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Abstract

Heterobasidion root rot is a significant management problem on Norway spruce (Picea
abies) in southern Finland. Once the fungus has entered a stand, control of the disease
has proved to be difficult. Consequently, any forest management practice that reduces
losses caused by Heterobasidion is of great value.

This thesis concerns the effects of tree species selection and regeneration method
on the transfer of Heterobasidion root rot from diseased spruce stands to the next tree
rotation. In addition, the effect of vitality fertilization on the growth rate of Heterobasidion
in roots of mature Norway spruce was also investigated. The studies were carried out on
old spruce sites in southern Finland, where Heterobasidion parviporum is the dominant
Heterobasidion species and by far the most important agent causing decay on Norway
spruce.

Investigations on old stumps of the previous rotation showed that final cutting stumps
remain as effective infection sources for several decades. Viable mycelium and active
basidiocarps of Heterobasidion were found even in the oldest spruce stumps investigated,
cut 46 years ago. The spread of Heterobasidion from old spruce stumps via root contacts
to the surrounding regeneration was quantified. The fungus was isolated from stumps
and regeneration and the fungal genotypes (genets) were identified by means of somatic
incompatibility tests. Trees in the new tree generation were, regardless of species,
principally infected by a genet that was also isolated from old stumps, indicating that the
fungus had spread vegetatively through root contacts from the previous to the next tree
generation. When planted after a spruce rotation infected by H. parviporum, silver birch
(Betula pendula) and Scots pine (Pinus sylvestris) effectively prevented spread of the
disease. The average number of regeneration trees infected per decayed spruce stump of
the previous rotation was 0.04 trees in birch regenerations and 0.05 trees in Scots pine
regenerations. Birch was more frequently infected by H. parviporum only in cases where
the provenance was not adapted to the site. In the subsequent stands of lodgepole pine
(Pinus contorta var. latifolia) an average of 0.5 trees per stump were infected, suggesting
that lodgepole pine is more susceptible to H. parviporum than native Scots pine. The
corresponding value in stands planted with Siberian larch (Larix sibirica) was 0.3 trees.
Although the decay frequency will probably remain lower in the subsequent lodgepole
pine and Siberian larch stands compared to the previous spruce stand, the possible
consequences should be considered before these tree species are planted as monocultures
on sites heavily infected by H. parviporum.

The tree species most heavily attacked by H. parviporum was Norway spruce. The
average frequency of infected trees was clearly higher in the current than in the previous
spruce stand only on sites regenerated with spruce. On infested sites, the regeneration
derived from advance-growth spruce that had developed naturally under spruce overstorey
proved to be more frequently infected by Heterobasidion than planted spruce regeneration
of the same size. The number of regeneration spruces infected per decayed stump or tree
of the previous rotation was 4.5 in advance-growth stands and 1.2 in planted stands. Not
only the infection frequency but also the mode and progress of infection were related to
the regeneration method. Planted spruce was mainly infected by a genet originating



from old stumps (71 % of all infected trees), whereas in advance regeneration only about
half of the trees (53 %) were found to be infected by such a genet. The origin of infections
not attributable to old stumps could not be identified with certainty. It seems conceivable,
however, that suppressed advance-growth spruce is more susceptible to primary spore
infection than planted spruce. On the other hand, the decay had advanced faster in the
wood of rapidly growing, planted spruce than in the wood of slow-growing, advance-
growth spruce.

In young, unthinned spruce stands the vegetative spread of Heterobasidion between
regeneration trees was uncommon and, consequently, the occurrence of naturally
established, broad-leaved trees in a stand did not have any significant influence on the
disease frequency in Norway spruce. However, in planted stands, where the transplants
were mainly infected vegetatively from old stumps, a mixed plantation favouring broad-
leaved trees or Scots pine around decayed spruce stumps may considerably restrict the
transfer of Heterobasidion root rot into the subsequent tree generation. In planted spruce
stands, a 2.5-meter-wide area without spruce around colonized stumps decreased the
number of infected trees by 50 %, and a 4-meter-wide area by 80 %.

The effect of vitality fertilization on the growth rate of H. parviporum in spruce
roots was also investigated. The treatments were: 1) unfertilized control, 2) compound
fertilizer containing P, K, Ca, Mg, S, Cu, Zn and B, 3) compound fertilizer plus nitrogen,
4) compound fertilizer plus nitrogen and limestone, and 5) stand-specific fertilizer
containing N, P, K and Cu. H. parviporum was inoculated into the roots of spruce. The
roots were sampled after 12 months and the growth of the fungus in the roots was
determined. The mean linear growth in different treatments was: 1) 18.2 cm, 2) 25.6 cm,
3)21.3 cm, 4) 26.0 cm, and 5) 29.8 cm. Because of the considerable variation in fungus
growth on individual trees, as well as in different roots of the same tree, there were no
statistically significant differences in mean fungal growth between the treatments.
Nevertheless, the result indicates that the use of vitality fertilizers in diseased Norway
spruce stands may, at least in the short term, slightly accelerate rather than slow down
the development of Heterobasidion root rot.
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| Introduction

|.1 The Heterobasidion annosum complex

Until the late seventies, Heterobasidion annosum Bref. (Polyporus annosus Fr., Fomes
annosus (Fr.) Cooke), was regarded as a single taxonomic unit. In 1978, Korhonen
identified, on the basis of mating experiments, two host-specialized intersterility groups
within H. annosum in Finland and designated them as the “S” and the “P” group. The
S spruce) group was mainly isolated from butt-rotted Norway spruce (Picea abies (L.)
Karsten), but occasionally also from Scots pine (Pinus sylvestris L.) saplings. The P group
was isolated from Scots pine and a range of other native conifers and broad-leaved trees
(Korhonen 1978a). Later on, a third European intersterility group of Heterobasidion
called the “F” group was identified in Italy (Capretti et al. 1990). The F (fir) group is
confined to southern and central Europe and its principal host is silver fir (Abies alba
Mill.) and other Abies species of southern Europe (Capretti et al. 1990, Capretti et al.
1994, Tsopelas and Korhonen 1996). Recently, the European intersterility groups were
described as taxonomic species: the P group as H. annosum sensu stricto, the S group as
H. parviporum Niemeld & Korhonen and the F group as H. abietinum Niemeld &
Korhonen (Niemeld and Korhonen 1998).

Both the S and P groups are present in North America (Chase 1985, Harrington et
al. 1989, Chase and Ulrich 1990). As in Europe, the North American P group has most
often been isolated from Pinus hosts. Compared to the European S group, the North
American S group has a wider host range, including trees in genera such as Picea, Abies,
Thuja, Pseudotsuga, Tsuga, Sequoiadendron, Pinus and Juniperus (Chase 1985, Korhonen
et al. 1998).

Only little is known about the variation of the H. annosum complex in Asia. So far,
H. parviporum has been reported to occur in southern Siberia, northeastern China, Japan
and eastern Himalayas (Dai and Korhonen 1999, Korhonen et al. 2001). The most eastern
record of H. annosum s. str. is from the Altai area, southern Siberia (Korhonen et al.
2003). Although the puzzle of the H. annosum complex has not yet been solved, the
ability to identify intersterile groups of H. annosum has increased our understanding of
the behaviour of this widely distributed pathogen, and helped to develop disease-control
strategies based on the different host preferences among the groups.

|.2 Heterobasidion root rot: initiation and development in
Norway spruce forests

[.2.1 Primary infection by spores

Heterobasidion is capable of spreading over long distances by means of airborne spores.
Basidiospores are produced in basidiocarps that often occur in the cavities of old stumps,
on logs containing advanced decay, and on the roots of windthrown trees. At the time
when spore production is at its highest, the number of Heterobasidion spores deposited



in an infection centre in a mature Norway spruce stand in southern Finland can be as
high as 42 000-151 000 spores/cm? per hour (Kallio 1970, Moykkynen et al. 1997). A
small proportion of the released spores can be spread by air currents over distances from
50 to 500 km, but most of them are deposited within a distance of a few meters from the
basidiocarp (Kallio 1970, Stenlid 1994a). Consequently, the basidiocarps are locally
important inoculum sources in spruce stands. In Sweden, Rennerfelt (1946) and Stenlid
(1987) have observed that Heterobasidion produces fewer basidiocarps in the northern
part than in the southern part of its distribution area, which may be reflected in the
increasing disease incidence on moving southwards.

In addition to basidiospores, Heterobasidion also produces asexual spores, conidia
(Brefelt 1889). The conidial stage has been found on infected timber lying on the ground
and on the cut surfaces of spruce stumps covered with logging residues (Rishbeth 1957,
Peace 1962, Kallio 1971). Conidiophores have also been found in insect galleries (Bakshi
1950, 1952, Hunt et al. 1976), and some insects such as weevils (Hylobius abietis) have
been shown to distribute the conidia of Heterobasidion (Nuorteva and Laine 1968, 1972,
Kadlec et al. 1992). Although conidial inoculation of the roots, seedlings and stump
surfaces has been used successfully in several studies (e.g. Kuhlman and Henrix 1964,
Kuhlman 1969, 1970, Hyppel 1970, Schonhar 1978, 1979, Asiegbu et al. 1993, Bendz-
Hellgren and Stenlid 1998), the role of the conidia in the natural infection process is not
well understood. Moykkynen (1997) showed that conidia might be liberated into the air
by wind gusts associated with high humidity or mist. Under Finnish conditions, however,
basidiospores constitute the major part of spore inoculum (Kallio 1970, 1971, Moykkynen
1997).

After landing on the ground, a proportion of the spores are washed into the soil,
where they can survive for several months (Molin 1957, Kuhlman 1969, Schonhar 1980).
Inoculation experiments carried out by Dimitri (1969a) showed that basidiospores are
able to infect wounded spruce roots in the soil. There is also some evidence that roots of
suppressed trees are susceptible to spore infection (Rishbeth 1951b, Schonhar 1995). In
managed forests, however, the spore infections occurring through wounds in the roots
are considered to be of minor importance as compared with infections occurring through
fresh stump surfaces or deep wounds above ground level (Redfern and Stenlid 1998). As
aresult of round-the-year fellings, fresh stump surfaces are available for spore deposition
also in those seasons of the year (from May to October) when the spore distribution is
profuse in southern Finland (Kallio 1970). Immense numbers of basidiospores with a
wide range of genetic variation produced in perennial basidiocarps offer a good starting
point for stump infection. On the other hand, even a low rate of spore discharge by
Heterobasidion may lead to extensive stump infection if the spores of competing fungi
are few or absent (Rishbeth 1951a).

|.2.2 Secondary spread by mycelium

Germination of individual basidiospores produces primary, homokaryotic mycelia.
Conidiospores, in contrast, can be either heterokaryotic or homokaryotic. Apparently,
most of the homokaryotic mycelia of Heterobasidion become heterokaryotized relatively
rapidly as a result of a compatible mating (Rayner et al. 1987). Low infection rates may,



however, make heterokaryotization less probable and a high proportion of the colonies
in one-year-old stumps can be homokaryotic (Stenlid 1994b, Korhonen and Piri 1994,
Moykkynen and Kontiokari 2001). Although homokaryons of Heterobasidion have been
shown to cause disease in North America (Platt et al. 1965, Garbelotto et al. 1997b),
homokaryons in Finland very seldom, if ever, cause disease in living trees (Korhonen
and Piri 1994). The secondary spread of Heterobasidion normally takes place through
growth of the heterokaryotic mycelium.

Heterobasidion is incapable of growing freely in the soil (Hodges 1969). On alkaline
soils, Heterobasidion can grow ectotrophically on the bark of pine roots (Rishbeth 1950).
On soils with a low pH, the mycelium of Heterobasidion lives and spreads only in wood
tissue (Yde-Andersen and Malla 1977). As indicated by Hartig as early as 1882,
Heterobasidion spreads from infected stumps or trees to adjacent healthy trees through
root contacts and grafts. Heterobasidion spreads faster in the roots of dead trees or in
stump roots than in the roots of living trees because the former lack active defence
systems (Schonhar 1978, Bendz-Hellgren et al. 1999). Studies carried out in the Nordic
countries have shown that the fungus advances at a rate of about 9—12 cm per year in
inoculated living spruce roots (Stenlid and Johansson 1987, Bendz-Hellgren et al. 1999),
and about 25 cm in stump roots (Bendz-Hellgren et al. 1999). In stem wood of Norway
spruce, Heterobasidion tends to grow slightly faster than in living root wood, i.e. on an
average 30—40 cm per year (Huse and Venn 1994, Hallaksela 1993, Bendz-Hellgren et
al. 1999). In Finland, the maximum annual growth rate measured in spruce stem wood is
one meter (Hallaksela 1993). Differences in fungal growth rate between individual trees
are large and, at least in artificially inoculated trees, the growth rate tends to slow down
with time, being at its highest in the first year after successful infection (Richter 1974,
Hallaksela 1993).

Secondary spreading from old-growth stumps, thinning stumps or scarred trees to
adjacent healthy trees is affected by host-related factors such as individual resistance,
physiological condition and age of the tree (Ekman and von Weissenberg 1981, Lindberg
and Johansson 1992, Dimitri 1994, Swedjemark and Stenlid 1997), pathogen-related
factors such as size of the inoculum (Holmer and Stenlid 1993), virulence and age of the
fungal individual (Swedjemark and Stenlid 1997, Huse and Venn 1994), soil properties
directly or indirectly affecting the frequency of root contacts (Kuhlman 1973, Redfern
1984, 1998), and competition and antagonism from other microorganisms (Rennerfelt
1949, Greig 1962).

Heterobasidion is able to spread vegetatively not only into the same tree species
growing in the same rotation, but also into other susceptible tree species of the same or
subsequent tree generation (Greig 1962, Yde-Andersen 1978, Stenlid 1987, Piri et al.
1990, Capretti and Goggioli 1992, Vasiliauskas and Stenlid 1998, Ronnberg and Vollbrecht
1999, Vollbrecht and Stenlid 1999).

|.2.3 The somatic incompatibility reaction in studying the population
structure of Heterobasidion

Somatic (= vegetative) incompatibility systems restrict the free exchange of nuclei and
cytoplasm between genetically dissimilar mycelia and hence maintain the individuality



of secondary mycelia (Rayner et al. 1984, Rayner 1991). Within a Heterobasidion species,
somatic incompatibility appears as a zone of sparse growth between paired heterokaryotic
isolates of different genetic composition, whereas genetically identical isolates grow
together to form a continuous mycelial mat (Stenlid 1985). The genetic mechanism of
somatic incompatibility in Heterobasidion has not been clearly elucidated, but at least
three or four loci are involved, one of them multiallelic, and it seems that the mechanism
is controlled by nuclear genes that are not linked with sexual compatibility loci (Hansen
et al. 1993a).

Although the somatic incompatibility system of higher fungi is still poorly
understood, it has proved to be a useful tool to distinguish individuals of natural fungal
populations (e.g. Stenlid 1985, Piri et al. 1990, Hansen et al.1993a). One disadvantage
of this very simple method is that it does not always recognize small genetic differences
between very closely related heterokaryons, like sib-related heterokaryons, for instance
(Hansen et al. 1993b). The probability of any two unrelated Heterobasidion isolates
being somatically compatible is extremely low (Hansen et al. 1993a).

Recognition of individual Heterobasidion mycelia (genets) in natural populations
provides valuable information on the establishment of spore infections and mycelial
spread of the fungus in forest stands. A high number of small genets indicates that the
stand has been exposed to primary spore infection, most probably as a result of thinning
operations, whereas genets of large size (high number of trees infected by the same
genet) suggests that most of the trees have been infected through mycelial growth via
root contacts. This information has obvious potential when assessing the effectiveness
of different control measures against Heterobasidion root rot. The vegetative spread of
the fungus can be controlled by reducing the number of root contacts between susceptible
host trees (mixed stands or low stand density). A high number of spore infections
emphasizes the importance of stump treatment as a control measure against Hetero-
basidion infection.

|.3 Impacts of Heterobasidion root and butt rot in Norway
spruce forests in southern Finland

“The devil took, what the miser hoarded” owner of a rotten spruce stand in Mantsila, 1997

[.3.1 Incidence of Heterobasidion root rot and direct
losses caused by it

In southern Finland, Norway spruce is economically the most important host of
Heterobasidion. Almost 90 % of the total decay volume in Norway spruce stands in
southern Finland is due to butt rot caused by Heterobasidion (Tamminen 1985). The
known northern border of the distribution area of Heterobasidion is at approximately
latitude 68° N. The fungus becomes more common towards the south, and the most
serious damage caused by Heterobasidion on Norway spruce occurs along the coastal
regions of southern Finland (Tamminen 1985, Mikeld et al. 1998). Heterobasidion is a
problem particularly in old, pure spruce stands on fertile, non-paludified, old spruce



sites, which are close to sea level. Based on the material collected from 146 clear cutting
areas in southern Finland, the relative butt-rot frequency, expressed as the proportion of
butt-rot spruces out of the total stem volume of the spruces, averaged 18.5 %. In the
southernmost part of the country, where Heterobasidion is the most common, the decay
frequency averaged 35.4 % (Tamminen 1985). Butt rot causes, on an average, a 6 to 9 %,
max. 37 % reduction in saw timber yield in final cuttings (Tuimala 1979, Tamminen
1985, Kaarna-Vuorinen 2000). In single stands, the reduction in the sales revenues due
to butt rot can be over 30 % (Tamminen 1985, Kaarna-Vuorinen 2000).

1.3.2 Indirect losses

In addition to the reduction of timber yield and quality, Heterobasidion root rot reduces
the growth of spruce (Arvidson 1954, Henriksen and Jgrgensen 1953, Kallio and
Tamminen 1974, Tamminen 1985, Bendz-Hellgren and Stenlid 1995, 1997) and
deteriorates the stem form by causing thickening of the lower part of the trunk (Henriksen
and Jgrgensen 1953, Arvidson 1954, Kallio and Tamminen 1974, Tamminen 1985). The
role of Heterobasidion root rot as a major cause of a growth reduction in Norway spruce
stands is often overlooked. In Sweden, decayed trees produce ca. 10 % less volume
growth compared with healthy trees over a 5-year period (Bendz-Hellgren 1997). In
individual stands and in the longer term, the growth losses can be considerably higher
(Henriksen and Jgrgensen 1953, Bendz-Hellgren and Stenlid 1997). Moreover, butt rot
renders trees susceptible to wind damage (Bazzigher and Schmid 1969, Schmid-Haas
1994, Vollbrecht et al. 1994) and to attacks by the bark beetle Dendroctonus micans
(Kangas 1952, Petersen 1952, Francke-Grosmann 1954). The result is reduced forest
productivity and increased expenses in logging small numbers of damaged trees, scattered
throughout the forest.

The use of various control methods to reduce disease in the current and future
rotations requires investments. The abandonment of logging in summertime because of
the high infection risk or, alternatively, the use of control methods to prevent infection of
stump surfaces in summer cuttings, means extra costs. Most of the silvicultural control
methods, such as reduced rotation length, prescribed burning, stump removal and change
of tree species, involve costs. At the present time it is difficult to predict the benefits of
the control measures due to the lack of long-term experience. Thus, no detailed
calculations of the total costs caused by Heterobasidion in Finnish forests have been
made. Based on a rough estimate, the annual economic losses due to root and butt rot in
Finland are reported to be around 35 million € (Bendz-Hellgren et al. 1998).

| .4 Factors favouring Heterobasidion in managed forests

“H. annosum is a fungus that follows man’s footsteps into the forest” Korhonen et al. 1998.

|.4.1 Logging operations

Several recent reports support the early statement of Meinecke (1914) that increased
human activities in the forest has contributed to an increased incidence of Heterobasidion



root rot (e.g. Venn and Solheim 1994, Shaw et al. 1994, Otrosina and Garbelotto 1998,
Filip and Sullivan 1998). Unquestionably, the greatest losses are associated with the
stumps left after cutting operations. The pioneering work by Rishbeth (1949, 1951a)
showed that air-borne spores of Heterobasidion colonize freshly exposed stump surfaces,
and therefore operations such as thinning enable the fungus to become established in
pine plantations where it was formerly absent. Since then, the importance of freshly cut
stumps as the primary sources of infection has been recognized on Norway spruce (Molin
1957, Yde-Andersen 1962, Kallio 1965, 1970, 1971, Paludan 1966) and several other
tree species (e.g. Kuhlman and Hendrix 1964, Cobb and Barber 1968, Driver and Wood
1968, Wallis and Reynolds 1970, Morrison et al. 1986). Weather conditions and the
number of airborne inoculum at the time of harvesting are the most important factors
determining the incidence of stump infection (Rishbeth 1957, Yde-Andersen 1962,
Solheim 1994, Brandtberg et al. 1996). In southern Finland, spores of Heterobasidion
are in the air from April to November, most frequently from later May to the end of
October (Kallio 1970). During that period the infection percentage of freshly cut spruce
stumps varies from about 5 to 26 % (Kallio and Hallaksela 1979, Hallaksela and
Nevalainen 1981, Lipponen 1991). Although not all stump infections result in stump
colonization, even a small percentage of colonized stumps markedly increases the amount
of inoculum on the site and enables the infection of stands where the fungus is initially
absent (Morrison and Johnson 1978, Hallaksela and Nevalainen 1981).

In addition to stump surfaces, also other fresh wood surfaces, such as logging wounds
in the aerial parts of trees and stumps, expose a Norway spruce stand to primary infection
by air-borne spores. Especially the employment of heavy thinning machines in young
forest stands often leaves scars on the trunks and roots of the remaining trees, which are
subsequently prone to infection by decay fungi including Heterobasidion (Nilsson and
Hyppel 1968, Isomiki and Kallio 1974, Aufsess 1978). The number of successful
Heterobasidion infections of standing trees increases with increasing size and depth of
the lesion (Dimitri 1969a). Generally, root injuries near the stem base often cause decay,
while decay in root injuries distant from the stem is less frequent and the extent of the
decay is more limited (Nilsson and Hyppel 1968, Isomiki and Kallio 1974). The most
important wound decay fungus on Norway spruce is Stereum sanguinolentum (Alb. &
Schw.) ex Fr. (von Aufsess 1978, Roll-Hansen and Roll-Hansen 1981, Vasiliauskas et
al.1996). Unlike Heterobasidion, it does not spread via root contacts into the adjacent
trees (Vasiliauskas 1994). In southern Finland, Heterobasidion was isolated from 7 % of
root injuries and 14 % of trunk injuries on Norway spruce damaged by timber harvesting
machines. In other material also collected from southern Finland, the proportion of wounds
infected by Heterobasidion was as low as 2 % (Hallaksela 1984). According to Norwegian
studies, Heterobasidion is the most frequent wound parasite in summer injuries, whereas
S. sanguinolentum more frequently invades injuries inflicted at other times of the year
(Roll-Hansen and Roll-Hansen 1980, Solheim and Selas 1986, Solheim 2003). In summer
thinnings in which the stumps are treated but the proportion of damaged standing trees is
high, logging wounds may thus be an important avenue of Heterobasidion infection
under favourable weather conditions.



|.4.2 Improvement of forest productivity

Forest management that is oriented towards speeding up the growth rate of trees has
been shown, at least partially, to increase the incidence of Heterobasidion root rot.
Heterobasidion tends to attack fast-growing spruce (Arvidson 1954), and the decay
proceeds faster in fast-growing than in slow-growing trees (Isoméki and Kallio 1974,
Laiho 1983, Dimitri and Schumann 1989, Dimitri 1994). Measures designed to improve
tree growth such as fertilization, thinning and drainage have, in some studies, been found
to be associated with increased decay incidence (Rennerfelt 1946, Basham 1973, Dimitri
and Schumann 1989, Alcubilla et al. 1990). Other studies have shown, however, that
while forest fertilization improves tree growth, it does not necessarily decrease the
resistance of trees to decay (Seibt 1964, Cowling et al. 1969, Yde-Andersen 1977a,
Laiho 1978).

Several studies have shown that liming, especially in the long term, may increase
the risk of infection by Heterobasidion and also accelerate the growth rate of fungus
already present in Norway spruce stands (e.g. Matthesen 1982, Dimitri and Schumann
1989, Stenlid and Bendz-Hellgren 1996). Although the primary goal of older liming
trials and practices was to improve tree growth (Ilvessalo 1923), it has subsequently
been found that liming has a long-term negative effect on the growth of spruce (e.g.
Derome et al. 1986). Thus, the increased butt rot incidence in limed stands does not
seem to be connected to the improved tree growth. Instead, liming raises the soil pH,
which may have a contributory influence on disease development (Rishbeth 1951b, Evers
1973). Some of the negative effects of liming on conifers, such as the death of fine roots
and mycorrhizal root tips (Lehto 1994), may increase the risk of infection by Hetero-
basidion. Regardless of its negative effects, liming has proved to be an effective way to
counteract soil acidification in forests suffering from decline in Central Europe (Huettl
and Zoettl 1993).

The high growing capacity of Norway spruce has been mentioned as one reason for
high butt rot frequencies in spruce stands in Denmark and southern Sweden where spruce,
introduced outside its natural range, has better growth than the original deciduous forests
(Rennerfelt 1946). Even when planted within its natural range, the ecophysiological
maladaption of spruce to specific sites may increase the susceptibility of artificially
regenerated stands to root disease (Rennerfelt 1946, McDonald 1990). Spruce seedlings
subjected to moderate drought stress showed an increased infection frequency by
Heterobasidion through the bark, and an accelerated growth rate of the fungus (Lindberg
and Johansson 1992).

Until recently it was a common practice in Finland to manage forests for single
species stands. The tree species composition was controlled already at the seedling stage
by cleaning to make the stand even-aged, homogeneous and rapid growing. Both the
cultivation of monocultures (Rishbeth 1973) and use of high planting density in pure
regenerations (Venn and Solheim 1994) increase the number of root contacts available
for the disease to spread.

Because Norway spruce is a fast-growing species and produces timber preferred by
industry, consecutive spruce rotations are becoming more common even on infested
sites. Several earlier studies have demonstrated that the incidence of Heterobasidion



root rot tends to increase in successive spruce rotations (Jorgensen et al. 1939, Holmsgaard
et al. 1961, Schonhar 1973, Yde-Andersen 1978). The determining factor in these
situations is the infection potential of the infected stumps of the previous stand. Where
spore infections of healthy stumps after final felling are frequent, regenerations established
even after a healthy spruce rotation can be severely infected, and the relationship in
disease incidence between successive spruce generations may be unclear (Ronnberg and
Jgrgensen 2000, Ronnberg et al. 2003).

|.4.3 Afforestation of Norway spruce on agricultural land

A high incidence of Heterobasidion root rot is characteristic of new conifer plantations
established on sites with no previous forest history (Rohmeder 1937, Rennerfelt 1946,
Rishbeth 1949, 1957, Holmsgaard et al. 1968, Werner 1971, Graber 1996). The disease
incidence on former agricultural land seems to be connected to certain soil properties
favouring the pathogen; such as high soil pH (Rishbeth 1951b, Maraite and Mayer 1966,
Werner 1971) and sparsity of soil microflora antagonistic or competitive to Heterobasidion
(Rishbeth 1949, 1951b, Manka and Lakomy 1995, Sierota and Kwasna 1998). Factors
unfavourable to the host tree include an unbalanced nutrient status (Rennerfelt 1946),
soil compaction (Ankudinov 1950) associated with shallow root systems and frequent
intertree contacts (Kuhlman 1973, Reynolds and Bloomberg 1982) and an absence of
ectomycorrhizal fungi (Lange 1993). Ultimately, it is difficult to distinguish between
the effect of factors influencing activity of the fungus and that of factors affecting host
resistance.

As in the first spruce rotation generally, infection of thinning stumps is a major
determinant in the establishment of Heterobasidion in a spruce plantation on former
arable land (Rishbeth 1950, Schonhar 1971, Werner 1971, Pratt and Greig 1988,
Swedjemark and Stenlid 1993, Hanso et al. 1994, Venn and Solheim 1994, Bendz-Hellgren
et al.1999). However, it is also possible that root lesions resulting from unfavourable
physical soil properties are infection routes for Heterobasidion (Dimitri 1969b). It has
been shown that the level of resistance of living bark to Heterobasidion infection is
strongly dependent on site conditions and may be less in very productive stands on
fertile arable soils (Redfern 1984, Lindberg and Johansson 1991). Inoculation experiments
carried out in Sweden showed that the growth rate of Heterobasidion in root wood of
spruce planted on arable land is no faster than that in the roots of spruce growing on old
forest land (Bendz-Hellgren et al. 1999). The authors suggest that the shallower root
system with frequent root contacts and grafts, as well as less competition from soil
fungi, may increase disease transfer between trees and thus the overall frequency of
Heterobasidion root rot on arable land (Bendz-Hellgren 1997, Bendz-Hellgren et al.
1999).

|.4.4 Air pollution

Increasing levels of pollutant emissions have been shown to predispose a number of tree
species, including Norway spruce, to damage by Heterobasidion (e.g. Domanski 1978,
James et al. 1980a, Schmidt 1985, Raddi et al. 1993). Both the susceptibility of the host



tree to infection and the growth rate of the fungus in a tree tend to increase as a consequence
of air pollution (James et al. 1980a, 1980b, Raddi et al. 1993). One substantial effect
promoting disease development is related to fungi antagonistic to Heterobasidion:
mycorrhizosphere fungi inhibiting the growth of Heterobasidion were totally absent or
were few in number in an area strongly polluted with industrial emissions, and were
more frequent in an area free of excessive pollution (Kowalski 1989). Also colonization
of pine stumps by competitors of Heterobasidion (Trichoderma spp. and blue stain fungi)
was less in trees injured by photochemical air pollutants than in healthy trees (James et
al. 1980b). On the other hand, direct effects of air pollution on the pathogen, such as
reduced conidial production, germination and growth, have been reported; under field
conditions, however, they appear to have little potential effect on the incidence of
Heterobasidion root rot (Grzywacz and Wazny 1973, James et al. 1982). According to
the model developed by James and Cobb (1989) for the mixed conifer forests in southern
California, tree losses from Heterobasidion root rot are 6.5 times greater in stands severely
damaged by air pollution than in stands only moderately or slightly damaged. Although
a cold climate and relatively nutrient-poor soil are considered to intensify the harmful
effects of air pollution on trees (Raitio 1990, Béck 1994), there have been no observations
of severe forest damage caused by pollutant emissions in Finland or in the other Nordic
Countries (Lindgren et al. 2000, Ingerslev et al. 2001).

The Earth is now about 0.5° C warmer than it was 100 years ago, and a part of the
observed temperature increase has been attributed to increased emissions of greenhouse
gases and aerosols (Houghton et al. 1996). The natural variation in the climate is large in
Finland. However, according to climate scenarios it is expected that the annual mean
temperature may increase by 0.6-3.6° C (relative to 1961-1990) by 2050. It is also
estimated the annual precipitation rate will increase (Carter et al. 1995). With increasing
temperature, the distribution area of Heterobasidion may move farther towards northern
Finland, while the damage due to root and butt rot may become more severe in southern
Finland.

| .5 Possibilities of silviculture in disease control

“Control measures are, in fact, almost impossible once the fungus is
below ground” Rishbeth 1949.

|.5.1 Stand regeneration

[.5.1.1 Mechanical soil preparation

Commerecial clear cutting is a silvicultural system widely employed for the regeneration
of Norway spruce forest in southern Finland. Following harvest, sites are usually prepared
for planting by mechanical soil preparation such as harrowing, scarification and mounding
or a combination of these techniques. Whether soil preparation has any effect on the
incidence of Heterobasidion root rot in the subsequent spruce generation is not well
known. In Denmark, Treschow (1958) did not find any difference in the infection rate
between spruce planted 40—-60 years earlier on deep-ploughed sites or on sites without
soil preparation. Furthermore, no significant increase or decrease in decay incidence



was found in ploughed spruce sites in Germany (Seibt 1964), compared with unploughed
sites. On the other hand, Redfern (1984) reported that the vegetative spread of Hetero-
basidion was influenced by the direction of the plough ridges: the spread was more
frequent along the ridges than between ridges separated from each other by a furrow. It
is not known whether the ploughing had an effect on the total disease incidence. Ploughing
as a soil preparation method is, however, no longer used in Finland for aesthetic and
other reasons.

Light soil preparation treatments such as harrowing and scarification may enhance
the spread of the disease. According to Ronnberg and Vollbrecht (1999) there might be
a risk that scarification, by distributing pieces of infected stump roots across the sites,
increases the potential for Heterobasidion infection of young larch seedlings. On the
other hand, soil preparation markedly improves the survival and early growth of spruce
seedlings and increases a natural admixture of birch. In the majority of instances,
mechanical soil preparation is a prerequisite for successful forest regeneration under
Finnish conditions (Raulo and Rikala 1981, Kinnunen 1989, Milkénen 2001).

[.5.1.2 Stump removal

Stump removal is a direct control measure to remove inoculum from infested sites and
avoid carry-over of the disease to the new stand. In Great Britain, stump removal has
proved to be an effective and useful method to control Heterobasidion root rot in heavily
infected pine stands (Greig 1984, Greig et al. 2001). In Sweden, Stenlid (1987) found
that the incidence of Heterobasidion infection significantly decreased on sites where
stumps of the previous rotation had been removed and the soil was ploughed and sieved
free of roots thicker than 5 mm prior to planting. Nevertheless, the frequency of decay
caused by fungi other than Heterobasidion did not differ significantly between plots
with or without stump removal. Results obtained in a tree species experiment in Denmark
showed, however, that stump removal had little influence on the incidence of Hetero-
basidion root rot, although for most tree species it had a mitigating effect (Bornebush
and Holm 1934, Yde-Andersen 1970). The reason for disease spreading was that some
pieces of infected roots were left in the soil, from which the fungus may have spread to
the next tree generation (Yde-Andersen 1970). Leaving the lifted stumps on a regeneration
site apparently also reduce the effectiveness of stump removal as a control method of
Heterobasidion root rot (Kurkela 2000).

Stump removal is an expensive control method, and because earlier there was no
use for the lifted stumps, stump removal was not introduced into practical forestry in
Finland (Kuitto 1984). During the last few years, however, there has been renewed interest
in stump removal; the lifting process has been developed, and stumps are now utilized as
a source of energy. As a result of these developments, and because the new technique
enables site preparation without extra costs, the removal of stumps is considered to be
economically justified even on healthy sites. Although even complete stump removal
does not eliminate the source of infection entirely from the infested site, it reduces carry-
over of the disease to the new stand. Thus, stump removal may become a practicable
control procedure on infested spruce and pine sites where a change of tree species is not
possible.
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[.5.1.3 Prescribed burning

In southern Finland, Kallio (1965) studied the effect of prescribed burning on the aerial
infection of Norway spruce stumps and found that burning strongly reduced stump
infections on a clear cutting area. The control mechanisms provided by prescribed burning
remained, however, largely unclear. Penttild and Kotiranta (1996) observed that burning
totally destroyed Heterobasidion basidiocarps and thus, at least in the short-term, burning
reduces the incidence of local inoculum. It has also been shown that soil sampled from a
burned area totally inhibits germination of Heterobasidion conidia (Kelley and Curl
1972). Furthermore, there is some evidence that burning increases soil microbial
populations antagonistic to Heterobasidion (Froelich et al. 1978).

On the other hand, the severity of Heterobasidion root rot is related to soil pH and is
more serious on alkaline than on acid soils (Rishbeth 1951b). Hence the temporarily
alkaline conditions caused by burning (Viro 1969) may favour disease development.
Factors such as root vigour and water-supply presumably affect the resistance of roots of
young conifers to Heterobasidion (Rishbeth 1951b, Lindberg and Johansson 1992). On
burned sites, where surface organic matter is destroyed and the roots easily suffer from
drought, the young trees may be more susceptible to infection (Rishbeth 1949, 1951b).
Rishbeth (1951a) also showed that basidiospores are able to germinate on freshly charred
surfaces of pine trunks. The fungus then colonized the underlying unaffected tissues and
the chance of establishment was possibly increased by the destruction of fungal
competitors in the pine bark. Fire-damaged pine roots are the principal entry point for
decay-fungi including Heterobasidion in pine stands (Littke and Gara 1986, Otrosina et
al. 1995). These results indicate that the use of burning as a control measure against
Heterobasidion may actually increase the incidence of the disease, depending on the site
conditions, fungal flora, intensity of the fire, and other more or less unknown factors.
More information is needed about the survival of Heterobasidion in spruce stumps after
burning, as well as about the infection of the new spruce generation established on a
burned site, in order to assess the effectiveness of prescribed burning as a control method
against Heterobasidion root rot.

1.5.1.4 Tree species selection

When regenerating infested sites, the best method to avoid losses in the following tree
generation is to cultivate a tree species that is resistant to the Heterobasidion species
occurring on the site. On old spruce sites in southern Finland, where H. parviporum is
the most frequent decay-causing agent (Piri et al. 1990, Korhonen and Piri 1994),
regeneration with broad-leaved trees and Scots pine is recommended (Korhonen 1978a).
Scots pine is not fully resistant to H. parviporum and some pines planted near decayed
spruce stumps may become infected and die (Korhonen 1978a, Jokinen and Tamminen
1979). With increasing stand age, however, the resistance of Scots pine to H. parviporum
increases and the spread of the disease in a pine stand is checked. On sites with a pine
history H. annosum s.str. may predominate, also in Norway spruce stands (Korhonen et
al. 1992, Thomsen 1994). In spruce stands infected by H. annosum s.str., admixture of
Scots pine and birch (Betula pendula Roth) are also at risk of infection. As a pure stand,
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on the other hand, birch has proved to be very resistant to H. annosum s.str. under Finnish
conditions. Apparently, H. annosum s.str. needs pine or spruce as a food base to be able
to infect living birch. Aspen (Populus tremula L.) growing in a diseased conifer stand
may become infected by H. annosum s.str., but generally not by H. parviporum (Korhonen
and Piri 1994, Kauhanen 2002).

Norway spruce is valuable as saw timber and pulpwood in Finland and, instead of
changing the tree species, it may be economically more profitable to continue growing
spruce even on relatively highly infested sites in spite of the fact that losses caused by
root and butt rot cannot be avoided in the future spruce rotation. Norway spruce may
also be the preferred tree species because most spruce sites are too fertile for the production
of high-quality pine timber, and both birch and pine regenerations are often seriously
endangered by browsing damage by elk (Alces alces) and other cervids (Heikkild and
Raulo 1987, Liddperi and Loyttyniemi 1988, Jalkanen 2001). The degree of infection by
Heterobasidion of different tree species, including Norway spruce, that are regenerated
on sites where the previous tree generation had been Norway spruce attacked by
Heterobasidion is the main subject of this thesis.

Use of regeneration stock of a provenance adapted to local environmental conditions
may increase the resistance of spruce to Heterobasidion root rot (McDonald 1990,
Lindberg and Johansson 1992). In the future, the use of selected resistant individuals
may be the most effective method for controlling Heterobasidion infections in Norway
spruce forests (e.g. von Weissenberg 1980, Dimitri 1980, Swedjemark et al. 2001,
Elfstrand et al. 2001).

Several Nordic studies concerning the effect of mixed tree species on butt rot
incidence in Norway spruce support the idea that an admixture of Scots pine or birch in
mature spruce stands reduces the spread of the disease and protects a proportion of the
spruce from infection (Rennerfelt 1946, Enerstvedt and Venn 1979, Huse 1983, Piri et
al. 1990, Lindén and Vollbrecht 2002). Due to the presence of resistant tree species the
total production of sound wood is also greater in mixed stands than in pure spruce stands.
The fact that the number of Heterobasidion inocula per unit area in the form of decayed
spruce stumps is less in mixed than pure spruce stands may be of some importance for
the following tree generation (Piri et al. 1990). So far, no information is available about
the effects of other tree species on the root rot frequency of Norway spruce in the early
stages of a rotation. The influence of naturally regenerated broadleaf trees on the early
infection of advance-growth and planted spruce is treated in papers II and III.

[.5.1.5 Regeneration method

A few Heterobasidion studies deal with the relationship between regeneration method
and disease incidence on Norway spruce. These studies are based on inventories made in
mature spruce stands and show divergent results. According to Weissen (1981), naturally
regenerated spruce is less often and less severely affected by Heterobasidion root rot
than planted spruce. Based on material collected in Switzerland, Graber (1996) reported
that, although the total butt rot damage was less in naturally regenerated spruce stands
than in planted stands, butt rot caused by Heterobasidion was more common in naturally
regenerated spruce stands. According to statistics collected by Falck (1930) in the Harz
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Mountains, the volume of butt rot was lower but the proportion of infected spruce higher
in naturally regenerated than in planted spruce stands. In Norway, no difference in total
butt rot frequency or in the frequency of Heterobasidion butt rot was found between
naturally established and planted spruce stands (Stamnes et al. 2000).

Advance-growth spruce developed under a spruce overstorey before the regeneration
cutting form a major part of the plant stock (60—80 %) in naturally regenerated spruce
stands in southern Finland (Hédnninen et al. 1972, Résédnen et al. 1985). In Russia,
Semenkova (1971) has shown that advance-growth spruce can be seriously infected by
Heterobasidion. Other studies also support the view that suppressed spruce growing in
the understorey are more susceptible to decay fungi, including Heterobasidion, than
free-standing, dominant spruce (Kangas 1952, Schonhar 1995, Gramss 1992).

In planted spruce stands the risk of root rot infection is supposedly associated with
root damage caused by lifting in the nursery, as well as with the damage caused by
twisting or bending the roots during planting (Ouelette et al. 1971, Graber 1996). The
decay risk associated with planting can be minimized by planting high-quality nursery
stock adapted to the local environmental conditions, by careful working in the nursery
and field, by using container seedlings instead of bare root seedlings, and by using correct
planting techniques (Singh and Richardson 1973, Singh 1975, Thies and Russell 1984).
Dense regenerations favour the spread of the disease as a result of competition stress and
more frequent root contacts with adjacent trees. According to Kiilla and Lohmus (1999),
the formation of root grafts, which are a pathway for secondary infection, can be avoided
by planting fewer than 2 500 plants per ha. The distance between trees should not be less
than 1.5-2 m. In dense regenerations the number of thinning stumps will also be great
and, consequently, the risk of stump infection will also increase (Due 1960, Redfern
1984, Venn and Solheim 1994, Johansson and Pettersson 1996). On the other hand,
greater losses to Heterobasidion can be tolerated at higher planting densities than at
lower densities (Greig 1984). Current management practice in Finland favours a spacing
of 2.2 m, i.e. about 2 000 plants per ha (Hyvén metsdnhoidon suositukset 2001), which
appears to be low enough to hamper the vegetative spread of Heterobasidion in the early
stages of stand development.

The results obtained by Mdykkynen and Miina (2002) emphasize the importance of
disease transfer from the previous to the next spruce generation. The presence of butt rot
at the first thinning had a larger impact on the soil expectation values than the butt rot,
which developed from stumps infected by airborne spores during the first thinning.
Consequently, silvicultural measures that decrease the transfer of Heterobasidion to the
next rotation of spruce are fully justified. Papers II and III of the thesis treat the effect of
regeneration method on the transfer of Heterobasidion root rot from old spruce rotations
to the subsequent spruce regeneration.

1.5.2 Logging operations and disease control

The extent of damage caused by Heterobasidion in Norway spruce stands is closely
correlated with the frequency and intensity of thinning operations (Molin 1957, Venn
and Solheim 1994). The risk of infection of freshly-cut stumps and wounds is high during
the period when spores of Heterobasidion are present, i.e. from April to November in
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southern Finland (Kallio 1970). The most effective means to eliminate the risk of stump
and wound infection is to schedule the logging operations in the winter time when the
temperature is below -5° C (Kallio 1970, Solheim 1994, Brandtberg et al. 1996,
Moykkynen et al. 2000). Moreover, snow and frozen soil protect roots against logging
injuries; the injuries are fewer and smaller than those inflicted in summer operations
and, consequently, the decay starting from injuries advances less rapidly (Isomiki and
Kallio 1974).

Rishbeth’s elucidation of the importance of stumps as an infection route of
Heterobasidion resulted in the development of control measures that reduce spore
infection in harvested stands. Several biological and chemical control agents have been
experimentally used against stump infection in Norway spruce stands, and a few of them
have found practical use. In Finland, spore suspensions of Phlebia gigantea (Fr.) Donk
(commercial name “Rotstop”) or urea are recommended for use in summer thinnings of
spruce and pine stands, as well as in final cuttings if the tree species is not changed.
Urea, when applied as a 30 % solution immediately after cutting, reduces the infection
rate of spruce stumps by approximately 86 % (Johansson and Brandtberg 1994). Urea
per se is not toxic to Heterobasidion; the protecting effect is based on the high pH value
of above 7 caused by the ammonia formed in the hydrolysis of urea (Johansson et al.
2002). Comparable or even better protection than given by urea has been obtained with
the competing fungus P. gigantea, extensively used in practical forestry in Finland
(Korhonen et al. 1994, Korhonen and Lipponen 1995). Its advantage over chemicals is
that, apart from blocking the entry of Heterobasidion through the stump surface, P.
gigantea grows down into the stump and thus, to some extent at least, also blocks the
spread of Heterobasidion in the stump and roots (Korhonen and Lipponen 1995). Although
the number of harvesting machines equipped with stump treatment devices, as well as
the annually treated area, continues to increase, stump treatment is not yet a standard
practice in Finnish forests. According to Moykkynen et al. (2000), stump treatment is
profitable in the thinning of spruce (one thinning during a rotation) if the stump infection
rate is above 10 %.

The effect of the number and intensity of thinning operations on disease incidence
has been investigated in several studies. In general, few and light thinnings performed as
late as possible during the rotation are recommended to control the incidence of
Heterobasidion root rot (e.g. Henriksen and Jgrgensen 1953, Venn and Solheim 1994,
Vollbrecht and Agestam 1995, Moykkynen et al. 2000, Méykkynen and Miina 2002).
Based on a simulation model and nonlinear stochastic optimization, Moykkynen et al.
(2000) showed that, in Norway spruce stands exposed to infection by Heterobasidion,
one thinning and a 6-year shorter rotation than normal resulted in the highest soil
expectation value at a 3 % interest rate. Management without commercial thinnings was
recommended by Vollbrecht et al. (1994) for slowing down disease development in spruce
stands. An unthinned stand escapes primary spore infection, but the rate of secondary
infection may also be reduced due to the fact that Heterobasidion spreads more slowly
in the roots of living trees than in dead stump roots (Bendz-Hellgren et al. 1999). On the
other hand, based on results of long-term studies in Germany, Schonhar (1997)
recommends thinnings to prevent strong root and crown competition that increases
susceptibility of Norway spruce to Heterobasidion. Kiilla and Lohmus (1999) suggest
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that the thinning of a Norway spruce stand should be completed before the formation of
root grafts (i.e. before the stand age of 15-20 years) in order to reduce secondary spread
of Heterobasidion. After that, no thinnings was recommended until the final harvesting.

The probability of stump infection decreases with decreasing stump diameter
(Paludan 1966) and the risk of spore infection in stumps created in precommercial thinning
seems to be small (Benz-Hellgren and Stenlid 1998). A Norwegian study showed,
however, that under favourable conditions Heterobasidion may infect a high proportion
(20.5 %) of precommercially thinned spruce stumps in the diameter class 6—7 cm (Solheim
and Bjgre 1998). The spread of the fungus to adjacent trees is, anyway, not common in
young spruce stands (Vollbrecht et al. 1995a, Kiilla and Lohmus 1999) and, so far,
treatment of precommercial thinning stumps has not been considered necessary in Finland
or the other Nordic Countries.

The last opportunity to reduce losses in mature Norway spruce stands seriously
affected by Heterobasidion is to shorten the rotation length (e.g. Graber 1996, Bendz-
Hellgren et al. 1999). In practice, however, it may not be easy to assess the point when
the production of sound timber is less than the decay rate. Simulation models like that
constructed by Moykkynen et al. (2000; cited above) could be useful tools in making
decisions about the application of control methods during stand development.

[.5.3 Nutrient management

Some Russian investigations have shown that combined NPK fertilization can increase
the resistance of Scots pine to Heterobasidion root rot (e.g. Pasternak 1979, Fedorov et
al. 1979, Raptunovich 1989). Novikov (1976) reported the same positive effect on
fertilized Norway spruce. However, the influence of fertilizer treatments on forest health
is complex and no generalizations can be made about whether the application of compound
fertilizers increases or decreases the incidence of root and butt rot in conifer forests.

In Europe, a new type of forest fertilizer treatment, so-called vitality or reconditioning
fertilization, designed to prevent or alleviate forest decline caused by air pollutants, was
introduced in the late 1980s and at the beginning of 1990s (Huettl 1988, Huettl et al.
1990). The purpose of vitality fertilization is to improve the vitality and resistance of
forest trees suffering from nutrient deficiencies and imbalances, to compensate for
nutrients removed from the forest ecosystem by intensive biomass harvesting, and to
counteract natural and anthropogenic soil acidification. Research on this topic has recently
also been carried out in the Nordic countries (Andersson et al. 1998, Milkonen 1998,
Milkonen et al. 2000). The fertilizers used in these studies have a low nitrogen content
or are nitrogen-free, and may contain trace elements and macronutrients. They often
consist of a mixture of fast- and slow-release compounds. Long-term fertilization effects
as well as minimization of leaching losses, are achieved using slow-release compounds.

Only little information is available about the influence of different reconditioning
fertilizers on the development of Heterobasidion root rot in Norway spruce stands. An
inoculation experiment carried out in a compensatory fertilized Scots pine stand in south-
eastern Finland showed, however, that application of N-free compound fertilizer may
retard the development of Heterobasidion root rot in an infected pine stand. Furthermore,
a slow-release compound fertilizer without supplementary limestone may also increase
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the resistance of Scots pine to Heterobasidion infection (Piri 2000). The effect of a
nitrogen-free vitality fertilizer on the growth rate of Heterobasidion in spruce roots has
also been studied in Sweden. In this study, the mycelial growth was slightly faster in the
roots of fertilized trees than in the roots of control trees (Wahlstrom and Barklund 1994).
Study VI of this thesis deals with the growth rate of H. parviporum in the roots of
Norway spruce treated with different vitality fertilizers.
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2 Obijectives of the thesis

The aim of the first paper was to determine the longevity of Heterobasidion mycelium in
Norway spruce stumps after final felling and, further, the importance of old stumps as
sources of infection in the subsequent tree generation consisting of Norway spruce, Scots
pine, lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Wats.), Siberian larch
(Larix sibirica Ledeb.) or silver birch (B. pendula). The frequency of the disease in the
two tree generations was determined, and the transfer of the disease from old spruce
stumps to the next tree generation was investigated by identifying genotypes of
Heterobasidion occurring in the stumps of the previous spruce generation and in the
diseased trees of the present generation.

The subject of papers II and III was the early development of Heterobasidion root
rot in young, unthinned advance-growth and planted Norway spruce regeneration on
sites infected by Heterobasidion. In order to clarify the effect of regeneration method on
the transfer of Heterobasidion root rot from the previous spruce rotation and the role of
admixed tree species in disease spread, the incidence of Heterobasidion infections as
well as the origins and spatial distribution of the Heterobasidion genets were determined
in consecutive spruce rotations.

The last study (paper IV) was carried out to elucidate how vitality fertilization affects
the development of Heterobasidion root and butt rot in Norway spruce forests where the
disease is a serious problem. The growth rate of H. parviporum in the roots of Norway
spruce treated with four different vitality fertilizers was determined with the aid of
inoculation experiments.

The main topics of the thesis are the transfer of Heterobasidion to the subsequent
tree rotation and the effect of vitality fertilization on disease development, which are
important aspects when devising silvicultural controls for this disease. Also, the routes
and the rate of secondary spread of Heterobasidion in the course of a Norway spruce
rotation are discussed.
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3 Materials and methods

3.1 Sample plots (I, I, 111}

A total of 90 sample plots were established in 32 different stands on forest soil in southern
Finland (Lapinjérvi, Loppi, Ruotsinkyld, Sipoo and Solbdle; Fig. 1). The sites were of
the Myrtillus and Oxalis-Myrtillus forest site types, which are typical spruce sites in
southern Finland (Cajander 1949). The previous rotation on each site had been Norway
spruce infected by Heterobasidion. In study I, the infested sites were planted after clear-
cutting with Scots pine, lodgepole pine, Siberian larch or silver birch or regenerated
naturally with Norway spruce. The age of the planted stands varied from 8 to 44 years
and the age of naturally regenerated spruce stands from 45 to 53 years. In study II, the
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Fig.l. Location of the experimental areas.
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regeneration consists of advanced-growth spruce developed under a spruce overstorey.
In study III, the sites were planted after clear-cutting with Norway spruce. The mean
age of the advance-growth spruce in study II varied from 14 to 44 years and the age of
the planted spruce in study III from 2 to 23 years.

Some regeneration stands were cleaned (I, IIT) and two were thinned (I) before the
investigation. No admixed tree species were left on the cleaned plots. On the uncleaned
plots, the proportion of admixed tree species (naturally regenerated pine, birch (B. pendula
and B. pubescens Ehrh.), rowan (Sorbus aucuparia L.), white alder (Alnus incana (L.)
Moench) and European aspen (Populus tremula) varied from 5 to 80 percent.

The size of the sample plots in study I varied from 0.04 to 0.3 ha depending on the
area of the stand compartment and the distribution of old rotation stumps infected by
Heterobasidion. In studies Il and II1, circular plots were established in the disease centres.
Individual disease centres (i.e. groups of infected trees) contained one to eleven colonized
trees or stumps (on average three trees) of the previous rotation encompassing an area
averaging 20 m in diameter. The control plots were established in the healthy part of the
stand, where no signs of Heterobasidion infection had been observed in the earlier tree
generation.

3.2 Measurements and sampling (1, II, ll)

The total growing stock, including the stumps of the previous rotation, was mapped on
all the regeneration plots. Seedlings shorter than 30 cm were ignored. Height, diameter
at breast height or at stem base and age were recorded for the regeneration tree species,
and height for the naturally regenerated admixed tree species. Species and diameter of
all the stumps of the present and previous rotation were also recorded.

In the middle-aged, naturally regenerated spruce stands (I) wood samples were taken
with an increment borer from the butt and 3—4 main roots of all standing trees and
thinning stumps. In the planted larch, pine and birch stands (I) the core samples were
normally taken only from trees showing external symptoms of infection (foliage chlorosis,
reduced growth, resin flow, presence of basidiocarps) and from decayed stumps.
Additional core samples were taken from larches growing close to infected stumps or
trees in order to assure that as many infected trees as possible were detected.

The root systems of all the advance-growth spruce (II) and planted spruce younger
than 20 years of age (III) were dug out and examined for infection. In the older stands of
planted spruce (III), the samples were taken from butt and main roots with an increment
borer. Boring is not as reliable method for detecting infected trees by as examination of
the whole root system. It is therefore possible that older trees with very incipient infection
have been classified as non-infected trees. In planted spruce, however, decay seems to
advance rather rapidly and investigation of the root systems of young planted spruces
showed that, except for a very few trees, the fungus had reached at least one of the main
roots in all the infected trees. Healthy appearing wood cores were also cultivated on malt
agar in order to check for incipient infections.

The samples from old conifer stumps of the previous rotation (I, II, III) and from
overstorey trees (II) were taken with an increment borer or, in cases where the stump
had advanced decay, with an axe and a saw. The presence or absence of basidiocarps on
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each stump and tree sampled was recorded. The decay areas on the stump tops were
described and used as an indication that the tree had been infected and colonized by
Heterobasidion prior to being felled.

Wood samples were cultured on malt agar (2 % ME). Mycelia of Heterobasidion
and Armillaria growing out of the wood samples were isolated. In addition to Hetero-
basidion and Armillaria, some other, frequently occurring basidiomycetes (Resinicium
bicolor (Alb. and Schw. ex Fr.) Parm., Sistotrema brinkmannii (Bres.) J. Erikss., Fomitopsis
pinicola (Sw. ex Fr.) Karst., Phlebia gigantea and Stereum sanguinolentum) were also
isolated from old spruce stumps (I). The root systems of advance-growth spruce (II) and
young planted spruce (IIT) were washed, cut into 5-cm-long sections and incubated in
plastic bags for one to four weeks. Careful washing of the root samples with a brush
under running water before incubation efficiently prevented the growth of suppressive
moulds, such as Trichoderma and Penicillium species, on the samples. The root sections
were microscopically examined for the presence of Heterobasidion and Armillaria, which
were then isolated. No other basidiomycetes were found in the roots of young spruces.

A total of 5 625 regeneration trees and 1 119 old spruce stumps or standing trees of
the previous tree generation were investigated.

3.3 Fertilization treatments (IV)

The inoculation experiment was carried out in a 53-year-old, naturally regenerated Norway
spruce stand in Dragsfjdrd, on the south-western coast of Finland (Fig. 1). The experiment
consisted of five treatments: 1) unfertilized control, 2) compound fertilizer containing P,
K, Ca, Mg, S, Cu, Zn and B, 3) compound fertilizer with nitrogen, 4) compound fertilizer
with nitrogen and limestone, and 5) a stand-specific fertilizer based on needle and soil
analysis containing N, P, K and Cu. The randomised plots (30 x 30 m in size) and a 5-m-
wide buffer strip surrounding each plot were treated after thinning in spring 1991. There
were four replications of each treatment.

3.4 Inoculation of trees (IV)

Three growing seasons after fertilization two dominant or codominant, healthy-looking
trees on the buffer strip of each plot were subjected to artificial inoculation with H.
parviporum. Inoculum cores were prepared by incubating sterile cores of spruce wood
(c. 5 mm in diameter and 4 cm long) on a 1-month-old malt agar culture of Heterobasidion
for 4 weeks. Four different heterokaryotic isolates of H. parviporum were used. Four
roots of every tree were excavated and each of them was inoculated with a different
isolate at about 30 cm from the root collar. The mean diameter of the roots at the
inoculation point was 8.5 cm (range 3.0-19.0 cm). The inoculation was made by inserting
a core colonized with H. parviporum aseptically into a radial hole made with an increment
borer. The hole was sealed with grafting wax and the soil replaced. Root cores were
taken to the laboratory and checked for possible pre-existing root infection. In all, 32
roots of eight trees per treatment were inoculated.
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3.5 Harvesting (IV)

Inoculated roots were harvested 12 months after inoculation. In the laboratory, the roots
were cut at 10-cm intervals in both directions outward from the point of inoculation. The
root sections were washed, incubated in plastic bags for about one week and examined
for conidiophores of Heterobasidion. Isolations were made from each wood section
infected by Heterobasidion. Thirty-seven roots were excluded from the study material
because of contamination or natural root infection, or abnormal root structure. Thus, the
final number of roots per treatment varied from 20 to 28. To determine the effect of
fertilization on tree growth, increment cores were taken at breast height five years after
fertilization.

3.6 Use of somatic incompatibility tests in the studies

In order to obtain detailed information about the transfer of Heterobasidion from the
previous spruce stand to the next tree generation, the frequency, spatial distribution and
size of Heterobasidion genets on the study plots were identified with the aid of somatic
incompatibility tests (I, I, III). Infection was considered to originate from the previous
stand in cases where the same genet was isolated both from old spruce stumps or overstorey
trees and from the subsequent tree stand. Somatic compatibility tests were also performed
in the fertilization experiment (IV) to confirm that the genotype of Heterobasidion isolated
from an inoculated root was the original one. In the test, two isolates were placed 1 cm
apart on malt extract agar (MEA), incubated at room temperature for 3—5 weeks and the
occurrence or absence of a demarcation line was recorded (Stenlid 1985).

3.7 Identification of Heterobasidion and Armillaria species with
mating test

The species of Heterobasidion and Armillaria were determined with the aid of the Buller
phenomenon (Raper 1966, Korhonen 1978a, 1978b). Heterokaryotic isolates of Hefero-
basidion were paired with 2—3 homokaryotic tester strains of both H. parviporum and H.
annosum s.str. on 2 % malt extract agar. The pairings were examined after about 3-
weeks incubation at room temperature. In a compatible pairing the homokaryotic tester
strain turns to heterokaryotic; this was indicated by the appearance of clamp connections
and by a change in the mycelial morphology of the tester.

Diploid isolates of Armillaria were paired with three haploid tester strains (monospore
isolates) from each of the species A. borealis (Marxmiiller & Korhonen), A. cepistipes
Velenovsky and A. ostoyae (Romagnesi) Henrik, and the mating reactions were recorded
after 3—4 weeks incubation time. A change in the external appearance of the tester from
whitish and fluffy to brown and flat indicates diploidization of the tester and a compatible
pairing (Korhonen 1978b).

A diagram of the experimental procedures is presented in Figure 2.
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The total growing stock including trees of the
present tree generation, and stumps of the previ-
ous rotation were mapped and sampled.

Wood samples

The mycelium of Heterobasidion growing out of
wood samples was isolated.

U

Pairing of pure cultures

The genets of Heterobasidion on the experimental
plot were identified on the basis of demarcation
line formation (somatic incompatibility). Left: self
pairing; right: pairing of two unrelated hetero-
karyons.

Heterobasidion species of each genet was deter-
mined.

A map showing the spatial distribution of
Heterobasidion genets on the experimental plot was
prepared. Trees and stumps within the grey area
are infected by the same Heterobasidion genet.

Fig.2. A diagram of the experimental procedures carried out on a study plot established in a
planted, 22-year-old Norway spruce stand.
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3.8 Statistical analyses

The relationships between disease incidence and independent variables depicting stand
characteristics were investigated using Pearsson’s product-moment correlation analysis.
Variables describing disease incidence in this analysis were percent trees or stumps
infected by Heterobasidion or Armillaria, and percent stumps with Heterobasidion
basidiocarps. Variables describing stands characteristics were age, height and diameter
of the trees, age and diameter of stumps, proportion of admixed trees and stand density.
Correlation analysis was also used to determine the association between the disease
incidence of the previous and present tree rotations (II and III), between the diameter of
the decay at the stump surface and the height of the decay column in the stem (IIT), and
between the growth rate of Heterobasidion and diameter of the tree (IV). In correlation
analyses performed on the material of planted stands, the mean value of plots established
in the same even-age plantation was considered the experimental unit (III). In advance-
growth stands, in contrast, the study material was pooled before making calculations
because of heterogeneity of tree age and size within and between plots in the same stand
(II). Multiple regressions based on combinations of independent variables were used to
explain some of the variation of the dependent variable (percent infected advance-growth
spruces) (II).

Infection rates between planted and naturally regenerated spruces (III), as well as
the growth rate of Heterobasidion from the inoculation point towards the trunk and
towards the root tip (IV), were compared using the paired ¢ test. Further, the ¢ test was
used to analyse the difference in the diameter distribution of stumps colonized by
Resinicium bicolor and Heterobasidion (I). The average number of spruce infected per
decay stump in different age classes was compared using non-parametric tests (III). The
effects of different treatments on the growth rate of Heterobasidion (using mean values
of fungal strains) were tested by analysis of variance (ANOVA) (IV). ANOVA was also
used to compare the volume growth of trees among treatments and the fungal growth
rate among different Heterobasidion strains (IV). Logarithmic or square-root
transformation was applied before the analyses to meet the prerequisites of distribution
normality. The significance level in all tests was p < 0.05. The analyses were performed
using the BMDP statistical package (BMDP, Inc. 1990) (I, IL, IV) or SPSS for Windows
10.0 (SPSS, Inc. 1999) (IID).

Detailed information about materials and methods can be found in original
publications I-IV.
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4 Results and discussion

4.1 Survival of Heterobasidion in spruce stumps after final
felling

The results (I, II, ITI) showed that in most stumps of timber-size spruces, which had
been attacked by Heterobasidion root rot before final felling, the fungus was able to
remain viable for at least 20 years after harvest. Laine (1976) recorded the fungus in a
35-year-old spruce stump, but Heterobasidion can survive for a considerably longer
time in large spruce stumps (diameter over 40 cm). In the present work, active mycelium
and basidiocarps of Heterobasidion were isolated from Norway spruce stumps that had
been felled 46 years earlier. No older stumps were investigated. The mycelium isolated
from the oldest stumps appeared vigorous, which suggests that, in southern Finland, the
fungus can persist in large spruce stumps even for 50 years or more. In Great Britain,
viable Heterobasidion has been found in a 68-year-old larch stump (Greig and Pratt
1976), which is the maximum longevity of Heterobasidion in a conifer stump recorded
in Europe. In the present studies, all the cuttings had been carried out in the winter and
infection by spores through the stump surface after final cutting is unlikely. Also, the
total colonization of stumps by Heterobasidion and the fact that several old stumps
belonged to the same genet, indicate that the stumps were already infected at the time of
clear-felling. Infection of several stumps by spores of the same genotype is extremely
unlikely, although it is possible through conidial infection. Some insects breeding in
stumps, such as Hylobius abietis, have been found to transfer conidiospores of Hetero-
basidion for short distances (Nuorteva and Laine 1968, Nuorteva and Laine 1972, Kadlec
et al. 1992). However, the inoculum transferred by an insect is very small and it is
questionable whether the mycelium is able to compete with other fungi and colonize the
stump. The proportion of asexual conidiospores in the air spora seems to be low in
Finland (Kallio 1970,1971, Moykkynen 1997). However, the possibility that a freshly
cut stump would be infected by heterokaryotic conidiospores released by wind or rain
from an adjacent colonized spruce stump cannot be wholly excluded. No signs of such
conidial infection (based on size and location of the fungal colonies) were found in our
studies.

Basidiocarps of Heterobasidion were frequent on older stumps, in which the fungus
had grown out from the central parts of the stump wood and penetrated the bark. Active
basidiocarps were found in 7.6 % of the 9- to 15-year-old stumps and 21.7 % of the 26-
to 46-year-old stumps colonized by Heterobasidion (I). Because the frequency of active
basidiocarps in stumps appears to be high at the time of first thinning, and because the
majority of the spores are deposited in the immediate surroundings within the stand
(Kallio 1970, Stenlid 1994a, Moykkynen et al. 1997), the old stumps may considerably
increase the risk of spore infection in the subsequent rotation, especially if no stump
treatment is carried out in summer cuttings.
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4.2 Disease transfer into the subsequent spruce
regeneration

The present studies showed that root contacts are an important means of Heterobasidion
transfer from old stumps to the surrounding spruce regeneration. As juvenile stands
become older, root systems enlarge and more contacts develop between colonized stump
roots and the roots of the surrounding regeneration. On the other hand, the risk of disease
transfer from old stumps through root contacts decreases with time due to the
decomposition of stump roots. In unthinned regeneration stands (mean height over 2
meters), the fungus had spread vegetatively from one decayed overstorey tree or old
stump on the average into 3.8 advance growth spruce trees and 1.1 planted spruce (II,
III; data not shown). The distance between colonized stumps and regeneration trees is
an important factor determining regeneration tree infections. In dense advance-growth
regeneration (11 800 trees/ha), where the average distance between trees is only ca. 0.9
m, the probability of root contacts and disease transfer is considerably higher than in
sparsely planted stands with a distance of ca. 2.4 m (1 800 trees/ha).

Investigation of the genotypes of Heterobasidion indicated that the regeneration
trees were mostly infected by direct growth of the fungus from the old stumps. In contrast,
this kind of disease transfer between regeneration spruce was uncommon or, at least in
the youngest stands investigated, it did not occur at all (II, III). In thinned, middle-aged
spruce stands the average number of trees infected from one old stump was 3.0 (I). In
those 45- to 55-year-old stands where most of the old stumps were already ineffective,
the Heterobasidion genets mainly expanded from tree to tree in the current rotation.

On the whole, the rate of disease transfer from old stumps into the regeneration
varied widely from plot to plot. On seven plots in the planted regeneration (25 % of all
study plots), no infections were found in planted spruce even though they were growing
close to an old spruce stump colonized by Heterobasidion. This would suggest that the
coexistence of Armillaria in the same stump diminishes the vegetative spread of
Heterobasidion to the surrounding regeneration. Of the stumps colonized by Hetero-
basidion alone, 62 % showed secondary spread into adjacent trees, whereas from stumps
colonized by both Heterobasidion and Armillaria the percentage was clearly lower, 25
% (III). No detailed observations on the decay pattern of Armillaria in stump wood
were made in this study, but obviously Armillaria colonizes the outer root tissues and
thereby restricts the contacts of Heterobasidion with adjacent root systems (Greig 1962,
Morrison and Johnson 1978). Also, Resinicium bicolor was common in the old spruce
stumps (I/Fig.1). The diameter distribution of stumps colonized by R. bicolor differed
statistically significantly (p < 0.01) from that of stumps colonized by Heterobasidion. In
contrast to Heterobasidion, R. bicolor typically occurred in small stumps and its frequency
decreased with increasing stump diameter. Consequently, the effect of R. bicolor on the
secondary spread of Heterobasidion may not be as significant as that of Armillaria.

The effect of soil properties on disease transfer has been investigated by Redfern
(1984, 1998), who showed that both survival of H. annosum in inoculated Sitka spruce
(Picea sitchensis (Bong.) Carr.) stumps and the infection of surrounding trees was greater
on mineral soils than on peat soils. According to Redfern (1984), soil factors which
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influence the frequency of root contacts may have an important effect on spread of the
disease. In the present studies, the investigated stands were located on rather similar
(podzolic) till soils, and no further attempts were made to analyse the effect of different
soil factors on spread of the disease.

4.3 Secondary versus primary infection in relation to the
regeneration method

Of all the Heterobasidion infections, the proportion of secondary infections from the
previous rotation through root contacts was 71 % in planted spruce regenerations (III)
and 53 % in advance-growth regenerations (II). The structure of Heterobasidion genets
(i.e. the ratio of secondary infection to primary infection) has, so far as I know, not been
studied earlier in young, unthinned, naturally regenerated spruce stands. In a Swedish
study (Stenlid 1987), the rate of secondary infection from previous rotations in planted,
unthinned spruce stands was of the same order (52-79 %) as that in the planted stands of
the present study (III). Undoubtedly, all the infection sources of the previous rotation
cannot be found during sampling and therefore the figures for vegetative disease transfer
from old stumps presented in these studies are probably somewhat lower than the actual
values. The likelihood of underestimating the proportion of secondary spread from old
stumps increases with time passed since final felling.

The reason for the higher proportion of primary infection in advance-growth
regeneration compared with that in planted stands remained partly unclear. The same
methods were used in both studies, and therefore the results obtained in advance-growth
and planted stands should be comparable (II, III). The inoculum potential of spores is
small compared with that of a vigorous mycelium, and therefore there must be some
other factors that predispose roots to spore infection. In advance-growth regeneration
this could be the superficial root system that often suffers from drought (Sirén 1951).
Furthermore, understorey trees are often stressed as a result of reduced light and nutrients,
which may lower their ability to resist primary infection. Some earlier studies support
the result that suppressed trees are more susceptible to primary infection by Hetero-
basidion than free-standing trees (Gibbs 1967, Schonhar 1995).

The total frequency of Heterobasidion root rot was generally higher in advance
regeneration than in planted stands of the same tree size (Fig. 3). In both types of
regeneration, the decay frequency correlated positively with the tree size and age of the
regeneration, as well as with the disease incidence of the previous rotation.

Several earlier studies have demonstrated that the incidence of Heterobasidion root
and butt rot tends to increase in successive spruce rotations (e.g. Jorgensen et al. 1939,
Holmsgaard et al. 1961, Schonhar 1973, Yde-Andersen 1978). It has been also shown
that the old infected stumps are important infection sources in the next spruce rotation
(Stenlid 1987, Schonhar 1973, 1990). However, recent Nordic studies dealing with the
incidence of butt rot in planted spruce stands did not show any correlation between the
incidence of butt rot at final felling of spruce stands and the incidence of butt rot at first
thinning of the subsequent spruce stands (Vollbrecht and Stenlid 1999, Rénnberg and
Jgrgensen 2000, Ronnberg et al. 2003). The spore infection of healthy stumps at clear
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Fig. 3. Frequency of infected regeneration spruces in disease centres of Heterobasidion root rot
in relation to tree height.

felling and subsequent transfer of Heterobasidion to planted spruces has been suggested
as a factor that can diminish the correlation in decay incidence in successive spruce
generations (Ronnberg and Jgrgensen 2000, Ronnberg et al. 2003). In our studies, all the
cuttings had been carried out in winter when infection of healthy stumps by spores is
unlikely under Finnish conditions. Compared to Finland, decomposition of old colonized
stumps is faster in Denmark and southern Sweden, which may restrict the vegetative
spread of Heterobasidion to the next rotation. Furthermore, the studies mentioned in the
above deal with butt rot in general, mainly based on the visual examination of stump
surfaces, whereas the present studies have been carried out in Heterobasidion centres
and are focused on the identification of individual Heterobasidion genets. Consequently,
the results obtained in Denmark and Sweden may therefore not be directly comparable
with our results.

4.4 Disease development in individual trees in relation to
the regeneration method

In advance-growth spruce, Heterobasidion had typically colonized only a small part of
the root system. Only in 21 % of the infected advance-growth spruce had the decay
advanced up to the root collar or the tree had been killed by the fungus. In the majority
of the infected planted spruce (72 %) the decay had spread into the stem. In the 22- to
23-year-old plantations, the mean extension of visible decay was 170 cm and the maximal
extension 350 cm.

The faster growth rate of Heterobasidion in the wood of planted spruce as compared
with advance-growth spruce is probably due to the faster growth of the planted trees
(Isoméki and Kallio 1974, Dimitri and Schumann 1989) and, consequently, the rate of
spread of decay in advance growth spruce may increase after release cutting. The wide
growth rings in fast-growing wood probably directly accelerate the spread of decay.
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Other factors such as moisture content and chemical composition of the wood may,
however, be involved (Courtois 1970, Isomiki and Kallio 1974). The slow advance of
Heterobasidion in advance-growth spruce may also be due to spore infection; the low
inoculum potential of spores may retard disease development at least in its early stage
(Gibbs 1967).

4.5 Transfer of Heterobasidion into the regeneration of other
tree species

H. parviporum is by far the dominant species of Heterobasidion on old spruce sites in
southern Finland. In the present studies (I-III), 99.6 % (out of a total number of 671) of
the Heterobasidion infections in trees and stumps of the previous spruce rotation were
assigned to H. parviporum and 0.4 % to H. annosum s.str. The high frequency of H.
parviporum in the previous stand was also reflected in the high frequency of this species
in the subsequent stand, although most of the replanted tree species are considered to be
highly resistant to H. parviporum (Korhonen 1978a, Swedjemark and Stenlid 1995).
The infection potential of old spruce stumps is high and, consequently, even tree species
with a low susceptibility to H. parviporum may become infected when planted on a site
where the previous spruce rotation had been attacked by Heterobasidion. If these tree
species are not well adapted to the site, the damage caused by H. parviporum may be
extensive. In the present study, a silver birch provenance poorly adapted to the site showed
considerable root rot damage although B. pendula is normally highly resistant to H.
parviporum (I).

The age of the stands is a decisive factor when assessing the susceptibility of various
tree species to decay caused by H. parviporum. In pine, H. parviporum causes root
decay leading to the mortality of seedlings and pole-sized trees, whereas older pines
appear to be able to prevent the infection (Korhonen 1978a, Korhonen and Piri 1994). In
Norway spruce and Siberian larch, Heterobasidion causes a typical butt rot and the disease
incidence tends to increase during the course of a rotation (Laine 1976). Both young and
mature silver birch (Betula pendula) may have decay caused by Heterobasidion but, so
far, birches infected by H. parviporum have rarely been observed in Finland (Korhonen
1978a, Korhonen and Piri 1994).

Compared to Norway spruce, the transfer of Heterobasidion root rot into the other
tree species was considerably less. The average number of regeneration trees infected
per old spruce stump colonized by Heterobasidion was 4.5 trees in the advance-growth
regenerations and 1.2 trees in the planted spruce stands (II, III). In the lodgepole pine,
Siberian larch, Scots pine and silver birch stands the corresponding values were 0.5, 0.3,
0.05 and 0.04, respectively (I). Of all the regeneration trees infected by Heterobasidion,
the proportion of trees infected vegetatively from old stumps was 67 % in the Scots pine
stands, 85 % in the lodgepole pine stands, and 78 % in the birch stands. In the older larch
and spruce stands, which were thinned before the investigation, the corresponding values
were only 19 % and 37 %, respectively. Thinning operations increase the incidence of
primary infections. However, the likelihood of missing inoculum sources of the previous
rotation is also greater when the interval since final cutting is longer. Small, rapidly
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decomposed stumps have a small root system and are often colonized by other decay
fungi such as Resinicium bicolor and may therefore not be of great importance for disease
transfer. Nevertheless, some of the genets in the present stands that were assumed to
have developed via spore infection may, in fact, have originated from decomposed stumps
of the previous rotation.

In middle-aged, naturally regenerated spruce stands, the frequency of trees infected
by Heterobasidion in present stands (30.9 %) was almost twice that in the previous
stands (15.8 %) (I/Fig.2). Although the decay frequency of the previous stand may have
been underestimated due to disintegration of some small stumps, the disease incidence
in the present spruce rotation will continue to increase to the end of the rotation and,
consequently, a trend towards increasing disease incidence in consecutive spruce
generations seems likely.

On sites replanted with tree species other than spruce, the overall percentage of
infected trees decreased from the previous to the next stand. Silver birch and Scots pine
proved to be the most resistant tree species when planted on sites infested by H.
parviporum. Although some pine and birch became infected from old stumps, the further
spread of the disease from tree to tree seemed to be uncommon. According to earlier
studies, the susceptibility of Scots pine to H. parviporum is restricted to young trees
between the age of about 5 and 25 years (Korhonen 1978a, Korhonen and Piri 1994), and
it is unlikely that damage would continue in the studied Scots pine stands. Also mature
birch, even when growing as an admixed tree with decayed Norway spruce, appears to
be resistant to H. parviporum (Piri et al. 1990). Stumps of birch do not seem to be
vulnerable to spore infection (Bendz-Hellgren 1997). Both silver birch and Scots pine
thus appear to be good choices when regenerating a site infested by H. parviporum.

In unfavourable conditions, when not adapted to the site, birch can be more severely
attacked by H. parviporum. In the present study, 2 % of the birches of a very northern
provenance (Kittild, 67°40°N, 24°50°E) were definitely colonized by H. parviporum at
the age of 40 years when planted in southern Finland (Ruotsinkyld, 60°21°N, 24°59’E).
The actual amount of damage can be considerably greater, because 47 % of the birch
were killed and it is likely that Heferobasidion had also killed birches at the earlier stage
of development. Because of the exceptional provenance, this stand was not included in
the calculations.

Lodgepole pine and Siberian larch were more susceptible than Scots pine and birch
to H. parviporum. Further damage can be expected to occur in lodgepole pine stands,
because the studied stands were rather young (8 and 14 years). The present decay
frequency in the larch stands may be underestimated, because it is difficult to detect the
disease on larch on the basis of external symptoms, and samples were not taken from all
the standing trees. The disease incidence in larch stands will also probably increase
during the course of a rotation. However, possible damage caused by Heterobasidion in
the seedling stage was no longer recognizable at the time of the investigation. Field
studies have shown that young trees of Larix decidua Mill., Larix kaempferi (Lamb.)
Carr. and Larix x eurolepis Henry are susceptible to H. annosum s.str. (Vollbrecht et al.
1995b, Vollbrecht and Stenlid 1999, Ronnberg et al. 1999, Greig et al. 2001). Based on
an inoculation experiment carried out under greenhouse conditions, seedlings of Larix x
eurolepis and L. kaempferi were found to be susceptible to both H. annosum s.str. and H.
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parviporum (Swedjemark and Stenlid 1995). No distinction has earlier been made between
Heterobasidion species attacking Siberian larch. Kurkela (1988) reported mortality of
Siberian larch seedlings planted on a site where the previous stand had been Scots pine
attacked by Heterobasidion root rot; in this case the larch seedlings were most likely
attacked by H. annosum s.str. In the present study, both H. parviporum and H. annosum
s.str. were isolated from Siberian larch, but H. parviporum was the more frequent species
in both the previous and present tree generation (I/Table 2).

4.6 Effect of admixed tree species on spread of the disease

The effect of admixed tree species on the root rot frequency of spruce at the early stage
of stand development was studied in both advance-growth and planted stands. The
proportion of admixed trees (by number) on the advance-growth plots varied from 5 to
69 %, and on the planted plots from 11 to 80 %. The most frequent admixed tree species
were naturally regenerated birch (B. pendula and B. pubescens) and rowan (S. aucuparia).
No correlation was found between the proportion of infected spruce and the proportion
of naturally regenerated broadleaf trees either in the advance-growth stands or in the
planted stands. It should be noted, however, that some of the planted stands had been
cleaned before the investigation, and the present stand composition might thus be
misleading when assessing the importance of admixed tree species on spread of the
disease (II, III).

An earlier investigation carried out in mature spruce stands showed that the average
size of the Heterobasidion genets was slightly smaller in mixed than in pure spruce
stands, indicating that admixed trees may restrict the vegetative spread of the fungus,
possibly by reducing the number of root contacts between spruce trees (Piri et al. 1990).
In the studied spruce regenerations, vegetative spread between young regeneration spruce
was infrequent. Furthermore, considering that young broadleaf wildings were distributed
very unevenly on the study plots and their root systems were rather small, the influence
of admixed trees on the vegetative spread of Heterobasidion on the investigated sites
was insignificant (II, III).

More important than the proportion of admixed tree species in the regeneration is
their location in relation to the infected stumps. In planted spruce stands, Heterobasidion
root rot is transmitted to the regeneration trees mainly by means of mycelial spread from
old stumps, and the trees growing inside the rooting area of the stumps have the highest
risk of infection. Calculations based on distribution maps of Heterobasidion genets showed
that a 2.5-meter-wide, spruce-free area around colonized stumps would have decreased
the number of infected trees in the planted spruce stands by 50 %. With a radius of three
and four meters, the decrease in infection would have been 60 % and 80 %, respectively
(III, data not shown). Thus, disease transfer into the subsequent spruce stand can be
markedly restricted if no spruce are planted near stumps colonized by Heterobasidion,
and the disease centres are regenerated with broadleaf trees. In advance-growth stands
where the distribution of infected trees was more scattered than in planted stands, possibly
due to frequent spore infections, leaving a protective area around stumps would be less
effective. Because advance growth most readily develops in small stand openings, which

40



are often disease centres of Heterobasidion root rot, careful consideration is required
when using advance-growth spruce in regeneration.

4.7 Root contacts versus root grafts in disease transfer

Heterobasidion is reported to be transmitted by root contact and by root grafts. Contact
between roots arises when two roots touch each other. Roots are considered functionally
grafted when they are connected by common bark, phloem, cambium, and xylem tissues
(Epstein 1978). In living roots of Norway spruce, Heterobasidion is typically confined
within the central part of the root (Gibbs 1968, IV). Radial spread into living sapwood is
limited due to the accumulation of phenolic inhibitory substances in a zone surrounding
the heartwood (Shain 1971). A low oxygen supply induced by high wood moisture content
is also an important limiting factor in the growth of Heterobasidion in the sapwood of
living trees and freshly cut stumps (Worrall and Parmeter 1983, Cwielong et al. 1993,
Bendz-Hellgren and Stenlid 1998). The anatomical structure of root wood with dense
growth rings also acts as a physical barrier that limits inward, radial spread of the fungus
(Johansson and Theander 1974, Tippett and Shigo 1981, Garbelotto et al. 1997a). The
transfer of Heterobasidion between living trees may thus be mainly limited to functional
root grafts, which enable the fungus to grow from the xylem of infected roots to the
xylem of healthy roots. Dead roots of living spruce have been shown to be a potential
point of infection (Dimitri 1969b), and contacts between the dead roots of living trees
may be responsible for disease spreading in stands with extensive root mortality, e.g. in
stands established on old agricultural land (Swedjemark and Stenlid 1993, Stenlid and
Redfern 1998). So far, no experimental evidence is available for this kind of spreading
under field conditions in forest soils.

After the tree is cut and its active defence fails, decay begins to expand outwards
from the centre of the root. When the fungus has breached functionally intact sapwood
and cambial tissue, it is also able to spread into the surrounding trees through looser,
non-grafted root contacts. Consequently, root contacts most probably play an important
role in spread of the disease from stumps and dead trees to adjacent healthy trees. The
fact that the roots of young trees prefer to grow along the channels of decaying or already
decayed old roots (Laitakari 1927) may also increase the probability that a regeneration
tree contacts the inoculum and becomes infected from the previous rotation.

4.8 The size of Heterobasidion genets during the course of a
spruce rotation

In young, unthinned spruce regenerations the mean size of the Heterobasidion genets
(without trees of the previous rotation) was 2.1 trees in the planted stands and 2.6 trees
in the advance-growth stands (III, II; data not shown). In the middle-aged spruce stands
the average size of the genets (including thinning stumps) was of about the same order,
i.e. 2.5 trees (I). Similar results have been obtained in Sweden and Norway, where the
mean size of the genets in thinned spruce plantations varied from 1.0 to 2.5 trees (Stenlid
1985, Venn and Solheim 1994).
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In the final cutting stands in southern Finland the mean size of the Heterobasidion
genets was 1.8 trees, and most of the genets (61 %) had infected only one tree (Piri et al.
1990). In a 60-year old Norway spruce stand in Lithuania, the average number of trees
infected by a single fungal genet was also small (1.5 trees) and about half of the genets
included only one tree (Vasiliauskas and Stenlid 1998). Somewhat larger genets containing
on an average 3.6 trees were identified in a 120-year-old spruce stand in Sweden (Stenlid
1985). In fact, the size of the genets (by number of trees) in the final-cutting stands is
underestimated because most of the thinning stumps infected by Heterobasidion are
already decomposed by the end of the rotation. On the other hand, thinning operations
may increase primary infection resulting in the establishment of new genotypes in the
forest, which reduces the average size of the genets in middle-aged and mature stands.

A Swedish investigation carried out in thinned spruce stands one and seven years
after thinning showed that the genets of Heterobasidion established through spore infection
were confined either to a single thinning stump (90 % of all genets) or had spread to only
one or two adjacent trees (10 %) (Swedjemark and Stenlid 1993). The presence of
Heterobasidion in a stump root at the contact point with a root of a growing spruce did
not ensure the transfer of the fungus to the tree root. In Sitka spruce stumps inoculated
with Heterobasidion spores in Scotland, only 22 % of the contacts between a colonized
stump root and the tree root had resulted in disease transfer 8 years after stump infection.
Transfer was always associated with viable mycelium at the bark surface and a broad,
firm contact (Morrison and Redfern 1994). There is no information available on how
often or how rapidly a spore infection in a stump spreads to an adjacent tree under
Finnish conditions. Neither is it known how living stumps, connected with adjacent
trees through root grafts, affect disease spreading.

Overall, the clonal studies carried out in Norway spruce stands of varying age do
not indicate that Heterobasidion would easily spread as mycelium between living spruce.
This might simply be due to a scarcity of functional grafts necessary for disease transfer.
The probability of root grafts and contacts depends on site factors, including soil depth,
stoniness and slope, and on stand factors, including tree diameter at breast height and
stand density (Yli-Vakkuri 1953, Bloomberg and Reynolds 1982, Reynolds and Bloom-
berg 1982). There is no detailed information about the frequency of functional root grafts
in mature spruce stands on mineral upland soils in Finland. In mature, naturally established
pine stands in southern Finland, approximately 21-28 % of the trees were grafted (Yli-
Vakkuri 1953). Compared to pine, spruce has a wider horizontal root system, and in
spruce stands the frequency of grafted trees may be higher than that in pine stands
(Laitakari 1927). Investigations made in Estonia and Denmark revealed that 25-38 % of
planted mature spruce are interconnected by root grafting (Holmsgaard and Scharff 1963,
Kiilla and Lohmus 1999). In a row culture of Norway spruce with a 2 x 2 m planting
density, the first root grafts were formed when the stand was 24 years old (Kiilla and
Lohmus 1999). Most of the root grafts develop between spruce trees when the stand is
30-60 years old (Holmsgaard and Scharff 1963). Assuming that the tree-to-tree spread
of Heterobasidion is mainly confined to root grafts and approximately one third of the
spruce are functionally grafted and, further, that only a small proportion of the grafts
actually function as an infection route, the vegetative growth of Heterobasidion between
living trees might not be an effective means of disease transfer. The situation may be
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different when the fungus spreads from a dead tree or stump into a living tree, in which
case also less developed root contacts are sufficient for the disease to transmit. Considering
that the growth rate of Heterobasidion in stump roots is almost three times that in the
roots of living trees, felling of infected trees may substantially promote and accelerate
the spread of Heterobasidion root rot in Norway spruce stands (Bendz-Hellgren et al.
1999).

As shown in studies I, IT and III, the size of the Heterobasidion genets in the previous
rotation may be reflected in the size of the genets in the subsequent rotation. A number
of large genets found in a spruce stand are probably derived from the previous tree
generation, where the genet had infected several trees or stumps. In the present studies,
a few exceptionally large genets were detected. One of them included three old stumps
of the previous tree generation, as well as 14 thinning stumps and 14 standing trees of
the present tree generation. Because the stumps of the previous rotation were already
over 40 years old, it is highly likely that more than three trees of the previous rotation
had been infected by the same genet (I). Another large genet included 13 trees of the
previous tree generation and 33 advance-growth trees (II). In a planted stand,
representatives of a large genet were isolated from five old stumps of the previous tree
generation and from 10 planted spruce (III).

If the vegetative spread of Heterobasidion from the previous to the subsequent tree
stand can be prevented or appreciably reduced, for instance by establishing a protective
area around infected stumps or by stump removal, and if the spore infection in the current
rotation can be effectively controlled, cultivation of consecutive spruce rotations should
be possible without increasing losses caused by butt rot.

4.9 Growth of Heterobasidion in roots of vitality-fertilized
spruces

In the present study, vitality fertilization did not increase the resistance of Norway spruce
to internal spread of H. parviporum. In fact the result seemed to be quite the opposite:
there was a tendency for increased growth of the fungus in the roots of fertilized trees.
The growth rate of the fungus was slowest in the unfertilized control trees (on an average
33 cm in twelve months). H. parviporum had advanced most rapidly, i.e. 52 cm per year,
in trees given the stand-specific fertilization based on needle analysis (treatment 5)
containing N, P, K and Cu (IV/Fig.1). Diagnostic foliage analysis has proven to be one
of the most powerful tools for determining the current nutrient status in trees and the
possible need for fertilization (Linder 1995). The results of the present study suggest,
however, that the optimal nutrient status of Norway spruce may be different depending
on the practical purpose of the fertilization. Fertilization focused on increased stand
productivity does not necessarily ensure increased tolerance to Heterobasidion.
Fertilization based on needle analysis was the only treatment that showed increased
annual volume growth of the trees. The accelerated advance of Heterobasidion decay in
that treatment may, at least partly, be due to increased tree growth. A positive correlation
between tree growth and the spread of decay in wood has been observed both in mature
(Laiho 1983, Dimitri and Schumann 1989) and young Norway spruce (IIT). According
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to Entry et al. (1991), trees that are growing rapidly may allocate more carbon to sugar
and cellulose synthesis and less carbon to compounds with defensive functions, such as
lignin, phenolics, and tannins. Also, the anatomical structure of fast-grown wood with
wide growth rings enhances the growth of fungal mycelium (Courtois 1970).

Because the rates of decomposition and nitrogen mineralization are low in boreal
coniferous forest soils, the availability of mineral nitrogen is normally the factor restricting
tree growth on mineral soils (Kukkola and Saramiki 1983). Despite a certain amount of
nitrogen deposition, nitrogen is still the major growth-restricting nutrient in Finnish
forests. Needle analysis in the present study also indicated a shortage of nitrogen in
experimental trees.

Nitrogen fertilization is generally regarded as a risk factor as regards Heterobasidion
root rot. It can increase the damage caused by Heterobasidion in three ways at least: 1)
it increases the crown of the tree in relation to the roots (Helmisaari and Hallbicken
1999, Smolander et al. 2000), exposing the tree to increased swaying in the wind and
subsequent root damage, 2) a high nitrogen content of the wood accelerates the rate of
spread of the fungus (Aguinagalde and Cerny 1974, Alcubilla et al. 1988), and 3) nitrogen
increases tree growth and this, as stated above, makes the spread of Heterobasidion
easier (Dimitri and Schumann 1989, Alcubilla et al. 1990). On the other hand, in
unfertilized Norway spruce trees growing on sites of medium-to-good nutrient and
moisture regimes (Myrtillus-type) in central Finland, the nitrogen content in the wood
was not related to the vertical spread of Heterobasidion in spruce stems (Ekman and von
Weissenberg 1981). Proper fertilization, although improving tree growth, does not
necessarily decrease the resistance of trees to decay. Nitrogen (urea) fertilization of
Norway spruce had no effect on the growth rate of Heterobasidion in a Finnish experiment
(Laiho 1978). Comparable results have also been obtained elsewhere (Seibt 1964, Cowling
et al. 1969, Yde-Andersen 1977).

The availability of nitrogen for a tree and its effect on disease depends inter alia on
the form and solubility of the fertilizer. In treatment 5, in which the growth rate of
Heterobasidion was the highest, nitrogen was added in the form of water-soluble
ammonium nitrate, whereas in the other treatments (containing nitrogen) two thirds of
the nitrogen was in the form of slow-release methylene urea. Because the period between
fertilization and inoculation was only three growing seasons, decomposition of methylene
urea and the release of nitrogen may not yet have influenced fungal growth in the spruce
roots. It is also possible that the effect of urea fertilization on the growth rate of
Heterobasidion is less than the effect of ammonium nitrate. Furthermore, other unknown
factors may contribute more to spread of the disease than the application of nitrogen.

In the 1990s, the nitrogen oxide emissions were falling slowly. In 2000, nitrogen
oxide emissions totalled approximately 236 000 tonnes in Finland and were about 10 kg
N ha' along the southern coast of Finland (Ympiristotilasto 2002). Although carefully
balanced N fertilization may not greatly influence the development of Heterobasidion in
standing spruce, we cannot exclude the possibility that N deposition could, if it continues
at the present level, in the long term promote the spread of Heterobasidion root rot in
spruce stands in the most exposed areas in southern Finland.

The sum of many interacting factors associated with the pathogen, host, environment,
and time determines how a disease is affected by nutrition management. The inoculation
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experiment was carried out only on one site and the conclusions presented in this work
are partially speculative, and require confirmatory experiments. Further work is needed
to clarify the long-term effects of vitality fertilization on the development of Hetero-
basidion root and butt rot. However, the results of the present study are consistent with
the results obtained in a comparable experiment carried out in south-western Sweden
(Wahlstrom and Barklund 1994). Although site conditions and composition of the
fertilizers used in the Swedish and Finnish inoculation experiments were somewhat
different, both studies showed that the growth rate of Heterobasidion was slightly faster
in Norway spruce treated with a nitrogen-free vitality fertilizer compared to the untreated
controls. Thus, vitality fertilization with nitrogen-free fertilizers or fertilizers with a low
nitrogen content does not seem to help in reducing the damage caused by Heterobasidion
root rot in infested spruce stands.
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5 Conclusions

The control of Heterobasidion root and butt rot in Norway spruce forests in southern
Finland is an important consideration for the sustainable management of regenerating
stands. Heterobasidion root and butt rot is expressly a disease of the site. Old spruce
stumps colonized by Heterobasidion are important infection sources in the subsequent
tree stand. The fungus can persist in the wood of large spruce stumps for more than 40
years and is able to transfer vegetatively through root contacts into the surrounding
regeneration of any susceptible tree species. In addition to the direct transfer through
root contacts, basidiocarps developing in decayed stumps increase the risk of spore
infection in the subsequent tree stand for several decades.

Changing the tree species is an important method to reduce the damage caused by
Heterobasidion root rot on infested sites. Silver birch and Scots pine were the most
resistant tree species on sites infested by H. parviporum. If regeneration trees are poorly
adapted to the site, resistant species may, however, suffer from considerable damage
caused by Heterobasidion. Regeneration of infested sites with exotic tree species,
lodgepole pine or Siberian larch, does not eradicate H. parviporum from the site. Both
tree species become infected from old spruce stumps. However, damage caused by H.
parviporum remains lower in subsequent lodgepole pine and Siberian larch stands than
in a subsequent Norway spruce stand.

Advance regeneration of Norway spruce established naturally in disease centres of
Heterobasidion root rot proved to be relatively seriously infected by H. parviporum. If
the advance growth is used in the regeneration of a new spruce generation there is a
danger of increasing decay frequency. Planted spruce of the same size was infected to a
lesser degree. Because most of the infections in the planted spruce occurred through root
contacts from the old stumps of decayed trees, the transfer of Heterobasidion to the
regeneration trees can be decisively reduced if no spruce are planted near infected stumps,
and the regeneration of resistant broadleaved trees is encouraged around them.

In a mature Norway spruce stand infected by H. parviporum, treatment with nitrogen-
free or low-nitrogen vitality fertilizers did not improve the resistance of the trees to
Heterobasidion root rot. On the contrary, in the short term the growth rate of mycelium
of H. parviporum tended to be slightly faster in roots of fertilized trees than in those of
unfertilized control trees. Although differences in disease development between the
control treatment and fertilization treatments were not statistically significant, extra
caution is needed when fertilizing Norway spruce stands suffering from Heterobasidion
root rot.
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