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ABSTRACT 
 
 
This thesis examines the feasibility of a forest inventory method based on two-phase 
sampling in estimating forest attributes at the stand or substand levels for forest 
management purposes. The method is based on multi-source forest inventory combining 
auxiliary data consisting of remote sensing imagery or other geographic information and 
field measurements. Auxiliary data are utilized as first-phase data for covering all inventory 
units. Various methods were examined for improving the accuracy of the forest estimates. 
Pre-processing of auxiliary data in the form of correcting the spectral properties of aerial 
imagery was examined (I), as was the selection of aerial image features for estimating 
forest attributes (II). Various spatial units were compared for extracting image features in a 
remote sensing aided forest inventory utilizing very high resolution imagery (III). A 
number of data sources were combined and different weighting procedures were tested in 
estimating forest attributes (IV, V). 

Correction of the spectral properties of aerial images proved to be a straightforward 
and advantageous method for improving the correlation between the image features and the 
measured forest attributes. Testing different image features that can be extracted from aerial 
photographs (and other very high resolution images) showed that the images contain a 
wealth of relevant information that can be extracted only by utilizing the spatial 
organization of the image pixel values. Furthermore, careful selection of image features for 
the inventory task generally gives better results than inputting all extractable features to the 
estimation procedure. When the spatial units for extracting very high resolution image 
features were examined, an approach based on image segmentation generally showed 
advantages compared with a traditional sample plot-based approach. Combining several 
data sources resulted in more accurate estimates than any of the individual data sources 
alone. The best combined estimate can be derived by weighting the estimates produced by 
the individual data sources by the inverse values of their mean square errors. Despite the 
fact that the plot-level estimation accuracy in two-phase sampling inventory can be 
improved in many ways, the accuracy of forest estimates based mainly on single-view 
satellite and aerial imagery is a relatively poor basis for making stand-level management 
decisions. 
 
Keywords: multi-source forest inventory, two-phase sampling 
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INTRODUCTION 
 
 
In Finland, data acquisition for forest management planning has traditionally been based on 
stand-level field inventories. Forest inventory by compartments is another term used for the 
same method (e.g. Poso 1983, Koivuniemi & Korhonen 2006). The method is associated 
with forest management based on stands, which was originally developed in Germany in 
the 19th century. Forest management by stands is based on the idea of a geographically 
contiguous parcel of forest whose site type and growing stock characteristics are 
homogeneous, i.e. a stand (Poso 1983, Koivuniemi & Korhonen 2006). The optimal 
management of a forested area is based on the optimal management of the forest stands in 
accordance with their site and growing stock characteristics (e.g. Poso 1983). Forest 
inventory by stands is a prerequisite for forest management by stands (e.g. Koivuniemi 
2003). 

In the form as is currently applied in Finland, the inventory method comprises the 
following phases: initial delineation of the inventory units (i.e. stands), field inventory, 
processing of inventory data and compilation of a forest management plan. Delineation of 
the inventory units is based on visual interpretation of aerial photographs and is typically 
done in the office before the fieldwork season. In the fieldwork phase every stand in the 
inventory area is visited and the stand characteristics are assessed ocularly with the aid of 
subjectively placed measurements of growing stock. Additionally, delineation of the stand 
borders is checked and revised, if necessary. 

The subjectivity of the method is an apparent drawback. Delineation of the stands and 
selection of measurement points within the stands are dependent on the person carrying out 
the inventory, and the delineations carried out by different interpreters are seldom similar 
(Poso 1983). Second, the forest stand is usually delineated as an appropriate unit for 
silvicultural treatment or logging, and not as an ecologically homogeneous unit. This results 
in heterogeneity in stand properties and, since the stands are not homogeneous, the stand 
variables are typically defined as average values within the stand (Poso 1983). Therefore, 
the stand measurement is exposed to subjective selection of measurement points and the 
reliability of the field data may be poor. Additionally, the stand borders often tend to 
change between consecutive inventories, due to silvicultural operations and natural 
disturbances that do not follow the stand delineation. This makes the delineated stands 
unsuitable for forest monitoring.  

Since all stands in the inventory area need to be visited in the field, the method requires 
extensive fieldwork and skilled professional staff. Currently, the main problem to be solved 
in the Finnish forest management planning system is the disparity between the required 
amount of fieldwork and the resources allocated for the work.  Thus, new inventory 
methods must be introduced to increase the efficiency of forest management planning. One 
option that has been suggested for rationalizing the forest management planning system is 
reducing the fieldwork through the increased use of remote sensing (RS) imagery.  

Other types of forest inventory are the large-scale inventories that typically aim at 
producing unbiased estimates of forest attributes at the national or regional levels. These 
inventories are typically based on plot sampling. However, it is also possible to utilize this 
type of inventory for estimating local forest attributes (e.g. at the level of a stand or a 
sample plot). One example of this is the Finnish multi-source national forest inventory 
(MSNFI) (e.g. Tomppo 1990, 1993). A method based on two-phase plot sampling has been 
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suggested as an alternative to stand-level inventory for forest management planning (e.g. 
Holmgren & Thuresson 1995, Poso & Waite 1996). 
 
 

TWO-PHASE SAMPLING IN FOREST INVENTORY 
 
 
Two-phase sampling is based on the idea of a sampling design in which units of the same 
size are used at each phase of sampling, but fewer units are selected at the later phase 
(Schreuder et al. 1993). Sampling units of various types and sizes, such as circular sample 
plots or sample plots with variable radii, can be utilized in two-phase sampling. However, 
the sample unit should be small enough to be measured as a homogeneous unit in relation 
to its forest characteristics. Very large units often cover an area that is larger than a single 
forest stand and they are also expensive to measure in the field.  

In a sampling-based forest inventory, it is often appropriate to consider the forest as a 
population of sample plots. The size of the first-phase sample is dependent on the objective 
of the inventory. For forest management purposes, information on local forest 
characteristics at the stand or substand level is required. This is likely to lead to a fairly 
dense grid of first-phase sample units.  

Two-phase sampling-based forest inventory applications aiming at producing map 
form information on local forest attributes are typically based on the idea of estimating 
forest attributes by combining field measurements and auxiliary data, which usually 
includes at least some RS imagery. Auxiliary data are those that as such may not be 
appropriate or sufficiently accurate for the specific forest inventory task (such as satellite 
image pixel values or visually interpreted forest attributes), but are correlated with the true 
values of the forest attributes of interest and can thus be used for the estimation of forest 
attributes. RS images are the main source of auxiliary data for forest inventories, but other 
data have also been utilized, such as data from previous stand inventories or digital map 
data of land use, soil or topography (e.g. Hutchinson 1982, Poso et al. 1987, Bolstad & 
Lillesand 1992, Tomppo 1992, Tomppo 1993, Thuresson 1995, Tokola & Heikkilä 1997). 
Additionally, information on the geophysical properties of the terrain and maps of 
climatological zones have been studied as auxiliary data (e.g. Cibula & Nyquist 1987, 
Häme et al. 1991). 
 
Applying two-phase sampling is appropriate when the following conditions are fulfilled: 

1. The unit cost of the first-phase data is significantly lower than the unit cost of the 
second-phase data. 

2. The accuracy of the second-phase data is significantly higher than the accuracy of 
the first-phase data. 

3. The first-phase data are well correlated with the second-phase data. 
 

Two-phase sampling with stratification can be applied to improve the efficiency of 
estimating population parameters. Stratification of first-phase units into strata as 
homogeneous as possible based on first-phase data makes it possible to allocate the field 
units efficiently. The main alternative stratification procedures that can be employed with 
two-phase sampling are: 
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A. Stratification of the first-phase units before drawing of the second-phase sample 
(i.e. pre-stratification). This makes it possible to draw the field sample in a 
desirable way. 

B. Stratification of the first-phase units after drawing of the field sample (i.e. post-
stratification). This means that stratification is used only for applying the two-
phase sampling estimators. 

 
A two-phase sampling-based forest inventory application aiming at estimation of the 

population and local characteristics can be divided into the following steps (e.g. Poso & 
Waite 1996, Tuominen et al. 2006). 
 

1. Delineation of the inventory area. 
 

2. Generation of the first-phase sample for the inventory area. The size of the first-
phase sample is dependent on the objective of the inventory. Usually, the number 
of first-phase sample units can be high. The first-phase sample can be defined as 
an equidistant grid of points, in which each point defines the location of the 
sample plot centre. 

 
3. Acquisition of the auxiliary data to the first-phase sample units. Auxiliary data 

should be highly correlated with the forest variables of interest and their 
acquisition cost should be low (compared to field data) 

 
4. Stratification of the first-phase sample units. This step is optional but often 

worthwhile. Stratification before drawing the field sample is often advisable. The 
objective is to divide the first-phase sample into strata that are as homogeneous as 
possible with respect to the forest variables of interest. 

 
5. Determining the number of second-phase sample units, i.e. field plots and drawing 

the field sample. Allocation of the field sample is important for the efficiency of 
inventory; if some type of forest is not present among the second-phase sample 
units, it will likewise not be present in the inventory results. If two-phase sampling 
with stratification is applied, proportional or optimal allocation of the field sample 
can be applied. In proportional allocation the field sample is allocated in 
proportion to the stratum area. In optimal allocation the field sample is allocated to 
the strata, while observing the variation within the strata, the field measurement 
cost in each stratum and the importance of each stratum. Proportional allocation is 
recommended if the field variables in each stratum are regarded as equally 
important for inventory purposes and the inter-stratum variances and the unit cost 
of the second-phase sample units are similar in the different strata. Optimal 
allocation is recommended if it is required that those strata that a) are regarded as 
most important, b) have the highest variances or c) have the lowest unit costs are 
allocated more field plots than suggested by proportional allocation. This usually 
requires a priori knowledge of the properties of the strata. The second-phase 
sample can also be drawn without stratification, e.g. based on systematic or cluster 
sampling. The formulas for proportional (Eq. 1) and optimal allocation (Eq. 2) of 
the field plots to strata are (Cochran 1977): 
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where 
wh = nh/n =  proportion of the total area represented by stratum h  
n = total number of first-phase sample units 
nh = number of first-phase units in stratum h 
m = total number of second-phase sample units 
mh = number of second-phase units in stratum h 
ch  = measurement cost of an second-phase unit in stratum h 
sh = standard deviation within stratum h 

 
 

6. Measurement of the field plots. Field data (i.e. ground truth) are considered as the 
most accurate data. As a general rule, all inventory variables are measured for all 
field plots. Errors in location decrease the correlation between auxiliary and field 
data, thus degrading the inventory accuracy.  

 
7. Estimation of local (first-phase sample unit) and population characteristics and 

their accuracy. The forest parameters of the first-phase sample plots are estimated 
using an appropriate estimator. The forest estimates can be derived for the desired 
geographic units, e.g. for forest stands delineated on the basis of RS images. 

 
The phases of a forest inventory application utilizing two-phase plot sampling and various 
auxiliary data sources are illustrated in Figure 1. 
 

A method similar to two-phase sampling with stratification is two-phase sampling with 
regression. This method is based on modelling the forest attributes (i.e. second-phase data) 
using the first-phase (auxiliary) data as independent variables. The regression model can be 
presented as: y = a+bx (where y refers to the second-phase data, a to a constant for the 
regression line, b to the coefficient of regression and x to the first-phase data). The main 
problem associated with this method in forest inventory applications is that each inventory 
variable basically requires a separate regression model. Thus, the method was not applied in 
this study.  
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Figure 1. An example of the two-phase sampling procedure for estimating stand-level forest 
characteristics (input and output data and phases)  
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REMOTE SENSING IN FOREST INVENTORY 
 
 
The use of RS imagery as auxiliary data for forest inventory and monitoring has been 
studied in the context of various applications. Aerial photographs were for long the only 
available RS data source for forestry. The first forestry applications of aerial photography 
were carried out in Germany in the late 19th century, where aerial photographs were 
acquired for mapping of forest stands, using an anchored aerial balloon (Hildebrandt 1996). 
Principally, the aerial photography technique was introduced into more widespread use 
along with the development of aeroplanes. During 1919-1930 there were a large number of 
aerial photography applications in fields of forest inventory, vegetation mapping and forest 
fire monitoring in Europe, North America and the British colonies in Africa and Asia 
(Hildebrandt 1996). In Finland the use of aerial photography in forest management 
planning was begun after the Second World War, although the applicability of aerial 
photographs in forestry and especially for mapping of forest stands was studied earlier by 
Sarvas (1938). At first, the aerial photographs were mainly used for the mapping and 
delineation of forest stands, replacing the line measurement method used for that purpose 
until then. Visual interpretation of aerial photographs for the estimation of forest 
characteristics was studied by Nyyssönen (1955). Poso and Kujala (1971) applied a two-
phase forest inventory method based on aerial photograph and field plot sampling in the 
fifth national forest inventory (NFI 5) in northern Finland. The first-phase sample plots 
were stratified into fairly small strata based on interpretation of aerial photograph stereo 
pairs. One plot from each stratum was drawn for field measurement and the field data of the 
plot were transferred to all first-phase sample plots belonging to the same stratum. This 
method was also used in NFI 6 and NFI 7 with some modifications (Mattila 1985), until 
satellite images replaced aerial photographic interpretation. 

The use of satellite imagery in forest inventory in Finland was first studied by Kuusela 
and Poso (1970), who tested the estimation of growing stock volume of large forest areas 
by regression modelling utilizing the spectral values of Environmental Science Services 
Administration (ESSA) 8 meteorological satellite. Later the same authors studied National 
Aeronautics and Space Administration (NASA) Earth Resources Technology Satellite 
(ERTS) multispectral scanner (MSS) imagery (Kuusela & Poso 1975). In this study the 
field material was stratified based on field measurements, and the variation of the spectral 
properties of the satellite data within the strata was examined. A forest inventory and 
monitoring application based on stratified two-phase sampling utilizing Landsat Thematic 
Mapper (TM) satellite imagery was presented by Poso et al. (1987). In this method, map 
data were used for differentiating forestry land from other land-use classes and RS imagery 
for stratifying the forestry land into strata representing different forest classes. The 
estimates of forest attributes for each first-phase plot were calculated as mean values of the 
field sample plots within each stratum.     

Kilkki and Päivinen (1987) presented the reference sample plot method, in which the 
estimates for each first-phase sample plot were taken from the field plot that was nearest to 
it in the auxiliary data space. This method is closely related to the method applied earlier in 
northern Finland. In NFI 8 and consecutive inventories, Tomppo (1990, 1993) applied a 
method called the k nearest neighbours (k-nn) method, which differs from the reference 
sample plot method in that the estimates are derived from the k nearest field plots in the 
feature space. A similar method was also applied by Muinonen and Tokola (1990) for 
estimating communal level forest parameters in southern Finland.  
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The present NFI system in Finland is a multi-source forest inventory (MSFI) utilizing 
information from several data sources, including RS imagery, maps, elevation data and 
field measurements. This makes it possible to produce geo-referenced information in digital 
map format for all the attributes measured in the field (e.g. Tomppo 1990, Tomppo & 
Halme 2004). The accuracy of the map is then dependent on the correlation between the 
auxiliary and field data.  

At the time of writing, currently developing areas in RS of forests include, among 
others, very high resolution (VHR) optical satellite image sensors, such as IKONOS and 
Quickbird, that are capable of producing image material with resolution similar to aerial 
photographs, active sensors such as satellite or airborne synthetic aperture radars (SAR), 
such as CARABAS, and airborne laser scanners (ALS), which probably are the most 
significant of these in Finnish forestry. Among other developments in digital aerial 
photograph interpretation is 3-dimensional (3D) tree measurement by means of digital 
aerial photogrammetry, which allows measurement of the location and dimension of 
individual trees (e.g. Korpela 2004).    
 
 

OBJECTIVES OF THE THESIS AND SUBSTUDIES 
 
 
The objective of this thesis was to examine the feasibility of inventory methods based on 
the two-phase sampling technique, utilizing RS images and other auxiliary data for 
estimating forest attributes for the purpose of forest management planning. The specific 
objectives of the individual substudies are defined as follows: 
 

I. The objective was to develop and test a method for enhancing the usability of 
aerial photographs in MSFI by correcting the spectral properties of the aerial 
photographs, utilizing an image-fusion technique and satellite images as reference 
imagery. 

II. The objective was to test the applicability of different types of image features in 
estimating forest characteristics and to introduce an appropriate combination of 
image features for the purposes of MSFI.  

III. The objective was to determine the appropriate unit for extracting image features 
from very high resolution RS images for estimating forest characteristics. 

IV. The objective was to examine methods for combining different auxiliary data 
sources and to examine different weighting procedures in combining several 
auxiliary data sources to improve the MSFI estimates. 

V. The objective was to determine the proper combination of RS data, old inventory 
data and geostatistical interpolation of field measurements in estimating forest 
attributes. 
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MATERIALS 
 
Study areas and field data 
 
The substudies were carried out utilizing five study areas located in southern Finland. 
These five areas (A-E) were: 

A. Längelmäki: IV 
B. Kuru: I, IV 
C. Leivonmäki: II, III, V 
D. Kirkkonummi: III 
E. Kontiolahti: I 

 
A map of the study areas is presented in Figure 2. 
 
 

 
 
Figure 2. Map of the study areas and vegetation zones in Finland. 
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The field measurements in the study areas were carried out using relascope sample 

plots and concentric circular sample plots. In study areas A, B, C and D the field sampling 
was based on pre-stratification. The strata were derived, based on RS imagery, and the field 
sample was allocated proportionally to the strata. In study area E the field sample was 
drawn without pre-stratification. A minimum distance of 100 m was applied between the 
field plots in study areas A, B, C (for the set of 388 plots) and D to avoid spatial 
autocorrelation between the field sample plots. The set of 289 plots in C was drawn with 
closer distances to test the geostatistical interpolation of the forest attributes. Due to the 
small size of study area E, no minimum distance between the field plots was applied. The 
main characteristics of the field and auxiliary data for study areas A-E are presented in 
Tables 1 and 2.  
 
 
Table 1. Study areas and materials. 
 

 Approx. 
area, ha 

Number of 
field plots 
(year when 
measured) 

RS imagery (date) Other 
auxiliary 
data (date) 

A 1800 300 
(1997) 

 Landsat 5 TM 190/17 (1995) 
 Landsat 5 TM 189/17 (1989) 
 IRS-1C PAN 33/23 (1996)  
 CIR aerial photographs* (1997) 

Stand 
inventory 
data (1991-
95) 

B 4500 380 
(1997) 

 Landsat 5 TM 190/17 (1995) 
 Landsat 5 TM 189/17 (1989) 
 IRS-1C PAN 33/23 (1996)  
 CIR aerial photographs* (1995) 

Stand  
inventory 
data (1996) 

C 1800 388 + 289 
(1999) 

 CIR aerial photographs* (1999) Stand 
inventory 
data (1992) 

D 1000 233 
(2000) 

 CIR aerial photographs* (1999) - 

E 60 707 
(2002) 

 Landsat 7 ETM+ 186/16 (2000) 
 CIR aerial photographs* (2001) 

- 

 
*The scale of CIR aerial photographs was approx. 1:30 000 
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Table 2. Characteristics of the study areas (forest attributes are presented as average and 
maximum values of the field plots). 
 

Study area A B C D E 

Min and max elevation, m 
a.s.l. 

110 
223 

95 
190 

123 
198 

27 
85 

100 
235 

Total volume, m3/ha 145 
676 

118 
499 

94 
469 

157 
548 

145 
581 

Volume of pine, m3/ha 43 
280 

58 
297 

43 
292 

50 
364 

55 
386 

Volume of spruce, m3/ha 87 
676 

48 
441 

34 
419 

68 
484 

73 
449 

Volume of broad-leaved 
trees, m3/ha 

15 
214 

12 
292 

17 
258 

39 
336 

18 
191 

Diameter at breast height, 
cm  

18 
45 

15 
52 

13 
44 

25 
47 

17 
56 

Height, m 14 
35 

13 
33 

11 
29 

19 
32 

13 
27 

Basal area, m2/ha 16 
50 

15 
52 

13 
45 

17 
63 

17 
42 

 
 
Remote sensing imagery 
 
Satellite images were utilized in this study, because they provide auxiliary data with some 
indisputable advantages. Using satellite imagery it is possible to cover large areas with 
reasonably up-to-date image material. Furthermore, the unit cost of the satellite imagery 
(especially Landsat TM/ETM+) per covered area is low in comparison to other auxiliary 
data sources, which also makes their application in forest inventory economically feasible. 
Landsat TM/ETM+ images cover a wide spectral range and the spectral resolution of the 
sensor is favourable, which are clear advantages in forest or vegetation inventories, 
compared to RS images that have very high spatial resolution and narrow spectral range 
(e.g. Tuominen & Haakana 2005). Satellite images are typically used in large-area forest 
inventories, such as the Finnish NFI. Although the use of satellite images has accomplished 
successful results in large-area inventories, the general accuracy of satellite image-based 
estimates has been poor at the level of single field plots or forest stands (e.g. Tokola et al. 
1996, Katila & Tomppo 2001, Mäkelä & Pekkarinen 2001). Therefore, their value for forest 
management planning has been considered low (e.g. Holmgren & Thuresson 1998). One 
reason suggested for the high stand- and plot-level estimation errors is the low spatial 
resolution of the satellite image material employed. Under conditions prevailing in Finland 
the average stand size is small, e.g. 1.5-2 ha in southern Finland. Due to the small size of 
the stands, a considerable proportion of the satellite image pixels are mixed, i.e. they also 
carry spectral information from adjacent stands and they may represent poorly the spectral 
properties of a stand. There are currently available a number of satellite sensors producing 
VHR imagery, but so far they have shown few advantages over aerial photographs with 
similar resolution. 
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Colour-infrared (CIR) aerial photographs are a common data source in management-
oriented forest inventories. This type of aerial photograph has a spectral range from near 
infrared to green, which is reasonably well suited to forestry applications (e.g. for 
separating tree species). Furthermore, they have superior spatial resolution compared with 
Landsat TM (or similar) satellite images, which enables the utilization of image features 
that are based on the spatial organization of spectral values of the neighbouring pixels, i.e. 
image texture. Until recently, aerial photographs have been acquired mainly using the 
traditional camera and film-based analogue photography technique and converted to digital 
image products by scanning the film negatives. Currently, digital cameras are increasingly 
used in the acquisition of aerial images. For example, the National Land Survey of Sweden 
is aiming at entirely digital aerial imagery production, i.e. only digital cameras will be used 
(e.g. Bohlin et al. 2006). 

Digital interpretation of aerial photographs and other VHR images has some 
shortcomings in forestry applications, mainly due to the fact that the spectral properties of a 
single pixel in a VHR image do not properly represent a forest stand or a tree. Thus, the 
stand or substand spectral information needed for the image analysis must be extracted 
from the local neighbourhood of each pixel. Additionally, the sun-object-sensor geometry 
of aerial photography causes radiometric distortions that are often larger than in satellite 
imagery. They have a particularly strong effect when the traditional film camera-based 
image acquisition technique is applied, since every point in the image is viewed with 
different zenith and azimuth angles. The magnitude of these phenomena is dependent on 
the sensor, illumination conditions, forest characteristics, and topography and they are more 
obvious at large viewing angles (e.g. Holopainen & Wang 1998, Leblanc et al. 1999, 
Pellikka et al. 2000). These phenomena cause spectral heterogeneity in aerial photographs, 
which complicates automatic image interpretation, since similar objects (e.g. forest stands) 
may have different spectral properties in different parts of the aerial photograph. For the 
same reason, the spectral properties of aerial photographs acquired from different areas or 
from the same area at different times are not commensurate. Thus, the similarity or 
dissimilarity of forest attributes cannot be judged directly based on these properties. 

The CIR aerial photographs record the green (G), red (R) and part (700-900 nm region) 
of the near infra-red (NIR) radiation. The dyes applied to the film layers that are sensitive to 
these colours are yellow, magenta and cyan. In practice, the spectral sensitivity areas of the 
film layers are not exact, but greatly overlap each other (Figure 3).  The colour of the dye in 
a film layer does not necessarily correspond to the colour of the light to which the layer is 
sensitive. Thus, the CIR images are also known as "false colour" images. (Lillesand et al. 
2004) The spectral sensitivity of KODAK AEROCHROME III CIR film (utilized in the 
acquisition of most of the aerial photography used in this study) is illustrated in Figure 3. 
Anti-vignetting filters were used in acquiring the photography for this study to reduce the 
exposure falloff effect. 
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Figure 3. The spectral sensitivity of KODAK AEROCHROME III infrared film. (KODAK 
2006). Sensitivity = reciprocal of exposure (erg/cm) required to produce specified density 
(presented in logarithmic scale), film density is a measure of the darkness/lightness of the 
film at a given area (Lillesand et al. 2004). 
 
 

In addition to aerial photography, very high spatial resolution aerial image data have 
been acquired using airborne imaging spectrometers, e.g. Airborne Imaging Spectrometer 
for Applications, AISA. Their use in operational forestry has been rare in Finland, and they 
have not been included as auxiliary data sources in this study, although extensive tests have 
been carried out using the AISA imagery in association with the Finnish NFI (Mäkisara et 
al. 1997). In the future the use of digital aerial imaging sensors will likely substitute for 
film based photographs and the digital imagery will offer a solution to some of the 
problems associated with traditional camera and film-based photography, such as the 
radiometric resolution described in the previous paragraph (Bohlin et al. 2006). However, 
film-based photographs will likely remain as part of the available aerial image material for 
some time and also as a source of archived image material, e.g. for multitemporal image 
analysis. Some spectral and spatial properties of the RS image data used in this study are 
presented in Table 3. 
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Table 3. Properties of RS image data. 
 

Image Channel Wavelength, µm Pixel size, m 

Landsat 5 TM 
 

1 
2 
3 
4 
5 
6 
7 

0.45-0.52 
0.52-0.60 
0.63-0.69 
0.75-0.90 
1.55-1.75 

10.40-12.50 
2.09-2.35 

30 
30 
30 
30 
30 

120 
30 

Landsat 7 ETM+ 1 
2 
3 
4 
5 
6 
7 

Panchromatic 

0.45-0.52 
0.52-0.60 
0.63-0.69 
0.75-0.90 
1.55-1.75 

10.40-12.50 
2.09-2.35 
0.52-0.90 

30 
30 
30 
30 
30 
60 
30 
15 

IRS-1C PAN Panchromatic 0.50-0.75 5.8 

Aerial photographs NIR 
R 
G 

Refer to 
Figure 3.* 

 

  0.5-1.0** 
0.5-1.0 
0.5-1.0 

 
*Spectral areas of the different channels are not exact and overlap each other in film-based 
aerial photography (e.g. Lillesand et al. 2004). 
**Spatial resolution varies in digital image material available for different study areas 
 
 

In two-phase sampling the size of the first-phase sample plots should approximate to 
the size of the second-phase sample plots (Schreuder et al. 1993) and extracting the image 
data for the sample plots was carried out accordingly. The size of the unit used in extracting 
the image features was set to approximately correspond to the size of the field measurement 
plot. The image features were extracted from Landsat TM satellite images as the spectral 
values of the available image channels from the nearest pixel to each sample plot. The 
image features from Indian Remote Sensing Satellite-1C panchromatic (IRS–1C PAN) 
satellite images were extracted as spectral averages and standard deviations from square-
shaped windows (size 5 x 5 pixels) surrounding the sample plots. The image features were 
extracted from aerial photographs as spectral averages and various textural features from 
square-shaped windows, as well as image segments surrounding the sample plots. The 
window size used in extraction varied from approximately 20 to 30 m, depending on the 
image pixel size. The use of the single nearest pixel in the case of Landsat TM imagery was 
appropriate, concerning the relation between the pixel and field plot sizes, although this 
risked reducing the correlation between the image and field data in the event of image 
rectification errors.   

When visual interpretation of aerial photographs was used as an auxiliary data source 
(IV, V), the auxiliary data variables consisted of visually interpreted variables, such as site 
type variables, development class, main tree species, stand height etc. The variables were 
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interpreted either per sample plot or per stand. When the variables were interpreted per 
stand, a stereoscope and paper copies of each aerial photograph were utilized. The sample 
plot forest variables were interpreted utilizing a digital stereoscopic workstation. 
 
 
Data from previous inventories 
 
Data from previous inventories was available in some of the study areas (Table 1). The 
stand-level inventory data were measured for forest management planning. In this context 
the term stand refers to a forest inventory unit (i.e. a spatially continuous unit created for 
the purpose of logging or silvicultural treatment). Thus, there was a certain amount of 
internal heterogeneity within the stands, while very small stands were typically merged into 
adjacent stands. The stand inventory data, when utilized as auxiliary data, were either 
measured temporally close to the field (sample plot) material of this study or updated with 
growth models and records of cuttings and silvicultural treatments to the date of field plot 
measurement. The per stand (average) attributes of the old inventory data were transferred 
as such for the sample plot or plots located within the stand borders. 
 
 

METHODS APPLIED FOR ESTIMATING FOREST ATTRIBUTES 
 
Estimation methods 
 
K-nearest neighbour estimation method (I, II, IV, V) 
 
The estimation of forest attributes was carried out applying the k nearest neighbour (k-nn) 
method (I, II, IV and V). The method is based on the assumption that sample plots having 
similar forest characteristics also have similar auxiliary data features, i.e. are located near 
each other in the n-dimensional feature space, where n represents the number of auxiliary 
data variables. The k nearest neighbours were determined by the Euclidean distances 
between the observations in the feature space. Different weighting schemes can be applied 
within the k-nn method. The stand variable estimates for the sample plots can be calculated 
as arithmetical averages of the stand variables (with or without weighting) of the k nearest 
neighbours (Eqs. 3a & 3b).  

Several studies have shown that when a large number of field plots are available for k-
nn estimation, increasing the number of nearest neighbours (value of k) from 1 to 
approximately 10 in general clearly improves the accuracy of the (plot-level) estimates, 
after which the accuracy stabilizes and increasing the value of k does not lead to any 
significant improvement (e.g. Tokola et al. 1996, Nilsson 1997, Franco-Lopez et al. 2001). 
This effect is not independent of the total number of field plots. Thus, when relatively small 
numbers of field plots are used, the value of k at which the accuracy stabilizes is also likely 
to be smaller. On the other hand, the value of k is a trade-off between the accuracy of the 
estimates and the variation in the original field material that is retained in the estimates. The 
greater the value of k, the more averaging occurs in the estimates. Thus, Franco-Lopez et al. 
(2001) have suggested k = 1 for map production for retaining the full variation of the field 
data in the estimates. 
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Weighting by inverse squared Euclidean distance in the feature space was applied in 
substudies II and IV (Eq. 3b). This method reduces the bias of the estimates (e.g. Altman 
1992). On the other hand, giving higher weights to the nearest neighbours has an effect 
similar to that caused by reducing the number of nearest neighbours. Thus, results showing 
no improvement in estimation accuracy when inverse distance weighting is applied in k-nn 
have also been reported (Franco-Lopez et al. 2001).  
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ŷ = estimate for variable y  
yi = measured value of variable y in nearest field plot i  
d = Euclidean distance to the ith nearest neighbour plot 
k = number of nearest neighbours 
 
For ordinal scale (categorical) forest attributes, the medians of the nearest neighbours 

can be applied in the estimation, and for nominal scale attributes (e.g. dominant tree 
species) the modes of the nearest neighbours can be applied. For binary type attributes, 
which receive only values 0 or 1 (indicating the presence or absence of a certain attribute in 
a sample plot), the k-nn estimates can be calculated as probabilities (Eq. 4). 
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where P is the probability of the presence of variable y and yi = measured value of variable 
y in the ith nearest neighbour plot (0 or 1). 
 
K-means stratification 
 
In this study stratification was applied for two main purposes. First, stratification was used 
for allocation of the field sample plots in study areas A, B, C and D. Second, to determine 
the intra-stratum variation in timber volume, the first-phase plots and segments were 
stratified based on the extracted image features (III). Stratification was carried out using the 
k-means clustering algorithm (MacQueen 1967), which functions as follows. First, the 
initial stratum centres for a user-defined number of strata are selected as the set of 
observations that maximizes the distance between the stratum centres. Each observation 
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(i.e. first-phase sample plot) of the feature set is then assigned to the spectrally nearest 
stratum centre employing Euclidean distance measure. Finally, the centroid vector of each 
stratum is recalculated as a mean vector of the observations assigned to that stratum. The 
process is iterated until the stratum centres remain unchanged. The number of strata are 
dependent on the purpose of the stratification.  

The efficiency of stratification is closely linked to the variance within strata versus the 
total variance. The smaller the ratio of intra-stratum variance to total variance, the more 
efficient the forest inventory based on stratified two-phase sampling will be. The more 
sample plots per stratum that are measured in the field, the more accurate are the estimates, 
but as in k-nn estimation, more plots per stratum lead to increased averaging in the 
estimates. Thus, the optimum number of field plots per stratum cannot be determined 
exactly. The average number in this study varied from 5 to 10. If the desired total number 
of field plots (second-phase units) has been determined, the desired number of field plots 
per stratum can be obtained by regulating the number of strata (e.g. Tuominen et al. 2006). 
When stratification is utilized for estimating local forest variables (of the first-phase sample 
units), mean vector estimation is typically applied as with the k-nn.   
 
Geostatistical interpolation (V) 
 
Geostatistical methods are used for estimating continuous surfaces from point data 
measurements. The application of geostatistical methods is based on the assumption that the 
variables are spatially continuous. In other words, there is autocorrelation between two 
points as a function of the geographical distance between the two points. A common 
method of interpolation with geostatistics is kriging (Matheron 1963). Kriging has been 
applied in estimating forest variables in forest management planning, e.g. by Holmgren and 
Thuresson (1997) and Gunnarsson et al. (1998). The use of geostatistical methods begins by 
studying the spatial variation of the variables to be estimated. In kriging experimental 
variograms are calculated for the attributes to be estimated to determine their spatial 
dependencies. The kriging model used for estimating the forest attributes is based on the 
observed variograms. Ordinary kriging was applied in the estimation of forest attributes 
along with the k-nn method for utilizing aerial photographs and old stand inventory data 
(V). 

In calculating the variograms, directional effects were not taken into account, which 
means that isotropic variograms were used. The calculation of variograms was based on the 
field plot material in the study area. The experimental variograms provided an insight into 
spatial dependencies within the data. Kriging was employed to establish the utility of these 
observable spatial patterns in the estimation of forest variables at unknown locations. Each 
attribute was modelled independently, using a spherical model. Once the kriging system 
was built, the sample data were cross-validated, using the leave-one-out method. The result 
of cross-validation was an estimate for each original sample point, based upon its 
neighbours, using weights obtained from the kriging. 
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Processing and extracting of auxiliary data 
 
Correction of the aerial image spectral values for k-nn estimation (I) 
 
Aerial photographs provide data that have superior spatial resolution compared with 
satellite imagery and their availability is generally good. However, the digital interpretation 
of aerial photographs is not without its shortcomings. The radiance observed by an aerial 
camera is affected by bidirectional effects and the properties of the sensor. Some of the 
factors affecting the observed radiances, such as variation in the viewing geometry, 
typically predominate in data acquired from low altitudes and using wide-angle lenses 
(Pellikka et al. 2000, Lillesand et al. 2004) and are therefore typical of aerial photographs. 
Due to bidirectional reflectance, the spectral characteristics of objects are not independent 
of their location in the image. Therefore similar objects are prone to have different spectral 
characteristics in different parts of the image. Tree crowns on the solar side of the image 
appear darker because the aerial sensor records radiation reflected by the shadowed parts of 
the tree crowns, whereas on the opposite side of the image the camera records radiation 
reflected from the illuminated parts of the tree crowns. The magnitude of the bidirectional 
reflectance is dependent on the forest or vegetation characteristics and topography 
(Holopainen & Wang 1998). 

Another factor causing spectral variations in aerial photographs is exposure falloff. The 
effect is associated with the distance from the image centre, the exposure being maximum 
at the centre of the film and decreasing with the radial distance from the centre. The effect 
of exposure falloff is usually compensated for with anti-vignetting filters. As in exposure 
falloff, relief displacement is associated with the distance from the image centre and causes 
any object standing above the terrain to lean away from the principal point of a photograph 
radially (Lillesand et al. 2004). The relief displacement increases with the radial distance 
from the image nadir point. 

The radiometric and geometric complexities of the digital aerial photographs make 
their use in MSFI applications problematic. The use of spectral features extracted from the 
uncorrected digitized image may result in errors in the estimation, because pixels of one 
informative class can belong to several spectral classes. Thus, some type of radiometric 
correction is required. 

Various methods have been applied in correcting the spectral properties of aerial 
photographs. One approach aims at theoretical modelling of the mechanism of the 
bidirectional reflectance distribution function (BRDF) (e.g. Nilson & Kuusk 1989, Li & 
Strahler 1992, Chen & Leblanc 1997, Leblanc et al. 1999). Physical modelling of the 
BRDF requires radiometrically calibrated sensors (Pellikka et al. 2000). Forestry 
applications using BRDF models have been relatively rare, because modelling the BRDF of 
forests is a complex task. Empirical radiometric calibration models have been developed 
and tested for forest inventory applications (e.g. King 1991, Holopainen & Lukkarinen 
1994, Holopainen & Wang 1998). The strengths of the empirical models are their simplicity 
and the fact that the effect of several factors affecting the spectral values can be dealt with 
by a single correction. However, since BRDF is dependent on the vegetation type, they 
often require a priori knowledge of the inventory area (e.g. Li & Strahler 1992, Holopainen 
& Wang 1998, Leblanc et al. 1999, Pellikka et al. 2000).  

A common empirical approach has been the application of image channel ratios or 
normalized difference vegetation index (NDVI) instead of the original image channels (e.g. 
Jackson et al. 1990, King 1991, Holopainen & Wang 1998, Hyppänen 1999). The weak 
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point of this method is that the effect of the BRDF is different in different parts of the 
electromagnetic spectrum and the BRDF also affects the channel transformations (Jackson 
et al. 1990, Sandmeier & Itten 1999). Furthermore, the effect of atmospheric scattering on 
the image properties varies in different image channels. The atmosphere scatters the shorter 
wavelengths more than the other visible wavelengths, which in turn, reduces the contrast in 
the shorter wavelength bands (Lillesand et al. 2004). This affects multiple channel 
transformations such as channel ratios or NDVI. 

The substudy I presents a different empirical approach for radiometrical correction of 
aerial photographs. The recorded pixel values that are affected by the aforementioned 
phenomena are corrected utilizing reference imagery in which the effects of these 
phenomena are less significant. Satellite images having higher imaging altitudes and 
narrower fields of view generally fulfil this requirement. Image correction was carried out 
as a local adjustment of the aerial photograph spectral values using correction units that are 
larger than a single aerial photograph pixel. The correction was carried out separately for 
each aerial photograph channel. The satellite image channels with the approximately 
corresponding wavelength areas were used as the reference levels to which spectral values 
of the aerial photographs were adjusted at the correction unit level. The correction spatial 
units employed in this study were:  

1. Landsat TM image pixel (size 25 m * 25 m) 
2. Moving circle centred around a single pixel with a radius of 40 m (approx. 5000 

m2)  
3. Image segments produced by automatic segmentation of the aerial photographs 

(min. size of segments 1500 m2). 
 

The advantages of the method presented are that the correction parameters can be 
determined empirically, and consequently the method requires no a priori knowledge of the 
forest characteristics in the study area, nor any information on the location of the pixels in 
relation to the solar coordinate axes of the aerial image. The method can be used in 
correcting the spectral values within an aerial image as well as between images. 
 
Selection of an appropriate set of image features for MSFI (II) 
 
The basic characteristics that can be utilized in interpreting aerial photographs are listed as: 
shape, size, pattern, tone, texture, shadows, site and association (Lillesand et al. 2004). In 
digital interpretation applications, spectral features (tone) have been most commonly 
utilized. However, digital interpretation based on the spectral properties of aerial 
photographs is complicated by the fact that the spectral properties of the pixels are not 
independent of the location of the pixel in the image. Therefore, as noted previously, 
similar forests may have different spectral characteristics in different parts of the image. 
Other image features such as texture, which has been defined as the spatial organization of 
the gray-levels of the image pixels (Haralick et al. 1973), are less affected by their location 
in the images. Typically, pattern and texture are the most important characteristics used in 
visual interpretation of aerial photographs, but it is difficult to automatize the recognition of 
objects based on these characteristics.  

In substudy II a number of spectral and textural image features were extracted from 
three original aerial photograph channels (NIR, R and G), NDVI channel and three ratio 
channels (NIR/R, NIR/G, R/G). The extracted features were: 
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1. Spectral averages 
2. Standard deviations  
3. Variety of spectral values  
4. Range of spectral values  
5. Standard texture calculated from a 32 x 32 pixel window as the standard deviation 

of the spectral values of blocks into which the window was divided. The block 
sizes corresponded to 1 x 1, 2 x 2, 4 x 4 and 8 x 8 pixels. Furthermore, the 
standard deviation of the four standard deviations derived was computed (Wang et 
al. 1997). 

Additionally, five texture features based on the image gray-level co-occurrence 
matrices (Haralick et al. 1973, Haralick 1979) were computed using horizontal (0°), 
vertical (90°) and diagonal (45° and 135°) directions: 
6. Angular second moment 
7. Contrast 
8. Correlation 
9. Entropy 
10. Local homogeneity 

 
The image features were extracted from the original resolution (0.5 m) images and 

from images resampled to 1.0-m and 2.0-m spatial resolutions. The feature extraction 
window was in most cases 20 m x 20 m, which has been stated generally to be the near-
optimal window size for extracting aerial photograph features in forest inventory 
(Holopainen & Wang 1998). Prior to their use in the estimation of forest attributes, the 
image features were normalized to a mean equal to 0 and standard deviation equal to 1. The 
original image features had very diverse scales of variation. Since at this point there was no 
knowledge of their applicability in estimating forest attributes, similar scales were used. 
Without normalization, the variables with large variation would have had higher weights in 
the estimation, regardless of their correlation with the estimated forest attributes.  

Not all image features have similar value in estimating forest attributes; e.g. in forest 
inventories based on the use of optical satellite imagery, different weights have been 
applied for the image features for enhancing the estimation (e.g. Franco-Lopez et al. 2001). 
In the present study the applicability of the extracted image features was evaluated by 
examining their correlation with the forest attributes and by testing them in the estimation 
of forest attributes for the field sample plots. The following stand variables were estimated: 
diameter at breast height, mean height, basal area and volume of total growing stock. The k-
nn estimation method was applied and the estimates were tested using the leave-one-out 
cross-validation technique.  

Utilizing a large number of image features may be beneficial in some estimation tasks, 
but this is not the case in general. If the performance of each of the features is not known a 
priori, they cannot be weighted in an optimal way. In that case the estimation errors may 
actually increase when the number of features employed is increased (e.g. McRoberts et al. 
2002). This phenomenon is often referred to as the curse of dimensionality, in which k-nn is 
easily misled by the exponential growth of the feature space, because the number of ways 
of dividing the space increases rapidly as the dimensions increase. Often, the image features 
are also highly correlated. Utilizing a high number of image features with high mutual 
correlation does not benefit the estimation of forest attributes, since the additional features 
contain little further information. These problems can be avoided using techniques that can 
generate optimal weights for the features and/or are able to select the best-performing 
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subset of the features for the actual analysis. In the present study the latter option was 
applied by analyzing which features significantly contributed to the estimation accuracy 
and what was the appropriate number of features needed for robust estimation results.  

Feature selection was carried out as a sequential forward selection. In the first-phase of 
the process, the feature giving the lowest root mean square error (RMSE) in cross-
validation was selected. Later the process was iterated and during each iteration the feature 
giving the best RMSE with the already selected features was added to the set of selected 
features. The effect of the number of selected features on the estimation accuracy was 
examined for all variables that were used in the estimation.  
 

Examining the suitability of different spatial units for extracting image features from VHR 

imagery (III) 
 
Pixel-based image interpretation has traditionally been used in forest inventory 
applications, which utilize field measurements and RS data. This is an easy option with 
medium and high resolution satellite imagery whose pixel size corresponds to a unit for 
which the forest attributes can be estimated. When VHR imagery is used in a forest 
inventory application, a single pixel does not represent the spectral characteristics of a 
forest stand or even an individual tree. Thus the stand or substand spectral information 
needed for the image analysis must be somehow generalized in the local neighbourhood of 
each pixel; e.g. square-shaped pixel windows have been applied for this task (e.g. 
Holopainen & Wang 1998). The window size should correspond to a unit that is adequate 
for estimating forest attributes. Another option for image interpretation units are polygons 
produced by automatic image segmentation of VHR imagery. 

In substudy III, the effect of the selected image features extraction unit is examined on 
the estimation accuracy. Two alternative inventory approaches were examined. The first 
approach was based on two-phase plot sampling in which quadratic raster windows centred 
around the sample plots were utilized in extracting image features for the sample plots. The 
size of the raster windows was 20 x 20 m. The second approach was based on automatic 
image segmentation. The image segments having a relatively small size compared with the 
average stand size were employed as the inventory units. Two image segmentations were 
carried out, applying minimum sizes of 380 m2 and 675 m2 for the segments. 
Correspondingly, these segments were utilized in extracting the image features. Thus, three 
different image feature sets were utilized in the study: one sample plot-based set and two 
segment-based sets.  

The test was carried out in two study areas. The inventory units (sample plots or 
segments) in the study areas were stratified, based on the image feature sets (with different 
extraction units). The k-means clustering algorithm was applied in the stratification 
(MacQueen 1967). Strata numbers from 20 to 50 were tested. After stratification, the field 
sample plots were assigned to the strata. In the sample plot-based approach, each plot was 
assigned to the spectrally nearest stratum. The Euclidean distance measure was employed. 
In the segment-based approach, the field plots were assigned to the stratum of the segment 
on which the plot centre was located. The homogeneity of the strata in relation to their 
forest attributes was examined. Standard deviations of the forest attributes within the strata 
were used here as the measure of their homogeneity. 
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Principal component analysis (IV, V) 
 
The number of auxiliary data sources, and especially the number of auxiliary data variables 
(image features etc.), may become very high. The high number of auxiliary data variables 
often has an undesirable effect on the estimation procedure (also known as the curse of 
dimensionality). In high-dimensional space all pairs of points are almost equidistant from 
each other. In other words, as dimensionality increases the distance to the nearest neighbour 
approaches the distance to the farthest neighbour. In such cases, a nearest neighbour query 
becomes unstable (Beyer et al. 1999). Additionally, the data are usually sparse in high-
dimensional space (Hinneburg et al. 2000). 

Principal component transformation is a useful method for reducing the number of 
input variables, while simultaneously retaining most of the variation of the original 
variables. The method is effective when the original variables are correlated with each 
other. In principal component transformation, the original input variables are transformed 
into new variables, i.e. principal components, which do not correlate with each other, thus 
allowing retention of a large part of the original variation in a smaller number of principal 
components.  

In substudies IV - V the auxiliary data variables were processed with principal 
component transformation. The standardized principal component transformation method 
(i.e. based on a correlation matrix) was used for normalizing the variation of the input 
variables to a similar scale. The original auxiliary data variables had different data scales 
and when the estimation procedures based on the distances in the feature space were used, 
those variables showing wide variation would have received more weight in the estimation. 
The auxiliary data sources were treated separately with principal component transformation 
in order to test them individually in the estimation. Here, the number of principal 
components that contained 95% of the original variation in each data source were used in 
the estimation. 
 
 
Combining and weighting data sources in k-nn estimation (IV, V) 
 
There are a number of ways to combine several auxiliary data sources within the k-nn 
estimation method. One alternative is to combine all auxiliary data sources into a single n-
dimensional feature space, where n represents the total number of all auxiliary data 
variables (e.g. channels of different RS images). The nearest neighbours are then calculated 
within this feature space in a single operation. Another alternative is to deal with the 
different auxiliary data sources separately by creating several n-dimensional feature spaces, 
where n stands for the number of features within one auxiliary data source. Cochran (1977) 
showed that in the case of repeated samples from the same population, the best combined 
estimate is found by weighting the independent estimates inversely with their variances. In 
the substudy IV, the nearest neighbours were calculated separately in each feature space, 
resulting in a number of nearest neighbours equal to k multiplied by the number of auxiliary 
data sources. This procedure makes it possible to give different weights to separate 
auxiliary data sources based on their correlation with the attribute estimated. The auxiliary 
data sources were weighted by the inverse values of the mean square errors (MSE) of the 
estimates produced by each auxiliary data in k-nn estimation. This procedure resulted in a 
single weighted estimate (Eq. 5). 
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where 

combinedŷ = estimate for variable y combining data sources weighted with their MSEs 

MSEi = mean square error of estimate derived using data source i 
ŷ = estimate for variable y derived using data source i 

z = number of auxiliary data sources 
 

 
Similar weighting was applied in substudy V when the k-nn estimates derived on the 

basis of aerial photograph features and data from previous stand inventories were 
combined. Another weighting system was applied in substudy IV to improve the accuracy 
of the estimates. The spectral difference values of two satellite images (Landsat 5 TM and 
IRS-1C PAN) that were acquired at one year intervals were used for picking out sample 
plots that were likely to have undergone changes (e.g. cuttings or natural disturbances) 
between the acquisition dates of the images. In these sample plots, those auxiliary data 
sources that were considered as outdated were given zero weights in the estimation. 
 
 

RESULTS 
 
Summary of the results of individual papers 
 
Local radiometric correction of aerial photographs (I)  
 
An image correction method based on the use of a reference image was used for correcting 
the radiometric problems (such as bidirectional reflectance) of aerial photographs. The 
correction method employed altered the spectral characteristics of the aerial images in 
several ways.  First, the spectral values of the corrected images followed the satellite image 
channels used in the correction. Furthermore, the distribution of the spectral values became 
more peaked following the correction.  Additionally, the correction appeared to reduce the 
correlation between the spectral values of different channels of the aerial photograph. 

The choice of correction unit seemed to affect the output image. When a Landsat TM 
image pixel was used as the correction unit, the TM image pixel structure was clearly 
visible in the output image. Using image segments as correction units emphasized the 
segment or polygon structure in the output image: the segments used as correction units 
were visible in the output image. Correction based on the moving window or moving circle 
approach had a smoothing effect on the output image, but an evident drawback in this 
approach was the tendency to cause transition artifacts around objects that are clearly 
distinguishable from neighbouring objects (i.e. roads in the forest, boundaries between 
forest and water etc.). These transition artifacts were also found on the edges of images of 
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noticeably differing brightness, when a moving circle or window was used as the correction 
unit.  

When the correlation coefficients between the forest attributes and the image spectral 
features extracted from the original and the corrected images were examined, all correction 
methods improved the correlations. The TM pixel-based correction resulted in the smallest 
improvement. When the image correction was based on moving circles and segments, the 
correlation between most forest attributes and the image spectral values was notably 
improved by the correction. The improvement was particularly clear for the green channel.  

Cross-validating the estimates based on the original and corrected images showed that 
image correction improved the accuracy of the forest variable estimates. Improvement after 
correction was consistent with improvement in the correlations between the forest variables 
and extracted image features. The TM pixel-based correction again did not result in 
significant improvement over the original image. The image segment and moving window 
or moving circle-based correction methods resulted in the highest estimation accuracy, 
especially for stand volume.  
 
 
Selection of aerial photograph features (II) 
 
Based on testing of the extracted image features and the parameters guiding the extraction, 
a high number of image features extracted from aerial photographs appear to be relatively 
well correlated with the forest attributes. The correlations between most image features and 
plot mean height or basal area were typically better than correlations between image 
features and volume. The original image resolution of 0.5 m resulted in consistently better 
correlations with forest attributes than images resampled to 1.0- and 2.0-m resolutions. 

The number of requantification classes and pixel lag (i.e. spatial interval between 
pixels) that were applied in extracting the image features based on gray-level co-occurrence 
matrices had relatively little effect on the correlation coefficients between the image 
features and forest attributes. Generally, the number of requantification classes applied for 
these image features was not significant for the correlations. The pixel lag had slightly more 
effect on the correlations. In features contrast, correlation and local homogeneity, an 
evident peak was observed and the differences were clear, whereas in angular second 
moment and entropy, lag had no clear effect on the correlations. The values for the lag that 
resulted in the best correlation with stand volume were applied in extracting the Haralick 
features for the k-nn estimation. 

The estimation based exclusively on the average spectral values of the three original 
image channels resulted in a volume RMSE of 73.5 m3/ha, whereas the corresponding 
result with the best-performing individual image feature was 83.7 m3/ha. Furthermore, the 
two best image features picked in the feature selection process resulted in better estimation 
accuracies for all forest attributes compared with the spectral features of the three original 
image channels. Adding further image features clearly improved the accuracy of the 
estimates until the number of selected features was approximately 10, after which adding 
further features to the estimation process produced little gain in estimation accuracy. 
Increasing the number of image features from 10 to 20 brought no significant improvement, 
while beyond 20 resulted in practically no improvement at all. The image features based on 
gray-level co-occurrence matrices generally were well represented among the selected 
features. Since these were often highly correlated with each other, it is natural that the 
estimation accuracy quickly reaches its saturation point when further features were added. 
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Examining the extraction unit for image features (III) 
 
The distributions of the mean values of segment-based spectral features were wider than 
those extracted from square raster windows surrounding the plots in both study areas. Thus, 
it can be assumed that the segment-based approach retains more of the original spectral 
variation present in the image than the square window-based extraction. Furthermore, the 
spectral variation in the feature set extracted from larger segments was larger than in the 
feature set extracted from square windows, even though the area of the segments was larger 
than that of square windows. In general, the use of larger feature extraction should result in 
more averaged features. Using segments in feature extraction seems to avoid this drawback, 
at least to some extent. 

In study area C, square window-based stratification gave clearly better results than the 
segment-based approach if the stratification utilized only the spectral averages of the three 
channels employed. In segment-based approaches, smaller segment size resulted in more 
homogeneous strata and more stable results than larger sizes. The introduction of spectral 
standard deviations of the three channels to the analysis clearly decreased the intra-stratum 
variation of total volume in the segment-based approaches. However, the square window-
based strata were still more homogeneous when a relatively small number of strata was 
employed. With increasing numbers of strata, however, the variation within both segment-
based and square window-based strata was comparable. 

In study area D the segment-based strata derived only from the use of spectral averages 
only produced more homogeneous strata than the square window-based approach. The 
difference between the window-based and segment-based approaches increased with 
increasing numbers of strata. In most of the examined numbers of strata, the spectral 
averages extracted from larger segments produced also more homogeneous strata than 
averages extracted from smaller segments. Inclusion of the spectral standard deviation with 
the stratification significantly increased the homogeneity of the square window-based strata 
in study area D. Comparison of the results obtained with different numbers of strata 
revealed that the plot-based strata were more homogeneous than any of the segment-based 
strata in most cases.  

The results were contradictory. Use of the segment-based spectral features retained 
more of the original spectral variation in the images than the features extracted from square 
windows. The intra-stratum variation in timber volume was generally larger in segment-
based strata in both study areas. The introduction of spectral standard deviation features to 
the stratification diminished the intra-stratum variation in timber volume in the square 
window-based approach only slightly in study area C, but the improvement was more 
obvious in study area D. In segment-based strata, the effect was evident in study area C 
when larger segments were employed. In study area D, the inclusion of the standard 
deviation features did not have a clearly positive effect on the results. In fact, the 
combination of segment-based average and standard deviation features tended to produce 
more heterogeneous strata than spectral averages only in study area D.  

The results indicate that the segment-based approach has some advantages over square 
window-based feature extraction utilizing VHR images. However, when segment-based 
image features are used in MSFI the field data should also be representative at the segment 
level.  
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Combining and weighting auxiliary data sources in k-nn estimation (IV) 
 
Satellite images, aerial photographs (digital and visually interpreted) and stand data from 
previous inventories were examined as auxiliary data sources. Of those examined, the 
visual interpretation of aerial photographs and old stand inventory data generally proved to 
be the best data sources in estimating the stand characteristics. Digital interpretation of 
aerial photographs (using spectral averages and standard deviations of 20 m raster windows 
as image features) gave slightly inferior results in the estimation and satellite imagery gave 
clearly inferior results compared with the two best data sources. A clear exception to the 
aforementioned was the favourable performance of the IRS-1C PAN satellite imagery in 
estimating the growing stock basal area. Furthermore, combining several data sources gave 
significantly better estimation results than those obtained using any auxiliary data source 
individually.  

Applying different weighting schemes in the k-nn estimation gave diverging results. 
Weighting the estimates derived from individual auxiliary data sources with the inverse 
values of their MSEs clearly improved the combined estimates of all forest attributes tested 
here. Weighting the reference plots with the inverse values of their distances in the feature 
space did not improve the estimation. Instead, the results of this method were markedly 
inferior compared with estimation without inverse distance weighting. 

When the difference of two satellite images was used in finding the sample plots likely 
to have undergone changes and the outdated auxiliary data sources were discarded, 
improvement was shown in the estimates from one area but not from the other. When those 
sample plots located nearer than 20 m from the stand borders (i.e. mixed plots) were 
excluded from the estimation, the estimates for most stand variables were improved, 
resulting in the highest accuracy of the methods tested. 
 
 
Combining remote sensing, data from previous inventories and geostatistical 
interpolation in multi-source forest inventory (V) 
 
Several values (3-5) were tested for k in the k-nn estimation using different numbers of field 
plots (100-194-388). The results showed that increasing the value of k from 3 to 5 
consistently improved the estimates, even when the lowest number (100) of field plots was 
applied. This trend was similar for all auxiliary data sources that were utilized, including 
digitally and visually interpreted aerial photograph features and stand data from previous 
inventories. The number of field plots followed the same trend: the greater the number, the 
better the estimates. When the number of field plots was increased from 100 to 194 and 
from 194 to 388, the difference in accuracy of the estimates was, however, quite small for 
most stand variables. The updated stand inventory data were the best auxiliary data source 
for the estimation of stand age. For estimation of stand mean diameter, age, basal area and 
growing stock volume, the visually interpreted aerial photograph gave the best estimation 
accuracy. The digital aerial photograph features were ranked as the worst performing 
auxiliary data source in the estimation of all stand variables. 

When auxiliary data sources were combined in the k-nn estimation, the estimation 
accuracy was significantly improved in comparison with any individual auxiliary data 
source used separately, which was consistent with the results of substudy IV. There was 
also a modest improvement in the accuracy of the estimates when the number of field plots 
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was increased, so that the trend was the same as when auxiliary data sources were used 
separately.  

When the updated stand inventory data were used as estimates for sample plots, they 
were distinctly inferior to the k-nn estimates for all stand variables studied. When the k-nn 
estimate and the updated stand inventory estimate were combined and weighted with the 
inverse values of their MSEs, the estimates produced by this procedure were significantly 
better than those of the other estimators. When the estimation was carried out per stand, the 
results of the k-nn estimation and previous inventory data showed contrasting trends. The 
updated stand inventory data as such offered better estimates at the stand level than the k-nn 
estimates. At the plot level, they displayed notable negative bias, which makes it probable 
that stand-level estimates are biased as well (the bias was not calculated at the stand level 
due to the relatively small number of accurately measured stands). This suggests that the 
original stand inventory data were biased from the beginning or that the applied growth 
models were not entirely accurate. However, when the k-nn estimates and the updated stand 
inventory data estimates were combined with weighting, the results showed even more 
significant improvement in the estimation accuracy than in the estimation per sample plot. 
The general rule is that the accuracy of estimation improves when the area of the estimation 
unit increases. Thus, the accuracy of estimation per stand should be clearly superior to the 
estimation per sample plot.  

Geostatistical interpolation applying Ordinary Kriging performed poorly in the 
estimation of forest attributes. Weighting procedures based on spatial autocorrelation do not 
generally perform very well when (growing stock-related) stand variables are estimated in 
managed forests (Gunnarsson et al. 1998). The main reason for this is that cutting 
operations produce abrupt changes in the forest, whereas geostatistical methods are best 
suited for data in which the value of the measured attribute changes gradually with smooth 
stages. In addition, the field sample design of two-phase sampling-based inventory is often 
not suitable for calculating the semivariances for the Kriging procedure, because the field 
sample plots are often distributed across the study area at relatively wide distances. Thus, 
Ordinary Kriging is not well suited for estimating growing stock-related variables when 
estimation methods combining field plot measurements and auxiliary data are used. 
 
 

DISCUSSION 
 
Based on the results of the substudies of this thesis and other studies, the estimation 
accuracy of forest characteristics in most RS-based forest inventories is generally poor at 
the levels of single sample plots or satellite image pixels. Table 4 compares the results of a 
number of studies in which forest attributes were estimated, using RS and other auxiliary 
data. The comparison shows that the estimation results of this study are generally similar to 
those of other studies utilizing similar auxiliary data. The results in Table 4 are presented as 
relative RMSEs of the estimates of mean/dominant height, basal area and volume. 
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Table 4. Estimation accuracy (corresponding plot level) of some forest attributes in a 
number of studies. 
 

relative RMSE, %  Auxiliary data 

height basal area volume 
Poso et al. 1999 Landsat TM satellite image 

IRS-1C PAN satellite 
 image 
Digital aerial photograph  
Visual aerial photograph 
interpretation 
Old stand inventory data 

46-51 
48-49 

 
46 

44-46 
 

47-54 

52-62 
51-54 

 
55 

49-53 
 

52-59 

73 - 81 
71 - 74 

 
74 

66 - 68 
 

68 - 76 
Franco-Lopez et al. 
2001 

Landsat TM satellite image 
 

 46 65 

Holmström & 
Fransson 2003 

SPOT-4 XS (HRVIR) 
 satellite data 
SPOT-4 XS (HRVIR) + 
CARABAS II radar data 

  64 
 

53 

Naesset & Bjerknes 
2001 

Airborne laser scanner 13   

Suvanto et al. 2005 Airborne laser scanner 
Airborne laser scanner + 
old stand inventory data 

8 
 

8 

17 
 

15 

20 
 

17 
Tuominen & Poso 
2001 (IV) 

Weighted combination of 
satellite & aerial images 
and old stand inventory 
data 

40 45 59 - 61 

Tuominen et al. 
2003 (V) 

Combination of aerial 
photograph and old stand 
inventory data  

43 42 54 

Tuominen & 
Pekkarinen 2005 (II) 

Selected digital aerial 
photograph features 

47 44 58 

 
 

It can be assumed that the accuracy of estimation improves when the size of the 
estimation unit increases (e.g. Tomppo et al. 1998). Thus, the accuracy of estimation per 
stand should be better than the estimation per sample plot. This assumption is based on the 
fact that the measure of accuracy, RMSE, consists of two components: 1) the systematic 
component, i.e. bias, that cannot be reduced by increasing the number of inventory units, 
and 2) the unsystematic component of random errors in the estimation process, which partly 
cancel out each other when the number of inventory units is increased. Based on the results 
of the substudies, the bias component is much less significant than the random error 
component. Thus, it is logical that the RMSE decreases when the size of the inventory unit 
is increased by adding the number of estimation units. On the other hand, it has been 
suggested that the accuracy is better for larger areas because the variation, e.g. in volume, is 
greater for small forest blocks than for large forest blocks (Päivinen & Anttila 2001). Figure 
4 presents the estimation accuracy of stand volume as a function of inventory area, based 
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on the results of Tomppo et al. (1998) in NFI 8 of Finland. It can be assumed that while the 
RMSE varies with different RS data, the general trend in relation to the area is similar. 
Thus, it is questionable whether the stand-level estimates are accurate enough that cutting 
operations and silvicultural treatments could be based on them. At the forest estate level the 
RMSE of RS-based forest estimates can be considered acceptable (~10-20%), but this is not 
as significant since the unit for silvicultural operations is a stand. Furthermore, even if the 
stand estimates produced by two-phase sampling inventory were considered accurate 
enough in general, the situation would not be satisfactory from the forest management point 
of view, since the stand estimates should be the basis for choosing the correct silvicultural 
treatments. Although the stand-level inventory method has several shortcomings, as 
discussed earlier, it is not likely to result in such gross errors in the estimation that would 
lead to utterly incorrect or economically unsound silvicultural treatments, since all stands 
are generally visited in the field. Additionally, forestry legislation sets constraints on forest 
management, e.g. by setting minimum age or diameter limits to stands destined for final 
cutting. Applying a two-phase sampling inventory method may result in stand estimates 
whose values are so far from the correct ones that making cutting decisions based on them 
may lead to unintentional violation of forestry law. Thus, when two-phase sampling is 
applied for acquiring inventory data for forest management proposes, all stands should 
always be checked in the field when carrying out silvicultural or logging operations. 
 
 

 
 
Figure 4. RMSE of stand volume estimates for different sizes of inventory units (Tomppo et 
al. 1998). 
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In addition to the estimation accuracy, another factor that should be taken into account 
is the proportion of the original variation (of the field material) that can be retained in the 
estimates. Typically, when the forest attributes of a point are estimated on the basis of 
several field plots, averaging occurs in the estimates; i.e. the higher the value of k the more 
that averaging occurs. As a result, the variation in the estimates is typically smaller than the 
variation in numerical variables of the original field data. In the case of categorical 
variables, rare classes may totally disappear in the estimation. Thus, in k-nn estimation the 
optimal value of k is a trade-off between the accuracy of the estimates and the variation 
retained in the estimates.  

The k-nn estimation often produces more or less biased estimates. When forest data for 
forest management are estimated at the sample plot or stand level, the aim of inventory is 
the maximal local accuracy of the estimates for determining the (locally) correct 
silvicultural treatments, and at this level the bias is not a factor of high importance. When 
forest statistics are estimated for large inventory areas, the inventory result is the basis for a 
different type of decision-making, and here the bias must be avoided. Thus, it is not 
appropriate to produce large area estimates by summing the estimated sample plot or stand 
values. Instead, the original field plot data weighted with the areas that they represent 
should be used. 

As alternatives to the k-nn method, stratification and regression analysis have been 
applied for estimating forest variables with the aid of auxiliary data (Tomppo 1987 & 1988, 
Poso et al. 1987 & 1999). When regression analysis is used, the variables must be estimated 
separately or in groups. This procedure may lead to estimates whose covariance structure is 
different from that of the original field variables (e.g. Tomppo & Halme 2004). Another 
problem of regression analysis in forest inventory applications is the high number of 
variables to be estimated. This leads to a laborious estimation procedure and estimates that 
may not be compatible with each other (Tomppo 1987, 1988). The problems of regression 
analysis can be avoided using k-nn or stratification-based estimation. Poso et al. (1999) 
have tested k-nn and stratification as alternative estimation methods with the same auxiliary 
data and their results showed that the accuracy of k-nn and stratification was similar for the 
estimation of plot variables. As far as similar auxiliary data are used, the estimation results 
of k-nn and stratification should be similar, since both methods are based on calculating 
distances in the feature space. The advantage of stratification is that it is capable of 
producing unbiased estimates for means on a population level. 

As noted, the number of image features that can be extracted from RS images is high, 
and the number of auxiliary data variables can be expanded even higher by utilizing several 
auxiliary data sources.  Thus, the problem of high dimensionality in the feature space must 
be controlled to avoid the detrimental effect of the curse of dimensionality in the estimation 
procedure (e.g. Beyer et al. 1999, Hinneburg et al. 2000, Aggarwal et al. 2001). The 
principal component transformation applied in some of the substudies is a means for 
reducing the number of auxiliary data sources while retaining most of the information 
contained in the original auxiliary data variables, when there is high mutual correlation 
between the auxiliary data variables. Nevertheless, the capability of the principal 
components for estimating the forest attributes is not necessarily any better than that of the 
original variables. In substudy II sequential forward selection was applied for analyzing 
which features significantly contributed to the estimation accuracy and what was the 
appropriate number of features needed for robust estimation results. This resulted in clear 
improvement in the accuracy of the forest estimates. A hierarchical combination of satellite 
and aerial image data utilizing k-means stratification and k-nn estimation within the strata 
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has also been tested, but the results in improving the accuracy of the estimates were not 
promising (Tuominen 2005).  The use of genetic algorithms in feature selection has been 
studied by Kudo and Sklansky (2000). Their results indicate that the genetic algorithm 
works well in problems with a large number of dimensions. Tomppo & Halme (2004) also 
have studied the genetic algorithm to find optimal weights for variables used in k-nn 
estimation. The genetic algorithms appear to have significant potential for solving the 
problem of feature selection in high-dimensional feature space. 

The geostatistical interpolation methods applied in this study did not perform well in 
estimating forest attributes. In a managed forest, silvicultural operations generally 
determine the spatial structure of the forest, virtually eliminating spatial autocorrelation at 
relatively short distances. For example, Wallerman et al. (2002) have enhanced 
geostatistical interpolation by applying a kriging procedure adapted to forest edges detected 
in satellite images. To a certain extent, the applicability of geostatistical interpolation may 
also be a question of the geographic scale in which the geostatistical methods are applied. 
To improve the stand-level estimates, the density of field data should be significantly 
higher than applied in this study, but the cost of the field data would make the method 
economically infeasible. At the level of a country or a province, where geographic and 
climatic variation may significantly affect the forest characteristics (e.g. main tree species), 
the variation must be somehow taken into account. For example, the coarse-scale variation 
in forest data (present in field data or previous inventory data) can be used as an auxiliary 
data source (e.g. Tomppo & Halme 2004).   

As mentioned earlier, it is often appropriate to define a forest as a population of sample 
plots in sampling-based forest inventories. Since the silvicultural treatment unit is a stand, 
the sampling unit applied (i.e. inventory unit) should enable estimation of forest attributes 
at the stand or, preferably, substand level. Thus, one stand should cover several sampling 
units. In principle, the same sampling unit size is used at each sampling  phase  (Schreuder 
et al. 1993), but often it is adequate for forest inventories that correlation exists between the 
field data and auxiliary data (i.e. the areas of field measurement and extraction of the 
auxiliary data need not be exactly the same). In some applications image pixels have been 
utilized as first-phase sample units. However, the pixel size in various RS materials varies 
greatly, and it is not necessarily appropriate to fix the first-phase sample units to the spatial 
resolution of a certain RS image. When the first-phase sample is defined independently of a 
pixel size, the image features can be extracted using a suitable unit. Generally, square 
windows centred around the sample plots have been utilized in extracting image features, 
particularly from VHR imagery. On the other hand, based on substudy III, image segments 
also have some advantages and could be used as sampling/inventory units as well, 
assuming that the field data can be measured in a representative way for a segment. 

In forest inventory methods, in which the inventory unit can be monitored over 
consecutive inventories, it is possible to accumulate information throughout the monitoring 
period. Since the stand delineations of the consecutive stand inventories do not remain 
unaltered, i.e. the forest stand can be considered a throwaway inventory unit, the method 
provides a poor basis for accumulating information over time. In a two-phase point 
inventory it is possible to accumulate information during subsequent inventories, since the 
location of the inventory unit does not change. This option is advantageous in particular 
with forest characteristics related to the forest site, such as soil type, moistness/wetness etc. 
These characteristics change relatively slowly compared with growing stock-related 
characteristics and need not necessarily be surveyed in each inventory. However, data from 
previous stand-level inventories provide a poor basis for utilizing the site information, since 
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the stands are usually delineated as treatment units and do not follow the borders of 
ecologically homogeneous areas. An accurate inventory of the site-related characteristics 
would in any case lead to smaller stand size than that currently utilized in forest 
management planning. 

The information contained in RS imagery is limited with regard to its capability for 
predicting the forest characteristics. The fundamental reason for this is the fact that not all 
forest characteristics can be distinguished or recognized by a space- or airborne sensor. 
This holds true in digital image interpretation, irrespective of any improvements in methods 
of analyzing RS data, as well as in visual image interpretation regardless of the skills of an 
interpreter.  

Currently, maximum accuracy of RS-based forest estimates is likely to be achieved by 
combining the information of aerial imagery and active sensors such as airborne SAR (e.g. 
Holmström & Fransson 2003, Folkesson et al. 2005), profiling radar (e.g. Hyyppä et al. 
2000) or airborne laser scanning (ALS). Forest inventory experiments with profiling radar 
and ALS have proven that they are valuable data sources for stand-level forest inventories 
(e.g. Naesset 1997, Hyyppä et al. 2000). ALS is an especially accurate method for forest 
inventory, particularly in relation to forest attributes based on tree size and crown 
dimensions (e.g. Nilsson 1997, Naesset & Bjerknes 2001, Suvanto et al. 2005). CIR aerial 
photographs can be used to complement ALS in estimation of attributes, for which ALS is 
not well suited, such as tree species and forest health. Naesset (2004) has tested a practical 
two-phase stand inventory method based on the use of laser scanning and field plot 
measurements, achieving a higher accuracy of inventory data than conventional inventory 
methods currently in practice.  

When the prospects of the two-phase sampling-based forest inventory method and 
traditional stand inventory method are examined, it can be noted that the traditional stand 
inventory method has already reached most of its developmental potential. It is conceivable 
that the efficiency of the stand inventory method can be slightly improved by utilizing 
advanced technology in field measurement, such as data-recording measuring instruments 
and field computers with digital maps attached to a GPS receiver. On the other hand, the 
same technology can be utilized as well in field measurement of other inventory methods. 
Apart from this, the productivity of the stand inventory method can be increased by 
lowering the accuracy requirements of the inventory data and spending less time per stand 
or area unit. The two-phase sampling-based inventory method still has a wealth of 
developmental potential. It is possible, for example, to increase the estimation accuracy (or 
cover larger areas with less cost) by using RS data from more advanced sensors, such as 
laser scanners. Another way of improving the estimation accuracy is to develop automatic 
data-processing methods for extracting more information from existing and future data 
sources.  
 



 40 

REFERENCES 
 
 
Aggarwal, C.C., Hinneburg, A., and Keim, D.A. 2001. On the surprising behavior of 

distance metrics in high dimensional space, Proceedings of the 8th International 
Conference on Database Theory (ICDT), London, UK, January 4-6, pp. 420–434. 

 
Altman, N.S. 1992. An introduction to kernel and nearest-neighbor nonparametric 

regression. The American Statistician 46: 175-185.  
 
Beyer, K., Goldstein, J., Ramakrishnan, R. & Shaft, U. 1999. When Is "Nearest Neighbor" 

Meaningful? Proceedings of the 7th International Conference on Database Theory, 
Jerusalem, Israel, January 10-12, pp. 217-235 

 
Bohlin, J., Olsson, H., Olofsson, K. & Wallerman, J. 2006. Tree species discrimination by 

aid of template matching applied to digital air photos. Tatjana Koukal & Werner 
Schneider (Editors), Proceedings of 3D Remote Sensing in Forestry. Vienna, 14th-15th 
Feb. 2006. Institute of Surveying, Remote Sensing and Land Information, University 
of Natural Resources and Applied Life Sciences, Vienna, Austria, pp. 199-203.  

 
Bolstad, P.V. & Lillesand, T.M. 1992. Improved classification of forest vegetation in 

northern Wisconsin through a rule-based combination of soils, terrain and Landsat 
Thematic Mapper data. Forest Science 38: 5-20. 

 
Chen, J.M. & Leblanc, S.G. 1997. A four-scale bidirectional reflectance model based on 

canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 35: 1316-
1337. 

 
Cibula, W.G. & Nyquist, M.O. 1987. Use of topographic and climatological models in a 

geographical data base to improve Landsat MSS classification for Olympic National 
Park. Photogrammetric Engineering and Remote Sensing, 53: 67-75. 

 
Cochran, W.G. 1977. Sampling techniques, third edition. John Wiley & Sons, Inc, p. 428. 
 
Folkesson, K., Fransson, J.E.S., Gustavsson, A., Hallberg, B., Magnusson, M., Smith-

Jonforsen, G., Sämgård, H., Ulander, L.M.H. & Walter, F. 2005. Mapping and 
monitoring forest stem volume using CARABAS. In: Olsson, H. (ed.). Proceedings of 
ForestSat 2005, Rapport 8b. Skogsstyrelsens förlag, Jönköping. p. 97-101. 

 
Franco-Lopez, H., Ek, A.R. & Bauer, M.E. 2001. Estimation and mapping of forest density, 

volume and cover type using the k-nearest neighbors method. Remote Sensing of 
Environment 77: 251 – 274. 

 
Gunnarsson, F., Holm, S., Holmgren, P. & Thuresson T. 1998. On the Potential of Kriging 

for Forest Management Planning. Scandinavian Journal of Forest Research 13: 237 – 
245. 

 



 41 

Haralick, R. M., Shanmugan, K., & Dinstein, I. 1973. Textural features for image 
classification. IEEE Transactions on Systems, Man and Cybernetics. Vol. SMC-3, no. 
6: 610-621.   

 
– 1979. Statistical and structural approaches to texture. Proc. IEEE, 67(5): 786-804. 
 
Hildebrandt, G. 1996. Fernerkendung und Luftbildmessung für Forstwirtschaft, 

Vegetationskarterung und Landschaftsökologie. Herbert Wichmann Verlag, 
Heidelberg. 676 p. 

 
Hinneburg, A., Aggarwal, C.C. & Keim, D.A. 2000. What is the nearest neighbor in high 

dimensional spaces? In: Proceedings of the 26th VLDB conference. September 10-14, 
2000, Cairo, Egypt. 

 
Holmgren, P. & Thuresson, T. 1995. Avdelningsfritt skogsbruk. Fakta Skog Nr 14 1995. 
 
– & Thuresson, T. 1997. Applying objectively estimated and spatially continuous forest 

parameters in tactical planning to obtain dynamic treatment units. Forest Science 43(3): 
317 - 326. 

 
– & Thuresson, T. 1998. Satellite remote sensing for forestry planning - a review. 

Scandinavian Journal of Forest Research, 13: 90-110. 
 
Holmström, H., & Fransson, J.E.S. 2003. Combining remotely sensed optical and radar data 

in kNN-estimation of forest variables. Forest Science 49(3): 409-418. 
 
Holopainen, M. & Lukkarinen, E. 1994. Digitaalisten ilmakuvien käyttö metsien 

inventoinnissa. Summary: The use of digital aerial photographs in forest inventory. 
Department of Forest Resource Management Publications 4, University of Helsinki. 

 
– & Wang, G. 1998. The calibration of digitized aerial photographs for forest stratification. 

International Journal of Remote Sensing 19: 677-696. 
 
Hutchinson, C.F. 1982. Techniques for combining Landsat and ancillary data for digital 

classification improvement. Photogrammetric Engineering and Remote Sensing, 48: 
123-130. 

 
Hyppänen, H. 1996. Spatial autocorrelation and optimal spatial resolution of optical remote 

sensing data in boreal forest environment. International Journal of Remote Sensing, 17: 
3441-3452. 

 
– 1999. Eriaikaiset ilmakuvat metsäkuvioiden muutosten tunnistamisessa. Metsätieteen 

aikakauskirja 2/1999: 155-166. 
 
Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., Linko, S. & Zhu, Y.-H. 2000. Accuracy 

comparison of various remote sensing data sources in the retrieval of forest stand 
attributes. Forest Ecology and Management 128: 109-120. 

 



 42 

Häme, T., Salli, A., Rantala, O. & Ihalainen, A. 1991. Forest growth conditions analysis 
using multiple source digital image data. IEEE Transactions on Geoscience and 
Remote Sensing, 29: 1149-1152. 

 
Jackson, R. D., Teillet, P. M.,  Slater, P. N., Fedosejevs, G.,  Jasinski, M. F., Aase, J. K. & 

Moran, M. S. 1990. Bidirectional measurements of surface reflectance for view angle 
corrections of oblique imagery, Remote Sensing of Environment 32: 189-202. 

 
Katila, M., & Tomppo, E. 2001. Selecting estimation parameters for the Finnish 

multisource National Forest Inventory. Remote Sensing of Environment, 76(1), 16-32.  
 
Kilkki, P. & Päivinen, R. 1987. Reference sample plots to combine field measurements and 

satellite data in forest inventory. Department of forest mensuration and management, 
Research notes n:o 19: 210 – 215. 

 
King, D. 1991. Determination  and reduction of cover type brightness variations with view 

angle in airborne multispectral video imagery. Photogrammetric Engineering and 
Remote Sensing, 57: 1571-1577.  

 
KODAK. 2006. 
http://www.kodak.com/eknec/documents/7b/0900688a802b097b/EN_ti2562.pdf 
 
Koivuniemi, J. 2003. Metsiköihin ja paikannettuihin koealoihin perustuvan kuvioittaisen 

arvioinnin tarkkuus. The accuracy of the compartmentwise forest inventory based on 
stands and located sample plots. University of Helsinki, Department of Forest 
Resource Management Publications 36. 160 p. 

 
– & Korhonen, K.T. 2006. Inventory by compartments. In: Kangas, A. & Maltamo, M. 

(eds.). Forest inventory. Methodology and applications. Managing Forest Ecosystems. 
Vol 10. Springer, Dordrecht. p. 271-278. 

 
Korpela, I. 2004. Individual tree measurements by means of digital aerial photogrammetry. 

Silva Fennica Monographs 3. 93 p. 
 
Kudo, M.  and J. Sklansky, 2000. Comparison of algorithms that select features for pattern 

classifiers. Pattern recognition, 33: 25-41. 
 
Kuusela, K. & Poso, S. 1970. Satellite pictures in the estimation of the growing stock 
over extensive areas. Photogrammetric Journal of Finland, Vol. 4 No.1. 
 
– & Poso, S. 1975. Demonstration of the applicability of satellite data to forestry. 

Metsäntutkimuslaitoksen julkaisuja 83.4. 31 s. 
 
Leblanc, S.G., Bicheron, P., Chen, J.M., Leroy, M. & Cihlar, J. 1999. Investigation of 

directional reflectance in boreal forests with an improved four-scale model and 
airborne POLDER data. IEEE Trans. Geosci. Remote Sens. 37: 1396-1414. 

 



 43 

Lillesand, T.M., Kiefer, R.W. & Chipman, J.W. 2004. Remote Sensing and Image 
Interpretation. Fifth Edition. John Wiley & Sons, Inc. p. 763. 

 
Li, X. &  Strahler, A.H. 1992. Geometric-optical bidirectional reflectance modeling of the 

discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE 
Trans. Geosci. Remote Sens. 30: 276-292. 

 
MacQueen, J. 1967. Some methods for classification and analysis of multivariate 

observations. Volume 1 of Proceedings of the Fifth Berkeley Symposium on 
Mathematical Statistics and Probability, pp 281-297. Berkeley, 1967. University of 
California Press. 

 
Matheron, G. 1963, Principles of Geostatistics, Economic Geology, Vol. 58: 1246 - 1266. 
 
Mattila, E. 1985. The combined use of systematic field and photo samples in a large-scale 

forest inventory in North Finland. Communicationes instituti forestalis fenniae 131.  
 
McRoberts, R.E., Nelson, M.D. & Wendt, D.G. 2002. Stratified estimation of forest area 

using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote 
Sensing of Environment 82: 457–468 

 
Muinonen, E., & Tokola T. 1990. An application of remote sensing for communal forest 

inventory. In: Proceedings from SNS/IUFRO workshop in Umeå 26-28 Feb. 1990 (pp. 
35-42). Remote Sensing Laboratory, Swedish University of Agricultural Sciences, 
Umeå (Report 4). 

 
Mäkelä, H. & Pekkarinen, A. 2001. Estimation of timber volume at the sample plot level by 

means of image segmentation and Landsat TM imagery. Remote Sensing of 
Environment, 77: 66-75. 

 
Mäkisara, K., Heikkinen, J., Henttonen, H., Tuomainen, T. & Tomppo E. 1997. 

Experiments with imaging spectrometer data in large area forest inventory context. In: 
Proceedings of the third international airborne remote sensing conference and 
exhibition. Copenhagen, Denmark (1997), pp. 420–427. 

 
Naesset, E. 1997. Estimating timber volume of forest stands using airborne laser scanning 

data. Remote Sensing of Environment, 61: 246-253. 
 
– & Bjerknes, K.O. 2001. Estimating tree heights and number of stems in young forest 

stands using airborne laser scanning data. Remote Sensing of Environment, 78: 328-
340. 

 
– 2004. Practical large-scale forest stand inventory using small-footprint airborne scanning 

laser. Scandinavian Journal of Forest Research, 19: 164-179 
 
Nilson, T. & Kuusk, A. 1989. A reflectance model for the homogeneous plant canopy and 

its inversion. Remote Sensing of Environment 27: 157-167. 
 



 44 

Nilsson, M. 1997. Estimation of forest variables using satellite image data and airborne 
lidar. Doctoral thesis. Acta Universitatis Agriculturae Sueciae 17. 

 
Nyyssönen, A. 1955. On the estimation of the growing stock from aerial photographs. 

Communicationes Instituti Forestalis Fenniae 46: 1-57. 
 
Pellikka, P., King D.J. & S. Leblanc, S. 2000. Quantification and reduction of bidirectional 

effects in aerial CIR imagery in deciduous forest using two reference land surface 
types. Remote Sensing Reviews 19:1-4, pp. 259-291. 

 
Poso, S. 1983. Kuvioittaisen arvioimismenetelmän perusteita. Summary: Basic features of 

forest inventory by compartments. Silva Fennica 17(4): 313-349.  
 
– & Kujala, M. 1971. Ryhmitetty ilmakuva ja maasto-otanta Inarin, Utsjoen ja Enontekiön 

metsien inventoinnissa. Summary: Groupwise sampling based on photo and field plots 
in forest inventory of  Inari, Utsjoki and Enontekiö. Folia forestalia 132. 

 
– , Paananen, R. & Similä, M. 1987. Forest inventory by compartments using satellite 

imagery. Silva Fennica 21: 69 - 94.  
 
– & Waite, M-L. 1996. Sample based forest inventory and monitoring using remote 

sensing. In: Remote sensing and computer technology for natural resource assessment. 
Research notes 48. University of Joensuu, Faculty of Forestry 

 
– , Wang, G. & Tuominen, S. 1999. Weighting alternative estimates when using multi-

source auxiliary data for forest inventory. Silva Fennica 33(1): 41-50. 
 
Päivinen, R. & Anttila, P. 2001. How Reliable Is a Satellite Forest Inventory? Silva Fennica 

35(1): 125-127. 
 
Sandmeier, S.R. & Itten, K.I. 1999. A field goniometer system (FIGOS) for acquisition of 

hyperspectral BRDF data. IEEE Transactions on Geoscience and Remote Sensing, 37: 
978-986. 

 
Sarvas, R.1938. Ilmavalokuvauksen merkityksestä metsätaloudessamme. Summary in 

German: ϋber die Bedeutung der Luftfotogrammetrie in unserer Waldwirtschaft. Silva 
Fennica 48. 45 p. 

 
Schreuder, H.T., Gregoire, T.G. & Wood, G.B. 1993. Sampling methods for multi-resource 

forest inventory. John Wiley & Sons. New York. 446 p. 
 
Suvanto, A., Maltamo, M., Packalén, P. & Kangas, J. 2005. Kuviokohtaisten 

puustotunnusten ennustaminen laserkeilauksella. Metsätieteen aikakauskirja 4/2005: 
413-428. 

 
Thuresson, T. 1995. Forest valuation using a two phase inventory method and satellite data. 

Scandinavian Journal of Forest Research, 10: 65-73. 
 



 45 

Tokola, T., Pitkänen, J., Partinen S. & Muinonen, E. 1996. Point accuracy of a non-
parametric method in estimation of forest characteristics with different satellite 
materials. International Journal of Remote Sensing, Vol. 17, No. 12: 2333-2351. 

 
– & Heikkilä, J. 1997. Improving satellite image based forest inventory by using a priori 

site quality information. Silva Fennica 31(1): 67-78. 
 
Tomppo, E. 1987. Stand delineation and estimation of stand variates by means of satellite 

images. In: Remote sensing aided forest inventory. Seminars organised by SNS 
(Samarbetsnämnden för Nordisk Skogsforskning) and Taksaattoriklubi (Finnish 
Mensurationist Club) Hyytiälä, Finland, December 10-12, 1986. University of 
Helsinki, Department of Forest Mensuration and Management Research Notes 19: 61 - 
76. 

 
– 1988. Standwise forest variate estimation by means of satellite images. In: Satellite 

imageries for forest inventory and monitoring; experiences, methods, perspectives. 
Proceedings of the IUFRO Subject Group 4.02.05 Meeting in Finland, Aug. 29 - Sept. 
2, 1988. University of Helsinki, Department of Forest Mensuration and Management 
Research Notes 21: 103 - 111.  

 
– 1990. Satellite image–based national forest inventory of Finland. Photogrammetric 

Journal of Finland. Vol. 12 no. 1. 
 
– 1992. Satellite image aided forest site fertility estimation for forest income taxation. Acta 

Forestalia Fennica 229. 40 p. 
 
– 1993. Multi-source national forest inventory of Finland. In Aarne Nyyssönen, Simo Poso 

and Johanna Rautala (Eds.), Proceedings of Ilvessalo Symposium on National Forest 
Inventories, 17-21 Aug. 1992, Finland. The Finnish Forest Research Institute Research 
Papers, 444: 52 – 60.  

 
– , Katila, M., Moilanen, J., Mäkelä, H. & Peräsaari, J. 1998. Kunnittaiset metsävaratiedot 

1990-94 [Forest resources per municipalities 1990-94]. Metsätieteen aikakauskirja 4B. 
 
– & Halme, M. 2004. Using coarse scale forest variables as ancillary information and 

weighting of variables in k-NN estimation: a genetic algorithm approach. Remote 
Sensing of Environment 92: 1 - 20. 

 
Tuominen, S. 2005. Hierarchical combination of data from satellite imagery and aerial 

photographs for multi-source forest inventory. In: Olsson, H. (ed.). Proceedings of 
ForestSat 2005, Rapport 8b. Skogsstyrelsens förlag, Jönköping. p. 26-30. 

 
–  & Haakana, M. 2005. Landsat TM imagery and high altitude aerial photographs in 

estimation of forest characteristics. Silva Fennica 39(4): 573-584.  
 
– , Holopainen, M. & Poso, S. 2006. Multiphase sampling. In: Kangas, A. & Maltamo, M. 

(eds.), Forest Inventory. Methodology and Applications. Managing Forest Ecosystems. 
Vol 10. Springer, Dordrecht. p. 235-252. 



 46 

 
Wallerman, J., Joyce, S., Vencatasawmy, C.P. & Olsson, H. 2002. Prediction of forest stem 

volume using kriging adapted to detected edges. Canadian Journal of Forest Research 
32, 509-518.  

 
Wang, G., Waite, M.-L., & Poso, S. 1997. SMI user’s guide for forest inventory and 

monitoring. University of Helsinki, Department of Forest Resource Management 
Publications 16. 

 


