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Abstract 

In the Baltic Sea, Nodularia has been confirmed as the only toxin-producing cyanobacterium 
so far, but the role of environmental factors on nodularin production is not known yet. 
Hepatotoxic Nodularia blooms have been observed in almost all parts of the Baltic Sea. In 
these blooms, the concentration of nodularin often rises high enough to cause a health risk for 
animals through adverse effects on the liver. In addition to Nodularia, the blooms are 
dominated also by Aphanizomenon, which is not known to be toxic. These two genera are 
capable of forming blooms in the nitrogen-depleted water mass of the Baltic Sea in late 
summer due to their ability to fix nitrogen. However, they differ from each other in physiology. 
For example, Nodularia is absent from surface waters during most of the year, while 
Aphanizomenon is found all year round.  

In order to understand toxin production in Nodularia under different environmental conditions, 
we studied the effect of several growth factors on intracellular and extracellular concentrations 
of nodularin of two batch-cultures of Nodularia using high performance liquid chromatography 
(I, II). The non-toxic Nodularia strain was cultured under the same growth conditions as the 
toxic strains in order to reveal physiological differences between toxic and non-toxic strains (I). 
The growth and nitrogen fixation rates of Nodularia and Aphanizomenon under different 
growth conditions were studied using batch-culture experiments in order to obtain information 
on the co-dominance of these two cyanobacterial genera in late summer blooms (II). The 
three-dimensional structure of nodularin in water was determined by nuclear magnetic 
resonance spectroscopy and molecular dynamics simulations in order to understand the 
inhibition of protein phosphatases by nodularin, the mechanism underlying its hepatotoxicity 
(III). The taxonomy of Nodularia from different geographical origins and with different toxin 
production abilities was studied using several molecular methods based on the 16S rRNA 
gene and whole genome (IV). In addition, the morphology of strains was examined using light 
microscopy (IV). 

Nodularin concentrations under different growth conditions were studied using non-axenic (I) 
and axenic (II) Nodularia strains. Toxin concentrations in cells and in growth media were 
generally highest under conditions that promoted growth. Intracellular nodularin 
concentrations of the axenic Nodularia strain studied increased with increases in temperature, 
phosphate concentration, and irradiance (II). They decreased at low and high salinities and 
high inorganic nitrogen concentrations. The associated bacteria of non-axenic cultures had no 
effect on nodularin concentration. According to our studies, growth at different temperature, 
light, salinity, and phosphorus conditions as well as growth stage may have an effect on the 
release of nodularin from cells into the growth medium (I, II). When comparing the growth 
responses of the toxic strains and the non-toxic strain it was shown that the non-toxic strain 
grew poorer than the toxic ones under all conditions except at the lowest temperature and 
phosphate concentration tested (I).  

Nitrogen fixation of Aphanizomenon and Nodularia was often, but not always, highest under 
conditions which promoted the growth and lowest in cultures with poor growth. Differences in 
growth and nitrogen fixation rates of Nodularia and Aphanizomenon were observed (II). 
Aphanizomenon preferred lower irradiances (test range 2-155 µmol m-2s-1), temperatures  
(7-28ºC), and salinities (0-30‰) than Nodularia. The different responses of Nodularia and 
Aphanizomenon may explain the different vertical, horizontal and temporal distribution of the 
two genera in the Baltic Sea. The preference of Aphanizomenon for low light and that of 
Nodularia for high light mirrored their vertical distribution patterns in the field; Aphanizomenon 
is more homogeneously distributed in the water column than Nodularia, which usually forms 
scum on the water surface. The ability of Aphanizomenon to grow at low temperatures shown 
in this study may explain why it is abundant in the water mass during most of the year. 
Nodularia showed a capacity to tolerate much higher temperatures than it experiences in its 
natural environment. The growth and nitrogen fixation rates of Nodularia were highest in the 
same salinity range (5 to 20‰) in which the genus forms mass occurrences in the Baltic Sea 
and other brackish waters. The incapability of Aphanizomenon to tolerate salinities higher 
than 10‰ suggests that salinity is an important factor restricting the distribution of this genus. 
The different salinity optima of the two genera is also seen in their different horizontal 
distribution patterns in the Baltic Sea: with increasing salinity from freshwater in the north to 



 

 

approximately 15‰ salinity in the southern Baltic Proper, the abundance of Aphanizomenon 
decreases while the abundance of Nodularia increases. High phosphorus and low nitrogen 
concentrations have been linked to mass occurrences of Aphanizomenon and Nodularia in 
the Baltic Sea. Similarly, in these laboratory studies, high phosphorus and low nitrogen 
concentrations increased the growth of Nodularia and Aphanizomenon. Furthermore, the 
growth was increased with the presence of accompanying bacteria.  

The solution conformation of nodularin was remarkably similar to the three-dimensional 
structure of microcystin-LR, which implies that nodularin inhibits protein phosphatases in the 
same way as microcystin-LR (III). Both toxins had a saddle-shaped backbone conformation, 
but microcystin-LR was more buckled than nodularin. In particular, the backbone fold in the 
conserved region of MeAsp-Arg-Adda-Glu was almost identical between nodularin and 
microcystin-LR. The molecular dynamics simulations, nevertheless, reveal a certain degree of 
sway for the trans peptide bonds. The proximal part of the Adda’s side-chain was also very 
similar. The remote parts of Adda and Arg were not structurally defined and they were also 
mobile in both peptides. 

No groups of Nodularia strains could be recognised on the basis of cell size whereas toxin 
production separated the strains into two groups. In this study, nodularin production of 
Nodularia strains was consistent with the genotypic analysis. Therefore, this character may be 
useful when identifying Nodularia strains. The toxic Nodularia strains were separated from 
non-toxic strains by RFLP of the 16S rRNA gene, 16S rRNA gene sequencing, REP- and 
ERIC-PCR, and ribotyping (IV). All strains were closely related despite their different abilities 
to produce toxin or geographical origins. The profiles of REP- and ERIC-sequences indicated 
high genetic homogeneity among toxic Nodularia strains from the Baltic Sea. These strains 
were found to be different from the toxic Nodularia strains from Australia and France by  
16S rRNA-based methods and by REP- and ERIC-PCR. Our results indicated that two closely 
related Nodularia genotypes are found in the Baltic Sea. One genotype consists of only non-
toxic strains. 16S rRNA gene sequencing showed that these strains were identical to the 
proposed type strain of Nodularia spumigena PCC 73104/1, which is not a typical N. 
spumigena strain according to morphological taxonomy. All the genetic markers separate the 
proposed type strain, and other non-toxic strains, from toxic strains. The toxic Baltic Sea 
strains form another genotype, which most closely fits the descriptions of Nodularia baltica 
and N. spumigena whereas the morphological characters of non-toxic Nodularia strains fit 
most closely to the description of Nodularia sphaerocarpa.  
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1. Introduction  

1.1. Cyanobacteria 

Cyanobacterial evolution begun at least 

2000 million years ago according to 

paleontological data (Hofmann, 1976 and 

Knoll & Golubic, 1991: cited by Golubic et 

al., 1995). Cyanobacteria are a 

morphologically diverse group of oxygenic 

photosynthetic prokaryotes (Rippka et al., 

1979), which are phylogenetically closely 

related to each other and to chloroplasts 

(Giovannoni et al., 1988). Chloroplasts 

have originated from cyanobacteria by one 

or more endosymbiotic events between 

non-photosynthetic eukaryotic organisms 

and cyanobacteria (Douglas, 1994).  

Cyanobacteria and oxygenic Eukaryotes, 

algae and plants, have generated oxygen 

in the earth’s atmosphere. Atmospheric 

oxygen concentrations were high enough 

to promote the selection of heterocystous 

cyanobacteria approximately 2100 million 

years ago based on chemical analysis of 

ancient weathering profiles (Holland & 

Beukes, 1990: cited by Golubic et al., 

1995). The molecular phylogenetic study  

of Giovannoni et al. (1988) has shown that 

the last diverging cyanobacterial groups 

were the heterocystous groups in which 

the nitrogen (N) fixing enzyme, 

nitrogenase, was protected from oxygen in 

heterocysts.  

 

1.1.1. Geographic and ecological 
distribution of cyanobacteria  

Due to their early evolutionary history, 

cyanobacteria occur abundantly in a wide  

range of habitats (Schopf, 1994). 

Cyanobacteria are known as freshwater 

(Hoffmann, 1996) and marine (Hoffmann, 

1994) organisms, and in addition, 

especially the filamentous forms, also 

occupy a variety of terrestrial habitats 

(Hoffmann, 1989). Cyanobacteria form 

symbiotic associations with a wide range 

of organisms: algae, fungi, pteridophytes, 

gymnosperms, angiosperms, some 

animals, bacteria, and non-photosynthetic 

protists. In these associations, the 

cyanobacterial symbionts (cyanobionts) 

are usually heterocystous and filamentous  

forms. Nostoc is commonly found, but also 

Anabaena, Calothrix, Fischerella, and  

Scytonema spp. have been observed in 

symbiotic associations  (Rowell & Kerby, 

1991).  

The filamentous heterocystous Nodularia, 

the main object of this thesis, occurs in 

saline and brackish waters and in soil all 

over the world (Table 1). Aphanizomenon, 

which was also studied in this thesis, lives 

in both fresh (Sivonen et al., 1990; Paerl, 

1996) and brackish waters (Hällfors, 1979; 

Edler et al., 1984). 
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Table 1. Geographical and ecological distribution of the cyanobacterium Nodularia  
 
Location 

 
Description of the source 
(identification of species) 
 

 
Reference 

 
Saline aquatic environments 
 
Africa: 
- Banagher Pan, South-Africa 
- South Africa, Namibia, Botswana, 

Zimbabwe, and Mozambique 
 
Antarctica: 
- South Shetland Islands  
- Wilkes 
 
Australia: 
- Lake Alexandrina, and Lake  Albert, 

South Australia 
 
- Lake Ellesmere, New Zealand 
- Lake Corangamite and Lake 

Coraculac, Victoria  
- Orielton Lagoon, Tasmania 
- Peel-Harvey Estuary, Western 

Australia 
 
Central America: 
- Alchichica, Puebla State, Mexico 
 
North America:  
- Walker Lake, Nevada, USA 
- Pyramid Lake, Nevada, USA 
- British Columbia and Saskatchewan, 

Canada 
- Basin, Redberry, Deadmoose, 

Whiteshore, and Manito lakes, 
Saskatchewan, Canada 

- Big Quill Lake, Saskatchewan, 
Canada 

- Riefel Wildlife Refuge, British 
Columbia, Canada 

- Sande Fuca and Devis Lake, 
Washington, USA 

- Great Salt Lake, Utah, USA 
 
South America: 
- Castillos lagoon, Uruguay  
 
Central and Southwest Asia: 
- Balkash Lake and Lake Aral, 

Kazakhstan/Uzbekistan 
- the Sea of Azov, Ukraina 
- the Caspian Sea 
 
 
Europe: 
- Bafra Balik Gölleri (Balik Gölü, Uzun 

Göl), Turkey 
- the Baltic Sea, Europe 
 
- Banter See, Wilhelmshaven, 

Germany 
- The Gulf of St. Eufemia, the 

Mediterranean Sea, Italy 
- Kattegat, The North Sea 
- Barrow Ski Club Lake, England 
 

 
 
 
 
Saline pond (N. spumigena var. vacuolaria) 
Saline lakes (N. spumigena) 
 
 
 
Unknown source (N. harveyana) 
Saline lakes and ponds (Nodularia sp.) 
 
 
Saline lakes (N. spumigena) 
 
 
Saline lake (N. spumigena) 
Saline lakes (N. spumigena) 
 
Coastal embayment (N. spumigena) 
Estuarine (Nodularia sp.) 
 
 
 
Volcanic saline lake (N. cf. spumigena) 
 
 
Terminal saline lake (N. spumigena)  
Terminal desert lake (N. spumigena) 
Saline lakes and ponds (N. spumigena) 
 
Saline lakes (N. spumigena, N. harveyana) 
 
 
Saline lake (N. spumigena) 
 
Coastal water (N. harveyana) 
 
Coastal waters (N. spumigena,  
N. harveyana) 

Terminal desert lake (N. spumigena) 
 
 
Coastal water (N. baltica-spumigena type) 
 
 
Saline tectonic lakes (N. spumigena) 
 
Brackish water (N. spumigena f. typica) 
Brackish water (N. spumigena,  
N. harveyana) 

 
 
Unknown source (N. spumigena,  
N. harveyana) 

Brackish water (N. spumigena,  
N. harveyana) 

Brackish lake (N. spumigena) 
 
Brackish water (N. harveyana) 
 
Marine water (N. spumigena) 
Brackish lake (N. spumigena) 
 

 
 
 
 
Hutchinson et al., 1932 
Seaman et al., 1991 
 
 
 
Komárek et al., 1999 
Wright & Burton, 1981 
 
 
Francis 1878;  
Baker & Humpage, 1994 
 
Carmichael et al., 1988 
Hammer, 1981 
 
Jones et al., 1994b 
Lukatelich & McComb, 

1986 
 
 
Tavera & Komárek, 

1996 
 
Cooper & Koch, 1984  
Galat et al., 1981 
Hammer et al., 1983 
 
Nordin & Stein, 1980 
 
 
Nordin & Stein, 1980 
 
Nordin & Stein, 1980 
 
Nordin & Stein, 1980 
 
Stephens, 1990 
 
 
del Carmen Pérez et al., 

1999 
 
Ergashev, 1979 
 
Zenkevitch, 1963 
Zenkevitch, 1963 
 
 
 
Gönülol & Comak, 1992 
 
Hällfors, 1979; Edler et 

al., 1984 
Nehring, 1993 
 
Pushparaj et al., 1994 
 
Smayda, 1998 
Twist & Codd, 1997 
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Table 1, continued 

 
 
Other locations 
 
- Osoyoos, British Columbia, Canada 
 
 
- Lucknow, India 
- Debari, India 
- Svätý Jur, Slovakia 
- the Gulf of Bothnia, the Baltic Sea 
- Lindåspollene, Norway 
- Simpon’s Gap, Australia 
- São Paulo, Brazil 
- Guadarrama mountain and Coto de 

Doñana, Spain 
- Allahabad, India 
- Buerto Princesa, Palawan, 

Philippines 
- Gibraltar Point, Lincolnshire, UK 
- Dax, France 
 

 
 
 
 
Alkaline soil near saline ponds 
(N. spumigena) 

 
Alkaline soil (N. harveyana) 
Alkaline soil (N. spumigena) 
Littoral of brook (N. sphaerocarpa) 
Ice (N. spumigena) 
Littoral zone of fjord (Nodularia  sp.) 
Water hole, soil (N. spumigena) 
Littoral zone of river (N. willei) 
Freshwater brook and lagoon 
(Nodularia sp.) 

Soil near lake (N. harveyana) 
On intertidal rocks (N. harveyana) 
 
Salt marsh (N. harveyana) 
Thermal spring  
(N. sphaerocarpa/harveyana) 
 

 

 
 
 
 
Camm & Stein, 1974;  

Nordin & Stein, 1980;  
www.pasteur.fr   

Dixit et al., 1985 
Gopal et al., 1975 
Hindàk, 1999 
Laamanen, 1996 
Lännergren, 1980 
Nordin & Stein, 1980 
Sant´Anna, 1991 
Sanz-Alférez & del 

Campo, 1994 
Tiwari & Pandey, 1976 
Umezaki, 1995 
 
Warr et al., 1984 
www.pasteur.fr  

(strain PCC7804) 
 

 
1.1.2. Cyanobacterial blooms in 
the Baltic Sea 

In the Baltic Sea, late-summer blooms of 

nitrogen fixing filamentous cyanobacteria 

are an annual phenomenon (Kononen, 

1992). The geographical extent and the 

magnitude of these population explosions 

of cyanobacteria has been suspected to 

increase (Kahru et al., 1994) due to the 

increased nutrient concentrations (Wulff et 

al., 1990) and changed nutrient ratios in 

the Baltic Sea (Smayda, 1990). 

In most open sea areas of the Baltic Sea, 

the blooms in July-August are dominated 

by Nodularia and Aphanizomenon. In 

addition, Anabaena is present in the  

blooms (Kononen & Niemi, 1984; Sivonen 

et al., 1989a,b; Kononen et al., 1993b). 

Several other cyanobacterial genera, e.g.  

Aphanothece, Chroococcus, Snowella, 

Merismopedia, Microcystis, Lyngbya, and 

Planktothrix have been recorded 

especially from coastal areas of the Baltic 

Sea (Hällfors, 1979; Edler et al., 1984). In 

addition, several studies (Jochem, 1988; 

Kuosa, 1991; Heinänen et al., 1995) have 

described the importance of 

cyanobacterial picoplankton, identified as 

Synechococcus, in the phytoplankton 

community of the Baltic Sea.  

In the Baltic Sea, Nodularia has been 

confirmed as the only toxin-producing 

cyanobacterial genus so far (Sivonen et al. 

1989a,b; Kononen et al., 1993b), and 

animal poisonings have been associated 

with blooms of this genus (Nehring, 1993). 

1.1.3. Toxicosis and exposure 
routes of cyanobacterial 
hepatotoxins 

Hepatotoxins have most frequently been 

associated with incidents of animal 

poisonings. The first scientific report on a 

cyanobacterial poisoning is that by Francis 

(1878). The author reported that stock 

deaths in Australia had occurred as a 

result of drinking from a lake infested by a 
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bloom of Nodularia spumigena. Since the 

finding of Francis, there have been 

numerous reports of animal poisonings 

that have been associated with Nodularia 

blooms (Table 2) and with other 

cyanobacterial genera (Sivonen, 1990a; 

Ressom et al., 1994; Kuiper-Goodman et 

al., 1999). There have also been several 

reports of human illness - even deaths - 

attributed to toxic cyanobacteria (Ressom 

et al., 1994; Hunter, 1998; Codd et al., 

1999b; Kuiper-Goodman et al., 1999). The 

poisoning episodes and monitoring 

surveys of toxic blooms (Sivonen, 1998; 

Codd et al., 1999b; Sivonen & Jones, 

1999) have revealed that cyanobacterial 

toxins are common and pose serious 

health hazards for animals and human 

beings throughout the world. 

Cyanobacterial peptide toxins are linked to 

incidences of different human illnesses, 

including skin and eye irritation, allergy-like 

symptoms, gastro-enteritis, and 

hepatoenteritis caused by acute exposure 

to toxins (Carmichael & Falconer, 1993; 

Ressom et al., 1994; Codd et al., 1999b; 

Kuiper-Goodman et al., 1999). Chronic 

exposure to microcystins through drinking 

water may increase incidences of human 

liver cancer (Codd, 1998; Codd et al., 

1999b; Kuiper-Goodman et al., 1999). A 

severe hepatoenteritis of the population in 

Palm Island, Queensland, Australia was 

also associated with drinking water 

contaminated with Cylindrospermopsis 

raciborskii (Byth, 1980; Hawkins et al., 

1985). In Brazil, a major human poisoning 

episode was attributed to water used for 

dialysis containing microcystins in 1996 

(Jochimsen et al., 1998; Pouria et al., 

1998). This poisoning caused the death of 

at least 55 people due to severe liver 

damage. 

These episodes showed that hemodialysis 

water is an important exposure route for 

cyanobacterial toxins together with the 

consumption of drinking water. 

Furthermore, the recreational use of 

waters has caused illness in individuals 

who have been in skin contact with blooms 

(Carmichael & Falconer, 1993; Hunter, 

1998; Codd, 1998; Codd et al., 1999b). 

For example, in Australia, people have 

had skin, eye and respiratory symptoms 

after contact with a bloom of Nodularia 

(Soong et al., 1992). Consumption of 

contaminated cyanobacterial cell dietary 

supplements, plant products, shellfish and 

fish may lead to minor exposure to 

cyanobacterial toxins (Codd et al., 1999b). 

For example, cyanobacterial hepatotoxins 

have been found from salad lettuce (Codd 

et al., 1999a) and from mussels (Chen et 

al., 1993; Falconer et al., 1992). In  

addition, showering and bathing are 

possible routes of exposure (Codd, 1998; 

Codd et al., 1999b).  
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Table 2. Toxic Nodularia blooms observed in monitoring surveys and due to poisoning 
episodes  

…………………………………………………………………………………………………………… 
The descriptions of clinical, pathological, and histological findings due to cyanobacterial hepatotoxins are described 
in section 1.3.2. *Intoxication by Nodularia was suspected, but no toxicity tests or pathological surveys were made.  

 
 
Location and date 
 

 
Affected animal (findings of 
hepatoxicity) and/or 
bioassays (animal, 
administration, findings) 
 

 
Nodularia and/or 
nodularin (detection 
method) 
 

 
Reference 

 
Australia: 
- Lake Alexandrina, 1878 
- Broomehill dam, 1974 
 
 
- Lake Alexandrina and Lake 

Albert, 1990-93 
 
- Orielton Lagoon, Tasmania, 

1992-93 
 
- Lake Alexandrina and Lake 

Albert, 1994-95 
 
Europe/ the Baltic Sea: 
- Kleiner Jasmunder Bodden, 

Germany, 1963 
- Gotland, Simrishamn, 

Karlshamn, and Ystad, Sweden, 
1982 

 
- Strelasund, Germany, 1983 
 
- Porvoo, Finland, 1984 
- Saarenmaa, Estonia, 1984 
- Arkona Sea, 1986 
 
 
- Arkona Basin, Baltic Proper, and 

Gulf of Finland, 1985-87 
 
- Gulf of Finland, and Gulf of 

Bothnia, 1990-91 
 
 
 
 
Europe/ the North Sea: 
- Århusbugten and 

Kaløvigområdet, Danemark, 
1975 

- Banter See, Wihelmshaven, 
Germany, 1990 

 
Africa: 
- Malmesbury, South Africa, 1993-

94 
 
 
- Lake Zeekoeivlei, Cape Town, 

South Africa, 1994 

 
 
Sheep (pathological findings) 
Sheep (pathological findings), 
bioassays (sheep and pigs, oral, 
clinical and histological findings) 

Hepatotoxicity of most Nodularia-
dominated samples (mouse, i.p., 
MLD100)  

 
 
 
 
 
 
 
Ducks (pathological findings) 
 
Dogs (clinical and pathological 
findings), bioassay (mouse, i.p., 

 > 40 MU g-1 dw-1) 
 
Cattle (clinical and pathological 
findings) 

Dogs (pathological findings) 
Bull calves* 
Bioassay (mouse, i.p., LD50 95-455 
mg kg-1) 

 
Bioassay (mouse, i.p.,  MLD100 
125-2500 mg kg-1 in most of the 
samples) 

Bioassay (mouse, i.p., MLD100), 
samples collected from the 
Bothnian Sea were hepatotoxic  

 
 
 
 
Dogs (clinical and pathological 
findings) 

 
Dogs (clinical and pathological 
findings) 

 
 
Calves (clinical findings), bioassay 
(mouse, i.p.), cows (pathological 
findings), and sheep (pathological 
findings, and blood chemistry) 

Dog (clinical and histological 
findings), bioassay (mouse, i.p., 
hepatotoxicity) 

 

 
 
Nodularia in water 
Nodularia in water 
 
 
Nodularin  in several bloom 
samples (HPLC)  

 
5-3500 µg nodularin g-1 dw 
(HPLC) 

 
0.02-1.7 µg nodularin l-1 

(HPLC) 
 
 
Nodularia in water 
 
Nodularia in water 
 
 
 
Nodularia in water 
 
Nodularia in water 
Nodularia in water 
Nodularin detected in all 
hepatotoxic Nodularia bloom 
samples (HPLC) 

0.1-2.4 mg nodularin g-1  dry 
weight-1 (dw-1) (HPLC) 

 
0.3-18.1 mg g-1  nodularin  
dw-1 of hepatotoxic blooms 
samples and 0.01-4.9 mg 
nodularin l-1 in all water 
samples (HPLC) 

 
 
Nodularia in water 
 
 
Nodularia in water 
 
 
 
Nodularia spumigena in water 
 
 
 
Nodularia spumigena 
accounted for about 95% of 
the bloom containing 3.5 µg 
nodularin mg-1 (HPLC) 

 

 
 
Francis, 1878 
Main et al., 1977 
 
 
Baker & Humbage, 
1994 

 
Jones et al., 1994b; 
Blackburn & Jones, 
1995 

Heresztyn & 
Nicholson, 1997 

 
 
Kalbe & Thieß, 1964 
 
Lind et al., 1983; 
Lundberg et al., 
1983; Edler et al., 
1985 

von Gußmann et al., 
1985 

Persson et al., 1984 
Olli, 1996 
Sivonen et al., 1989a 
 
 
Sivonen et al., 1989b 
 
 
Kononen et al., 
1993b 

 
 
 
 
 
Lindstrøm, 1976 
 
 
Nehring, 1993 
 
 
 
van Halderen et al., 
1995 
 
 
Harding et al., 1995 
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1.1.4. Ecological effects of 
cyanobacterial toxins 

The ecological role of cyanobacterial 

toxins is still not understood despite the 

numerous studies on physiological and 

ecological bases for toxin production. 

Toxin production is most likely related to 

the physical, chemical, and biotic 

environment, in which cyanobacteria 

compete with other organisms to maximise 

their growth and reproduction (Ressom et 

al., 1994; Paerl & Millie, 1996). For 

example, cyanobacteria are known to have 

toxic effects on phytoplankton and aquatic 

macrophytes (reviewed by Ressom et al., 

1994) and Nodularia blooms have been 

suspected to reduce fish abundance 

(Potter et al., 1983; Lenanton et al., 1985). 

In addition, field observations have 

revealed that zooplankton (Watanabe et 

al., 1992; Kotak et al., 1996), 

macroinvertebrates (Zurawell et al., 1999), 

and mussels (Lindholm et al., 1989; 

Falconer et al., 1992; Chen et al., 1993) 

accumulate microcystins and nodularins. 

These observations indicated that 

cyanobacterial toxins can have effects on 

higher trophic levels, thus they may be 

transfered in aquatic food chains.  

Toxin production can also be a defence 

mechanism against grazers (see Ressom 

et al., 1994; Hanazato, 1996). Toxic 

Microcystis and Nodularia (Reinikainen et  

al., 1994; Hietala et al., 1995; Walls et al., 

1997; Koski et al., 1999) and toxins 

produced by these cyanobacteria (DeMott 

et al., 1991) have been demonstrated to  

 

have harmful effects on zooplankton 

grazers in the laboratory. In field studies of 

the Baltic Sea, cyanobacterial blooms 

were not consumed by copepods and 

exposure of copepods to a bloom 

depressed their egg production (Sellner et 

al., 1994, 1996). In some of these studies, 

also non-toxic cyanobacteria had negative 

effects on zooplankton, thus, there might 

be other factors than toxicity which affect 

food quality. For example, cell size and 

morphology affect ingestibility and 

assimilability of food (Koski, 1999). 

Cyanobacteria are known to produce a 

wide range of compounds with dissimilar 

bioactivities (see section 1.3). For 

example, in Microcystis, different 

compounds have been suggested to be 

toxic to Daphnia and inhibit its filtering 

(Jungmann et al., 1991). Recently, two 

variants of Microcystis PCC7806 strains, a 

wild-type strain and a mutant not able to 

produce toxin, were used to study the role 

of microcystins in the defence of 

Microcystis strains against Daphnia 

galeata (Rohrlack et al., 1999). The wild-

type strain was toxic to D. galeata, 

whereas the mutant was not lethal. Yet, 

both types of PCC7806 were able to 

reduce the Daphnia ingestion rate. The 

study gave strong evidence that 

microcystins were responsible for the 

poisoning of Daphnia, but they were not 

responsible for inhibition of the ingestion 

process.  
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1.2. Factors leading to 
cyanobacterial success 

Cyanobacterial blooms have been thought 

to be a consequence of increased nutrient 

concentrations of fresh and marine waters 

where they occur seasonally during warm 

water temperatures. Although nutrients 

and temperature are regarded as the most 

important factors for the success of 

cyanobacteria (Paerl, 1988, 1996) several 

different factors have been presented to 

explain cyanobacterial success in aquatic 

environments (Hyenstrand et al., 1998).  

According to the review of Hyenstrand 

(1998), cyanobacteria are favoured by a 

low ratio of total N to total phosphorus (P) 

and by a high water temperature. Non-

nitrogen fixing cyanobacteria require 

ammonium (NH4
+) whereas a scarcity of N 

benefits the development of population of 

nitrogen fixing cyanobacteria, which differ 

from non-nitrogen fixing cyanobacteria for 

high requirements of trace elements (e.g. 

iron). Furthermore, cyanobacteria gain 

competitive advantage by storing P and by 

regulating their buoyancy. With the help of 

these properties, they can survive during 

periods of P-deficiency and regulate their 

vertical position in the water column. 

Moreover, cyanobacteria can replace 

eukaryotic phytoplankton in high pH or low 

CO2 situations, and under low light 

conditions. Cyanobacteria can avoid 

grazing e.g. by producing toxins. 

1.2.1. Factors favouring bloom 
formation and growth of 
Nodularia and Aphanizomenon 

In Australia and the Baltic Sea, low N and 

high P concentrations have been related 

to Nodularia blooms (Table 3). In the Baltic 

Sea, a low N:P-ratio has also been 

observed to favour the dominance of 

Aphanizomenon. In addition, P and in 

some cases N stimulated the growth of 

heterocystous cyanobacteria in most of the 

enrichment experiments in situ (Table 3).  

Blooms of Nodularia are common in the N-

deficient parts of the Baltic Sea, and they 

only occur exceptionally in the Kattegat 

which is connected to the Baltic Proper 

(the Baltic Sea). The absence of Nodularia 

in Kattegat, which has equally low N:P-

ratios, is probably related to its high 

salinity (Granéli et al., 1990). High 

salinities have been observed to depress 

the growth of Nodularia in Peel-Harvey 

Estuary, Orielton Lagoon and Great Salt 

Lake (Table 3). In addition, laboratory 

studies with cultures have shown that 

salinities higher than 30 ‰ repressed the 

growth (Horstmann, 1975; Nordin & Stein, 

1980; Warr et al., 1984; Blackburn et al., 

1996) and promoted the sporulation of 

Nodularia (Nordin & Stein, 1980; Jones et 

al., 1994b). 

In addition to the chemical controlling 

factors, cyanobacterial blooms are also 

controlled by physical factors such as 

temperature, light, and water stability 

(Paerl, 1996; Hyenstrand, 1998). High 

water temperatures have been reported to 

support Nodularia blooms in saline and in 
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brackish waters (Table 3). Cold weather 

depresses initiation of cyanobacterial 

blooms, and cloudy and windy weather 

prevents the cyanobacteria from 

accumulating at the water surface (Table 

3). The ecology and the physiology of 

heterocystous cyanobacterial blooms in 

the Baltic Sea have thoroughly been 

reviewed by Kononen (1992), Kononen 

and Leppänen (1997), and Sellner (1997).  

In addition to enrichment tests done with 

natural communities in situ and in the 

laboratory (Table 3), unialgal cultures have 

been used to study the effects of several 

factors on cyanobacterial growth in the 

laboratory. The study of Nordin and Stein 

(1980) demonstrated that maximum 

growth of Nodularia strains occurred at 

salinities of 5-10‰ (test range 1-60‰), 

temperatures of 25-30°C (test range 15-

35°C), pHs of 10.0-10.5 (test range 6.0-

11.0), and light intensities of 6000 lx (test 

range 240-6000 lx). No preference was 

shown for dominant anions (Na+, Mg2
+) or 

cations (Cl-, CO3
2-, SO4

2-). All strains grew 

well with various levels of nitrate (0.25-1.0 

g NO3
--N l-1) but poor growth resulted 

when NH4
+ or urea was the N source 

(Nordin & Stein, 1980). Later, Huber 

(1986b) found no stimulation of growth of 

Nodularia by NH4
+ or NO3

- at 

concentrations from 0 to 20 mg N l-1. 

Horstman’s study (1975) showed that 

Nodularia strains grew best at salinities of 

5-15‰ (test range 0-30‰). Warr et al. 

(1984) studied the effect of different 

salinities and N sources on the growth of 

Nodularia harveyana. They found that 

growth was highest at 0-35‰ (test range 

0-70‰). Moreover, the growth on  

NH4
+ (20 mg N l-1) was higher than on 

NO3
-  (20 mg N l-1) and on gaseous N. The 

study of Blackburn et al. (1996) showed 

that growth of Nodularia strains at 0 and 

35‰ was lower than at 12 and 24‰. 

According to Melin and Lindahl (1973), the 

growth of the Baltic Sea Aphanizomenon 

culture was stimulated by the addition of 

PO4
3-, chelated trace elements or a 

combination of these. The highest 

biomass accumulations of N. spumigena 

and Aphanizomenon sp. occurred at the 

highest studied light intensity (test range 1-

100 µmol m-2 s-1) (Holswilder, 1999). For 

both genera, the growth at the two lowest 

irradiances (1 and 6 µmol m-2 s-1) differed 

significantly from the two highest 

irradiances (60 and 100 µmol m-2 s-1). 

Furthermore, the biomass of N. 

spumigena cultures grown in moderately 

P-limited conditions (N:P = 32:1, molar 

ratio) was significantly higher than those of 

extremely P-limited (N:P = 64:1) and non-

P-limited (N:P = 16:1) (Holswilder, 1999).  

Gopal et al. (1975) found that an alkaline 

pH (test range 4-9) was most suitable for 

growth and that nutrients stimulated 

growth of N. spumigena strain. Growth 

increased when phosphate (PO4
3-) and 

NO3
- were added. This soil strain was 

found to tolerate high concentrations of 

copper (1.5 µg l-1) and zinc (2.0 µg l-1). 

Dixit et al. (1985) studied the growth of 

Nodularia with different N sources. 

Ammonium chloride (0.5 mM) was highly 

toxic to this soil strain, while sodium nitrate 

(2 mM) and nitrite (2 mM) supported 
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optimal growth. Furthermore, his studies 

indicated maximum growth at 20-25°C, pH 

7.5-9.0 and light intensity 1000-5000 lx. 

Camm and Stein (1974) reported that urea 

was toxic at high concentrations of 8.8 mM 

and 4.4 mM to soil strains of N. spumigena 

whereas concentrations lower than those 

inhibited growth on N-free medium and on 

NO3
-
 -medium. 

1.2.2. Factors controlling 
nitrogen fixation in Nodularia 
and Aphanizomenon  

Many cyanobacteria have been 

experimentally shown to perform nitrogen 

fixation under anaerobic conditions, but 

fewer are able to grow at the expense of 

atmospheric N2 under aerobic conditions 

(see Flores & Herrero, 1994). Certain 

cyanobacteria, which are able to perform 

aerobic nitrogen fixation, have developed 

heterocysts as a protective structure for 

nitrogen fixation for the oxygen-sensitive 

enzyme, nitrogenase. Heterocysts are 

present within order Nostocales in three 

families: Nostocaceae, Scytonemataceae, 

and Rivulariaceae (Castenholz, 1989b).  

The progress of cyanobacterial nitrogen 

fixation research until 1988 has been 

reviewed by Gallon and Chaplin (1988). 

Most estimates of nitrogen fixation are 

derived using the acetylene reduction 

method. This method is based on the 

property of nitrogenase to reduce 

compounds with a triplet bond such as 

dinitrogen (N2) and acetylene. The end 

product of the acetylene reduction, 

ethylene, can be measured using gas 

chromatography. The acetylene reduction 

method has been widely adopted as a 

method for quantifying nitrogen fixation, 

since it was first introduced by Stewart and 

co-authors (Stewart et al., 1967). Most of 

the estimates of nitrogen fixation in field 

populations in the Baltic Sea are based on 

this method (see references in Table 3), 

but the 15N method (Moisander et al., 

1996) and laser photoacoustic detection of 

ethylene (Zuckermann et al., 1997) have 

been also used. The nitrogen fixation 

system in cyanobacteria has been 

intensively studied by molecular 

techniques. These techniques have made 

it possible to study the environmental 

regulation of cyanobacterial nitrogen 

fixation at a genetic level (see Flores & 

Herrero, 1994). 

Nitrogen fixing cyanobacteria have a 

selective advantage in N-limited 

environments such as the open Baltic Sea. 

In the Baltic Sea, cyanobacterial nitrogen 

fixation has been estimated to be about 

9% of the total N input (Larsson et al., 

1985). The estimated N inputs through 

nitrogen fixation vary in different areas of 

the Baltic Sea (Larsson et al., 1985; 

Howart et al., 1988a; Sellner, 1997). 

Estimations for nitrogen fixation rates and 

the importance for lakes, estuaries, and 

oceans have been reviewed by Howarth et 

al. (1988a). Nitrogen fixation rates are 

controlled by many chemical and physical 

factors (Bothe, 1982; Howarth et al., 

1988b). Light, temperature, nutrients and 

salinity are known to control nitrogen 

fixation in Nodularia and Aphanizomenon 

blooms (Table 3). 
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Table 3. Factors promoting and inhibiting growth and nitrogen fixation of the planktonic cyanobacteria Nodularia and Aphanizomenon in brackish and saline 
waters according to field observations and experimental studies with natural phytoplankton communities  

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………… 

Abbreviations: N, nitrogen; NO3
-, nitrate; DIN, dissolved inorganic nitrogen; P, phosphorus; PO4

3-, phosphate; SRP, soluble reactive phosphorus. 

 
Type of study  
Location and date 
 

 
Results 
 
 

 
Reference 

 
Field observations  
 
Australia: 
- Lake Alexandrina, 1975-78 
- Peel-Harvey Estuary, 1977-83 
 
 
- Peel-Harvey Estuary, 1977-83 
 
 
- Orielton Lagoon, Tasmania, 1992-93 
 
- Peel-Harvey Estuary, 1977-83 
 
Canada: 
- 41 saline lakes, Saskatchewan,  

  1959-82 
 
USA: 
- Waler Lake, Nevada, 1975-77 
 
- Pyramid Lake, Nevada, 1972-86 
 
- Pyramid Lake, Nevada, 1986 
- Pyramid Lake, Nevada, 1972-86 
 
- Pyramid Lake, Nevada, 1979 
 
 
- Pyramid Lake, Nevada, 1989-92 
- Great Salt Lake, Utah, 1847-1987 

 
 
 
 
High turbulence and turbidity ended blooms of nitrogen fixing cyanobacteria. 
Summer Nodularia blooms were related to high P concentration and fresh water loading from river flow during the 

previous winter. At the time of P loading, Nodularia growth was limited by temperature. In the years with no 
Nodularia blooms, the salinity exceeded 15‰ by the time water temperatures reached 18ºC. 

Nitrogen fixation of N. spumigena blooms decreased with depth in response to light, and with increasing bloom age. 
Furthermore, high N concentrations, salinites, and water temperatures decreased nitrogen fixation. A positive 
correlation between nitrogen fixation and biomass was found. 

Nodularia blooms were favoured by low salinity (< 24 g kg-1) and high water temperature (~ 18-24ºC).  
 
Nodularia blooms were related to high P concentration (100-200 µg PO4

3-  l-1), low N:P-ratio (< 20:1), and low salinity 
(< 30‰). 

 
Growth of Nodularia  was observed in ten lakes ranging in salinity from 10-20 to 204 g l -1. 
 
 
 
Nodularia spumigena blooms were associated with low levels of inorganic N. The maximum numbers of Nodularia 

occurred at depth of one meter. 
Low N:P-ratios, as well as climatic forcing of fluvial discharge and lake mixing patterns were important for seasonal 

succession of N. spumigena. 
Nodularia blooms were initiated by high SRP and low DIN concentrations and dispersed by strong winds.  
Adequate P, but limited N supplies triggered Nodularia blooms, which were restricted to summer and autumn when 

the lake was thermally stratified. 
Nitrogen fixation depended on calm periods when Nodularia floated to the surface. Near-surface dependence of 

Nodularia distinguished it from most nitrogen fixing genera which were damaged in high light conditions.  Also, low 
N concentration and high P concentration were controlling factors for nitrogen fixation. 

High water temperature and column stability favoured Nodularia blooms. 
The proportion of N. spumigena increased with the decrease in salinity, which has decreased from ~28 to 16% in the 

north part and from ~21 to 6% in the south part. 

 
 
 
 
Geddes, 1984 
Hillman et al., 1990  
 
 
Huber, 1986a 
 
 
Jones et al., 1994b; 

Blackburn & Jones, 1995 
Lukatelich & McComb, 1986 
 
 
Hammer et al., 983 
 
 
 
Cooper & Koch, 1984 
 
Galat & Verdin, 1988 
 
Galat & Verdin, 1989  
Galat et al., 1990 
 
Horne & Galat, 1985  
 
 
Lebo et al., 1994 
Stephens, 1990 
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Table 3, continued 
 
Europe/ the Baltic Sea: 
- Gulf of Bothnia, 1991 
 
- Gulf of Finland, 1990 
- Gulf of Riga and Gulf of Finland, 1994 
 
 
- Arkona Sea, 1974 
 
 
- Baltic Proper, 1982 
- Gulf of Finland, 1972-85 
- Baltic Sea, 1979-88 
 
- Gulf of Finland, 1968-81 
- Gulf of Finland, 1990 
- Gulf of Finland, 1993 
 
- Baltic Sea 
 
 
 
- Gulf of Finland, 1994 
 
- Baltic Sea 
 
- Bothnian Sea, 1977-78 
 
 
 
- Baltic Proper, 1976 
 
 
- Baltic Proper, 1975 

 
 
Nodulalaria spumigena and Aphanizomenon sp. did not occur in the Bothnian Bay, where phosphorus limited the 

growth of the phytoplankton. 
A bloom of A. flos-aquae was promoted by a nutrient pulse with a DIN:DIP -ratio of 15. 
There was a clear difference in biomass and sinking loss of Aphanizomenon between the study areas. In the Gulf of 

Riga, the deep water rich in N invoked biomass increase and promoted the buoyancy control of Aphanizomenon. 
Also, light controlled the vertical distribution and sinking loss rates of Aphanizomenon.  

The highest nitrogenase activity per heterocyst as well as the highest biomass and the number of heterocysts were 
observed from the surface water layers with the highest Nodularia bloom densities. Blooms were initiated through 
P enrichment of warm, stratified surface waters low in N.  

Phytoplankton growth was increased in fronts resulting from nutrient enrichment by upwelling. 
Cyanobacteria were associated with high water temperatures. 
The monitoring data showed a rather similar distribution of A. flos-aquae and N. spumigena in relation to salinity 

whereas they have clearly different temperature optima. 
High P concentrations and low N:P-ratios favoured heterocystous cyanobacterial species.  
A. flos-aquae bloom formation was associated with frontal upwelling bringing up deep waters with a low N:P-ratio. 
Cyanobacterial growth in the frontal zone was stimulated by PO4

3- -replenishment zones (A. flos-aquae) and warming 
and shallowing of the surface layer (N. spumigena) under calm weather conditions. 

Nodularia spumigena and A. flos-aquae were dissimilar regarding their temperature, salinity, and light optima, as well 
as in the affinity for PO4

3-. The initiation of Nodularia blooms was not restricted to the frontal zone, but took place 
on a basin-wide scale, as a result of warming and shallowing of the surface layers under calm weather conditions. 
A. flos-aquae benefited from P pulses. 

Nodularia was concentrated in the near-surface layer, while the maximum abundance of Aphanizomenon was 
observed in the top 7- to 10-m layer throughout the day. 

The upwelling water with a low N:P-ratio and a warm stable water column were the most important variables 
controlling blooms of heterocystous cyanobacteria. 

Aphanizomenon flos-aquae occurred from mid-June to the end of December. In the Bothnian Bay, the mean values 
of heterocyst activity (1332-1880 nmol C2H4 x 10-7 het-1 h-1) and heterocyst frequency (0.5-2.3 mm-1) were low 
compared to values in the other parts of the Baltic Sea due to low P concentrations. The heterocyst activity and 
frequency increased with increasing concentration of P.  

The heterocyst frequency of A. flos-aquae decreased during the study, probably due to high N concentrations in 
water. Upwelling of bottom water caused the disappearance of cyanobacteria and reduced the number of 
heterocysts. 

At the beginning of August, Nodularia declined and Aphanizomenon became the dominant nitrogen fixing genera.  
While Aphanizomenon was distributed within the whole euphotic layer, the Nodularia population was mainly floating 
on the surface. The nitrogen fixation showed principally the same vertical variation as the number of heterocysts, 
and was to a minor extent determined by the heterocyst activity.  

 

 
 
Andersson et al., 1996 
 
Grönlund et al., 1996 
Heiskanen & Olli, 1996 
 
 
Hübel & Hübel, 1980 
 
 
Kahru et al., 1984 
Kononen, 1988 
Kononen, 1992 
 
Kononen & Niemi, 1984  
Kononen & Nõmmann, 1992 
Kononen & Leppänen, 1997 
 
Kononen et al., 1996  
 
 
 
Kononen et al., 1998 
 
Leppänen et al., 1988 
 
Lindahl & Wallström, 1985  
 
 
 
Lindahl et al., 1978 
 
 
Lindahl et al., 1980 
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Table 3, continued 
 
- Gulf of Finland, 1994 
 
 
 
- Gulf of Finland, 1992 
 
 
- Baltic Sea 
 
- Baltic Proper and Gulf of Finland 
  1980, -82, and –84 
 
 
 
 
- Gulf of Gdansk, 1992-94 
 
- Gulf of Finland, 1993 
 
- Gulf of Finland, 1978 
 
- Gulf of Bothnia, 1978-79 
 
 
 
 
 
 
- Southern Baltic Proper, 1993 
 
- Southern Baltic Sea, 1993, -95  
 
- Baltic Sea, 1992-94 
 
 
- Baltic Proper, 1983-85 

 
The nitrogen fixation activity decreased during the study with the heterocyst frequency of Nodularia and 

Aphanizomenon. The highest nitrogen fixation rates were found in the samples grown at the  highest irradiance, 
and nitrogen fixation took place also in the dark. Under the highest irradiance, nitrogen fixation activity correlated 
positively with heterocyst frequency of Nodularia. 

In the early phase of the bloom, a salinity front had a marked ef fect on the spatial distribution of Nodularia and 
Aphanizomenon. Their biomass decreased steeply at the low salinity side of the front. During later bloom stages, 
spatial separations of Nodularia and Aphanizomenon disappeared. 

A low N:P-ratio promoted cyanobacterial blooms, especially in areas characterized by upwelling of P-rich bottom 
water. In the Bothnian Bay, where P rather than N limits phytoplankton production, no blooms exist.  

Nodularia was found in the uppermost five meters, while Aphanizomenon was distributed throughout the euphotic 
water layer. The dominance of Nodularia increased whereas the proportion of Aphanizomenon decreased towards 
the southern Baltic Sea. Nodularia occurs generally in the open sea area, while Aphanizomenon occurs in high 
abundance also in coastal areas. Cyanobacterial biomass and nitrogen fixation fluctuated strongly in space and 
time owing to patchiness and movement of the water masses. No clear connection was found between bloom 
development and nutrient concentrations. 

A decrease of the N:P-ratio was favourable for nitrogen fixing cyanobacteria. N. spumigena preferred higher 
temperatures for growth than A. flos-aquae. 

Nodularia spumigena was a common species in all the areas of the Gulf of Finland except the Neva Estuary where 
the oversupply of N promotes the growth of non -heterocystous species such as Planktothrix agardhii.  

Total P and total N correlated positively with Nodularia biomass in eutrophic waters, while positive correlation 
between total P and Nodularia biomass was found in oligotrophic waters.  

The nitrogen fixation, the number of heterocysts, and the biomass of A. flos-aquae and N. spumigena showed the 
same horizontal distribution. The level of nitrogen fixation was negligible in the Bothnian Bay. In the central and 
southern Bothnian Sea they were markedly lower (1/10) than in the northern Baltic Proper and the Gulf of Finland. 
The absence of blooms of heterocystous species and nitrogen fixation from the north of the Gulf of Finland is 
apparently connected with the high inorganic N:P-ratio in that area. Also, low temperature may prevent 
development of blooms. The vertical abundance of heterocystous genera differed: the vertical maximum of 
Aphanizomenon occurred at 10-20 m, while the highest abundance of Nodularia was near the surface.  

In surface waters, the increased irradiance experienced by A. flos-aquae supported increased rate of nitrogen 
fixation. 

Nitrogenase activity was saturated at about 600 µmol photons m-2 s-1, but considerable activity was found also in the 
dark.  

Nodularia spumigena and A. flos-aguae were mostly restricted to the water above the thermocline, and in calm 
conditions their concentration increased towards the top of the water column. The highest concentrations were 
within the top 10 m of the water column.  

The biomass of A. flos-aquae varied between the years mainly due to variation in water temperature. Also, the 
biomass and the number of heterocysts increased with increasing distance from the sewage treatment plant due to 
a low N:P-ratio.  The biomass of Aphanizomenon was highest in 1984 when the P loading from the plant was 
highest. 
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Table 3, continued 
 
Experiments performed in situ and in 
the laboratory  
 
- Gulf of Bothnia, Baltic Sea, 1991 
 
- Arkona Sea, Baltic Sea, 1978-79 
 
- Harvey Estuary, 1981-84 and Peel 

Inlet 1982-84, Australia 
- Baltic Proper, Baltic Sea, 1972 
 
- Peel-Harvey Estuary, Australia 
 
- Peel-Harvey Estuary, Australia, 1981 
 
- Gulf of Finland, Baltic Sea, 1990, -92 
 
- Pyramid Lake, Nevada, USA, 1989-92 
 
- Baltic Proper, Baltic Sea, 1975 
 
- Pyramid Lake, Nevada, USA, 1989-90 
 
 
- Gulf of Finland, Baltic Sea, 1974-75 
 
- Arkona Basin, Baltic Sea, 1981 
 
- Southern Baltic Sea, 1993, -95 
 
 
- Gulf of Finland, Baltic Sea, 1982 
 
- Baltic Proper, Baltic Sea, 1988 
 

 
 
 
 
Phytoplankton was P limited in the Bothnian Bay and the coastal area of the Bothnian Sea, and N limited in the 

offshore Bothnian Sea. 
Addition of N or N and P increased the biomass and changed the composition of phytoplankton. N. spumigena  was 

one of the phytoplankton species which reacted most strongly to the enrichment. 
The Nodularia biomass was higher in the P treatment than in the iron and N treatments.  
 
Cyanobacterial growth was stimulated by addition of PO4

3-, and PO4
3-

 and NO3
-. When N became deficient, an 

increase in the frequency of heterocysts was observed, which resulted in higher nitrogen fixing ability. 
Light controlled nitrogen fixation in Nodularia. Nitrogen fixation was higher in the light than in the dark, where it was 

related to the length of prior exposure to light.  
When P was added in the laboratory to natural Nodularia populations, there was a distinct inverse relationship 

between phosphatase activity and P taken up. The addition of P had little effect on biomass.  
The nutrient additions benefited the growth of smaller phytoplankton species over the filamentous heterocystous 

cyanobacteria. 
Only time when N addition did not stimulate phytoplankton growth was during periods of winter mixing and N. 

spumigena bloom. 
Phosphate alone and in combination with chelated metals increased the heterocyst frequency of A. flos-aquae. 

Combined additions of NO3
- and PO4

3- together stimulated the 14C-uptake.  
Phosphate enrichment, when added singly or in combination with DIN, had no effect on chlorophyl l-a production. 

Nitrogen enrichment had a positive response at all times of the year except during a bloom of N. spumigena and 
after complete lake mixing.  

Phosphorus was more important for the growth of Nodularia than N. In the very eutrophic areas, also N had a 
growth-increasing effect. 

Temperature appeared to be the main factor influencing growth of Nodularia, which was also stimulated by N 
deficiency. 

Nodularia was limited by iron, which stimulated both growth and nitrogenase activity. Phosphate stimulated 
nitrogenase activity to the same extent as iron but did not stimulate growth. Nitrogenous compounds and 
molybdate did not affect nitrogenase activity whereas elimination of sulfate stimulated it strongly. 

Ammonium  was the main limiting nutrient for the phytoplankton community as a whole, but the nitrogen fixing 
cyanobacteria were P-limited. 

Phosphorus had no effect on the biomasses of cyanobacterial species. During a mesocosm experiment, A. flos-
aquae almost disappeared when N was present and the population of N. spumigena increased slowly probably due 
to the low water temperatures. On the basis of growth rates of N. spumigena at different nutrient conditions, N. 
spumigena may be superior to A. flos-aquae in competition for P. 
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In laboratory experiments done with 

Nodularia cultures, nitrogen fixation was 

highest at salinities of 0- 35‰ and 

salinities higher than 35‰ decreased the 

nitrogen fixation (Warr et al., 1984). In 

another study, highest nitrogen fixation 

was detected at salinity of 5-10‰ and 

lower salinities than 5‰ decreased the 

nitrogen fixation (Huber, 1986b). 

Phosphorus addition stimulated nitrogen 

fixation in P-starved Nodularia cultures 

(Huber, 1986b), while NH4
+ addition 

inhibited nitrogen fixation (Sanz-Alférez & 

del Campo, 1994). A very high NH4
+ 

concentration (42 mg l-1) inhibited nitrogen 

fixation by both Aphanizomenon and 

Nodularia (Moisander et al., 1996). 

According to Huber (1986b), NH4
+ 

completely inhibited nitrogenase activity 

whereas NO3
- did not. Light has also been 

demonstrated to control nitrogen fixation of 

Nodularia cultures (Huber, 1986b; Sanz-

Alférez & del Campo, 1994; Zuckermann 

et al., 1997). In outdoor cultures of N. 

harveyana nitrogenase activity was 

influenced by the growth rate and not by 

high light intensity (Pushparaj et al., 1994). 

1.2.3. Factors influencing 
cyanobacterial hepatotoxin 
production 

There is no information available about 

environmental conditions that influence 

hepatotoxin production in Nodularia 

blooms in the field whereas factors 

affecting toxin concentrations in 

Microcystis-blooms in eutrophic lakes 

have been examined, and the results are 

contradictionary. In the Hartbeespoort 

Dam (South Africa), microcystin-YR, -LR,  

-YA and -LA concentrations correlated 

positively with solar radiation and water 

temperature, and microcystin-YR, and –YA 

correlated negatively with PO4
3- 

concentration (Wicks & Thiel, 1990). In the 

Coal, Driedmeat, and Little Beaver lakes 

(Canada), no correlation between 

microcystin-LR and water temperature was 

discovered, whereas the toxin 

concentration correlated positively with 

total and dissolved P and negatively with 

NO3
-  (Kotak et al., 1995). Earlier, in Coal 

Lake microcystin-LR was positively 

correlated with water temperature and P 

concentration (Kotak et al., 1993). In 

Babtiste, Narrow, Skeleton, Steele, the 

Coal, Little Beaver and Driedmeat lakes 

(Canada), microcystin-LR correlated 

positively with total P and total N (Zurawell 

et al., 1999).  In Lake Grand-Lieu (France), 

microcystin-LR and one of microcystin–RR 

variants correlated negatively with solar 

radiation, and both microcystin-RR 

variants correlated positively with 

dissolved P and NO3
- (Vezie et al., 1998). 

In Lake Tuusulanjärvi (Finland), 

microcystin-LR correlated positively with 

total N and total P and negatively with 

dissolved NO3
- (Lahti et al., 1997). A 

corresponding analysis of field data on 

environmental factors during 78 water 

blooms from 72 Finnish lakes revealed 

that hepatotoxic Microcystis blooms 

correlated with high PO4
3- concentrations 

(Rapala & Sivonen, 1998).  
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Growth and nodularin levels in response to 

salinity changes have been studied in 

laboratory experiments (Blackburn et al., 

1996). Nodularin concentrations on both 

gravimetric and cellular basis decreased at 

the highest studied salinity (35 ‰). In 

addition, nodularin production has been 

demonstrated to be controlled by light and 

by P (Holswilder, 1999). Nodularin 

production was reduced under light 

limitation and increased under P limitation. 

In addition, N addition was shown to 

promote growth and to increase the 

nodularin content of a Nodularia-culture, 

which was grown on N-containing medium 

(Carmichael et al., 1988).  

Variation of cellular toxin levels under 

different growth conditions have been 

studied in the laboratory mainly with batch-

cultures of hepatotoxic Microcystis, 

Oscillatoria, Anabaena, and neurotoxic 

Anabaena, Aphanizomenon, and 

Planktothrix (reviewed by Rapala, 1998 

and by Sivonen & Jones, 1999). In these 

laboratory experiments, temperature, light, 

and nutrients were most frequently 

examined. In addition, the effects of pH, 

carbon dioxide, salinity, and micronutrients 

were examined. The majority of studies 

indicated that cellular toxin levels were 

highest under conditions most favourable 

for growth. Differences in responses of 

hepatotoxic and neurotoxic strains have 

been observed, e.g. P had a pronounced 

effect on hepatotoxin levels, but not on 

neurotoxin levels. Nitrogen had no effect 

on toxin production by nitrogen fixing 

species, while non-heterocystous species, 

such as Microcystis and Oscillatoria, 

produced more toxins under N-rich media. 

All these laboratory studies have provided 

evidence of environmental regulation of 

gravimetric toxin concentration. Orr and 

Jones (1998) suggested that toxin 

concentration in Microcystis is controlled 

by the effects of environmental factors on 

the rate of cell division, not through any 

direct effect on the metabolic pathways on 

toxin production. This suggestion was 

based on laboratory experiments with 

Microcystis aeruginosa cultures and on re-

evaluation of data made on microcystin-

producing Anabaena and Oscillatoria 

cultures presented by others (Sivonen, 

1990b; Rapala et al., 1997).  

Cyanobacterial hepatotoxins are so-called 

intracellular toxins, and they are released 

from cells when they are damaged or 

lysing (see Sivonen & Jones, 1999). 

Chemical, physical, and biological 

degradation of cyanobacterial toxins have 

been demonstrated to occur (Hrudey et al., 

1999; Sivonen & Jones, 1999). Twist and 

Codd (1997) studied degradation of 

nodularin under light and dark conditions 

and found photochemical breakdown of 

nodularin. In addition, nodularin was 

degraded when components of Nodularia 

cells were present. These components 

most likely contained nodularin degrading 

and metabolising bacteria. In water of 

Lake Alexandrina, where N. spumigena 

blooms have occurred for months, 

nodularin was degraded by bacterial 

communities within 48-50 h (half-life 24 h) 

(Heresztyn & Nicholson, 1997).  
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Furthermore, three bacterial strains, which 

have been isolated from sediments of the 

Lake Tuusulanjärvi (Finland), were able to 

degrade nodularin (Lahti et al., 1998). On 

the contrary, the bacterial strain isolated 

from water sample treated with Microcystis 

aeruginosa extract, was not able to 

degrade nodularin, although it has 

degradative activity against microcystins 

(Jones et al., 1994a).  

1.3. Bioactive peptides from 
cyanobacteria 

Cyanobacteria contain a large number of 

secondary metabolites, compounds not 

essential for growth and reproduction. 

These include peptides, macrolides, and 

glycosides (Patterson et al., 1994; 

Namikoshi & Rinehart, 1996). These 

compounds have been reported to 

possess a number of bioactivities: antiviral 

(Pattersson et al., 1993, 1994), antifungal 

(Patterson et al., 1994), cytotoxic 

(Patterson et al., 1991), protein 

phosphatase inhibitory (Honkanen et al., 

1995) and antineoplastic activities (Moore 

et al., 1996). For example, Nodularia 

harveyana has antifungal, antibacterial, 

and alleopathic activities (Pushparajat et 

al., 1999). Many of these secondary 

metabolites are toxic to animals and 

humans (Carmichael & Falconer, 1993; 

Falconer, 1996; Hunter, 1995, 1998; Codd 

et al., 1999b).  

1.3.1. Structure of nodularin 

Cyanobacteria produce two main types of 

toxins: neurototoxins and hepatotoxins 

(Carmichael, 1992, 1994; Codd, 1998; 

Sivonen, 1998). Hepatotoxins are 

produced by several genera: Anabaena, 

Aphanizomenon, Cylindrospermopsis, 

Microcystis, Nodularia, Nostoc, and 

Oscillatoria (Carmichael, 1994; Sivonen, 

1998; Sivonen & Jones, 1999). 

Hepatotoxins are divided into three 

groups: alkaloids (cylindrospermopsin), 

heptapeptides (microcystins) and 

pentapeptides (nodularins). 

Cylindrospermopsin is produced by 

Cylindrospermopsis raciborskii (Hawkins 

et al., 1985, 1997), Aphanizomenon 

ovalisporun (Banker et al., 1997), and by 

Umezakia natans (Harada et al., 1994). 

Structurally related cyclic peptides, 

microcystins and nodularins, differ from 

each other in their number and type of 

certain amino acids (Carmichael, 1992; 

Sivonen, 1998). Microcystins, which are 

named after the genus Microcystis from 

which they were first identified, are 

produced by several cyanobacterial 

genera and consist of seven amino acids. 

The main differences between the different 

variants of microcystins are in the two 

variable L-amino acids, and methylation or 

non-methylation of certain amino acids 

(Sivonen & Jones, 1999). Nodularin is 

produced only by Nodularia and is 

composed of five amino acids (Rinehart et 

al., 1988). Three of those amino acids are 

the same as in microcystins: D-MeAsp1 (D-

erythro-β-methylaspartic acid), Adda3, and 

D-Glu4  (D-glutamic acid)(Fig. 1). In 

addition to these, nodularin consists of L-

Arg2 (L-arginine) and Mdhb5 [2-

(methylamino)-2-dehydrobutyric acid]. 

Both toxins contain a unique C20 amino 

acid, 3-amino-9-methoxy-2,6,8-trimethyl-

10-phenyldeca-4,6-dienoic acid, which is 
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abbreviated as Adda. This amino acid is 

essential for the hepatotoxicity (Harada et 

al., 1990; Rinehart et al., 1994). The same 

peptide structure, named nodularin by 

Rinehart et al. (1988), has been found in 

Nodularia blooms and strains sampled 

from Australia (Runnegar et al., 1988), 

New Zealand (Carmichael et al., 1988; 

Rinehart et al., 1988) and the Baltic Sea 

(Eriksson et al., 1988; Sivonen et al., 

1989a; Sandström et al., 1990).  

Nodularin show considerably less 

structural variation than microcystins 

(Rinehart et al., 1994). To date, five  

different natural analogues of nodularin 

have been characterised (Table 4). 

Furthermore, the compound [L-Val2], 

named motuporin, has been found from a 

marine sponge (de Silva et al., 1992), in 

which the compound is probably produced 

by a symbiotic cyanobacterium. This 

analogue differs from nodularin by 

substitution of a valine (Val) residue for an 

Arg residue. In addition, two 

dihydronodularins have been synthesised 

chemically (Namikoshi et al., 1993). 

Most nodularins have an intraperitoneal 

LD50 of 50-150 µg kg-1 in mice (Table 4), 

which is calculated to be at least 200 times 

lower than the oral LD50 (Kiviranta et al., 

1990). In a similar manner as microcystins 

(Harada et al., 1990), nodularins with an 

6Z-Adda isomer and with modified D-Glu 

do not display toxicity. Furthermore, the 

cyclic structure is necessary for the 

toxicity, since linear peptides are 

biologically non-toxic (Choi et al., 1993). 
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The linear peptide was first isolated when 

studying the biosynthesis of nodularin. 

This non-toxic peptide was thought to be a 

precursor of nodularin (Choi et al., 1993; 

Rinehart et al., 1994). Later, linear and 

cyclic peptides, spumigins and 

nodulapeptins, have been isolated from 

the toxic Nodularia strain AV1, but these 

compounds were not found from the non-

toxic Nodularia HKVV strain (Fujii et al., 

1997a, b). In addition, glycosidic 

compounds have been isolated from  

Nodularia strains (Soriente et al., 1992; 

Fujii et al., 1997b). The function of these 

compounds is not known. 

The immuno-gold labelling of hepatotoxins 

has revealed that the toxins are primarily 

localised in the thylakoid area and 

nucleoid in Microcystis and Nodularia 

cells, with smaller amounts in the cell wall 

and sheath. In the same study, nodularin 

was found both in vegetative cells and 

heterocysts (Shi et al., 1995).

Table 4. Nodularin variants and their hepatotoxicity (modified from Rinehart et al., 1994) 
…………………………………………………………………………………………………………….
. 
ND, not determined; NK, not known 

 
Toxin 

 
Origin 

 
Intraperitoneal 
 (mouse)  
LD50 (µg kg-1 ) 
 

 
Reference 

 
nodularin 
 
 
 
 
 
 
[D-Asp1 ]nodularin 
 
[DMAdda3 ]nodularin 
 
[(6Z)-Adda3 ]nodularin 
 
[D-Glu-OCH3  

4 ]nodularin 
 
[L-Val2]nodularin 
(= motuporin) 
 
dihydronodularins: 
 
[D-MeAbu5 ]nodularin 
 
[L-MeAbu5 ]nodularin 
 
 

 
Nodularia strain  
Nodularia bloom 
Nodularia bloom 
Nodularia strain 
Nodularia bloom and strain 
Nodularia bloom 
 
Nodularia strain 
 
Nodularia bloom 
 
Nodularia bloom 
 
NK 
 
Theonella swinhoei Gray  
 
 
 
 
Nodularia strain 
 
Nodularia strain 
 
 

 
60 
50 
50 
70 
70 
50 
 
75 
 
150 
 
> 2000 
 
> 1200 
 
ND 
 
 
 
 
150 
 
150 

 
Carmichael et al., 1988 
Eriksson et al., 1988  
Rinehart et al., 1988 
Runnegar et al., 1988 
Sivonen et al., 1989b 
Sandström et al., 1990 
 
Namikoshi et al., 1994 
 
Namikoshi et al., 1994 
 
Namikoshi et al., 1994 
 
Rinehart et al., 1994 
 
de Silva et al., 1992 
 
 
 
 
Namikoshi et al., 1993 
 
Namikoshi et al., 1993 
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1.3.2. Mechanism of 
hepatotoxicity in mammals 

After the hepatotoxins are released from 

the cyanobacterial cells in the digestive 

system and taken up in the ileum, they 

pass through the hepatic portal vein into 

the primary target organ, the liver 

(Carmichael & Falconer, 1993; Nishiwaki 

et al., 1994). The liver specificity of the 

hepatotoxins is dependent on the active 

uptake of these compounds by the bile 

acid transporter mechanism (Carmichael, 

1992; Carmichael & Falconer, 1993). In 

hepatocytes, they cause 

hyperphosphorylation of various proteins 

such as cytokeratin peptides 8 and 18 

(Ohta et al., 1992), and this leads to 

disturbances in the cell’s cytoskeleton and 

in morphological changes (e.g. Eriksson et 

al., 1990, 1992a,b; Ohta et al., 1992, 1994; 

Toivola et al., 1997). Changes in cell 

shape and losses of the cell’s contacts 

with other hepatocytes and with sinusoidal 

capillaries lead to a lethal intrahepatic 

haemorrhage or hepatic insufficiency 

within a few hours to a few days 

(Carmichael, 1992, 1994; Carmichael & 

Falconer, 1993).   

In mammals, signs of poisoning due to 

hepatotoxins include weakness, reluctance 

to move, pallor of the extremities and 

mucous membranes, anorexia, vomiting, 

cold extremities and hypovolaemic shock 

(Carmichael, 1992; Carmichael & 

Falconer, 1993). Before the animals die of 

intrahepatic haemorrhage and 

hypovolaemic shock, they frequently suffer 

muscle tremors and fall into a coma  

 

(Carmichael, 1992). The conclusion that 

death has resulted from intrahepatic 

haemorrhage can be confirmed by an 

autopsy that reveals an enlarged liver. In 

addition, a blood chemistry, which reveals 

low hepatic haemoglobin and iron 

concentrations, expose blood loss 

responsible for shock (Carmichael, 1992). 

Besides, necrosis and lysis of 

hepatocytes, accompanied by marked 

haemorrhages, are discovered in 

histological examinations (e.g. Runnegar 

et al., 1988).  

In all eukaryotic cells, intracellular signal 

transduction is principally linked to 

extracellular signals via reversible protein 

phosphorylation by protein kinases and 

phosphatases. Eukaryotic protein 

phosphatases (PPs) are structurally and 

functionally dissimilar enzymes, which 

belong to the PPP, PPM, and PTP gene 

families. PPs in the PTP family 

dephosphorylate phosphotyrosine 

whereas phosphoserine and 

phosphothreonine are dephosphorylated 

by PPMs and PPPs. The PPP family 

includes PP1, PP2A, and PP2B, which are 

the most abundant eukaryotic protein 

Ser/Thr phosphatases (Barford, 1996). 

PPs play a crucial role in a variety of 

cellular processes such as cell 

proliferation and differentiation 

(Shenolikar, 1994; Wera & Hemmings, 

1995). 

PPs have been shown to be inhibited by a 

variety of natural toxins. These include 

okadaic acid (Holmes & Boland, 1993; 

Honkanen et al., 1994), a fatty acid 

polyether (Yasumoto et al., 1985). This 
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seafood toxin, which cause diarrhoeic 

shellfish poisoning (DSP), is produced by 

marine dinoflagellates and accumulates in 

filter-feeding organisms (Aune & Yndestad 

1993; Steidinger, 1993; Scoging 1998). 

Okadaic acid was the first toxin reported to 

inhibit PP1 and PP2A (Takai et al., 1987; 

Bialojan & Takai, 1988; Adamson et al., 

1989; Haystead et al., 1989, and others). 

Since then, microcystins and nodularin 

have also been found to inhibit PP1 and 

PP2A (MacKintosh et. al., 1990; 

Matsushima et al., 1990; Yoshizawa et al., 

1990; Siegl et al., 1990; Honkanen et al., 

1990, 1991, 1994; Ohta et al., 1994; 

Suganuma et al., 1992; Runnegar et al., 

1993).  

The toxins inhibit distinct PPs differentially. 

For instance, the inhibitory effects of 

nodularin and microcystin-LR and –LA are 

higher for PP2A than for PP1 (Honkanen 

et al., 1994). The different sensitivity of 

PP1 and PP2A to the toxins can be due to 

the presence of a cysteine residue at 

position 269 in PP2A and a phenylalanine 

residue at position 276 in PP1 (Lee et al., 

1999).  

Through inhibition of PPs activities these 

structurally diverse toxins, which are 

produced by different organisms, prevent 

dephosphorylation of phosphoserine and 

phosphothreonine and therefore increase 

protein phosphorylation (see Quinn et al., 

1993). Protein phosphorylation plays a 

central role in many adaptive responses to 

environmental signals also in 

cyanobacteria (Tandeau de Marsac & 

Houmard, 1993; Mann 1994). However, 

cyanobacterial PPs are resistant to their 

own toxins, such as microcystin-LR (Shi et 

al., 1999). 

It is known that the different toxins 

compete for binding to PP1, since prior 

binding of microcystins (Matshushima et 

al., 1990; Yoshizawa et al., 1990), 

nodularin (Yoshizawa et al., 1990), and 

calyculin to PP1 (Suganuma et al., 1990) 

prevent binding of okadaic acid. 

Furthermore, the prior binding of okadaic 

acid and inhibitor-1 and inhibitor-2 

prevented PP1 from interacting with 

microcystin (MacKintosh et al., 1990). 

1.3.3. Tumour promotion caused 
by protein phosphatase 
inhibitors 

Masami Suganuma was the first to report 

that okadaic acid is a tumour promoter 

(Adamson et al., 1989). Later, structurally 

various compounds including microcystins 

and nodularin that inhibit PP1 and PP2A 

were found and named as “Tumor 

Promoters of the Okadaic Acid Activity 

Class” (Fujiki & Suganuma, 1993). Further 

studies of these compounds revealed that 

inhibition of PP1 and PP2A is a general 

tumour promotion pathway in various 

organs (Fujiki & Suganuma, 1999). The 

next step in tumour promotion, after 

inhibition of PPs, is the expression of the 

TNT∝  gene and early-response genes 

(Sueoka et al., 1997; Fujiki & Suganuma, 

1999). These expressions are assumed to 

be associated with mRNA stabilisation.  

In rat liver, repeated intraperitoneal 

injections of microcystin-LR and nodularin 

induced tumours (Nishiwaki-Matsushima 
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et al., 1992a; Ohta et al., 1994). Skin 

tumour growth was promoted by oral 

consumption of Microcystis in drinking 

water (Falconer, 1991, 1996). 

Furthermore, several epidemiological 

studies in China have indicated that 

people taking their drinking water from 

ponds and ditches contaminated with 

Microcystis blooms have a much higher 

incidence of primary liver cancer than 

those using river or well water (Fujiki et al., 

1996; Hunter, 1998). 

Nodularin and microcystin-LR have the 

same specific activity in inhibition of PP1 

and PP2A (Yoshizawa et al., 1990). 

Nodularin promotes liver tumour growth 

with higher activity than microcystin-LR 

(Ohta et al., 1994; Fujiki et al., 1996). In 

addition, nodularin is a liver carcinogen 

with both initiating and tumour-promoting 

activities, whereas microcystin-LR is a liver 

tumour promoter without an initiating 

activity (Ohta et al., 1994; Fujiki et al., 

1996). 

1.3.4. Structure-activity 
relationship of peptide toxins 

The microcystins and nodularin inhibit PP1 

and PP2A and show hepatotoxicity with 

similar potency. The cyclic stucture of the 

microcystins and nodularins share many 

common features. Furthermore, there are 

variants of microcystins and nodularin that 

also contain common residues in the 

variable regions. For instance, microcystin-

LR and nodularin have Arg in common. 

The study of Nishiwaki-Matsushima and 

co-authors (1992b) with naturally occurring 

geometrical isomers of microcystin-LR and 

-LA has shown that the Arg residue did not 

significantly interact with the enzymes and 

can be substituted by other amino acids 

without loss of hepatotoxicity. This was 

further verified by the isolation of a 

nodularin variant, motuporin (de Silva et 

al, 1992). Motuporin is similar in structure 

to nodularin, but has Arg instead of Val. 

Despite this structural difference, both of 

these compounds inhibit PPs with similar 

potency. Furthermore, there are many 

naturally occurring toxic microcystins in 

which a number of residues replace the 

leucine (Leu) and/or the Arg in the peptide 

ring (Carmichael, 1992; Rinehart et al., 

1994), indicating that these residues are 

not critical for the inhibition of PPs. On the 

contrary, it has been reported that Adda, 

which is also common for microcystins and 

nodularins, is essential for the activity and 

that the peptides with the 6Z-Adda isomer 

are biologically inactive (Nishiwaki-

Matsushima et al., 1991; Rinehart et al., 

1994). Also, D-Glu has an important role in 

hepatotoxicity, since esterification of its 

free carboxyl group leads to a total loss of 

activity (Rinehart et al., 1994). These 

findings suggest that only the Adda and 

Glu residues play important roles in the 

hepatotoxicity, thus they have functions in 

interactions with microcystins and 

nodularins to PP1 and PP2A. 

Three-dimensional (3-D) structures of 

microcystins (Rudolp-Böhner et al., 1994; 

Bagu et al., 1995, 1997; Trogen et al., 

1996, 1998) and motuporin (Bagu et al., 

1995, 1997) have been determined by 

nuclear magnetic resonance spectroscopy 

(NMR). Conformational studies have 
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shown that microcystin-LR (Bagu et al., 

1995; Trogen et al., 1996), microcystin-RR 

(Trogen et al., 1998), and motuporin (Bagu 

et al., 1995) possess a saddle-shaped 

peptide ring. Furthermore, the Adda side-

chain in both toxins and Arg in microcystin 

were shown to be flexible, whereas Val in 

motuporin was less flexible than Arg. The 

conformational similarities of microcystin 

and nodularin imply that these peptide 

toxins inhibit PPs in a similar way. 

The NMR results differ from the results 

obtained using a molecular modelling 

analysis of the 3-D structures of 

microcystin-LR and nodularin, which 

predicted that these toxins have planar 

peptide rings (Lanaras et al., 1991; Taylor 

et al., 1992). The comparison of Lanaras 

and co-workers was later optimised by 

Taylor et al. (1992), who used molecular 

modelling to calculate the energetically 

lowest conformations for microcystin-LR. 

Later, molecular modelling was expanded 

to include several naturally occurring 

toxins: cantharidin, calyculin-A, okadaic 

acid, tautomycin (Quinn et al., 1993; 

Gauss et al., 1997; Gupta et al., 1997). 

The conformational studies of natural 

toxins have been reviewed by Quinn et al. 

(1996), who has also developed a 

pharmacophore model for okadaic acid, 

calyculin-A, and microcystin-LR (Quinn et 

al., 1993). This model contains a 

conserved acidic group, two potential 

hydrogen-bonding sites, and a non-polar 

side-chain. 

The 3-D structures of the inhibitors alone 

do not explain how PPs are inhibited, 

therefore, the bound conformations of 

inhibitors to protein phosphatases are 

needed.  Crystal structures have been 

determined for rabbit PP1 complexed with 

microcystin-LR (Goldberg et al., 1995) and 

for human PP1 complexed with tungsten 

(Egloff et al., 1995). These structures 

clarify how PP1 dephosphorylate 

substrates and how it is regulated.  

The study of Goldberg et al. (1995) 

showed how PP1 is inhibited by 

microcystin. Microcystin interacts with the 

PP1 in a Y-shaped groove on the surface 

of the enzyme at three sites: the metal-

binding site, the hydrophobic groove and 

the edge of the C-terminal groove near the 

active site (Goldberg et al., 1995).  

Lee and co-workers (Zhang & Lee, 1997; 

Lee et al., 1999) have mutated residues in 

these grooves to assess the importance of 

these structures in substrate recognition. 

Strong effects were only observed for 

mutation of residues involved in phosphate 

binding and orientation at the active site 

(Lee et al., 1999).  

In the interaction between microcystin and 

PP1, the Glu residue of the microcystin 

binds indirectly to the metals via two of the 

metal-liganded water molecules. The long 

hydrophobic Adda group is inserted into 

the hydrophobic groove. The Leu residue 

of microcystin interacts with the side-chain 

of tyrosine 272 (Tyr 272) within the 

ß12/ß13-loop of the C-terminal groove 

(Goldberg et al., 1995). The role of the 

ß12/ß13-loop in toxin binding has been 

confirmed by studies with different mutants 

(Shima et al., 1994; Zhang et al., 1994, 

1996; Lee et al., 1999).  
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Functional differences exist between the 

microcystins and nodularins with respect 

to their interaction with PPs. These 

enzymes are initially bound non-covalently 

and inhibited by these toxins. In contrast to 

the microcystins (Goldberg et al., 1995; 

MacKintosh et al., 1995; Runnegar et al., 

1995), motuporin does not form a 

secondary covalent bond after inhibition of 

PP1 (Bagu et al., 1995, 1997). The 

explanation why nodularins are incapable 

of forming a covalent linkage with PP1 is 

the difference in the position of N-

methyldehydrobutyrine (Mdhb) residue in 

motuporin relative to the counterpart N-

methyldehydroalanine (Mdha) in 

microcystin-LR (Bagu et al., 1995, 1997). 

The different position of Mdhb at the 

surface of the PP1-toxin complex 

compared to microcystins may facilitate a 

chemical interaction with further 

macromolecules, which may explain the 

carcinogenic properties of nodularins 

(Ohta et al., 1994; Bagu et al., 1997). 

Furthermore, the higher tumour promoting 

activity and the carcinogenicity of 

nodularin are thought to be caused by 

smaller size of nodularin compared to 

microcystin. For that reason, nodularin is 

more easily taken into the hepatocytes 

than microcystin-LR (see Fujiki et al., 

1996). 

1.3.5. Biosynthesis of peptide 
toxins 

Microbes synthesise non-ribosomally 

cyclic and linear peptides by large modular 

multienzyme complexes, peptide 

synthetases. The peptide sythetases use 

the so-called thiotemplate mechanism for 

the synthesis of peptides (von Döhren et 

al., 1997; Konz & Marahiel, 1999).  

Peptide synthetase genes have been 

identified from several Microcystis 

aeruginosa strains (Meißner et al., 1996; 

Dittmann et al., 1996, 1997). One of these 

strains (PCC7806) has been transformed 

to non-toxic form by the mutation of a 

microcystin synthetase gene, which 

demonstrates that this gene, called mcyB, 

encodes a microcystin synthetase 

(Dittmann et al., 1997). Recently, mcyB 

was shown to hybridise, with variable 

signal intensity, to DNAs from several 

hepatotoxic strains of Oscillatoria, 

Microcystis, and Anabaena (Neilan et al. 

1999). On the contrary, two peptide 

synthetase genes encoding 

anabaenopeptilides (cyclic depsipeptides) 

in the Anabaena sp. strain 90 (Rouhiainen 

et al., 2000) hybridised insignificantly to 

non-heterocystous microcystin-producing 

strains. However, this probe gave strong 

signals with all hepatotoxic Anabaena 

strains, and it also cross-hybridised to 

most of the hepatotoxic Nostoc and 

Nodularia strains (Neilan et al., 1999). 

Recently, three open reading frames 

encoding peptide synthetases involved in 

microcystin synthesis were identified 

(Nishizawa et al., 1999). 

The biosynthesis of nodularin has been 

studied by NMR analysis of nodularin 

obtained from experiments with several 
13C-labelled precursors (Choi et al., 1993; 

Rinehart et al., 1994). Carbons in Adda 

are derived from acetate, methionine, 

phenylalanine, and propionate (Moore et 

al., 1991; Choi et al., 1993; Rinehart et al., 
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1994). Acetate and pyruvate were also 

incorporated into Arg and Glu. 

Furthermore, D-MeAsp and Mdhb were 

labelled with propionate and methionine, 

respectively. The complete synthesis of 

the natural nodularin variant, motuporin, 

has been published (Valentekovich & 

Schreiber, 1995; Bauer & Armstrong, 

1999). In addition, synthetic analogues of 

nodularin have been obtained (Mehrotra & 

Gani, 1996). A general route for the 

preparation of microcystins and nodularins 

has been provided by Kim et al. (1996).  

1.3.6. Analytical methods of 
cyanobacterial toxins 

Falconer (1993) and Harada et al. (1999) 

have written reviews of biological, 

biochemical, and chemical methods for 

assays of cyanobacterial toxins. 

Cyanobacterial toxins in water and in cells 

have been detected and identified by a 

range of methods that differ in selectivity 

and sensitivity (Harada, 1996; Harada et 

al., 1999). Early methods for the assay of 

cyanobacterial toxins were based on the 

mouse bioassay. This method was widely 

used for determination of outright toxicity 

and toxin concentration. Furthermore, a 

number of invertebrates have been 

investigated for use as bioassays for 

toxins (Harada et al., 1999). Later, 

biochemical tests such as the protein 

phosphatase inhibition assay (An & 

Carmichael, 1994; Ward et al., 1998; 

Harada et al., 1999) and the enzyme-

linked immuno-sorbent assay (ELISA) 

(Chu et al., 1989, 1990; Harada, 1996; 

Harada et al., 1999) were developed for 

detection of peptide hepatotoxins, 

microcystins and nodularins. 

Due to functional groups in the molecules 

cyanobacterial peptide toxins have 

common physico-chemical properties such 

as molecular weight and activities. For that 

reason they can be analysed by the same 

analytical methods (Harada et al., 1999). 

The most commonly-used analytical 

system for cyanobacterial peptide toxins is 

high performance liquid chromatography 

(HPLC) combined with ultraviolet (UV) 

detection which relies on their retention 

times and UV spectra for identification 

(Harada, 1996; Meriluoto, 1997; Harada et 

al., 1999; Pelander, 2000). HPLC has 

been the most intensively used method 

when studying cellular toxin concentrations 

in cyanobacteria under different growth 

conditions (Sivonen & Jones, 1999). 

1.4. Cyanobacterial taxonomy  

Cyanobacteria were traditionally classified 

on the basis of their morphology. Despite 

the fact that their morphology is complex 

when compared to most other microbes, 

the taxonomy based on morphological 

characteristics does not necessarily result 

in a phylogenetically reliable taxonomy 

(Giovannoni et al., 1988; Wilmotte, 1994). 

Nowadays, bacterial taxonomy relies on 

different kinds of information derived from 

phenotypic and genotypic data 

(Vandamme et al., 1996). 

The use of phenotypic and genotypic 

characteristics in cyanobacterial taxonomy 

was pioneered by Stanier and 

collaborators (e.g. Kenyon et al., 1972; 
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Herdman et al., 1979a,b; Rippka et al., 

1979). The characteristics used include 

morphology, pigment and fatty acid 

composition, photoheterotrophic growth, 

nitrogenase activity, DNA base 

composition, and genome size. The 

taxonomic system of Rippka et al. (1979), 

which was based on identification of 178 

cyanobacterial cultures in the Pasteur 

Culture Collection, recognised 22 genera 

placed in five taxonomic sections. Section 

I contains unicellular cyanobacteria that 

reproduce either by binary fission 

(Gloeobacter, Gloeocapsa, Gloeothece, 

Synechococcus, Synechocystis) or by 

budding (Chamaesiphon) whereas the 

unicellular members in section II divide 

only by multiple fission, which leads to 

formation of motile (Dermocarpa) or 

inmotile (Xenococcus) baeocytes, or by 

both binary fission and multiple fission 

(Dermocarpella, Myxosarcina, 

Chroococcidiopsis, Pleurocapsa group). 

Members in sections from III to V are 

filamentous. The filamentous 

cyanobacteria in section III (Spirulina, 

Oscillatoria, LPP group A, 

Pseudanabaena, LPP group B) compose 

only of vegetative cells while the 

filamentous cyanobacteria of sections IV 

and V contain additionally heterocysts and 

sometimes akinetes. In section IV, 

filamentous cyanobacteria are 

distinguishable by hormogonium formation 

(Nostoc, Scytonema, Calothrix) or its 

absence (Anabaena, Nodularia, 

Cylindrospermum). Divisions of cells of the 

filamentous, heterocystous cyanobacteria 

belonging to sections III and IV occur in 

one plane whereas members in section V 

(Chlorogloeopsis, Fischerella) divide on 

more than one plane. 

The bacteriological taxonomic system 

created for cyanobacteria by Rippka et al. 

(1979) has been modified by Castenholz 

(1989a, b, c), Waterbury (1989), and 

Waterbury and Rippka (1989) in the 

volume three of “Bergey’s Manual of 

Systematic Bacteriology”. This system also 

includes descriptions of cyanobacteria 

which are observed, but which have not 

been succesfully maintained in cultures. In 

addition, ecological features of 

cyanobacteria have been included. In their 

separate studies, Anagnostidis and 

Komárek (1988, 1990) and Komárek and 

Anagnostidis (1986, 1989) have revised 

the taxonomy of cyanobacteria using both 

bacteriological and botanical approaches. 

The authors made an extensive review of 

the literature and applied phenotypic and 

genotypic data concerning cyanobacterial 

taxonomy.
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Molecular phylogenetic analysis have 

revealed at least ten distinct eubacterial 

phyla (Woese, 1987). One of these 

contains oxygenic photosynthetic 

prokaryotes, cyanobacteria and 

prochlorophytes, which have different 

pigment compositions and are genetically 

related on the basis of 16S rRNA 

sequences (Woese, 1987).  

Cyanobacteria contain chlorophyll-a and 

phycobiliproteins and prochlorophytes 

possess chlorophyll-a as well as 

chlorophyll-b, but lack phycobiliproteins 

(Castenholz & Rippka, 1989; Lewin, 1989; 

Matthijs et al., 1994). The prochlorophytes 

contain three genera: Prochloron, 

Prochlorothrix (Lewin, 1989), and 

Prochlorococcus (Partensky et al., 1999). 

16S rDNA sequence analysis has 

revealed that prochlorophytes emerged 

within the cyanobacteria, but on separate 

branches (Urbach et al., 1992; Wilmotte, 

1994). Prochlorophytes are 

phylogenetically nearest to 

Synechococcus (Urbach et al., 1998). 

The evolutionary relationships among 

cyanobacteria have been published by 

Giovannoni et al. (1988), Wilmotte (1994), 

and Turner (1997). The 16S rRNA 

sequence analysis (Fig. 2) were congruent 

to the taxonomic sections of II, III and IV 

defined by Rippka et al., (1979). On the 

contrary, sections I and III were scattered 

in different lineages and sometimes 

mixed. The heterocystous filamentous 

strains were all in the same cluster. In this 

cluster, the Nodularia strain PCC73104 

grouped with the Anabaena cylindrica 

PCC7122 strain. Furthermore, it was 

closely related to Nostoc (PCC73102 and 

PCC7120) and to the Cylindrospermum 

(PCC7417) strains (Wilmotte, 1994). 

1.4.1. Molecular methods used in 
cyanobacterial taxonomy 

Most bacterial genomes contain genes 

from multiple sources, even from 

genetically distant ones (Doolittle, 1999). 

Nowadays, it is suspected that the even 

most trusted chronometers, rRNA genes, 

can be transferred (Doolittle, 1999). These 

genes, which are functionally constant and 

are composed of highly conserved as well 

as more variable domains, have been 

utilised for phylogenetic analysis in 

bacteria (Vandamme et al., 1996). 

Outlines of bacterial phylogenetic 

relationships emerged from the work of 

Woese (1987), who pioneered the 

comparison of rDNA sequences. 

The first complete cyanobacterial 16S 

rDNA sequence was released by Tomioka 

and Sugiura (1983). In 1988, Giovannoni 

and co-authors published the first study of 

evolutionary relationships among 

cyanobacteria using partial 16S rDNA 

sequences (Giovannoni et al., 1988). The 

sequencing of the 16S rRNA gene have 

resulted in a rRNA sequence database. At 

the end of 1998, 171 16S rRNA genes 

were sequenced from cyanobacteria.  

These 171 cyanobacterial rDNA 

sequences (81 complete sequences 

comprising nearly 1500 nucleotides and 

90 partial sequences) serve as the 

backbone for modern cyanobacterial 

taxonomy (Wilmotte, 1994). One partial 

(ARB_40A3CBCC, Giovannoni et al. 
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1988) and one complete (aj22447, Hayes 

& Barker, 1997) 16S rDNA sequence exist 

from Nodularia. 

The molecular methods for studying 

genotypic relationships among 

cyanobacteria have been reviewed by 

Wilmotte (1994). In the present work, only 

the DNA- and rRNA sequence-based 

studies of free-living cultured 

cyanobacteria have been reviewed (Table 

5).  

Over the recent years, techniques based 

on sequences of rRNA genes have 

become the most widely used methods for 

identification, classification, and phylogeny 

of cyanobacteria. In addition to direct 

comparison of the DNA sequences, other 

methods based on amplification of rRNA 

genes have been used. The amplified 

ribosomal genes can be digested by 

restriction enzymes and the resulting 

patterns analysed, this technique has been 

termed restriction fragment length 

polymorphism (RFLP). Before the 

introduction of the polymerase chain 

reaction (PCR) method (Lane et al., 1985), 

ribotyping based on labelled-rRNA probe 

have revealed the hybridised fragments 

generated after restriction enzyme 

digestion.  

During the last few years, a battery of 

DNA-directed typing methods has been 

used for PCR-based genomic 

fingerprinting of cyanobacteria. Genomic 

fingerprints have been produced by PCR 

with random (RAPD) or by arbitrary 

primers (AP). In addition, fingerprints have 

been generated with primers 

corresponding to the repetitive extragenic 

palindromic (REP) and enterobacterial 

repetitive intergenic consensus (ERIC) 

sequences, and to the long and short 

tandemly repeated repetitive (LTRR and 

STRR) sequences. The function of 

repetitive and random amplified 

polymorphic DNA elements is not known. 

In addition, cyanobacterium-specific 

primers have been developed to identify 

cultured and natural samples. This method 

has been named “Specific PCR 

identification” or “Diagnostic PCR”. 

DNA base composition has been 

determined for several cyanobacterial 

strains in the Pasteur Culture Collection. 

Generally, large differences in DNA base 

composition reflect the fact that strains are 

not closely related, whereas similar 

guanine and cytosine (G+C) percentages 

give no information about genotypic 

relationships, therefore the taxonomic 

value of this method at the species level is 

low (Wilmotte, 1994). The species should 

be delineated according to DNA-DNA 

hybridisation studies, which established 

the base composition homology between 

different DNA strains. For strains of the 

same species at least 70% hybridisation is 

needed (Wayne et al., 1987). Furthermore, 

protein-coding genes have been 

sequenced and probed. These genes can 

be used for identification and for 

classification of strains, but not for 

phylogeny, since they are not universally 

distributed and essential among bacteria 

(Woese, 1987), thus different molecular 

methods gave different taxonomic 

information (Vandamme et al., 1996). 
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Table 5. DNA- and rRNA sequence-based techniques applied for studying the genetic 
diversity of free-living cyanobacteria 

……………………………………………………………………………………………………………………………………….. 

List of studied genes (their product and/or function): apcAB, allophycocyanin (phycobiliproteins, constituting the 
phycobilisome core); cpcABC, phycocyanin (phycobiliproteins, constituting the rod elements of phycobilisome); 
cpeAB, phycoerythrin (phycobiliproteins, constituting the rod elements of phycobilisome); glnA, glutamine synthetase 
(NH4

+
 
 assimilation); gvpA, structural gas vesicle protein (buoyancy); nifDH, dinitrogenase and nitrogenase reductase 

(nitrogenase, nitrogen fixation); petBD, cytochrome b6 and subunit IV (cytochrome b6/f complex, photosynthetic 
electron transport); psbAD, D1 and D2 proteins (photosystem II, photosynthetic electron transfer);  psbBC, antenna 
polypeptides CP47 and CP43 (photosystem II, oxygen evolution); rbcLS, large and small subunits of RubisCo (CO2 
fixation); rpoCD, core enzyme and sigma factors (RNA polymerase, transcription).  

 
Method 

 
Reference 
 

 
Sequencing: 
- 16S rRNA 
 
 
 
 
 
 
 
- rRNA ITS  
 
 
- tRNALeu (UAA) 
- rpoC 
 
- PC-IGS 
- psbB, petBD 
- nifH 
 
- rbcLX 
- gvpA-IGS 
 
PCR/ DGGE: 
- 16S rRNA  
 
PCR/RFLP:  
- 16S rRNA  
- rRNA ITS 
 
- PC-IGS 
 
 
Specific PCR identification: 
- PC-IGS 
- rRNA ITS  
- gvpA-IGS 
- rpoC1 
 
 
PCR: 
- with RAPD and AP primers 
 
- with repetitive DNA sequences  
(REP, ERIC, HIP1, STRR, LTRR) 

 
 
 
 

 
 
Bonen & Doolittle, 1976; Tomioka & Sugiura, 1983; Giovannoni 
  et al., 1988; Ligon et al., 1991; Wilmotte et al., 1992, 1993, 
  1994; Nelissen et al., 1992, 1994, 1996; Garchia-Pichel et al., 
  1996, 1998; Palinska et al., 1996; Neilan et al., 1994a,b, 
  1997a; Ishida et al., 1997; Kane et al., 1997; Turner, 1997; Turner 
  et al., 1999; Otsuka et al., 1998; Urbach et al., 1998; Rudi et al., 
  1997, 1998; Barker et al., 1999; Honda et al., 1999; Saker et al., 
  1999; Shaw et al., 1999; Lyra et al., 2000 
Williamson & Doolittle, 1983; Tomioka & Sugiura, 1984; 
  Nelissen et al., 1994; Barker et al., 1999; Otsuka et al., 1999; 
  Postius & Ernst, 1999 
Rudi & Jakobsen, 1997, 1999 
Palenik & Swift, 1996; Toledo & Palenik, 1997; Wilson et al., 
  2000 
Hayes & Barker, 1997; Barker et al., 1999; Bolch et al., 1999 
Urbach et al., 1998 
Ben-Borath & Zehr, 1994; Ben-Borath et al., 1993; Steppe et 
  al., 1996; Zehr et al., 1997 
Rudi et al., 1998 
Barker et al., 1999 
 
 
Garchia-Pichel et al., 1996 
 
 
Lyra et al., 1997, 2000; Margheri et al., 1999 
Neilan, 1996; Neilan et al., 1997b; Lu et al., 1997; West & 
  Adams, 1997; Smith et al., 1998; Scheldeman et al., 1999 
Neilan et al., 1995; Bolch et al., 1996; Neilan, 1996; Bolch et al., 
  1999 
 
 
Neilan et al., 1995; Hayes & Barker, 1997; Barker et al., 1999 
Neilan, 1996; Neilan et al., 1997b; Barker et al., 1999 
Barker et al., 1999 
Wilson et al., 2000 
 
 
 
Neilan, 1995, 1996; Komárek, 1996; Nishihara et al., 1997; 
  West & Adams, 1997; Bolch et al., 1999 
Versalovic et al., 1991; Robinson et al., 1995; Rasmussen & 
  Svenning, 1998; Smith et al., 1998; Lyra et al., 2000; 
  Wilson et al., 2000 
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Table 5, continued 
 
 
Southern blot RFLP hybridization:  
Probes: 
- REPs 
- rRNA, cpcABC, psbA, rbcL, cpeAB 
- psbAI 
- glnA, rbcS, psbA, nifD excision elements  
- psbA, psbCD 
- STRR 
- rRNA 
- 16S and 23S rRNA 
- tRNALeu (UAA)  
- 16S rRNA 
- psbA1, cpeA, cpeB  
- cpcAB, apcAB, gvpA1, nifH 
 
 
DNA base composition: 
 
 
 
DNA-DNA hybridization: 
 
 

 
 
 
 
Asayma et al., 1996 
Douglas & Carr, 1988 
Ernst et al., 1995; Postius & Ernst, 1999 
Gebhardt & Nierzwicki-Bauer, 1991 
Golden et al., 1989 
Mazel et al., 1990; Rouhiainen et al., 1995 
Golden et al., 1989; Nelissen et al., 1996  
Nichols et al., 1982 
Rudi & Jakobsen 1997, 1999 
Schönhuber et al., 1999 
Wood & Townsend, 1990 
Zimmermann & Culley, 1991 
 
 
Herdman et al., 1979a; Stam, 1980; Stulp & Stam, 1984; 
  Wilmotte & Stam, 1984 
 
 
Stam, 1980; Lachance, 1981; Stulp & Stam, 1984; Wilmotte & 
  Stam, 1984 

 

1.4.2. Morphological and genetic 
variation of Nodularia cultures 
and populations 

Komárek and co-authors (1993) have 

studied the taxonomy of the genus 

Nodularia. Within this genus, two distinct 

groups of species, based on the ability to 

produce gas vesicles, were differentiated. 

The studies of the ultrastructure of genus 

Nodularia (Gumpert et al., 1987; Šmarda 

et al., 1988; Albertano et al., 1996; 

Šmarda & Šmajs, 1996) have revealed 

large amounts of densely packed gas 

vesicles. Their densities in cells separated 

them into three distinct types (Šmarda & 

Šmajs, 1996). For example, the Baltic Sea 

Nodularia had three types of gas vesicles  

in species of N. baltica, N. spumigena, and 

N. litorea (Šmarda & Šmajs, 1996). 

In addition to the size and the density of 

gas vesicles, Komárek et al. (1993) have 

used several other markers in the 

intrageneric taxonomy of Nodularia: the 

size of cells of all types, the morphology of 

akinetes, and the ecological properties of 

species types. Based on these features, 

Komárek et al. (1993) suggested 

distinction of several types of Nodularia 

species including three benthic species (N. 

harveyana, N. sphaerocarpa, N. willei) and 

four planktic species (N. baltica, N. litorea, 

N. spumigena, N. crassa). Four of these 

species (Table 6: N. harveyana, N. baltica,  

N. litorea, N. spumigena) have been 

isolated from the Baltic Sea (Komárek et 

al., 1993).  
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In the study of Hayes and Barker (1997), 

the genetic diversity of Baltic Sea 

Nodularia population seemed to be 

restricted to few genotypes. The diagnostic 

PCR study (also termed specific PCR 

identification) of Nodularia population in 

the Southern Baltic Sea in 1996 showed 

two PC-IGS (the intergenic spacer region 

of the phycocyanin operon) genotypes 

from 156 filaments. Later in 1994, the 

study of Barker et al. (1999) revealed three 

groups based on PC-IGS, two groups 

based on gvpA-IGS (the intergenic spacer 

region between two copies of gvpA gene), 

and three groups based on rDNA-ITS (the 

16S-23S rRNA internal transcribed region) 

in thirteen clonal Nodularia strains. The 

authors could not find any correlation 

between the genotypic and phenotypic 

characters examined (trichome width, 

degree of coiling, and properties of gas 

vesicles). 

The morphological and genetic variation 

using RFLP and DNA sequencing of the 

cpcBA-IGS region and RAPD-PCR of 

Nodularia strains from Australia and from 

other geographical sites have been 

studied (Bolch et al., 1996, 1999). 

Geographically diverse Nodularia strains 

had a near cpcBA-IGS (the phycocyanin 

intergenic spacer region) sequence 

identity (Bolch et al., 1999) suggesting that 

Nodularia is globally distributed as 

suggested also by Hayes and Barker 

(1997). However, genetically distinct 

geographical strains were showed by 

RAPD-PCR (Bolch et al, 1999) and by 

RFLP of the cpcBA-IGS (Bolch et al. 

1996). Genetic groupings based on the 

sequence identity were supported by 

morphological features (size and 

morphology of vegetative cells, 

heterocysts and akinetes, and diameter 

and morphology of trichomes) (Bolch et 

al., 1999).  

It has been suggested that the Baltic Sea 

Nodularia populations have exchanged 

genetic material, since the PC-IGS, gvpA-

IGS, and rDNA-ITS genotypic groupings of 

Nodularia strains were not congruent 

(Barker et al., 1999). The exchange of 

genetic material between genetically 

closely related cyanobacteria has been 

suggested also by Rudi et al. (1998). The 

authors proposed that the genetic 

exchange has led to the observed 

sequence homogeneity between these 

organisms and that it may also explain the 

similarity between the fossil and the recent 

species found by Schopf and others 

(1994). However, several studies have 

revealed that, for example, 

Synechococcus strains take up the DNA of 

any source (see Lorenz & Wackernagel, 

1994) meaning that exchange may even 

occur between distant genera. 
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Table 6. Morphological and ecological properties of planktonic and benthic Nodularia species 
recorded in the Baltic Sea 
……………………………………………………………………………………………………………………………………… 

Data on morphological and ecological properties were taken from Komárek et al. (1993) and data on gas vesicles 
were derived from Šmarda & Šmajs (1996). NA, Not applicable. 

 
Characters 
 

 
N. baltica 

 
N. harveyana 

 
N. litorea 

 
N. spumigena 

 
Trichome: 
  Width (µm) 
  Cell length (µm) 
 

 
 
5-6   
2-5 

 
 
4-5 
2-3 

 
 
10-15 
2-4 

 
 
7-12 
2-4 

 
Heterocysts: 
  Length x width 

(µm) 
 

 
 
2-5 x 5-8 

 
 
3-5 x 4-6 
 

 
 
4-7 x 10-15 

 
 
4-5 x 9-14 

 
Akinetes: 
  Length x width 

(µm) 
  Observations 

 
 
4-8 x 6-9 
 
Sometimes solitary 
  or in rows 

 
 
4-8 x 6-7 
 
In series of two to 
  sixteen 
 

 
 
6-10 x 14-15 
 
Solitary or in short 
  series 

 
 
6-12 x 10-12 
 
In series or 
  discontinuous 
  rows, rarely 
  solitary or in 
  twos 
 

 
Gas vesicles: 
  Present? 
  Density  (µm-2) 
 

 
 
Yes 
140/160-180 

 
 
No 
NA 

 
 
Yes 
215/230-240 

 
 
Variable 
139/160-180 

 
Ecology 
 
 
 

 
Metaphyton or  
  phytoplankton; 
  marine, brackish 
  and saline waters.  

 
Benthic or 
  periphyton;  saline 
  pools and lakes, 
  thermal springs 
  and marshes with 
  high salinity. 
 
 

 
Phytoplankton; 
  marine, brackish 
  and saline waters. 
 

 
Metaphyton and 
  euplankton;  
  marine, brackish 
  and saline waters. 
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2. Aims of the present study 

Hepatotoxic N. spumigena blooms have 

been observed in all areas of the Baltic 

Sea except for the most northern part, the 

Bothnian Bay (Sivonen et al., 1989a,b; 

Kononen et al., 1993b). In these blooms, 

the concentration of nodularin often rises 

high enough to cause a health risk for 

animals (see Table 4). However, the role 

of environmental factors on nodularin 

production is not known yet. In order to  

understand toxin production in Nodularia 

under different environmental conditions,  

we studied the effects of several growth 

factors on nodularin concentrations in cells 

and in growth media using batch-cultures 

of two nodularin-producing strains (I, II). It 

was hoped that the study of the response 

of toxic Nodularia strains to abiotic growth 

factors would help understand the 

occurrence of hepatotoxic blooms in the 

Baltic Sea. For comparison, we studied the 

growth of the non-toxic Nodularia strain 

under the same growth conditions in order 

to reveal physiological differences 

between toxic and non-toxic strains (I). 

Due to their ability to fix nitrogen, 

Nodularia and Aphanizomenon are 

capable of forming blooms in the N-

depleted water mass of the Baltic Sea in 

late summer. However, these genera differ 

from each other in behavior, demonstrated 

by the fact that mass occurrences of 

Nodularia are absent from surface waters 

during most of the year, while 

Aphanizomenon is found abundantly 

during the whole year.  

Furthermore, the vertical and horizontal 

distribution of these two genera differ in 

the Baltic Sea (see Table 3). In order to 

obtain information on the co-dominance of 

these genera in late summer blooms, we 

used controlled laboratory experiments to 

study the effect of environmental factors 

on growth and nitrogen fixation (II). A 

knowledge of the individual physiological 

responses of these genera is needed to 

understand cyanobacterial bloom 

dynamics in the Baltic Sea. 

Some protein phosphatases are inhibited 

by several natural toxins such as 

nodularins and microcystins (see section 

1.3.2.). Structural variations among these 

toxins may explain differences in binding 

of these inhibitors to PPs (see section 

1.3.4). In order to understand the effects of 

nodularin, we studied the three-

dimensional structure of this molecule in 

water by NMR and molecular dynamics 

simulations (MD simulations)(III). 

The genetic diversity of Nodularia 

populations in the Baltic Sea has been 

suggested to be low based on studies with 

specific PCR identification (Hayes & 

Barker, 1996; Barker et al., 1999). Still, the 

phenotypic differences such as toxin 

production among Nodularia genotypes 

have not been examined. We examined 

the taxonomy of toxic and non-toxic 

Nodularia strains, originating worldwide, 

using morphology and different molecular 

methods based on the 16S rRNA gene 

and whole genome of Nodularia (IV). 
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3. Materials and methods 

Strains. The Nodularia and 

Aphanizomenon strains used in this study 

are listed in Table 7. Most of the Nodularia 

strains were isolated from the Baltic Sea 

by picking filaments by microscopic  

examination until unialgal cultures were 

obtained (Sivonen et al., 1989a). Both 

non-axenic cultures that contained 

bacteria and axenic cultures with no 

associated bacteria were used. Axenic 

cultures were achieved by the soft 

agarose-plating method (Rouhiainen et al., 

1995).  

Table 7. Nodularia (Nod) and Aphanizomenon (Aph) strains used 
…………………………………………………………………………………………………………… 

Source of strains: PCC, Pasteur Culture Collection, Paris, France; NS, S. Blackburn, CSIRO, Division of Marine 
Research, Tasmania, Australia; the rest of the strains belong to the research group of K. Sivonen, Department of 
Applied Chemistry and Microbiology, University of Helsinki, Finland. Axenity: +, no cobacteria. Toxin production:  
-, no toxin production. 

 
Strain 
 
 

 
Axenity 
 
 

 
Toxin 
production 

 
Geographical origin 

 
Date of 
isolation 

 
Paper 

 
Nod HKVV  
Nod BY1  
Nod P38  
  (= EIB) 
Nod GDR113 
Nod F81  
Nod TEILI  
Nod 59/22  
Nod AV1  
Nod AV3  
Nod AV33  
Nod 55/15  
  (= EIA) 
Nod HEM  
Nod SR5b  
Nod GR8a  
Nod GR8b  
Nod TR183  
Aph TR183  
Nod UP16a   
Nod UP16f   
Nod PCC73104/1  
 
Nod PCC7804   
Nod NSPI-05 
  (= PI9211-11) 
Nod NSOR-12  
  (= OR9301-08) 
 

 
-/+ 
-/+ 
- 
 
- 
+ 
- 
- 
- 
+ 
- 
- 
 
-/+ 
- 
- 
+ 
- 
+ 
+ 
+ 
+ 
 
+ 
+ 
 
+ 

 
- 
+ 
+ 
 
+ 
+  
+ 
+ 
+ 
+ 
+ 
+ 
 
+ 
+ 
+ 
+ 
+ 
- 
- 
- 
- 
 
+ 
+ 
 
+ 
 

 
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea  
Brackish water, the Baltic Sea 
 
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea  
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea 
 
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea  
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea 
Brackish water, the Baltic Sea  
Alkaline soil, Spotted Lake, BC, 

Canada 
Thermal spring, Dax, France 
Coastal water, Peel Inlet, Australia  
Coastal water, Orielton Lagoon, 

Tasmania, Australia 

 
Not known 
13/8/86 
13/8/86 
 
14/8/86 
31/7/87 
4/8/87 
8/8/87 
8/8/87 
10/8/87 
10/8/87 
1/9/87 
 
10/9/87 
14/8/91 
3/8/92 
4/8/92 
18/7/93 
18/7/93 
22/7/94 
22/7/94 
1972 
 
1966 
11/12/92 
 
1/10/93 

 
I, IV 
I-IV 
IV 
 
IV 
IV 
IV 
IV 
IV 
IV 
IV 
IV 
 
I, IV 
IV 
IV 
IV 
IV 
II 
IV 
IV 
IV 
 
IV 
IV 
 
IV 

 

 

Parameters studied. Toxin concentration 

in the cells and growth media of Nodularia 

strains BY1 (I, II) and HEM (I) under 

different batch-culture conditions (see 

Tables 1 in I and II) were measured using 

HPLC. Growth of toxic (BY1, HEM) and 

non-toxic (HKVV) Nodularia strains and 

 the Aphanizomenon TR183 strain were 

investigated by measuring chlorophyll-a, 

total protein, and dry weight (I, II).  
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In addition, nitrogen fixation rates of 

Nodularia and Aphanizomenon were 

measured using the acetylene reduction 

method (II). 

The three dimensional structure of 

nodularin in water was studied by NMR 

and by MD simulations (III). The toxin for 

these studies was isolated from Nodularia 

strain BY1 and purified by semipreparative 

HPLC.  

Axenic Nodularia strains HEM, BY1, AV3, 

GR8b, F81, NSPI-05, NSOR-12, 

PCC7804, HKVV, UP16a, UP16b, and 

PCC73104/1 were examined using light 

microscopy and characterised by the 16S 

rRNA gene- and by total genome-based 

techniques (IV). In addition, their 

capabilities for hepatotoxin production 

were tested by HPLC or by ELISA.  

Methods used and parameters examined 

in this study are described in detail in the 

original publications and are summarised 

in Table 8. 

Statistical analysis. Differences in growth 

and nodularin concentration of non-axenix 

Nodularia strains (I) were studied by 

multivariate analysis of variance with 

repeated measures (BMDP Statistical 

Software, Inc., version 1990), which made 

it possible to eliminate the time factor.  

The relatedness of different parameters 

from the growth experiments with 

Nodularia and Aphanizomenon strains (II) 

was tested with correlation analysis (SPSS 

for Windows 6.0, 1993, and Matlab for 

Windows 3.1, 1994). Non-parametric tests, 

Spearman and Kendall rank correlation 

coefficients, were used to evaluate the 

degree of correlation between chlorophyll-

a concentrations, nitrogen fixation rates, 

and intracellular toxin concentrations 

(SPSS), because normality of data was 

not reached due to a large number of zero 

values within these parameters. In order to 

compare the different methods of biomass 

measurement, total protein, chlorophyll-a, 

and dry weight data were ln-transformed 

before using the parametric test (Pearson 

correlation coefficient). Multivariate 

regression analysis (Matlab) was 

performed for chlorophyll-a data for each 

experiment except for the experiment with 

accompanying bacteria. First, a 

transformation between original and coded 

variables was computed; then, interaction 

and quadratic terms of test variables were 

appended to matrices. 

The GelCompar software (version 4, 

Applied Maths BVBA) was used for 

analysis patterns from RFLP of PCR-

amplified 16S rRNA genes, REP-and 

ERIC-PCR, and ribotyping (IV). The matrix 

of similarities was calculated on the basis 

of the Dice band-matching coefficient 

(Dice, 1945) and the dendrogram was 

constructed by using the unweighted-

pairs-group-method-with-averages 

(UPGMA) clustering algorithm (Sneath & 

Sokal, 1973). Phylogenetic trees based on 

16S rDNA sequences were constructed by 

the neighbour-joining method and DNA 

parsimony method of Phylip (Felsenstein, 

1993). In this program, bootstrap analysis 

was used to evaluate the tree topologies 

by performing 1000 resamplings. 
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Table 8. Parameters studied and methods used in this study 

 
Parameters 
 

 
Methods 

 
Described and 
used in 
 

 
References 

 
Bacterial numbers 
Bacterial production 
 
Biomass 
 
 
 
 
 
Cell width 
Cell length 
 
Culture purity 
 
Culture purity 
 
Filament length 
 
 
Presence of gas 
vesicles  

 
Genetic 
relationships 

 
 
 
 
 
 
 
 
 
Heterocyst 
frequency 

Heterocyst length 
Heterocyst width 
 
Nitrogen fixation rate 
 
Nodularin 
concentration 

Nodularin 
concentration 

Nodularin 
purification 

Nodularin 3-D 
structure 

 
pH of the culture 
 

 
Acridine orange 
Thymidine incorporation 
 
Dry weight  
Chlorophyll-a 
 
Total protein 
 
 
Light microcopy 
Light microscopy 
 
Tryptone-glucose-yeast extract 
(TGY) -plates 

Light microscopy after Gram-
staining 

Light microscopy after fixing with 
Lugol’s solution 

 
Light microscopy 
 
 
Southern blotting with STRR 
probe 

PCR-RFLP of 16S rRNA gene 
 
Sequencing of 16S rRNA gene 
 
REP- and ERIC-PCR 
 
Automated ribotyping 
 
 
Light microscopy after fixing with 
Lugol‘s solution 

Light microscopy 
Light microscopy 
 
Acetylene reduction method 
 
HPLC+UV-detection 
 
ELISA 
 
Semipreparative HPLC + UV-
detection 

NMR and molecular dynamics 
simulations 

 
 

 
 
 
 
I 
I 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I 
 
 
 
 
 
 
 
 
I 

 
II 
II 
 
II 
II 
 
II 
 
 
 
 
 
II 
 
 
 
II 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
II 
 
 
 
 
II 
 
II 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
III 
 
III 
 
 

 
 
 
 
 
 
 
 
 
 
IV 
IV 
 
IV 
 
IV 
 
 
 
 
IV 
 
 
IV 
 
IV 
 
IV 
 
IV 
 
IV 
 
 
 
 
IV 
IV 
 
 
 
IV 
 
IV 
 
 
 
 
 
 

 
Hobbie et al., 1977 
Bell, 1993 
 
I 
Tandeau de Marsac & 

Houmard, 1988 
Herbert et al., 1971 
 
 
IV 
IV 
 
Atlas, 1993; IV 
 
IV 
 
II 
 
 
IV 
 
 
Bauer et al., 1993; 
Rouhiainen et al., 1995 

Weisburg et al., 1991; 
Lyra et al., 1997 

Edwards et al., 1989; 
Hultman et al., 1991 

Versalovic et al., 1991; 
IV 

Bruce, 1996; IV 
 
 
II 
 
IV 
IV 
 
Moisander et al., 1996 
 
Meriluoto & Eriksson, 
1988; I 

IV 
 
III 
 
III 
 
 
I 
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4. Results and discussion 

4.1. Phenotypic characterisation 
of the Baltic Sea cyanobacteria 

4.1.1. Comparison of growth of 
toxic and non-toxic Nodularia 
strains 

Growth of two hepatotoxic Nodularia 

strains (BY1, HEM) and one non-toxic 

strain (HKVV) in response to changes in 

temperature (test range 10-30ºC), light 

intensity (25-80 µmol m-2 s-1), salinity (3-

11‰), and PO4
3- concentration (0.3 –1.0 

mg l-1) was studied in batch-cultures. All 

strains were isolated from the Baltic Sea 

(Table 7). The non-toxic strains were 

shown to belong to different genotype than 

toxic strains (see IV).  

The non-toxic HKVV strain grew poorer 

than the toxic strains under all conditions 

except at the lowest temperature (I: Fig. 

2a) and P concentration tested (I: Fig. 5a). 

Dry weights and chlorophyll-a contents of 

the non-toxic strain and toxic strains 

differed significantly at different 

temperatures (p < 0.05) and at P 

concentrations (p < 0.02). Similar results 

have been shown for neurotoxic and non-

toxic strains of Anabaena (Rapala et al., 

1993).  

Temperature had a statistically significant 

effect on dry weight and chlorophyll-a 

(p < 0.05). The growth of all strains was 

highest at 20ºC and lowest at 10ºC (I: Fig. 

2a). The optimal growth temperature has 

been estimated to be higher than 24ºC for  

Microcystis (Gentile & Maloney, 1964; 

Gorham, 1964; Krüger & Eloff 1981; van 

der Westhuizen & Eloff, 1985; Watanabe 

& Oishi, 1985; Ohtake et al., 1989), 

Synecococcus (Krüger & Eloff, 1981), 

Oscillatoria (Sivonen, 1990b) and 

Cylindrospermopsis (Saker et al., 1999). 

The growth of Anabaena and 

Aphanizomenon was optimal at 

temperatures higher than 20ºC (Peary & 

Gorham, 1966; Rapala et al., 1993, 1997; 

Rapala & Sivonen, 1998). 

In this study, differences in light intensity 

had no statistically significant effect on 

growth or toxin concentration of Nodularia, 

probably due to the narrow test range and 

the effect of time. All strains grew slightly 

better at high light intensities than at low 

light intensities until day 15 (I: Fig. 3a). 

After that, the responses of strains to light 

intensities differed. The non-toxic HKVV 

strain grew equally well at 50 and 80 µmol 

m-2s-1. Growth of the toxic BY1 strain was 

highest at the lowest (25 µmol m-2s-1) and 

highest studied (80 µmol m-2s-1) light level, 

whereas the toxic HEM strain grew best at 

the highest light level. Light intensity 

increasing up to approximately 100 µmol 

m-2s-1 has been shown to increase the 

growth of Anabaena (Rapala et al., 1993, 

1997; Rapala & Sivonen, 1998), 

Aphanizomenon (Rapala et al., 1993), 

Microcystis (Gorham, 1964; Watanabe & 

Oishi, 1985; van der Westhuizen & Eloff, 

1985), and Nodularia (Holswilder, 1999). 

The growth of Oscillatoria was highest at 

the light intensity of 50 µmol m-2s-1 

(Sivonen, 1990b).



Results and discussion 
 
 

 38 

In this study, the growth of the strain BY1 

was highest at a salinity of 5‰. 

Differences in the growth of the toxic strain 

HEM and the non-toxic strain HKVV at 

different salinities were rather small. The 

lowest salinity seemed to reduce the 

growth of all strains (I: Fig. 3a). Similarly, 

Blackburn et al. (1996) found the lowest 

cell yields of Nodularia strains from three 

Australian populations at 0‰ salinity and 

highest at 12‰.  

In this study, P had a significant effect on 

dry weight (p < 0.05). Growth was highest 

at the P concentration of 0.6 mg PO4
3- l-1 (I: 

Fig. 5). Lower concentrations limited the 

growth and toxin concentration, which was 

normalised to biomass, of all strains, 

whereas higher concentrations had no 

additional effect. In the same way, P 

limitation has been demonstrated to 

reduce both growth and hepatotoxin 

concentration of Anabaena (Rapala et al., 

1997) and Oscillatoria (Sivonen, 1990b). 

No difference in neurotoxin concentration 

of Anabaena induced by P concentration 

was detected, although the two lowest 

concentrations limited growth (Rapala et 

al., 1993) 

4.1.2. Physiological differences 
between Nodularia and 
Aphanizomenon  

Differences in growth and nitrogen fixation 

rates of Nodularia and Aphanizomenon 

were studied in changing growth 

conditions. Aphanizomenon preferred 

lower irradiances (test range 2-155 µmol 

m-2s-1), salinities (0-30‰), and 

temperatures (7-28ºC) than Nodularia (II: 

Figs 2-4). The different responses of 

Nodularia and Aphanizomenon to different 

salinity, irradiance, and temperature may 

explain the different spatial and temporal 

distribution of these species in the Baltic 

Sea. In the Baltic Sea, the effects of 

temperature and light are seen in the 

seasonal and vertical abundance of N. 

spumigena and Aphanizomenon sp. The 

mass occurrence of N. spumigena occurs 

in the summer months (Kononen & 

Leppänen, 1997) when the surface water 

temperature reaches about 17°C (Hübel & 

Hübel, 1980). Aphanizomenon sp. is 

abundant in the water mass from March to 

September (Kononen & Leppänen, 1997), 

thus showing the ability to grow at low 

temperatures, which was also shown in 

this study (II: Fig. 2). In this study, 

Nodularia showed the capacity to tolerate 

much higher temperatures than it 

experiences in the Baltic Sea (Fig. 2). 

Field observations in the Baltic Sea have 

revealed that N. spumigena and 

Aphanizomenon sp. have different 

temperature optima for growth (Kononen, 

1992; Kononen et al., 1996; Pliñski & 

Józwiak, 1996). The preference of 

Aphanizomenon for low light and that of 

Nodularia for high light  (II: Fig. 3) mirrored 

their vertical distribution patterns in the 

field. Aphanizomenon is more 

homogeneously distributed than 

Nodularia, which usually occurs only in the 

upper mixed layer and forms scum on the 

water surface (Lindahl et al., 1980; Rinne 

et al., 1981; Niemistö et al., 1989; 

Kononen et al., 1998).  
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The growth and nitrogen fixation rates of 

Nodularia strain BY1 were highest in the 

same salinity range, 5 to 20‰, (II: Fig. 4) 

in which the genus forms mass 

occurrences in the Baltic Sea and other 

brackish waters (see references in 

Kononen et al., 1996). The incapability of 

Aphanizomenon to tolerate salinities 

higher than 10‰ (II: Fig. 4) suggests that 

salinity is an important factor limiting the 

distribution of this genus. The different 

salinity optimum of the two genera is seen 

in their different horizontal distribution 

patterns in the Baltic Sea. With increasing 

salinity from freshwater in the north to 

approximately 15‰ salinity in the southern 

Baltic Proper, the abundance of 

Aphanizomenon sp. decreases while the 

abundance of N. spumigena increases 

(Niemistö et al., 1989). Furthermore, 

Nodularia generally occurs in the open sea 

area, while Aphanizomenon occurs 

abundantly also in coastal areas of the 

Baltic Sea (Niemistö et al., 1989; Tenson, 

1995). In the northern part of the Gulf of 

Bothnia, the Bothnian Bay, where salinity 

approaches freshwater, N. spumigena is 

low in numbers (Andersson et al., 1996).  

The growth of both species increased with 

unnaturally high PO4
3- concentration (II: 

Fig. 5) and with accompanying bacteria (II: 

Fig. 1), and decreased with unnaturally 

high inorganic N concentrations (Fig. 3). 

Prior to the P experiment, the inocula were 

grown without P for seven days to deplete 

cellular P reserves. The slow growth of 

Nodularia during the P experiment (II: Fig. 

5b) was probably due to the low survival of 

the P-starved inoculum. Phosphorus 

starvation did not affect the inoculum of 

Aphanizomenon, which may be a result of 

its higher cellular P pools or lower P 

demands compared to Nodularia. The 

latter is not in accordance with the 

estimated half saturation P uptake 

constants (Ks) for Aphanizomenon and 

Nodularia; Ks was higher for 

Aphanizomenon (Uehlinger, 1981: 1.5 µl P 

l-1) than for Nodularia (Wallström et al., 

1992: < 0.5 µl P l-1). This means that 

higher P concentration is needed for 

Aphanizomenon than for Nodularia to 

produce half the maximum growth. The 

results might not be comparable, since the 

Ks values were estimated separately for a 

continuous culture of Aphanizomenon and 

for a natural population of Nodularia. It is 

possible that the latter material was not P-

starved. The effective utilisation of high P 

concentration by Aphanizomenon seems 

to be its strategy to form blooms in frontal 

and upwelling regions in the Baltic Sea 

(Wallström, 1988; Kononen & Nõmmann, 

1992; Grönlund et al., 1996; Kononen et 

al., 1996). The stimulation of growth of 

cultured strains of Aphanizomenon (II; 

Melin & Lindahl 1973) and Nodularia (I; II; 

Hamel & Huber, 1985; Huber & Hamel 

1985) by high P concentration has been 

demonstrated. Growth was also stimulated 

in P enrichment studies with natural 

cyanobacterial populations (Horstman, 

1975; Rinne & Tarkiainen, 1978; Hamel & 

Huber, 1985; Tamminen et al., 1985). High 

P concentration and low N:P-ratio have 

been linked to mass occurrences of 

Aphanizomenon and Nodularia in the 

Baltic Sea (Niemi, 1979; Hübel & Hübel, 

1980; Kononen & Niemi, 1984; Leppänen 
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et al., 1988; Wallström, 1988; Kononen & 

Nômmann, 1992; Kahru et al., 1994; 

Pliñski & Jó�wiak, 1996).  

The positive impact of bacteria on the 

growth and nitrogen fixation rate of 

cyanobacteria has been reported by Love 

& Rawson (1986). In our study and the 

studies of Meffert & Overbeck (1981) and 

Meffert (1993), only the growth was 

promoted by accompanying bacteria (II: 

Fig. 1). In addition, non-axenic strains (see 

references in Paerl & Pinckney, 1996) 

have been noticed to be easier to maintain 

in cultures than axenic strains. In the 

presence of heterotrophic bacteria, 

cyanobacteria may, for example, 

overcome high oxygen concentrations 

inhibiting nitrogenase or low inorganic 

carbon concentrations limiting 

photosynthesis (Paerl, 1982; Paerl & 

Pinckney, 1996). Several studies have 

revealed that planktic Nodularia are 

frequently colonised with epiphytic bacteria 

(Bursa, 1968; Hoppe, 1981; Šmarda, 

1985; Šmarda et al., 1986; Gumpert et al., 

1987; Šmarda & Hübel, 1994; Albertano et 

al., 1996). Similarly, bacterial epiphytes 

are associated with the Baltic Sea 

Aphanizomenon (Janson et al., 1994).  

The presence of NH4
+ at concentrations of 

0.5-1.0 g l-1 may cause poor growth 

(Nordin & Stein, 1980). Even low NH4
+ 

concentrations (< 200 µg l-1) resulted in 

disappearance of heterocysts (Sanz-

Alférez & del Campo, 1994) and nitrogen 

fixation of Nodularia (Huber, 1986b; Sanz-

Alférez & del Campo, 1994). Likewise in 

this study, a decrease in growth of 

Nodularia, which had been cultivated 

without inorganic N for years, was seen 

when NH4
+ was present. The N 

concentration of 42 mg l-1 used in this 

experiment inhibited nitrogen fixation 

(Moisander et al., 1996) and was 

detrimental to the growth of 

Aphanizomenon and Nodularia (Fig. 3). 

Similarly, addition of NO3
- or NH4

+ to field 

populations of Nodularia had no clear 

effects on nitrogenase activity or growth 

(Stal et al., 1999) unless the added 

concentrations were high (< 5 mM) enough 

to be toxic (Stal et al., 1999: unpublished 

data). 
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Nitrogen fixation of Aphanizomenon and 

Nodularia was often, but not always, 

highest under conditions which promoted 

growth and lowest in cultures with poor 

growth. Growth and nitrogen fixation rates 

of Aphanizomenon were different than 

those of Nodularia in experiments 

comparing different temperatures (II: Fig. 

2a,c), light intensities (II: Fig. 3a,c), and P 

concentrations (II: Fig. 5a,c). Both genera 

showed different responses in the 

experiment done with axenic and non-

axenic cultures (II: Fig 1c, d). Although the 

heterocyst frequency of Aphanizomenon 

was lower (ca. 10 mm-1) than that of 

Nodularia (30 to 40 mm-1) (II: data not 

shown) the normalised nitrogen fixation 

rates [in millimoles of ethylene (gram of 

chlorophyll-a)-1hour-1] were generally 

higher in Aphanizomenon than in 

Nodularia. These observations indicate 

differences in nitrogen fixation potential in 

heterocysts of these two genera or 

distribution of nitrogenase in vegetative 

cells in Aphanizomenon. Janson (1995) 

detected low amounts of nitrogenase in 

the vegetative cells of Aphanizomenon. 

The higher heterocyst frequency of 

Nodularia compared to Aphanizomenon 

has been also recorded in field 

populations (Lindahl et al., 1980; Niemistö 

et al., 1989). In the present study (II), the 

frequency of heterocysts and normalised 

nitrogen fixation rate of Aphanizomenon 

were positively related to the presence of 

bacteria (p < 0.05), temperature (p < 0.01), 

P (p < 0.05), and NO3
- (p < 0.001) 

treatments (not determined for light 

experiment). Positive correlation between 

the frequency of heterocysts and 
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normalised nitrogen fixation rate of 

Nodularia was found in salinity (p < 

0.05)and NH4
+ (p < 0.01) treatments (not 

determined for light and P experiments). 

The heterocyst frequency and the filament 

length of Aphanizomenon positively 

correlated with temperature (p < 0.01), 

salinity (p < 0.01), ammonium (p < 0.001), 

and nitrate (p < 0.01) experiments (II: not 

determined for the light experiment). A 

positive relationship between filament 

length and heterocyst frequency of 

Nodularia was found only in the salinity 

experiment (p < 0.05) (not determined for 

light and P experiments). 

4.2. Molecular characterisation 
of the Baltic Sea cyanobacteria 

4.2.1. Phylogenetic position of 
Aphanizomenon 

To date, difficulties to cultivate 

Aphanizomenon strains from the Baltic 

Sea under laboratory conditions have 

limited investigations of this organism. We 

have succeeded in isolating one 

Aphanizomenon strain (TR183) from the 

Baltic Sea, which we have used in the 

experiment where the growth and nitrogen 

fixation of Aphanizomenon and Nodularia 

in response to changes in growth 

conditions were investigated (II). The 

analysis of 16S rRNA-gene sequences 

has revealed that the Baltic Sea 

Aphanizomenon strain is phylogenetically 

highly similar to Aphanizomenon strains 

PCC7905 and 202, which have been 

isolated from Lake Brielse Meer (the 

Netherlands) and Lake Vesijärvi (Finland) 

respectively (Lyra et al., 2000). On the 

contrary, based on the ultrastructural study 

of Aphanizomenon sp. trichomes from the 

Baltic Sea, Janson et al. (1994) 

demonstrated that the Baltic Sea 

Aphanizomenon sp. differs in many 

respects from freshwater Aphanizomenon 

flos-aquae. In addition, Cronberg and 

Hajdu (1998) have stated that the Baltic 

Sea Aphanizomenon differs in many ways 

from freshwater A. flos-aquae and that it 

should be designated Aphanizomenon 

baltica. 

4.2.2. Phylogenetic position of 
Nodularia 

Sequence analysis of 16S rRNA gene (IV: 

Fig. 4) revealed that Nodularia is closely 

related to Nostoc, Aphanizomenon and 

Anabaena. This result is in line with 

findings based on 16S rDNA sequence 

analysis demonstrated that Nodularia is 

situated in the same cluster as other 

filamentous heterocystous species, but on 

a separate branch (e.g. Nelissen et al., 

1994, 1996; Wilmotte, 1994; Wilmotte et 

al., 1993, 1994; Kane et al., 1997).  

4.2.3. Genetic relationships 
between Nodularia strains 

This study revealed similar genotypic 

diversity for Nodularia strains with the 16S 

rRNA-gene-based and fingerprinting 

techniques. Vinuesa et al. (1998) showed 

these techniques to be consistent when 

characterising Bradyrhizobium strains. 

Using these two techniques, the Nodularia 

strains were separated to two (IV: Figs 4-

6) or three clusters (IV: Fig. 3). With 16S 

rRNA RFLP (IV: Fig. 3), toxic strains from 

the Baltic Sea were separated from toxic 

strains from different geographical origins. 
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All the toxic strains were separated from 

non-toxic strains using RFLP of the 16S 

rRNA gene (IV: Fig. 3), 16S rRNA gene 

sequencing, (IV: Fig. 4), REP- and ERIC-

PCR (IV: Fig. 5), and ribotyping (IV: Fig. 

6).  

All Nodularia strains were closely related 

despite their different geographical origins 

and abilities to produce toxin. The 16S 

rDNA sequence difference between the 

toxic and non-toxic Nodularia clusters was 

low. For example, between strain 

PCC7804 and the non-toxic strains the 

difference was 1.3%. Furthermore, toxic 

strains from the Baltic Sea (BY1) and 

France (PCC7804) were 99.0% similar in 

16S rRNA sequence. Similar findings have 

been reported for Anabaena (Lyra et al., 

2000), Microcystis (Neilan et al., 1997a; 

Lyra et al, 2000), Planktothrix (Lyra et al., 

2000), and Prochlorococcus strains 

(Urbach et al, 1998). The study by Bolch et 

al. (1999) showed geographically diverse 

strains of Nodularia to be close relatives 

based on cpcBA-IGS sequences.  

Whether the Nodularia strains in this study 

belong to one genospecies needs to be 

determined by DNA-DNA hybridisation 

studies since similarity of 16S rRNA 

sequences does not guarantee species 

identity (Fox et al., 1992). DNA-DNA 

homology studies have been used to 

measure the degree of relatedness 

between organisms with high 16S rRNA 

sequence similarity. According to 

Stackebrandt & Goebel (1994), lower than 

70% DNA homology is expected for 

species having lower than 97% sequence 

similarity. In this study, Nodularia 

PCC73104/1 and PCC7804 strains had 

98.7% sequence similarity. According to 

the study of Lachance (1981), these 

strains had a 65% relative binding value. 

Therefore, these strains can be the same 

genospecies because the DNA 

relatedness of 65% is not much below the 

low boundary level suggested by the Ad 

Hoc Committee on Reconciliation of 

Approaches to Bacterial Systematics 

(Wayne et al., 1987).  

The profiles of REP and ERIC sequences 

(IV: Fig. 5), which have earlier been shown 

to exist in cyanobacterial genomes 

(Versalovic et al., 1991; Rasmussen & 

Svenning, 1998), indicated high genetic 

homogeneity among toxic strains of 

Nodularia from the Baltic Sea. The toxic 

strains NSPI-05, NSOR-12 from Australia 

and PPC7804 from France were found to 

be different from the Baltic Sea Nodularia 

strains by 16 rRNA-based methods (IV: 

Figs 3,4) and by REP- and ERIC-PCR (IV: 

Fig. 5). Similarly, Bolch et al. (1996, 1999) 

have shown Australian strains to be 

different than Northern Hemisphere strains 

using PCR-RFLP and sequences of 

cpcBA-IGS, and PCR-RADP. 

Our results indicated that two closely 

related Nodularia genotypes are found in 

the Baltic Sea. One genotype consists of 

only non-toxic strains (UP16a, UP16f, and 

HKVV). 16S rRNA gene sequencing (Fig. 

4) showed that these strains were identical 

to the proposed type strain of Nodularia 

spumigena PCC73104/1 

(http://www.pasteur.fr/recherche/). All 

genetic markers separated the proposed 

type strain, and other non-toxic strains, 
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from toxic strains. The toxic strains (HEM, 

BY1, AV3, GR8b, F81, NSPI-05,  

NSOR-12, and PCC7804) form another 

genotype, which most closely fits the 

descriptions of N. baltica and N. 

spumigena (IV: Tables 2, 3). According to 

the nomenclature of Komárek et al. 

(1993), the proposed type strain 

PCC73104/1 is not typical for the strain of 

N. spumigena. The phenotypic characters 

of non-toxic Nodularia strains fit most 

closely to the description of N. 

sphaerocarpa (IV: Tables 2; 3) without 

recorded data of akinetes. When they 

were present in the HKVV strain, they 

occurred in series and were more or less 

spherical. 

Previously, the genetic diversity of 

Nodularia populations in the Baltic Sea 

has been demonstrated to be low by using 

specific PCR identification. Two to three 

distinct Nodularia genotypes were 

detected based on PC-IGS sequences 

(Hayes & Barker, 1996; Barker et al., 

1999). In addition, two groups based on 

gvgA-IGS and three groups based on 

rDNA-ITS were assigned (Barker et al., 

1999). 

4.2.4. Phenotypic differences 
between Nodularia genotypes 

Nodularia strains could not be separated 

based on cell size whereas gas vesicle 

production separated the strains into two 

groups (IV: Table 2). All the toxic 

Nodularia strains examined produced gas 

vesicles, whereas the non-toxic strains 

were unable to produce these structures. 

The ability to form gas vesicles, which 

regulate the buoyancy of planktonic 

cyanobacteria, has been used to 

differentiate Nodularia species (Šmarda et 

al., 1988; Komarek et al., 1993). In the 

laboratory, cyanobacterial strains may lose 

gas vesicles as shown also in this study 

with strains BY1 and HEM (IV: Table 2). 

Therefore, this character may not be 

useful when identifying cultured strains. 

The cell size of cultured Nodularia strains 

was not reflected in the 16S rRNA gene 

similarity. Morphological characterisation 

of unicellular Merismopedia and 

Microcystis strains has also been 

unsuccessful in distinguishing genetic 

subclusters created by 16S rDNA 

sequencing (Palinska et al., 1996; Otsuka 

et al., 1998). On the contrary, the trichome 

morphology of Cylindrospermopsis strains 

correlated with sequences of 16S rRNA 

gene (Saker et al., 1999) and STRR 

(Wilson et al., 2000). 

In this study, nodularin production was 

consistent with the genotypic analysis. 

With all genotypic methods used, the non-

toxic Nodularia strains were differentiated 

from the toxic ones (IV: Figs 2-6). Bolch et 

al. (1999) found a genotypic distinction 

between most toxic and non-toxic 

Nodularia strains using RAPD-PCR and 

cpcBA-IGS sequence data. Thus, 

nodularin production could be used as a 

marker in the taxonomy of Nodularia as 

proposed by Komárek et al. (1993). In 

contrast to our study, no correlation 

between 16S rRNA gene evolution and 

Microcystis strain toxin production was 

observed (Neilan et al., 1997a; Otsuka et 

al., 1999) whereas hepatotoxic Anabaena 
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strains were phylogenetically different from 

neurotoxin-producing strains using 16S 

rDNA sequence (Lyra et al., 2000). Earlier, 

hepatotoxic Anabaena strains had been 

distinguished from neurotoxic strains by 

Southern hybridisation of STRR 

sequences (Rouhiainen et al., 1995). This 

method was also applied to Nodularia in 

the present study (IV: Fig. 2). Although 

most of the Nodularia strains had only a 

few locations with STRR sequences, this 

method gave the same information as the 

other fingerprinting methods. These STRR 

sequences have been detected also in the 

genomes of other filamentous, 

heterocystous genera such as Calothrix 

(Mazel et al., 1990), Cylindrospermopsis  

(Wilson et al., 2000), Anabaena and 

Nostoc (Rouhiainen et al., 1995).  

Since toxic Nodularia strains could be 

differentiated from non-toxic strains by 

using 16S rRNA gene sequencing, one 

could design PCR primers or probes to 

detect potential nodularin producers. 

However, the number of studied non-toxic 

strains in this study was low, therefore, 

more non-toxic strains are needed to test 

the validity of any difference in 16S rRNA 

gene sequence as a genetic marker 

between toxic and non-toxic Nodularia 

strains. Previously, Bolch et al. (1999) 

could not separate two non-toxic Nodularia 

strains (NSBL-03, and NSBL-05) from 

toxin-producing strains using cpcBA-IGS 

sequences. It is also possible that 

nodularin levels produced by these strains 

were under the detection limits. The 

characterisation of microcystin synthetase 

genes from hepatotoxic cyanobacteria will 

enable the design of specific PCR 

methods for the detection of potential 

hepatotoxin producers.  

16S rRNA sequence analysis has shown 

that Prochlorococcus is phylogenetically 

related to cyanobacteria (Urbach et al., 

1992), and is closest to Synechococcus 

(Urbach et al., 1998). The findings that 

pigment data for Prochlorococcus strains 

correlated with 16S rRNA sequence data 

(Moore et al., 1988; Urbach et al., 1988) 

and that pigment data for Synechococcus 

correlated with ITS sequence data 

(Postius & Ernst, 1999) showed that 

phylogenetically closely related strains can 

be physiologically distinct. Nodularia 

strains of the present study were shown to 

be phylogenetically highly similar but 

physiologically quite distinct. For example, 

some of the strains were able to produce 

nodularin whereas others were not toxic. 

Furthermore, their response to changes in 

temperature and P concentrations were 

different.  

4.3. Characterisation of 
nodularin 

4.3.1. Nodularin concentration 
under different growth 
conditions 

Nodularin concentration under different 

growth conditions was studied using non-

axenic (I) and axenic (II) Nodularia strains. 

Nodularin concentrations in cells and in 

growth media were generally highest 

under conditions which promoted growth 

(I, II). In all experiments (not examined in 

N experiment) growth and intracellular  
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toxin correlated positively  

(II: p < 0.005). The association of 

Nodularia and nodularin has been 

demonstrated earlier by field data 

(Sivonen et al., 1989b; Jones et al., 1994b; 

Blackburn & Jones, 1995; Heresztyn & 

Nicholson, 1997). Furthermore, the 

concentrations of microcystins in 

phytoplankton have been positively 

correlated with the abundance and 

biomass of Microcystis (Kotak et al., 1995; 

Lahti et al., 1997; Zurawell et al., 1999).   

Marked differences between nodularin 

concentrations in cells grown under 

different temperatures (I), salinities (II) and 

P concentrations (II) were observed. The 

differing responses of the studied strains 

probably resulted from different test 

ranges and the presence of accompanying 

bacteria. In the study done with non-axenic 

strains (I), the test ranges were perhaps 

too narrow to reveal differences in different 

treatments. However, the results revealed 

that toxic Nodularia blooms might be 

expected in late summer with high water 

temperatures in areas of the Baltic Sea 

with high P concentrations and moderate 

salinity. 

Intracellular Nodularin. Intracellular 

nodularin concentrations in the axenic 

Nodularia strain BY1 increased with 

temperature (II: Fig. 2e), PO4
3- 

concentration (II: Fig. 5e), and irradiance 

(II: Fig. 3e). They decreased with low and 

high salinities (II: Fig. 4e) and high 

inorganic N concentrations (Fig. 3). 

Associated bacteria had no effect on the 

nodularin concentration in Nodularia (II: 

Fig. 1e), whereas microcystin 

concentration in two of three axenic 

Oscillatoria strains was significantly higher 

than that in non-axenic clones (Sivonen, 

1990b). 

Effect of Temperature. In previous 

studies, temperature has been shown to 

control hepatotoxin concentrations in many 

cyanobacteria, such as Anabaena (Rapala 

et al., 1997), Microcystis (Gorham, 1964; 

Runnegar et al., 1983; Watanabe & Oishi, 

1985; van der Westhuizen & Eloff, 1985; 

van der Westhuizen et al., 1986; Codd & 

Poon, 1988), and Oscillatoria (Sivonen, 

1990b). In most of these studies, highest 

toxin concentrations (Sivonen, 1990b; 

Rapala et al., 1997) or toxicities (Runnegar 

et al., 1983; Watanabe & Oishi, 1985; van 

der Westhuizen & Eloff, 1985; van der 

Westhuizen et al., 1986; Codd & Poon, 

1988; Ohtake et al., 1989) were detected 

from cyanobacterial cells grown at 18-

25ºC. This was also true in this study, 

where the highest toxin concentrations 

were detected from Nodularia cells grown 

at temperatures at approximately 20ºC (I: 

Fig. 2b; II: Fig. 2e). A rise in the 

temperature increased the growth of 

Nodularia (II: positive linear regression 

coefficient, p < 0.001). During the time 

course, the growth of Nodularia decreased 

at low temperature and increased at high 

temperature (II: positive regression 

coefficient for the co-effect, 

p < 0.001). 

Effect of Phosphorus. Low PO4
3- 

concentrations seem to decrease the toxin 

concentrations in Nodularia (I: Fig. 5c; II: 

Fig. 5d). In contrast, Holswilder (1999) 
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reported that the highest nodularin 

concentrations were produced under P-

limited growth conditions. The different 

results obtained are probably a result of 

different experimental conditions. In our 

study, Nodularia was grown without 

inorganic N, whereas in the study of 

Holswilder (1999) the growth media 

contained NO3
-
 (N:P = 64:1, molar ratio) 

which at high concentrations has been 

demonstrated to decrease nodularin 

concentration (see below). However, our 

result is in line with those from batch-

culture experiments with hepatotoxic 

Anabaena (Rapala et al., 1997), 

Microcystis (Watanabe & Oishi, 1985) and 

Oscillatoria (Sivonen, 1990b). A 

continuous-culture experiment has shown 

that microcystins are produced in higher 

amounts in P-limited conditions (Oh et al., 

2000). Oh et al. (2000) have suggested 

two reasons for the controversial results 

between batch and chemostat 

experiments. First, in batch-cultures 

complete cellular P-limitation may not be 

induced. Second, there may be a 

threshold concentration for P. The latter 

may be true, since several studies have 

indicated that above a certain P-

concentration there was no additional 

effect on toxin concentration (e.g. I; II; 

Watanabe & Oishi, 1985; Sivonen, 1990b; 

Rapala et al., 1997). In contrast to the 

study of Oh et al. (2000), Utkilen & Gjølme 

(1995) found that P-limited condition 

decreased microcystin-RR content per dry 

weight of Microcystis grown in continuous 

culture. 

Effect of Light. Low light seems to lower 

nodularin concentration as shown by this 

study and the study of Holswilder (1999). 

In the present study, nodularin 

concentration in the axenic Nodularia BY1 

at the light intensity of 2 µmol m-2 s-1 was 

lower than at higher light levels (II: Fig. 

3e). In the light experiment done with non-

axenic Nodularia strains, the test range 

may be too narrow to show clear 

differences between light levels (I: Fig. 3b). 

Light limitation has been reported to 

decrease the concentration of hepatoxin in 

Anabaena (Rapala et el., 1997; Rapala & 

Sivonen, 1998), and that of neurotoxin in 

Aphanizomenon (Rapala et al., 1993). In 

addition, the concentration of microcystin 

in Oscillatoria (Sivonen, 1990b) decreased 

at high light and that of Anabaena at both 

high and low light levels (Rapala et al., 

1993). The results concerning toxicity of 

Microcystis in different light levels are 

controversial. According to the studies of 

Gorham (1964), van der Westhuizen & 

Eloff  (1985), van der Westhuizen et al. 

(1986), and Codd & Poon (1988) light had 

no marked effect on hepatotoxicity 

whereas other studies noticed a 

considerable change in toxicity (Watanabe 

& Oishi, 1985) or toxin concentration 

(Utkilen & Gjølme, 1992) when light 

intensity was varied. Light controls 

microcystins content, but it also seems to 

regulate the composition of microcystin 

variants (e.g. Rapala et el., 1997; Rapala 

& Sivonen, 1998). In addition, iron uptake,  

which has been shown to influence the 

toxin concentration of Microcystis (Luka� & 

Aegerter 1993; Utkilen & Gjølme, 1995; 
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Lyck et al., 1996), is light dependent 

(Utkilen & Gjølme, 1995). 

Effect of Salinity. The axenic Nodularia 

strain BY1 produced highest nodularin 

concentrations at salinities 5-20‰ (six 

levels tested in the range 0-30‰), and 

nodularin concentration was reduced at 

lower and higher salinities than that (II: 

Fig. 4e). Salinity did not have any 

statistically significant effect on 

intracellular toxin concentrations in non-

axenic Nodularia cultures (I). High salinity 

(35‰) was previously found to reduce 

nodularin concentrations (Blackburn et al., 

1996) and increase the number of 

akinetes (Jones et al., 1994b). At salinities 

0 - 24 ‰, nodularin was produced in 

similar amounts although the lowest 

salinity significantly reduced growth 

(Blackburn et al., 1996). In this study, 

growth and nodularin concentration were 

remarkably lower at salinities 0 and 30‰  

than at 5-20‰. 

Effect of Nitrogen. The negative effect of 

N on the nodularin concentration in 

Nodularia was seen only at the highest N 

concentration, 42 mg l-1 (Fig. 3). 

Previously, N has been shown to increase 

hepatotoxin concentration of non-

heterocystous Microcystis (Codd & Poon, 

1988; Utkilen & Gjølme, 1995; Watanabe 

& Oishi, 1985) and Oscillatoria (Sivonen, 

1990b). Orr and Jones (1998) 

demonstrated that microcystin production 

rate by Oscillatoria agardhii (data originally 

published by Sivonen, 1990b), Anabaena 

flos-aquae (data originally published by 

Rapala et al., 1997) and by Microcystis 

aeruginosa (Orr & Jones, 1998) was 

indirectly influenced by nutrients and other 

growth-limiting factors. These factors have 

an effect on growth and cell division and in 

that way on microcystin production rate 

(Orr & Jones, 1998). In Anabaena, 

addition of N (test range 0-50 mg NO3
- -N l-

1) changed the proportion of different 

microcystin variants, decreased their total 

intracellular concentration, and increased 

the concentrations of extracellular toxins in 

growth media (Rapala et al., 1997). 

Cylindrospermopsis raciborskii produced 

highest concentration of 

cylindrospermopsin when grown with no N 

addition (Saker et al., 1999). 

Extracellular Nodularin. Nodularin 

concentrations in growth media increased 

with incubation time (I: Fig. 1c, Table 2). 

Even when the extracellular toxin was 

normalised to the biomass present, the 

concentration of toxin in the growth 

medium increased (II: Figs 1f, 2f, 3f, 4f) 

suggesting that the toxin was released 

mostly from dying cells. Similarly, 

microcystins have been shown to be 

released into the growth medium in 

several other studies (e.g. Berg et al., 

1987; Sivonen, 1990b; Kiviranta et al., 

1991; Watanabe et al., 1992). According 

to our studies, growth at different 

temperature, light, salinity, and P 

conditions as well as growth stage may 

effect the release of nodularin. Higher 

toxin concentrations in growth media, 

which were normalised to biomass, were 

detected at high temperatures than at low 

temperatures (I: Fig. 2b; II: Fig. 2f). Salinity 

had a significant effect on extracellular 
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nodularin concentration (II: p < 0.10). The 

highest extracellular concentrations were 

found at salinities of 5 to 15‰ (II: Fig. 4f); 

these were also favourable for growth. 

Toxin release from non-axenic cells into 

the growth media was highest at the 

lowest PO4
3- concentration (I: Fig. 5c). On 

the contrary, at the end of experiment, the 

highest concentrations released from 

axenic cells were found at the highest P 

concentrations (II: Fig. 5e) which also 

promoted growth. It seems that 

extracellular toxin concentrations are 

proportional to intracellular concentrations, 

therefore higher concentrations are found 

in fast-growing cultures than slow-growing 

cultures. Accordingly, Rapala et al. (1997) 

found that with time, high N concentration 

and increasing light levels significantly 

increased the concentrations of 

extracellular hepatotoxins. In this study, 

the concentration of nodularin (I: Fig. 1c) in 

cells as well as total nodularin 

concentration in culture (I: Table 1) 

increased with time. No clear differences 

between axenic and non-axenic cultures in 

intra- and extracellular toxin 

concentrations were observed (II: Fig. 

1e,f). Furthermore, the fact that large 

amounts of nodularin were present in 

growth media of non-axenic cultures at the 

end of incubation (I: Fig. 1c, Table 1) 

implies that nodularin was not 

biodegraded by associated bacteria in 

contrast to the studies of Jones et al. 

(1994a), Twist & Codd (1997), Heresztyn 

& Nicholson (1997), and Lahti et al. 

(1998). 

4.3.2. Three-dimensional 
structure of nodularin 

Nodularins and microcystins, that are 

chemically quite similar, exihibit similar 

inhibitory actions against protein 

phosphatases. However, they show 

different biochemical reactions with 

different protein phosphatases, e.g. 

nodularins do not bind covalently to PP-1 

like microcystins. In order to explain the 

biochemical differences between these 

two toxins, the 3-D structure of nodularin 

was determined by NMR and MD 

simulations to find similarities and 

differences between the chemical 

structures of nodularins and microcystins. 

NMR-structure. In water, the peptide ring 

of nodularin has a saddle-shaped form 

with flexible Adda and Arg side-chains. 

This has emerged from distance geometry 

calculations using distance and dihedral 

restraints.  

A detailed inspection of the first structure 

determinations revealed two families of 

solution structures for nodularin. These 

differed by the orientation of the Mdhb 

side-chain depending on the 

stereospecificity of the methylenes of Glu 

(III: data not shown). Altogether, there 

were initially four structural families. It was 

concluded that the methyls of Mdhb and 

MeAsp were on opposite sides with 

respect to the plane of the Glu-Mdhb 

peptide bond. Otherwise there should 

have been cross-peaks for the protons in 

the side-chain of Mdhb and CγH3 of 

MeAsp. The stereospecificity was then 

deduced relying on the unequal NOES 
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between the CH3- groups of Mdhb and 

CγHs of Glu (III: Fig. 3). This family of 

conformations also had fewer restraint 

violations than the three other 

conformation sets.  

A new set of 100 structures was computed 

in which φ of the Mdhb was restrained 

between 0 and 180º and the center of 

methyls of Mdhb and MeAsp were forced 

to be further apart than 4 Å. Out of 100 

structures, 25 structures passed the 

acceptance test, which consisted of two 

criteria: at most three distance constrains 

below 0.3 Å, and no dihedral constraints  

violations above 10º. For this family, the 

refined distances were computed by the 

iterative relaxation matrix method. Based 

on the refined restraint set, 100 structures 

were computed. Forty-seven out of 100 

structures were free of restraint violations. 

Minor violations (below 0.2 Å) were 

tolerated in the remote part of Adda and 

Arg.  

Using both distance geometry and iterative 

relaxation matrix analysis, one family of 

the cyclic-saddle shaped backbone 

solution structure for nodularin was 

defined (III: Fig. 5). The long side-chains 

of Adda and Arg protruded from the 

otherwise fairly globular backbone 

structure. 

MD-simulation-structure. The simulated 

nodularin conformation remained close to 

NMR-generated initial conformation of 

nodularin (III: Fig. 6). No significant 

violations to the experimental distance 

restraints were observed. The remote 

parts of Adda and the side-chains of Mdhb 

were found to be quite flexible as 

suggested also by NMR results. Generally, 

the structure of the cyclic backbone of 

nodularin was quite rigid, but some 

fluctuations were found in the peptide 

bonds between Mdhb-MeAsp, Arg-Adda, 

and Adda-Glu, which caused local flip-flop 

movements of the peptide bond plane (III: 

Fig. 7). This affected the hydrogen 

bonding, especially from HN of Glu. The 

side chain of Arg adopted multiple 

conformations, which did not have any 

effect on the cyclic backbone fold. The 

hydrogen-bonding pattern revealed by MD-

simulation is in good agreement with the 

NMR data. During simulations, the rotating 

COO- group of MeAsp frequently formed 

hydrogen bonds. In most cases, the 

hydrogen bonds from the COO- group of 

MeAsp to the HN of Adda prevailed (80% 

of the time). Occasionally, the COO- group 

of MeAsp was bond to the HN of Glu. The 

third commonly formed hydrogen bond 

type was detected between HN and C=O 

of MeAsp, which was present 50% of the 

simulation time. Differences in the radial 

distributions of the water around the 

backbone amides (III: Fig. 8) are in good 

agreement with the measured amide 

proton exchange rates (III: Fig. 4). The HN 

of MeAsp and Adda were found to be 

buried with a very low water density, which 

makes the hydrogen exchange with water 

slower than in the case of more solvent 

accessible Glu and Arg protons.  

Comparison to microcystin. The 

conformation of nodularin was remarkably 

similar to the 3-D structure of microcystin-

LR, which implies that nodularin will inhibit 
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PPs in the same way as microcystin-LR. 

Both toxins had a saddle-shaped 

backbone conformation, but microcystin-

LR was more buckled than nodularin (III: 

Fig. 9). In particularly, the backbone fold in 

the conserved region of MeAsp-Arg-Adda-

Glu was almost identical for nodularin and 

microcystin-LR. The MD-simulations, 

nevertheless, revealed a certain degree of 

sway for the trans peptide bonds. The 

proximal part of the Adda side-chain was 

also very similar. The remote parts of 

Adda and Arg were not structurally defined 

and they were also mobile in both 

peptides.  

Bagu et al. (1995) have also compared the 

solution structures of microcystin-LR and a 

nodularin variant, motuporin. They showed 

that both of these peptides have saddle-

shaped backbones. Furthermore, they 

showed that Adda was highly flexible in 

both peptides, whereas Val, a counterpart 

of Arg in nodularin, was less flexible than 

Arg in microcystin-LR. Also, the 

conformational study of Trogen et al. 

(1995) confirmed the saddle-shaped form 

of peptide ring in microcystin-LR. The 

NMR results differ from molecular 

dynamics calculations, which predict that 

these toxins have planar rings (Lanaras et 

al., 1991; Taylor et al., 1992). Here, a good 

agreement was found between 

experimental and computational data. 

 Although nodularins and microcystins are 

structurally and physiologically very 

similar, there is one significant difference 

between them in respect to their 

interactions with PPs. According to NMR 

results of Bagu et al. (1997) and ours (III), 

the side-chain of Mdhb of nodularins 

points to a different direction than that of 

Mdha of microcystin-LR. Therefore, Mdhb 

of bound nodularin should not reach to the 

Cys-272 of PP1 and consequently not 

form a covalent bond with the SH group. 

The different positions of Mdhb and Mdha 

in nodularins and microcystins, 

respectively, have no effect on toxicity, 

since both toxins inhibit PPs in the same 

way.  

Bagu et al. (1997) have showed that the 

free NMR solution structures of 

microcystin-LR is highly similar to the 

bound crystal structure of microcystin-LR, 

indicating that this peptide will bind to PPs 

with only little conformational changes. 

Therefore, it can be assumed that the free 

structure of nodularin would not change 

dramatically upon binding. 
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5. General conclusions and 
future prospects 

According to this study: 

Variation in growth conditions influenced 

the growth and nodularin production of 

Nodularia strains. 

� Nodularin concentrations were 

generally highest under conditions 

that promoted growth. 

� Intracellular nodularin 

concentrations increased with 

increases in temperature, 

phosphate concentrations and 

irradiance. They decreased at low 

and high salinities and unnaturally 

high nitrogen concentration.  

Therefore, toxic Nodularia blooms 

may be expected in late summer 

in areas of the Baltic Sea with high 

phosphorus concentration and 

moderate salinity. 

The growth rate of non-toxic Nodularia 

strain was lower than that of toxic strains 

under all growth conditions except the 

lowest temperature and phosphorus 

concentration tested. Therefore, high 

temperature and high phosphorus 

concentrations may favor toxic Nodularia 

blooms over non-toxic ones.  

Several differences in the growth and 

nitrogen fixation rates of Nodularia and 

Aphanizomenon were observed, which 

may explain the different vertical, 

horizontal and temporal distribution of the 

two genera in the Baltic Sea. 

� Aphanizomenon preferred lower 

irradiances, salinities, and 

temperatures than Nodularia.  

The biomass of Nodularia and 

Aphanizomenon increased with high 

phosphate concentrations and with 

accompanying bacteria and decreased 

with unnaturally high nitrogen 

concentrations.  

Nitrogen fixation was often, but not always, 

highest under conditions that promoted 

growth and lowest in cultures with poor 

growth. 

The solution conformation of nodularin 

was remarkably similar to the tree-

dimensional structure of microcystin-LR, 

which implies that nodularin inhibits 

protein phosphatases in the same way as 

microcystin-LR. 

� Both toxins had a saddle-shaped 

bacbone conformation, but 

microcystin-LR was more buckled 

than nodularin. In particular, the 

backbone fold in the conserved 

region of MeAsp-Arg-Adda-Glu 

was almost identical for nodularin 

and microcystin-LR. The proximal 

part of Adda was also very similar. 

The remote parts of Adda and Arg 

were not structurally defined and 

they were also mobile in both 

peptides. 

Nodularia strains could not be grouped on 

the basis of cell size, whereas toxin 

production separated the strains into two 
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groups. Nodularin production was 

consistent with the genotypic analysis. 

 

� The toxic Nodularia strains were 

separated from non-toxic strains 

by RFLP of the 16S rRNA gene, 

16S rRNA gene sequencing, REP- 

and ERIC-PCR, and ribotyping. All 

strains were closely related 

despite their different abilities to 

produce toxin or geographical 

origins. 

In the Baltic Sea, two closely related 

Nodularia genotypes are found. One 

genotype consists of only non-toxic strains 

and most closely fits the morphological 

description of Nodularia sphaerocarpa. 

The toxic Baltic Sea strains form another 

genotype, which most closely fits the 

descriptions of Nodularia baltica and 

Nodularia spumigena. 

The toxic Nodularia strains from Australia 

and France were found to be different from 

the toxin-producing strains of the Baltic 

Sea by all genotypic methods. The profiles 

of REP- and ERIC-sequences indicated 

high genetic homogeneity among the toxic 

Baltic Sea strains.  

Future prospects 

This study suggested that non-toxic 

Nodularia strains may need less 

phosphorus for growth than toxic strains. 

Whether this physiological difference is 

universal needs to be confirmed with 

several non-toxic and toxic strains.  

Furthermore, Nodularia and 

Aphanizomenon genera seemed to have 

different capabilities to tolerate 

phosphorus starvation. This suggestion 

remains as yet unconfirmed.  

During this study, attempts to isolate 

Aphanizomenon cultures from the Baltic 

Sea were usually unsuccessful. In the 

future, we must be able to grow 

Aphanizomenon in the laboratory, which is 

essential to study the characteristics of this 

cyanobacterial genus. 

In this study, we have shown a clear 

genotypic distinction between toxic and 

non-toxic Nodularia strains. Whether this 

separation is valid in natural Nodularia 

populations remains to be tested. It 

remains also to be investigated whether 

non-toxic Nodularia strains are really 

benthic lacking gas vesicles, as I 

suggested. Therefore, the presence of gas 

vesicles and the natural habitat of non-

toxic strains should be clarified.  

Peptide synthetase genes have been 

genetically disrupted in order to produce 

non-toxic Microcystis mutants. These 

mutants are likely to reveal the role of 

cyanobacterial toxins to the producing 

organism and to the ecosystem. 

Furthermore, identification of peptide 

synthetase genes would allow the 

detection of potential toxin-producers in 

natural cyanobacterial populations. For the 

reasons mentioned above, peptide 

synthetase genes should be identified also 

from other toxin-producing cyanobacterial 

genera, such as Nodularia. 
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