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DNA dioxyribonucleic acid
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DsRed Discosoma red fluorescent protein
ER endoplasmic reticulum
FDMV foot-and-mouth disease virus
GFP green fluorescent protein
GUS �-glucuronidase
HC-Pro helper component proteinase
hGH human growth hormone
IC-RT-PCR immuno capture reverse transcription PCR
IgA immunoglobulin type A
LMV Lettuce mosaic virus
miRNA micro RNA
MP movement protein
mRNA messenger RNA
NIa-Pro nucleic inclusion protein a - proteinase
NIb nuclear inclusion protein b
nt nucleotides
ORF open reading frame
P1 (potyviral) protein 1
PCR polymerase chain reaction
PDS phytoene desaturase
poly(A) polyadenosine
PPV Plum pox virus
PVA Potato virus A
PVX Potato virus X
RISC RNA-induced silencing complex
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RNA ribonucleic acid
S-COMT soluble catechol-O-methyltransferase
sgRNA sub-genomic RNA
siRNA small interfering RNA
ssDNA single-stranded DNA
T-DNA transfer DNA
TEV Tobacco etch virus
TRV Tobacco rattle virus
TMV Tobacco mosaic virus
TuMV Turnip mosaic virus
TVMV Tobacco vein mottling virus
UV ultraviolet
VIGS virus induced gene silencing
VPg viral genome-linked protein
wt wild-type
ZYMV Zucchini yellow mosaic virus
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ABSTRACT

An  infectious  clone  of Potato virus A (PVA) (genus Potyvirus, family

Potyviridae) was engineered to be used as an expression vector for production

of heterologous proteins. The PVA genome (9565 nt) is translated to a large

polyprotein that is subsequently processed, yielding up to ten mature

proteins. Hence, a foreign sequence inserted into an infectious cDNA clone of

PVA will also be translated as part of the viral polyprotein in infected plants.

Three  sites  in  the  genome of  PVA were  used for  expression of  heterologous

protein encoding sequences in plants. Proteolytic cleavage sites for the viral

proteinases were engineered and added for separation of the heterologous

protein from the viral proteins.

A novel genomic location for foreign encoding sequence expression

was tested by inserting the Aequorea victoria gfp sequence encoding the green

fluorescent protein (GFP) into the P1 encoding region (genomic position

235/236). The vector-PVA expressing GFP (239 amino acids) accumulated to

high titers in Nicotiana benthamiana and N. tabacum cv. Samsun nn cells. The

vector-PVA continued to produce intact GFP in the systemically infected

plants for 3 weeks post-inoculation. The vector construct caused much milder

disease symptoms than the wild-type virus. The viral coat protein (CP) in

these plants and in tobacco protoplasts accumulated to about 30-50% of the

levels  reached  with  the  wt  PVA.  The  role  of  P1  as  an  enhancer  of  RNA

silencing suppression, which is mediated by the HC-Pro protein, was

investigated by an overexpression system (agroinfiltration) assay in plant

leaves. Up to 30-fold higher amounts of HC-Pro mRNA were produced when

P1 was present, as compared to expression of HC-Pro alone.

The cloning site between the polymerase (NIb) and CP encoding

regions of PVA was tested for expression of human proteins. Soluble catechol-

O-methyltransferase (S-COMT), presumed to be involved in the development

of Parkinson’s disease, was produced from the vector PVA and constituted ca.

1% of the total soluble proteins in systemically infected N. benthamiana leaves.
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However, another human protein, sorcin (a Ca2+-binding protein), was not

detected in infected plants although the sequence encoding it cloned into the

NIb/CP site was stably present in the PVA genome for at least a month post-

inoculation. Thus, sorcin was expressed in equal molar amounts with the viral

proteins but it was apparently quickly degraded. The amount of PVA CP

produced  from  the  vectors  carrying  the  S-COMT  or  sorcin  encoding

sequences was 60-100% of the wt virus levels. These data indicate that PVA

can  be  used  to  produce  at  least  some  human  proteins  in  plants,  but  further

optimization may be needed with others.

The third cloning site used was between the P1 and HC-Pro encoding

regions.  The  GFP  and  the Renilla reniformis luciferase encoding sequences

were expressed from this site. In the systemically infected leaves, vector-virus

titers were 40-70% of the wt virus levels.

Stability of inserts differed, depending of the cloning site and the

heterologous sequence. Deletions within the gfp sequence located at the P1

cloning site were detected two to three weeks post-inoculation, whereas it

was stable up to a month post-inoculation when inserted at the NIb/CP site,

as was also the coding sequence of sorcin. On the other hand, deletions in the

sequence encoding Eschericia coli �-glucuronidase (UidA) appeared in the

NIb/CP site as soon as two weeks post-inoculation. The coding sequence for

luciferase situated at the P1/HC-Pro site was intact in all plants tested up to a

month post-inoculation.

All  the  three  cloning  sites  were  combined  in  the  same  vector-PVA

clone to simultaneously produce three heterologous proteins: GFP from the

P1 site, luciferase from the P1/HC-Pro site, and �-glucuronidase from the

NIb/CP site. Vector-virus amounts in the systemically infected leaves of N.

benthamiana were 15% of those of the wt virus. All three heterologous proteins

were detected in the leaf sap in an active form. In conclusion, PVA can be

used for simultaneous production of at least three proteins (together

consisting of over 1000 amino acid residues) in plants, which possibly will be

useful for some research purposes and for heterologous protein production.



11

INTRODUCTION

Vector-viruses in plants

The  term  ‘vector-virus’  denotes  an  infectious  clone  of  a  virus,  into  which  a

heterologous nucleotide sequence can be inserted without loss of viral

infectivity and replication functions. The capacity for systemic movement

within the host is also desired, but not always necessary. The vector-virus is

used to infect a host organism, delivering the heterologous sequence into the

host  for  expression.  Other  names  for  a  vector-virus  commonly  used  in

literature are ‘gene vector’ and also ‘virus vector’ (for example Scholthof et al.

1996, Gleba et al. 2007); the latter can lead to confusion with vectors of the

virus. In most cases, viruses are engineered to be used as heterologous protein

expression vectors (overexpression vectors). A notable exception that has

become increasingly common in use is the application of vector-viruses in

virus-induced gene silencing (VIGS), where a fragment of a gene, inserted in a

cDNA clone of the viral genome, is used to suppress the expression of the

homologous endogene in infected host plants (see below).

Vector-viruses as research tools to understand viral functions in plants

Reporter proteins such as �-glucuronidase (GUS; from Eschericia coli), green

fluorescent protein and its colour-shift variants (GFP; from jellyfish Aequorea

victoria),  red fluorescent  protein  (DsRed;  from reef  coral  of  genus Discosoma)

and luciferases (from the firefly Photinus pyralis and the seapansy Renilla

reniformis) can be visualized and/or quantified when expressed either as a

free protein or as a fusion to a viral protein from vector-viruses in various

tissues of plants. This has made them useful tools for following the course of

virus infection in infected tissues and cells. For example, the use of a clone of

Tobacco etch virus (TEV) (family Potyviridae) engineered to express GUS and

histochemical GUS assay in time-course experiments allowed the

visualization of virus activity in single, mechanically inoculated leaf

epidermal cells, in neighboring epidermal and mesophyll cells, in phloem-
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associated cells after long-distance transport, and in cells surrounding

vascular tissues of organs above and below the site of inoculation (Dolja et al.

1992). Similarly, with a clone of Potato  virus  X (PVX) (family Flexiviridae)

engineered to express either GUS or GFP, the cell-to-cell spread of the virus

and its emergence in the upper non-inoculated leaves were observed

(Chapman et  al. 1992, Baulcombe et  al. 1995). Potato leaf roll virus (family

Luteoviridae) genome with a GFP-encoding sequence located after the P5 gene

was encapsidated and aphid-transmissible, and enabled visualization of the

early stages of infection after aphid transmission (Nurkiyanova et al. 2000). To

elucidate the temporal expression pattern of four genes of Beet yellows virus

(BYV, family Closteroviridae) in infected cells, the coding sequence for GUS

was inserted between the first and the second codons of these four genes in

different BYV clones (Hagiwara et al. 1999). The amounts of expressed GUS at

various timepoints revealed the stages of infection at which the promoters for

these four viral genes were active.

However,  the  functions  of  viruses  with  foreign  sequences,  and  the

functions of viral proteins fused to reporter proteins, may not fully reveal the

functions of wild-type (wt) viruses and their proteins. For example, the

movement protein (MP) of Cauliflower mosaic virus (CaMV) with GFP fused to

either  the  N-  or  C-teminus  was  not  observed  to  aggregate  and  form  the

tubules that are formed by the wt MP (Thomas & Maule 2000).

One application of the reporter proteins expressed from viruses has

been characterization of mutant viruses.  The TEV-GUS vector virus (Dolja et

al. 1992) has been used to elucidate functions of the viral P1, HC-Pro and CP

proteins by comparing the amounts of activity of the expressed GUS from the

parent and mutant clones in infected protoplasts and host plants (Dolja et al.

1994, Verchot & Carrington 1995, Kasshau et al. 1997). TEV-GUS with two

highly conserved charged residues in the CP substituted with alanine

residues replicated equally as well as the parental vector-virus in protoplasts,

but failed to move cell-to-cell. TEV-GUS lacking the whole P1 encoding

sequence accumulated to 2-3% of the parental clone levels in protoplasts,
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indicating that the P1 protein was involved but not absolutely required for

replication. Up to 25 charged amino acids were substituted with alanine

residues in HC-Pro of TEV-GUS and tested for amplification in tobacco

protoplasts and systemic movement in tobacco plants. The results suggested

that the central region of HC-Pro is necessary for efficient genome

amplification and systemic movement. When the CP genes of PVX, Brome

mosaic virus (BMV; family Bromoviridae) and Cowpea mosaic virus (CPMV;

family Comoviridae) were replaced with the GFP encoding sequence, the

chimeric viruses were restricted to single GFP expressing cells (Baulcombe et

al. 1995, Schmitz & Rao 1996, Verver et al. 1998).  Thus  CP  was  essential  for

cell-to-cell movement of these viruses. Failure of cell-to-cell movement was

also observed with GFP-expressing Potato  virus  A (PVA, family Potyviridae)

clones with amino acid substitutions at putative phosphorylation sites within

the CP (Ivanov et al. 2003). More examples of plant viruses expressing

reporter proteins are shown in Tables 1 and 2.

Vector viruses for suppression of host gene expression in plants

Vector viruses are used for host gene characterization by exploiting the virus-

induced gene silencing (VIGS) phenomenon (Kumagai et al. 1995). The vector-

virus is engineered to carry a sequence of the host gene to be silenced. Viral

ssRNA forms hairpin-like structures that are recognized by the host (Pantaleo

et al. 2007).  The  structures  are  cut  into  small  interfering  RNA  (siRNA)

fragments of 21-24 nt by a cellular RNase (Dicer) and one strand of siRNA is

incorporated into an RNA-induced silencing complex (RISC) (reviewed in

Baulcombe 2005, Voinnet 2005). The siRNA is used as a ‘probe’ to recognize

homologous ssRNA molecules, which are then degraded by the RISC. Due to

a phenomenon called transitivity, siRNA are also formed from corresponding

viral sequences outside the initially targeted regions (Vaistij et al. 2002), and

hence also from the inserted heterologous sequence that targets the

homologous host gene for silencing. Inserting the sequence in an antisense

orientation in the vector-virus triggers silencing (Kumagai et al. 1995),
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presumably by forming double-stranded RNA hybrids with the endogenous

mRNA  from  the  target  gene.  Most  efficient  induction  of  silencing  is  usually

achieved when expressing the silencing-inducing sequence as an inverted

repeat that forms a double-stranded hairpin structure recognised by the host

silencing system (Waterhouse et al. 1998). However, an inverted repeat may

not be well tolerated by a vector-virus, because the hairpin structure in the

viral genome could interfere with viral funtions such as replication or

translation.

In the seminal work on VIGS, a partial cDNA copy of tomato phytoene

desaturase gene (PDS) (92% identical to the PDS encoding sequence of N.

benthamiana) was inserted in antisense orientation into a TMV-based vector

that was subsequently used to inoculate N. benthamiana plants (Kumagai et al.

1995). Approximately a week post-inoculation the systemically infected leaves

showed a white ‘photo bleaching’ phenotype. A similar phenotype developed

when N. benthamiana plants were sprayed with the herbicide norflurazon,

which is an inhibitor of PDS (Kumagai et al. 1995).

Dozens of publications exploiting VIGS are available. The following

exemplifies a few different vector viruses and their host species used in

studies on VIGS. Tobacco rattle virus (TRV, genus Tobravirus), has been the

most commonly used vector-virus for VIGS so far. One reason is the wide

host range of TRV, including more than 400 species in more than 50

monocotyledonous and dicotyledonous families (Robinson & Harrison 1989).

Liu et al. (2004) used a TRV-based vector to silence known defence-related

genes in transgenic N. benthamiana plants carrying the TMV resistance gene N.

Upper leaves of the plants were subsequently inoculated with TMV to

identify genes, the downregulation of which suppressed resistance to TMV

mediated by the the N gene. In a similar fashion, Anand et al. (2007) screened

approximately 1000 plant genes to detect those involved in Agrobacterium-

mediated plant transformation. Shoresh et  al. (2006) characterized a putative

mitogen-activated protein kinase of cucumber (Cucumis sativus) by inserting

the corresponding coding sequence as an antisense copy into a vector based
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on Zucchini yellow mosaic virus (ZYMV; family Potyviridae). Decreased levels of

the corresponding host mRNA were correlated with increased sensitivity to

pathogen attack. Similarly, VIGS was used to identify genes in barley

(Hordeum vulgare) associated with fungal resistance by expressing them in a

vector based on Barley stripe mosaic virus (BSMV) (genus Hordeivirus) (Hein et

al. 2005). PVX carrying an antisense fragment of the gene for PDS showed a

characteristic white-leaf phenotype in infected diploid and tetraploid Solanum

species and ca. 80% reduction in host PDS mRNA levels (Faivre-Rampant et al.

2004). Similar silencing of the PDS gene was achieved in Nicotiana species

with a satellite DNA associated with Tobacco curly shoot virus (family

Geminiviridae) (Qian et  al. 2006), in the legume Pisum sativum (pea)  with Pea

early browning virus (genus Tobravirus) (Constantin et al. 2004), and in

monocotyledonous hosts with BMV (Ding et al. 2006).

VIGS can also be used to target a transgene. For example, Gammelgård

et al. (2007) observed a loss of GFP expression in upper leaves of gfp

transgenic N. benthamiana soon after the plants were infected with a gfp-

carrying PVA. Similarly, Poplar mosaic virus (genus Carlavirus) carrying the

GFP-encoding sequence silenced the GFP transgene in N. benthamiana (Naylor

et al. 2005). The authors expressed their intention to use the vector virus for

VIGS in future studies in poplar (genus Populus).

In the following sections the main emphasis is given to the aspects of

development and use of vector-viruses as heterologous protein

overexpression tools, which has also been the main focus of this thesis.

Plant virus-based expression of heterologous proteins for industrial uses

Plants as heterologous protein production platforms

The obvious advantages of plants as ‘bioreactors’ for heterologous protein

production, as compared to animal/insect cell-cultures and bacterial liquid

cultures, are the scalability of the system together with the absence of animal

pathogens. Furthermore, the materials, facilities and maintenance needed for
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the plants are relatively cheap. These and other aspects of heterologous

protein production in plants have been discussed by Twyman et al. (2003) and

Ma et al. (2003). Transient expression of proteins from vector-virus and

Agrobacterium infiltrated to leaves (Gleba et al. 2007, Fisher et al. 1999), protein

expression in transgenic microalgae (León-Bañares et al. 2004, Franklin &

Mayfield 2004) and moss (Decker & Reski 2004), and secretion of the proteins

from plant roots to liquid culture medium (Borisjuk et al. 1999) have been

reported. In addition, approaches for higher-level protein production

(Streatfield 2006), differences in posttranslational protein modification

between plants and animals (Gomord & Faye 2004), and safety issues

concerning the genetically modified organisms (Mascia & Flavell 2004) have

been reviewed.

The differences in protein N-glycosylation patterns between animals

and plants is seen as one of the main problems in production of mammalian

glycoproteins, especially immunoglobulins, in plants. The plant-specific N-

glycan residues xylose and α-1,3-fucose (reviewed in Lerouge et al. 1998)

bound to human proteins expressed in plants might be immunogenic when

injected to humans. On the other hand, the animal-specific protein side-chains

such as sialic acid and ß-1,4-galactose are missing from proteins expressed in

plants. Attemps at ‘humanizing’ N-glycosylation of proteins expressed in

plants have been undertaken. Bakker et al. (2006) showed that human

immunoglobulins produced in tobacco plants transgenic for human ß-1,4-

galactosyltransferase had galactose residues and low levels of xylose and

fucose residues associated with them, whereas immunoglobulins produced in

wt tobacco plants had no galactose but contained high levels of xylose and

fucose. Cox et al. (2006) produced human antibodies with low amounts of

incorporated xylose and fucose in duckweed (Lemna minor) by using RNA

silencing to lower expression of the plant enzymes responsible for

incorporating xylose and fucose to proteins.
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Comparison of plant virus-based expression vectors and transgenic plants in

heterologous protein production

Agrobacterium tumefaciens is used to deliver heterologous coding sequences

inserted in the bacterial T-DNA (an expression cassette) to the plant cell

nucleus, where the T-DNA is incorporated into the genome (Chahal & Gosal

2002). Plant cells can be transformed to express heterologous coding

sequences by two A. tumefaciens-mediated approaches. Regeneration of plants

from transformed cells results in transgenic plants that have the foreign

sequence incorporated to all cells (Chahal & Gosal 2002). The foreign protein

encoded by the transgene will be produced in all cells, depending on the

promoter used. Obtaining transgenic plants takes a longer time than cloning

the heterologous coding sequence in a vector-virus and using the vector virus

as a vehicle for heterologous protein expression. However, Agrobacterium cells

containing the expression cassette can also be delivered into mature leaves of

non-transgenic plants (agroinfiltration), leading to expression of the

heterologous protein only in the cells of the targeted leaf area (Kapila et al.

1997). While most of the T-DNA molecules are not incorporated into the

genome, they are transcriptionally active for a few days (reviewed by Fisher et

al. 1999). The difference of this method as compared to vector-viruses is that

the expression cassettes do not replicate and spread cell-to-cell or

systemically.

Typical yields of heterologous proteins in transgenic plants are ca. 0.1-

1% of total soluble proteins (Ma et al. 2003, Abranches et al. 2005).

Occasionally higher levels are reached. The phytase of Aspergillus niger

expressed in the transgenic legume Medicago truncatula amounted to ca. 6.5%

of total soluble proteins (Abranches et al. 2005). The amounts achieved with

most vector-viruses are within the range of 1-10% of the total soluble proteins,

and GFP levels as high as 50% of the total soluble proteins of GFP have been

reported when expressed from a TMV-based vector (Gleba et al. 2007). On the

other hand, in plants that have the transgene incorporated into the

chloroplastic (or mitochondrial) genome, the yields of heterologous proteins
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can reach 46% of the total soluble proteins (De Cosa et al. 2001) (reviewed by

Daniell et al. 2002).  Protein  expression  in  chloroplasts  is  similar  to  that  in

bacteria, which means that most of the eukaryotic-type post-translational

modifications of proteins will not take place (Twyman et al. 2003). The

advantages of the approaches of using vector-viruses and transgenic plants

can be combined in plants transformed with a viral replicon (infectious clone

of the virus), discussed below.

DNA viruses as overexpression vectors

The first plant virus converted into an overexpression vector for production of

heterologous proteins was CaMV (Fig. 1). Brisson et al. (1984) replaced 461 nt

of  the  viral  ORF  II  encoding  an  aphid  transmission  factor  (479  nt)  of  CaMV

with a bacterial dihydrofolate reductase encoding sequence (234 nt),

conferring resistance to methotrexate in E. coli. The vector-virus spread

systemically in turnip leaves (Brassica rapa cv. ‘Just Right’)  and expression of

target protein was observed. With the same vector, De Zoeten et  al. (1989)

obtained accumulation of active human interferon αD in infected turnips. In

this case, the heterologous sequence was slightly longer (100 nt) than the

deleted part of ORF II. Expression of heterologous sequences longer than 561

nt from this cloning site in CaMV was not successful (Fütterer et al. 1990).

Fig. 1. Genome organization of Cauliflower mosaic virus (family Caulimoviridae), consisting of a

circular double-stranded DNA of 8024 nt shown here in a linear manner. The thick black

horizontal line represents the DNA and the gray boxes represent the open reading frames /

proteins encoded by them. The hatched box on the left is a promoter for the polycistronic 35S

RNA containing open reading frames VII � V. The hatched box on the right is a promoter for

the  19S  RNA  encoding  a  translational  activator  (TAV)  needed  for  translation  of  the  other

genes.  Heterologous sequences  can be placed between the open reading frames I  and III  by

replacing the insect transmission factor (ITF) encoding sequence with the heterologous

coding sequence. MP, movement protein; CP, coat protein; RT, reverse

transcriptase/RNaseH.

IV (CP)VII I (MP) II (ITF) III V (RT)VII I (MP) VI (TAV)
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Virus  species  from  another  DNA  virus  family,  the Geminiviridae, have also

been used as vectors to produce heterologous proteins. For example, Hayes et

al. (1988) showed expression of the bacterial neomycin phosphotransferase

from  a Tomato golden mosaic virus (Fig.  2)  (genus Begomovirus)  vector  in

systemically infected leaves. A Wheat dwarf virus (genus Mastrevirus) replicon

expressing transposons was constructed by Laufs et  al. (1990). Recently, an

interesting geminivirus-based vector from a Tomato yellow leaf curl virus

(genus Begomovirus) has been made (Peretz et al. 2007). The replicative dsDNA

form  of  the  virus  genome,  which  moves  cell-to-cell  and  systemically  in  host

plants, is produced by the host without the help of any viral encoded

polypeptides. Thus, the gene essential for viral ssDNA replication (rep, Fig. 2)

could be interrupted with an insert of at least 5 kb, which is considerably

longer than the viral monopartite genome (2781 nt).

Fig. 2. Genome organization of Tomato golden mosaic virus, a bipartite begomovirus (family

Geminiviridae), that consists of circular single-stranded DNAs of 2588 (A) and 2508 (B) nt

shown here in linear manner. Monopartite begomoviruses have only DNA A. The thick

horizontal line represents the DNA and the gray boxes represent the open reading frames /

proteins encoded by them. In DNA A, two genes are encoded by the virion-sense strand (AV)

and four  genes  on the complementary-sense strand (AC).  The AC genes are  all  involved in

replication. In DNA B, a single gene is encoded from each strand. The black box represents an

almost identical region in the two DNA molecules from where bi-directional transcription

begins. Heterologous sequences have been used to replace the CP gene, or inserted into the

rep gene. MP, movement protein; CP, coat protein; rep, replication initiation protein; NS,

nuclear shuttle protein.

AV2 (MP) AV1 (CP)

AC3

AC2

AC1 (rep)

AC4

A

B
BV1 (NS)

BC1 (MP2)



20

Injection of this plasmid to plants caused systemic spread of the replicon.

Removing a part of the coat protein gene attenuated disease symptoms

considerably. The target protein yields were ca. 6% of the total soluble leaf

proteins,  which  is  more  than  that  achieved  with  most  vector-viruses.  The

vector-virus was able to replicate and spread in all the plant species tested

including monocots and dicots, and woody plants, but it was mostly limited

to the phloem cells in many hosts.

RNA viruses as overexpression vectors

Most of the described vectors for expression of heterologous proteins in plants

are based on RNA viruses. Viruses with isometric and rod/filamentous-

shaped virions have been used. Cloning of an RNA virus as an infectious

cDNA copy was necessary for this invention and was first published by

Ahlquist et al. (1984) for BMV (Fig. 3). In the first vector-viruses a part or all of

the CP gene of the virus was replaced by a region encoding a foreign protein,

which was the case in BMV (Fig. 3) (French et al. 1986), TMV (Fig. 4)

(Takamatsu et al. 1987), BSMV (Joshi et al. 1990) and PVX (Fig. 5) (Chapman et

al. 1992). Since the CP is the most abundant protein produced by these

viruses, it was reasoned that similar high amounts of heterologous proteins

should be produced from the CP replacement vector-viruses. However, the

problem was that the vector-viruses were unable to enter the phloem for a fast

systemic spread. To obtain high yields of heterologous protein, each leaf

would have to be inoculated separately. Subsequently, the heterologous

sequence was placed between the MP and CP genes of TMV under a

duplicated subgenomic promoter for CP, which allowed phloem-assisted

movement (Dawson et al. 1989). However, these vector viruses soon lost their

insert when inoculated into plants, due to recombination between the

duplicated homologous CP promoters. To avoid this problem, the

subgenomic CP promoter of a related virus (Odontoglossum ringspot virus) was

succesfully used to drive the expression of the foreign protein encoding

sequence in the vector-TMV (Donson et al. 1991).
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Fig. 3. Genome organization of Brome mosaic virus (family Bromoviridae), that has (+)-sense

single-stranded RNAs of 3234 (RNA1), 2865 (RNA2) and 2117 (RNA3) nt. The thick

horizontal lines represents viral RNAs and the gray boxes represent the open reading frames

/ proteins encoded by them. Genome organization of Cucumber mosaic virus (family

Bromoviridae, genus Cucumovirus) is essentially similar, with one additional gene on RNA2

(2b,  not  shown) encoding an RNA silencing suppressor.  Heterologous sequences  have been

placed either after the CP gene on RNA3, or used to replace the 2b gene on RNA2 of

Cucumber mosaic virus. Open reading frames 1a and 2a encode polypeptides forming the

replicase complex. MP, movement protein; CP, coat protein.

Fig. 4. Genome organization of Tobacco mosaic virus (genus Tobamovirus), that has a (+)-sense

single-stranded RNA of  6395 nt.  The thick horizontal  line  represents  the RNA and the gray

boxes represent the open reading frames / proteins encoded by them. The 126K protein

contains the methyl transferase and helicase motifs of a replicase. The 183K protein (the

complete replicase) is produced occasionally when the stop codon of the 126K gene (dashed

line)  is  ignored.  The  movement  protein,  30K  (MP),  and  the  coat  protein  (CP)  are  produced

from subgenomic RNAs. Heterologous sequences have been placed under a duplicated CP

promoter either between the MP and CP genes, or in place of the CP gene.

Fig. 5. Genome organization of Potato virus X (family Flexiviridae), that has a (+)-sense single-

stranded RNA of  7568 nt.  The thick horizontal  line  represents  the RNA and the gray boxes

represent the open reading frames / proteins encoded by them. Three separate subgenomic

RNAs are made, from which the TGB1 and TGB3, TGB2, and CP are produced, respectively.

Heterologous sequences have been placed under a duplicated CP promoter either between

the TGB3 and CP genes or in place of the three TGB and the CP genes. Rep, replicase; TGB,

triple-gene-block protein; CP, coat protein.

126K/183K 30K (MP) CP

1a
RNA1

2a
RNA2

RNA3
3a (MP) 3b (CP)

Rep TGB3 CPTGB1

TGB2
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Using a similar engineering strategy, PVX was converted to a systemically

moving overexpression vector, in which the heterologous protein encoding

sequence was placed under a duplicated subgenomic promoter of CP that was

located between the triple gene block 3 and CP genes (Fig. 5) (Chapman et al.

1992). Expression of GUS was detected in systemically infected leaves at 13

days post-inoculation (dpi). However, complete and partial deletions of the

sequence encoding GUS were observed in a northern blot analysis,

attributable to recombination between the homologous sequences of the

duplicated subgenomic promoters (81 nt). Additional examples of PVX as a

vector virus are shown in Table 1. In another potexvirus-based expression

construct (Zygocactus virus X),  the  subgenomic  promoter  of  CP directing the

transcription of the heterologous coding sequence and most of the CP gene

was replaced with corresponding sequence from a related virus

(Schlumbergera virus X) (Koenig et al. 2006). Deletions were nevertheless

observed in the heterologous Beet necrotic yellow virus (genus Benyvirus) CP

gene expressed from the vector in infected plants. TMV-based vectors

expressing  either  GFP  or  human  growth  hormone  (hGH)  were  stable  for  a

period of three years in N. benthamiana roots that were maintained in a liquid

culture (subcultured every 6 weeks) (Skarjinskaia et al. 2008). The same GFP-

expressing vector-virus generated deletions in the gfp sequence already four

weeks post-inoculation when the vector virus multiplied in the aerial parts of

tobacco (Rabindran & Dawson 2001).

Whole-plant agroinfiltration, by dipping the aerial parts of a plant in

Agrobacterium-containing liquid and applying a weak vacuum, can be used to

instantaneously spread a vector-virus to all parts of a host plant. This gives a

simultaneous start for the vector-virus replication and heterologous protein

production in all leaves of the plants (termed ‘magnifection’) (Marilloinnet et

al. 2005). This method allows the replacement of the MP and/or CP genes of

vector viruses with heterologous sequences, at least in some virus species.

TMV lacking the CP gene has been used to produce large amounts of foreign
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proteins (Marilloinnet et al. 2005, Gils et al. 2005, Dorokhov et al. 2007) (Table

1). TMV MP amounts in infected plants were increased 10-fold when the CP

gene was deleted (Lehto et al. 1990), whereas increases of 8-fold and 4-fold in

the MP amounts were observed in plants infected with TMV-constructs where

470 and 207 nt of the CP gene were deleted, respectively (Culver et al. 1993).

The authors suggested that the closer a gene was to the 3’ terminus of TMV,

the higher its expression levels. Another interesting example of a replacement

virus vector is a PVX-construct where all viral genes except the replicase were

removed and replaced with heterologous sequence (Komarova et al. 2006).

The  expression  levels  of  GFP  from  this  vector  were ca. 2.5-fold higher than

with PVX where the GFP encoding sequence was placed between the triple

gene  block  and  the  CP  genes  (Fig.  5).  Removal  of  the  CP  prevents  systemic

movement of TMV and PVX (Takamatsu et al. 1987, Chapman et al. 1992,

Marilloinnet et al. 2005, Komarova et al. 2006) and thus spread of the

genetically modified virus, which may be positive from the biosafety point of

view. Expression of heterologous proteins from the vector-viruses can be

further enhanced by co-inoculation with constructs to express heterologous

RNA-silencing suppressor proteins, which increases the quantity of intact

mRNAs (Lindbo 2007). Expression of GFP was enhanced 100-fold from a

vector-TMV when Tomato bushy stunt virus silencing suppressor p19 was co-

expressed in the plants.

TMV-based expression vectors have been commonly used, partly

because of the high yields of target proteins obtained (Table 1). Over 50

proteins of different origins with potential pharmaceutical use have been

expressed succesfully using the magnifection system alone (Klimyuk et  al.

2005, Gleba et al. 2007).

In recent years the infectious cDNA clones of RNA viruses in other

families/genera have been modified to express heterologous polypeptides, of

which CPMV (Fig. 6) and CMV (Fig. 3) appear particularly successful (Table

1). The vector-CMV may have plenty of useful applications, given that it has

over 1200 host plants in more than 100 families (Douine et al. 1979,
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Edwardson & Christie 1991, Palukaitis & García-Arenal 2003). In addition,

TRV, which is widely used for VIGS studies, can be used to express

heterologous proteins (Fig. 7) (Table 1).

Fig. 6. Genome organization of Cowpea mosaic virus (family Comoviridae), that has (+)-sense

single-stranded RNAs of 5889 (RNA1) and 3481 (RNA2) nt. The thick horizontal lines

represent the RNAs and the gray boxes represent the genes / proteins encoded by them. The

protein encoding regions from each RNA molecule are first translated as a major polyprotein

that is subsequently processed into mature proteins, a strategy similar to that of members of

the family Potyviridae. Heterologous sequences have been placed on RNA2 either between the

MP and CP (L)  genes,  or  in  place  of  the MP,  CP (L)  and CP (S)  genes.  RNA1:  32K,  32  kDa

cysteine  proteinase;  58K,  58  kDa  protein  of  unknown  function;  VPg,  viral  genome-linked

protein; 24K, 24 kDa main viral proteinase; RdRp, RNA dependent RNA polymerase. RNA2:

58K/48K(MP), two proteins with overlapping cistrons – 58 kDa protein of unknown function

and 48 kDa movement protein; CP (L), large coat protein subunit; CP (S), small coat protein

subunit.

Fig. 7. Genomic organization of Tobacco rattle virus (genus Tobravirus), that has (+)-sense

single-stranded RNAs of 6791 (RNA1) and 3855 (RNA2) nt. The thick horizontal lines

represents the RNAs and the gray boxes represent the open reading frames / proteins

encoded by them. The movement protein (MP), the 16K protein (an RNA silencing

suppressor) and the coat protein (CP) are produced from different subgenomic RNAs. The

29K and 33K gene products from RNA2 are associated with vector transmissibility, and

missing from some isolates. They can be replaced with heterologous sequences. RdRp, RNA

dependent RNA polymerase.

RdRp MP 16K

CP 29K 33K

RNA1

RNA2

RNA1
RdRp58K 24K RdRp32K

58K/48K (MP) CP (L) CP (S)
RNA2

VPg
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RNA viruses of the genus Potyvirus as overexpression vectors

Potyviruses (family Potyviridae) have a single-stranded (+)-sense RNA

genome of ca. 9500-10000 nucleotides encapsidated by ca. 2000 copies of a

single species of CP into a filamentous virus particle. Approximately one-

third  of  known  plant  viruses  belong  to  this  genus  (Fauquet et al. 2005). The

biological and molecular properties of potyviruses have been reviewed by

Shukla et al. (1994) and Rajamäki et al. (2004).

The infection cycle of a potyvirus begins with entry of virions into

plant cells, usually mediated by an aphid that probes leaf epidermal cells for

finding  a  good  feeding  position.  Aphids  carry  potyviral  virions  in  a  non-

persistent manner in the tip of the stylet (Wang et al. 1996). Following entry to

the cell, virions disassemble, a process that has been little studied in

potyviruses. Co-translational disassembly, shown in TMV particles (Wu et al.

1990), is probably true also for potyviruses. The RNA genome associates with

ribosomes and is translated into a large polyprotein. It is processed yielding

up to ten mature proteins by three viral proteinases (reviewed by Riechmann

et al. 1992). The first (P1) and the second (HC-Pro) protein cleave the

polyprotein in cis at their respective C-termini. The other seven protein

junctions are cleaved by the C-terminal domain of NIa-Pro in cis or in trans

(Fig. 8). The cleavage site (marked with /) of P1 has been determined in

TVMV (F274/S275) (Mavankal & Rhoads 1991), TEV (Y304/S305) (Verchot et al.

1992) and PVY (P284/S285) (Yang et al. 1998). Following alignment of the

corresponding amino acid sequence area of 35 other potyvirus species, the

consensus amino acid sequence surrounding the cleavage site of P1 was

observed to be P or Y/S (Adams et al. 2005). The cleavage site of HC-Pro has

been determined in TEV (G763/G764) (Carrington et al. 1989). The consensus

amino acid sequence surrounding the cleavage site (YXVG/G, X marking a

non-conserved residue) was observed to be extremely conserved in 38

potyvirus species analysed (Adams et al. 2005). NIa-Pro-mediated protein

cleavage and its recognition sites in a substrate have been extensively studied

(reviewed by Adams et al. 2005). The crystal structure of NIa-Pro of TEV
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bound  to  a  substrate  showed  that  the  amino  acids  of  the  substrate  at

postitions P6, P4, P3, P2, P1 and P1’ (using the nomenclature of Schechter &

Berger 1967) made contact with the active site of the enzyme (Phan et al. 2002).

This result agreed with a consensus amino acid sequence obtained from an

alignment of  amino acid sequences surrounding the 343 NIa-Pro cleavage

sites in sequenced species of Potyviridae (Adams et al. 2005).  Amino  acids  at

positions P6, P4, P2, P1, P1’, and additionally P2’ and P3’ have 50% consensus,

whereas 80% consensus is observed at position P4 (V or I), P2 (H, L or F), P1

(G) and P1’ (A, S or G).

Fig. 8. Genomic organization of potyviruses that have a (+)-sense single-stranded RNA

genome. The thick horizontal line represents the RNA and the gray boxes represent the

polyprotein-encoding region and the mature proteins. The RNA encodes a large polyprotein

which is subsequently processed into individual mature proteins by the P1, HC-Pro and NIa-

Pro proteins. The arrows above the drawing point at the sites where the proteinases cleave

the polyprotein. The arrows below the drawing point at the locations where heterologous

sequences have successfully been placed in various potyvirus species (Table 3). 5’UTR, 5’-

untranslated sequence; P1, protein 1 (proteinase); HC-Pro, helper component proteinase; P3,

protein 3; 6K1, 6 kDa protein 1; CI, cylindrical inclusion protein; 6K2, 6 kDa protein 2; VPg,

viral genome-linked protein; NIa-Pro, proteinase; NIb, polymerase; CP, coat protein;  3’UTR,

3’ untranslated region; poly(A), polyadenine tail.

Viral proteins and possibly some host proteins form a replication complex

synthesizing the negative-strand complementary RNA that is used as a

template for new genomic RNA copies (Wang & Maule 1995). Cell-to-cell

movement through plasmodesmata and loading into sieve elements are

assisted  by  the  multifunctional  viral  proteins  HC-Pro,  CI,  6K2,  VPg  and  CP

(Table 2) (Dolja et al. 1994, Rojas et al. 1997, Nicholas et al. 1997, Rodríguez-

Cerezo et al. 1997, Roberts et al. 1998, Carrington et al. 1998, Spetz & Valkonen

2004). Long-distance movement in the sieve elements (SE) follows the route of

NIb CPP1 HC-Pro P3 CI
6K1 6K25’UTR 3’UTR +

poly (A)

VPg  NIa-Pro
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photoassimilates between the maturing and growing tissues (the source-sink

relationship) (Van Bel 2003). In the sink tissues, the virus is unloaded from SE

into phloem cells (Ding et al. 1998, Rajamäki & Valkonen 2003), followed by

invasion of mesophyll and epidermal cells by replication and cell-to-cell

movement.

Table 2. Known functions of potyviral proteins and non-coding sequences. In addition, all of

them have more or less an effect on viral replication and disease symptoms.

5’UTR 5’-untranslated region, enhancement of translation (Carrington & Freed 1990)

P1 Proteinase (Verchot et  al. 1991) and an enhancer of RNA silencing suppression

activity of HC-Pro (Pruss et al. 1997)

HC-Pro ‘Helper component’ in aphid transmission (Govier & Kassanis 1974), proteinase

(Carrington et al. 1989), suppressor of RNA silencing (Anandalakshmi et al. 1998,

Kasshau & Carrington 1998, Brigneti et al. 1998), cell-to-cell movement (Rojas et al.

1997), vascular movement (Cronin et al. 1995)

P3 Protein 3, associated with CI structures in cytosol (Rodríguez-Cerezo et al. 1993),

associated with NIa in the nucleus and nucleoli (Langenberg & Zhang 1997)

6K1 6 kDa protein 1, symptom development (Riechmann et al. 1995)

CI Cylindrical inclusion protein, RNA helicase (Laín et  al. 1990), cell-to-cell

movement (Carrington et al. 1998)

6K2 6 kDa protein 2, vascular movement (Spetz & Valkonen 2004), an integral

membrane protein proposed to anchor the viral replication complex to ER

membranes (Schaad et al. 1997a)

VPg Viral genome-linked protein (Murphy et al. 1991), cell-to-cell movement (Nicolas

et al. 1997), vascular movement (Schaad et al. 1997b)

NIa-Pro Nuclear inclusion protein a, proteinase (Carrington & Dougherty 1987)

NIb Nuclear  inclusion  protein  b,  RNA-dependent  RNA  polymerase  (Hong  &  Hunt

1996)

CP Coat protein, encapsidation of viral RNA (McDonald & Bankcroft 1977), aphid

transmission (Atreya et al. 1990), cell-to-cell movement (Dolja et al. 1994), vascular

movement (Dolja et al. 1995)

3’UTR 3’-untranslated region, symptom induction (Rodríguez-Cerezo et al. 1991a)

poly(A) Polyadenine tail of 15-500 residues (Hari 1981, Láin et al. 1988)
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The first vector-potyvirus was made of TEV (Fig. 8) that carried the GUS

encoding sequence between the P1 and HC-Pro encoding sequences (Dolja et

al. 1992). Since then at least eight other potyvirus species have been used to

produce heterologous proteins (Table 3). Vector-virus design in potyviruses

differs from most other plant viruses as there are no subgenomic promoters

from which the heterologous sequence could be expressed. Instead, the target

protein is translated as part of the polyprotein and cleaved from it using the

original and the engineered novel recognition sites for the viral proteinases.

Introduction of a novel pentapeptide cleavage site for NIa-Pro was first done

in a TEV-GUS vector, where it was placed between the GUS and the viral HC-

Pro encoding sequences (Carrington et al. 1993).  The GUS and HC-Pro were

separated from each other by the in trans action  of  NIa-Pro  in  infected

protoplasts. One or more virus-derived amino acids remain at the termini of

the expressed heterologous proteins after separation from the polyprotein.



31

Ta
bl

e 
3.

 V
ec

to
r-

vi
ru

se
s b

as
ed

 o
n 

vi
ru

s s
pe

ci
es

 fr
om

 g
en

us
Po

ty
vi

ru
s (

fa
m

ily
Po

ty
vi

rid
ae

).
C

lo
ni

ng
 s

ite
1

Po
ty

vi
ru

s2
H

et
er

ol
og

ou
s c

od
in

g 
se

qu
en

ce
(s

) u
se

d3
T

ar
ge

t p
ro

te
in

 e
xp

re
ss

io
n 

/ v
ec

to
r 

ac
cu

m
ul

at
io

n
le

ve
ls

N
ot

es
R

ef
er

en
ce

P1
/H

C
-P

ro
TE

V
U

id
A

-
G

U
S:

H
C

-P
ro

 fu
si

on
 p

ro
te

in
s.

D
ol

ja
 e

t a
l.

19
92

TE
V

Be
et

 y
el

lo
ws

 v
ir

us
 O

R
Fs

Fr
om

 1
 to

 7
0%

 o
f p

ar
en

t v
iru

s i
n 

pl
an

ts
, b

ut
 fr

om
 5

0
to

 1
00

%
 in

 p
ro

to
pl

as
ts

, d
ep

en
di

ng
 o

n 
th

e 
O

R
F.

Th
e 

sa
m

e 
ve

ct
or

 a
s a

bo
ve

.
D

ol
ja

 e
t a

l.
19

97

TE
V

St
re

pt
om

yc
es

ph
os

ph
in

ot
hr

ic
in

 a
ce

ty
ltr

an
sf

ea
se

ba
r,

St
re

pt
om

yc
es

cy
to

cr
om

e
P4

50
SU

1, 
U

id
A

-
-

W
hi

th
am

 e
t a

l.
19

99

PP
V

U
id

A
W

t v
iru

s C
P 

le
ve

ls,
 a

lth
ou

gh
 it

 to
ok

 tw
ic

e 
th

e
nu

m
be

r o
f d

ay
s.

-
G

uo
 e

t a
l.

19
98

LM
V

gf
p,

E.
 c

ol
i U

id
A

W
t v

iru
s C

P 
le

ve
ls

 a
nd

 ~
25

%
 o

f w
t l

ev
el

s w
ith

 G
FP

an
d 

G
U

S 
ex

pr
es

si
ng

 v
ec

to
rs

, r
es

pe
ct

iv
el

y.
Fu

sio
ns

 to
 H

C
-P

ro
. B

ot
h 

in
se

rts
sta

ye
d 

in
ta

ct
 lo

ng
er

 th
an

 in
 m

os
t

stu
di

es
.

G
er

m
an

-R
et

an
a 

et
 a

l.
20

00

LM
V

gf
p,

U
id

A
W

t v
iru

s C
P 

le
ve

ls
 w

he
n 

G
FP

se
pa

ra
te

d 
or

 fu
se

d 
to

H
C

-P
ro

 w
ith

 o
ne

 v
iru

s s
tra

in
. W

ith
 a

no
th

er
, w

t
le

ve
ls

 o
nl

y 
w

he
n 

in
se

rt 
se

pa
ra

te
d.

-
G

er
m

an
-R

et
an

a 
et

 a
l.

20
03

PS
bM

V
U

id
A

-
G

U
S:

H
C

-P
ro

 fu
si

on
.

Jo
ha

ns
en

 e
t a

l.
20

01
ZY

M
V

CM
V

 c
oa

t p
ro

te
in

, W
M

V
 c

oa
t p

ro
te

in
IN

F:
 ~

2 
�g

/g
 le

af
 (F

W
)

B
ot

h 
in

se
rts

 u
ns

ta
bl

e.
A

ra
zi

 e
t a

l.
20

01
ZY

M
V

gf
p,

 d
us

t m
ite

 a
lle

rg
en

 D
er

 p
 5

G
FP

: 3
.7

 �
g/

g 
le

af
 (F

W
) (

pu
rif

ie
d)

,
D

er
 p

 5
: 1

.5
 �

g/
g 

le
af

 (F
W

) (
pu

rif
ie

d)
-

H
su

 e
t a

l.
20

04

ZY
M

V
to

sp
ov

ira
l n

uc
le

oc
ap

sid
 p

ro
te

in
s

12
 –

 2
5 
�g

/g
 le

af
 (F

W
) (

pu
rif

ie
d)

-
C

he
n 

et
 a

l.
20

05
N

Ib
/C

P
C

lY
V

V
Ae

qu
or

ea
 v

ic
to

ri
a 

gf
p 

an
d 

so
yb

ea
n 

gl
ut

am
in

e 
sy

nt
et

ha
se

(b
ot

h 
in

 th
e 

sa
m

e 
ve

ct
or

)
G

FP
: 2

0-
50

 �
g/

g 
le

af
 (F

W
), 

w
hi

ch
 is

 cl
os

e 
to

 w
ild

-
ty

pe
 (w

t) 
vi

ru
s C

P 
am

ou
nt

s
Si

m
ul

ta
ne

ou
s h

et
er

ol
og

ou
s

pr
ot

ei
n 

pr
od

uc
tio

n.
M

as
ut

a 
et

 a
l.

20
00

PP
V

U
id

A
-

-
V

ar
re

lm
an

n 
&

 M
ai

ss
 2

00
0

PP
V

gf
p,

Ra
bb

it 
he

m
or

rh
ag

ic
 d

is
ea

se
 v

ir
us

V
P6

0 
pr

ot
ei

n
G

FP
: 2

50
 �

g/
g 

le
af

 (F
W

),
PP

V
 C

P:
  3

90
 �

g/
g 

le
af

 (F
W

)
-

Fe
rn

án
de

z-
Fe

rn
án

de
z

(2
00

1)
ZY

M
V

CM
V

 c
oa

t p
ro

te
in

,g
fp

,U
id

A,
 h

um
an

 in
te

rf
er

on
α2

 (I
N

F)
IN

F:
 ~

2 
�g

/g
 le

af
 (F

W
)

U
id

A 
un

sta
bl

e.
 V

ec
to

r-
in

fe
ct

ed
pl

an
ts

 la
ck

 th
e 

se
ve

re
 sy

m
pt

om
s

se
en

 in
 w

t i
nf

ec
te

d 
pl

an
ts.

A
ra

zi
 e

t a
l.

20
01

ZY
M

V
St

re
pt

om
yc

es
ph

os
ph

in
ot

hr
ic

in
 a

ce
ty

ltr
an

sf
er

as
e 

(b
ar

)
C

lo
se

 to
 w

t v
iru

s C
P 

le
ve

ls.
Th

e 
sa

m
e 

ve
ct

or
 a

s a
bo

ve
.

Sh
ib

ol
et

h 
et

 a
l.

20
01

ZY
M

V
an

tiv
ira

l a
nd

 a
nt

itu
m

ou
r p

ro
te

in
s M

A
P3

0 
an

d 
G

A
P3

1
-

Th
e 

sa
m

e 
ve

ct
or

 a
s a

bo
ve

.
A

ra
zi

 e
t a

l.
20

02
ZY

M
V

Tr
ic

ho
de

rm
a-

in
du

ce
d

M
AP

K 
of

 c
uc

um
be

r, 
in

 s
en

se
 a

nd
an

tis
en

se
 o

rie
nt

at
io

n
-

Th
e 

sa
m

e 
ve

ct
or

 a
s a

bo
ve

.
Sh

or
es

h
 e

t a
l.

20
06

PV
A

gf
p

-
-

Iv
an

ov
 e

t a
l.

20
03

TV
M

V
gf

p,
D

is
co

so
m

a
D

sR
ed

-
-

D
ie

tri
ch

 &
 M

ai
ss

 2
00

3
P1

/H
C

-P
ro

 +
N

Ib
/C

P
Tu

M
V

P1
/H

C
pr

o:
gf

p,
U

id
A

N
Ib

/C
P:

gf
p,

U
id

A
-

Si
m

ul
ta

ne
ou

s p
ro

du
ct

io
n.

U
id

A
un

sta
bl

e.
B

ea
uc

he
m

in
 e

t a
l.

20
05

1 P
1,

 p
ro

te
in

 1
 (p

ro
te

in
as

e)
; H

C
-P

ro
, h

el
pe

r c
om

po
ne

nt
 p

ro
te

in
as

e;
 N

Ib
, r

ep
lic

as
e;

 C
P,

 c
oa

t p
ro

te
in

.
2 C

lY
V

V
,C

lo
ve

r y
ell

ow
 v

ei
n 

vi
ru

s; 
LM

V
,L

et
tu

ce
 m

os
ai

c v
ir

us
; P

Sb
M

V
,P

ea
 se

ed
-b

or
ne

 m
os

ai
c v

ir
us

; P
PV

,P
lu

m
 p

ox
 v

iru
s; 

PV
A

,P
ot

at
o 

vi
ru

s A
; T

EV
,T

ob
ac

co
 et

ch
 v

iru
s;

 T
uM

V
,T

ur
ni

p 
m

os
ai

c v
ir

us
; T

V
M

V
,

To
ba

cc
o 

ve
in

 m
ot

tli
ng

 v
ir

us
;  

ZY
M

V
,Z

uc
ch

in
i y

el
lo

w
 m

os
ai

c v
ir

us
.



32

Epitope/peptide presentation vectors

It is not always necessary to produce a full-size functional protein. For

example, short peptides can be incorporated into the viral CP at a location

displayed on the surface of a mature virion. In most applications, the short

peptide has been an antigen of an animal pathogen, and (partially) purified

virions have been used as candidate vaccines (reviewed by Grill et  al. 2005,

Cañizares et  al. 2005). The maximum length of the peptide that could be

expressed was thought to be less than 25 amino acids in tobamoviruses until a

peptide of 133 amino acids was succesfully displayed on the surface of a

virion (Werner et  al. 2006). This was made possible by using a flexible 15

amino acid linker peptide consisting mostly of glycine residues.

The first succesful epitope presentation system with plant viruses was

achieved with CPMV (Usha et al. 1993). A Foot-and-mouth disease virus (FMDV)

VP1 epitope displayed on the surface of mature virions reacted with FMDV-

specific antiserum. Hence, it was possible to display heterologous antigenic

peptides on the surface of plant virus virions, which opened the possibility to

use epitope presentation vectors and their virions as vaccines. Many

candidate vaccines produced in this manner induce specific antibody

accumulation in animals (reviewed by Cañizares et al. 2005 and Grill et al.

2005). In some cases, protection against a lethal dose of a pathogen has been

reported. For example, swine were immunized with Bamboo mosaic virus

(genus Potexvirus) particles displaying FMDV epitopes, and they survived a

subsequent  exposure  to  a  lethal  dose  of  infectious  FMDV  (Yang et  al. 2007).

The vaccine candidates from the vectors releasing the antigen to the plant cell

cytosol also have been shown to elicit immunoresponse in animals (Pérez

Filgueira et al. 2003, Wagner et al. 2004) and humans (Reddy et al. 2002).

Vector viruses as stable transgenes

The infectious vector-virus DNA clone can be integrated into the host plant

genome and, hence, virus inoculation of each new generation of plants

avoided. This strategy for heterologous protein production is handy once the
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replication, stability and expression of a desired insert-vector construct have

been properly tested and found satisfactory. The procedure allows continuous

large-scale heterologous protein production over a longer time. The first

examples were in BMV (Mori et al. 1993) and PVX (Angell & Baulcombe 1997).

However, the first vector-viruses tested as stably expressed transgenes mostly

failed to give constant yields in regenerated plants and in subsequent plant

generations.  The reason for these difficulties was proposed to be transgene-

induced transcriptional gene silencing associated with the transgene promoter

and/or coding region methylation (Wassenegger & Pélissier 1998, Matzke et

al. 2001). The second generation amplicons were therefore placed under

inducible promoters. With a BMV-based replicon 30-230 fold higher transgene

mRNA  amounts  were  detected  in N. benthamiana plants after glucocorticoid

induction as compared to similar transgenic amplicons placed under the

constitutively expressed 35S promoter (Mori et al. 2001). In transgenic potato

plants transformed with an ethanol-inducible Bean yellow dwarf virus (family

Geminiviridae) based vector, an 80-fold increase in mRNA levels and a 10-fold

increase in translation products were observed (Zhang & Mason 2005). A

variant of this approach was presented by Hull et  al. (2005). The transgene

inducer (yeast GAL4 DNA binding domain :: Herpex simplex virus VP16

transcription factor fusion protein) was expressed from a TMV-based vector

in infected UidA-transgene harboring plants. The GAL4 DNA binding domain

recognized and bound to the GAL4 specific sequence on the transgene

promoter area, and the VP16 domain activated UidA transcription.

Potato virus A

PVA  was  first  reported  in Solanum tuberosum (family Solanaceae) in Ireland

(Murphy & McKay 1932). It is found all over the potato-growing areas of

Europe and North America (Hooker 1981). The known hosts are limited to the

plant family Solanaceae (Bartels 1971). PVA is transmitted in a non-persistent

manner by at least seven aphid species (including Aphis frangulae, A. nasturtii,

Myrzus persicae), and can also be transmitted by mechanical inoculation, but
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not in seed (Bartels 1971). Five strains of PVA (Ali, B11, Her, U, and TamMV)

have been fully sequenced (Puurand et al. 1994, Kekarainen et al. 1999). The

genome length is 9565 nt in isolates Ali, B11, and U, and 9567 nt in isolate Her,

and 9672 nt in isolate TamMV, excluding the poly(A) tail. Isolate B11

originates from potato but has been propagated in various Nicotiana species

since the early 1980s (Rajamäki et al. 1998). It can no longer systemically

spread in most potato cultivars and is not transmitted by aphids (Andrejeva et

al. 1999, Kekarainen et al. 1999). Strain B11 originates in Hungary, and strain U

in North America (Valkonen et al. 1995). The most closely related potyvirus

appears to be Tobacco vein mottling virus (TVMV) (Kekarainen et al. 1999,

Nishiguchi et al. 2006). The particles of PVA are flexuous filaments of ca. 730

nm in length and ca. 11 nm in width (Brandes & Paul 1957).

In the only previous report of PVA as a vector-virus, nucleotide

sequence encoding GFP was cloned in between the NIb and CP encoding

sequences of PVA (Ivanov et al. 2003). The GFP-expressing PVA with amino

acid substitutions at putative phosphorylation sites within the CP was

observed  under  UV-light  to  be  restricted  to  single  cells  in N. benthamiana,

whereas the PVA-GFP without the substitutions was able to move cell-to-cell

and systemically.
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AIMS OF THE STUDY

The overall aim was to develop an infectious PVA clone into a versatile

heterologous protein expression vector that could be used for research

purposes and other applications in plants.

The specific aims were:

1) To test whether a full-size heterologous protein encoding sequence can be

inserted into a novel putative cloning site inside the P1 encoding sequence

and viral functions of replication and systemic movement retained.

2) To investigate whether certain human proteins can be expressed in active

form in plants from the PVA vector.

3)  To  combine  several  cloning  sites  in  a  single  vector-PVA,  and  to  test

simultaneous expression of up to three heterologous proteins.
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MATERIALS & METHODS

The PVA-based expression vectors

All the constructed vector-viruses were based on the infectious clone of PVA

strain B11 (Puurand et al. 1996).  The  clone  was  originally  under  the

bacteriophage T7 RNA polymerase promoter, which was later changed to

CaMV 35S DNA polymerase promoter, to allow inoculation of the infectious

cDNA clone of the virus by using particle bombardment (unpublished).

Detailed description of the construction of the vector-viruses (Table 4) (Fig. 9)

can be found from the publications referred to in table 4. A brief overview is

given below.

The cloning site within the P1 encoding region

Kekarainen et al. (2002) made a Mu-transposon insertion (15 nt) library from

the PVA B11 clone. The transposon inserted a 15-nt sequence to the cDNA of

the virus randomly and the clones in the resultant mutant library contained

only a single insertion. The inserted heterologous sequence did not change

any of the viral amino acids, nor did it change the reading-frame. One mutant

of this library contained an insertion in the P1 encoding region (genomic

postion 235) (Fig. 9 A) and was able to spread systemically in tobacco plants

(Kekarainen et al. 2002). The insertions in the mutant library contained a

unique recognition sequence for the NotI endonuclease. Hence, the insertion

in P1 could be used as a cloning site (CS1). In this study, the NotI site at CS1

was used to insert a GFP encoding sequence (714 nt) into the mutant. In one

subclone, the sequence encoding a novel heptapeptide cleavage site for the

NIa-Pro proteinase was added to the 3’end of the GFP encoding sequence.

Following proteolytic cleavage, the first 25 amino acids of P1 remained

attached to the N-terminus of the expressed GFP. In another construct, the

sequence encoding the NIa-Pro site was added at both sides of the gfp for

separation of the GFP from the viral protein (Fig. 9B). In this construct a total

of 768 non-viral nt were incorporated into the P1 encoding sequence.
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Whenever GFP expression from P1 (CS1) is discussed in further parts of this

thesis, it refers to this subclone, unless otherwise indicated. The detailed

amino  acid  composition  flanking  the  GFP  within  the  P1  is  presented  in  Fig.

9B. In addition, a subclone with a partial gfp gene (the first 123 nt of the

coding sequence) was made without adding the sequences encoding the NIa-

Pro mediated cleavage sites.

The cloning site between the P1 and HC-Pro encoding regions

The P1/HC-Pro cloning site (CS2) was located at the genomic position 1062

between the third and fourth codons of HC-Pro (Fig. 9). The sequence

consisting of the first three codons of HC-Pro was duplicated at the 3’end of

CS2 to allow full-length HC-Pro production in infected plants (Fig. 9B). The

coding sequence of sea anemone Renilla reniformis luciferase gene (Rluc) (933

nt) was inserted into this site. To enable separation of the heterologous

protein from the HC-Pro, a 21-nt sequence encoding the heptapeptide NIa-Pro

cleavage site was incorporated at the 3’end of the luciferase sequence (Fig. 9

B).  Consequently, luciferase was expressed either as a fusion to HC-Pro or as

a free protein.

The cloning site between NIb and CP encoding regions

The third cloning site (CS3) between the replicase (NIb) and CP (Fig. 9) was

initally used for testing the expression of human proteins with a vector-PVA.

Proteins expressed from this vector contained 32 and 27 additional amino

acids  at  their  N-  and  C-termini,  respectively  (Fig.  9  B),  most  of  which  were

derived from a duplicated viral sequence (132 nt, genomic sequence 8478-

8346). The coding sequences for soluble catechol-O-methyltransferase (S-

COMT)  (663  nt)  or  sorcin  (597  nt),  encoding  a  Ca2+-binding protein, were

inserted into this cloning site using the previously engineered BfrI and MluI

endonuclease sites in CS3 (Ivanov et al. 2003). Also the coding sequence of E.

coli UidA (1809 nt) encoding �-glucuronidase (GUS) was cloned into this site.
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Subsequently, two insertion sites for heterologous sequences were

combined in the vector-virus clones (CS1 and CS2, CS1 and CS3, CS2 and

CS3) (Table 4) (III). Finally, a clone including all three sites was made (PVA-

3i) (III). The gfp, Rluc, and UidA coding sequences were inserted in CS1, CS2,

and CS3 of these four vector-viruses, respectively (Fig. 9A).

Table 4. Heterologous protein expressing vector-virus plasmid constructs created.

Plasmid name Plasmid name used
in the reference

Heterologous coding sequence/protein
expressed and its source

Reference

PVA-CS1(gfp) M14-pGFPp, pG00 green fluorescent protein, Aequorea victoria I, III
PVA-CS2(Rluc) pRluc, p0L0 luciferase, Renilla reniformis III
PVA-CS3(gfp) vPVA-GFP(59) see above II
PVA-CS3(S-COMT) PVA-hisS-COMT(59) soluble catechol-O-methyltransferase,

Homo sapiens
II

PVA-CS3(UidA) p00G �-glucuronidase, Escherischia coli III
PVA-CS3(sorcin) PVA-hissor(59) sorcin, a Ca2+-binding protein, Homo sapiens II
PVA-CS3(sorcin-NIa_v2.0) PVA-hissor(9) see above II
PVA-CS3(gfp-NIa_v3.0) - see above unpubl.
PVA-CS1(gfp)+CS2(Rluc) pGL0 see above III
PVA-CS1(gfp)+CS3(UidA) pG0U see above III
PVA-CS2(Rluc)+CS3(UidA) p0LU see above III
PVA-
CS1(gfp)+CS2(Rluc)+CS3(UidA)
or PVA-3i for short

pGLU see above III

Optimization of the NIb/CP cloning site

To minimize the number of additional amino acids remaining in the

heterologous proteins when they are expressed from CS3, two modified

versions of it were made. In CS3(NIa_v2.0) two unique hexanucleotide

endonuclease recognition sites (BfrI and MluI) were added at the genomic

position 8535 that is between the first and the second codon of the CP gene

(Fig. 9B) (II). Following the endonuclease sites, a 15-nt sequence was added,

encoding a pentapeptide (VYFQ/A) that allows NIa-Pro mediated cleavage

(Fig. 9B). In CS3(NIa_v3.0), three unique hexanucleotide endonuclease

recognition sites (SacII, XmaI and AvrII) were added at the genomic position

8514 that is between the 508th and 509th codon  of  the  NIb  gene  (Fig.  9B)

(unpublished). A 21-nt sequence, encoding a heptapeptide (DMVYFQ/A) that

allows NIa-Pro mediated cleavage, was included between  the SacII and XmaI

recognition site sequences (Fig. 9B).
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A

B
Cloning site Virus clone Amino acid sequence
CS1(P1) wt PVA APVAAI

PVA-CS1(insert) APVAAAADMVYFQ/A -insert- DMVYFQ/AAAAVAAI

CS2(P1/HCpro) wt PVA HHY/STGDVF

PVA-CS2(insert) HHY/STGLK -insert- DMVYFQ/ATRSTGDVF

PVA-CS2(insert:HC-Pro) HHY/STGLK -insert- TRSTGDVF

CS3(NIb/CP) wt PVA EEDDMVYFQ/AETL

PVA-CS3(insert) EEDDMVYFQ/AETLDASEALAQKSEGRKKEGESNSSTAGLLKSG -

insert- PRTRRNHKCGHSIQFDEQMDEEDDMVYFQ/AETL

PVA-CS3(NIa_v2.0) EEDDMVYFQ/ALK -insert- TRVYFQ/AETL

PVA-CS3(NIa_v3.0) EEDPRDMVYFQ/APG -insert- PRDMVYFQ/AETL

Fig. 9. Schematic presentation of Potato virus A (PVA) based vector-viruses and the structure

of the cloning sites. A) The horizontal black line represents the RNA genome, and the gray

boxes represent the protein-encoding regions and the corresponding mature proteins. Arrows

point at the cloning sites. Hatched gray boxes below them represent the expressed

heterologous sequences / proteins. Transcription of the cDNA clone was driven by the

Cauliflower mosaic virus 35S promoter. GFP, Aequorea victoria green fluorescent protein; Rluc,

Renilla reniformis luciferase; GUS, E. coli �-glucuronidase; COMT, human (soluble) catechol-O-

methyl transferase. B) Amino acid sequences flanking the heterologous proteins at the three

insertion sites. The added amino acids are in bold, the duplicated viral amino acids are in

italics, the heptapeptide NIa-Pro recognition sites are boxed, and the NIa-Pro cleavage site is

marked with a slash. Wt, wild-type.

NIb CPP1 HC-Pro CI

5’UTR 3’UTR +
poly (A)

NIa-ProVPgP3

6K1 6K2

CS2

CS3CS1

COMT

sorcin

GFP

Rluc

UidA / GUSGFP
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Methods for virus inoculation and detection, and for analysis of expressed

heterologous proteins

The experimental methods applied in the study are listed in Table 5. Detailed

descriptions of the methods can be found from the publications referred to in

the table.

Table 5. Various methods used during the study.

Method Reference
Agrobacterium-assisted protein expression cassette delivery into plants I
Affinity purification of proteins II
Double antibody sandwich – enzyme linked immunosorbent assay (DAS-ELISA) I, II, III
Electroporation of tobacco protoplasts I
Enzyme activity assay – �-glucuronidase I, III
Enzyme activity assay – luciferase III
Enzyme activity assay – S-COMT * II
Fluorometric GFP quantitation Remans

et al. 1999
Immunocapture – reverse transcription – polymerase chain reaction (IC-RT-PCR) I, II, III
Microscopy – stereomicroscope I, II, III
Microscopy – immunosorbent electron microscopy (ISEM) * III
Nucleic acid spot hybridization (NASH) I
Photography of plants under UV-light I, II
Plant growing – conditions and fertilization I, II, III
Protein blotting & immunodetection I, II, III
Protoplast isolation (tobacco) I
Quantitation of proteins – PAGE and SYPRO Ruby staining II
Real-time – polymerase chain reaction I
RNA blotting and RNA/DNA probe based detection – mRNA I
RNA blotting and RNA/DNA probe based detection – siRNA I
Standard cloning and related RNA/DNA manipulation I, II, III
Statistical data analysis I, III
Virus inoculation into plants – plasmid-coated microprojectile bombardment I, II, III
Virus inoculation into plants – plant sap I, II, III
*not conducted by the author
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RESULTS & DISCUSSION

Infectivity of the PVA-based vectors in N. benthamiana

All PVA-based expression vectors with an insert at CS1, CS2 or CS3, with

inserts  in  two of  them,  or  with  inserts  in  all  three  cloning sites  (Fig.  9)  were

able to spread systemically in N. benthamiana plants. Practically all the plants

inoculated with the different vector clones with one or two inserts by particle

bombardment were systemically infected.

All plants were infected when PVA-CS3(gfp) was inoculated to N.

benthamiana leaves using particle bombardment, although usually only two or

three GFP expressing infection foci per shot were observed on the inoculated

leaves under a UV-microscope at 4 dpi. Previously, particle bombardment

with wt PVA on leaves of potato hybrid ‘A6’ resulted in 10-20 necrotic lesions

due to hypersensitive response when the optimized conditions were used

(Kekarainen & Valkonen 2000). The number of initial infection sites observed

in  this  study  was  lower,  which  could  be  explained  by  the  use  of  a  different

host plant, higher sensitivity of the response in ‘A6’, or a possibly decreased

infection capacity of the PVA-CS3(gfp) as compared to the wt virus.

A vector virus with three inserts, gfp, Rluc, and UidA coding sequences

(PVA-3i) inserted at CS1-CS3, respectively, spread systemically in only 19% of

N. benthamiana plants inoculated by particle bombardment. However,

mechanical inoculation with PVA-3i resulted in systemic infection in all 15 N.

benthamiana plants. The inoculum used was leaf sap from a systemically

infected N. benthamiana plant. The reverse-transcription-PCR test indicated

that all 3 inserts were intact in the PVA-3i in the inoculum and in the

systemically infected plants (III).

CS1  was  a  novel  cloning  site  not  previously  tested  in  potyviruses.  A

previous  attempt  to  express  GUS as  an N-terminal  fusion to  P1 in  TEV was

unsuccesful (Dolja et al. 1992). Applicability of CS2 was known to be variable

depending on the potyvirus species. In ZYMV (Arazi et  al. 2001), inserts that

were found to be labile at the P1/HC-Pro site were stable at the NIb/CP site.
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With Turnip mosaic virus (TuMV) vector constructs, the outcome was insert-

specific. UidA was more stable at the NIb/CP site, whereas gfp was tolerated

similarly at both cloning sites (Beauchemin et  al. 2005). However, in another

study, gfp was better suited for the NIb/CP site in all six host species tested,

while a sequence encoding a dust mite allergen worked similarly well at both

cloning sites (Chen et al. 2007). CS3 has been succesfully applied to express

heterologous proteins in many potyviral expression vectors (Table 3).

Disease symptoms and accumulation of the vector-viruses in N.

benthamiana

The wt PVA isolate B11 caused deformation and chlorosis of the systemically

infected leaves and slight stunting of growth in N. benthamiana plants. Later

on, dark-green islands developed producing mosaic-like pattern in the leaves

(Fig 2B in I). A positive correlation between the severity of symptoms and

high virus titers was observed in the plants infected with wt PVA and PVA-

based  vectors  (Table  6).  The  likely  cause  of  this  is  the  diversion  of  host

metabolism to the production of the viral nucleic acids and proteins, and the

other effects of the viral proteins. The potyviral HC-Pro is capable of

suppressing the host RNA silencing mechanism (Llave et  al. 2000, Mallory et

al. 2002) by sequestering the double-stranded small interfering RNA

molecules (siRNAs) generated from the silencing-inducing dsRNA, for

example,  the  viral  RNA.  HC-Pro  prevents  incorporation  of  the  siRNAs  into

RISC, which prevents amplification of RNA silencing (Lakatos et al. 2006). In

addition, HC-Pro can interfere with the host micro-RNA (miRNA) species

that have a role in the post-transcriptional regulation of host gene expression

(Kasschau et al. 2003, Chapman et  al. 2004). Many miRNAs control

transcription factors involved in developmental processes (Voinnet 2005). In

the infection front where Pea seed-borne mosaic virus (family Potyviridae)

replication is highly active in cotyledons of pea, the mRNAs for nine starch

biosynthesis enzyme genes are down-regulated and the accumulation of

corresponding enzymes tested within the infection front is suppressed, when
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compared to healthy cotyledons (Wang & Maule 1995). Behind the infection

front, gene expression recovers and higher enzyme amounts than in healthy

cotyledons are detected. The levels of mRNAs for heat shock protein 90,

polyubiquitin and glutathione reductase 2 are transiently upregulated at the

infection front, while expression of actin, tubulin, and pea heat shock

transcription factor genes show no change (Aranda et al. 1996, Escaler et al.

2000).

Attenuation of symptoms can be useful in research applications in

which visual observations are needed. It can also be beneficial in target

protein production as growth retardation and necrosis of cells can be avoided.

A  natural  mutant  causing  only  mild  symptoms  was  isolated  from  a  ZYMV-

infected  cucurbit  plant  that  did  not  display  the  usual  severe  symptoms  and

was subsequently used as the parent for a vector-virus (Arazi et al. 2001). A

single amino acid substitution in the middle region of HC-Pro was found to

cause attenuation of symptoms. A heterologous sequence in the viral genome

can also often cause attenuation of symtoms, for example in a vector-CMV

expressing  human  acidic  fibroblast  growth  factor  in N. benthamiana and

soybean (Glycine max) (Matsuo et al. 2007).

Influence of the inserts within the P1-encoding region in single-insert vectors (I, III)

The full-size coding sequence of gfp was tolerated at CS1 located in the P1

encoding region of PVA (I). Symptoms and accumulation levels of PVA with

insertions of 15 nt (the insert from the transposon, Kekarainen et al. 2002) or

168 nt (fragment of the gfp) in CS1 were similar to those observed with the wt

PVA in systemically infected leaves of N. benthamiana plants (I). The

symptoms included chlorosis, dark-green islands and severe deformation of

the leaves (Fig. 2A in I). The vector carrying a substantially larger insert (gfp,

714 nt) caused no leaf deformation, less chlorosis and a new symptom of

green vein banding in the leaves. When the plants were grown under stronger

light (250 �E m-2s-1 instead of 100 �E m-2s-1), chlorosis was almost absent and

no green vein banding developed. The effects of light intensity on vector-
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virus  accumulation  and  alteration  of  symptoms  was  not  further  studied.  In

four experiments, the amounts of CP detected in the leaves systemically

infected with PVA-CS1(gfp) were 39-55% of the wt PVA levels (Table 6). The

difference in accumulation of these viruses was similar also in inoculated

leaves of N. benthamiana and in transfected protoplasts of N. tabacum (Table 2

in I). The results with protoplasts indicated a somewhat impaired replication

of PVA-CS1(gfp) as compared to wt PVA. To study the rate of systemic

movement of PVA-CS1(gfp), inoculated leaves of N. benthamiana plants were

excised at various periods of time post-inoculation (I). From 11 to 22% of the

plants became systemically infected when a PVA-CS1(gfp) inoculated leaf was

removed compared to 67-78% of the plants when a wt PVA inoculated leaf

was removed 48 hours post-inoculation (three experiments). The rate of

systemic spread of PVA-CS1 was similar with the 15-nt transposon insertion

and with the 168-nt gfp fragment as with wt PVA.

Influence of inserts at the P1/HC-Pro site in single-insert vectors (III)

Previous attempts to engineer a cloning site between the first and second

codon of HC-Pro of PVA were not successful (Andres Merits, personal

communication). This was unexpected because a cloning site exactly between

the P1 and HC-Pro in PPV (Guo et  al. 1998) and a site between the first and

second codons of HC-Pro in LMV (German-Retana et al. 2000) had been

exploited successfully. Also, no other N-proximal amino acid of HC-Pro other

than the serine directly after the cleavage site was observed to be conserved in

38 potyvirus species analysed, and, hence, thought to be required for the P1-

mediated proteolysis to occur in potyviruses (Adams et al. 2005). However, a

cloning  site  (CS2)  between  the  third  and  fourth  amino  acid  of  HC-Pro  was

applicable in LMV (German-Retana et  al. 2003), and this site was found to

work also for PVA (H. Vihinen & K. Mäkinen, personal communication).

The sequence encoding R. reniformis luciferase was inserted at CS2 (III).

The effect of adding of a sequence (21 nt) encoding a novel NIa-Pro proteinase

cleavage recognition site at the 3’end of luciferase in CS2 was tested. Two
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vector-virus subclones were made. From one of them, luciferase would be

produced as  a  fusion with HC-Pro.  From the other  one,  luciferase  would be

produced as a free protein following separation from the viral polyprotein at

the engineered proteolytic site for NIa-Pro. Both of these viral constructs

spread systemically in plants. The amounts of CP detected in the systemically

infected leaves of four plants were 25% and 54%, respectively, of the insertless

PVA. Both vector versions induced identical mild chlorosis symptoms in the

systemically infected leaves but no severe leaf malformation, in contrast to the

wt  PVA.  The  vector-virus  with  the  engineered  NIa-Pro  site,  PVA-CS2(Rluc),

was used in further studies. Its accumulation in systemically infected leaves

was 40–75% of that of the insertless virus PVA in different experiments (III)

(Table 6).

Influence of inserts at the NIb/CP site in single-insert vectors (II, III)

Four heterologous coding sequences (gfp, UidA, S-COMT and sorcin) were

inserted at CS3, resulting in expression vectors PVA-CS3(gfp), PVA-

CS3(UidA), PVA-CS3(S-COMT) and PVA-CS3(sorsin). The gfp, S-COMT and

sorcin sequences are about the same size (597-714 nt), while UidA (1809 nt) is

almost three times larger. All four vector-viruses caused similar chlorosis and

malformation symptoms in the systemically infected leaves of N. benthamiana

plants. Leaf malformation was not as severe as with wt PVA.

When potato poly(A)-binding protein (PABP) was expressed from CS3,

systemically infected leaves in N. benthamiana displayed a striking vein

chlorosis symptom with little or no leaf deformation that was not observed

with  wt  PVA  or  any  other  vector-PVA  (data  not  shown).  It  is  tempting  to

speculate that the symptom was a result of RNA silencing activated against

the N. benthamiana PABP sequence by the potato PABP coding sequence in the

vector-virus.  No  other  heterologous  sequence  used  in  this  study  was

homologous to genes in N. benthamiana. The partial sequences of N.

benthamiana PABP gene available show several identical areas of 21-nt or

longer as compared with the potato PABP gene sequence.
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Accumulation of the vector-viruses was similar irrespective of the

heterologous sequences inserted into CS3. The CP titers reached almost those

of the wt virus CP levels, even with the long UidA insert (Table 6). The titers

of the viruses with an insert at CS3 were consistently higher than those with

PVA-CS1(gfp) and somewhat higher than those acquired with PVA-CS2(Rluc)

(Table 6). However, more precise comparison of the vectors with CS2 to those

with CS1 or CS3 in terms of virus accumulation would require, for example,

the gfp to be cloned into CS2 and expressed as a free protein as already is the

case in CS1 and CS3.

Influence of multiple inserts (III)

Double-insert vectors

Constructs with the three possible double-insert combinations were made

(Table 4). The same heterologous sequences in the same CSs as in PVA-3i

were used. Symptoms caused by the double-insert vector-viruses were similar

or  somewhat  milder  than  those  caused  by  the  single-insert  vectors  with  the

same inserts. Accumulation of the viral CP with the double-insert vectors was

approximately half of the amount obtained with the single-insert vectors

(Table 6; Fig. 10, top panel). The vector containing inserts in CS1 and CS2

accumulated  to  lower  titers  than  the  vector  carrying  inserts  in  CS2  and  CS3

(Table 6, Fig. 10). The vector carrying inserts in CS1 and CS3 accumulated to

amounts that were between those of the aforementioned vectors.

The triple-insert vector

The construct PVA-3i had three cloning sites, CS1, CS2 and CS3, combined

into a single vector-virus, and gfp, Rluc, and UidA coding sequences inserted

into them, respectively. Simultaneous insertion of three heterologous

sequences encoding a full-size protein in three genomic locations in a single

plant virus vector has not been reported previously. From this vector, the

three proteins were produced theoretically in equimolar amounts in the same
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cell. PVA-3i caused no disease symtoms in N. benthamiana plants, probably

due to the lower virus titers as compared to the insertless vector (~15% in two

experiments)  (Table  6).  Systemic  spread  of  PVA-3i  and  accumulation  in  the

upper leaves was no different from, e.g., PVA-CS1(gfp), as indicated by the

even distribution of GFP throughout the leaves observed under UV-light.

Expression  of  three  heterologous  proteins,  GFP  and  the  TEV  proteins

P1 and HC-Pro, from a single insert has been previously achieved with a PVX

vector (Anandalakshmi et al. 1998). A polyprotein consisting of the three

proteins was produced, and subsequently separated into three proteins by the

P1 and HC-Pro mediated cleavage at their respective C-termini. Production of

two proteins using a potyviral vector has been reported previously with

vectors based on Clover yellow vein virus (ClYVV) (Masuta et al. 2000) and

TuMV (Beauchemin et  al. 2005). The proteins are expressed either from the

same site (P1/HC-Pro) and subsequenly separated by NIa-Pro cleaving at an

engineered site between the two heterologous proteins (Masuta et al. 2000), or

from two separate sites (P1/HC-Pro and NIb/CP) (Beauchemin et al. 2005). It

is not known whether there are benefits of using separate cloning sites instead

of  a  single  site  for  expression  of  multiple  heterologous  proteins  from

potyviruses. A long heterologous sequence pushes the flanking viral

sequences apart from each other, which might cause alterations in folding of

RNA or the polyprotein and subsequently cause problems in replication and

polyprotein processing. The successful use of a single site to express two or

several foreign proteins may be dependent on which cloning site is used.

Previously, two heterologous proteins have been expressed within the

same cell using co-infection with a TMV- and PVX-based vector-virus (Giritch

et al. 2006). This approach might suffer from two problems. Firstly, co-

infection  probably  does  not  occur  in  all  cells.  Secondly,  if  the  vector-viruses

are related, an unknown mechanism inhibits a wide-spread double-infection

of the same cells. This phenomenon is observed with at least TMV, CPMV and

potyviruses (Dietrich & Maiss 2003, Giritch et  al. 2006, Sainsbury et  al. 2006).

Dietrich & Maiss (2003) studied three potyviruses (PPV, TVMV, and ClYVV)
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all expressing different reporter proteins, and co-inoculated plants with them

in different combinations. Doubly virus-infected cells were rarely observed

with potyviruses, whereas they were common when the potyviruses were co-

infecting the plants with PVX-GFP. Co-inoculation of leaves with two TMV

constructs, one expressing GFP and the other one DsRed, and preparation of

protoplasts from infected leaf tissue resulted in only 5% of protoplasts that

were expressing both reporter proteins, i.e. were co-infected, as observed

under a UV-microscope (Giritch et  al. 2006). When these reporter molecules

were expressed from a TMV and a PVX construct,  85-95% of the protoplasts

are doubly infected. When CPMV RNA1 was co-inoculated with two separate

RNA2 constructs each expressing a different reporter protein, co-localization

was detected in the inoculated leaves but not observed in the systemically

infected leaves (Sainsbury et  al. 2006). It was concluded that in the

systemically infected leaves, the vector-viruses segregated, as evident from

the patchy distribution of the two reporter proteins. Monoclonal antibodies

assembled in plant cells when the heavy and light chain polypeptides were

expressed from separate TMV vector constructs (Verch et al. 1998). However,

the same group used transgenic tobacco plants in their subsequent studies

instead of using the vector-virus approach for producing the antibodies (Ko et

al. 2005). The reason may have been the low yield of mature antibodies

obtained with the vector-virus approach, attributable to rare co-infections of

cells. However, Alamillo et al. (2006) produced the heavy and light chain

polypeptides from separate PVX vector constructs, fed the neutralizing IgA-

containing plant material to piglets, and showed decreased transmissible

gastroenteritis  virus  titers  in  the  guts  of  the  piglets.  While  there  was  no

mention of IgA amounts produced in these plant tissues, the assembly of IgA

apparently was successful.

Recently,  three  novel  cloning  sites  for  heterologous  sequences  were

found at the junctions of HC-Pro/P3, 6K1/CI and NIa-Pro/NIb (Fig. 11) in a

TuMV clone (Chen et al. 2007). Using vector-TuMV with these three novel

sites, and also the P1/HC-Pro and NIb/CP sites, they expressed either GFP or
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a dust mite allergen. However, in their study only a single heterologous

protein was expressed at a time. From P1/HC-Pro and NIb/CP sites both the

heterologous proteins were produced in high quantities (ca. 1-2% of total

soluble leaf proteins) in six different host plants (Chen et al. 2007). From the

three novel sites GFP was expressed in similar or somewhat lower amounts

than from the two aforementioned sites. The dust mite allergen could not be

produced from the 6K1/CI site (Chen et al. 2007). From the NIa-Pro/NIb site

it was produced only in 2 of the 6 host plants. In addition, the amounts of the

mite allergen when expressed from the HC-Pro/P3 and NIa-Pro/NIb sites

was much less than the expression from the P1/HC-Pro and NIb/CP sites in

most hosts (Chen et al. 2007). If the three new cloning sites for heterologous

sequences in TuMV function also in PVA, they could be used to find out the

most suitable combination of cloning sites for simultaneous production of two

or more heterologous proteins from PVA. Yet another recently found cloning

site in PVA might be the VPg/NIa-Pro junction. A 45-nt sequence encoding a

histidine-hemagglutinin double affinity tag was cloned to the 3’end of VPg to

be expressed in fusion to the VPg (Hafrén & Mäkinen 2008). The clone was

infectious in N. benthamiana and N. tabacum. However, addition of a sequence

encoding  GFP  between  the  VPg  and  the  double  tag  did  not  produce  an

infectious  PVA  clone  (Hafrén  &  Mäkinen  2008).  It  was  not  tested  if  a

heterologous protein, e.g. the GFP, could be expressed from the VPg/NIa-Pro

site when it is proteolytically separated from VPg.



50

Table 6. Disease symptoms, virus accumulation, and insert stability of Potato virus A based

heterologous protein expression vectors in Nicotiana benthamiana at 14 days post-inoculation

(I, II, III).

N
um

be
r

of
 in

se
rt

s

The cloning site(s) used and the
heterologous sequence(s) therein1

Disease
symtoms2

Amounts of
viral coat protein as

compared to
insertless PVA (%)3

Insert stability
(days)4

CS1(gfp) + 39 – 55 ~14
CS2(Rluc) + 40 – 75 > 14
CS3(gfp) ++ 86 – 114 ~30
CS3(S-COMT) ++ 86 – 91 > 14
CS3(UidA) ++ 77 – 89 < 14
CS3(sorcin) ++ 61 - 112 ~30
CS3(sorcin-NIa_v2.0) + 4 – 17 ~40

A
 si

ng
le

 in
se

rt

CS3(gfp-NIa_v3.0) ++ 85 > 17
CS1(gfp) + CS2(Rluc) + 9 – 31 ~14; >14
CS1(gfp) + CS3(UidA) + 24 – 41 ~14; <14Tw

o
in

se
rt

s

CS2(Rluc) + CS3(UidA) + 34 – 46 >14; <14

Th
re

e
in

se
rt

s

CS1(gfp) + CS2(Rluc) + CS3(UidA) - 12 – 15 ~14; >14; <14

N
o 

in
se

rt
s

Insertless vector-virus +++
100

(1.4–3.3% or
19-36 ng/�g

of soluble leaf
proteins)

-

1CS1,  within  P1  encoding  region;  CS2,  between  the  third  and  fourth  codon  of  HC-Pro

encoding region; CS3, between the first and second codon of CP encoding region; gfp,

Aequorea victoria green fluorescent protein; Rluc, Renilla reniformis luciferase; S-COMT, human

soluble catechol-O-methyltransferase; UidA, Escherichia coli �-glucuronidase; sorcin, human

calcium ion binding protein.
2 -, no symptoms; +, leaf chlorosis; ++, leaf chlorosis and leaf malformation; +++, more severe

cases of leaf chlorosis and leaf malformation.
3Amounts  of  coat  protein  (�g/mg  of  leaf,  fresh  weigth)  were  estimated  by  DAS-ELISA

including  known  amounts  of  purified  PVA  virions  for  comparison,  and  the  values  were

compared to amounts of insertless PVA within every experiment.
4The number of days after inoculation after which at least in two plants a deletion event was

detected with a reverse-transcription-PCR method.



51

Optimizations of the NIb/CP cloning site  (II, unpublished)

The vector-viruses used in studies II and III produced heterologous proteins

with 32 and 27 additional amino acids at their N- and C-termini, respectively

(Fig. 9B). Therefore, the CS3 was further engineered for future uses by

minimizing the number of additional amino acid residues to remain at the

termini of the heterologous proteins expressed from it.

In the first optimized vector-virus, PVA-CS3(NIa_v2.0), a nucleotide

sequence encoding a pentapeptide motif (VYFQ/A) was added to allow NIa-

Pro mediated cleavage between the heterologous polypeptide and viral CP

junction (Fig. 9B) (II). The amino acid sequence is identical to the NIa-Pro

cleavage site located between NIb and CP of PVA (Merits et al. 2002). The

positions P4 and P1 in the pentapeptide are highly conserved among the

seven NIa-Pro sites within the PVA polyprotein (Merits et al. 2002), and also

in  34  of  37  other  potyviruses  (Adams et al. 2005). Any heterologous protein

expressed from PVA-CS3(NIa_v2.0) would have three and six additional

amino acids at its N- and C-terminus, respectively (Fig. 9B). PVA-

CS3(NIa_v2.0) expressing sorcin spread systemically in N. benthamiana plants

(II). Its titers were ca. 10% of those of the wt PVA in systemically infected

leaves (Table 6). The titers were also considerably lower than those of the

unoptimized PVA-CS3(sorcin) vector in the infected plants (Table 6).

Therefore, this approach was considered to compromise the target protein

yields too heavily, although it substantially lowered the number of extra

amino acids that would be incorporated in a heterologous protein.

In the next construct, PVA-CS3(NIa_v3.0), a heptapeptide NIa-Pro

cleavage site consisting of amino acids at positions P6-P1’ was engineered to

have the heterologous polypeptide separated from the viral polypeptide

(unpublished) (Fig. 9B). A cleavage site of this length has been succesfully

used in other vector potyviruses (Arazi et al. 2002, Choi et al. 2000, Dietrich &

Maiss 2003). Titers of PVA-CS3(gfp-NIa_v3.0) (A405 1.38 ± 0.14) were close to

those of wt PVA (A405 1.49 ± 0.05) in similarly diluted samples from

systemically infected leaves of N. benthamiana at 17 dpi (Table 6). The vector
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virus behaved similarly to PVA-CS3(gfp) in infected N. benthamiana plants in

terms of systemic spread, symptoms and GFP expression. When expressed

from this optimized vector, the target protein would have three and eight

additional amino acids at the N-terminus the C-terminus, respectively. These

numbers could be reduced to one and six if the restriction endonuclease

recognition sites used for cloning in the heterologous sequence were situated

differently. Instead of the current construct in which the restriction sites flank

the insert (EEDPRDMVYFQ/APG-insert-PRDMVYFQ/AETL)  (restriction  sites  in  bold)  these

sites could flank the NIa-Pro recognition sites (EEDPRDMVYFQ/A-insert-

DMVYFQ/APGETL) (NIa-Pro sites boxed). The NIa-Pro sites would then have to be

included in the primers used for cloning of the heterologous sequences.

Similar NIa-Pro recognition sequences with seven amino acids were

also used at the other two cloning sites (CS1 & CS2) to separate the

heterologous proteins from the viral polyprotein. Various silent point

mutations were introduced to the sequences for the added NIa-Pro cleavage

site to reduce the chance of homologous recombination during virus

replication.

Variability in virus titers

The titers of vector-virus constructs and wt PVA in inoculated N. benthamiana

plants were primarily measured 14 dpi in all experiments. However, it was

suspected that 14 days was not always long enough for systemic spreading

with all vector-viruses. Therefore, PVA-CS3(gfp-NIa_v3.0)  and wt  PVA were

tested by DAS-ELISA (for CP), western blot analysis (for CP and GFP) and a

fluorometric quantitation assay (for GFP) in N. benthamiana at 14, 17 and 20

dpi (unpublished). All assays indicated that the peak of the CP and GFP

accumulation in PVA-CS3(gfp-NIa_v3.0) infected plants was at 17 dpi,

whereas the wt PVA reached its maximal CP amounts by 14 dpi. The CP

amounts of PVA-CS3(gfp-NIa_v3.0) were 62% of those of the wt virus at 14

dpi, while at 17 and 20 dpi the titers of the two viruses were similar. This

experiment was not repeated, but it showed that 14 dpi is not always an
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optimal sampling timepoint for PVA-based vector-viruses in N. benthamiana.

Varying environmental conditions and the age and physical condition of the

plants at the time of inoculation possibly influences the rate of systemic

spreading.

Testing vector-viruses in N. tabacum cv Samsun nn (I, III)

Mutant viruses with inserts larger than 168 nt in CS1 exhibited lower

virulence  than  the  wt  PVA  in  tobacco  plants  (Table  1  in  I).  Only  half  of  the

tobacco plants inoculated were infected with vector-viruses carrying a full-

size gfp in CS1, and their systemic spread was low (I).

However, when tobacco plants were inoculated with N. benthamiana

leaf sap from leaves infected with PVA-CS1(gfp), PVA-CS2(Rluc), PVA-

CS3(UidA) or the double-insert vector PVA-CS1(gfp)-CS3(UidA), all plants

became systemically infected (III). However, none of the eight plants

inoculated with the PVA-3i-containing leaf sap became systemically infected.

No symptoms were seen in any tobacco plants infected with any of the

aforementioned constructs. The GFP-expressing vector-viruses caused typical

fluorescent spots in the non-inoculated leaves (similar to those in Fig. 2 D in I)

at 9 dpi. During the following days the diameter of the spots increased but the

intensity of green fluorescence faded, so that at 17 dpi the fluorescence was

barely detectable. In leaves infected with PVA-CS1(gfp)-CS3(UidA), the

number  of  fluorescent  spots  was  noticeably  less  than in  leaves  infected with

PVA-CS1(gfp). GFP expression was detected in the PVA-CS1(gfp)-CS3(UidA)

inoculated tobacco plants only in the two first systemically infected leaves at 9

dpi, which indicated partially compromised systemic spreading of the

construct in N. tabacum. DAS-ELISA revealed high amounts of CP in wt PVA

infected tobacco plants at 24 dpi, but only trace amounts in the plants infected

with the  single-insert  vectors  and no virus  in  the  plants  inoculated with the

double-insert vector. Tobacco plants, at least cv Samsun nn, seemed to be

more resistant to PVA-based vector-viruses than N. benthamiana plants.
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The cDNA clones of vector-viruses can be modified to increase

infectivity. For example, 1000-fold more tobacco protoplasts were infected

with a cDNA of a TMV-based vector after 16 plant introns were added and

silent mutations to thymine-rich regions were made to increase the GC

content (Marilloinnet et al. 2005). Similar modifications to the clones of PVA-3i

and the other vector-viruses might increase their virulence in N. tabacum.

Testing of the vector-viruses in S. tuberosum (unpublished)

PVA strain B11, which was the basis for the expression vectors in I, II and III,

is not able to spread systemically from the inoculated leaves in potato

cultivars tested so far (Valkonen et al. 1995). The infectious clone of strain U,

however, spreads systemically in two diploid potato lines (v2-134, v2-51) as

does a chimeric subclone (pBUIII) where the first two-thirds of PVA are from

strain B11 and the rest (from genomic position 6371 onwards) from strain U

(Paalme et al. 2004). pBUIII accumulates to similar amounts as PVA strain B11

in inoculated potato leaves (Paalme et  al. 2004). In this study, higher titers

were observed with pBUIII (A405 2.32 ± 0.21) than with B11 (A405 1.82 ± 0.11) in

similarly diluted samples of systemically infected leaves (DAS-ELISA). New

vector-viruses based on pBUIII were made that had either the CS1 or CS3 and

contained the gfp coding sequence. However, these GFP-expressing vector-

viruses could not spread in potato cv. Pito or in the diploid potato line v2-134

(DAS-ELISA).  They were  also  not  detected in  the  roots.  The GFP-expressing

vectors infected the inoculated leaves but could not exit them. Only the

insertless clones (with 15 nt and 29 nt of non-viral sequence in CS1 and CS3,

respectively) moved systemically in both hosts according to DAS-ELISA and

IC-RT-PCR tests.

Stability of the chimeric viruses during infection (I, II, III)

For most applications of vector viruses, it is important to express full-size

proteins. Furthermore, for some applications, such as expression of proteins

intended for medical use, the uniform full-size product is essential.
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All  the  vector  virus  -  insert  combinations  made  in  this  study  were

tested for stability during the infection of N. benthamiana plants. In general,

the observed stability was dependent on both insert and cloning site. The

growing subpopulations of deletion mutants within the virus populations in

the infected plants could be observed from an increased disease severity. The

plants that eventually contained only deletion mutants had disease symptoms

as severe as those of plants infected by wt PVA, whereas mild, if any,

symptoms were observed in plants infected with vector-viruses with intact

inserts.

The gfpuv (Crameri et al.1996) inside the CS1 began to disintegrate after

two weeks of infection (Fig. 3 in I, III), while the coding sequence of the same

gene (although a different variant) was stable for four weeks within CS3 (II)

(Table 6). A putative recombination hot-spot was identified within the gfpuv

sequence, and was proposed to cause the lability (I). The mgfp5 (Haseloff et al.

1997) variant of gfp used  in  CS3  in  this  study  was  more  stable  and  differed

from gfpuv at the proposed recombination hot-spot by only one nucleotide. In

some cases also, the viral sequence adjacent to the insert was lost in the

deletion process (I), which has been shown to occur also with other vector-

potyviruses (Dolja et al. 1993, German-Retana 2000).

Inserts in CS2 were not extensively tested for stability, but the sequence

encoding luciferase was intact in all tested plants at 14 dpi in three

experiments (III).

Multiple heterologous inserts were tested in CS3, of which only UidA

was clearly more prone to deletions than the others (Table 6) (II, III). Lability

of UidA in vector-potyviruses has been observed before (Arazi et al. 2001,

Beauchemin et al. 2005), although this sequence can be retained intact over 120

days when serial passaging is done every 4-6 days (Dolja et al. 1993). In eight

PVA-CS3(sorcin-NIa_v2.0) infected N. benthamiana plants, the sorcin sequence

was still intact at 40 dpi (Table 6) (II), and at 60 dpi in seven of the eight. In

comparison, PVA-CS3(sorcin) was stable for about one month (Table 6) (II).

The difference may be due to the shorter duplicated viral sequences flanking
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the insert in PVA-CS3(sorcin-NIa_v2.0) and hence a lower rate of homologous

recombination.

Stability of the heterologous inserts in the multi-insert vectors was

analysed in all infected N. benthamiana plants. The results indicated that the

stability of the inserts was similar to that in the single-insert constructs (Table

6) (III).

Stability of inserts in three single-insert vectors was tested in N.

tabacum. Inserts in PVA-CS1(gfp) and PVA-CS2(Rluc)  were  intact  in

systemically infected leaves at 24 dpi, whereas UidA was completely lost from

PVA-CS3(UidA) at this time (III).

Recombination, both homologous and non-homologous, is one of the

driving forces in RNA virus evolution (Simon & Bujarski 1994) and has been

shown to occur in potyviruses (Cervera et al. 1993, Ohshima et al. 2007). The

deletions detected in the inserts and PVA in this study were assumed to occur

via homologous and non-homologous recombination. It is generally found

that vector-viruses sooner or later lose the inserted heterologous sequences,

although there always exists the theoretical chance that the added sequence

improves the survival of the virus and would thus be retained. Another major

class of mutations occuring in RNA viruses, point mutations, are produced

mainly by the viral RNA-dependent RNA polymerases (RdRp) that lack

proofreading capacity. The error rate of RdRps during replication is estimated

to be  10-3–10-4 per nucleotide (Hull 2002). The mutation rate in heterologous

dihydrofolate reductase and neomycinphosphotransferase II encoding

sequences in a vector-TMV was estimated to be �10-4 per nucleotide per

passage through N. benthamiana (Kearney et al. 1993). Point mutations within

heterologous sequences in vector viruses are proposed to cause no

disadvantage for the virus (Kearney et al. 1993). Hence, all point mutations

will be retained, which will eventually lead to heterologous sequence that

does not encode a functional heterologous protein. The point mutations

generated in the vector viruses during infection in plants are generally

overlooked. One reason for this is probably that the deletions that occur in the
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heterologous sequences in vector viruses cause production of intact

heterologous protein to end anyway usually within a few weeks after

inoculation (see most of the examples in tables 1 and 2, and the results of this

study). However, in a TMV-based vector expressing either GFP or hGF in N.

benthamiana roots  kept  in  a  liquid  culture  (subcultured  every  six  weeks)  no

deletions in the heterologous sequences were observed during a three year

period (Skarjinskaia et al. 2008). GFP and hGF proteins of expected sizes were

seen  on  a  western  blot  analysis,  but  neither  their  functionality  nor  the

nucleotide sequence of the inserts in the vector viruses was shown on the

roots after the three year period.

Serial passaging by inoculation to new hosts at fixed time intervals and

a prolonged propagation time within the same plant have been used for

testing insert stability in vector-viruses. The inserts in potyviruses seem to be

stable  for  a  much  longer  total  time  (months  instead  of  weeks)  when  serial

passaging is used (Dolja et al. 1992 & 1993, German-Retana et al. 2000 & 2003),

especially then the intervals are kept short to minimize systemic spreading, as

compared to stability during prolonged propagation in the same host. The

cause is not clear, but perhaps in the serial passaging most of the deletion

mutants are lost by chance since they are not allowed to have sufficient time

to replicate extensively and consequently outcompete the parent vector virus.

In this study, only the prolonged propagation strategy was applied since it

was considered to be more informative about the stability of the constructs.

Heterologous protein expression and accumulation in N. benthamiana

plants (I, II, III)

The amounts of the heterologous proteins positively correlated with the

amounts of the viral CP detected in systemically infected leaves of N.

benthamiana plants, as expected (Fig. 10).
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Expression of the jellyfish GFP (I, II, III)

GFP  was  produced  in  a  functional  form  in  the  leaves  of  the  two Nicotiana

species as observed under UV-light. The observed intensity of the emitted

green fluorescence positively correlated with the measured vector-virus titer

in each individual plant. GFP amounts were not quantified. According to

Leffel et  al. (1997), an amount of 0.1% of soluble leaf proteins is the

unambiguous detection level of GFP variant mGFP4 by a naked eye under a

hand-held  UV-light  device  in  transgenic  tobacco  plants.  If  true  also  in  this

study, this means that even in the case of the PVA-3i-infected N. benthamiana

plants, which had the lowest titers of a GFP-expressing vector-PVA (Table 6)

(Fig. 10), the amount of 0.1% of soluble leaf proteins was reached.

Systemically infected leaves in those plants were observed to be pale green

under a hand-held UV-light. In both PVA-CS1(gfp) and PVA-CS3(gfp) infected

inoculated leaves of potato, GFP was detected only with a fluorescence

microscope, which indicated that GFP expression levels and the vector-virus

titers in potato were lower than in the Nicotiana species.

Two versions of PVA-CS1(gfp) were made (M14-pGFPp and M14-

GFPp) (I). The difference between them was a sequence encoding a

heptapeptide NIa-Pro recognition site (indicated by a lower-case letter ‘p’)

included in the 5’-part of the gfp in M14-pGFPp. In systemically infected

leaves of N. benthamiana, distinct differences were observed both in the

intensity of green fluorescence and the amounts of GFP detected in a western

blot analysis (Fig. 2 F in I), both of which were significantly higher with M14-

pGFPp than with M14-GFPp. Furthermore, in three experiments, M14-pGFPp

exited the inoculated leaves on average a day earlier than M14-GFPp (I). One

explanation for these results could be that the first 25 amino acids of P1 fused

to the N-terminus of GFP in the M14-GFPp interfered with proper folding of

the GFP polypeptide. Another explanation could be accelerated turnover of

P1 in infected cells (Hinrichs-Berger et al. 2003, Rodrígues-Cerezo & Shaw

1991b).
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Expression of the seapansy luciferase (III)

The amounts of activities of luciferase expressed from CS2 correlated with

titers of PVA CP (Fig. 10). Western blot analysis revealed that a minor portion

of luciferase was fused to the HC-Pro protein in the samples (middle panel in

Fig. 3 in III), which indicated slow processing of the novel NIa-Pro cleavage

site engineered between the luciferase and HC-Pro. This was unexpected,

since similar novel NIa-Pro sites were processed quickly when they were used

with inserts at CS1 and CS3 to separate expressed heterologous proteins from

the polyprotein (I, II, III). Alterations in the structure of the viral polyprotein

caused by the luciferase polypeptide might have occurred and partially

interfered with accessibility of the engineered novel cleavage site to NIa-Pro.

When GUS or GFP was produced from an identical location from LMV-based

vector with a similar engineered heptapeptide NIa-Pro site, the heterologous

proteins were efficiently separated from HC-Pro (German-Retana et al. 2003).

Yields of human soluble S-COMT and bacterial GUS (II, III)

For quantification of S-COMT, the total proteins of infected leaves were

isolated and the polyhistidine-tagged S-COMT (partially) purified (II). The

partially purified S-COMT fraction was analysed together with known

amounts of bovine serum albumin on a polyacrylamide gel (Fig. 4 in II) using

a quantitative staining of the proteins. Results indicated that S-COMT

accumulated to up to 0.8% of total leaf proteins in N. benthamiana (II).

The GUS activity was measured and compared to the activity of known

amounts  of  recombinant  GUS  in  extracts  from  leaves  of  healthy  plants  (Fig.

10)  (III).  The  yield  of  GUS  was  up  to  0.7%  of  soluble  leaf  proteins  in N.

benthamiana (III).  Considering  the  lability  of  the UidA nucleotide sequence

within the vector-viruses, the slightly lower yield of GUS as compared to the

yield of S-COMT was not unexpected.

The amounts of CP (1.5-3.5% of total soluble proteins) were similar

with the S-COMT- and GUS-expressing constructs and the wt PVA (III).  The

amount of CP can be considered to equal to the maximum attainable amount



60

of heterologous protein, since the viral proteins and heterologous proteins are

translated and produced in equimolar amounts from a potyvirus. Assuming

that  PVA  CP  was  stable  in N. benthamiana cells,  the  obtained  yields  of  GUS

and S-COMT corresponded to ca. 25-50% and 50% of the expected maximum,

respectively.

Fig. 10. Amounts of viral coat protein (CP) (ng/�g of soluble leaf proteins), relative activities

of Renilla reniformis luciferase (Rluc) (relative light units/�g of soluble leaf proteins), and

amounts of �-glucuronidase (GUS) (ng/�g of soluble leaf proteins) expressed from the single,

double, and triple insert vector-PVA in systemically infected leaves of N. benthamiana plants.

The experiment was repeated with similar results. pG00, PVA-CS1(gfp) expressing GFP; p0L0,

PVA-CS2(Rluc) expressing luciferase; p00U, PVA-CS3(UidA)  expressing  GUS;  pGL0,  PVA-

CS1(gfp)+CS2(Rluc)  expressing  GFP  and  luciferase;  pG0U,  PVA-CS1(gfp)+CS3(UidA)

expressing GFP and GUS; p0LU, PVA-CS2(Rluc)+CS3(UidA) expressing luciferase and GUS;

pGLU, PVA-CS1(gfp)+CS2(Rluc)+CS3(UidA)  expressing  GFP,  luciferase  and  GUS;  RLU,

relative light units.
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The role of P1 in HC-Pro mediated suppression of RNA silencing (I)

Potyviral HC-Pro protects non-host RNAs from degradation via its ability to

suppress the host RNA silencing system (Kasshau & Carrington 1998,

Johansen & Carrington 2002, Lakatos et al. 2006), as a P1/HC-Pro duplex

(Kasshau & Carrington 1998) and as HC-Pro (Brigneti et al. 1998).

Three different PVA-CS1(gfp) clones, M14-pGFPp, M14-GFPp, and

M14-delGFP, were used to further investigate the role of P1 in HC-Pro

mediated RNA silencing suppression (I). From these vectors the sequences

encoding  P1,  the  heterologous  polypeptide  or  HC-Pro  were  cloned  into  a

binary vector for 35S promoter driven expression from A. tumefaciens.

Similarly, from wt PVA the sequences encoding both P1 and HC-Pro, or P1 or

HC-Pro alone, were cloned into a binary vector. In all constructs, the viral

5’UTR was included, which is a translation enhancer (Carrington & Freed

1990). These constructs were used to express the aforementioned proteins in

tobacco leaves. Following expression from these constructs, P1 was expected

to separate itself from HC-Pro, but the GFP or the fragment of GFP would be

retained in the P1.

Expression of mRNA from the wt P1/HC-Pro and the P1(delGFP)/HC-

Pro constructs was 10-30 fold higher than from the HC-Pro expressing

construct in the agroinfiltration experiments (Fig. 4B in I). These data

suggested that the P1/HC-Pro polyprotein enhanced the accumulation of the

corresponding mRNA more than was observed with HC-Pro. P1 produced

alone had no effect on the mRNA levels, as compared to HC-Pro, as had been

shown previously (Brigneti et al. 1998). The highest GUS activities were

observed when UidA was co-expressed with P1/HC-Pro in four experiments.

These data suggested that P1/HC-Pro protected mRNAs against silencing to a

higher  extent  than  was  observed  with  HC-Pro  alone.  It  is  possible  or  even

likely that not all cells were doubly infected when leaves were co-infiltrated

with the two constructs. This could explain the observed weaker protection

effect of the UidA mRNA than the mRNA expressing the P1/HC-Pro

polyprotein. Pruss et al. (1997) have shown that expression of TEV P1/HC-Pro



62

duplex from PVX in tobacco protoplasts led to a substantial increase in levels

of  PVX  (-)strand  RNA,  but  not  the  (+)strand  RNA,  as  compared  to

corresponding  RNA  levels  when  TEV  HC-Pro  was  produced  alone.  Their

study provided the first indication that P1/HC-Pro is an efficient RNA

silencing suppressor, and more efficient than HC-Pro alone. Hence, P1 seems

to enhance the silencing suppression activity of HC-Pro.

Sizes of virions of the PVA-based vectors (III)

PVA-3i has a genome that is ca. 38% longer than the wt PVA. Immunosorbent

electron microscopy (ISEM) was used to study whether PVA-3i and other

vector-viruses had retained viral RNA encapsidation and particle formation.

Previously, PPV carrying the UidA coding sequence had been found to form

virions in infected N. benthamiana leaves (Varrelmann & Maiss 2000). Also,

there is indirect evidence that TEV-UidA forms virus particles, as partially

purified virions from vector-virus and wt TEV infected leaves contained

comparable amounts of viral RNA as detected by northern blot analysis

(Dolja et al. 1997).

Virion formation of potyviruses has been proposed to start at or near

the 5’ end of the genome, and to proceed rapidly towards the 3’ end once

initiated (Wu & Shaw 1998). It is still somewhat unclear whether potyviruses

move cell-to-cell and systemically as virions or as other ribonucleoprotein

complexes (Dolja et  al. 1994, 1995; Rodrígues-Cerezo et  al. 1997). TEV CP

mutants, in which the highly conserved amino acids in the core region are

substituted with alanine, are defective in movement and encapsidation (Dolja

et al. 1994, 1995). However, these mutants could also fail in various protein-

protein or protein-RNA interactions that might be needed for formation of the

putative ribonucleoprotein transport complex other than virions. Hence, it is

also not clear whether the vector-potyviruses need to form virions in order to

cause a systemic infection. Immunogold labeling and in situ hybridization

experiments have revealed TVMV CP and RNA inside cones that are formed

by the viral cylindrical inclusion (CI) protein and span the cell walls and
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membranes of adjacent cells (probably through plasmodesmata) (Rodrígues-

Cerezo et al. 1997). However, whether the viral CP and RNA were assembled

to virions remained unclear.

PVA virions were captured from systemically infected leaves of N.

benthamiana plants 10 dpi with PVA-3i, PVA-CS1(gfp)-CS3(UidA), PVA-

CS1(gfp), PVA-CS3(UidA), or wt PVA. Grids coated with a monoclonal

antibody recognizing an epitope near the N-terminus of PVA CP (Rajamäki et

al. 1998) were floated upside down on drops of sap from infected leaves to

trap virus particles (III). ISEM revealed virions with all four vector-viruses

tested (Fig. 4 A in III). The genome lengths positively correlated with the

observed virion lengths and regression analysis indicated that 82% of the

variation in the observed virion lengths could be explained by genome

lengths (p<0.001) (Fig. 4B in III). In contrast, in a similar regression analysis

with a data-set consisting of the virion and genome lengths of 38 wt potyvirus

species from other studies, only a weak correlation was found and only 21%

of the virion length variation was explained by genome length variation (Fig.

4B in III). Measurement of the sizes of potyvirus virions is difficult and also

affected by many possible sources of error. The viral poly(A) tail encapsidated

in virions can vary substantially in length and is ca. 15-500 nt in TEV and PPV

(Hari 1981; Laín et  al. 1988). Virions can break during the capturing and

staining procedures and form end-to-end fusions with themselves or with

full-size virions. In addition, other technical aspects influence the results, for

example divalent cations that may introduce up to 20% variability in virion

lengths during virion capture and staining procedures (Govier & Woods

1971).
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CONCLUSIONS

Heterologous sequences were inserted into three locations in an infectious

clone of Potato virus A (PVA) without greatly compromising vital viral

functions such as replication and systemic movement. One of the cloning sites

was novel for potyviruses. In addition to vector-PVA constructs containing

single inserts, vector-viruses were made with two or three heterologous

sequences placed at different positions at the viral genome. They

simultaneously expressed several heterologous reporter proteins in

systemically infected leaves of N. benthamiana plants. These vector-viruses

formed virions, the lengths of which correlated with genome lengths. Hence,

direct evidence could be obtained on the dependence of virion length on

genome size in potyviruses.

The future application of all these vector-viruses could be in protein

overexpression, and as research tools. The flexibility of potyviruses for both of

these purposes is underlined by a recent study that reported three novel

cloning sites for heterologous sequences in a TuMV clone (Chen et al. 2007)

(Fig. 11).

Fig. 11. A schematic map of a potyvirus genome/polyprotein that illustrates its versatility as

a  heterologous  protein  expression  vector.  The  arrows  point  at  the  locations  within  the

genome identified so far as tolerating foreign sequences encoding full-size proteins. The site

within the P1 encoding region was characterized in this study. The P1/HC-Pro and NIb/CP

sites have been used in many studies (Table 3). The HC-Pro/P3, 6K1/CI, NIa-Pro/NIb sites

(Chen et al. 2007) have been found recently.

VPg NIb CPNIa-ProP1 HC-Pro P3 CI

6K1 6K2
5’UTR 3’UTR +

poly (A)
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The results of Chen et al. (2007),  the  ones  listed in  Table  3,  and those  of  this

study all indicate that foreign proteins can be expressed from a vector-

potyvirus in plants in high amounts. Nevertheless, there are differences in

how different foreign sequences are tolerated by potyviruses and/or

potyvirus  –  host  species  combinations,  and  by  the  different  cloning  sites  in

potyviral genomes.

The aim to have a vector-virus capable of infecting potato plants was

not completely successful. All the constructs were able to infect the inoculated

leaves  but  none  of  them  could  spread  systemically.  Further  development  of

the vector-PVA for use in potato could include testing other cloning sites than

the P1 or NIb/CP sites used in this study. Also, other potato cultivars or wild

relatives of potato that are susceptible to PVA could be tested. However, it is

also possible that co-evolution of PVA and its host, potato, has led to a

situation where addition of a fairly large heterologous sequence to most, if not

all, places within the virus genome is not possible.
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