependent on oxygen 

dissolved in advecting water. The availability of oxygen may be rather limited, as water 

solubility of oxygen is low (0.24 mmol l-1 at 20oC). When oxygen is not available, 

alternative electron acceptors, such as NO3
- or SO4

2- may be used (Table 13). As mentioned 

in table 13, an organic contaminant may act also as an electron acceptor. 

 

Table 13. Main redox couples and associated microbial processes (Schwarzenbach et al. 2003, 

Standing & Killham 2007, Kuchovsky & Sracek 2007). OC = organic compound 

Terminal electron acceptor Final product Microbial process 
Redox potential 

E0
H (V) 

O2 H2O Aerobic respiration 0.81 

NO3
- N2 Denitrification 0.74 

Mn4+ Mn2+ Manganese reduction 0.53 

Fe3+ Fe2+ Iron reduction -0.05 

SO4
2- H2S Sulphate reduction -0.27 

Halogenated OC Reduced OC Reductive dehalogenation - 0.27 - - 0.43 
(chlorinated ethenes) 

CO2 CH4 Methanogenesis -0.43 
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Energy yield from degradation of an organic molecule is the highest when oxygen is used 

as the terminal electron acceptor. In bioremediation processes, especially in in situ 

applications, oxygen has been delivered to soil subsurface layers by injecting oxygen-

saturated water, air or pure oxygen to the contaminated soil (Jørgensen 2007). Also 

oxygen releasing compounds have been used. Hydrogen peroxide (H2O2) dissolved into 

water can deliver oxygen to subsurface layers of soil, as hydroge peroxide decomposes 

spontaneously into water and oxygen (2H2O2 → 2H2O + O2). It has been observed that 

petroleum-degrading soil bacteria can tolerate H2O2 concentrations up to 1000 mg l-1 

(Brown & Norris 1994). Such a concentration of H2O2 theoretically releases 29 mmol 

oxygen l-1 of water. Another oxygen releasing compound is magnesium peroxide (MgO2), 

an insoluble powder which releases oxygen when hydrated (MgO2 + 2H2O → Mg(OH)2 + 

H2O2; 2H2O2 → 2H2O + O2). Magnesium peroxide has been used to construct "oxygen 

release barriers" by inserting MgO2-filled polyester filter socks in ground water wells in in 

situ bioremediation (Odencrantz et al. 2006). Such a solid-phase barrier may release 

oxygen for several months. 

 

Anaerobic contaminant degradation has been enhanced by injecting nitrate, sulphate or 

hydrogen releasing compounds to soil. Energy yield from nitrate reduction is almost as 

high as with O2 reduction. The availability of nitrate as a terminal electron acceptor can be 

enhanced much more effectively than oxygen, as reviewed by Wilson & Bouwer (1997). 

This is due to the high water solubility of nitrate. For example, subject to an initial 

concentration of 4000 mg kg-1 hydrocarbons of soil, in the case of nitrate only 80 m3 of 

injection water is required for bioremediation of 1 m3 of soil, if the nitrate concentration of 

water is 500 mg l-1. The quantity of water required for remediation of the same amount of 

soil comes to about 3000 m3 if the water is saturated with gaseous oxygen (Battermann & 

Meier-Löhr 1995). Sulphate has been used to facilitate anaerobic degradation of benzene 

in situ. Sodium sulphate solution (1.14 gl--1) was injected to benzene-contaminated 

groundwater (4.9 mg of benzene l-1) resulting to benzene reduction below detection limit 

(Anderson & Lovley 2000). 
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In reductive dehalogenation, the contaminant itself acts as an electron acceptor. To 

facilitate dehalogenation, availability of electron donor has to be facilitated. Electron 

donor (hydrogen) can be injected directly to contaminated plume, or hydrogen releasing 

compound (fermentable carbon source) like lactate, fumarate or methanol can be used as 

reviewed by Scow & Hicks (2005) and Jørgensen (2007). 

 

Water content of soil affects the concentration of an organic compound in water. As 

partition coefficients (Eq 1) are based on concentrations of compound in the different 

phases, an increase in the total water content of soil leads to an increased desorption of an 

organic compound from the soil particles into the water phase where they are bioavailable 

(White & Alexander 1996). 

2.4.7. Impact of the soil temperature on contaminant bioavailability and biodegradability 

The influence of temperature on the rate of chemical reactions can be described by the 

Arrhenius equation (Equation 8): 

 

RT

E
Ak a−= lnln  (Eq. 8) 

k = rate constant 
A = constant 
Ea = activation energy (J mol-1) 
R = gas constant (8.3 J K-1) 
T = temperature (K) 
 

As can be seen from equation 8, an increase in the temperature results in an increase of the 

rate constant. Biodegradation of an organic compound in soil is a chemical reaction 

catalyzed by enzymes in soil. However, since this reaction is catalyzed by soil microbial 

enzymes, the temperature dependence of biodegradation in soils is not as straightforward 

as expressed by the Arrhenius equation. The soil microbes can be divided into 

psychrophilic, mesophilic, thermophilic and hypothermophilic microbes according to their 

temperature optima (Standing & Killham 2007). The minimum and the maximum 

temperatures allowing growth for an individual group are typically within a range of 20 - 

30 oC. Temperatures outside this range make the microbes inactive. Within the 
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temperature region suitable for growth of mesophilic microbes, it is estimated that there is 

an approximate doubling of the rate of biochemical activity with every 10oC rise between 

0oC and 30o/35oC (Gounot 1991, Standing & Killham 2007). 

 

Biodegradation of organic contaminants in soils has been observed to occur in conditions 

ranging from psychrophilic to hypothermophilic conditions, but the residual concentration 

of the hydrophobic contaminant seems to be higher in cold than in warmer conditions 

(Margesin 2000, Kosegi et al. 2000, Ferguson 2003, Feitkenhauer & Markl 2003, Iqbal et 

al. 2007, Perfumo et al. 2007). This is probably due to decreased bioavailability of a non-

gaseous hydrophobic organic compound in a cold environment, as the water solubility, 

diffusivity and desorption from surfaces decreases when the temperature decreases 

(Nedwell 1999, Iqbal et al. 2007). 

2.4.8. Nutrients 

Organic contaminants are mainly composed of carbon (typically 70-80% of molecular 

weight). A large input of these compounds leads to depletion of the available pools of 

major inorganic nutrients, such as nitrogen and phosphorus (Morgan & Watkinson 1989), 

in addition to depletion of electron acceptors. This imbalance can be corrected by 

biostimulation, which means addition of these nutrients, usually as a commercial fertilizer 

(Alexander 1999). Biostimulation has been shown to enhance biodegradation of organic 

compounds when the input of contaminant is high and/or the natural reservoir of inorganic 

nutrients is low. These conditions prevail especially in marine beaches (Bragg et al. 1994, 

Swanell et al. 1996, Menendez-Vega et al. 2007) and in landfarming applications (Maila 

& Cloete 2004). 

 

Inorganic nutrients, as well as organic carbon sources, must be available for the microbes. 

If nutrient is added in readily soluble form it may be lost by leaching. This can be 

expected especially in marine beaches which are flooded by tidal water even twice per day 

(Fernández-Alvarez et al. 2006, Li et al. 2007). In inland areas nitrification, the process in 

which ammonium is oxidized to nitrite and further to nitrate, may limit the availability of 

nitrogen. Both NH4
+ and NO3

--N can be used by soil microbes, but NO3
- leaches readily 



 
 
 
 

39 

with advecting water. Leaching losses can be reduced by using slow-release fertilizers, 

which supply a sustained release of nutrients from insoluble reservoir. These slow-release 

fertilizers have proved to be usable especially in marine beach bioremediations (Xu et al. 

2005A and 2005B). 

 

Amending of soil with nutrients is straightforward when contaminated soil is excavated 

and bioremediated ex situ or when contamination is limited to soil surface. Nutrient 

addition faces challenges in situ bioremediation as the need for nutrients is often located in 

groundwater zone or below it, even along bedrock surface (Jørgensen 2007). Typical 

application in such cases is injecting nutrients as water solution to the contaminated plume 

through injection wells (Knapp & Faison 1997), but also gaseous form of nitrogen, 

ammonia (NH3) has been used (Marshall 1995). Transport of nutrients in soil can be also 

be enhanced by applying electrical current across an electrode system inserted in 

contaminated soil, which promotes movement of charged nutrient ions (Acar et al. 1997) 

 

The quantity of N and P to be added is calculated from the amount of C in the material to 

be degraded. Alexander et al. (1999) calculated theoretical C:N:P ratio to be 100:3:0.6, 

assuming that 30% of the carbon in the degraded compound is assimilated into biomass. 

He also stated that such calculations often overestimate the need of N and P, because 

biomass is itself decomposed, liberating N and P and because the soil always contains 

sometimes even considerable available N and P for microbial use. 
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3. Aims of the study 

The aim of this thesis was to (i) investigate bioavailability of organic contaminants and 

inorganic nitrogen in different soil environments and (ii) develop bioremediation 

processes which would allow for environmentally safe availability of organic 

contaminants and inorganic nutrient for the degrading microbes. 

 

In addition to bioremediation, bioavailability of a hydrophobic organic contaminant was 

studied in a microcosm simulating a natural boreal forest. 

 

Detailed aims of the thesis were: 

 

1. To develop a bioremediation method for VOC-contaminated soil which would allow ex 

situ composting with minimal volatilization losses. 

 

2. To evaluate environmental risks following stimulation of contaminant bioavailability in 

PAH contaminated soil. 

 

3. To estimate biodegradation and bioavailability of pyrene under conditions simulating 

boreal forest soil. 

 

4. To assess nitrogen cycling relevant to full-scale bioremediation of oil contaminated soil 

in order to select a suitable form of nitrogen available for the oil-degrading microbes. 
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4. Materials and methods 

4.1 Experimental setup in the laboratory-, pilot- and full-scale 

Bioavailability of two different types of organic contaminants, volatile monoaromatic and 

hydrophobic polyaromatic hydrocarbons were studied in laboratory- and pilot scale. For 

details of the experimental setup see Papers I and IV. 

 

Mineralization and volatilization of 14C-benzene in soil was measured in laboratory scale 

(150 g wt.w) in four closed microcosms. Field-contaminated soils (VOC-contamination) 

in each microcosm were spiked with 14C-benzene and amended with activated carbon (10 

g kg-1 of soil) and/or an inoculum of Rhodococcus opacus GM-14 (Zaitsev et al. 1995) to a 

density of 1010 cfu kg-1 of soil. 14CO2 evolved from mineralization of the 14C-benzene was 

collected in a trap of NaOH-solution. 14C-benzene volatilized from the soil was collected 

in an activated carbon trap. Mass balances between the mineralized and the volatilized 

fractions were calculated by measuring the radioactivities in both traps over 52 days. 

Degradation and volatilization of VOCs (toluene, ethylbenzene, xylenes and 

trimethylbenzene) in field-contaminated soils was studied in pilot-scale (approx. 1 metric 

ton) in four rotating drums equipped with aeration systems. The exhaust air from the 

drums was channeled to gas traps holding 40 kg activated carbon. The soils in the drums 

were amended with activated carbon (9.8 - 14.5 g kg-1 of soil) and/or an inoculum of R. 

opacus GM-14 to a density of 2.2 - 7.7 x 108 cfu kg-1 of soil. Mass balances between the 

degraded and volatilized VOCs were calculated by measuring the VOC remaining in the 

soil and accumulated in the active carbon traps during 240 days. 

 

The effects of vegetable oil amendment on PAH bioavailability was studied in pilot-scale 

(approx. 26 metric tons) in two reactors under controlled temperature and aeration. For 

details of the experimental setup see Paper IV. The field-contaminated soil (creosote) in 

one reactor was amended with 1.5 kg of rape seed oil per l m3, introduced as a 30% (v/v) 

emulsion in water. Soil in the other reactor was amended with water only. Composting 
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time in the reactors was 460 days. Soils were periodically sampled and effects of the rape 

seed oil amendment were determined by comparing the soil concentrations of 16-EPA 

PAHs, Vibrio fischeri toxicity, and phytotoxicity of the vegetable oil amended and non-

amended soils. The effects of rape seed oil on the mineralization of 14C-phenanthrene was 

separately studied in closed systems. 

 

Mineralization and bioavailability of 14C-pyrene in forest humus was studied in eighteen 

closed microcosms simulating natural pine/mycorrhiza symbiosis using the method 

described by Finlay & Read (1986). For details of the experimental setup see paper II. 

Pristine humus and field-contaminated (mineral oil-waste) soils were spiked with 14C-

pyrene and placed into the microcosms with or without pine (Pinus sylvestris) and its 

mycorrhizal fungus (Paxillus involutus). The incubation time was 180 days. 14CO2 

evolved in the mineralization process was collected to traps of NaOH-solution. Mass 

balances between the mineralized, plant assimilated and soil-attached fractions of 14C-

pyrene were calculated by measuring the radioactivities in the gas trap, in the soil and in 

the vegetation. 

 

Availability and transformations of methylene urea and urea as nitrogen sources were 

studied at a full-scale mineral oil-waste landfarming field located in southern Finland (60o 

15´ N, 25o 30´ E). For details of the experimental setup see Paper III. The test area was 

divided into seven experimental plots of 343…544 m2. Each plot was fertilized with 

methylene urea or with urea. Follow-up time was 393 days. Plots were sampled and 

nitrogen transformations and effects of the transformations were determined by measuring 

concentrations of NH4
+-N, NO3

--N, nitrification rate, heterotrophic bacterial numbers and 

oil hydrocarbon concentrations. 
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4.2 Analytical protocols 

Table 14. Analytical protocols used in this thesis. For the details see papers I to IV 

Analyte Matrix Protocol / Reference 

 

NaOH-
solution 

 

Scintillation count (Papers I, II and IV) 

Activated 
carbon 

Burning, 14CO2 entrapment and scintillation count 
(Papers I and II) 

Plant 
material 

Burning, 14CO2 entrapment and scintillation count 
(Paper II) 

Oil-waste 
soil 

Burning, 14CO2 entrapment and scintillation count 
(Paper II) 

 

Radioactivity 

Pristine 
humus 

Burning, 14CO2 entrapment and scintillation count 
(Paper II) 

 

VOC soil 
 

Dichloromethane : acetone extraction and GC/MS 
analysis (Paper I) 

 

VOC concentration 

Activated 
carbon 

Dichloromethane : acetone extraction and GC/MS 
analysis (Paper I) 

 

NH4-N concentration 
 

Oil-waste 
soil 

 

Krom 1980 (Paper III) 

NO3-N concentration Oil-waste 
soil 

Greenberg et al. 1980 (Paper III) 

Nitrification rate Oil-waste 
soil 

Alef 1995 (Paper III) 

Hydrocarbon 
concentration 

Oil-waste 
soil 

Dichloromethane extraction, separation in AlO3 and 
gravimetric measurement (Paper III) 

Number of heterotrophic 
bacteria 

Oil-waste 
soil 

Laine & Jørgensen 1997 (Paper III) 

PAH concentration Creosote soil Nordtest 1997 (Paper IV) 

V. fischeri toxicity Creosote soil Lappalainen et al. 1999 (Paper IV) 

Inhibition of barley root 
growth  

Creosote soil Smreczak & Maliszewsa-Kordybach 2003 (Paper 
IV) 

Inhibition of cress seed 
germination  

Creosote soil Saadi et al. 2007 (Paper IV) 

Inhibition of cress root 
growth  

Creosote soil Plaza et al. 2005 (Paper IV) 
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5. Results and discussion 

5.1 Controlling bioavailability - VOCs 

Reduction of volatilization of monoaromatic VOCs from contaminated soil during 

bioremediation was studied in Paper I and is retrospectively discussed below. Activated 

carbon amendment was used as a VOC retaining agent in contaminated soil in static 

microcosms and rotating drums under controlled conditions in laboratory- and pilot-scale.  

 

Activated carbon resembles soil organic matter in many ways: it is an amorphous form of 

carbon with many oxygen-containing functional groups. Many types of activated carbons - 

including the coconut shell carbon used in this study - are derived from plant material 

(Carrott & Carrott 2007), which is also the major precursor of soil organic matter. The 

amount of activated carbon used in this study to retain VOCs was 10 - 15 g kg-1 of soil (1 - 

1.5% w/w). The volatilized fraction of VOCs dominated in both laboratory- and pilot scale 

compostings (Table 15.) when activated carbon was not present. This indicates that the 

natural soil compartments are poor adsorbents for VOCs as compared to activated carbon. 

The superior VOC sorbent properties of activated carbon in soil as compared to soil 

intrinsic compartments have been observed also elsewhere (Lake & Rowe 2005). 

 

Table 15. Final mass balances of U- 14C-benzene spiked to soil after laboratory scale compostings 
and mixture of monoaromatic VOCs in field-contaminated soil after pilot-scale compostings.  

 Fraction sizes of VOCs, calculated from original data in Paper I 

 
Laboratory scale compostings, 52 

days. 100% = 293 mg kg-1 benzene 
Pilot-scale compostings, 240 days. 

100 % = 2300 mg kg-1 aromatic VOC 

Treatment A B C D A B C D 

Volatilized 83 % 42 % 15 % 4 % 60 % 72 % 3 % 5 % 

Biodegraded 15 % 41 % 36 % 6 % 40 % 28 % 86 % 84 % 

Retained in soil 2 % 17 % 49 % 90 % 0 % 0 % 11 % 11 % 

A = No activated carbon nor inoculum 
B = Inoculated with R. opacus GM-14 
C = Amended with activated carbon 
D = Amended with activated carbon and inoculated with R. opacus 
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VOC volatilization from soil in pilot scale compostings was rapid when activated carbon 

was not present: 90% of VOCs was lost by volatilization within 12 days (Fig. 2). When 

activated carbon was present, a major part of the VOCs became biodegraded. However, 

the residual concentration of VOCs, 270 mg kg-1, was still too high for unlimited land-use. 

The residual concentration was constant for over 200 days, indicating sequestration of 

VOCs to activated carbon. Sequestration of organic compounds to soil organic matter 

occurs after prolonged residence time in soil (Ehlers & Loibner 2006). As the diffusion 

speed of monoaromatics is rather high due to the small molar volume of a monoaromatic 

molecule, the sequestration of VOCs to activated carbon seemed to occur within 40 days, 

since after that no reduction of VOCs was observed. Activated carbon can be grouped as 

"glassy" carbon phase. Sequestration of aromatic VOCs therefore probably occurs through 

diffusion into nanopores, which is a relatively fast process due to the high diffusivities of 

monoaromatic organic compounds. 

 

 

Soils amended with activated carbon. The 
curve is fitted to combined data from 

treatments A and B (Table 15) 

Soils without activated carbon. The curve is 
fitted to combined data from treatments C 

and D (Table 15) 
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Figure 2. VOC removal from soils in pilot-scale compostings. Re-drawings are based on original 
data in paper I. 
 

Activated carbon is widely used as a sorbent for harmful organic compounds. Purification 

of water and air are typical applications. Biodegradation of organic compounds sorbed to 

activated carbon, bioregeneration, is a known phenomenon in water treatment systems 

(Aktas & Cecen 2007). As water is always present in natural soils bioregeneration of 
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activated carbon in water- and soil water environments must have similarities. 

Bioregeneration of activated carbon in water environment can be enhanced by inoculating 

it with an individual strain (Jones et al. 1998) or a bacterial consortium (Caldeira et al. 

1999). In this study, inoculation of activated carbon by Rhodococcus opacus GM-14 

dramatically decreased the volatilization of benzene when studied at laboratory scale. 

However, decrease of volatilization did not result in an improved mineralization. R. 

opacus strains are known to use the dioxygenase pathway for degradation of benzene (Na 

et al. 2005). The dioxygenase pathway proceeds with catechol as an intermediate. 

Catechol, however, oxidizes abiotically in aerobic environments into water insoluble 

polymers (Colarieti et al. 2002). Such polymers may bind to activated carbon irreversibly, 

as reviewed by Aktas and Cecen (2007). This could explain the lack of volatilization and 

mineralization in laboratory scale when both R. opacus and activated carbon were present. 

In pilot scale, inoculation had no effect on volatilization nor biodegradation of the 

aromatic VOCs, indicating superiority of intrinsic degrader microbes as compared to 

inoculant bacteria. Also the size of inoculum was higher in the laboratory- than in the pilot 

scale compostings. 
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5.2 Controlling bioavailability - PAHs 

Polyaromatic hydrocarbons have limited bioavailability due to their high hydrophobicity. 

These limitations may be overcome by addition of a mobilizing agent, such as surfactant 

or vegetable oil. Rape (Brassica rapa) seed oil emulsion was used as an attempt to 

mobilize aged PAHs in creosote-contaminated soil excavated from timber impregnation 

field. The effects on mobilization on PAH biodegradation and soil toxicity were studied 

under controlled aeration and temperature at pilot-scale in Paper IV and is retrospectively 

reviewed and discussed below. 

 

Mixing PAH-contaminated soil with water emulsion of rape seed oil resulted in an 

apparent increase of the concentration of PAHs in the soil. This indicates mobilization of 

sequestered PAHs (Table 16). 

 

Table 16. Effect of rape seed oil emulsion on apparent soil concentrations of pentane extractable 
PAHs. The data is presented in details in Paper IV. 

PAH Kow
(1) 

Concentration in 
non-amended soil 

(mg kg-1) 

Concentration in soil 
amended with rape seed 
oil emulsion (mg kg-1) 

Naphthalene 3.17 79 156 
Acenaphthylene 3.94 13 22 
Acenaphthene 4.15 395 551 
Fluorene 4.02 341 497 
Phenanthrene 4.35 634 911 
Anthracene 4.35 136 185 
Pyrene 4.35 368 537 
Fluoranthene 4.93 535 745 
Benzo(a)anthracene 5.52 95 126 
Chrysene 5.52 97 135 
Benzo(b)fluoranthene 6.11 44 59 
Benzo(k)fluoranthene 6.11 38 49 
Benzo(a)pyrene 6.11 31 42 
Indeno(1,2,3-c,d)pyrene 6.7 8 12 
Dibenzo(a,h)anthracene 6.7 14 2 
Benzo(g,h,i)perylene 6.7 5 8 
Σ [16 U.S. EPA PAH](2) 
(2)(2)Reduction of 

 2833 4037 
(1) Calculated value: [www.syrres.com/esc/est_kowdemo.htm] 
(2) Keith & Telliard (1979) 
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It is our suggestion that PAHs migrated from the soil pores into droplets of rape seed oil 

emulsion. Transfer of phenanthrene from soil to oil emulsion droplets has been 

documented previously (Zhao et al. 2005). Chiou (1985) determined the partition 

coeffients (Kitriow) for 38 different hydrophobic organic compounds in water-triolein 

systems and found them to be slightly greater than the water-octanol coefficient, when log 

Kow of the compound was ≤ 5.10, and slightly smaller than the water-octanol coefficient, 

when log Kow of the compound was ≥ 5.58. Organic matter-soil partition coefficients of 

an organic compound can be calculated by equation 7: 

 

bKaK iowioc +×= log  

 

For PAHs, the constants a and b were determined to be 0.98 and -0.32, respectively 

(Schwarzenbach et al. 2003). Since the Kioc of a PAH is always smaller than the Kiow and 

the Kitriow greater than Kiow until Kiow exceeds 5.58, it can be expected that the partition of a 

PAH will favor the vegetable oil phase in soil-vegetable oil systems up to Kiow values of 

5.5 or higher. 

 

The soil concentration (i.e. apparent Km value, see paper IV, Table 2) required for 

mineralization of 14C-phenanthrene was clearly higher in soil amended with rape seed oil 

emulsion. The same amendment immediately increased the toxicity of soil when analysed 

by direct contact to cress roots and barley roots (Table 17). Rape seed oil emulsion thus 

increased the bioavailability of soil toxic constituents at least to plant roots. The increased 

bioavailability did not result in increased biodegradation of PAHs. On the contrary, the 

apparent substrate concentrations required for mineralization increased when rape seed oil 

was present (Paper IV, Table 2). Reduction of PAH biodegradation in soil in presence of 

1% rape seed oil has been detected also elsewhere with spiked soil (Pizzul et al. 2007). 

PAH degrading microbes may have preferred vegetable oil as an energy source instead of 

PAHs. It is also possible that copiotrophic soil bacteria which grow rapidly in presence of 

easily degradable substrate like vegetable oil colonize the surroundings of rape seed oil 

droplets. As PAH-degrading bacteria are assumed to be oligotrophic as reviewed by 
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Johnsen et al. (2005), they are suppressed by such rapidly growing, opportunist soil 

microbes. 

 

Table 17. Effect of rape seed oil emulsion to toxicity of soil containing aged PAH calculated from 
original data in paper IV. 

Soil toxicity assessed by Non-amended soil 
Soil amended with rape seed 
emulsion 

 

Inhibition of V. fischeri 
luminescence (%) 

 

84 % 
 

85 % 

Inhibition of barley root 
growth (%) 

28 % 69 % 

Inhibition of cress root 
growth (%) 

0 % 47 % 

Inhibition of cress seed 
germination (% 

3 % 10 % 

 

The International Organization for Standardization (ISO) defines bioavailability in terms 

of relevant target organisms: bioavailability to organisms able to degrade the contaminant, 

bioavailability to organisms able to ingest the contaminant, bioavailability to plants and 

bioavailability to humans (ISO 2003). In this study, increased bioavailability of soil 

contaminants by rape seed oil emulsion was more relevant for plants than degrading 

microorganisms. The consequences from the increase of PAH bioavailability after 

amending the soil with rape seed oil is a good example of different categories of 

bioavailability. 
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5.3 Bioavailability of pyrene in humus 

As mentioned in section 2.4.4., it is generally assumed that sorption of an organic 

compound to soil organic matter plays a significant role in sorption for soils. Since sorbed 

compounds are not bioavailable, it can be assumed that a hydrophobic organic compound 

is sparingly bioavailable in the organic surface layer of boreal forest soil. To study this, 

gamma-sterilized humus spiked or not spiked with pyrene and mixed or not mixed with oil 

contaminated soil was implanted in microcosms with or without pine and its mycorrhizal 

fungus, Paxillus involutus. The results are presented in details in Paper II and reviewed 

and discussed below. 

 

After mycorrhiza had colonized the implanted regions in microcosms (35 days after 

implantation) the gamma-sterilized humus spiked with radiolabelled pyrene was added to 

the microcosms. The CO2 produced in the microcosms during incubation over 180 days 

was collected and amount of 14CO2 measured. After incubation, 14C assimilated into 

microcosm vegetation and/or remained in implantations was also measured (Table 18). 

 

Table 18. Mineralization rates and percentages of incorporated 14C-pyrene spiked into humus 
implants in microcosms with or without pine and mycorrhiza based on original data in Paper II. 
A = With pine and mycorrhizal fungi, B = Without pine and mycorrhizal fungi 

Implantation 
Concentration 

of pyrene 
(mg kg-1) 

Average mineralization 
rate during 180 days (1) 

(µg kg-1 d-1) 

Percentage of input 14C 
remained in the 

implant after 180 days 

  A B A B 
 

14C-pyrene spiked humus 
with additional pyrene 

 

91.2 
 

62 
 

106 
 

80. ±13.3 
 

50.4±8.5 

14C-pyrene spiked humus 0.07 < 3 x 10-3 < 3 x 10-3 79.9±9.8 89.9±8.5 

14C-pyrene spiked humus 
mixed with oily soil 

0.95 0.5 0.7 71.4±12.6 85.7±9.6 

(1) Calculated by dividing sum of mineralized and assimilated 14C by incubation time. 

 

The highest mineralization rate and the most effective pyrene removal were observed in 

the humus implants with the highest input concentrations of pyrene. The experimental Kioc 

of pyrene is 5.13 (Schwarzenbach et al. 2003). It can therefore be concluded that sorption 



 
 
 
 

51 

of pyrene to humus is strongly favored, leading therefore to decreased availability and 

biodegradation as reviewed by Johnsen et al. (2005) and Semple et al. (2003). 

Biodegradation of PAHs in the environment has been studied actively for several dozens 

of years, as reviewed by Atlas (1981) and Johnsen et al. (2005). A decrease of pyrene 

degradation in soil when the amount of organic matter increases has been observed (Smith 

et al. 1997, Cottin & Merlin 2007), but knowledge about pyrene degradation in boreal 

humus is limited. Kurola (2007) studied mineralization of phenanthrene and pyrene in 

non-sterile boreal humus with an initial soil concentration of 0.2 – 50 µg cm-3. These 

authors found phenanthrene and pyrene mineralization percentages below 5 % in 98 days. 

Bogan & Sullivan (2003) studied phenanthrene mineralization by inoculant bacteria in six 

gamma-sterilized soils with varying content of organic matter. In their study, contact time 

of phenanthrene in the gamma-sterilized soils varied from 0 to 120 days prior to 

inoculation. Interestingly, the mineralization of phenanthrene in soil with the highest 

organic matter content (25%) after 0 and 40 days of contact time was equally active, 

indicating no sequestration during the 40 day contact time. In soils with lower organic 

matter content (2 – 11%), mineralization was clearly lower after 40 days contact time. In 

the present study, 50% of 14C-pyrene was removed from humus containing 90 mg kg-1 of 

pyrene and 32% organic carbon (w/w, Paper II). These findings contradict the conclusion 

about low bioavailability and low biodegradation of pyrene in organic soils. However, the 

humus in the soil in this study as well as in the study of Bogan & Sullivan (2003) was 

sterile (γ-irradiated) and possibility that chemical properties of the humus were altered due 

to strong ionizing radiation cannot be excluded. 

 

The presence of pine and pine mycorrhiza decreased pyrene removal from humus when 

the initial concentration of pyrene was high. After the data in Paper II was published 

(2003), similar phenomena were reported by Genney et al. (2004) and Joner et al. (2006) 

with fluorene and anthracene biodegradation in pine/mycorrhiza microcosms. Heinonsalo 

et al. (2000) observed increase in polarity of hydrocarbons in soil when pine/mycorrhiza 

combination was present, indicating oxidative attack by mycorrhiza. Fungal enzymes are 

known to oxidize PAHs (Rodriguez et al. 2004, Baborova et al. 2006) resulting in bound 

residue formation in soil (McFarland & Qiu 1995). It is thus possible that the presence of 

mycorrhiza in humus resulted in covalent binding of oxidized PAHs to the humus. 
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5.4 Bioavailability of nitrogen in bioremediation 

The bioavailability of nutrients is equally important as the bioavailability of carbon and 

energy source for bioremediation. The fate and bioavailability of fertiliser nitrogen (urea 

and methylene urea, Fig. 3.) were studied on a landfarming site with mineral oil pollution. 

The results are presented in details in Paper III and reviewed and discussed below. 

 

Figure 3. Molecule structure of polymeric form of urea, methylene urea 

 

The landfarming field had received oil waste, mainly sludges, for over 20 years and had 

been routinely fertilised for more than 10 years with high amounts of urea targeted to give 

a carbon: nitrogen ratio of 10:1. The soil contained 35 – 59 g kg-1 of non-polar solvent 

extractable organic matter of mainly refinery oil waste origin. Seven test plots at the site 

were fertilised with different doses of methylene urea or urea. The immediate effects of 

fertilizer nitrogen form and dosage on landframing soil nitrogen transformations, pH and 

heterotrophic bacterial counts were obvious (Tables 19 and 20), especially with high doses 

of urea. 

 

Table 19. Effects of the highest applied doses of fertilizer nitrogen in oil waste landfarming soil. 
The data is presented in details in Paper III. 

Concentration of 
NH4-N (mg kg-1) 

Concentration of 
NO3-N (mg kg-1) 

pH 
Heterotrophic 

bacteria (108 cfug-1) Fertilization of 
the plot 

Day 0 Day 17 Day 0 Day 17 Day 0 Day 17 Day 0 Day 17 

 

None 
 

7.5 
± 0.3 

 

10 
± 2.8 

 

224 
± 24 

 

44 
± 6 

 

6.9 
 

7.4 
 

1.6 
± 0.69 

 

3.5 
± 0.34 

Methylene urea 
889 g N m-2 

34.3 
± 7.6 

190 
± 42 

620 
± 15 

1430 
± 141 

7.1 6.3 1.3 
± 5.4 

15 
± 8.4 

Urea 
893 g N m-2 

296 
± 2.4 

5580 
± 594 

461 
± 10 

380 
± 71 

6.9 8.6 2.5 
± 8.9 

0.05 
± 0.01 

NH 

C O 

NH 

CH2OH 

CH2 N CH2OH 

C O 

NH 

CH2OH 
n 
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Table 20. Nitrification rates in landfarming soil with the highest fertilizer nitrogen doses. The data 
is presented in details in Paper III. 

Ex situ nitrifying activities of the soil (mg NO3-N formed d-1 kg -1 of soil) 
Fertilization of 

the plot 
Day 0 Day 17 Day 70 Day 287 Day 393 

None 
0.70 

± 0.23 
1.69 

± 0.62 
0.71 

± 0.71 
0.28 

± 0.05 
0.26 

± 0.05 

Methylene urea 
889 g N m-2 

1.60 
± 0.20 

8.83 
± 2.63 

0.97 
± 0.27 

0.53 
± 0.12 

0.45 
± 0.11 

Urea 
893 g N m-2 

2.11 
± 0.38 

0.53 
± 0.73 

0.63 
± 0.07 

0.41 
± 0.11 

0.33 
± 0.02 

 

High soil concentrations of NH4-N found in the plots dosed with high amount of urea 

indicated high ureolytic activity in the landfarming soil. Activity of the subsequent 

nitrogen transformation, nitrification, was low or not detectable in this plot (Table 20). 

This explains why NH4 accumulated. Such a phenomenon has been reported in 

agricultural soil where nitrification was blocked (Cai et al. 2002) Also soil pH increased 

resulting in the dominance of NH3 in the NH4
+/ NH3 pool. The gaseous NH3 may have 

intoxicated the nitrifying bacteria, but also the numbers of heterotrophic bacteria declined. 

The numbers of the heterotrophic colony forming units recovered rapidly, but nitrification 

rates remained low during the whole observation period of almost 400 days (Figures 2 and 

4 in Paper III, Table 20). When fertilizing was done with methylene urea, the NH4 

concentration did increase, but not to toxic level, and the number of heterotrophic colonies 

was stable and nitrification active. 

 

Nitrification in the soil with high concentration of hydrocarbons was as active (Table 20) 

as reported for agricultural soils (Alef 1995). This should be taken into account when 

fertilizing bioremediation processes, especially under in situ conditions to avoid nitrogen 

transformation to less or non-bioavailable form. Dosing of nitrogen is usually calculated 

based on the concentration of carbon in the contaminant pool to be degraded in the soil 

(Section 2.4.8, Alexander 1999). However, if fertilization is done repeatedly, a clear 

distinction should be done between the total concentration of carbon and the 

biodegradable concentration of carbon. In the studied landfarming field the soil 
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concentration of organic carbon in hydrocarbons was about 30 g kg-1 and removal of 

organic carbon was 8 g kg-1 y-1 (Paper III). If yearly nitrogen dosing is based on total 

amount instead of the biodegraded amount target carbon, more than three-fold overdosing 

occurs. Such overdosing is wasteful since the nitrogen transformation end-product, nitrate 

escapes from soil by leaching. Overdosing may even be detrimental to soil biota wit high 

doses, as intermediate product of microbial nitrogen transformation chain, NH4
+ 

dissociates to gaseous and poisonous NH3 in high pH. When the need of nitrogen is high, 

these effects can be avoided by using slowly soluble forms of nitrogen, for example 

methylene urea. 
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6. Conclusions 

The following conclusions summarize the results achieved in this thesis: 

 

1. VOC volatilization from contaminated soil during bioremediation can be prevented by 

adding a small amount of activated carbon (1 %). The major part of VOCs adsorbed to 

activated carbon are bioavailable and biodegradable. However, the residual concentration 

of VOCs in pilot-scale composted soil indicates irreversible sequestration of VOCs to 

activated carbon. 

 

2. Inoculating activated carbon with degrader bacteria reduces volatilization losses further 

in laboratory-scale, but did not allow scaling up to pilot scale. 

 

3. PAH-compounds in contaminated soil were mobilized by emulsified food grade 

vegetable oil. This mobilization increased bioavailability of the toxic constituents in soil 

which could be measured as phytotoxicity, but biodegradation of the PAHs was inhibited. 

Bioavailability of toxic constituents may increase the ecotoxicogical risk of soil under 

bioremediation and should be taken into account when manipulating the bioavailability of 

contaminants in soil. 

 

4. Mobilization of PAHs by vegetable oil lowered the affinity of degrading 

microorganisms to substrate. One explanation for this is that the degrader organisms may 

have preferred vegetable oil over the PAHs as an energy source 

 

5. Pyrene can be degraded effectively in an organic matrix (boreal forest humus) without 

previous exposure to high concentrations of PAHs. The high Kow of a substrate does thus 

not necessarily mean low availability and biodegradation in organic soil. 

 

6. The presence of pine/root mycorrhiza decreased the mineralization and possibly 

increased the sequestration of 14C-labelled pyrene into soil humus.  
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7. Nitrogen transformations can be fully functional in heavily oil-contaminated soil. The 

nitrogen cycle may become interrupted in excessively fertilized soil when the intermediate 

product from urea, NH4
+ dissociates to the volatile NH3. 

 

8. In bioremediation, nitrogen dosing should be based on biodegradable rather than the 

total amount of the organic contaminant. Otherwise overdosing of fertilizer may occur 

which is wasteful and high doses can harm the soil biota. 

 

8. When high doses of nitrogen are needed for bioremediation, slowly soluble forms of 

nitrogen should be used to avoid the detrimental effects of rapid transformations of 

nitrogen. 
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7. Tiivistelmä 

Väitöskirjan tavoitteena oli tutkia öljyperäisillä orgaanisilla yhdisteillä pilaantuneen maa-

aineksen biologisen puhdistamisen edellytyksiä laboratorio-, pilot- ja täydessä 

mittakaavassa. Erityistä huomiota kiinnitettiin tekijöihin, jotka vaikuttavat pilaantumista 

aiheuttavien haitta-aineiden sekä biohajotusprosessissa tarvittavan typen biosaatavuuteen. 

Tutkittavat haitta-aineet olivat haihtuvia orgaanisia öljyjakeita (VOC), monirenkaisia 

aromaattisia hiilivetyjä (PAH) ja raskaita mineraaliöljyjakeita. 

 

VOC-yhdisteiden biosaatavuutta parannettiin lisäämällä pilaantuneeseen maahan pieni 

määrä aktiivihiiltä. Tällä toimenpiteellä ehkäistiin VOC-yhdisteiden haihdunta maasta 

biologisen käsittelyn aikana. Aktiivihiileen kiinnittyneet VOC-yhdisteet olivat 

enimmäkseen hajottajamikrobeille biosaatavassa muodossa, koska niiden pitoisuudet 

laskivat maa-aineksessa ilman että VOC-yhdisteitä karkasi ilmakehään. Jäämäpitoisuudet 

maassa olivat kuitenkin liian korkeat käsitellyn maan rajoittamatonta loppusijoitusta 

varten. Osa aktiivihiileen sitoutuneista VOC-yhdisteistä sitoutui siten maa-ainekseen 

palautumattomasti, mahdollisesti mikrobiologisiksi aineenvaihduntatuotteiksi 

muuntuneina. 

 

Rypsiöljyemulsion lisääminen pilaantuneeseen maahan paransi PAH-yhdisteiden 

biosaatavuutta. Kasvisöljy mobilisoi maahan sitoutuneita PAH-yhdisteitä, mikä näkyi 

PAH-yhdisteiden lisääntyneenä uutettavuutena. Mobilisoitumisesta huolimatta PAH-

yhdisteiden biohajotus ei tehostunut eli ne eivät olleet hajottajamikrobeille biosaatavassa 

muodossa. Sen sijaan biosaatavuus kasveille lisääntyi, mikä näkyi maa-aineksen 

lisääntyneenä toksisuutena kasvien juurille. Tämä osoittaa, että biosaatavuus kasveille on 

eri asia kuin biosaatavuus mikrobeille. 

 

PAH-yhdisteiden biohajomista tutkittiin malliekosysteemissä, eli mikrokosmoksessa joka 

mallinsi pohjoista metsäekosysteemiä pienessä mittakaavassa. Pilaantumattomassa 

metsämaahumuksesta löytyi selkeä PAH-yhdistettä (pyreeni) biohajottava potentiaali, 
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vaikka aiempi tutkimus oletti orgaanisen aineen runsauden huonontavan rasvaliukoisten 

orgaanisten yhdisteiden biosaatavuutta mikrobeille ja siten myös biohajoavuutta. Kun 

malliekosysteemiin lisättiin kasvavan männyn taimi ja sen juurisieni (mykoritsa), niin 

pyreenin mineralisoituminen eli hajoaminen hiilidioksidiksi asti väheni. Tämä johtui 

mahdollisesti pyreenin kemiallisesta sitoutumisesta humukseen juurisienen hapettavien 

entsyymien katalysoimana. 

 

Maa-aineksen biologisen käsittelyn kannalta välttämättömän typpiravinteen biosaatavuutta 

tutkittiin täyden mittakaavan biologisella käsittelyalueella, johon oli tuotu öljyisiä lietteitä 

yli 20 vuoden ajan. Kun lannoitteena oli urea, se hajosi nopeasti ammoniakiksi osoittaen 

ureolyyttisten mikrobien olleen aktiivisia. Myös nitrifikaatio, eli ammoniakin 

mikrobiologinen hapetus nitraatiksi toimi öljynpitoisessa maassa tehokkaasti, mutta 

nitrifikaatio oli hitaampaa kuin urean hydrolyysi mikä johti ammoniumtypen kertymiseen 

kun lannoitus oli runsas. Tästä seurasi pH:n nousu ja ammoniakin haihdunta, eli 

typpilannoitetta hukkaantui ilmakehään. Tutkimus osoitti, että hitaasti vapautuvia typen 

muotoja, kuten metyleeniureaa, onkin syytä käyttää kun typen kokonaistarve on suuri 

koska ammoniakin kertymistä ei tällöin tapahtunut. 
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