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ABSTRACT  

Roots of all plant species need oxygen for growth, and most crops are supplied with 

oxygen mainly from soil air. Poor aeration is generally a problem only in wet soils. In 

compacted soils both large mechanical impedance and poor aeration inhibit the 

growth of roots and may lead to yield reductions.  
In this study, the variation in soil air composition, N2O emission and several 

environmental variables were monitored in loamy clay and loam fields under various 

combinations of agricultural management practices including compaction, heavy 

irrigation or wetting, cropping and N fertilization. The aim was to explore the 

instances in which poor aeration might be detrimental to plant production or 
environment. More detailed research into the conditions leading to hypoxia in soil and 

the effects of hypoxia and compaction on soil respiration and barley growth were 

carried out in pot experiments with fine sand soil treated with combinations of 
compaction (loose, compacted), wetting (moist, wet) and forced aeration (0%, 2%, 
6%, 10%, 20% O2 in N2 gas). Both uncropped and cropped pots were included. In 

addition, the incidence of wet growing seasons was estimated at five locations in 

different parts of Finland using long-term weather data to calculate the probability of 
a precipitation deficit of less than zero at certain times in a growing season.  

The weather data indicated that wet weather during the early growing season and 

during harvesting is not uncommon in Finland. The pot experiments showed that O2 

concentrations as low as 6% in soil air are adequate for respiration and growth of 
barley roots in soil at moderate moisture contents, but in wet soil plant growth is 

impaired even if the soil is aerated with a gas stream containing 20% O2. The 

observed effects of O2 concentration on the respiration and growth of barley roots 

compared fairly well with the critical oxygen concentrations calculated by a simple 

multicylindrical diffusion model, in which the water-film thickness around the roots 

was estimated using soil water retention data. 
The experiments indicated that, if the soil is wet, in the conditions prevailing in 

Finland, hypoxia occasionally limits root growth especially below the ploughed layer. 
In particular, heavy compaction of clay impairs subsoil aeration for several years. 
Poor aeration can contribute to a low yield and nitrogen uptake in compacted and wet 
soils. In wet soil, denitrification is obvious and probably contributes to the yield loss. 
However, if hypoxia lasts only a short time, the risk to yield loss is small. Also well-
aerated soil layers near the surface may prevent yield reduction.  

The field experiments also showed that leaving land fallow is detrimental to the 

environment, because it causes N2O emissions. So do irrigation and N fertilization, 
but cropping is efficient in diminishing the emissions. Large emissions or 
concentrations of N2O in soil air indicate soil hypoxia, but the importance of this on 

plant growth is confounded by the heterogeneity of field soils. 
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1 INTRODUCTION 

1.1 Background 

The practical background of this thesis lies in the compaction problems of cultivated 

soils. In general, plant responses to soil compaction are complicated by the fact that 
the soil structure (the size and distribution of pore space relative to the solid phase) 
and related soil properties are changed in a spatially and temporally complex manner 
(see Soane and van Ouwerkerk 1994 for recent reviews). Soil strength is usually 

increased by compaction, because the number of contacts between soil particles 

increases. The changes in the hydraulic properties are of special importance, because 

such soil properties as thermal conductivity, strength and gaseous diffusivity are to a 

large extent modified by the soil water content.  
Insufficient aeration is generally a problem for crop growth only in wet soils (see 

St�pniewski et al. 1994). Soil wetness is controlled by the relative rates of water 
supply to and removal from the soil. The former is determined mainly by the climate, 
and cannot be much controlled by agricultural management practices. On the other 
hand, the removal of water from soil is determined by the structure and topology of 
the soil and by the rates of drainage and evapotranspiration that are more readily 

influenced by agricultural practices. Compaction may increase soil wetness by 

decreasing the number of large pores and the saturated water conductivity in soil.  
Although the structural deterioration of soils can certainly reduce root growth in 

mechanized agriculture, it is often hard to distinguish between the influences of 
restricted aeration and increased mechanical impedance in soil (see St�pniewski et al. 
1994). The effects of soil compaction on soil structure and crop growth have been 

researched extensively both in Finland (Aura 1983, Pietola 1995, Alakukku 1997) and 

elsewhere (Arvidson and Håkanson 1996, Håkansson and Lipiec 2000, see Soane and 

van Ouwerkerk 1994 for reviews). On the other hand, despite the extensive research 

done on soil aeration (see Gli�ski and St�pniewski 1985, McAfee Graham 1989) and 

plant physiological responses to oxygen deficiency (reviewed by Drew 1990, Drew 

1992, Vartapetian and Jackson 1997), the estimating of soil aeration status in a way 

that relates to plant growth still remains an important goal (Drew 1992).  
A field of active research related to soil aeration studies are the soil-borne 

emissions of trace gases involved in the global climate change, such as methane 

(CH4), carbon dioxide (CO2), oxides of nitrogen (NOx, N2O) (Mosier 1998). In 

particular, the emissions of nitrous oxide (N2O) are much researched, as soils account 
for most (about 65%) of the total global N2O emission to the atmosphere (see Smith 

1997).  
 

1.2 Soil aeration 

1.2.1 Conceptual framework 

Soil is a natural medium for the growth of plants. It is an open, dynamic system made 

up of solids, liquids and gases interacting with living organisms (plants, microbes, 
animals), climate and topology. The main concepts, processes and the features of soil 
that are considered in this thesis are summarized schematically in Figure 1. These are 

discussed briefly below and in more detail in later sections. 
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Figure 1 The conceptual framework of the study. Schematic presentation of a plant growing in a 

hypoxic soil profile. Three examples of air-filled pores nearest to the roots at three depths (➀, ➁, ➂), 
the distribution of air, water and solid phase, and the “hole-in-the-pipe” model of nitrification and 

denitrification (Davidson 1991) are shown. 

 

In the aerated part of the soil profile, the pore space is partly filled with air. Soil 
microbes and plant roots respire O2 that they receive mainly by diffusion from the 

nearest air-filled pores through a layer of water-saturated soil (e.g. water films around 

roots). The minimum flux of O2 required to keep the respiration of roots oxic, or to 

keep the O2 concentration at the root surface above the critical value, is determined by 

the respiratory and diffusive properties of roots. The maximum rate of oxygen supply 

to the roots is determined largely by their distance to the nearest air-filled pores and 

by the O2 concentration in soil air. At large matric water suctions, e.g. near the soil 
surface, the distance from the root to the nearest air-filled pores is small enough to 

maintain oxic respiration in the roots. Deeper in the soil this distance increases as the 

matric water suction decreases. The decrease in soil air space retards the diffusion of 
O2 in soil, which leads to lowering of O2 concentration in soil air. Eventually, at a 

certain depth depending on the soil structure, the maximum oxygen flux is inadequate 

for the requirements of the roots, and the roots become hypoxic, or partly anoxic.  
In hypoxic soil, the energy status of roots is impaired, which impedes their growth 

and active nutrient uptake. Long-lasting anoxia leads to cell death. Plants may 
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respond or adapt to hypoxic stress, for example, by increasing the biosynthesis of 
ethylene (C2H4), thus increasing the formation of air spaces in the root and the rate of 
internal diffusion of O2 from shoots to roots. Plants may also grow more roots in 

favourable parts of the soil to compensate for those in the hypoxic parts, or they may 

regulate soil aeration by drying the soil through transpiration. 
Some of the soil respiration is due to microbial decomposition of organic materials. 

In contrast to plant roots, many microbes gain energy efficiently by reducing 

inorganic or organic molecules, if oxygen is lacking. An example of such anoxic 

respiration is heterotrophic denitrification. In very reduced soil, methane (CH4) may 

form. 
The rate of denitrification is controlled by the availability of decomposable organic 

material for active denitrifying microbes and by the competition between the electron 

acceptors (O2, NO3
-
 and other nitrogen oxides). Denitrification generates gaseous 

products such as NO, N2O and N2. Plant roots may decrease denitrification by taking 

up nitrate and water from the soil. If the uptake of nitrate is impeded by e.g. hypoxia 

or if the soil is rich in nitrate, the roots may however increase denitrification in the 

soil by increasing respiration and degradable organic matter in the soil. 
 Anoxic respiration does not occur only below ground water level. After heavy 

rain, even the topsoil may become temporarily water-saturated. Impaired gas transfer 
and strong respiration may also create anoxic microsites or “hot spots” that may 

denitrify rapidly even in well-aerated soils. Further, N2O is produced also aerobically 

in nitrification, when the oxygen is somewhat deficient. In practice, it is often difficult 
to separate the proportions of N2O produced by nitrification and denitrification, 
because the processes are inter-related due to the heterogeneity of soils. Part of this 

heterogeneity is determined by the distribution of moisture, but in reality it is affected 

also by variations of soil structure with depth unlike the homogenous profile shown in 

Figure 1.  
 

1.2.2 The problem of soil aeration  

Soil aeration means gas exchange between the soil and the atmosphere. Respiration is 

the major process of gas consumption and production in soil, i.e. the consumption of 
oxygen and production of carbon dioxide by plant roots and microbes. Molecular 
diffusion is regarded as the most important mechanism of gas transfer in plants and 

the soil (Romell 1922). Diffusion is a continuous process whose rate depends on the 

rate of soil respiration. Convection phenomena produced by changes in atmospheric 

pressure, temperature, soil moisture (rain, irrigation, evaporation, drainage) and wind 

have only a minor significance on soil aeration, because they do not have such a 

connection. The rapid fluctuations of atmospheric pressure caused by the wind may 

however enhance gas transfer through a soil crust (Fukuda 1955, Farrel et al. 1966, 
Scotter et al. 1967a, see Currie 1970).  

In cultivated soils, aeration should be sufficiently rapid to keep roots and microbes 

well supplied with oxygen. This research thus aims to predict the spatial and temporal 
variations of oxygen concentrations, the conditions leading to hypoxia, and the 

consequences of hypoxia on organisms. Hutchins (1926) was among the first to draw 

attention to the dynamic nature of the oxygen supplying power of the soil, or to rates 

at which the soil can deliver oxygen to respiring organisms. Below certain critical 
oxygen pressures the rate of oxygen supply becomes inadequate for the growth, 
elongation and active nutrient uptake by roots, as demonstrated with excised (Berry 

and Norris 1949, Saglio et al. 1983, Gibbs et al. 1998) and intact (Hutchins 1926, 
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Armstrong and Gaynard 1976, Saglio et al. 1984, Armstrong and Webb 1985, Atwell 
et al. 1985) roots in solution cultures, and with intact roots in soil (Scotter et al. 
1967b).  

The mathematics of diffusion has been rigorously applied to study various aspects 

of soil and plant aeration. These include the supply of oxygen to roots (Wanner 1945, 
Lemon 1962, Griffin 1968, Luxmoore et al. 1970a, Armstrong 1979, de Willigen and 

van Noordwijk 1984, Armstrong and Beckett 1985, 1987, de Willigen and van 

Noordwijk 1989, Armstrong et al. 1994) and soil crumbs (Currie 1961, Greenwood 

1961, Sierra et al. 1995, Sierra and Renault 1996), denitrification (Smith 1980, 
Leffelaar 1987, Arah and Smith 1989, Arah and Vinten 1995), and the gas exchange 

between the soil and the atmosphere (Romell 1922, van Bavel 1951, Rasmuson et al. 
1990, Fang and Moncrieff 1999). 

According to Fick’s first law 

 

(1)  
z

C
DJ

∂
∂−=   

  

the diffusive flux J
 
of a gas is proportional to the concentration gradient (∂C/∂z). By 

combining Fick’s law (1) with the conservation law, the general form of the time-
dependent uniaxial diffusion equation in an isothermal and isobaric soil profile may 

be presented according to Gli�ski and St�pniewski (1985) as  

 

(2)  
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which may be solved to calculate the gas concentration (C) in soil air at any depth (z) 
and time (t), if the values of the other variables are known (D gaseous diffusion 

coefficient or diffusivity, ε air-filled porosity, θ volumetric moisture content, q 

respiration rate positive for carbon dioxide production and negative for oxygen 

consumption, αB Bunsen’s gas solubility coefficient). This equation shows how the 

variation in soil air composition is determined by a physical process of gaseous 

diffusion and by a biological process of respiration. In the simplest case, in a 

homogenous soil with respiration until the depth L and overlying an inactive layer, 
one obtains the steady-state solution by van Bavel (1951) 
 

(3)  )zzL(2
D2

q
CC 2

atm −−=  

 

where q is the rate of O2 consumption and Catm is the O2 concentration in the 

atmosphere. In reality, weather and soil management practices induce variations in 

soil properties within the profile and with time. For this reason, the spatial and 

temporal heterogeneities in the values of diffusion coefficient and respiration rate 

should be taken into account, as shown by the formulation of the differential diffusion 

equation (2).  
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Even a complete knowledge of soil air O2 concentrations does not allow one to 

assess whether a soil is adequately aerated. In soil, the rates of gaseous diffusion are 

much restricted by the water surrounding the organisms or organs. Soil aeration status 

is thus controlled both by O2 diffusion into such microsites as wet soil crumbs (Currie 

1961, Greenwood 1961) and water-film surrounded roots (Wanner 1945, Lemon 

1962, Armstrong and Beckett 1985) and by gaseous diffusion through the soil profile. 
In these microsites, gaseous diffusion is often slower and respiration more rapid as 

compared to bulk soil. These sites are hence the most likely to become anoxic in wet 
soils, which in turn, affects the respiration rate in the bulk soil (the term q(x,t,θ,C) in 

the diffusion equation (2)).  
Lemon (1962) and Armstrong and Beckett (1985) presented radial steady-state 

models of O2 diffusion into roots. Armstrong and Beckett (1985) modelled the root 
and the surrounding water film as n coaxial homogenous shells (i = 1 (stele), 2 

(cortex) … n (water film)), in which the distribution of O2 is governed by a set of 
ordinary diffusion equations of the form 

 

(4)  n  2 1, = iq
dr

dC
r

dr

d

r

D
i
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�=�

�

�
�
�

�
 

 

with the general solution  
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applicable to each shell separately (r radial distance, Ai and Bi integration constants).  
The O2 concentration at the outer edge of the water film (C0) is in equilibrium with 

that in soil air. If C0 decreases below a critical level, an anoxic core (radius Ra) 
develops in the stele. By applying the boundary conditions 
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one obtains the following 2n+1 equations with 2n+1 unknowns (Ai, Bi, Ra) 
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from which the relationship between Ra and C0 can be solved by eliminating Ai and 

Bi. This enables the calculation of critical oxygen concentrations in soil air, if the radii 
(Ri), respiration rates (qi) and diffusion coefficients (Di) of the coaxial shells are 

known.  
Diffusion equations, such as those shown above, may be solved analytically by 

making certain simplifying assumptions (Gli�ski and St�pniewski 1985, Kanwar 
1986, Cook 1995) or more generally by numerical simulations (Radford and 

Greenwood 1970, Leffelaar 1987, Ouyang and Boersma 1992). In practice, 
incomplete knowledge of the factors affecting the diffusion coefficients and 

respiration rates in soil restricts the application of the diffusion equations. These 

factors are discussed in more detail below. 
 

1.2.3 Foundations of gaseous diffusion 

According to the kinetic theory of gases, the properties of a dilute gas are completely 

described by the distribution function given as the solution of the Boltzmann integro-
differential equation (Hirschfelder et al. 1964). Although the diffusion of gases can be 

generated by the gradients in pressure (pressure diffusion) and temperature (thermal 
diffusion), and by external forces, only the gradients in gas concentration (ordinary 

diffusion) are important under normal circumstances in soil and plant processes 

(Jaynes and Rogowski 1983).  
In multi-component gas mixtures, diffusion does not follow Fick’s law accurately, 

because the gaseous fluxes are not independent (Wood and Greenwood 1971, Jaynes 

and Rogowski 1983). The comparison of Fick’s law to the Stefan-Maxwell diffusion 

equations based on the kinetic gas theory shows that Fick’s law can be applied only 

for certain special conditions including 1) the diffusion of a trace amount of a gas 

component in a gas mixture, and 2) the equimolar counter-current diffusion of two 

gases in a binary gas mixture or 3) that in a ternary mixture with a third gas stagnant 
(Jaynes and Rogowski 1983). More generally, a simple approach based on Fick’s law 

and on maintaining of isobaric conditions is accurate to within 10%, when the binary 

diffusion coefficients of the gas components in the mixture do not differ by more than 

two-fold and when one component is abundantly present, so that the diffusion 

coefficients can be related to it (Leffelaar 1987, Freijer and Leffelaar 1996).  
In very small pores with diameters comparable to the mean free path of the gas 

molecules (c. 0.1 µm in air), the gas becomes rarefied Knudsen gas, where the 

ordinary laws of diffusion do not apply (Hirschfelder et al. 1964). This mechanism 
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probably operates only in very dry soils, as an effective pore diameter of 0.1 µm 

represents a soil matric water suction of 3 MPa.  
The binary diffusion coefficients of gases as calculated by Leffelaar (1987) using 

the Chapman-Enskog kinetic gas theory (e.g. Hirschfelder et al. 1964) stay mostly 

within the uncertainty limits of the empirical values (Marrero and Mason 1972, 
Pritchard and Currie 1982), and the deviations remain less than 10%. The composition 

dependence of binary diffusion coefficients is usually less than 5% (Marrero and 

Mason 1972), and was hence disregarded by Leffelaar (1987). Gaseous diffusion 

coefficients are inversely proportional to the total pressure and directly proportional to 

the power (n) 1.5-2 of the absolute temperature (Marrero and Mason 1972). 
 

1.2.4 Gaseous diffusion in soil 

In porous media such as soils, the gaseous diffusion coefficients are determined both 

by gases and media. The diffusive properties of soils are often described by the 

relative diffusion coefficient D/D0 that expresses the rate of diffusion in the medium 

relative to that in air without impeding solids. D/D0 is practically independent of gas 

(Penman 1940b, Shimamura 1992). Diffusion is 104
 times faster in air than in water. 

As a consequence, gaseous diffusion in soil is controlled mainly by the amount and 

geometry of air space. This can be expressed as  

 

(8)  εα(ε)D/D0 =  

 

where the term α(ε) depends on the geometry of air space (the tortuosity and 

constrictions of the flow path) and ε is the air-filled porosity in soil.  
Despite recent advances in the modelling of diffusion coefficients by tube or 

network analogies of soil structure (Freijer 1994, Steele and Nieber 1994), in the 

image analysis of soil thin sections for more realistic simulations of soil structure 

(Glasbey et al. 1991) and investigation of diffusion through the complex pore space 

(Horgan and Ball 1994, Horgan 1999), and in the application of fractal geometry to 

processes in soil (see Baveye et al. 1998), the essential features of the pore geometry 

that would explain the diffusive properties of soils or other complex media are still 
poorly understood (Horgan 1999). The statement of Troeh et al. (1982) that the 

complex geometries of soils make it necessary to relate D/D0 empirically to soil 
structural parameters is still true.  

Empirical equations that relate D/D0 to the air-filled porosity (ε) are often of the 

form D/D0 = aεb, D/D0 = a(ε-b) or D/D0 = [(ε-u)/(1-u)]v
 (see Troeh et al. 1982, Sallam 

et al. 1984, Gli�ski and St�pniewski 1985, Jin and Jury 1996, Moldrup et al. 1997). 
Perhaps the most well-known one is D/D0 = 0.66 ε by Penman (1940a). Although the 

empirical parameters determined by fitting the equation to experimental data may 

sometimes be interpreted physically (de Vries 1950, Currie 1960), the direct 
measurement of the quantities they represent is impossible.  

In a series of recent papers, Moldrup et al. (1996, 1999, 2000) have related the 

gaseous diffusivity to other properties in soil. They compared several earlier soil-
independent equations to new equations of the form D/D0 = Rp (ε/φ)η, where Rp is the 

relative diffusion coefficient at some reference saturation, φ is total porosity, and the 

soil-dependent parameter η describing the shape of the pores is a function of the water 
retention properties or soil texture. Moldrup et al. (1999) recommend using this model 
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in undisturbed soil with Rp = φ2
 in complete dryness, and η = 2+(3/b), where -b is the 

slope of the water retention curve in a log-log scale.  
The most detailed empirical investigations into the factors affecting the diffusion 

of gases in soils have been carried out by Currie (1960, 1961, 1965, 1970, 1979, 1983, 
1984a). Decreasing the air-filled porosity by adding more solid (compaction) or water 
(wetting) differ radically in the way they change the geometry of soil air-space and 

gaseous diffusion in soil (Currie 1970, 1984a). Particle shape affects the diffusion in 

dry soils (Currie 1960), but the effects are much smaller in wet soils, where the pore 

shapes are modified by the presence of water (Currie 1961). D/D0 increases very 

rapidly (∝ ε4) with increasing air-filled porosity in wet soils (Currie 1961). In soils 

with a crumb structure, this initial increase is continued until the inter-crumb pores are 

air-filled; the increase is more gradual and nearly linear as the intra-crumb pores 

drain. The dissimilarity between the two parts of the D/D0 - ε relationship becomes 

less distinct with increased compaction (Currie 1984a).  
Within soil crumbs the geometry of the pores is more complex and gaseous 

diffusivity much less than in the bulk soil even when the crumbs are dry (Currie 1965, 
1979). In wet crumbs the diffusivity is decreased by 104

 orders of magnitude, as 

shown by direct measurements with microelectrodes in wet model soil aggregates 

(Zausig et al. 1993). The diffusivity is probably decreased similarly in the water films 

around the roots. However, the thickness of the water films cannot be directly 

measured.  
 

1.2.5 Gaseous diffusion in plants 

Although molecular diffusion is considered to be the main mechanism of gas transfer 
also within plants (Armstrong 1979), much less is known about the gaseous 

diffusivity within roots as compared to that in the soil. The diffusion of oxygen inside 

plant roots has been convincingly demonstrated by experiments with labelled oxygen 

(15O2) (Evans and Ebert 1960, Barber et al. 1962) and by microelectrode 

measurements (Bowling 1973, Armstrong et al. 1994).  
The rate of gaseous diffusion is determined mainly by the amount and continuity of 

air-filled porosity within roots. Differences in the porosity between plant species 

(Jensen et al. 1969, Yu et al. 1969, Justin and Armstrong 1987, de Willigen and van 

Noordwijk 1989) are large. So are the differences between various tissues within 

plants: the stele, epiderm (rhizoderm), hypoderm and meristems of monocotyledons 

are usually aporous, whereas large air spaces (aerenchyma) can develop in the middle 

of the cortex (Armstrong 1979, Armstrong and Beckett 1987, Justin and Armstrong 

1987, Erdmann et al. 1988). The junctions of the shoot and root and those of root 
branches do not contain many continuous pores (Armstrong 1979, Erdmann et al. 
1988).  

The most important route of oxygen diffusion from shoots to roots in young plants 

is probably through the air space between the coleoptile and cotyledon, whereas later 
the adventitious roots emerging from the lower parts of the stem and growing through 

this air space become the main routes of internal diffusion (Erdmann et al. 1988). 
According to model calculations with an unbranched vertical root, the internal 
longitudal diffusion may contribute a major part of the total oxygen requirement of 
the root when the gas exchange between the root and soil is restricted. For roots of 
radius thicker than 0.3 mm this is important even at modest root porosities (de 

Willigen and van Noordwijk 1989). A partial diffusion barrier seems to exist between 

root branches and the main root (van Noordwijk et al. 1993).  
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Published data on diffusion coefficients in roots are scarce (Gli�ski and 

St�pniewski 1985). The estimates of radial diffusion coefficient in aporous tissues 

adopted by various authors range from 1.4×10-10
 to 2.1×10-9

 m2
 s-1

 (Wanner 1945, 
Armstrong and Beckett 1985), whereas the longitudal diffusion coefficient is most 
easily estimated from the air-filled porosity by assuming the diffusivity in the root air-
space equals that in air (Armstrong and Beckett 1987). According to Luxmoore et al. 
(1970b), the permeability to radial diffusion in maize and rice roots decreases with 

increasing distance from the root tip, although the air-filled porosities concurrently 

increase. 
 

1.2.6 Soil respiration 

Soil respiration is biological oxidation of organic compounds that provides the roots 

and microbes plus other organs and organisms living in soil with energy and 

metabolites for maintenance, growth and active nutrient uptake. Oxic respiration of 
roots and microbes is the most important process of gas production and consumption 

in soil, because mere root growth itself needs much energy and requires oxic 

conditions (Armstrong 1979, Drew 1990).  
Plant growth is a major factor affecting the rate and spatial distribution of soil 

respiration. The respiration of roots depends on the supply of photosynthates from 

shoots. The proportion of net fixed C transported into roots of annual plant species is 

about 30-60% (Lambers 1987, Whipps 1990). On the other hand, microbes 

decompose the organic material derived from the roots and other plant parts 

introduced into the soil. Most of the photosynthates transported into roots are 

consumed by soil respiration before plant maturation (Sauerbeck and Johnen 1976). In 

mineral soils, respiration is expected to be largest at shallow depths, because the 

amounts of roots and organic matter decrease deeper in soil (Richter 1974). During 

the growing season, the daily soil respiration rate in agricultural mineral soils is 

typically 1-15 dm3
 m-2

 (Lundegårdh 1927, Brown et al. 1965, Richter 1974, de Jong 

1981, Parkinson 1981, Rochette et al. 1992, Lessard et al. 1994, Franzluebbers et al. 
1995, Akinremi et al. 1999). Assuming that a soil contains 20% air space with 20% 

O2, a daily respiration rate of 5 dm3
 m-2

 would consume the oxygen contained in the 

20 cm ploughed layer in less than two days, if the gas exchange between the soil and 

the atmosphere was blocked.  
The rates of respiration vary considerably within roots, with time and among plant 

species (van der Werf et al. 1988, 1989, Lambers et al. 1991). In field conditions, the 

course of soil respiration is similar to that of soil temperature (Currie 1975). The 

proportions of respiration used for active nutrient uptake (up to 40% at the active 

growth stages) and growth decrease with plant age, whereas that used for maintenance 

increases (van der Werf et al. 1988). The structure and composition of plant tissues 

and the uptake of nutrients also vary widely among species and with age. Apart from 

external factors, the variations in the respiration may thus ultimately be determined by 

the variations in the biochemical composition, maintenance of concentration gradients 

and cellular proteins and active uptake of nutrients during plant development 
(Penning de Vries et al. 1974, Penning de Vries 1975, Lambers and Rychter 1989). 
As the organic material introduced into the soil is a substrate for microbial 
metabolism, the biochemical composition of plants indirectly also controls the rate of 
microbial respiration in soil.  

The rates of respiration in roots may be 1000 times larger than those of microbial 
respiration in soil. The respiration rates are usually in the range 10-300 mg m-3

 s-1
 (7-
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210 cm3
 m-3

 s-1) in roots and 0.1-10 mg m-3
 s-1

 (0.07-7 cm3
 m-3

 s-1) in soil (Gli�ski and 

St�pniewski 1985). Moreover, respiration near the apex of primary roots is several 
times larger than that in more distal tissues (Machlis 1944, Luxmoore et al. 1970b). 
The formation of aerenchyma probably decreases respiration rates in the cortex, 
except for perhaps near the root apex (Armstrong and Beckett 1987). There is 

however very little information available on the partitioning of respiratory activity 

over the entire root system, e.g. in lateral roots (Lambers et al. 1991).  
 

1.3 Plant responses to hypoxia in soil  

1.3.1 Direct effects of hypoxia on roots 

The possible causes of death in anoxic cells and the reasons why some species are 

able to survive or grow for limited periods even in a totally anoxic environment have 

been actively researched (Vartapetian and Jackson 1997). The subject has been 

extensively reviewed (Drew 1990, Armstrong et al. 1991, Drew 1992, 1997, Ratcliffe 

1997, Vartapetian and Jackson 1997). Plant responses to hypoxia in soil may include 

changes in growth, biochemical processes and morphology, and in survival.  
Plant roots need O2 as the terminal electron acceptor of the respiratory chain in 

order to gain energy for ATP synthesis (oxidative phosphorylation) (see e.g. Bryce 

and Thornton 1996, Vanlerberghe and McIntosh 1997). Very small concentrations of 
O2 suffice to sustain oxic respiration in plant mitochondria, as the electrons are 

transferred to O2 by a cytochrome oxidase that has a high affinity for O2 (Km ≈ 0.02-
0.14 µM, Longmuir 1954, Millar et al. 1994). An alternative oxidase that is not linked 

to ATP synthesis has a lower affinity for O2 (Km ≈ 1.7 µM, Millar et al. 1994). 
Glycolysis does not require oxygen. The roots of higher plants can thus carry out 
glycolysis and fermentation for several hours even in total anoxia, but as this does not 
produce enough energy for the metabolism of roots, the energy status of cells declines 

to a low level in minutes (Roberts et al. 1984). As a consequence, the growth (cell 
division, expansion, and differentiation) and active ion transport of anoxic roots are 

arrested, and those of hypoxic roots are severely reduced (Amoore 1961a, 1961b, 
Drew and Sisworo 1979, Gibbs et al. 1998). Eventually, after cytoplasmic acidosis 

and irreversible changes in cell ultrastructure, the anoxic cells die (Roberts et al. 
1984, Andreev et al. 1991). Root tips are especially sensitive to anoxia and die 

usually within one day of becoming anoxic, whereas more mature root zones may 

remain viable for several days (see Drew 1997, Vartapetian and Jackson 1997).  
 

1.3.2 Indirect effects of hypoxia on roots 

In addition to the direct effects on roots, anoxia or hypoxia can trigger chemical and 

microbiological changes in soil and plant that may affect plant growth indirectly 

(reviewed by Drew and Lynch 1980). In contrast to roots, many microbes can gain 

energy efficiently by reducing inorganic or organic molecules when there is a lack of 
oxygen. Examples of such anoxic respiration are heterotrophic denitrification, and in 

very reduced soil methane (CH4) fermentation. Some of the reduced compounds 

accumulating in anoxic and hypoxic soils are potentially phytotoxic.  
Although reduced forms of manganese (Mn2+) and iron (Fe2+), nitrite (NO2

-), 
sulfide (S2-), organic acids and ethanol (C2H5OH) may reach toxic concentrations 

during long-lasting anoxia, the accumulation of these compounds is seldom likely to 
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damage the plants more than anoxia alone (see Drew and Lynch 1980). Similarly, 
denitrification reduces mineral nitrogen in soil, but this is slow compared to the rapid 

prevention of nitrogen uptake by plants after the onset of anoxia. On the other hand, 
after surviving a period of anoxia, the roots may be injured or killed by such toxins as 

superoxides, other reactive oxygen species and acetaldehyde produced in roots upon 

re-exposure to oxygen (Monk et al. 1987a, 1987b, 1989, Blokhina 2000).  
In soil, decreased O2 concentrations are always accompanied by increased CO2 

concentrations. The responses of plants to CO2 in soil air are variable and not fully 

understood (Stolwijk and Thimann 1947, Geisler 1969, Jaakkola et al. 1990, Bouma 

et al. 1997). Small CO2 concentrations (1-2%) are often beneficial, whereas large 

concentrations (>4-6%) may be detrimental to plants (Geisler 1967, 1969). On the 

other hand, in several studies CO2 concentrations less than 10% in soil air produced 

little, if any, damage to various plant species in well-aerated media (Geisler 1963, 
Grable and Danielson 1965, Tackett and Pearson 1964, Jaakkola et al. 1990). Without 
being conclusive, these results suggest that large CO2 concentrations in soil air may 

have less practical significance in controlling plant growth in hypoxic soil than small 
O2 concentrations, because large CO2 concentrations are rare in soil air.  

 

1.3.3 Plant adaptation to hypoxia in soil 

Metabolic and morphological adaptations may help plants to better tolerate or avoid 

anoxia (see Vartapetian and Jackson 1997). The ability of roots to survive anoxia for 
longer than a few hours depends on their energy metabolism. In hypoxic or anoxic 

cells, the energy status may be enhanced by increased synthesis of “anaerobic 

proteins”, many of which are enzymes of glycolysis or fermentation (Sachs et al. 
1980, Subbaiah et al. 1994, Sachs et al. 1996). Acclimatization by prior hypoxia 

improves the energy metabolism of roots and helps them tolerate anoxia (Saglio et al. 
1988). Anoxia tolerance by metabolic changes is considered to be relevant during 

short-term flooding, whereas morphological changes of roots, such as the formation 

of aerenchyma (large air-spaces inside plants) and shallow rooting, may allow the 

roots to escape anoxia by enabling continued oxic metabolism at least in certain parts 

of the roots (see Vartapetian and Jackson 1997).  
The formation of aerenchyma increases the rate of internal O2 diffusion from the 

atmospheric plant parts to the roots (Barber et al. 1962, Drew et al. 1979a, Benjamin 

and Greenway 1979, Erdmann et al. 1988, Thomson et al. 1990, Visser et al. 1997), 
whereas shallow rooting improves the supply of oxygen to roots by shortening the 

diffusion routes through both soil and plant (Justin and Armstrong 1987, Armstrong et 
al. 1991). Most agricultural crops are non-wetland species in which internal aeration 

alone cannot sustain the unimpaired activities of extensive root systems (Armstrong 

1979, Drew et al. 1985, Justin and Armstrong 1987, Thomson and Greenway 1991, 
Gibbs et al. 1995). The adaptations in the shoots of dry-land species include 

adventitious rooting and physiological responses that serve to minimize nutrient 
requirements and water loss by the plant. These include slower growth rates, 
senescence, redistribution of nutrients and stomatal closure (see Drew and Lynch 

1980, Vartapetian and Jackson 1997).  
The ability of plants to tolerate post-anoxic oxidative stress is determined partly by 

their antioxidative defence mechanisms (Monk et al. 1989, Blokhina 2000). For 
example, the ability to avoid post-anoxic injury has been found to correlate positively 

with the activity of superoxide dismutase (SOD) enzyme in the tissue (Monk et al. 
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1987b, VanToai and Bolles 1991). Plant species differ in the way SOD activity 

changes during anoxia (Monk et al. 1987b, Blokhina 2000). 
 

1.3.4 Interactions of hypoxia with other soil stresses on roots  

Plant roots are often simultaneously affected by many interacting soil stresses. For 
example, any change in soil structure e.g. by compaction also modifies numerous 

properties and processes, such as water retention, the transfer of mass (water, 
dissolved chemical species, gases) and heat, and soil strength, that determine whether 
the plant needs are met or whether stress conditions develop in the soil. In particular, 
the problems of hypoxia and compactness often coincide, which makes it difficult to 

separate their effects on roots. 
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Figure 2 The relationship between the root elongation rate and the force exerted by pea roots in soils at 
various bulk densities (kg m-3) and matric water suctions (kPa). The curves denote constant rates of 
working. The numbers beside the plotted points represent oxygen concentrations where these are less 

than 21% (from Eavis 1972, Currie 1984b). 

 

Soil water retention properties have a key role in relating the effects of soil structure 

on plant growth, because many physical soil properties are strongly affected by 

moisture content. Research has been carried out to determine the range of matric 

water potentials in which the various soil properties are not (or least) limiting plant 
growth (St�pniewski 1981, Letey 1985, Boone et al. 1986, da Silva et al. 1994, Lipiec 

and Håkanson 2000). Typically, penetration resistances above 3 MPa and air-filled 

porosities below 10% are considered to be limiting for aeration and rootability, 
respectively. Håkanson and Lipiec (2000) discussed the possible soil-dependencies of 
these critical limits. In addition, the often-cited critical limit of 10% air-filled porosity 

is based on scarce (Grable and Siemer 1968) and mostly indirect (Wesseling and van 
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Wijk 1957, Flühler 1973, Boone et al. 1986, Chan and Hodgson 1995) data, and the 

results in fact show much variation.  
The interactions of aeration, mechanical impedance and water stresses in soil are 

clearly illustrated by the results of Eavis (1972) who studied the effects of soil bulk 

density and moisture levels on the elongation of pea roots. Compaction and drying of 
soils increased the mechanical impedance encountered by the roots (Figure 2). Water 
availability restricted the elongation of roots at matric water suctions above 180-350 

kPa. On soil wetting, the elongation of roots was first enhanced at given bulk 

densities, as the mechanical impedance decreased, but later the growth was restricted 

by poor aeration at matric water suctions below 10 kPa. Root diameters were 

increased both by mechanical impedance and poor aeration. 
The results (Eavis and Payne 1968, Eavis 1972) show that adequately aerated roots 

were elongating at a constant rate of working at bulk densities of 1600 and 1400 

kg m-3; but in the loosest soil (1100 kg m-3) the rate was less, probably because the 

elongation was restricted by the cell division rate rather than mechanical impedance 

(Currie 1984b). In contrast, when the oxygen concentration on the root surface fell 
below 21%, the rate of working decreased sharply at all bulk densities. Poor aeration 

restricted root growth at air-filled porosities below 39% in the loose soil but only 

below 11% in the most compact soil. In the discussion, Eavis (1972) stressed the role 

of spatial distribution of the gas space around a root in controlling the oxygen 

movement to roots. He attributed the observation to the greater number of pores per 
unit area drained at a given matric water suction in a compact soil than in a loose soil.  
 

1.3.5 Whole-plant responses to hypoxia in soil 

The yields of non-wetland species are usually reduced by waterlogging or high soil 
wetness (Yu et al. 1969, Drew and Sisworo 1979, Drew et al 1979b, Justin and 

Armstrong 1987). Yield reductions are largely caused by reductions in nutrient 
transport to a shoot, as these are among the first and major processes adversely 

affected when the O2 supply to roots is low (Drew et al. 1979b, Gibbs et al. 1998). In 

wet soils, the root growth of dry-land species is restricted into a small well-aerated 

volume near the soil surface (Yu et al. 1969, Drew and Sisworo 1979). In fields, the 

rootable soil volume is often restricted further by large mechanical impedance or 
dryness in certain parts of the profile. Whole plant responses to hypoxia in soil thus 

depend on the redistribution of nutrients within a plant, and on the ability of well-
aerated roots to compensate for the impaired functioning of hypoxic roots. 

The relationship between shoots and roots is functional (Brouwer 1983, van 

Noordwijk and de Willigen 1987). Accordingly, a rather shallow aerated soil layer 
can alleviate waterlogging damage to shoot growth (Yu et al. 1969), if the layer is so 

rich in nutrients that the roots can supply enough nutrients to the shoots (Drew et al. 
1979b, Trought and Drew 1981). If the nutrient uptake by roots is reduced, shoot 
responses are determined by the nutrient status of the shoots (Trought and Drew 

1981).  
Roots respond flexibly to heterogeneities in soil by growing more roots into 

favourable parts of the soil. For example, the shoot and root growth of dry bean 

(Phaseolus vulgaris L.) were decreased in total anoxia, but when the roots were split 
into anoxic and aerated parts the overall plant growth remained usually similar to that 
in the aerated control, because of the compensatory growth and ion uptake by roots in 

the aerated part (Schumacher and Smucker 1984, 1987). Another example is that total 
alleviation of shoot injury to wheat (Triticum aestivum L.) in an anoxic solution 
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culture was achieved by compensatory growth and ion uptake of only a single seminal 
root in an aerated solution containing the full complement of inorganic nutrients 

(Trought and Drew 1981).  
In heterogeneous growing media, such as field soils, the various parts of the plant 

root system grow in unequally favourable conditions. The mechanisms by which 

plants react to the heterogeneity of multiple stresses in soil are not well understood. 
Brouwer (1983) attributes the flexibility of root responses to the large number of 
growing root tips. The mechanisms probably involve both physical responses of 
single roots to stresses, multiple signalling of the stresses e.g. in the form of plant 
hormones, and source-sink relationships of carbon compounds in the plant (see 

Tardieu 1994). Many experimental results can however be explained simply by 

assuming that shoots and roots are competing for photosynthates and mineral 
nutrients, and that the organ nearest to the source is the most successful in meeting the 

requirements (Brouwer 1983).  
Plant hormones are a part of the biochemical and genetic system that regulates 

plant development (see Morgan 1990, Kende and Zeevaart 1997). The changes in 

plant hormones induced by various physiological stresses have been reviewed 

(Jackson 1990, Morgan 1990, Wang et al. 1990, Lynch and Brown 1997, Morgan and 

Drew 1997). In hypoxia, the amounts of abscisic acid, auxins and ethylene usually 

increase, but those of gibberellins and cytokinin decrease. Ethylene is thought to have 

a central role in mediating plant responses to several stresses that increase the 

biosynthesis of ethylene or the sensitivity of tissues to ethylene (see Lynch and Brown 

1997, Morgan and Drew 1997).  
Root responses to hypoxia and mechanical impedance in soil are probably much 

regulated by ethylene, as both of these stresses increase the biosynthesis of ethylene in 

roots (Jackson et al. 1985, Sarquis et al. 1991, He et al. 1996). The biosynthesis of 
ethylene ceases in anoxia (Drew et al. 1979a, Jackson et al. 1985). The formation of 
aerenchyma is increased by ethylene (Drew et al. 1979a, Kawase 1979), but only in 

roots that are not severely oxygen-deficient (Jackson et al. 1985). Large 

concentrations of ethylene (>1 µl l-1) decrease root elongation and increase root 
widths (Smith and Robertson 1971, Crossett and Campbell 1975, see Jackson 1991). 
Small concentrations of ethylene increase the elongation of roots in some species, but 
not those of barley that is more sensitive to ethylene than the other cereals (Smith and 

Robertson 1971, see Jackson 1991). In wet soil, the effects of small oxygen 

concentrations and large ethylene concentrations on the elongation of roots are 

difficult to separate, because they both depend similarly on the rate of gaseous 

diffusion through the root. Ethylene may also promote adventitious rooting, but the 

mechanisms involved are not always clear (see Vartapetian and Jackson 1997).  
 

1.4 Emissions of nitrous oxide from soil 

The emissions of nitrous oxide (N2O) from soil have been much researched during the 

last few decades, because N2O is involved in global climate change and destruction of 
stratospheric ozone (see the reviews by Granli and Bøckman 1994, Bremner 1997, 
Smith 1997, Mosier 1998). Nitrous oxide has a global warming potential of 320 

relative to CO2 and is responsible for about 5% of the anticipated global warming 

(Mosier 1998). The N2O concentration in the atmosphere was about 311 ppb at the 

beginning of 1993, and is increasing at a rate of about 0.25% yr-1
 (Smith 1997). It is 

estimated that soils account for about two-thirds (9.5 Tg N) of the total N2O emissions 
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of all identified sources (15 Tg N), with about one-third of this coming from 

cultivated soils (Smith 1997). However, the global budget for N2O is not well 
balanced, and the sources may be underestimated (Smith 1997). According to Smith 

(1997), global warming is likely to increase N2O emissions from soils. 
In cultivated soils, N2O is produced mainly by a wide range of heterotrophic 

denitrifiers involving bacteria of such genera as Pseudomonas and Alcaligenes, or by 

autotrophic nitrifiers involving bacteria of such genera as Nitrosomonas and 

Nitrobacter, whereas other biological and chemical sources are unlikely to be 

significant (Tiedje 1988, Bremner 1997). Only denitrification is recognized as a 

significant biological consumptive fate for N2O (Firestone and Davidson 1989). The 

relative contributions of nitrification and denitrification are often difficult to separate 

from each other, because of the proximity of anoxic and oxic sites in soil (see Focht 
1992). Moreover, most data on the production of N2O by denitrification has been 

obtained using the acetylene inhibition technique that may underestimate 

denitrification rates in oxic conditions (Bollman and Conrad 1997, McKenney et al. 
1997).  

According to the “hole-in-the-pipe” concept of Firestone and Davidson (1989, 
Davidson 1991), the processes of nitrification and denitrification can be visualized as 

leaky pipes through which N is flowing (see Figure 1). Nitrous oxide emissions from 

soils are thus controlled by factors that affect 1) the rates of denitrification and 

nitrification (or N cycling), 2) the relative proportions of end products produced (or 
the size of the holes in the pipe wall), and 3) the gaseous diffusion through the soil to 

the atmosphere (Davidson 1991).  
At the cellular level, the production of N2O during denitrification is controlled by 

the availability of electron donors to active denitrifying microorganisms and by the 

competition between electron acceptors (O2, NO3
-
 and other N oxides) (Tiedje 1988, 

Cho et al. 1997). Nitrifiers form N2O during oxidation of ammonium when the 

oxygen is somewhat deficient (Arnold 1954, Bremner and Blackmer 1979, see 

Bremner 1997). The reactions producing N2O in soil are controlled by processes such 

as diffusion of the reactive components, respiration, mineralization and 

immobilization of N, evaporation and drainage of water, and changes in soil structure 

(see Granli and Bøckman 1994). These processes are themselves controlled by such 

factors as the soil, plants, climate, and management practices (Tiedje 1988).  
Anoxic microsites may develop even in rather well-aerated soils (Currie 1961, 

Flessa and Beese 1995) and denitrify rapidly (Christensen et al. 1990, Højberg et al. 
1994). Their formation is enhanced, for example, when soil aeration is impaired by 

wetting or compaction, and when respiration is increased by the incorporation of 
degradable organic material into the soil. Moreover, even moderate temperature-
induced increases in respiration rate, for example with values of Q10 factor (the rate of 
a process at T + 10 K divided by the rate at T) of two, can result in large increases in 

anoxic volume and denitrification rates in soil, with apparent Q10 factors for the N2O 

emission exceeding 10 (Dowdell and Smith 1974, Smith 1997). Patchy distribution of 
anoxic microsites is responsible for the large spatial variability of N2O emissions in 

the field (Folorunso and Rolston 1984, Parkin 1987, Ball et al. 2000).  
The ratio between the products of nitrification (N2O/NO3

-) increases with 

increasing soil moisture, whereas that of denitrification (N2O/N2) decreases. 
Consequently, the N2O emissions are most rapid at intermediate soil moisture 

contents (Linn and Doran 1984, Smith et al. 1998, see Granli and Bøckman 1994). 
The little information available about the effect of soil types on N2O emissions 

suggests that heavy textured mineral soils have larger emissions than lighter soils, and 
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that drained organic soils have larger emissions than mineral soils (Bouwman 1996, 
Kulmala and Esala 2000). Nitrogen fertilization generally increases N2O emissions 

from soil (Bouwman 1996). Plant roots can affect N2O production in various ways. 
Respiration and the introduction of degradable organic material by roots into soil tend 

to increase denitrification and N2O production. On the other hand, the uptake of water 
and nitrate by roots may reduce denitrification. Thus, although plant roots generally 

stimulate denitrification from wet soils containing much nitrate (Woldendorp 1962, 
Mahmood et al. 1997), they may reduce denitrification and N2O emissions from soils 

with less nitrate and moisture (Smith and Tiedje 1979, Aulakh et al. 1984, Bakken 

1988, Mahmood et al. 1997). The N2O emissions from leguminous crops may be 

considerable (Bouwman 1996).  
In an analysis of previously published measurements on N2O emissions from soils, 

Bouwman (1996) concluded that although the factors that control N2O production are 

known, it is impossible to predict their interaction in field conditions on the basis of 
the available information. More data on N2O emissions is thus needed from a wider 
range of sites and environmental conditions.  

 

1.5 Objectives of the study 

In the field, the aim was to observe the variations in soil air composition, N2O 

emissions and several environmental variables, as modified by various agricultural 
management practices, in order to explore the instances in which poor soil aeration 

might be detrimental to plant production or environment. Management practices 

which differed greatly in their impacts on the processes regulating soil air 
composition and N2O emissions (i.e. respiration, denitrification, nitrification, gaseous 

diffusion) were chosen for the study. In the pot experiments, the aim was to 

characterize in more detail the conditions likely to cause hypoxia in soil, and the 

effects of compaction and modified oxygen supply on plant growth. In addition, the 

incidence of wet growing seasons was estimated at five locations in different parts of 
Finland based on a long time series of previously published weather data (1900-1999, 
Finnish Meteorological Institute). 
 

The specific objectives were to:  
 

1. Estimate the incidence of the wet growing seasons in Finland. 
2. Determine the range of variation in soil air composition (CO2, O2, N2O, C2H4, 

CH4) and N2O emission likely to occur in the field at various depths in 

cultivated mineral soils during a growing season (Papers I, II, III). 
3. Establish the effects of soil compaction, wetting, cropping and N fertilization on 

soil air composition and N2O emissions in the field at various depths in 

cultivated mineral soils during a growing season (Papers I, II, III). 
4. Relate the variations in soil air composition and N2O emission to soil variables 

and to the growth and nutrient uptake of plants (Papers I, II, III).  
5. Determine the plant responses (growth, root respiration, root morphology) to 

compaction and modified oxygen supply to roots (Papers I, IV, V, VI). 
6. Relate the soil water retention properties to the supply of oxygen to roots (Paper 

IV). 
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2 MATERIAL AND METHODS 

2.1 Experiments  

The pot and field experiments included in this thesis were carried out on fine sand, 
loam and clay soils subjected to various combinations of compaction, wetting, 
cropping, N fertilization and aeration as shown in Table 1. The soil, plant and 

environmental variables measured, and the methods used, are summarized in Table 2 

and in Table 3, respectively. Soil air composition, gas emissions, temperature and 

moisture content were measured repeatedly during the experiments (at the time 

intervals of 1-2 weeks and 2-3 days in the field and pot experiments, respectively) to 

explore their temporal variation. Mineral N content in the soil was determined more 

infrequently. Plant variables were measured at harvest.  
The effect of compaction on soil air composition was investigated in clay soils in 

which barley was grown (I). In a pot experiment (Viikki 1986), the effects of 
compaction on soil air composition in a humic clay soil were investigated at two 

levels of soil moisture (moist, wet). In the field, the effect of compaction was studied 

at several depths in a loamy clay soil (Jokioinen 1988). Heavy compaction with a 19 

Mg tandem axle unit had been performed 7 years earlier.  
The field experiments on loam and clay soils (Hausjärvi 1993-94, Jokioinen 1993) 

were designed to allow exploration of natural variations in N2O emission and air 
composition in the soil profile, and how these are modified by irrigation, cropping and 

N fertilization (II, III). Soil air composition and N2O emissions were related to the 

contents of soil moisture and mineral nitrogen. 
In the pot experiments (Viikki 1994-95), the responses of barley growth and soil 

respiration to modified oxygen supply were determined in fine sand soil at two levels 

of compaction and moisture (IV). The design of the respirometer pots built for this 

purpose allowed the packing, watering and easy sampling of soil. The oxygen supply 

was modified independently of soil compactness and wetness by flushing the soil 
(forced aeration) with gas streams containing known concentrations of O2. The 

wetting and aeration treatments were started 11-12 days after sowing, and continued 

until the harvest of barley seedlings at the end of the experiment at about 2 months 

age. 
In pot experiments Nos. 1-3 (IV), the O2 concentrations in soil air were kept 

constant at 0, 2, 10 or 20% during the experiment. Besides plant growth and soil 
respiration, the cumulative N2O losses and N balances were determined (this thesis). 
Each experiment included an additional 2-4 pots that were harvested before initiation 

of the wetting and aeration treatments, and four open pots that received no gas flow. 
In pot experiment No. 4 (IV), barley growing in a loose moist soil was subjected to 

varying time patterns of O2 concentration (0, 2, 6, 10 or 20%) in soil air. The 20-day 

treatment period was started 26 days after sowing. The O2 concentration was either 
A) increased at 4-day intervals, B) decreased at 4-day intervals, C) alternated at 2-day 

intervals (= decreasing similarly to B but returned to 20% O2 after two days) or D) 
kept constant at 20%. At other times the O2 concentration in soil air was maintained at 
20%.  
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2.2 Estimation of the incidence of wet growing seasons 

The occurrence of wet growing seasons (May-October) at five locations in Finland 

was assessed based on monthly data published in the reports of the Finnish 

Meteorological Institute. Following Elonen and Pietola (1991), small precipitation 

deficits at certain times of growing seasons were considered to indicate wet growing 

seasons. In particular, cumulative precipitation deficits equal or less than zero in June 

and in May-July were considered important, because many crops are sensitive to 

hypoxia at early growth stages.  
 The precipitation deficit was calculated as the difference between potential 

evapotranspiration (PET) and precipitation. PET was calculated in accordance with 

the definition of Penman (1956): “… the amount of water transpired in unit time by a 

short green crop, completely shading the ground, of uniform height and not short of 
water”. PET in 1961-1999 was calculated by the Finnish Meteorological Institute 

using 3-hourly synoptic weather observations and the Penman-Monteith approach in 

which a surface resistance term was included to match the calculated PET with the 

results from lysimeter experiments (see Vakkilainen 1982, Ansalehto et al. 1985, 
Venäläinen and Nordlund 1988, Elomaa 1993). In a longer time series 1900-1999, 
monthly PETs in May-October were calculated by using the monthly averages of air 
temperature and relative humidity in the empirical Ivanov equation (see Vakkilainen 

1982, Elomaa 1993) that was corrected for time and location by analysis of 
covariance to match the PET in 1961-1999 given by the Penman-Monteith approach 

(R2
 = 0.99, residual standard deviation 4.3 mm).  
 

2.3 Statistical analysis  

The treatment effects were analysed by analysis of variance, and treatment means 

were examined with multiple comparison methods as explained in Papers I-IV. 
Logarithmic transformations of variables and non-parametric procedures were used 

where necessary. Due to unequal group variances non-parametric tests based on the 

ranks of data (see IV) were applied for cumulative N2O emission and N balance 

reported in this thesis. The precipitation deficit data for 1900-1999 were 

approximately normally distributed. The incidence of wet growing seasons was 

estimated by fitting normal distributions to the data and estimating the probability of 
years with precipitation deficits less than or equal to zero. The temporal variations in 

the gas concentrations and N2O emissions were summarized by drawing box-and-
whisker plots of treatment means observed during the experiment. Treatment effects 

were summarized by calculating the overall direction of the effects during the 

experiment. The numbers of positive and negative effects observed during the 

experiment were calculated, and the sign test was applied to test the significance (P < 

0.05).  
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3 RESULTS AND DISCUSSION 

3.1 Incidence of wet growing seasons in Finland  

The occurrence of wet weather in Finland shows large temporal and spatial variability 

as indicated by the data from five locations representing various agricultural and 

climatic zones (Figure 3, Figure 4, Table 4). Jokioinen and Helsinki, Vaasa and 

Jyväskylä, and Kajaani, represent the cereal cultivation zones of the Southern and 

Western Finland and the Southern coast, the feed grain cultivation zones of 
Ostrobothnia and the Northern Lake district of Finland, and the grassland farming 

zone of Kainuu in North-Eastern Finland, respectively (see Venäläinen and Nordlund 

1988).  
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Figure 3 Cumulative precipitation deficit in Jokioinen during the growing season: the mean and the 

50%, 90% and 99% probability limits (in 1929-1999), and the values in 1988 (×), 1993 (�) and 

1994 (�). 

 

Precipitation deficits are smallest in May and October, and largest in the middle of the 

summer (Table 4). On adopting the view that precipitation deficits of smaller than or 
equal to zero are indicative of wet weather, May is wet every third or fourth year in all 
of the locations studied. June is wet only once in 10 or more years in the cities of 
Helsinki and Vaasa on the coast of the Baltic but more often than once in 5 years in 

the inland cities of Jyväskylä and Kajaani. In this respect, Jokioinen resembles the 

coastal rather than the inland areas despite its inland location. The early growing 

period from the beginning of May to the end of July is wet more seldom than once in 

20 years in Helsinki, Vaasa and Jokioinen, but more often than once in 10 years in 

Jyväskylä and Kajaani.  
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Figure 4 Cumulative precipitation deficit in May-July (transparent) and in June (shaded) during the 

20th
 century at several stations of the Finnish Meteorological Institute. 
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Table 4 The amounts of monthly potential evapotranspiration (PET), rain, precipitation deficita, and 

the cumulative precipitation deficit in May-October, during the 20th
 century at several stations of the 

Finnish Meteorological Institute, mm 

 

Location 

(Years) 
Month PET Rain Precipitation deficitb

 Cumulative precipitation 

deficitb
 

     x ± s P(x ≤ 0)  X ± S P(X ≤ 0) 

Jokioinen   May 56 37 19 ± 26 0.23 19 ± 26 0.23 

(1929-1999)  Jun 100 47 52 ± 37 0.08 71 ± 48 0.07 

  Jul 119 75 44 ± 52 0.20 115 ± 70 0.05 

  Aug 83 78 6 ± 44 0.45 121 ± 87 0.08 

  Sep 33 62 -29 ± 30 0.83 92 ± 96 0.17 

  Oct 8 61 -53 ± 30 0.96 39 ± 105 0.35 

        

Helsinki   May 55 40 16 ± 31 0.31 16 ± 31 0.31 

(1900-1999)  Jun 98 48 50 ± 38 0.10 65 ± 56 0.12 

  Jul 124 59 66 ± 45 0.07 131 ± 73 0.04 

  Aug 87 75 12 ± 47 0.40 143 ± 97 0.07 

  Sep 37 68 -31 ± 35 0.81 112 ± 107 0.15 

  Oct 12 70 -58 ± 39 0.93 54 ± 117 0.32 

        

Jyväskylä   May 53 40 12 ± 27 0.32 12 ± 27 0.32 

(1900-1999)  Jun 96 61 34 ± 43 0.21 47 ± 55 0.20 

  Jul 118 72 46 ± 55 0.20 93 ± 75 0.11 

  Aug 75 83 -9 ± 51 0.57 85 ± 100 0.20 

  Sep 27 67 -40 ± 34 0.88 44 ± 103 0.33 

  Oct 6 61 -55 ± 31 0.96 -10 ± 115 0.54 

        

Vaasa   May 50 33 16 ± 25 0.26 16 ± 25 0.26 

(1900-1999)  Jun 91 47 44 ± 35 0.10 60 ± 47 0.10 

  Jul 115 58 57 ± 44 0.10 117 ± 62 0.03 

  Aug 78 64 14 ± 44 0.38 131 ± 83 0.06 

  Sep 32 60 -28 ± 33 0.81 103 ± 85 0.11 

  Oct 11 55 -44 ± 26 0.95 59 ± 89 0.26 

        

Kajaani   May 45 38 6 ± 25 0.40 6 ± 25 0.40 

(1900-1999)c
  Jun 90 62 28 ± 37 0.23 34 ± 47 0.24 

  Jul 117 70 47 ± 52 0.18 81 ± 68 0.12 

  Aug 73 78 -5 ± 45 0.54 76 ± 89 0.20 

  Sep 24 60 -35 ± 31 0.88 40 ± 96 0.34 

  Oct 3 51 -48 ± 27 0.96 -8 ± 105 0.53 

aPrecipitation deficit = potential evapotranspiration (PET) – precipitation; PET was calculated from 

monthly data with a time-corrected Ivanov method; PET calculated from daily data by the Penman-
Monteith approach (Venäläinen and Nordlund, 1988) was used to calibrate the method. 
bMean ± standard deviation. Incidence of wet years with precipitation deficit (x) and cumulative 

precipitation (X) less than or equal to 0.  
cData for 1919 and Sep and Oct 1918 in Kajaani are missing. 
 

In reality, the precipitation deficits are smaller than those calculated here, because the 

calculation is based on potential rather than actual evaporation rates. According to 

Venäläinen and Nordlund (1988), the potential evaporation rates are by about 10-20% 

or by even 30% greater than the actual evaporation rates estimated by a regional water 
balance method in Southern and Central Finland or Northern Finland, respectively.  
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The years of the field experiments of this study differed from each other with 

respect to the course of the precipitation deficit during the growing season, as shown 

by the data in Jokioinen in Figure 3. It can be seen that 1988 was nearly normal 
during the whole growing season. In 1993, May was extremely dry, but from June 

onwards the situation normalized. In 1994, the growing season was nearly normal, 
except for July and August, which were notably dry.  

Plants are sensitive to excess wetness in the early development stages (St�pniewski 
and �abuda 1989). Wetness also increases the risk of structural deterioration of soils 

by field traffic. The data in Figure 4 and Table 4 show that wet weather during the 

early development stages of spring crops in May-July, and during sowing and 

harvesting in May and September-October, are not uncommon in Finland. The risk of 
wet growing seasons is somewhat greater in the inland than on the coast. During the 

field experiments of this study, the weather was not exceptionally wet (Figure 3). 
 

3.2 Plant responses to compaction and modified oxygen supply to 

roots  

In a pot experiment with a humic clay (I), wetness and compaction decreased the 

uptake of nitrogen by barley. The yields were not affected by wetness, but compaction 

reduced plant growth in the wet soil. The decreases in the concentrations of O2 and 

increases in those of CO2 in soil air by both compaction and excess watering were 

explained by the decreased rate of gaseous diffusion due to smaller air-filled 

porosities. The large amounts of N2O and C2H4 detected in the compacted soils during 

the first month indicated that the soils were hypoxic rather than totally oxic, although 

the O2 concentration in the soil air only rarely dropped below 10%. The results thus 

show that poor aeration can contribute to a low yield and nitrogen uptake of plants in 

compacted and wet soils.  
In a series of pot experiments with fine sand soil (IV), the growth of shoots and 

roots of barley in a loose soil was reduced by both wetting of soil and lowering of O2 

concentration in the soil air. Plant growth decreased only at 0-2% O2 in the moist soil 
(13-19% air-space) but as early as at 20% O2 in the wet soil (0-5% air-space). 
Compaction reduced the growth of shoots and roots in both moist and wet soils, 
regardless of whether the soil air contained 10% or 20% O2.  

The growth of barley was decreased in wet soils and at small O2 concentrations in 

soil air, because the O2 supply from soil air was probably inadequate to sustain oxic 

respiration. This is supported by the fact that respiration in moist loose soil cropped 

with barley decreased clearly when, by varying the O2 concentration in soil air at 2- or 
4-day intervals, the concentration fell to 2% or below (IV). The CO2 emission (qs) 
from the soil versus the O2 concentration (C) followed Michaelis-Menten equation 

qs = qmax C / (Km + C) with a Km value of 1.4%. The respiration of uncropped soil was 

not affected by the O2 concentrations in soil air between 0% and 20%. 
Besides reducing root growth, wetness and compaction also modified the 

distribution of roots at various depths in soil (IV). If adequately supplied with O2 from 

soil air, most roots grew in the deepest soil layer, whereas in wet soils the roots 

preferred the well-aerated volumes near or even partly on the surface. In compact 
soils, all root growth was restricted to the uppermost soil layer.  

Compaction and hypoxia were expected to induce root morphological changes 

similar to those induced by large concentrations of ethylene (V), because both of them 

promote the production of ethylene in roots (see Morgan and Drew 1997). Such 
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changes include increased width, decreased specific length, and increased porosity (or 
specific volume). Root morphological properties were determined by image analysis 

(V). Root widths were increased by compaction, obviously as a reaction of barley 

roots to increased mechanical impedance in soil (VI). Further, the roots near the 

surface in well-aerated loose soils were thinner, and of higher specific length or lower 
specific volume, than those in the deepest soil layer. Also these changes were 

probably reactions to increased mechanical impedance in the soil. However, such 

changes were not observed in roots under severe hypoxia (VI). The results suggest 
that severe hypoxia lessens the possibilities of roots to adapt to the hypoxic soil by 

reducing root growth and impeding the formation of aerenchyma (VI). 
The results (IV) show that concentrations as low as 6% in soil air are adequate for 

respiration and the growth of barley roots in soils at moderate moisture contents. 
Conversely, in wet soils plant growth is impaired even if the soil is aerated with a gas 

stream containing 20% O2. The results also indicate that heavy compaction can impair 
plant growth by increasing the mechanical impedance deeper in the soil and thus 

restricting the growth of roots to a small volume near the surface. 
Accurate comparison of the results with earlier studies on the effects of soil 

aeration on plant performance (see Gli�ski and St�pniewski 1985) is impossible 

because of methodological differences. The results however compare well with the 

finding that the dry matter yields of barley were reduced by hypoxia in a loose moist 
sandy soil only when the O2 concentrations in soil air were below 5% (Jaakkola et al. 
1990). Also Geisler (1969) reported that O2 concentrations below 4% limited the 

shoot and root growth of barley. Scotter et al. (1967b) reported that the O2 uptake by 

pea roots in a sand soil at matric water suctions of 1.6-1.9 kPa was decreased at O2 

concentrations in soil air below 15%. The larger critical O2 concentration in their 
experiment may be partly due to a larger diameter of pea roots (about 0.5 mm) 
compared to that of barley roots in the present study.  

 

3.3 Critical O2 concentrations in soil air 

The empirical results on the effects of O2 concentrations in soil air on the growth and 

respiration of barley roots compared fairly well with the critical O2 concentrations 

(COC) calculated with simple multicylindrical steady-state models (Lemon 1962, 
Armstrong and Beckett 1985) on oxygen diffusion from soil air to roots, when the 

water-film thickness around the roots was estimated using soil water retention data 

(IV). The calculations required the values of radii, respiration rates and diffusion 

coefficients for the coaxial shells of stele, cortex and water-film (IV, see p. 13).  
In the calculation of COC, the respiration rate and root radius used were based on 

the measurements in study (IV, VI). The stele radius equalled half of the root radius. 
Assuming a regular array of air-filled pores in the soil, the thickness of the water-film 

(the distance from the root surface to nearest air-filled pores), was approximated by 
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where Cw = dθ/dψm and R(ψm) = 2 σ / ψm (σ the surface tension of water, and ψm the 

matric water suction) (IV).  
The diffusion coefficients of O2 in the root were based on the values in the 

literature (Wanner 1945, Armstrong and Beckett 1985). The diffusion coefficient in 

the water film Dfilm was estimated by  
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using empirical expressions for the relative diffusion coefficient D/D0 (Penman 

1940a, Millington and Quirk 1960) as a function of the porosity inside the water film 

φfilm (φ total porosity, ε air-filled porosity, see Currie 1965). The O2 concentrations at 
the outer edge of the water film (C0) and in the soil air (Ca) were considered to be in 

equilibrium so that C0 = αB Ca (αB Bunsen's solubility coefficient). The range of 
COCs in soil air was estimated by calculating the smallest concentration at which all 
of the root is oxic, and the largest at which all the stele is anoxic.  

The approach used to calculate the COCs in soil air seems to give reasonable 

estimates for the minimum requirements of soil air O2 concentrations for root growth 

and respiration at various moisture contents in coarse-textured soils (IV). In the field, 
it may also be applicable more generally to e.g. wet clays as discussed in IV. This 

problem deserves further study.  
 

3.4 Effects of compaction and modified oxygen supply on the 

cumulative N2O emissions and N balance in soil  

In experiments Nos. 1-3 reported in IV, the cumulative emission of N2O from the soil 
was increased by wetness (P < 0.001) and soil anoxia (0% O2) (P < 0.05) in the loose 

soil (Table 5). The largest emissions from anoxic soil corresponded to about 10% of 
the fertilizer nitrogen applied. The effects of cropping depended on soil compaction 

(the interaction of cropping and compaction significant at P < 0.05): cropping tended 

to decrease the emissions from the compact soil, but increase those from the loose 

soil. In the compact soil, wetness did not increase the emissions significantly. 
The amounts of mineral nitrogen recovered in plants, soil and N2O emissions were 

occasionally much less than the amount of nitrogen in the unfertilized soil plus that 
added at fertilization (Figure 5). In the cropped wet soil, on average more than 35% of 
the nitrogen remained unaccounted for. Soil anoxia (0% O2) (P < 0.01), wetness (P < 

0.05) and cropping (P < 0.05) increased the difference, whereas compaction tended to 

make it smaller (P = 0.06). The results suggest that the difference probably mainly 

represents the production of N2 by denitrification, as there were practically no 

leaching losses in this experiment. 
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Table 5 Cumulative emission of N2O-N from soila, mg pot-1
 

 

 O2 %  n Cropped soil  n Uncropped soil 
        

Loose soil        

Wet 0  1 41   1 54  

 2  2 15 ± 0  3 24 ± 1 

 10  4 20 ± 7  3 13 ± 4 

 20  2 33 ± 10  3 7 ± 3 

Moist 0  3 27 ± 8  1 47  

 2  4 7 ± 3  3 3 ± 1 

 10  6 2 ± 1  3 0 ± 0 

 20  8 1 ± 1  3 0 ± 0 

Compact soil        

Wet 10  2 3 ± 1  2 17 ± 9 

 20  2 3 ± 0  2 5 ± 1 

Moist 10  2 3 ± 1  2 7 ± 1 

 20  2 2 ± 0  2 8 ± 2 

        

aCumulative emission ± standard error 
 

During long-term oxygen deficiency, the losses of nitrogen from soil by e.g. 
denitrification and emissions of N2O may eventually lead to nitrogen deficiency in 

plants. The roots may increase these losses by increasing respiration and adding 

decomposable organic material in soil, or decrease them by the uptake of nitrogen 

(Woldendorp 1962, Smith and Tiedje 1979, Mahmood et al. 1997, III). When 

subjected to inadequate oxygen supply, plant roots cannot compete efficiently with 

denitrifiers for the uptake of nitrate (see Bakken 1988). Accordingly, most mineral 
nitrogen in the present study was lost from anoxic and wet soils that were cropped. 

The results also show that the emissions of N2O and denitrification start to increase 

at O2 concentrations that are smaller than the critical O2 concentrations for root 
growth and functioning, as at 2% O2, plant growth was clearly impaired in the moist 
soil (IV), whereas the gaseous losses were not increased (Table 5, Figure 5). This can 

be expected, because denitrification is an anoxic process and very small partial 
pressures of O2 suffice to inhibit it (see Tiedje 1988). However, in soils N2O is also 

produced when chemoautotrophic nitrifiers use nitrate as an electron acceptor when 

oxygen is somewhat deficient during ammonium oxidation (Arnold 1954, Bremner 
and Blackmer 1979, see Granli and Bøckman 1994, Bremner 1997). This nitrifier 
denitrification probably operates mostly at the oxic-anoxic interface (see Focht 1992). 
Thus, the N2O produced by this mechanism could also be taken to indicate at least 
slight hypoxia in soils, although it is unknown whether this affects root growth. It may 

however be safely concluded that large accumulation of N2O in wet soils indicate 

conditions that impair root growth and respiration in soil. 
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Figure 5 The amount of N recovered in soil (NH4
+, NO3

-), roots and shoots at the end of the 

experiments, and in N2O emissions during the experiment. The N content of roots was assumed to be 

2%. The vertical lines show the amount of mineral N in soil before fertilization (left) and after 
fertilization (right). 

 

Although nitrogen deficiency thus probably aggravated the yield reductions in wet 
soils, the primary reason for the reduced yields was however the inadequate supply of 
oxygen to the roots, which prevented the growth and active nutrient uptake of roots. 
This conclusion is supported by the fact that there was usually plenty of N left in the 

soil after the experiments in those treatments where plants grew poorly, and in no case 

was the amount less than that in the well-aerated soils (Figure 5). Compaction 

decreased the losses of nitrogen from the cropped soil probably by restricting the 

growth of roots to the well-aerated surface layer. In the uncropped soil, denitrification 

was probably retarded by slow respiration and the lack of decomposable organic 

material. 
 



 38 

3.5 Variation in soil air composition and N2O emission in the field 

3.5.1 O2 and CO2 in soil air  

In loamy clay fields (Jokioinen 1988 and 1993), the typical ranges of O2 and CO2 

concentrations in the air of uncompacted soil under various combinations of 
irrigation, cropping and N fertilization were 16-21% O2 and 0.1-4% CO2 at depths of 
15-30 cm in the ploughed layer, and 11-20% O2 and 1-4% CO2 deeper in the soil (at a 

depth of 50 cm), respectively (Figure 6, Figure 7). The smallest O2 concentration 

(4%) and largest CO2 concentration (6%) were observed at a depth of 30 cm in the 

irrigated unfertilized soil under barley on 29 June 1993. Near the surface (at a depth 

of 5 cm) the concentrations were almost atmospheric (20-21% O2, 0.05-0.3% CO2).  
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Figure 6 Box-and-whisker plots of O2, CO2 and N2O concentrations in soil air at various depths in a 

loamy clay field in the uncompacted (left) and in the compacted (right) treatments in Jokioinen in 1988 

(I). The box is drawn between the lower (Q1) and upper (Q3) quartiles, the median is the thick line 

inside the box, × denotes the mean, and the whiskers are drawn to the nearest values not beyond the 

standard span (1.5 × (Q3-Q1)) from the quartiles (typical range). Outliers are indicated by the date of 
measurement. Treatments: 1-4: fallow, 5-8: cropped; 1, 2, 5, 6: unirrigated, 3, 4, 7, 8: irrigated; 1, 3, 5, 
7: unfertilized; 2, 4, 6, 8: N applied. 
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Figure 7 Box-and-whisker plot of O2, CO2 and N2O concentrations in soil air at depths of 15 cm (left) 
and 30 cm (right) in a loamy clay field (III) in Jokioinen in 1993. The box is drawn between the lower 
(Q1) and upper (Q3) quartiles, the median is the thick line inside the box, × denotes the mean, and the 

whiskers are drawn to the nearest values not beyond the standard span (1.5 × (Q3-Q1)) from the 

quartiles (typical range). Outliers are indicated by the date of measurement. Treatments: 1-4: fallow, 
5-8: cropped; 1, 2, 5, 6: unirrigated, 3, 4, 7, 8: irrigated; 1, 3, 5, 7: unfertilized; 2, 4, 6, 8: N applied. 
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Figure 8 Box-and-whisker plots of O2, CO2 and N2O concentrations in soil air at depths of 15 cm (left) 
and 30 cm (right) in a loam field (II) in Hausjärvi in 1993-94. The box is drawn between the lower 
(Q1) and upper (Q3) quartiles, the median is the thick line inside the box, × denotes the mean, and the 

whiskers are drawn to the nearest values not beyond the standard span (1.5 × (Q3-Q1)) from the 

quartiles (typical range). Outliers are indicated by the date of measurement. Treatments: 1-4: fallow, 
5-8: cropped; 1, 2, 5, 6: unirrigated, 3, 4, 7, 8: irrigated; 1, 3, 5, 7: unfertilized; 2, 4, 6, 8: N applied. 
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In a loam soil (Hausjärvi 1993-94), especially if irrigated and cropped, the variation in 

the gas concentrations was larger than that in the loamy clay (Figure 8). The 

concentration of O2 in the ploughed layer ranged typically between 6% and 21%, and 

that of CO2 between 0.1% and 8%. The smallest O2 concentrations (minimum 2%) 
and the largest CO2 concentrations (maximum 10%) were observed in the N fertilized 

irrigated soil at a depth of 30 cm under a vigorously growing ley in August 1993. 
Heavy compaction performed seven years earlier in the loamy clay did not have 

any observable effects on soil air composition at shallow depths (5-15 cm) or in 

subsoil (at a depth of 50 cm) but decreased the concentration of O2 and increased that 
of CO2 at the bottom of the ploughed layer (at a depth of 25 cm, P < 0.05 according to 

the sign test) (I, Figure 6). Compaction also increased the variation of the gas 

concentrations in the soil profile compared to the uncompacted soil (Figure 6). The 

smallest O2 concentrations were decreased by compaction to 12% and 5% in the 

ploughed layer and subsoil, respectively. In contrast, the largest CO2 concentrations 

were similar in the compacted and uncompacted soils. 
Irrigation and cropping generally decreased the concentrations of O2 and increased 

those of CO2 in soil air in both loamy clay and loam soils, although less pronouncedly 

deeper in the loamy clay (Table 6, II, III). These changes were obviously due to the 

smaller air-filled porosities and increased soil respiration rates in the irrigated and 

cropped soils, respectively. In the loam, the effects were generally larger than in the 

loamy clay. In the ploughed layer, irrigation and cropping of the loam decreased the 

average O2 concentration by up to 7-10% and 4-5%, respectively, during a two-week 

period in August 1993. The effects of irrigation on the concentration of CO2 (up to 3-
4%) were only about a half of that on O2. The effects of N fertilization on O2 and CO2 

in soil air were rather small and variable. The fertilizer-induced increased the O2 

concentration and decreased the CO2 concentration, especially in the cropped soil. 
This could be attributed to improved aeration brought about by enhanced transpiration 

and consequent soil drying.  
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Figure 9 The sum of O2 and CO2 concentrations in soil air as related to O2 concentration in a loam soil 
(II). The dotted lines denote the ambient atmospheric O2 concentration. Points are treatment means on 

various measurement days 
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The concentrations of O2 and CO2 in soil air deviated strongly from those in the 

ambient air only when the soil moisture exceeded 30-35% (by volume) corresponding 

to air-filled porosities of about 15% in the ploughed layer (II, III). This limit was 

remarkably similar in the loamy clay and loam soils. 
The sum of O2 and CO2 concentrations in soil air was never much larger than 21%, 

which provides evidence that the anoxic production of CO2 was small (see Gli�ski 
and St�pniewski 1985). In both soils, the sum of O2 and CO2 concentrations in fact 
decreased as O2 concentration decreased in wet soil (I, II, III). The magnitude of the 

decrease was roughly similar in both soils, although the scatter was larger in the loam 

than in the loamy clay: the sum was about 21% near the ambient O2 concentration, but 
only about 10% when the O2 concentration in soil air was 5% (III, Figure 9). As a 

consequence, the O2 concentration decreased more steeply with depth than the CO2 

concentration increased. Similar observations have been made in many other studies 

(e.g. Russell and Appleyard 1915, Pietola 1995, see Gli�ski and St�pniewski 1985) 
and can be attributed to the larger solubility in water of CO2 than O2.  

From the small difference between the diffusion coefficients of O2 and CO2 in the 

gaseous phase (the ratio between them is 1.25 at 25°C) it follows that under steady-
state oxic conditions with equal rates of CO2 production and O2 

consumption the sum 

of CO2 and O2 should slightly exceed the O2 concentration in the atmosphere (see 

Gli�ski and St�pniewski 1985). The results however suggest that in wet soils the 

steady-state assumption may not be valid. The large amounts of CO2 dissolved in 

water apparently buffer the changes in CO2 concentration in soil air, so that the 

diffusion of CO2 approaches steady state more slowly than that of O2. This probably 

explains why the sum of O2 and CO2 concentrations decreases with decreasing O2 

concentration in wet soils, why the effects of irrigation are much smaller on CO2 

concentration than on O2 concentration, and why the maximum CO2 concentrations 

sometimes occur later than the minimum O2 concentrations (II, III, Russell and 

Appleyard 1915, Pietola 1995). Dissolved CO2 is lost from the soil also by 

mechanisms other than gaseous diffusion, such as by percolation and plant uptake of 
water.  

These considerations have some notable consequences. Firstly, the results show 

that the instances where the fluxes of CO2 and O2 are not equal and opposite are 

common in cultivated soils. As a consequence, the limitations of Fick’s law in 

describing diffusion in multinary gas mixtures (Leffelaar 1987, Freijer and Leffelaar 
1996) and the various mechanisms affecting the fluxes of CO2 should be taken into 

account when modelling soil aeration. Secondly, the measurement of respiration rates 

in wet soils is likely to be confounded by the time-dependency of gaseous diffusion, 
which is different for CO2 and O2 gases. Thirdly, the dissolution of CO2 into water 
generally decreases the likelihood of large CO2 concentrations in wet soils. Although 

several studies indicate that plant growth is impaired by CO2 only at concentrations 

above 10% (Tackett and Pearson 1964, Grable and Danielson 1965, Jaakkola et al. 
1990), other studies suggest that much smaller CO2 concentrations (>4-6%) may be 

detrimental to plants at small O2 concentrations in soil air (Geisler 1967, 1969). The 

results of the present study suggest that in the field CO2 concentrations do not 
generally rise above 5% even at small O2 concentrations in soil air. In the irrigated 

loam field, however, this limit was occasionally exceeded.  
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3.5.2 N2O in soil air and N2O emissions from soil 

The concentrations of N2O in soil air ranged typically from 0.36 to 30 cm3
 m-3

 and 

from 0.16 to 12 cm3
 m-3

 in the ploughed layers of loamy clay (Figure 7) and loam 

(Figure 8) soils, respectively, but occasionally concentrations approaching 100 cm3
 

m-3
 were found in wet uncropped soils. The largest concentrations in the loam (May 

1994) were probably caused by the spring thaw (see Nyborg et al. 1997). Cropping 

efficiently reduced the concentrations of N2O in both soils, when the soil was wet, 
except for during the early growth stages (Table 6). In the cropped soils, the 

concentrations were usually below 5 cm3
 m-3. Irrigation or soil wetness raised the N2O 

concentration, if nitrate was present abundantly (II, III). As a consequence, N 

fertilization increased N2O concentrations especially under irrigated fallow (Table 6).  
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Figure 10 Box-and-whisker plots of daily N2O emissions from a loamy clay, and the cumulative N2O 

emissions during the period 1 June – 22 October 1993 in Jokioinen (see the statistical tests in III). The 

box is drawn between the lower (Q1) and upper (Q3) quartiles, the median is the thick line inside the 

box, × denotes the mean, and the whiskers are drawn to the nearest values not beyond the standard span 

(1.5 × (Q3-Q1)) from the quartiles (typical range). Outliers are indicated by the date of measurement. 
Treatments: 1-4: fallow, 5-8: cropped; 1, 2, 5, 6: unirrigated, 3, 4, 7, 8: irrigated; 1, 3, 5, 7: unfertilized; 
2, 4, 6, 8: N applied. 

The emissions of N2O from the loamy clay, similarly to the N2O concentrations in soil 
air, were much larger and more variable when the soil was fallowed (0.1-66 g N ha-1

 

day-1) than when it was cropped (0.0-15 g N ha-1
 day-1) (Figure 7). The cumulative 
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N2O emissions were roughly doubled by irrigation and N fertilization, but cropping 

reduced them by a factor of 3-7 (Figure 10, III). Most N2O was thus emitted from the 

irrigated fertilized soil under fallow (3.5 kg N ha-1), and least from the unirrigated 

unfertilized soil under barley (0.1 kg N ha-1). These results agree with the findings in 

earlier field experiments that plant growth can efficiently reduce N2O emission from 

soils (Aulakh et al. 1984, Hénault et al. 1998, Mahmood et al. 1997).  
The largest N2O emissions from the loamy clay were found when 60-90% of the 

soil pore space was filled with water (III). This supports the view that N2O is emitted 

most rapidly at intermediate soil moisture contents (Linn and Doran 1984, Smith et al. 
1998). The emission rates seemed to be limited mainly by slow respiration and 

dryness in the uncropped soil, and by slow respiration and a small content of mineral 
N in the cropped soil (III).  

In the loam soil, the average N2O emission (7 g N ha-1
 day-1) was about half of that 

in the loamy clay (15 g N ha-1
 day-1) during the experiments (II, III). Although the 

differences could not be tested, the effects of treatments on N2O emission were 

probably roughly similar to those on the N2O concentration in soil air, because the 

positive correlation between the two variables was strong in both soils (II, III). 
The magnitude of N2O emissions (II, III) agree rather well with those found from 

cultivated mineral soils in earlier studies in Finland (Jaakkola 1985, 1994) and 

elsewhere (see Bouwman 1996). The emissions for the loamy clay under barley were 

somewhat smaller than those from a slightly heavier clay soil under barley (2.2-2.3 kg 

N ha-1
 during May-October 1983) reported by Jaakkola (1985). Several times larger 

emissions have been measured from cultivated organic soils (see Bouwman 1996, 
Kasimir-Klemedtsson et al. 1997, Kulmala and Esala 2000).  

 

3.5.3 C2H4 and CH4 in soil air 

C2H4 and CH4 did not accumulate in soil air in the field experiments (II, III) of this 

study. C2H4 concentration in soil air did not rise above the detection limit of 
0.5 cm3

 m-3
 in any sample. Also the CH4 concentrations were small (0-43 cm3

 m-3) 
with no apparent response to the treatments or sampling dates.  

The lack of CH4 accumulation in soil air can be explained by the fact that the field 

soils were hypoxic rather than anoxic. No great CH4 accumulation was to be 

expected, as extremely anoxic conditions are required for CH4 production 

(Ponnamperuma 1972). In the case of C2H4 the situation is less clear. In earlier field 

experiments (Smith and Dowdell 1974, Campbell and Moreau 1979) and in the first 
pot experiment of this study (I), concentrations of several cm3

 m-3
 were observed in 

relatively wet soils. Anoxia may stimulate microbial C2H4 production in soil 
(Zechmeister-Boltenstern and Nikodim 1999), whereas oxic conditions favour 
decomposition of both CH4 and C2H4 (Cornforth 1975, Zechmeister-Boltenstern and 

Smith 1998, Zechmeister-Boltenstern and Nikodim 1999). On the other hand, soil 
hypoxia, but not anoxia, enhances C2H4 production by plant roots (see Morgan and 

Drew 1997), and microbes produce C2H4 even in oxic soil, if amended with organic 

substances (see Zechmeister-Boltenstern and Smith 1998). Thus, in the present 
experiment the accumulation of CH4 and C2H4 was probably prevented by 

decomposition in the oxic parts of the soil. 
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3.6 Magnitude and timing of hypoxia in the pot experiments and in 

the field 

In contrast to the pot experiments (I, IV), the dry matter yields and N uptake of plants 

were not adversely affected by compaction and wetting in the field experiments, even 

if the effects on soil air composition were clearly established (I, II, III). In fact, 
irrigation occasionally increased the yields (II, III). In this sense, the range of 
variation in soil air composition observed in this study does not seem to be of great 
concern for plant growth. The lack of plant response to the impaired soil aeration is 

discussed below in terms of the magnitude and timing of hypoxic stress in soil.  
The magnitude of the hypoxic stress in soil may be assessed by the difference 

between the measured and critical O2 concentrations in soil air, and the extent of the 

hypoxia in the soil profile. The discussion is complicated by the facts that soil air 
composition is temporally and spatially variable and that the parameters needed to 

estimate the critical O2 concentrations (COC) in soil air have not been determined in 

field conditions.  
The sensitivity of plants to hypoxic stress in soil varies during the development. 

Cereal crops are particularly sensitive to excessively large soil moisture contents 

during stem elongation, whereas such grass species as timothy are more tolerant to 

flooding (Saukko 1950/51, St�pniewski and �abuda 1989, see van’t Woudt and 

Hagan 1957). In Finland, cereal crops and timothy are probably in the most sensitive 

growth stages in late June - early July and August-September, respectively (Saukko 

1950/51). Differences in the sensitivity of plants to soil hypoxia were demonstrated 

also in this study (IV, No. 4). Shoot yield was more clearly decreased by an 8-day 

period of severe hypoxia (0-2% O2 in soil air) at about 3.5 week after sowing than one 

week later. Short hypoxic stresses (2 days of hypoxia followed by aeration with 20% 

O2) at the later growth stage did not however decrease the yield significantly (IV). 
 

Table 7 Water-film thicknesses for different soilsa
 and critical O2 concentrations in soil airb

  

 

Soil Matric water 
suction 

kPa 

Air-filled 

porosity 

m3
 m-3

 

Thickness of 
water film 

mm 

Critical O2 concentration 

in soil air 
% 

     

Sand 1 0.06 0.71 8-10 

 10 0.23 0.05 2-3 

     

Sandy loam 1 0.04 1.03 9-11 

 10 0.14 0.06 2-3 

     

Clay 1 0.04 1.54 10-13 

 10 0.07 0.15 4-5 

     

Humic clay, loose 1 0.13 1.95 10-14 

 10 0.21 0.19 4-6 

     

Humic clay, compacted 1 0.06 3.18 12-16 

 10 0.10 0.32 5-7 

aCalculated as described in IV using data in I and in Andersson and Wiklert (1972) 
bComputed with a multicylindrical radial diffusion model (Armstrong and Beckett 1985) using the 

values given in IV (see Table 4 in IV, percentage root respiration 50%) for the parameters other than 

the water-film thickness 

 



 47 

The empirical results and modelling from the pot experiments suggest that the COC in 

soil air for root growth and respiration may be 4-5% O2 in moist soils (water-film 

thickness <0.2 mm) and 11-15% O2 in wet soils (water-film thickness >2 mm), and 

even larger in compact soils (IV). In order to get a somewhat more general view of 
the water-film thickness in different soils, values of water-film thickness at various 

matric water suctions are calculated in Table 7 using the water retention data given by 

Andersson and Wiklert (1972) for various field soils and the data for the humic clay 

in the first pot experiment of this study (I). The selection of soils is not 
comprehensive, or even very representative of the given soils, but rather demonstrates 

the differences between various soils and the orders of magnitude involved. 
According to Table 7 the water-film thicknesses in various soils at 10 kPa matric 

water suction are of the same order of magnitude as those in the moist soils in IV. As 

a consequence, COCs are also rather similar, about 5% O2 or slightly less for the 

coarse-textured soils. Small O2 concentrations in soil air are thus generally adequate 

for root growth in moist soils, despite large differences in the air-filled porosities. In 

wet soils at 10 kPa matric water suction, the water-film thicknesses of field soils are 

slightly less, and the COCs correspondingly smaller than those calculated in IV. It can 

be concluded that in the field O2 concentrations smaller than 8-13% in soil air impair 
root growth and respiration in wet soils containing about 5% air-filled pores, whereas 

concentrations as small as 2-5% may be adequate in moist soils containing more than 

10% air-filled pores. COCs seem to increase slightly with the fineness of soil texture.  
At shallow depths in the ploughed layer of the uncompacted loamy clay, the O2 

concentrations in soil air always remained above 18% (I, III). The air-filled porosities 

probably dropped below 5% only at around harvest time (III). Also in the lower part 
of the ploughed layer the O2 concentrations were large, usually above 16%. Only on 

29 June 1993 did the O2 concentrations in the irrigated unfertilized soil drop to a 

small value (4%), coinciding with an air-filled porosity of less than 5%. It seems thus 

certain that the ploughed layer of the uncompacted loamy clay was nearly always well 
aerated during the growing season. Hypoxia probably limited the root growth of 
barley only in the unfertilized irrigated soil at the end of the irrigation period.  

In the compacted loamy clay, the O2 concentration dropped to 12% in late May 

1988, when the soil was wet (I). Considering that COC was probably slightly 

increased by compaction, concentrations of O2 as low as this, and especially the 

smaller concentrations (down to 5% O2) deeper in the soil, were probably limiting 

root growth. Poor aeration of the subsoil was almost certainly responsible for the 

reduced yields and N uptake of annual crops in the compacted soil in the wetness of 
1987 (Alakukku and Elonen 1995).  

The loam soil was extremely wet during August-September 1993, especially when 

it was irrigated (II). In contrast to the upper part of the ploughed layer, where the O2 

concentration only rarely dropped below 10%, the O2 concentration deeper in the soil 
was below 10% probably limiting root growth during all of August 1993 in the 

irrigated soil. Small O2 concentrations in wet soil were also found under the ley after 
snow melt in spring 1994. 

In contrast to the field experiment, the O2 concentrations in the wet compacted soil 
of the first pot experiment (I) were for several weeks in the range that probably 

limited root growth. This no doubt contributed to a low yield and nitrogen uptake 

besides the gaseous losses of N by denitrification.  
The presence of large N2O concentrations in soil air can be taken to indicate 

hypoxic soil conditions (I, II, III). The results from the pot experiments described in 

IV indicated that root growth and respiration is impaired by a less severe hypoxia than 
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that needed to evoke denitrification (IV). This seems to disagree with the results from 

the other experiments, in which N2O emissions from soil and N2O concentrations in 

soil air were frequently large, although plant growth was not reduced by hypoxic 

stress (I, II, III). The discrepancy can be attributed to the spatial heterogeneity in soil.  
The production of N2O was largest in uncropped soils (II, III). It is possible that the 

large N2O emissions and concentrations in the soil air of uncropped soils indicated the 

presence of hypoxia deeper in the soil as compared to the well-aerated layers affecting 

plant growth. There were indeed some signs that N2O originated from deeper layers in 

the uncropped soil than in the cropped soils (II).  It is also generally accepted that 
anoxic microsites may be present even in rather well aerated soils and denitrify 

rapidly (Currie 1961, Flessa and Beese 1995). This probably explains the occasionally 

large N2O emissions originating from very shallow depths in the cropped soil (III). 
Compaction can be expected to increase the occurrence of such sites, and this leads to 

enhanced denitrification in soils rich in nitrate and degradable organic matter (Bakken 

et al. 1987). This may explain the large N2O concentrations observed in the 

compacted moist soil where O2 concentration in soil air was apparently larger than 

COC (I). The model for calculating the COCs (IV) probably cannot be used for 
predicting denitrification, because the underlying assumption of regularly distributed 

air-filled pores is not equally valid for root growth and denitrification.  
To sum up, the data on the O2 concentrations in soil air and soil moisture contents 

suggest that although shallow soil depths are usually well-aerated, hypoxia may limit 
root growth occasionally at greater depths in loamy clay and clay fields under normal 
management practices, if the soil is wet (I, II, III). The short duration of hypoxic 

stress in the most sensitive growth stages and the presence of well-aerated soil at 
shallow depths explain why the plant yields were not decreased in the field 

experiments. Large N2O emissions and N2O concentrations in soil air indicate that 
part of the soil is hypoxic, but the importance of this on plant growth is confounded 

by the spatial heterogeneity of field soils. 
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4 CONCLUSIONS 

 

1. Wet weather during the early development stages of spring crops, and during 

sowing and harvesting, is not uncommon in Finland. The risk of wet growing 

seasons is somewhat greater in inland than on the coast.  
2. O2 concentrations as low as 6% in soil air are adequate for respiration and 

growth of barley roots in soils at moderate moisture contents. In loose soil, the 

CO2 emission (qs) versus the O2 concentration (C) follows the Michaelis-
Menten equation qs = qmax C / (Km + C) with a Km value of 1.4%. Conversely, in 

wet soils with less than 5% air space plant growth is impaired even if the soil is 

aerated with a gas stream containing 20% O2.  
3. The observed effects of O2 concentrations on the respiration and growth of 

barley roots compare fairly well with the COCs calculated by a simple 

multicylindrical diffusion model, in which the water-film thickness around the 

roots is estimated using soil water retention data. 
4. In the conditions prevailing in Finland, hypoxia occasionally limits root growth 

especially below the ploughed layer in loamy clay and loam fields under normal 
management practices, if the soil is wet. However, if hypoxia, even if it occurs 

at the most sensitive growth stages, lasts for only a short time, the risk for yield 

loss is small. Also well-aerated soil layers near the surface may prevent yield 

reduction.  
5. The increases of CO2 concentration in soil air, although occasionally large, 

probably do not reach levels that are detrimental to roots. 
6. Marked increases of CH4 and C2H4 in soil air do not seem to be probable in the 

field soils studied. 
7. Heavy compaction of clay impairs subsoil aeration for several years. 
8. Poor aeration can contribute to a low yield and nitrogen uptake of plants in 

compacted and wet soils. In wet soils, denitrification causing losses of nitrate N 

and increasing N2O emission is obvious, and this probably contributes to the low 

yields. 
9. Leaving land fallow causes N2O emission and is therefore detrimental to the 

environment, whereas cropping is efficient in diminishing N2O emission. Also 

irrigation and N fertilization increase N2O emission. 
10. Large N2O emissions and N2O concentrations in soil air indicate soil hypoxia, 

but the importance of this on plant growth is confounded by the spatial 
heterogeneity of field soils. 

11. The approach used for calculating COCs in this study seems to give reasonable 

estimates of the minimum requirements of O2 concentrations in soil air for the 

respiration and growth of plant roots. In future studies, the applicability of the 

approach may be further specified by more accurate determination of the 

variables in field conditions and by incorporating the model obtained into larger 
models of plant growth and soil aeration.  
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