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ABSTRACT

Pajari A-M. Diet and colon protein kinase C: relation to intestinal tumour development in

experimental animals [dissertation]. Helsinki, University of Helsinki. 2000.

Colorectal cancer is one of the leading causes of cancer deaths in the Western countries and its

incidence rates are currently increasing in all industrialised societies. Environmental factors

including diet are considered to play a major role in colon tumourigenesis. A number of

epidemiological studies suggest that diets high in fat and red meat and low in fibre rich foods,

such as vegetables, fruits and cereals, are associated with an increased risk of colon cancer.

The aim of the present study was to elucide the mechanisms whereby diet may either prevent or

promote colon tumour development. Specifically, it was examined whether fat, red meat, and

different fibre sources are able to modify colonic PKC activity and isozyme expression in rat

colonic mucosa. Furthermore, levels of PKC activators, such as fatty acids in mucosal

phospholipids and diacylglycerol in colonic contents, were determined. The effects of fat, red

meat, and fibre sources on intestinal tumour development were studied in APCMin mice.

The results suggest that fats have no major effect on PKC activation or tumour development in

the intestinal mucosa of rats and Min mice. However, feeding of a high-beef diet resulted in

elevation of steady-state PKC activity in the colonic mucosa of rats as well as enhanced intestinal

tumour development in Min mice. The effects of different fibre sources on PKC and tumour

formation differed depending on the fibre type in question. The readily fermentable fibre sources

inulin and oat bran resulted in an increase in PKC activity and PKC β2 expression in rat colon

and enhanced tumour development in the intestine of Min mice, whereas wheat and rye brans

resulted in low PKC activity and PKC β2 expression together with suppressed tumour

development in Min mice.
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ABBREVIATIONS

AA arachidonic acid
ACF aberrant crypt foci
AIN American Institute of Nutrition
AOM azoxymethane
APC human adenomatous polyposis coli gene
Apc murine adenomatous polyposis coli gene
APC adenomatous polyposis coli protein
COX cyclooxygenase
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DCC deleted in colorectal carcinomas
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PLA2 phospholipase A2
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PPAR peroxisome proliferator-activated receptor
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Abbreviations used in the original publications are not included and those used in the figures and

tables are indicated in the legends.
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1. INTRODUCTION

Colorectal cancer is the fourth most common cancer in the world today (WHO 1997). Its

incidence rates vary approximately 20-fold around the world so that the high-risk areas include

North America, Europe, and Australia, whereas Central and South America, Asia, and Africa are

areas of low risk. In Finland, cancer of the colon and the rectum are the second and third most

common cancers in women and men respectively (Finnish Cancer Registry 2000). The number of

new cases per year has steadily increased since 1965, being now three times higher than in the

mid 1960s. The incidence rates of colon cancer are currently increasing in all industrialised

countries as well as in the urban areas of developing countries (WHO 1997).

The 20-fold international difference in colon cancer rates is generally explained by differences in

dietary habits and other environmental factors. In their much referred report, Doll and Peto

(1981) estimated that dietary factors may account for approximately 35% of cancer deaths,

although the range of their estimate was wide from as low as 10% to as high as 70%. Since the

early 1980s, a large body of evidence has emerged from epidemiological studies concerning the

relationship between diet and colon cancer, which was recently reviewed by the expert panel of

the World Cancer Research Fund (1997). The expert panel concluded that the most effective way

of preventing colorectal cancer is consumption of diets high in vegetables and low in red and

processed meat. Furthermore, consumption of diets high in non-starch polysaccharides (fibre),

starch and carotenoids and low in fat, sugar, and eggs possibly decreases the risk of colon cancer

(World Cancer Research Fund  1997).

Colon tumourigenesis is a multistep process affected by both environmental and genetic factors.

Over the past two decades, the genetic events involved in the initiation and progression of colon

cancer have been identified and a molecular model for colon tumourigenesis has been proposed

(Fearon and Vogelstein 1990, Kinzler and Vogelstein 1996). This model is currently widely

accepted to explain the development of the majority of colon tumours. According to this model,

normal epithelium progress to hyperplasia, early to intermediate to late adenoma, carcinoma, and

finally metastasis (Figure 1). The driving force in the tumourigenic process is accumulation of

mutations in key genes regulating cell growth, differentiation, and apoptosis, i.e. programmed
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cell death. These key genes can be classified into two major classes: the proto-oncogenes and the

tumour-suppressor genes. Activating mutations in proto-oncogenes generate oncogenes that

typically induce cell proliferation and thus abnormal growth. The most frequently mutated

oncogene in colon cancer is the RAS gene. Tumour-suppressor genes are needed for cell growth

arrest and apoptosis and therefore mutational inactivation of these genes leads to loss of negative

growth control. Among the tumour-suppressor genes important in colon cancer are the

adenomatous polyposis coli gene (APC), the deleted in colorectal carcinomas gene (DCC), and

the p53 gene.

One of the major issues of current research is to understand how dietary factors interact with the

genetic events to either enhance or suppress the tumourigenic process in the colon. Apart from

carcinogens derived from environmental or cooking processes, diet as such is not likely to cause

mutations in the key genes initiating colon carcinogenesis. However, the growth of both mutated

and normal cells is regulated by different cell signalling pathways which may be either activated

or suppressed by dietary constituents (Figure 1). One of these pathways consists of protein kinase

C (PKC) isozymes which have been shown to be involved in colonic cell growth and

differentiation as well as malignant transformation (Brasitus and Bissonnette 1998). Changes in

     

Normal Mucosa          Carcinoma
     Hyperplasia    Early Adenoma          Late Adenoma
                    

       APC                                 RAS                               p53
                        mutation                          mutation                          mutation

Figure 1. The adenoma-carcinoma sequence leading to colon cancer (modified from Fearon and

Vogelstein 1990 and Williams et al. 1997).

Diet and other environmental factors

Changes in expression and activity of signal transduction molecules,
e.g. PKC and COX-2
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PKC activity and isozyme expression are considered to occur at an early phase of colon

carcinogenesis and therefore the dietary effects on PKC may be of importance. Cyclooxygenase-

2 (COX-2) is generally recognised as perhaps even a more important contributor to colon

carcinogenesis than PKC isozymes (Williams et al. 1997). However, changes in COX-2

expression and activity take place presumably somewhat later during the carcinogenic process

when the possibilities of diet to modulate tumourigenesis are less promising. A number of other

signal transduction pathways are likely to be involved in colon carcinogenesis. The

sphingomyelin pathway is particularly interesting since it is capable of inducing apoptosis and

dietary sphingomyelin may have a specific role in regulation of this pathway in the colon (Duan

1998). Furthermore, the APC/β-catenin pathway is of major importance because mutations in the

APC gene are the initiating events for a vast majority of both inherited and sporadic colon cancer

cases (Kinzler and Vogelstein 1996). Mutations in the APC gene lead to epigenetic changes in

other members of the pathway, β-catenin in particular, and thus in proliferation, adhesion, and

migration of intestinal epithelial cells (Pennisi 1998). There is also evidence that the APC/β-

catenin pathway interacts with other cell signal pathways, for example with PKC isozymes

(Murray et al. 1999).

This dissertation focuses on the mechanisms whereby diet may either promote or prevent colonic

tumour formation. Special emphasis is laid on the dietary effects on the cell signal transduction

pathways of PKC isozymes, sphingomyelinases, and APC-β-catenin.
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2. CELL SIGNAL TRANSDUCTION PATHWAYS RELATED TO COLON CANCER

This section introduces those colonic signal transduction pathways that are within the scope of

this dissertation. These pathways include the PKC, APC/β-catenin, sphingomyelin, and

cyclooxygenase pathways. The PKC and APC/β-catenin pathways are described in detail because

the major part of the experimental work in this dissertation concentrates on these two pathways.

The sphingomyelin and especially cyclooxygenase pathways are introduced only briefly. The role

of each pathway in controlling cell fate in the intestinal epithelium as well as their involvement in

colon carcinogenesis is described. Figure 2 is an overview of these pathways and their possible

interactions in colonic cells.

2.1 Protein kinase C

Description of the pathway

PKC comprises a large family of serine and threonine-specific kinases. At least 11 different PKC

isozymes have been identified, of which colonic epithelial cells express α, β/β2, δ, ε,=ζ, and ι/λ

(Davidson et al. 1994, Kahl-Reiner et al. 1994, Wali et al. 1995). These PKC isozymes differ in

their activator requirements so that PKC α and β/β2 are so called conventional isoforms activated

by Ca2+, diacylglycerol (DAG), and phosphatidylserine (PS). PKC δ and ε are novel isoforms

activated by DAG and PS, whereas PKC ζ, and ι/λ are atypical isoforms stimulated by PS but not

by Ca2+ or DAG. In a classical model for PKC activation, interaction of an extracellular signal

with a receptor leads to formation of DAG and inositol triphosphate from cell membrane

phosphatidylinositol. This, with a concomitant increase in intracellular Ca2+, results in

translocation of PKC from the cytosol to the membrane and subsequent activation of the enzyme

(Nishizuka 1984). The events in the signal transduction proceed very rapidly and induce PKC

activity only temporarily. Long-term modulation of PKC activity requires sustained production of

PKC activators in cells, such as DAG via phospholipase D mediated breakdown of

phosphatidylcholine (PC) and phosphatidylethanolamine (PE) or free fatty acid and lyso-PC via

phospholipase A mediated breakdown of PC (Nishizuka 1995). More recent studies have

revealed that arachidonic acid (AA) and other cis-unsaturated fatty acids are also able to activate
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Figure 2. Cell signal transduction pathways related to colon carcinogenesis. The molecules

analysed in the present study are indicated with bolding. AA, arachidonic acid; APC,

adenomatous polyposis coli protein; aPKC, atypical protein kinase C; COX-2, cyclooxygenase-

2; EGF, epidermal growth factor; GSK3β, glycogen synthase kinase 3β; MAPKs, mitogen-

activated kinases; NF-κB, nuclear factor κ-B; PGs, prostaglandins; PI3K, phosphoinositide 3-

kinase; c/nPKC, conventional/novel protein kinase C; sPLA2,, secreted phospholipase A2; PLC,

phospholipase C; PLD, phospholipase D; PPARs, peroxisome proliferator-activated receptors;

RTK, receptor-tyrosine kinase, TNFα, tumour necrosis factor α.   
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PKC (McPhail et al. 1984, Murakami et al. 1986, Khan et al. 1991). Fatty acids preferentially

activate soluble, cytosolic PKC and this activation is independent of or synergistic with the

phospholipids and Ca2+.

Variation in activator requirements, subcellular localisation, as well as tissue distribution enable

PKC isozymes to regulate a wide range of cellular functions, such as cell proliferation and

differentiation (Nishizuka 1995), cell cycle control (Thompson and Fields 1996, Livneh and

Fishman 1997), intracellular trafficking (Sanchez et al. 1998) or even apoptosis (Emoto et al.

1996). The specific functions of PKC isozymes in colon epithelial cells are not yet fully

understood. The evidence is most convincing in respect to PKC β2 and it suggests that PKC β2

mediates colonic cell proliferation. In colon carcinoma cells, overexpression of PKC β2 leads to

blocked differentiation, restoration of the response for the basic fibroblast growth factor, and

increased growth rate in athymic mice (Sauma et al. 1996, Sauma and Friedman 1996). These

effects were accompanied by the constitutive activation of mitogen-activated kinases (MAPK).

PKC α appears to be involved in colonic differentiation and growth arrest (Frey et al. 1997,

Abraham et al. 1998, Scaglione-Sewell et al. 1998). In human colon carcinoma CaCO-2 cells

transfected with antisense PKC α, decreased PKC α expression was associated with increased

proliferation, decreased differentiation, and a more transformed phenotype (Scaglione-Sewell et

al. 1998). The possible mechanism whereby PKC α mediates its antiproliferative effect may

involve induction of expression of p21waf1, a cell cycle regulatory protein (Frey et al. 1997,

Abraham et al. 1998). PKC α was shown to control the expression of adhesion molecules in

human colon carcinoma cells, thereby supporting the role of PKC α in differentiation.

(Chakrabarty et al. 1998). However, the study of Hochegger and co-workers (1999) argues

against the growth inhibitory role of PKC α in the colon. Instead, oligonucleotides directed

against PKC α and β resulted in inhibition of DNA synthesis, indicating that both isozymes

induce proliferation.

The two novel isoforms PKC δ and ε seem to have opposite functions in colonocytes. A recent

study with colon cancer cell lines demonstrated that activation of PKC ε triggers proliferative
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signals, whereas activation of PKC δ leads to apoptotic signals (Weller et al. 1999).

Immunohistochemical studies on PKC isozyme distribution along the colonic crypt axis also

support the role of PKC δ in mediating postmitotic events in colonocytes in situ (Kahl-Rainer et

al. 1996, Verstovsek et al. 1998).

Atypical PKCs ζ and λ can be activated by different growth factors (Akimoto et al. 1996, Liu et

al. 1998) and cytokines (Müller et al. 1995, Limatola et al. 1997) and they have been involved in

mediating growth, differentiation, and maturation in several cell types (Dominguez et al. 1992,

Berra et al. 1993, Liu et al. 1998). Suggested downstream targets of PKC ζ include at least the

κB nuclear factor (NF-κB; Lozano et al. 1994, Müller et al. 1995), the AP-1 transcription factor

(Ways et al. 1994), and MAPKs (Berra et al. 1995). PKC  ζ= has also been shown to interact with

the Ras protein in fibroblasts (Diaz-Meco et al. 1994) and to be involved in regulating the

endocytic membrane transport of the epidermal growth factor receptor in HeLa cells (Sanchez et

al. 1998). In normal rat colonic epithelium, PKC ζ has been found to be expressed predominantly

in the postmitotic cells of the upper crypt and surface mucosa, supporting a role for PKC ζ in

mediating maturation of colonocytes (Kahl-Rainer et al. 1996, Verstovek et al. 1998).

Role in colon cancer

A number of studies have shown that PKC activity and isozyme expression are changed during

colon carcinogenesis. PKC activity in colon tumours of both human (Guillem et al. 1987, Kopp

et al. 1991, Kusunoki et al. 1992, Levy et al. 1993) and animal origin (Baum et al. 1990, Wali et

al. 1991, Craven and DeRubertis 1992) is reduced when compared with the surrounding

uninvolved mucosa. In experimental animals, the levels of PKCs α, δ, and ζ have been down-

regulated and the levels of =β/β2 have been up-regulated in carcinogen-induced colon tumours

(Craven and DeRubertis 1992, Roy et al. 1995, Wali et al. 1995, Jiang et al. 1997a). However,

there are some inconsistencies in the human observations. Kahl-Rainer and co-workers (1994)

reported reduced protein expression of all PKCs except β that was neither decreased nor

increased. In contrast, the study by Davidson and co-workers (1994) showed increased levels of

all the PKC isozymes in adenocarcinomas when compared with the normal mucosa. The increase

was most pronounced in PKC β levels. One study demonstrated down-regulation of PKC β and ε
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and up-regulation of PKC δ, while no change occurred in the levels of PKC α and ζ (Pongracz et

al. 1995). This discrepancy in results between different studies is probably due to differences in

sample taking as well as in experimental procedures to analyse PKC activity and expression.

Several studies indicate involvement of PKC β2 in malignant transformation of colonocytes. In

carcinogen injected animals, both PKC β2 expression and membrane/particulate association were

increased in tumours relative to the uninvolved surrounding mucosa (Wali et al. 1995),

suggesting that membrane association of PKC β2 may be related to the growth advantage of

tumour cells. This is supported by a recent in vivo study showing that transgenic mice

overexpressing PKC β2 exhibit hyperproliferation in their colonic epithelium and have an

increased susceptibility to azoxymethane(AOM)-induced aberrant crypt foci (ACF),

preneoplastic lesions in the colon (Murray et al. 1999). PKC ε=has also been implicated in the

promotion of colon cancer. Perletti and co-workers (1996) showed that PKC ε=could act as an

oncoprotein when modestly overexpressed in nontumourigenic rat colonic epithelial cells. The

same group also demonstrated with an in vitro model of colon carcinogenesis that PKC δ

suppresses growth and reverses the transformed phenotype of the epithelial cells (Perletti et al.

1999). This result emphasises the potency of PKC δ in inhibiting the carcinogenic process. The

exact role of atypical PKC ζ and λ in colonic tumourigenesis is less well known. However, the

anti-inflammatory drug piroxicam was able to prevent the carcinogen-induced down-regulation

of PKC ζ in rat colon, which was associated with reduction in tumour incidence (Roy et al.

1995).

In summary, there are abundant data to show the central role of PKC isozymes in the normal

regulation of colonic proliferation and differentation as well as in malignant transformation.

However, the specific cellular functions of all the isozymes in the colon are not yet fully

understood, which makes the relation between PKC and colon carcinogenesis complex, though

not less important.
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2.2 Adenomatous polyposis coli/ββββ-catenin

Description of the pathway

The following presentation of the APC/β-catenin pathway is mainly based on the reviews of

Barth et al. (1997), Ilyas and Tomlinson (1997), Ben Ze`ev and Geiger (1998), Eastman and

Grosschedl (1999), and Pennisi (1999). APC is a huge cytoplasmic protein that regulates cellular

β-catenin levels. In the cytoplasm APC forms a multiprotein complex with two other proteins,

glycogen synthase kinase 3β=(GSK3β) and axin. In this complex, APC binds β-catenin, GSK3β

phosphorylates both APC and β-catenin thereby strengthening their interaction as well as

marking β-catenin for degradation. Axin binds simultaneously and directly with β-catenin, APC,

and GSK3β, thus stimulating GSK3β-dependent phosphorylation and β-catenin degradation.

Wnt glycoproteins convey signals of growth and development between cells. The Wnt signalling

antagonises the activity of the APC-GSK3β-axin complex, resulting in an increase in free

cytoplasmic β-catenin. This signalling cascade is initiated by the binding of the secreted Wnt to

the Frizzeled family of transmembrane receptors. These receptors activate the cytoplasmic

phosphoprotein Dishevelled, which inhibits GSK3β activity, either directly or possibly through

PKC β2 (Cook et al. 1996, Murray et al. 1999). Inhibition of GSK3β=leads to accumulation of

hypophosphorylated and thus stabilised β-catenin in the cytoplasm. Stabilised β-catenin

relocalizes to the nucleus, where it binds to the transcription factor T cell factor-4 (Tcf-4),

thereby enhancing expression of several genes involved in cell growth. The putative target genes

of the β-catenin/Tcf-4 complex include the c-MYC oncogene (He et al. 1998), peroxisome

proliferator-activated receptor δ (PPARδ) gene (He et al. 1999), the cyclin D1 gene (Tetsu and

McCormick 1999), and others such as the connective tissue growth factor WISP genes (Pennica

et al. 1998), the transcription factor c-JUN and FRA-1 genes (Mann et al. 1999), and possibly the

cell surface glycoprotein CD44 gene (Wielenga et al. 1999).

In addition to the Wnt signalling, β-catenin also takes part in regulation of cell adhesion and

motility. The cellular β-catenin pool mediating adhesion is located in adherens junctions at the

plasma membrane. Adherens junctions are multiprotein complexes involved in cell-to-cell
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contacts. The heart of this complex are transmembrane E-cadherin proteins. The cytoplasmic tail

of E-cadherin binds β-catenin, which in turn complexes with α-catenin. α-catenin connects the E-

cadherin-β-catenin complex to the actin cytoskeleton through vinculin. This linkage to the actin

cytoskeleton is essential for the adhesion function of cadherins. Tyrosine phosphorylation of β-

catenin has been implicated in the negative regulation of cell adhesion (Barth et al. 1997,

Eastman and Grosschedl 1999). β-catenin can be tyrosine phosphorylated by the epidermal

growth factor receptor and non-receptor tyrosine kinases, which may lead to disruption of

interactions between=β-catenin and cadherin or cadherin-catenin complex and the cytoskeleton

(Hazan and Norton 1998, Rosato et al. 1998), and thus to decreased adhesion.

Role in colon cancer

The APC tumour suppressor gene is inactivated by somatic mutation in the majority of sporadic

colorectal tumours (Kinzler and Vogelstein 1996). Germline mutations in the APC gene cause

familial adenomatous polyposis (FAP), an autosomal dominantly inherited disease in humans that

predisposes to colorectal cancer. FAP patients develop hundreds to thousands of adenomas

predominantly in the lower gastrointestinal tract. If not removed, some of these tumours will

progress to cancer. Based on these observations, APC is considered as the gatekeeper for colonic

tumourigenesis. Altogether five murine models of human FAP have been created during the last

ten years (Alexander 2000, Sasai et al. 2000). These mouse strains possess an induced germline

mutation in the Apc gene which is a murine homologue of the human APC gene. Of these mouse

models, the Min mouse (Min, multiple intestinal neoplasia) has been used most frequently to

study the role of the Wnt/APC/β-catenin pathway in intestinal tumour development.

Inactivating mutation of the APC gene is an early, initiating event in colon carcinogenesis,

resulting in expression of truncated APC protein. Mutant APC protein is unable to down-regulate

β-catenin  (Morin et al. 1997), which is critical for APC’s tumour suppressor function. It is

considered that elevation of cytosolic free β-catenin leads to enhanced translocation of β-catenin

to the nucleus, its association with the Tcf-4 transcription factor, and thus abnormal

transcriptional activity of the genes promoting cell proliferation. Indeed, colon carcinoma cells

mutant for APC contain a stable β-catenin/Tcf-4 complex in the nuclei that is constitutively

active (Korinek et al. 1997). Reintroduction of wild-type APC removed β-catenin from Tcf-4 and
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inhibited transcriptional activation in these cells. In addition to APC mutations, activating

mutations in the β-catenin gene can also result in elevated β-catenin/Tcf-4 mediated

transcriptional activation (Morin et al. 1997). The role of β-catenin in colon tumourigenesis is

further supported by studies showing that tumour cells from colorectal cancer patients exhibit

reduced β-catenin in the cytoskeletal fraction and increased β-catenin in the cytosolic and nuclear

fractions (Herter et al. 1999, Hugh et al. 1999).

APC and β-catenin may affect colonic tumourigenesis partly through their effects on cell

adhesion and thus on cell-to-cell interactions, which is independent of the Wnt pathway

regulating cell proliferation. In Min mice, the histologically normal intestinal epithelium revealed

elevated β-catenin levels and changes in proliferation and apoptosis, which were associated with

decreased rate of crypt-villus migration (Mahmoud et al. 1997). This abnormal migration could

be due to disturbances in function of β-catenin/E-cadherin complexes in the adherens junctions.

E-cadherin has been suggested to act as a tumour suppressor gene (Christofori and Semb 1999)

and the loss of E-cadherin mediated cell adhesion has been demonstrated to be causally involved

in the progression from adenoma to carcinoma in vivo (Perl et al. 1998). Because β-catenin is

essential for the adhesion function of cadherins, changes in intracellular β-catenin distribution are

likely to affect cell adhesion. The role of APC protein in adhesion is less clear though it is known

that wild-type APC associates with the cytoskeleton by binding microtubules, while the mutated

APC does not (Munemitsu et al. 1994). This suggests that APC may also be involved in β-

catenin mediated cell-to-cell signalling.

2.3 Sphingomyelinase

Description of the pathway

Sphingolipids are located in cellular membranes and are important for the maintenance of

membrane structure. Recent studies have revealed that sphingolipids, sphingomyelin in

particular, may also serve as substrates for a cell signal transduction pathway related to cell

growth suppression (reviewed by Duan 1998). Activation of sphingomyelinases results in

hydrolysis of sphingomyelin and formation of ceramide, a putative lipid second messenger.

Ceramide has been shown to induce apoptosis and cell cycle arrest (Obeid et al. 1993, Jayadev et
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al. 1995) as well as inhibit cell proliferation and stimulate cell differentiation (Okazi et al. 1990,

Hannun 1994). Ceramide may be further metabolised to sphingosine which can either be re-

acylated back to ceramide or be phosphorylated to sphingosine-1-phosphate (Shimojo and

Schroepfer 1976, Hassler and Bell 1993). Sphingosine inhibits growth and induces apoptosis

(Hannun 1994, Jayadev et al. 1995), whereas sphingosine-1-phosphate promotes proliferation

and inhibits apoptosis (Olivera and Spiegel 1993, Cuvillier et al. 1998).

Three types of sphingomyelinases differing in their pH optimum and cellular localisation have

been identified. Acid sphingomyelinase is a lysosomal enzyme with an optimal activity at pH 5.0

(Spence 1993). Neutral sphingomyelinase presumably exists in two different forms. The classical

form is a plasma membrane associated enzyme with a requirement for Mg2+ ions and a pH

optimum at 7.4 (Chatterjee 1993). A soluble Mg2+ -independent neutral sphingomyelinase has

been reported to be present in the cytosol (Okazi et al. 1994). Acid and neutral

sphingomyelinases are expressed ubiquitously in mammalian tissues. Alkaline sphingomyelinase

with a pH optimum of 9.0 is specific to the intestinal tract (Nilson 1969). Its activity is high in the

small intestine and still considerable in the colon, with a decreasing gradient towards the rectum

(Duan et al. 1996). Sphingomyelinases can be activated by a variety of extracellular agonists,

such as tumour necrosis factor α, interferon-γ, interleukin-1β, and 1,25-dihydroxy vitamin D3.

Environmental stress factors including heat shock and ionising and ultraviolet radiation are also

known inducers of sphingomyelin hydrolysis (for a review see Kolesnick and Krönke 1998).

Ceramide produced by sphingomyelinases is thought to mediate its effects on cell functions

through altering the phosphorylation status of proteins and thus the activity of transcriptional

factors, for example inducing c-MYC down-regulation (Duan 1998). Ceramide produced by acid

sphingomyelinase may have a specific role in activating atypical PKC ζ=, which in turn leads to

activation of the transcriptional factor NF-κB (Lozano et al. 1994, Müller et al. 1995). Ceramide

might also inactivate PKC α by causing dephosphorylation of the enzyme (Jones and Murray

1995). Another member of the sphingomyelin pathway, sphingosine, is known to interact with

PKC since an early study showed that sphingosine is an inhibitor of PKC activity (Hannun et al.

1986).
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Role in colon cancer

Several types of findings indicate that sphingomyelinases may play an active role in colonic

malignant transformation. Sphingomyelin levels are increased in human colon carcinomas as well

as in the colonic mucosa of carcinogen-treated rats (Dudeja et al. 1986, Merchant et al. 1995). In

FAP patients, the activities of all the three types of sphingomyelinases are reduced in colorectal

carcinomas compared with the surrounding tissue (Hertervig et al. 1997). In mice treated with

dimethylhydrazine, supplementation of the diet with sphingomyelin reduces the number of ACF

and the appearance of adenocarcinoma in the colon (Dillehay et al. 1994, Schmeltz et al. 1997).

Certain dietary constituents, such as dairy products and meat, contain sphingomyelin as well as

other cell membrane phospholipids (Blank et al. 1992), which might affect colonic sphingolipid

signalling and thus colon tumourigenesis. Although promising, the evidence regarding the role of

sphingolipids in colon carcinogenesis is based on relatively few studies and therefore

comprehensive conclusions are not yet possible.

2.4. Cyclooxygenase

Cyclooxygenase (COX) catalyses the conversion of arachidonic acid (AA) to prostaglandin

endoperoxide H2, which is the direct precursor of various prostaglandins,

hydroxyeicosatetraenoic acids, and other eicosanoids. Two isoforms of COX exist: COX-1 is

constitutively expressed in many tissues and cell types, whereas COX-2 is an inducible form

frequently up regulated by mitogens, cytokines, and tumour promoters (Williams et al. 1997).

The two isoforms have both overlapping as well as distinct physiological and pathological

functions.

Role in colon cancer

Elevated COX-2 expression is currently presumed to play an important role in colon

tumourigenesis. Human colon adenocarcinomas have been demonstrated to have increased COX-

2 expression when compared to normal adjacent mucosa (Eberhart et al. 1994). These findings

are supported by animal studies that have shown elevated levels of COX-2 in colon tumours of

carcinogen-treated rats (DuBois et al. 1996) and intestinal adenomas of Min mice (Williams et al.

1996). Furthermore, treatment with sulindac, a non-steroidal anti-inflammatory drug (NSAID)
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inhibiting both COX-1 and COX-2, markedly reduced tumour formation as well as decreased

COX-2 expression and prostaglandin E2 (PGE2) levels in the intestine of Min mice (Boolbol et al.

1996). Celecoxib, a specific COX-2 inhibitor, suppressed AOM-induced tumour number and

incidence in rats by more than 90% (Kawamori et al. 1998). These results suggest a causative

role for COX-2 in colonic tumour promotion, which is probably mediated by enhanced

production of PGE2. The mechanisms of the tumour promotive action of PGE2 may involve

inhibition of apoptosis due to increased Bcl-2 protein levels (Sheng et al. 1998) and induction of

angiogenesis (Tsujii et al. 1998). However, it is noteworthy that the tumour suppressive effect of

NSAIDs may not be entirely mediated through COX inhibition because NSAIDs induced

apoptosis in colon cancer cell line has been shown to be independent of PGE2 (Earnest et al.

1997).

A number of studies have also suggested a close interaction between COX-2 and the APC-β-

catenin pathway (reviewed in Prescott and White 1996). The most convincing evidence for this

interaction comes from a study by Oshima and co-workers (1996). They introduced a knockout

mutation of the COX-2 gene to the Apc∆716 mice and found that the number and size of intestinal

polyps in the mice with a disrupted COX-2 gene were dramatically reduced when compared to

mice with a fully functioning COX-2 gene. It has been hypothesised that loss of both APC alleles

at the early stage of the cancer process will induce COX-2 expression, leading to self-promotion

of tumourigenesis (Prescott and White 1996).
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3. EPIDEMIOLOGICAL AND EXPERIMENTAL EVIDENCE ON DIET AND COLON

CANCER

This section gives a brief overview of the epidemiological and experimental evidence concerning

the role of fat, red meat, and fibre rich foods in colon cancer. Because of the large body of

evidence, only the studies considered to be most significant are referred here. The other dietary

factors possibly associated with colon cancer are calcium, folates, vitamin D, vitamin E,

carotenoids, and selenium. They are not within the scope of this work and are not reviewed here.

Interested readers are referred to the World Cancer Research Fund report (1997). The purpose of

this section is to offer a background to help the reader understand the mechanistic approach used

in Studies I - VI of this dissertation.

3.1 Fat

Ecological studies, most of which were carried out in the 1970s, have reported a strong

correlation between national per capita consumption of fat and mortality or incidence of

colorectal cancer (see Potter et al. 1993). Based on these studies, the leading hypothesis until the

beginning of the 1990s has been that dietary fat is the most important dietary risk factor for colon

cancer. Most of the results from the earlier case-control studies have supported this hypothesis

(Potter et al. 1993). However, a number of these studies did not distinguish fat intake from total

energy intake. Fat and energy intakes are highly correlated with each other, and animal studies

have shown that energy intake is a strong determinant of tumour growth in chemically induced

colon carcinogenesis (Klurfeld et al. 1987). Therefore, the results of the earlier case-control

studies may have been misinterpreted. A recent combined analysis of 13 case-control studies

found no independent effect of fat on colon cancer risk after adjustment for total energy intake

(Howe et al. 1997). Moreover, of the four prospective cohort studies that controlled for the total

energy intake (Willet et al. 1990, Bostick et al. 1994, Giovannucci et al. 1994, Goldbohm et al.

1994), none found a significant positive association between total fat and the risk of colon cancer.

In respect of the subgroups of fat, the Nurses’ Health Study (Willet et al. 1990) reported a

twofold higher risk of colon cancer in women in the highest quintile compared with those in the

lowest quintile of animal fat intake. The other three studies did not find any association between
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animal, vegetable, or polyunsaturated fat and the risk of colon cancer (Bostick et al. 1994,

Giovannucci et al. 1994, Goldbohm et al. 1994).

A considerable number of experimental studies with rodent colon carcinogenesis model have

been conducted to elucidate the effects of fat quantity and type on colonic tumour development.

In some studies, diets high (20% by weight) in corn oil, safflower oil, beef tallow or lard have

increased the incidence of colon cancer in carcinogen-treated rats compared with low fat diets

(5% by weight) (Reddy 1992). No promoting effect on colonic tumourigenesis could be seen

when rats were fed large amounts of olive oil, coconut oil, fish oil or hydrogenated fat high in

trans fatty acids (Reddy 1992). For corn oil and beef tallow, there are experiments that have

shown no increase in tumour incidence even though the level of these fats in diets has been 24%

by weight (Nauss et al. 1983). The discrepancy in results between different studies is probably

due to differences in the experimental procedures, including the species, strain, and sex of

animals used. The type of carcinogen and its administration way have also varied among the

studies. A quantitative analysis of 14 studies of rat colon carcinogenesis demonstrated a rather

strong positive relationship between total fat intake and tumour incidence in F344 rats but not in

Sprague-Dawley rats (Zhao et al. 1991). When the type of fat was taken into account, the results

for both strains suggested a negative relationship between tumour incidence and n-3 fatty acids.

A positive relationship between n-6 polyunsaturated fatty acids and tumour incidence was seen in

F344 rats only, while monounsaturated and saturated fats were not associated with

tumourigenesis (Zhao et al. 1991).

Dietary fats have also been studied in Apc mutated mice characterised by the development of

spontaneous intestinal tumours along the entire intestine. In Min mice, a diet high in corn oil

(15% by weight) and thus high in polyunsaturated n-6 fatty acids was found to increase adenoma

number in both the small and large intestine (Wasan et al. 1997), supporting the results of some

earlier rat studies. Two studies have examined the role of n-3 fish oil fatty acids in colon tumour

development. In the first study, supplementation of AIN76A diet with 3% of docosahexaenoic

acid (DHA) decreased tumour number in the intestine of Apc∆716 mice, though only in females

(Oshima et al. 1995). In the second study, Min mice were fed varying amounts of

eicosapentaenoic (EPA) and DHA enriched fish oil concentrate that was mixed with corn oil so
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that the total oil content in the AIN76A-based diets was 12% (Paulsen et al. 1997). The fish oil

concentrate reduced tumour number in both male and female mice when compared with the

control group which had 12% pure corn oil in the diet (Paulsen et al. 1997). Taken together,

recent epidemiological studies do not support a promotive effect of fat on colon cancer.

Experimental studies strongly suggest that fish oil rich in n-3 fatty acids protects against colon

cancer, whereas the role of saturated and n-6 fatty acids has been partly controversial.

3.2 Red meat

Although early ecological and case-control studies suggested that red meat consumption is

positively associated with colon cancer risk, the promotive effect of red meat on colon

carcinogenesis was mostly attributed to the fat content of meat. In the beginning of the 1990s,

two large cohort studies in the U.S. demonstrated that intake of red meat is a stronger risk factor

for colon cancer than total fat intake (Willett et al. 1990, Giovannucci et al. 1994). The Health

Professionals Follow-Up Study, in particular, found a direct association between red meat

consumption and colon cancer risk while no association was observed with total fat or animal fat

(Giovannucci et al. 1994). These results have only partly been supported by the other recent

cohort studies. In the cohort study from the Netherlands, consumption of processed meats but not

fresh meat was related to an elevated colon cancer risk (Goldbohm et al. 1994), whereas four

other cohorts showed no increase in risk with meat consumption (Thun et al. 1992, Bostic et al.

1994, Knekt et al. 1994b, Kato et al. 1997). The most recent cohort study reported an elevated

risk in Seventh-day Adventists in association with higher intakes of both red and white meat

(Singh and Fraser 1998).

So far seven studies have determined the effects of red meat on colon carcinogenesis in

experimental animals. The results have been mixed and extremely difficult to interpret because of

the differences in other components than the protein source of the experimental diets. An early

study demonstrated that beef and soybean proteins did not differ in their effects on colonic

tumour development. Feeding diets high in both beef or soybean resulted in an increased number

of total adenomas and adenocarcinomas in rat colon compared with feeding their low-protein

counterparts (Reddy et al. 1976). The studies by Nutter and co-workers (1983 and 1990)
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suggested that milk proteins might be more tumour promoting than beef, but the experimental

diets used in these studies differed in respect to type and amount of fat and therefore the

comparisons between beef and milk proteins may not be valid. Three studies have controlled for

the fat content of the diets. Of these studies, one examined the effects of red meat (kangaroo

skeletal muscle), soybean meal, casein, and whey concentrate on colonic tumour development in

rats and found that red meat- and soybean-fed animals had significantly higher number of

intestinal tumours than those fed dairy proteins (McIntosh et al. 1995). The other two studies

compared beef to casein, with results showing either no difference in tumour development

between beef- and casein-fed rats (Lai et al. 1997) or a slightly suppressive effect of beef in a

low-fat context (Pence et al. 1995a). A recent study by Parnaud and co-workers (1998) found no

difference in multiplicity of colonic ACF in carcinogen-treated rats fed diets high in beef,

chicken, or bacon. The limitation of this study is that though ACF are considered to be the

earliest precursors of colonic tumours, their multiplicity has not always correlated with adenoma

incidence (Hardman et al. 1991). Overall, the epidemiological findings are generally supportive

of the promotive effect of red meat on colon carcinogenesis but experimental evidence for this is

very inconsistent and limited.

3.3 Fibre rich foods

The hypothesis that high-fibre diets protect against colorectal cancer is several decades old and

has been the subject of numerous studies. Case-control studies have generally supported the

protective role of fibre in colon cancer. A combined analysis of 13 case-control studies

demonstrated a strong, linear reduction in colon cancer risk with increasing fibre intake (Howe et

al. 1992). Prospective studies have not confirmed the findings from case-control studies. Of four

prospective studies, two found no association (Willett et al. 1990, Giovannucci et al. 1994) and

two only a weak protective association (Heilbrun et al 1989, Steinmetz et al. 1994). Importantly,

a very recent study containing a large cohort of nurses found no significant protective effect

against colorectal cancer of total dietary fibre, or fibre from cereals, vegetables, or fruits (Fuchs

et al. 1999). In this population, fibre from vegetables contributed most and cereal fibre least to

the total fibre intake. One reason for the discrepancy between the case-control and prospective

studies may be differences in study populations; all the prospective studies have been done in the



26

USA while populations in case-control studies have represented several nationalities with

differing dietary practices. The other reasons for inconsistent results most likely involve the

heterogeneous nature of fibre and fibre sources as well as differences in measuring fibre intake. It

is also possible that other substances associated with fibre-rich foods, such as vitamins, minerals,

phytate, and phytoestrogens, may account for the protective effect of fibre-rich foods. Whole-

grain products are a rich source of both the bioactive compounds and fibre, and whole-grain

intake has been associated with a reduced risk for colon cancer in two recent meta-analyses

(Jacobs et al. 1995 and 1998).

The effects of different fibre sources on experimental colonic tumour development have been

studied by using both carcinogen-treated rats and Apc mutated mice. The most studied fibre

sources include cereal brans, cellulose, and fibres extracted from various vegetables and fruits

such as carrots, sugar beets, and citrus fruits. Fruit and vegetable fibres are classified as soluble

fibres, based on their water solubility, and grain fibres as insoluble fibres. Oat fibre is an

exception since it contains considerable amounts of soluble fibre. The most consistent finding in

experimental colon cancer studies has been that wheat bran prevents tumour formation in the

colon of both rats (McIntry et al. 1993, Alabaster et al. 1995, Zoran et al. 1997) and Apc mutated

mice (Hioki et al. 1997). The results for other fibre types have been less consistent but in general

soluble fibres, such as oat bran, pectin, and guar gum, have increased rather than decreased the

number and incidence of colonic tumours in animal models (Jacobs and Lupton 1986, McIntry et

al. 1993, Zoran et al. 1997). Although whole grain rye products are consumed in large quantities

in Northern and Eastern Europe, only one study of the effects of rye bran on experimental colon

tumourigenesis has been published. In that study rye supplementation was shown to decrease

colonic tumour development in carcinogen-treated rats (Davies et al. 1999). This result is

expected since the composition of rye bran is close to that of wheat bran so that the two brans are

rich sources of both fibre and bioactive compounds, e.g. phytate and phytoestrogens (Mazur and

Adlercreuz 1998). Taken together, it seems that the protective effect of fibre is dependent on the

fibre type and that high-fibre foods contain other constituents that may independently or in

interaction with fibre contribute to colon cancer protection. This complex nature of the

relationship between fibre rich foods and colon carcinogenesis may also explain the inconsistent

results obtained in fibre studies.



27

4. PROPOSED MECHANISMS OF FAT, RED MEAT, AND FIBRE RICH FOODS IN

COLON CARCINOGENESIS

4.1 Mechanisms related to fat  

Over the past decades, modulation of intestinal bile acid metabolism and prostaglandin

production have been the two leading hypotheses whereby dietary factors are thought to affect

colon carcinogenesis (Figure 3). Especially fat is considered to act through these mechanisms but

also the effects of red meat and fibre may be partly explained by bile acids and prostaglandins.

Therefore this chapter contains some discussion concerning red meat and fibre although the

major subject is fat.

4.1.1 Bile acids and protein kinase C

Bile acid metabolism

Over 95% of primary bile acids, cholic acid and chenodeoxycholic acid, are reabsorbed in the

terminal ileum and returned to the liver through the portal vein (Nagengast et al. 1995). The

remaining 2-5% continue into the colon where they are converted to secondary bile acids,

deoxycholic acid and lithocholic acid, by anaerobic bacteria. The bacterial enzyme thought to be

responsible for the conversion is 7α-dehydroxylase (Reddy et al. 1996). The secondary bile acids

are postulated to have detrimental effects on the colonic epithelium and thus promote colon

cancer. Animal studies have demonstrated that bile acids induce hyperproliferation of colonic

epithelial cells (Lapre’ and Van der Meer 1992) and promote colonic tumourigenesis (Reddy et

al. 1977, McSherry et al. 1989). Studies with cancer cell lines indicate that the proliferative and

thus the tumour promoting effect of bile acids is likely to be mediated by their ability to induce

the activity of the transcription factor AP-1 (Hirano et al. 1996, Matheson et al. 1996,

Glinghammar et al. 1999). An early human study by Reddy and Wynder (1973) also described a

positive association between the incidence of colon cancer and faecal bile acid excretion.

Dietary fat is thought to promote tumourigenesis by increasing bile acid excretion, and thereby

luminal concentrations of secondary bile acids in the colon (Figure 3, Potter 1993, Nagengast et
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Figure 3. Possible mechanisms whereby dietary fat, meat, and fibre may affect colon tumour

development (modified from Reddy et al. 1996). AA, arachidonic acid; BA, bile acid; COX,

cyclooxygenase; DAG, diacylglycerol; EPA, eicosapentaenoic acid; PGs, prostaglandins; PLA2,

phopholipase A2; PLC, phospholipase C; PKC, protein kinase C; SCFA, short-chain fatty acid.

al. 1995). Because diets high in meat tend to be high in fat, the relationship between red meat

consumption and colon cancer has often been explained by the bile acid hypothesis. Dietary fibre

may prevent colon tumourigenesis by increasing stool bulk, which binds and dilutes bile acids,

and reduces transit time. This results in a shorter exposure of colonic epithelium to bile acids as
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well as to other potentially toxic compounds. Bacterial fermentation of fibre produces short-chain

fatty acids that decrease luminal pH and thereby inhibit the conversion of primary to secondary

bile acids  (Potter 1993). The experimental evidence concerning the bile acid hypothesis has not

been entirely supportive. Though diets high in corn oil have usually resulted in elevated levels of

secondary bile acids in faeces of experimental animals (Reddy et al. 1996), diets high in saturated

fats, such as butter and beef tallow, have not increased faecal bile acids (Chang et al. 1994,

Morotomi et al. 1997).

Bile acids and PKC

A more recent suggestion is that the interaction of fat, bile acids, and bacteria results in an

excessive production of luminal DAG, a physiological activator of PKC (Morotomi et al. 1990).

Indeed, it has been demonstrated that the colonic bacteria of human faecal specimens produce

DAG and this production is enhanced by the presence of bile acids, the secondary bile acid

deoxycholic acid being most potent in this respect (Morotomi et al. 1990). Luminal DAG was

also taken up by mucosal cells (Morotomi et al. 1991), indicating that luminal DAG would be

able to activate mucosal PKC pathway and thus stimulate cell proliferation.

Bile acids may also stimulate mucosal PKC activity directly. This is supported by the

observations that both primary and secondary bile acids are potent activators of PKC extracted

from human colon tissue samples (Pongracz et al. 1995) and that cholic acid feeding activates

mucosal PKC in rats (Pence et al. 1995b). Bile acids are also known to activate PKC in colon

cancer cell lines (Huang et al. 1992, Hirano et al. 1996). There is some evidence that bile acids

may be able to stimulate the activities of mucosal PLC (Nomoto et al. 1994) and PLA2

(DeRubertis et al. 1984) which in turn activate PKC by liberating DAG and AA from mucosal

phospholipids, respectively (Figure 3, Reddy et al. 1996). Colonic bacteria are known to exhibit

PLC activity (Reddy et al. 1996) and may therefore contribute to luminal DAG production. It has

also been suggested that specific fatty acids in red meat, such as palmitic acid (C16:0), may lead

to the formation of highly mitogenic DAG species (Friedman et al. 1989, Giovannucci and

Goldin 1997).
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It has been demonstrated that both dietary fat and fibre affect the composition and amount of

faecal DAG in rats (Pickering et al. 1995) and that fibre supplementation can reduce faecal DAG

concentration in humans (Reddy et al. 1994). Neither of these studies determined whether these

alterations in DAG were associated with mucosal PKC activity. In accordance with this

hypothesis, Reddy and co-workers (1996) found that carcinogen-treated rats fed a high corn oil

diet had higher levels of secondary bile acids and higher activities of bacterial 7α-dehydroxylase

and PLC as well as a lower mucosal activity of membrane PKC than rats fed a high fish oil diet

or a low fat control diet. In contrast, the study of Chapkin and co-workers (1993) showed an

increase in membrane PKC activity and membrane:cytosol ratio in rats fed fish oil compared to

corn oil-fed rats. The same study found no difference between the effects of pectin and cellulose

on PKC activity. Furthermore, feeding a diet containing 5% corn oil and 15% beef tallow

resulted in an increase in colon membrane PKC activity relative to a group fed a low corn oil diet

(Lafave et al. 1994). More recent studies have focused on the effects of corn oil and fish oil on

colonic PKC isozyme expression (Davidson et al. 1995, Jiang et al. 1997a). The results of these

studies suggest that the protective effect of fish oil against colon cancer may be partly mediated

through fish-oil induced changes in expression of specific PKC isozymes during the carcinogenic

process. Overall, relatively few studies have examined the effects of diet on colonic PKC activity

and isozyme expression, and because of the mixed results only limited conclusions can be made.

4.1.2 Prostaglandin production

An extensively studied mechanistic hypothesis has been that dietary fats affect colon

carcinogenesis through modulating the production of prostaglandins and other eicosanoids in the

colonic mucosa. This hypothesis is supported by a number of human and animal studies showing

that NSAIDs, inhibitors of COX enzymes, reduce both colonic prostaglandin biosynthesis and

tumourigenesis. Favourable dietary fat composition is thought to modulate phospholipid fatty

acid composition of mucosal cell membranes so that less AA would be available for

prostaglandin biosynthesis. This appears to be true for fish oil. For example, supplementation of

healthy volunteers with fish oil providing 4.4 g n-3 fatty acids per day for four weeks resulted in

decreased proliferation and PGE2 release from rectal biopsy specimens (Bartram et al. 1993). In

rats, feeding diet high in fish oil led to significantly lower AA content of mucosal phospholipids
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and lower PGE production when compared to feeding diets high in corn oil or beef tallow (Lee et

al. 1993). A recent study with carcinogen-treated rats demonstrated that rats fed fish oil had

decreased COX-2 expression as well as decreased tumour multiplicity and incidence when

compared with rats fed corn oil (Singh et al. 1997). Furthermore, supplementation with EPA

resulted in significant reductions in the AA content of phospholipids, PGE2 formation, and

tumour number in the intestine of Min mice (Hansen Petrik et al. 2000). These results confirm

that when dietary manipulation is able to suppress colonic prostaglandin production, it is also

likely to inhibit tumourigenesis. However, apart from large amounts of fish oil, there have been

no significant differences between the effects of saturated fats, mainly from animal origin, and

unsaturated fats, mainly vegetable oils with high linoleic acid content, on colonic AA levels and

prostaglandin production (Lee et al. 1993). Administration of pure AA at low to moderate

amounts has been shown to lead to its effective incorporation into tissue phospholipids and

enhanced prostaglandin production in experimental animals (Whelan et al. 1993). Therefore it is

possible that dietary AA, contributed by red meat intake, might be able to modulate eicosanoid

production to a significant extent.

4.2 Mechanisms related to red meat

Heterocyclic amines

A much-favoured hypothesis is that the promotive effect of red meat on colon cancer can be

explained by heterocyclic amines (HCA) that are formed during high-temperature cooking of

meat. HCAs are mutagenic (Wakabayashi et al. 1992) and PhIP (2-amino-1-methyl-6-

phenylimidatzo[4,5-b]-pyridine), the most abundant HCA in well-cooked meats, has been shown

to induce intestinal tumours in rats (Ito et al. 1991) and Min mice (Steffensen et al. 1997, Paulsen

et al. 1999). Furthermore, a recent study of Pence and co-workers (1998) demonstrated that the

feeding of a beef diet containing high levels of HCA enhanced colon tumour formation in

dimethylhydratzine-treated rats when compared with the corresponding diet low in HCAs,

although this was seen only in the low-fat context. A positive relation between cooking processes

and colon cancer risk has also been observed in some epidemiologic studies. A Swedish case-

control study found an elevated colon cancer risk among those meat eaters who frequently
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consumed brown gravy and preferred meat with a heavily browned surface (Gerhardsson de

Verdier et al. 1991).

The cancer risk related to HCAs may also depend on the extent to which HCAs are activated in

the body. Cytochrome P4501A2 and N-acetyltransferase-1 and -2 are responsible for the

metabolic activation of HCAs and all the three enzymes are known to be polymorphic in humans.

The N-acetyltransferase genotype, in particular, may be associated with colon cancer risk so that

red meat eaters may be at higher risk of colorectal cancer if they are rapid acetylators (Chen et al.

1998).

N-nitroso compounds

One possibility is that diets high in red meat lead to increased protein fermentation within the

colon, resulting in enhanced formation of endogenous carcinogens and tumour promoters. The

amount of protein in the diet is a primary determinant of the amount of nitrogen, mainly in the

form of protein, peptides, and amino acids, entering the colon (Silvester and Cummings 1995).

These nitrogen sources could be fermented by colonic bacteria to potentially harmful or toxic

substances, such as ammonia and N-nitroso compounds. High luminal ammonia concentrations

have been associated with increased cell proliferation (Lin and Visek 1991a and 1991b), and

ammonia has been shown to promote colon carcinogenesis in the rat (Clinton et al. 1988).

Luminal N-nitroso compounds may be an important source of DNA-damaging alkylating agents

which may produce base substitutions characteristic of those found commonly in colon tumours

(Saffhill et al. 1985, Jacoby et al. 1993). In human volunteers, high red meat consumption (600g

per day) led to increased plasma urea and faecal ammonia levels, and 3-fold increase in faecal N-

nitroso compounds, whereas consumption of 600 g white meat and fish had no such effect

(Bingham et al. 1996, Silvester et al. 1997). The authors concluded that the increase in faecal N-

nitroso compounds is brought about by a specific effect of red meat and may be partly due to

heme iron being a catalyst for N-nitroso compound formation.

Iron

The high iron content of red meat may also contribute to colon carcinogenesis. It has been

suggested that iron increases colon cancer risk either by elevating faecal iron (Babbs 1990) or by
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elevating tissue iron (Toyokuni 1996). High amounts of unabsorbed faecal iron may lead to

enhanced generation of free radicals at the mucosal surface of the colon and thus to increased

lipid peroxidation and DNA damage. In addition, iron may catalyse the formation of tumour

promoters or the conversion of pro-carcinogen to carcinogen within the lumen of the colon

(Babbs 1990). Excess plasma iron in the form of iron-transferrin may stimulate mucosal cell

proliferation by providing biologically available iron for cell growth. Alternatively, iron overload

could induce oxidative stress leading to tissue damage (Toyokuni 1996).

In line with these hypotheses, high dietary iron was shown to increase crypt cell proliferation and

tumour development in the colon of carcinogen-treated rats (Nelson et al. 1989). However,

dietary iron at a level more representative of human intake had no effect on cell proliferation,

lipid peroxidation, or ACF development in AOM-treated rats (Soyars and Fischer 1998). Studies

in humans have supported the positive association between body iron stores and colon cancer risk

(Knekt et al. 1994a, Wurzelman et al. 1996). Knekt and co-workers (1994a) found an elevated

risk of colon cancer in men and women with transferrin saturation over 60%. Another recent

study reported a positive relationship between colon cancer and serum iron in women

(Wurzelman et al. 1996).

4.3 Mechanisms related to fibre rich foods

Butyrate

In addition to the bulking effect and dilution capacity, dietary fibre may affect colon

carcinogenesis through its fermentation products, such as butyrate, propionate, and acetate. Of

these short-chain fatty acids, butyrate has been suggested to play an important role in colon

cancer prevention. Butyrate is the principal energy source of the epithelial cells (Roediger 1982)

and it also takes part in regulation of cell proliferation, differentiation, and apoptosis. The effects

of butyrate on these cellular processes have often been opposite in normal colonocytes relative to

neoplastic colonic cells. In normal colonocytes butyrate has been shown to increase cell

proliferation (Sakata 1987, Lupton and Kurtz 1993), whereas in colon cancer cell lines butyrate

has promoted expression of differentiation markers (Whitehead et al. 1986) and induced

apoptosis (Hague et al. 1995). The growth inhibitory effect of butyrate in colon cancer cells may
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be mediated by histone hyperacetylation and induction of p21waf1, a cell cycle regulatory protein

(Archer et al. 1998).

Experimental colon cancer studies partly support the protective effect of butyrate in vivo. McIntry

and co-workers (1991) demonstrated that rats fed wheat bran maintained relatively high butyrate

concentrations in the luminal contents along the entire length of their large intestine, particularly

in the distal colon. In a further study they showed that wheat bran reduced colonic tumour

development and that tumour mass was negatively correlated with faecal butyrate concentration

in carcinogen-treated rats (McIntry et al. 1993). They concluded that the protective effect of

wheat bran is due to its ability to maintain butyrate production in the distal colon where the

majority of tumours occur. In contrast, Zoran and co-workers (1997) compared the effects of oat

bran and wheat bran in a rat colon cancer model and found no relationship between tumour

formation and high butyrate concentrations in the distal colon. Rats fed oat bran had significantly

higher butyrate concentrations in both the proximal and distal colon but also significantly more

tumours than wheat bran-fed rats.

Antioxidants and phytoestrogens

In addition to the fibre content, fibre rich foods contain a number of other substances that may

have cancer preventive effects. Whole grains contain vitamins, trace minerals, and phenolic

compounds such as phytic acids and phytoestrogens. Of these compounds, vitamin E, selenium,

phenolic acids, and phytate have been proposed to function as antioxidants, protecting cells from

oxidative damage (Slavin et al. 1999). Phenolic compounds may also induce the detoxification

systems, specifically the phase II conjugation reactions.

Whole grains, especially rye and wheat, are rich sources of the plant lignans, so called

phytoestrogens, which are converted by gut bacteria to the mammalian lignans enterolactone and

enterodiol (Adlercreutz and Mazur 1997). These phytoestrogens have been proposed to bind

weakly to the oestrogen receptor and therefore they may have either a mild oestrogen-like action

or they may antagonise oestrogen action. Phytoestrogens may have relevance in colon cancer

prevention because age-related hypermethylation of the oestrogen receptor gene is currently

thought to be one of the molecular pathways leading to colon cancer (Issa et al. 1994). In colon
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cancer cells, hypermethylation results in inactivation of the oestrogen receptor gene, which is

accompanied by deregulated growth (Issa et al. 1994). Circulating oestrogens have been shown to

modulate the expression of oestrogen receptor in several tissues (Tata et al. 1993), suggesting

that blood levels of oestrogens or phytoestrogens might be able to attenuate the inactivating effect

of hypermethylation on the oestrogen receptor gene. This hypothesis is supported by some

epidemiological studies which have shown that postmenopausal oestrogen replacement is

associated with a reduced risk of colon cancer (reviewed in Giovannucci and Platz 1999).

Furthermore, in carcinogen-treated rats feeding phytoestrogen sources, such as flaxseed or lignan

precursor, inhibits ACF formation in the colon (Serraino and Thompson 1992, Jenab and

Thompson 1996). However, it is not yet clear whether these tumour preventive effects of

phytoestrogens are really oestrogen receptor mediated since these compounds have not always

shown oestrogenic or antioestrogenic activity or response though they have been effective in

inhibiting tumour growth (Saarinen et al. 2000).
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5. OBJECTIVES OF THE STUDY

Diet is considered to be one of the most important environmental contributors to the development

of colon cancer. Based on epidemiological findings, the main three dietary factors thought to

modulate colon carcinogenesis are fat, red meat, and fibre rich foods. A number of

epidemiological and experimental studies have tried to determine the relationship between these

dietary factors and colonic tumour formation but the results have been more or less controversial.

Therefore, studies elucidating the mechanisms by which diet may modulate colon tumourigenesis

would help in setting future dietary recommendations. This dissertation summarises the results of

six studies which were carried out to determine the effects of fat, red meat, and different fibre

sources on cell signal transduction molecules, mainly on PKC, in the colonic mucosa of healthy

rats and on tumour development in the intestine of Min mice.

This dissertation specifically aims to answer the following questions:

1. Do type and amount of dietary fat, red meat (beef) or different fibre sources affect steady-

state PKC activity and isozyme expression in the colonic mucosa of rats (I, II, III, IV, V)?

2. Are these effects mediated by changes in mucosal phospholipid fatty acid composition and/or

faecal DAG (II, III, V)?

3. Does beef affect colonic sphingomyelinase activities (III, IV)?

4. Are the effects of beef related to its arachidonic acid content (III)?

5. Do dietary fat, beef, and different fibre sources modulate intestinal tumour development in

Min mice (VI)?

6. Could the dietary effects on tumour development be explained by changes in PKC and β-

catenin (VI)?
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6. STUDY DESIGNS AND METHODS

6.1 Study designs and diets

Studies I and II

These two studies were carried out to determine whether type and amount of dietary fat affect

steady-state PKC activity in rat colonic mucosa. In Study I, rats were fed one of the three high-fat

diets (43% energy from fat) containing either butter (high in saturated fatty acids), rapeseed oil

(high in n-9 fatty acids), or sunflower seed oil (high in n-6 fatty acids) as a fat source. The control

group was fed a low-fat (10% of energy) sunflower-seed-oil diet. Total PKC activity and fatty

acid composition of the colonic mucosa were analysed after a four-week feeding period.

Because the results of Study I indicated that a high-fat butter diet increases colonic PKC activity,

Study II was done to see whether this observation is typical of saturated fats in general or specific

for fats rich in certain types of saturated fatty acids, i.e. palmitic (16:0) and stearic (18:0) acids.

Therefore, the effects of two different saturated fats, butter and coconut oil, were compared in

Study II. Two levels of the fats (10% and 43% of energy) were used to study the effect of fat

amount on PKC activity. Because dietary fat is likely to affect colonic PKC activity by

modulating PKC activators in luminal contents and/or mucosal cells, faecal DAG concentration

and mucosal phospholipid fatty acid composition were analysed.

Studies III and IV

Study III consisted of two experiments referred to as IIIa and IIIb. Study IIIa was done to

compare the effects of two protein sources, casein and beef, on colonic PKC activity and faecal

DAG concentration in rats. To ensure the same protein concentration of the AIN93G-based diets

(i.e. 20% by weight, Reeves et al. 1993), the beef was dried to constant moisture and ground

before addition to the diet. Apart from the protein composition, the beef diet differed from the

casein diet in that it contained lipids of cell membranes and a small amount of AA.

Study IIIa showed that the beef diet induced PKC activation in the colonic mucosa and therefore

Study IIIb was carried out to determine whether this effect was due to the small but possibly
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biological active amount of AA present in the beef diet. Because fish oil fatty acids are known to

antagonise several cellular functions induced by AA, a fish oil-supplemented group was also

included in the study. Rats were fed an AIN-93G basal diet which was supplemented with a daily

dose of 300 ml soybean oil (control group), or 8 mg of AA in 300 ml soybean oil, or a mixture of

99 mg of EPA and 67 mg of DHA. The supplements were given by syringe to ensure that each rat

received the proper dose. Mucosal PKC activity, PGE2 concentration, activities of acid, neutral

and alkaline sphingomyelinases, and fatty acid composition of phospholipids were analysed after

the supplementation period of four weeks.

Study IV was done to extend the findings of Study IIIa by determining the effects of a high-beef

diet on PKC isozyme expression. The PKC isozymes analysed were PKC α, β2, δ, ζ/λ,= and ζ.

Sphingomyelinase activities were also analysed.

Study V

Study V was designed to test whether different fibre sources are able to modulate PKC activity

and isozyme expression in rat colonic mucosa and if so, whether these effects are mediated by

changes in luminal DAG levels. Rats were fed one of the following AIN93G-based diets: a non-

fibre high-fat diet or one of the four high-fat diets supplemented with either rye, oat or wheat

bran or inulin at 100 g/kg diet. As the non-fibre diet was designed to approximate an average

human Western type diet its fat content was high, i.e. 40% of energy, and the ratio of

saturated:monounsaturated:polyunsaturated fatty acids was approximately 3:2:1 of the energy

given by fat. PKC activity was analysed in the proximal and distal colon separately and the level

of DAG in the contents of distal colon.

Study VI

Study VI was carried out to determine the effects of fat, red meat, and different fibre sources on

intestinal tumour development in Min mice. The mice were divided into seven diet groups: 1)

AIN93G diet with low fat content and 5% (w/w) of cellulose as a fibre source, 2) high-fat non-

fibre diet (the same as in Study V), 3-6) high-fat diets supplemented with 10% (w/w) of wheat,

rye, or oat brans or 2.5% (w/w) of inulin, 7) high-fat non-fibre diet with beef as a protein source.

After the feeding period of five to six weeks, the number and size of tumours in the small and
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large intestine were determined and mucosal levels of PKC isozymes and β-catenin were

analysed.

6.2 Animals and sample collection

The study protocols for all the experiments were approved by the Laboratory Animal Ethics

Committee of the Faculty of Agriculture and Forestry, University of Helsinki. Male weanling

Wistar rats were obtained from the National Laboratory Animal Centre, University of Kuopio,

Finland, for Studies I and II, from the Experimental Animal Facility of University of Helsinki,

Finland, for Studies III and IV, and from Harlan Co., The Netherlands, for Study V. Male Min

mice (4-7 weeks of age) for Study VI were obtained from the Jackson Laboratory, ME, USA.

During the experiments, rats and Min mice were housed in plastic cages in an animal facility with

a controlled temperature (20-22°C) and a 12 h light-dark cycle. During the experiments rats and

mice had free access to the diets and tap water. Body weights were recorded weekly. The number

of animals per dietary treatment group was 12 - 13 in the studies using rats and 7 - 9 in the study

using mice. In studies II, III, and V, each rat was kept in a metabolic cage for 1 to 2 d to collect

faeces. At the end of the feeding periods the animals were killed by CO2 asphyxiation.

In Studies II – V rat colons were removed, cut open longitudinally, and flushed clean with ice-

cold phosphate-buffered saline. The colons were divided into proximal and distal segments of

equal length; mucosas were scraped off with a microscope slide and used for biochemical

analysis. Study I differed from the other studies in that the proximal one-thirds of the colonic

mucosa was used for fatty acid analysis and the distal two-thirds for PKC activity analysis. The

caecal mucosa was used for phospholipid fatty acid analysis in Study II. It was collected

essentially in the same way as the colonic mucosa. Those tissue and faecal samples that were not

used for the analysis on the same day were frozen in liquid N2 and stored at -70°C.
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6.3 Methods

Tumour scoring in Study VI

The whole intestine of the Min mice in Study VI was removed, opened longitudinally, and

flushed with ice-cold physiological saline. The small intestine was divided into five segments of

equal length. The caecum and colon were kept together. The segments of the small intestine and

the large intestine were then spread out, mucosal surface up, on microscope slides and the

number, diameter, and location of tumours were determined using an inverse light microscope at

a magnification of x 2.5. The mucosa of the distal small intestine was then scraped off, frozen in

liquid N2, and stored at -70°C until used for PKC isozyme and β-catenin analyses.

PKC activity and isozyme expression

Mucosal samples from rat colon (I-V) and mice small intestine (VI) were homogenised by

sonication and ultracentrifuged at 100 000 g for 1 h. The supernatant was collected and used as

the cytosolic fraction. The pellet was resuspended in the extraction buffer containing 0.2% (v/v)

Triton X-100, incubated for 20 min and ultracentrifuged at 100 000 g for 1 h. The resulting

supernatant contained the membranes (particulate fraction). Cytosolic and membrane fractions

were further purified by DEAE-cellulose chromatography. PKC activity of the DEAE-purified

cytosolic and membrane fractions was assayed using a modification of the method described by

El Touny and co-workers (1990). In this method, PKCs activated by phosphatidylserine-

diacylglycerol vesicles phosphorylate a lysine-rich histone protein (histone III-S, Sigma, USA) in

the presence of [32P]ATP. PKC activity is expressed as pmol of 32P incorporated per min per mg

protein. The enzyme activity measured without the activators comprised 6-10% of the total PKC

activity. An addition of 50 µM myristoylated octapeptide (Bachem, Switzerland) to the reaction

mixture inhibited enzyme activity by 87% and 94% in cytosolic and membrane fractions

respectively. Protein concentrations of the crude and DEAE-purified fractions were measured

using a Bio-Rad protein assay reagent based on the Bradford method (Bradford 1976) with

bovine serum albumin as a standard.

For PKC isozyme analysis (IV, V, VI), 2 ml of the crude cytosolic and membrane extracts were

concentrated to 1/20 volume with Centrex UF-2 concentrators (Schleicher & Schuell, Germany).
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The samples were then mixed with an equal volume of sodium dodecylsulphate (SDS) sample

buffer, boiled, and stored at -80oC until use. A pooled rat brain homogenate, containing both

cytosolic and membrane proteins, was used as a normalisation factor and a control for PKC

antibody specificity in immunoblotting analysis. Rat brain homogenate was prepared essentially

in the same way as described for the colon samples. Colonic mucosa samples (30-100 µg) and rat

brain homogenate (1-5 µg) were subjected to SDS-polyacrylamide gel electrophoresis using 10%

resolving gels (Laemmli 1970) and then transferred to polyvinylidene difluoride membranes

(Towbin 1979). Following transfer, the membranes were probed with antibodies for PKC α, β2,

δ, and ζ/λ by the method of Scheng and Schuster (1992), protocol B. Dilution of individual

primary antibody and alkaline phosphatase-conjugated secondary antibody was optimised for

each PKC isozyme. PKC bands were visualised by colorimetric staining of blots with 5-bromo-4-

chloro-3-indolyl phosphate and nitroblue tetrazolium substrate mix (Bio-Rad, CA, USA). Blots

were scanned on a Sharp JX325 Scanner and the scanning images were analysed with

ImageMaster 1D Software, version 2.0 (Pharmacia Biotech, Sweden). The results are expressed

as sample band intensity divided by rat brain band intensity. In preliminary experiments, a range

of protein concentrations for each isozyme was loaded onto gels to ensure that the colorimetric

signal was quantitatively detectable.

Phospholipid fatty acid composition

Total lipids of caecal (II) and colonic mucosa (III) were extracted by the method of Folch and co-

workers (1957). Phospholipids of colonic samples (III) were fractionated by thin layer

chromatography (silica gel 60, Merck, Germany). Thereafter samples were methylated as

described previously (Stoffel et al. 1959). The fatty acid methyl esters derived from total lipids or

different phospholipid fractions were analysed using a Hewlett Packard 5890 Series II gas

chromatograph (USA) equipped with a fused silica capillary column (NB-351, Nordion, Finland)

and an ultraviolet detector. The oven temperature was programmed to rise from 170°C to 230°C

at a rate of 4°C/min and then kept at 230°C for 8 min. Fatty acid peaks were identified by

comparison with a fatty acid methyl ester standard (GLC-91, Nu-Chec-Prep, MN, USA). The

proportions of individual fatty acids are expressed as percentages of the total fatty acids.
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PGE2

Colonic mucosal samples (III) were homogenised in 15% ethanol and centrifuged at 5000 g. The

supernatant was removed and acidified to pH 3. The samples were then purified by SepPak-C18

cartridges (Waters Assoc., MA, USA) according to Powell (1982) and their PGE2 content was

determined by enzyme immunological assay using a commercial kit (Cayman Chemical, MI,

USA). Prior to the purification procedure, 5000 cpm of  [3H]PGE2 was added to the samples to

assess recovery. Mucosal PGE2 is expressed as ng per mg sample protein.

DAG concentration in luminal contents and faeces

Lipids from luminal contents (V) and faecal samples (II, III) were extracted by a modified

method of Bligh and Dyer (1959). The lipid extracts were dried under nitrogen and used for

analysing the total amount of DAG by a commercial kit (Amersham, UK) based on the E. coli-

DAG-kinase method (Preiss et al. 1986). After the enzymatic reaction the samples were purified

by Amprep Si -columns (Amersham, UK) according to the manufacturer’s instructions and

subjected to scintillation counting.

β-Catenin expression

Mucosal samples of the distal small intestine of Min mice (VI) were treated in the same way as

samples for PKC isozyme analysis. The protein levels of β-catenin were determined in cytosolic

and particulate fractions by using monoclonal mouse β-catenin antibody (Transduction, KY,

USA) and alkaline phosphatase-conjugated anti-mouse secondary antibody (Zymed, CA, USA).

Quantitation of  β-catenin signal was as described for PKC isozymes.

Sphingomyelinase activities

Sphingomyelinase activities of colonic mucosal samples in Studies III and IV were kindly

analysed by Dr. Rui-Dong Duan’s group at the University Hospital of Lund, Sweden.

Sphingomyelinases were determined as described previously (Hertevig et al. 1997) with

modifications (Papers III and IV).
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Statistical analysis

One-way analysis of variance was used to compare variables among the dietary groups in Studies

I, II, IIIb, V, and VI. When the p value was < 0.05, means were separated using Tukey’s post

hoc-test. In Study IIIa, the unpaired t-test was used to compare the means between the beef and

casein groups. The differences between the proximal and distal colon were analysed by the paired

samples t-test. The correlation data were analysed by either the Pearson correlation analysis or a

linear regression analysis. The Systat statistical computer package (version 7.0, SPSS Inc., USA)

was utilised for all the statistical analyses.

7. RESULTS

7.1 Effects of fat, red meat, and fibre sources on colon signal transduction (PKC) in rats (I-

V)

Fat (I-II)

In Study I the high-fat butter diet resulted in increased membrane PKC activity in rat colonic

mucosa when compared with the low-fat control diet (p < 0.05; Figure 4a). PKC activity in rats

fed the high-fat rapeseed and sunflowerseed-oil diets was close to that in the control group. In

Study II we were unable to reproduce the increasing effect of butter on PKC activity though

membrane PKC activity in the distal colon appeared to be slightly higher in rats fed the butter

diets than in those fed the control diet (Figure 4b). There were also no dietary effects on PKC

activity in the proximal colon (Table 3 in Paper II). The effects of the coconut-oil diets on PKC

activity were essentially similar to those of the butter diets. The saturated fat diets caused

relatively small changes in fatty acid composition of caecal phospholipids, with rats fed the high-

fat coconut-oil diet having an increase in 14:0 and rats fed the high-fat butter diet having an

increase in 18:1n-9 when compared to the rats in the control group  (Tables 5 and 6 in Paper II).

The fatty acid composition of phosphatidylcholine was associated with membrane PKC activity

so that saturated fatty acids (14:0 and 18:0) were positive correlated and unsaturated fatty acids

(e.g. linolic acid, AA) were negatively correlated with membrane PKC activity (Figure 1 in Paper

II). Faecal DAG concentration was not significantly affected by the diets (Figure 4c).
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Figure 4. Effects of dietary fats on a) membrane PKC activity in whole colon mucosa, b)

membrane PKC activity in distal colon mucosa, and c) faecal DAG concentrations in rats. Values

are means and SD. Bars with different letters are significantly different (p < 0.05). LFC, low fat

control, HFB, high fat butter, HFRO, high fat rapeseed oil, HFSO, high fat sunflower seed oil,

LFB, low fat butter, LFCO, low fat coconut oil, HFCO, high fat coconut oil.

Red meat and arachidonic acid (III-IV)

Rats fed the beef diet had significantly higher membrane and cytosolic PKC activities in their

distal colons than rats fed the casein diet (p < 0.05 and p < 0.01 respectively; Figure 5a). The beef

diet induced PKC activity also in the proximal colon, though the effect was less pronounced than

in the distal colon (Table 3 in Paper III). Changes in distal PKC isozyme expression occurred,

with beef-fed rats having a higher level of cytosolic PKC α and a lower level of membrane PKC

δ than casein-fed rats (Figure 2 in paper IV). PKC ζ/λ was affected so that the level of 40 & 43

kDa fraction was higher and the level of 70 & 75 kDa fraction was lower in beef-fed rats (Figure

5b and 5c). There was no significant difference in faecal DAG concentrations between the beef

and casein groups (169 ± 33 vs. 158 ± 19 nmol/g wet faeces). DAG concentration was positively

correlated with the cytosolic PKC activity (Figure 1 in Paper III).
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    a)                                               b)                                               c)

Figure 5. Effects of the beef diet on a) PKC activity, and PKC ζ/λ protein levels b) in the cytosol

and c) in the membrane of rat distal colon. Values are means and SD. * and **, significantly

different from the casein group at p < 0.05 and p < 0.01, respectively.

Supplementation of AA with an amount equivalent to that available from the beef diet had no

effect on PKC activity in rat distal colonic mucosa. However, AA-supplemented rats had a

significant (p < 0.05) increase in proportion of AA in mucosal phosphatidylcholine compared

with the AIN93G control diet (Table 5 in Paper III). This was accompanied by an increase in

concentration of mucosal PGE2, which was significant only in comparison with the fish oil

supplemented group (Table 6 in Paper III). Neither beef nor AA and fish oil supplementations

affected the activities of acid, neutral, and alkaline sphingomyelinase (Table 6 in Paper III and

Table 3 in Paper IV).

Fibre sources (V)

In the distal colon, wheat bran feeding resulted in the lowest mucosal PKC activity and PKC β2

protein level, whereas oat bran and inulin feeding led to an increase in PKC activity and PKC β2

levels (Figure 6a and 6b). Rats fed the non-fibre control diet were between these two extremes.

Rye bran-fed rats had low PKC activity although their PKC β2 expression was rather increased

than decreased. DAG concentration in the contents of distal colon was the lowest in the non-fibre

and wheat bran groups which differed significantly (p < 0.05) from the rye bran group (Figure
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6c). The increasing effect of inulin on membrane and total PKC activity was even more

pronounced in the proximal than in the distal colon (Table 5 in Paper V). However, isozyme

expression differed so that, instead of PKC β2, inulin induced membrane PKC δ expression

(Table 3 in Paper V). There were also changes in expression of cytosolic PKC α and ζ/λ in the

proximal colon and cytosolic PKC δ and ζ/λ in the distal colon (Table 3 and 4 in Paper V).

   a)                                                              b)                                                         c)

Figure 6. Effects of diets enriched with different fibre sources on a) membrane PKC activity and

b) membrane PKC β2 protein levels in rat distal colon mucosa as well as c) DAG concentrations

in the distal colon contents. Values are means and SD. Bars with different letters are significantly

different (p < 0.05). NF, non-fibre high-fat, WB, wheat bran, RB, rye bran, OB, oat bran, INU,

inulin.

7.2 Effects of fat, red meat, and fibre sources on intestinal tumour development in Min mice

(VI)

In Min mice, the majority of tumours develop in the distal small intestine. The number of

tumours in the distal small intestine was lowest in mice fed the rye bran diet and highest in mice

fed the beef diet. The beef-fed mice differed significantly (p < 0.05) from mice fed the rye bran,

wheat bran, and AIN93G diets (Figure 7a). The inulin-fed mice had nearly as many tumours as

the beef-fed mice and they differed significantly from the mice fed the rye bran diet (Figure 7a).
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Though Min mice have only few tumours in their colons, the effects of the experimental diets on

colonic tumour development were in line with those seen in the small intestine (Table II in Paper

VI). Specifically, tumour incidence was only 33% in the rye bran group when compared with

89% in the beef group and 100% in the inulin group. There were no significant differences in

tumour size among the diet groups (Table III in Paper VI).

Figure 7. Effects of fat, beef, and fibre sources on a) intestinal tumour formation and b) mucosal

β-catenin protein level in Min mice. Values are means and SD. Bars with different letters are

significantly different (p < 0.05). NF, non-fibre high-fat, WB, wheat bran, RB, rye bran, OB, oat

bran, INU, inulin.

In general, the protein levels of PKC α, β2, δ, and ζ in the distal small intestinal mucosa of Min

mice were much higher in the cytosolic than in the membrane fraction. Membrane levels of PKC

α and δ were under the detection limit. There were large variations in PKC values within dietary

groups and no significant differences in PKC isozyme expression between the dietary groups

could be found (Table IV in Paper VI). Cytosolic β-catenin level was lowest in mice fed the rye

bran and beef diets and highest in mice fed the inulin and oat bran diets (Figure 7b). The inulin

group differed significantly (p < 0.05) from the non-fibre, rye bran, and beef groups, and the oat

bran group differed from the rye bran and beef groups. Cytosolic β-catenin level was

significantly correlated with all the PKC isozymes analysed (r = 0.62 – 0.68, p < 0.001).
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8. DISCUSSION

8.1. Fat

Dietary fat appeared to have no major role in modulating PKC activity in the colonic mucosa of

rats. The first study showed some indication that high-fat butter diet, rich in saturated fatty acids,

increases membrane PKC activity when compared to a low-fat basal diet and, to a lesser extent,

to high-fat rapeseed and sunflower-oil diets, rich in unsaturated n-9- and n-6-fatty acids,

respectively. The purpose of the second study was to determine further the role of saturated fats

in PKC activation but what could be seen was only a slight increasing effect of saturated fat on

PKC activity in the distal colon. There were also no difference between the effects of butter and

coconut oil, demonstrating that chain length of saturated fatty acids is not important (palmitic and

stearic acids vs. lauric and myristic acids). Results of two previous studies with rats indicated an

increase in membrane PKC activity by feeding beef tallow relative to feeding corn oil (Chapkin

et al. 1993) or low-fat basal diet  (Lafave et al. 1994).

The high-fat saturated diets had no effect on faecal DAG levels nor was there any correlation

between DAG and mucosal PKC activity. This result contradicts the assumption that high-fat

diets result in increased levels of faecal lipids and bile acids, which together enhance DAG

production by colonic bacteria (Morotomi et al. 1990 and 1991). The DAG produced could then

enter colonic epithelial cells and activate PKC, thereby causing a chronic state of increased cell

proliferation. Though this hypothesis sounds plausible it has actually never been verified in in

vivo studies.

The effects of butter and coconut oil on fatty acid composition of PC and PE fractions in caecal

mucosa were rather moderate and no dietary effects were observed, for example in the levels of

AA, a fatty acid considered to be important for signal transduction. The composition of PC was

more resistant to dietary induced changes than that of PE. This may partly account for the

relatively week effect of the fats on PKC activity, since PC hydrolysis products, DAG in

particular, are thought to maintain the sustained PKC activity needed for long-term cellular

responses in cells (Nishizuka 1995). Supporting the role of PC in regulating PKC activity, PC
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fatty acids were significantly correlated with membrane PKC activity. Generally, saturated fatty

acids were associated with increased and unsaturated fatty acids with decreased PKC activity. It

seems unlikely that these associations were mediated through PC hydrolysis products since

saturated DAG and saturated fatty acids have been week stimulators of PKC activity in vitro

(Hannun et al. 1986). Alternatively, PC as the main phospholipid in cell membranes affects cell

membrane physicochemical properties, which may have direct effects on PKC activity. This is

supported by a study of Slatter and co-workers (1994) that showed with artificial membranes that

increasing PC unsaturation in the presence of PE resulted in decreased PKC activity.

We could also see no promoting effect of a high-fat diet on intestinal tumour development in Min

mice. The adenoma number in mice fed the high-fat diet, the fat being mostly butter, was nearly

identical with mice fed the low-fat AIN93G diet. High-fat diets are generally considered to

increase colon cancer risk and especially beef tallow and corn oil have promoted colon

carcinogenesis in some (Reddy 1992, Wasan et al. 1997) but not all (Nauss et al. 1983)

experimental colon cancer studies. However, the promotive effect of fat may be partly explained

by its contribution to energy intake, since recent epidemiological studies (Howe et al. 1997) have

shown no independent effect of fat on colon cancer risk after adjustment for total energy intake.

8.2 Red meat

Beef feeding resulted in a significantly increased PKC activity both in the cytosolic and

membrane fractions of the distal colon of rats. The isozyme analysis gave no clear answer to the

question of which isozyme is responsible for the increased PKC activity. Cytosolic PKC α was

elevated in beef-fed rats compared with the casein-fed rats, but because PKC α requires DAG

and Ca2+ and presumably the membrane environment for activation (Newton 1995), it is not

likely to be active in the cytosol. In the membrane fraction, rats fed the beef diet showed no clear

increase in any of the isozymes measured. Therefore the changes seen in cytosolic and membrane

PKC ζ/λ expression, with beef-fed rats with a decrease in the 70 & 75 kDa fraction and an

increase in the 40 & 43 kDa fraction, may have accounted for the increased PKC activity.

Cellular fractions typically contain several immunoreactive bands of PKC ζ/λ (Davidson et al.

1994), probably as intermediate products of down-regulation (Yong et al. 1987). It has been
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suggested that the low molecular bands are proteolytical products of PKC that lack the regulatory

domain and are thus permanently active (Berra et al. 1993). Down-regulation of PKC ζ=and=λ is a

feature of carcinogen-induced colonic tumours in rats (Jiang et al. 1997a, Wali et al. 1995, Jiang

et al. 1997b, Roy et al. 1995), which has been blocked by feeding fish oil (Jiang et al. 1997a), a

1,25-dihydroxyvitamin D3 analogue (Wali et al. 1996) or a nonsteroidal anti-inflammatory drug

piroxicam (Roy et al. 1995). In line with epidemiological evidence, each of these agents was also

able to reduce colonic tumour formation.

Beef feeding did not alter luminal DAG levels, suggesting that the increased PKC activity in

beef-fed rats was not due to enhanced production of luminal DAG. Nevertheless, faecal DAG

was positively correlated with the cytosolic PKC activity, which leaves the possibility that more

DAG might have been produced and also taken up by colonocytes in beef-fed rats. DAG is

assumed to enhance the translocation of PKC to the cell membrane (Newton 1995) and therefore

the correlation of DAG to the cytosolic instead of membrane PKC activity was unexpected.

However, as has been shown to occur in fibroblasts, DAG taken up by cells may also have been

broken down to monoacylglycerol and fatty acids (Florin-Christensen et al. 1992). Based on in

vitro studies, cis-unsaturated fatty acids are capable of selectively activating cytosolic PKC

(Khan et al. 1991). Furthermore, DAG fatty acid compositions may have differed in the dietary

groups. Though beef tallow was added to the casein diet to achieve similar fat concentrations and

fatty acid compositions for the diets, the beef diet contained a small amount of AA, which was

not present in the casein diet. Therefore the beef-fed rats may have had faecal DAG species

containing more AA and being more effective in activating cytosolic PKC.

Because AA might have contributed to PKC activity by modulating not just DAG but

phospholipid fatty acid composition, it was interesting to test whether the AA content of the beef

diet was the reason for the increased PKC activity. This was, however, not the case since

supplementation of AA at a level equal to that available from the beef diet caused no changes in

mucosal PKC activity even though AA supplementation did increase the AA content of the PC

fraction. In contrast to this result, a short-term exposure (10-min) of colon epithelium to free AA

caused an increase in mucosal PKC activity in rats (Craven and DeRubertis 1988). However, it is

likely that long-term effects of dietary AA differ from those of a short-term exposure. A fish oil
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supplemented group was also included in the study because fish oil fatty acids are considered to

antagonise several cellular functions induced by AA (Li et al. 1994). Fish oil supplementation

had no effect on PKC activity. The results from previous in vivo studies with fish oil have been

controversial, and both a decrease (Reddy et al. 1996) and an increase (Chapkin et al. 1993) in

membrane PKC activity compared with corn oil feeding have been reported. It should be noted

that the amount of fish oil given to rats in our study was considerably less than that in the

previous studies. Also, there is evidence that large amounts of fish oil do alter PKC isozyme

expression and that these changes are associated with inhibition of the carcinogenic process in rat

colon  (Jiang et al. 1997a and 1997b).

Because AA is the major precursor of eicosanoids and may affect sphingolipid metabolism, both

of which are proposed to be involved in colon carcinogenesis, we also analysed mucosal PGE2

concentration and sphingomyelinase activities. It is of interest that AA supplementation resulted

in an increase in mucosal PGE2, indicating that diets high in beef might modulate intestinal

eicosanoid production. This is important considering the apparently significant role of COX-2 in

colon carcinogenesis (Williams et al. 1997). Fish oil supplementation, on the other hand, caused

a decrease in PGE2 concentration, which has been demonstrated in previous studies (Bartram et

al. 1993, Lee et al. 1993). Neither AA nor fish oil supplementation affected mucosal

sphingomyelinase activities, suggesting that mucosal ceramide production and thus the growth

suppressive pathways induced by ceramide were not altered. Apart from AA, beef contains other

cell membrane components, such as sphingomyelin (Blank et al. 1992), which may modulate

sphingomyelin activity. Therefore it was later checked whether the beef-fed rats had changes in

their colon sphingomyelin activities. However, activities of acid, neutral, and alkaline

sphingomyelinases were not different for the beef and casein-fed rats. Interestingly, acid

sphingomyelinase activity was significantly correlated with both PKC activity and PKC ζ protein

levels, which is in line with the previous in vitro studies showing that ceramide produced by acid

sphingomyelinase activates PKC ζ=(Lozano et al. 1994, Müller et al. 1995).

Consistent with the increase in PKC activity, the beef diet induced intestinal tumour development

in Min mice. The promoting effect on tumourigenesis could be seen in both the small intestine

and the colon. This result is in line with the recent prospective epidemiological studies that have
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shown a positive association between red meat intake and colon cancer risk (Willet et al. 1990,

Giovannucci et al. 1994). Experimental evidence concerning beef or red meat is limited and

inconsistent in nature, with results showing both promotive and preventive effects of red meat on

colon carcinogenesis (Nutter et al. 1983 and 1990, McIntosh et al. 1995). The discrepancy in

results of the earlier studies is likely to be due to differences in other components of diets and in

the form in which meat is given to animals. It is interesting that the beef-fed mice had no increase

in their cytosolic β-catenin levels since elevation of cytosolic free β-catenin is considered to be

the immediate reason for abnormal cell growth and thus for tumourigenesis in Min mice (Korinek

et al. 1997). It is possible that beef feeding enhanced tumour formation by affecting cellular

targets down-stream of β-catenin.

8.3 Fibre Sources

Feeding diets enriched with cereal brans or inulin modulated both PKC activity and isozyme

expression in the rat colon. Overall, PKC activity in rats fed the wheat and rye bran diets was at

the same level or lower than in rats fed the non-fibre diet, whereas rats fed the inulin and oat bran

diets had increased PKC activity. In the distal colon, these changes in PKC activity were

accompanied by changes in protein levels of membrane PKC β2, indicating activation of this

particular isozyme in the inulin and oat bran groups. There is considerable evidence to suggest

that PKC β2 is involved in colon cell proliferation and colon carcinogenesis. In colon cancer cell

lines, PKC β2 has been directly linked to cell proliferation (Sauma et al. 1996, Sauma and

Friedman 1996), which is supported by studies revealing a distinct pathway through which PKC

β2 promotes mitosis in human leukemia cells (Gökmen-Polar and Fields 1998). In an in vivo-

study with transgenic mice, overexpression of PKC β2 led to hyperproliferation of colonic

epithelium and to an increased susceptibility for the formation of carcinogen-induced ACF

(Murray et al. 1999). Furthermore, PKC β2 expression and/or membrane association are

increased in colonic atypical crypts (Kahl-Rainer et al. 1996) as well as in tumours compared to

the surrounding normal mucosa (Craven and DeRubertis 1992, Davidson et al. 1994, Wali et al.

1995), indicating that PKC β2 may enhance malignant growth.
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The increasing effect of inulin on membrane PKC activity was even more pronounced in the

proximal than distal colon. However, protein level of membrane PKC δ, not PKC β2, was

increased in the proximal colon. Immunohistochemical studies have revealed the presence of

PKC δ especially in the terminally differentiated cells located at the top of colonic crypts (Kahl-

Rainer et al. 1996, Verstovsek et al. 1998), suggesting that PKC δ is needed for normal

colonocyte differentiation. PKC δ has also been implicated in mediating apoptosis in some colon

cancer cell lines (Weller et al. 1999). In colonic tumours of both human and animal origin, PKC

δ has been mostly down regulated, presumably due to prolonged activation of the enzyme at the

early phase of the tumourigenic process (Kahl-Rainer et al. 1994, Wali et al. 1995). Taken

together, increased PKC activity in the inulin-fed rats may indicate that these animals are prone

to down-regulation of PKC δ.

In line with PKC activity, DAG concentration in the contents of distal colon was the lowest in

rats fed wheat bran and elevated in rats fed the oat bran and inulin diets. However, the rye bran-

fed rats were an exception since they had the highest faecal DAG level but their PKC activity was

as low as in the wheat bran group. Furthermore, though at least partly due to the rye bran group,

no significant correlation could be found between DAG and PKC activity, suggesting that

luminal DAG is not the major modulator of mucosal PKC activity. Only two previous in vivo-

studies have attempted to determine the effects of fibre on faecal DAG even though neither

analysed mucosal PKC activity. One of these showed that supplementation of wheat bran at 15 g

per day for eight weeks reduces faecal DAG concentration in women (Reddy et al. 1994), which

is in agreement with our results. The other study showed that cellulose relative to pectin at the

level 6g/100g in diet enhanced faecal DAG excretion in rats (Pickering et al. 1995). The authors

concluded that this is probably due to a decrease in the uptake of DAG by epithelial cells and

might partly explain the inhibiting effect of cellulose on colon carcinogenesis. The cellulose

content as well as other dietary fibre components are largely similar in wheat and rye brans and

therefore their opposite effects on luminal DAG in our study are not easily explained. It might be

related to a specific effect of either of these brans on gut microbes producing the luminal DAG.

Because the effects of the fibre sources are not fully explained by changes in faecal DAG, there

have to be other mechanisms whereby these fibre sources affect PKC. In addition to DAG,
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concentrations of the three main SCFAs butyrate, propionate, and acetate, as well as activities of

certain faecal bacterial enzymes were analysed in the colonic contents of the same rats used for

PKC analysis (M Mutanen, A-M Pajari, S Gråsten, and K Liukkonen, unpublished data). No

relation between any of the SCFAs and PKC activity or isozyme levels could be found. This is in

agreement with a recent in vitro study which showed that PKC does not mediate the

differentiating effects of butyrate on colon cancer cells, though its activity augments the effects of

butyrate (Rickard et al. 1999). In some other cell types, butyrate has greatly stimulated PKC

activity and modulated the expression of the PKCs β and ε isozymes (Rivero et al. 1998). The

bacterial enzymes analysed in our work were β-glucuronidase, β-glucosidase, and urease. Of

these, faecal urease activity was significantly but not very strongly (r = 0.4, p < 0.05) correlated

with membrane PKC activity and membrane PKC β2 levels in the distal colon. Even though all

the fibre sources tended to increase faecal urease activity compared to the non-fibre diet, the oat

bran diet resulted in the highest urease activity. This is of interest because readily fermentable

fibres have been shown to promote bacterial growth driven diffusion of blood urea into the

caecum (Lupton and Marchant 1989, Younes et al. 1996), which may lead to increased levels of

luminal ammonia by urease-positive bacteria (Lupton and Marchant 1989). Ammonia, in turn,

may damage mucosal cells (Lin and Visek 1991a and 1991b) and result in increased proliferation

as a compensatory mechanism for cell loss. Thus, the relation between luminal urease activity

and mucosal PKC is probably indirect in nature. Faecal bile acids were not analysed and

therefore the possibility that the fibre sources have exerted differential effects on the formation

and binding of secondary bile acids can not be excluded. Secondary bile acids are known to be

particularly potent activators of PKC β (Pongacrz et al. 1995).

The diet induced changes in membrane PKC activity and PKC β2 in the distal colon of rats

appeared to predict well the tumour outcome in the intestine of Min mice. Both inulin and oat

bran feeding clearly enhanced tumour formation in the intestine of Min mice compared to the

non-fibre diet, whereas wheat and especially rye bran resulted in inhibition of tumour formation.

Our results are in good agreement with a number of previous experimental studies on the role of

fibres in colon carcinogenesis. Wheat bran has protected against tumour development in nearly

every experimental model used, including both the rat colon carcinogen model (McIntry et al.

1993, Zoran et al. 1997) and APC knockout mice (Hioki et al. 1997). Rye bran has been studied
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once and it was found to be protective in the AOM-model of rat colon carcinogenesis (Davies et

al. 1999). Readily fermentable fibre sources, such as oat bran, guar gum, and pectin, have not

offered protection but in some cases they have promoted colonic tumour formation (Jacobs and

Lupton 1986, McIntry et al. 1993, Zoran et al. 1997). Inulin, a chicory fructan, is highly

fermentable but it has been suggested to selectively stimulate the growth of beneficial bacteria in

the colon and thus improve the host’s health (Gibson and Roberfroid 1995). Inulin has been

found to reduce the formation of preneoplastic ACF when added to a basal AIN-76 diet (Reddy et

al. 1997) or a high-fat corn oil diet (Rowland et al. 1998), indicating that inulin inhibits colon

carcinogenesis. In respect to inulin the result of the present study contradicts those of previous

studies, which could be explained by several reasons. First, the low fat concentration and the

presence of cellulose in the AIN-76 diet as well as the high n-6 fatty acid content of the corn oil

diet may not optimally reflect a human high-risk diet that is considered to be high in saturated fat

and low in fibre. Second, the correlation between the multiplicity of ACF and the tumours that

finally develop has not always been straightforward (Hardman et al. 1991).

The fibre sources had no significant effects on protein levels of PKC α, β2, δ, and ζ isozymes in

Min mice. This is probably due to the fact that the neoplastic process in Min mice at the end of

the feeding period was beyond the state in which diet can modulate PKC expression. This is

supported by the observation that protein levels of PKC α and δ were under the detection limit in

the membrane fraction and they could be measured only from the cytosolic fraction, indicating

their full down regulation. A defect in PKC isozyme analysis was that tumour tissue was not

separated from the surrounding mucosa, which might have masked the dietary effects. A very

recent study by Klein and co-workers (2000) demonstrated reduced protein expression of PKC α,

β1, and ζ specific for adenoma tissue in Min mice.

Mice fed the rye bran diet had the lowest and mice fed the inulin and oat bran diets had the

highest level of cytosolic β-catenin, suggesting that the immediate mediator of the effects of the

fibre sources on tumour formation in Min mice is their ability to modulate β-catenin levels.=Ιn

Min mice, Apc protein functions poorly due to a mutation in the Apc gene, which leads to

abnormal accumulation of cytosolic free β-catenin (Mahmoud et al. 1997). This β-catenin

translocates to the nucleus, where it binds to the Tcf transcription factor and promotes cell
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proliferation by enhancing expression of target genes, such as c-myc (He et al. 1998). The present

study is one of the first to demonstrate that β-catenin, the key molecule in this process, can be

modulated by dietary means. Exactly how the fibre sources affect β-catenin levels is yet unclear.

However, it is of interest that all PKC isozymes analysed were positively correlated with

cytosolic β-catenin levels. A number of recent studies have demonstrated that PKC isozymes

interact with the APC/β-catenin pathway and that they may have distinct roles in regulating β-

catenin level or function. Specifically, PKCs have been shown in vitro to mediate inhibition of

GSK3β activity (Cook et al. 1996), presumably by causing its phosphorylation (Goode et al.

1992). In intestinal epithelial cell line, activation of PKC with phorbol 12-myristate 13-acetate

triggered the translocation of β-catenin to the nucleus and enhanced β-catenin/Tcf-4 mediated

transcription (Baulida et al. 1999). The most compelling evidence comes from an in vivo study,

in which transgenic mice overexpressing PKC β2 had decreased GSK3β activity as well as

elevated β-catenin levels (Murray et al. 1999).
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9. CONCLUSIONS AND FUTURE PERSPECTIVES

Based on the results, it appears that fats do have no major effect on PKC activation or tumour

development in the intestinal mucosa of rats and Min mice. However, beef resulted in elevation

of steady-state PKC activity in the colonic mucosa of rats as well as enhanced intestinal tumour

development in Min mice. The effects of different fibre sources on PKC and tumour formation

differed depending on the fibre type in question. The readily fermentable fibre sources inulin and

oat bran resulted in an increase in PKC activity and PKC β2 expression in rat colon and enhanced

tumour development in the intestine of Min mice, whereas wheat and rye brans resulted in low

PKC activity and PKC β2 expression together with suppressed tumour development in Min mice.

Simply an increase in total PKC activity in the colonic mucosa of healthy animals seems to

predict surprisingly well the tumour outcome, which could be seen in the animals fed beef and

inulin. Accordingly, a decrease in PKC activity in normal colonic mucosa would be expected to

lead to inhibition of tumour development, which was at least partly true in respect of rye and

wheat brans. Of the PKC isozymes, PKC β2 is perhaps most closely linked to the carcinogenic

process in the colon, since an increase in PKC β2 expression was as good predictor of tumour

outcome as PKC activity. One reason for this may be that PKC β2 seems to be an important

mediator of colon cell proliferation. Disturbances in proliferation may result in a

hyperproliferating colonic epithelium, which is considered to be the very first stage in the

transforming process of normal epithelium to colon cancer. Also, changes in PKC ζ and λ

expression may be of importance, as suggested by the results concerning beef feeding. The

specific functions of atypical PKCs in the colon are far less clear than those of conventional and

novel PKCs. Presumably atypical PKCs regulate maturation and growth of colonocytes. The

changes in PKC in the distal colonic mucosa appear to be the most important determinants of

tumour outcome. This is not surprising in view of the fact that colon tumours in high-incidence

western countries are more common in the distal colon than in other sites (Bufill 1990).

It seems that PKC in the late phase of the neoplastic process no longer predict the tumour

outcome as could be seen in Min mice at the end of the feeding period. This result is, however,

tentative since there were limitations in PKC analysis in the Min mice study. It is noteworthy that
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PKC isozyme levels did correlate with cytosolic β-catenin level. This observation supports the

results from previous in vitro studies that have linked PKC to the APC pathway, one of the major

cellular pathways involved in colon carcinogenesis.

 In future studies, it is important to determine the changes in cellular events occurring at different

time points in the tumourigenic process. Specifically, it would be interesting to see how PKC

activity and certain isozymes change during the tumourigenic process and whether these changes

are linked to alterations in the APC-pathway, especially β-catenin levels. Furthermore, the result

of rye bran feeding being able to reduce β-catenin levels in Min mice suggests that diet might be

a powerful modulator of the molecular events leading to colon cancer. The exact effects of

dietary factors on these events are worthy of further studies.
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