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Abstract

This study concentrates on the assessment of the error astimeates of Finnish
multisource National Forest Inventory (MS-NFI) and its miisation, as well as
for the k—nearest neighbour methoé-(N\NN). The MS-NFI utilises optical area
satellite images, mainly Landsat TM and ETM+, and digitapman addition to
field plot data, to produce geo-referenced informationmiiic maps and small-
area statistics. The non-parametkieNN estimation method is used in the esti-
mation of forest variables for single pixels and to defineghi&s of field plots to
a particular computation unit, e.g. a municipality. Fitbte estimation parame-
ters that are optimal for the objectives of MS-NFI were aebieby examining
the prediction error at the pixel level. Secondly, potdntéiables, covariates or
other exogenous variables, what might explain the residagtion in thek—NN
estimates were studied. Finally, two methods were predemitaed at reducing
the effect of map errors on MS-NFI small-area estimates.

The selection of the estimation parameters was examindddoistudy areas that
covered a greater part of the variation found in the Finnistedts. The error
estimates were obtained by leave-one-out cross-valiatithe most important
parameters for minimising the estimation error of the tetdlime and volume by
tree species at pixel level were the valué pthe geographical horizontal reference
area (HRA) radius used to select the training data and thtfitation of the field
plot pixels, and training data employing the site class mdfith the sampling
intensity in the 8th and 9th Finnish National Forest Invepta geographical HRA
with a radius of 40-50 km was found to be optimal for the totdlmne estimates
and for volumes by tree species on the mineral land map sirdfor the peatland
stratum, a wider reference area, 60—90 km, was required.

The main sources of error in the Finnish MS-NFI are consilléoebe the repre-
sentativeness of the field sample with respect to the estimptoblem, the low
dynamic range of spectral channel values on forestry laRY [ff on high resolu-
tion optical satellite data, the small size of the NFI fieldtplcompared to the pixel
size in image data and the locational errors in the image aidiflot data. The
first principal component (PC1) of the Landsat TM or ETM+ algnvalues of
the field plot pixel was strongly related to the residual ation in the volume and
basal area estimates. The residual variances of field plotnewere regressed
against PC1 and the model was used to remove the trend contpafreC1 from



the residuals, but the random error component still rentbimgh in the residuals.

A calibration method was introduced to reduce the map eon8IS-NFI small-
area estimates. The method was based on large-area estishatap errors; i.e.
the confusion matrix between land use classes of the fielglegoiots and corre-
sponding map information. A method to compute the calilor&ield plot weights
was also presented. These weights were in turn used to atddhle small-area
estimates. In the second method, thBIN estimation was carried out separately
within each map strata employing all the field plots from b# tand use classes
within each stratum.

Comparisons were made between the aggregates of MS-NHIarealestimates
from the two methods and field inventory estimates at theorelgivel in order to
determine the total amount of correction, and for the subreggy(groups of mu-
nicipalities) to detect the possible bias in the small-astémates. Although quite
different in nature, both methods corrected the bias in tR¥lFarea estimates.
The FRYL estimates of the calibrated MS-NFI are consistétt post-stratified
estimates at the region level. When compared to the fielchtove based esti-
mates of tree species volumes for subgroups of municiesl{tl 738—4238 k#),
the stratified MS-NFI performed better than the original MBI and calibrated
MS-NFI. Some of the estimates from the two latter methodedifl by more than
two standard errors from the field inventory estimates irstii@egions of the test
data.

The parameter selection methods and the small-area esimmaap error correc-
tion methods, together with the field inventory estimates their standard errors,
provide a method for reducing the estimation error and aeate of the accu-
racy of the MS-NFI results. However, if there is a significapstematic error in
the small-area estimates of a certain subregion, it may equossible to remove
the error by varying the estimation parameters. Other nastloo auxiliar data is
needed to do this.

Keywords: multisource forest inventorg—nearest neighbours, cross-validation,
Landsat TM and ETM+, stratification, training data selettiprediction error,
statistical calibration
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1. Introduction

1.1. The objectives of national forest inventories

There are three main types of forest inventories: the ojp@af the management
and the national forest inventories (Cunia 1978). The dbeof national forest

inventories is to produce statistically unbiased, redbrest resource information
for large areas for strategic planning, primarily by demismakers. Estimates of
both current values and rates of changes of forest resoareeequired (Cunia
1978). Periodic national forest inventories can providerimation on trends in

the state of forests (Lund 1993). The estimates are requirgd of the forest

resources, growing stock, growth, health of forests armeasingly, of the biodi-

versity in the forests. The national forest inventory methshould be statistically
valid, cost-efficient and flexible (Cunia 1978).

In recent years, there has been a growing interest in obtaimational forest in-
ventory results for smaller areas than had previously besgiple based on field
samples only, e.g. for municipalities and even for singledb stands, for for-
est planning, timber procurement and biodiversity assesspurposes (Tomppo
1987, 1991, Schreuder et al. 1993, Kangas 1996, Tokola &Kil&ik997, Nilsson
1997, Tomppo et al. 1998, Franco-Lopez et al. 2001). The e®ensing data
from airborne and spaceborne sensors has been the key teefficient use of
forest inventory data. Some of the advantages of remotérgedata are that they
offer a synoptic view of the study area, the data can be odxdaiapidly for large
areas and they can be processed digitally (Schreuder e9@8).1 Traditionally,
the remote sensing data has been used as a part of the sadedigg, in order to
decrease the cost of field work rather than to try to obtainlt®$or significantly
smaller areas than normally used in strategic forest inverg (Loetsch & Haller
1973). The classification based on remote sensing data kasused in stratified
sampling (Tomppo et al. 2001), multistage-sampling (Sathee et al. 1993) and
multiphase-sampling (Poso 1972, Schreuder et al. 1995¢ pbist-stratification
may also provide an effective means to decrease the variatioe estimates after
the actual sampling (McRoberts et al. 2002). The conceptultisource forest in-
ventory employing remote sensing data and digital map dagebken introduced
to forest inventories. One prerequisite for a multisoureemtory method is that
it should be possible to estimate all the variables measuardte field (Kilkki &
Paivinen 1987).
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1.2. Multisource national forest inventory

Multisource national forest inventories employ variousrses of geo-referenced
data, in addition to field inventory data, to obtain moreaiglié estimates or esti-
mates for smaller areas than when employing the pure fietddjpka only. Holm-
gren & Thuresson (1998) list the following types of forestantory applications
employing remote sensing data: land cover classificatiotindber types, esti-
mation of the forest variables for forest management ptanpurposes, segmen-
tation to determine stand and other boundaries, landscagegy analysis and
large-scale forest inventories. Continuous variablesh s stand volume, vol-
ume by tree species, age and mean breast height diameterbéan estimated
for forest management planning purposes employing opdicsd remote sensing
data and field plot data. Sampling based methods, paranaauicon-parametric
regression methods and neural networks have been usedja@lly in conjunc-
tion with segmentation techniques (Poso et al. 1987, Toni®87, 1991, Tokola
et al. 1996, Hagner 1997, Makela & Pekkarinen 2001). In saralh estimations,
indirect estimation methods are used and support is olatdioen similar compu-
tation units by applying methods to link the field plot datal dine auxiliary data
(Schreuder et al. 1993). Non-parametric regression has e for small-area
estimation in the Scandinavian countries and the UniteteSt@fomppo 1991,
Tokola et al. 1996, Nilsson 1997, Gjertsen et al. 2000, Frdrapez et al. 2001).
The non-parametric regression methods are relatively eagge and require no
assumptions about the shape of the model.

In multisource forest inventories, both airborne and spagge imagery from ac-
tive or passive sensors may be employed, although optiealreamote sensing data
has mainly been employed. Aerial photography has demaedtits applicabil-
ity for both large area and management inventories (Pos@,19¢tsch & Haller
1973, Schreuder et al. 1993). Airborne laser instrumentadar data applications
in the mapping of forests are still at the development statyg/gpa et al. 1997,
Naesset 2002).

The earth observation satellites provide continuous indaa for large areas
(Campbell 1996) and the increase in the number of satelitag help to over-
come the problem of cloudiness in the image data. The higiutisn image data
from Landsat and SPOT satellite programs have been usagkefity in large-area
land-use or land-cover classification, as well as for muliise forest inventories
(Campbell 1996, Eisele 1997, Nilsson 1997, Tomppo et al8188anco-Lopez
et al. 2001). The medium resolution satellites have showenpial in estimating



volume and biomass, by covering large areas at low cost (jponep al. 2002).

The radar satellite imagery (SAR) has yielded less acctioadst parameter esti-
mates than high resolution optical satellite data (Tompd.4996). The spectral
and spatial resolution of the remote sensing data has béamesd in multisource
forest inventories by employing multitemporal or multiphstrument image data
(Poso et al. 1999, McRoberts et al. 2002). New, very highluéisa satellite data

with 1-5 m pixel size is now available, but it is costly anduiegs new estimation
methods due to the scale of the target, i.e. forest standsreesl (Woodcock &

Strahler 1987, Hyppéanen 1996, Pekkarinen 2002).

Topographic databases, digital elevation models and attzgr data are readily
available in digital format (National Land Survey of Fintah996). However, the

map data may include location errors, it may be out-of-datkthe attributes may
not correspond to the ones used in the multisource foreentaowy. Despite the

possible inconsistencies between map data and remotegatata, the map data
can be used to improve an estimation either as ancillaryrimdtion or together

with remote sensing data in the analysis (Wilkinson 1996).

The Finnish multisource National Forest Inventory (MS-Niilises optical area
satellite images and digital maps, in addition to field platag to produce geo-
referenced information, thematic maps and small-arestitat A non-parametric
k—nearest neighbour methokHNN) is used in the estimation of forest variables
for single pixels and to define weights of field plots to a gaittir computation
unit, e.g. a municipality (Tomppo 1991). One advantage efktiNN method is
that all the inventory variables can be estimated simutiagsly. Field data from
surrounding computation units (municipalities), in agtgitto the unit itself, are
utilised when estimating results for the particular unttisitherefore possible to
obtain estimates for smaller areas than would be the case grhploying sparse
field data only (Kilkki & Paivinen 1987, Tomppo 1991).

1.3. Aim of the study

This study concentrates on the assessment and minimisirigeoérror in the
Finnish MS-NFI and thé&—NN estimation method. The errors are studied at the
pixel level, for small areas, i.e. municipalities and atribgion level. First, the dif-
ferent sources of error and their significance in the MS-Niiihgation are studied.
The general outlines of small-area estimation and the ramarpetric regression
methods are discussed and the application of these methalds MS-NFI is in-
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troduced.

In the k—NN estimation, the overall error is minimised by tuning #stimation pa-
rameters. Leave-one-out cross-validation, a resampdictgnique, is used to guide
the parameter selection at the pixel level. These techaigue applied to choose
the parameters for the Finnish MS-NFI. The remaining viatn the error is
studied and potential explanatory variables are soughtaeihthe prediction er-
ror.

Two methods are developed to decrease the error in the aneallestimates caused
by the forestry land (FRYL) area delineation based on egosenap data. FRYL
consists of forest land, other wooded land and waste landatfsscal calibration
method posterior to th&—NN estimation is compared to the-NN estimation
applied by map strata. The MS-NFI small-area estimatesaated by groups
of municipalities —subregions— and at the region level rgjathe field inventory
based key forest variable estimates and their standargserro

11



2. Error sources in multisource national forest inventory

In multisource forest inventories, the number of errorsease with the number of
data sources. Explanatory models or standardised ruleshaagpplied at various
phases of data production (Freden & Gordon 1983, Tomppo £94V, Burrough
& McDonnell 1998), e.g. a definition of land use classes, n@umodels for sam-
ple trees and calibration equations for the satellite imaggo-atmospheric radi-
ances. Various types of error taxonomies can be used toldesice error structure
of the MS-NFI. The error components of a forest inventory rasasurement er-
rors, sampling errors and model estimation errors (Cun&b)l9 The accuracy
of the spatial data can be grouped into thematic, positiandltemporal accuracy
(Burrough & McDonnell 1998) or thematic and non-thematioes (Foody 2002).
The measurement errors in remote sensing procedures cardueldnto errors in
the measurement of field data, errors in the measurementruiteesensing data,
and the misregistration in space or time between field veasadind remote sensing
variables (Curran & Hay 1986). The main sources of error @Rmnish MS-NFI
are considered to be the representativeness of the fieldeavith respect to the
estimation problem, the low dynamic range of spectral cebvalues on FRYL on
high resolution optical satellite data, the small size ef¥I field plots compared
to the pixel size in image data and the locational errorseénitiage and field plot
data (Il; Halme & Tomppo 2001). In the Table 1, several sasimeerror in the
MS-NFI data are presented. They are grouped according t@kgata and forest
inventory error types. Some estimates of error magnitudegigen, based on the
literature and practical experiences in the Finnish MS:NFI

12
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Table 1. Sources of error in the data for Finnish MS-NFI employing dsat Thematic Mapper image data

‘Thematic Positional ‘Temporal
Data source  Error source Sampling Measurement Model
Field plot Intensity of Does not Field plot size (max. 492 A) < Location error, RMSE 20 m (Halme & Field plot mea-
sample and cover the Instant Field of view of instrument Tomppo 2001) surement and
size of field variation in (IFOV) (900 n¥) < Effective IFOV image acquisition
plot the field and date
in the image
Tally trees diameter at breast height measureGeneralising
ment sample tree
variables for
tally trees
Sample trees Variables measured for volum&blume equa-
models tions
RS instru- Spatial Sensor sampling function causing Landsat 5 TM interband location error 0.2-
ment spatial bias within pixels (Bastin 0.5 pixels
et al. 2000)
Spectral
Radiometric Signal to noise ratio Precalibration
equations
Viewing Varying irradiance due to latitude
Varying irradiance due to instru-
ment viewing angle
Atmosphere Scattering
Target Varying irradiance due to topogra-Reflection Ground altitude variation Varying irra-
phy model for diance due to
topographic seasonal effects
correction (multitemporal
images)
Processing Image system correction 90 % of errors less
than 15 m (Landsat 5 TM) (Freden & Gor-
don 1983), repeated image lines (Bastin et al.
2000), geo-coordinate rectification model
RMSE 15-20 m (Landsat 5 TM) (Tomppo
1996)
Topographic  (Burrough & Correspondence of map attributesMap conver-  Accuracy and precision Field work date
map data McDonnell to field plot data sions, generali-
1998) sation
Digital (Burrough & Elevation curve density in the topo- Triangulation
elevation McDonnell graphic map method accuracy
model 1998)




3. Small-area estimation and k—nearest neighbour es-
timation in multisource national forest inventory

3.1. Small-area estimation

Small-area estimation refers to the calculation of siaidor a small subpopula-
tion (domain) within a large geographical area. Samplessize often too small to
provide reliable direct estimators for a small area (Rad@).989mall-area estimates
gain support from related areas that are nearby or simitarding to auxiliary in-
formation (Schreuder et al. 1993). The indirect estimatiogthods are grouped
into estimators based on implicit models and model-bastch&®rs (Rao 1998).
The former group contains a synthetic estimator, for whigh assumed that the
small areas have the same characteristics as the large(@eazalez 1973). A
reliable direct estimator for a large area is used to denivestimator for a small
area (Rao 1998). In the model based methods, either nomp#ia or parametric
methods are applied to the auxiliary information in ordedéoive the small-area
estimates. Because the small-area estimators are, apkdisily, model-based,
the estimates obtained are usually biased. However, tsediastimator can still
be useful if the mean square error (MSE) of the estimator &llemthan that of
the unbiased estimator (Kangas 1996).

Kangas (1996) employed several parametric and non-parameidels in a small-

area estimation of municipality level volume estimates\gdiFI field plot data

and their coordinates as auxiliary data. The mixed modeheasir was found to

be the most reliable of the tested models. In general, mdkdaisan be corrected
for their observed residuals were recommended: mixed rmptleé Mandallaz

estimator and kriging estimator (Kangas 1996). The arempnttation of weights
for field plots used in a small-area estimation for a paréicgiomputation unit is
useful, e.g. for management planning systems. To obtadnrttérpretation, all the
weights must be positive, the weights must be same for athttget variables and
add up to the total area of the calculation unit (Tomppo 122@pi 2001). The

weighting approach retains the natural covariation betvike field plot variables
within each field plot.

In the multisource inventories, non-parametric regressiethods have been widely
used to estimate the forest variables by associating tha giets directly to the
pixels of satellite image data in order to produce thematpsn(Kilkki & Paivi-

nen 1987, Tomppo 1991, Nilsson 1997, Franco-Lopez et all)208rea inter-
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pretation is used at least in the reference sample plot detitkki & Paivinen
1987) and Finnish MS-NFI (Tomppo 1991). Lappi (2001) argilnes the chosen
nearest neighbour field plots may not add up to statistiaatlyiased or statisti-
cally optimal estimates for the region to be estimated. Hsemted a small-area
calibration estimator that minimises the sum of distanea/een prior and poste-
rior weights of field plots for a distance function while resfing the calibration
equation based on spectral values of satellite image. Aaspariogram model
was applied for calculating the variances of the calibragistimator.

The bias in the Finnish MS-NFI small-area estimators has bssessed by apply-
ing the standard error estimates of the field inventory egtsat the region and
subregion level (1), because an explicit error variansgneate is not available.
Some small-area estimation methods have estimators f@neas. The resam-
pling methods are useful in the estimation of the error foalsareas, but unlike
in the kriging methods, it is difficult to take into accounetpossible autocorrela-
tions in the data (Davison & Hinkley 1997).

3.2. k—nearest neighbour estimation method

Nonparametric regression methods are a collection of tqaba for fitting a curve
when there is little a priori knowledge about the shape otrie function, and the
form of the function is not restricted. These methods ardieghjin exploratory
analysis and, increasingly, as stand-alone techniquaséhl 1992, Linton & Har-
dle 1998). Nonparametric regression methods can be coadide belong to the
group of generalised additive models (Hastie & Tibshira®®d). The general
formula for nonparametric regression for a simple bivargdtasetX;,Y;);" , is

Y = m(X;) + €, 1=1,...,n, @

wheree; is a random error independent over observatidiig;|X; = =) = 0
and Var(e;| X; = z) = o%(x). m(-) is the regression function af on X and
m is estimated at the group of observations covering someesibs support of
X. Itis alinear smoother of the forfn_" | W,;(z)Y; for the weightsiv,,; (z);"_,
depending only onXy, ..., X, (Linton & Hardle 1998). The kernel and the-
nearest-neighbour estimators are among the most commouttsen in forestry
applications.
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The kernel estimate is a weighted average of the responisdheain a fixed neigh-
bourhood, bandwidth, of z; the Nadaraya-Watson kernel estimate is

_ >y Kin(z — X;)Y;
>y Kz — X5)
where K (+) is any kernel function. Thé—NN estimate is a weighted average of

the response variables in a varying neighbourhood, defigettidse X that are
among thek—NNs of a pointz

g () = Ze% (3)

A~

mp(x)

(2)

where N (z) is the set of indices of the—NNs of z. Eq. 3 is comparable to a
kernel smoother applying a uniform kernel and a variablediadith /. (Linton &
Hardle 1998).

The NN algorithms have been extensively used in the stalispattern recogni-
tion since the paper by Fix & Hodges (1951) in which they pnése the simple
nearest neighbour classifier. The pattern recognitioresys$ypically consists of a
feature extraction and classification phase. Dasaratt81{Ir@views several stud-
ies concerning the classifier risks for finite and infinite plw, the asymptotic
performance of the classifiers, selecting the training,ddtaice ofk and metrics.
The nearest neighbour distances are also used in gedsta{Bailey & Gatrell
1995). Apart from the multisource inventories, #ieNN method and kernel meth-
ods have been used in other fields of forest inventory, sutiasal area diameter
distribution estimation (Haara et al. 1997, Maltamo & Ka&3898), generalising
sample tree data (Korhonen & Kangas 1997) and generaligitajled stand char-
acteristics from stand databases employing less accuiaai information (Moeur
& Stage 1995, Malinen 2003).

The choice ofk affects the shape of the regression function; whéncreases a
smoother fit is obtained with a smaller variance but largeallbias fori, (x) with
givenz and a fixed sample size (Altman 1992). The mean squared &MSE)
is a commonly applied optimality criterion for error minigaition. The quadratic
loss by MSE can be studied at a single paimr globally (Linton & Hardle 1998),
which may alter the selected smoothing paramkter

The question may arise, how to seléas the sample size increases? In pattern
recognition, the&k—NN classifier has the asymptotic property that when a sexguen
of k,, satisfiesk,, — oo andk,/n — 0 asn — oo, the classification error ap-
proaches the optimal rate of Bayes decision rule for disaratiables (Stone 1977,
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Keller et al. 1985). However, in practical problems with recaten, the optimal
selection depends largely on the distributions of the Wem(X,Y") (Kulkarni
et al. 1998).

The k—NN estimates are potentially biased if the true functios babstantial
curvature (Altman 1992); e.g. the convex relationship leetvsatellite digital
numbers (DN) and field plot volume should yield a positivestirathe estimates
(Nilsson 1997). The weighting of the neighbours can be usetbtrease the bias
(Altman 1992).

Resampling techniques, the most popular of them being -¢aditation, are fre-
quently applied to the error quantification and parametecsen for classification
and estimation problems. Bootstrap methods can be usetinmesthe general-
isation error and also confidence limits. Efron & Tibshirét®97) introduced the
.632 bootstrap method and improved .63Bootstrap method for classification
problems. These are smoothed versions of cross-validgpartially correcting
the bias in the bootstrap variance estimates.

McRoberts et al. (2002) pointed out several weaknesseseik-tNN estimator
compared to parametric linear regression: the siahllue may result in RMSE
values larger than the standard deviation of the obsenstiand unrelated pre-
dictor variables included in the subset of covariates mayeimse the MSE. The
latter case is related to the 'curse of dimensionality’; ithiee of convergence for
optimal solutions to non-parametric regression is slowenultidimensional cases
(Linton & Hardle 1998). In thé—NN estimation, the observations from large fea-
ture space distances may be negatively correlated, whebsasvations separated
by large geographic distances are expected to be unceddfabkola et al. 1996,
McRoberts et al. 2002). The-NN estimates may be biased near the boundaries
of the feature space, because the nearest neighbour dist@mel to be greater and
the neighbours may be concentrated in one direction onlg.sphatial distribution
of the neighbours in the feature space can be taken into at@ouhe estima-
tion. Local adaptation of hon-parametric methods modelg hedp to overcome
the edge effect problem as well as the bias caused by stramgtote in the true
regression function (Malinen 2003).

The standard techniques for bandwidth selection may failsituation where the
e; satisfyE(e;|X; = x) = 0 but are autocorrelated. Altman (1990) studied the
selection of bandwidth for the kernel estimator employiagadvith correlated er-
rors. Cross-validation produces parameters favouringramidoothing in this kind
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of situations (Altman 1990). A simple way to correct the effef autocorrelation
in cross-validation is to leave out more than one obsematdtman (1990) sug-
gested either adjusting of the selection criteria or thesfi@mation of residuals.
The correlation function should be estimated from the datawever, when the
form of the function is not known, the wrong choice of smonthparameter can
induce false serial correlation in the residuals (Opsorhal. 001).

3.3. Parameter selection in the MS-NFI £—NN estimation (1)

In the k—NN estimation, the overall error (or other selected dat@ris minimised

by tuning the estimation parameters. The selected paresratethe features of in-
terest and their weighting; the distance metric and the $nirggp parameter, value
of k (Malinen 2003). The MS-NFI also has parameters relatedes#hection of
training data: stratification of the image and field plots lo@ basis of digital map
data; and the geographical reference area from which thesteaeighbours are
selected (Tomppo 1996, Tokola 2000).

The aim in (I) is to examine the selection of the estimatiorapeeters employing
the error estimates obtained from leave-one-out crosdatan. There were two
objectives in the selection of parameters: to minimise tI&E\df the key variable
estimates and at the same time to retain some of the variatithe original field
plot data in the spatial variation of the estimates. Thdsskeal significance of
the global bias in th&—NN estimates was also examined in (I). Only one set of
parameters per satellite image is preferred to maintaicdkiariation between the
field plot variables in the estimates, consequently a weighffomppo & Halme
2004) or other compromise is required in the operative M3 ¢fEveen the set of
parameters obtained for different variables.

The original features of the Landsat TM spectral channalesland Euclidean
distance measure were used. The weighting of the Euclidistemde had only a
slight effect on the global MSE in (1), (c.f. Tokola et al. )9 A mild topographic

correction was carried out for the DN values of satellite gmapectral channels
using a modification of the Lambertian surface reflectansaraption employing

digital elevation model. Outside of northern Finland, thpdgraphic correction
had only local significance.

The two somewhat contradictory objectives —minimising M®E and retaining
variation— have led to heuristic rules or subjective saacof & in MS-NFI ap-
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plications employing Landsat TM or ETM+ image data. Sevewdles ofk
have been applied: one (Franco-Lopez et al. 2001), 5-10 gponi996), 10—
15 (Tokola et al. 1996, Nilsson 1997), a minimum relativerdase RMSE in (1)
and an 'objective criteria’ (minimum MSH),,; (McRoberts et al. 2002). In (1),
the objectives defined earlier were met under the conditfanisimum decrease
of 0.5 % betweert andk + 1 sought from a window ranging frol+ 1tok+ 5.
This criterion was needed when different geographicalresiee areas were used
to select the training data. It yieldédvalues 7—11 for the total volume estimates.

Landsat images cover geographically large areas that magiocedafic and cli-
matic variation both horizontally and vertically. The atgpberic conditions and
the radiometric properties of the image data may also vatyimihe image (Helder
etal. 1992, Tomppo et al. 1998). The MS-NFI estimates wibiased for a forest
area if there is locational dependency in the spectral gatiepixels within the
training data (Kilkki & Paivinen 1987). Kilkki & Paivinen @87) proposed the
use of the same training data (locationally uncorrelatedering the particular
surveyed forest area. On the other hand, the training daiadhbe large enough
to cover the true range and variation in the inventory aredixéd size moving
geographical horizontal (and vertical) reference areadaivs (HRA and VRA)
have been used in the Finnish MS-NFI (Tomppo 1996). Becéawséotational
dependencies are difficult to model explicitly, the globabiasedness is checked
using the cross-validation method.

The RMSE of the total volume and volume by tree species watkest against the
geographical HRA radii. The mineral and peatland stratewealysed separately
because there is high moisture content and moisture \@riatithe peatland soils
compared to mineral soils. A near minimum MSE for volumereates was ob-
tained for mineral land already with a 20 km radius and fortlped with a 30 km
radius, or employing 150-300 field plots. The maximum radias sought by
estimations based on field plots outside different geodgcabhRA. Significantly
biased estimates were obtained for spruce and pine volursente subregions
that employed field plots from 40—-60 km and larger radii. Oneral stratum, the
40-50 km geographical HRA radius yielded, on average, 400féld plots to the
training data and did not increase the RMSE or decreaseddkerbsome cases.
Nilsson (1997) in a simulation study recommended the sameeuof field plots
for the estimation of total volume.

The area of peatlands is smaller than for mineral soils aei gnoportion varies
across the country; generally larger geographical HRAI,r&)-90 km, are re-
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quired to obtain a sufficient number of field plots. Howevithé average number
of field plots in the peatland stratum falls below 300, anneation in two strata
may not be justified. This map-based stratification is noy @curate and there
are also differences within the peatland forests (Tomp@6L9However, it was
demonstrated in (1) that the stratification significantlgi@ased the global bias of
the volume estimates within both strata.

Tokola (2000) found a 20 km geographical HRA radius to benoatifor total vol-
ume and pine and a 30 km radius for spruce and deciduous vastimeates in a
study with NFI data in Eastern Finland applying cross-\alimh for error estima-
tion. However, the decrease in the degree of determinatasslow and the study
material enabled radii only up to 40 km. Lappi (2001) in a $ramta estimation
study that used a calibration estimator and NFI field plaiactuded that 500 field
plots outside the county to which the timber volume was todienated was rea-
sonable in addition to the field plots of the county itself.a@fbaverage size county
in the particular study area this would yield an approxirtya8 km geographical
HRA radius fixed to the centre of the county, assuming ciratdanties. However,
the field plots outside the county obtained less weight iregtamation.

The parameters obtained are generally suitable for the MBIt a significant
global bias in the results may still remain. Local bias maguoén the small-area
estimates, especially in the edges of satellite image daitaventory area, when
trend-like large-scale changes occur in the forest. TheddFiple is too small for
reliable error estimation in small areas. The bias in thefiag plot variables can
be studied in the parameter selection phase or posteribete-NN estimation by
comparing the MS-NFI estimates in the subregions (groupsuwficipalities) to
the NFI field inventory estimates.

3.4. Error variations at the pixel level in the k—NN estimates of the
MS-NFI (Il)

There are several sources of error in the multisource foneshtories because
they employ measurement data and models of different reaure scales. These
errors contribute to the uncertainty in theNN estimates. At the pixel level, the
prediction errors measured with relative RMSE are usuagji,le.g. 50-80 % for

field plot volume (I; Tokola et al. 1996). These error estigsaare obtained by
cross-validation.
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The aim in (1) has been to study the variation in the errosi¢heals of thek—NN
estimation by cross-validation) and to see whether theaduactional dependency
between observable covariates and the prediction errar.pdtential explanatory
variables for which the values could be obtained for everglpivere tested: i.e.
estimated values of forest variables, variables of thecssdenearest neighbour
field plots and the spectral channel or digital map data gahfigoixels. The field
plots in the training data were studied as an independenplsangnoring the
possible spatial autocorrelation between the field plotiwthe same cluster. The
focus was on pixel-level prediction error of field plot volarand weighted mean
of basal area (BA) observations in theNN estimation. The possible cumulation
of systematic error in small areas was beyond the scope attid.

The effect of locational error, which is quite significanttimee MS-NFI training
data, was minimised by employing a procedure to reassigsdtadlite image in-
formation to the field plot data (Halme & Tomppo 2001), or bgtrieting the
number of mixed pixel field plots in the training data. The glged mean of BA
observations in and near the field plot was used instead @f field plot BA to
decrease the sampling error in the dependent variable. Shefuweighted BA
decreased the random variation (coefficient of variation)hie training data, as
well as the MSE in the cross-validation. These results sstgipat the optimum
field plot size for MS-NFI purposes is larger than that cutiseapplied when high
resolution optical satellite data is used.

The standard deviation of tHeneighbours’ field plot variable was found to be a
good measure of uncertainty. The estimated volume and Breleded with the
standard deviation and can be potentially employed in tlaéyaas of uncertainty.

The residuals were studied against the spatial neighbodrkpectral variables,
numerical map data (33 window) values and variables describing the spatial dis-
tribution, direction and clustering of neighbours in theckdean feature space.
The first principal component of the field plot pixels, the cpa brightness fea-
ture (Horler & Ahern 1986), strongly correlated with thewwie and BA estimates,
and with their residuals from the-NN estimation. Concerning the spatial neigh-
bourhood, the bias in the estimates increased close to & RY¥L map mask.
This result supports the use of map data to stratify the M$iNKIV). At the
edges of the feature space, there should be more error il estimates, but
the variables describing the spatial distribution of kheeighbours did not corre-
late with the volume or BA residuals. The distances in DN far najority of field
plot pixels in the feature space are quite small comparduetpossible magnitude
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of error in the Landsat TM data (Curran & Hay 1986).

The effect of the first principal component was removed frowm tesiduals by
using a model of field plot volume residual variances. Theaiaing variation

was weakly correlated with the other potential explanat@nyables. The random
error component remained considerable inthBIN residuals. At single field plot
level, the cause of the error seemed to be case sensitiviocatisn of the field

plot, the radiation from the surrounding land use classestards, the deviation
of the target field plot from the surrounding forest and extefield plot variable

values.

3.5. Correction of map errors in the MS-NFI small-area estimates
(111,1V)

The delineation of the inventory area is one of basic stepéinning and execut-
ing a forest inventory. The forest area estimate can be baséte sample and the
remote sensing and map data can be employed as auxiliaryedgtan stratifica-
tion (Loetsch & Haller 1973). The error component of theraatie of the area of
FRYL is included in the total error of the estimate. In theriah NFI, the land
area is assumed to be known, and the estimates, both for mdaotal values, are
based on ratio estimators of field sample plots (Tomppo é87). The standard
errors are estimated using local quadratic forms (MatéG019In the MS-NFI,
the FRYL area has been delineated based on the numericalateprt in some
cases from satellite image data (Tomppo 1991). More prigcisiher land use has
been estimated from the map data and the rest has been gedsidebe FRYL
consisting of the forest land, other wooded land and wastd [@he problem with
the current MS-NFI map data is that it is not necessarilyasgddte, there are lo-
cational errors and it does not correspond exactly to thel&te use classes. The
aim in (lll) and (IV) has been to reduce the map error in the NF9-small-area
estimates: to obtain better FRYL area estimates and toatdire effect of map
error in the forest resource estimates.

The error probabilities from the cross-tabulation (coidny matrix of a classi-
fication can be used to correct or calibrate for misclassifinabias in (remote
sensing based) statistical estimates of class proportidag 1988, Czaplewski &
Catts 1992). The confusion matrix must be based on a stalis&ampling scheme
(Card 1982). In (lll), a calibration method is introducedréaluce the map errors
in MS-NFI small-area estimates. The method is based on th&usion matrix
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between land use classes of the field sample plots and condisgg map infor-
mation, estimated from a large region. If the map strata aaexXpected to be
reasonably homogeneous with respect to the map errors adduke class dis-
tribution, the proportions estimated for large region cenused for small areas
(synthetic estimation) (Gonzalez 1973). In the calibratiterature, the method
is identified as "inverse calibration for classificationogtr(Brown 1982), intro-
duced by Tenenbein (1972). In (lll), the aggregates of thiemased land use class
areas over the large region agree with unbiased postfsatitn estimators (Holt
& Smith 1979).

In (I11), a method is found to calibrate the field plot weiglatg, for computation
unit U in such a way that the sum of the calibrated weights over atitng data
plots is equal to the calibrated FRYL area estimates whelyiagpthe confusion
matrix and the above method. The calibration of the weight®t straightforward
because there are only FRYL field plots in the training dathtaere is a lack of
correspondence between the NFI land use classes and thdaratap k addition,
the calibrated MS-NFI may produce negative weights for some field plots.

In (IV), the kNN estimation was employed by map strata. All the field plots
within each map stratum, irrespective of the field measunérbased land use
class, were used for estimating the areas of land use clasddsrest variables of
the particular stratum. The applied strata were formed $o s as homogeneous
as possible with respect to the NFI based land use classegevdn the number
of strata was restricted by the fact that there should befecisut number of field
plots for thek—NN estimation (IV). The aim of the method was to obtain staul
neously the FRYL area estimate and accurate forest varstilmates within each
stratum. A compromise was made in the parameter selectioveba the high
overall accuracy of FRYL classification and minimising th&&lof the key forest
variables. The stratified MS-NFI resembles the field inventstimation in the
sense that all the field plots within a stratum are retaindtiértraining data. The
final estimates are obtained by combining the stratum-wsimates.

In (Ill) and (1V), the stratified and calibrated MS-NFI redutthe error in the
FRYL area estimates caused by errors in the map data. Caupanvere made
between the aggregates of MS-NFI small-area estimates eladirfiventory es-

timates at the region level in order to determine the totabam of correction,

and at the subregions (groups of municipalities), to detieetpossible bias in
the small-area estimates. At the region level, the cakior&RYL area estimates
were by construction, equal to the post-stratified FRYL astimates, and the
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post-stratification efficiently reduced the standard eofdhe estimate in land use
classes that were homogeneous with the map strata (ll1}hEatratified MS-NFI,
FRYL area correction remained between the original MS-Nfd the calibrated
estimates. The calibration typically increased the vol@stimates at both the re-
gion and subregion levels. The original MS-NFI estimatesawalibrated upwards
or downwards more or less systematically. The stratified WFS-small-area es-
timates, especially for volume and volume by tree specised more compared
to the original MS-NFI estimates. The calibrated and dteatiMS-NFI| estimates
of FRYL and total volume did not differ significantly from thield inventory es-
timates in subregions of size ranging from 1728 to 4238 krdlowever, only
the stratified MS-NFI estimates of tree species volumes witen two standard
errors of the field inventory estimates in the subregiondetést data. If the orig-
inal MS-NFI estimates are clearly biased in the subregithescalibration method
alone can not correct the bias.

In the calibration method, the confusion matrices wereutated for large regions,
where several thousands of field plots were available. Toagnagtion of constant
misclassification probabilities within the strata may navé held. The confusion
matrices could be formed for subregions: according to Gzeshti & Catts (1992)
improvement in the estimation precision of the classessstadiminish after 500—
1000 sample plots in a simple random or systematic sampleekr, in (I11) the
smallest strata had less than 50 field plots.

Formation of the strata is more simple in the stratified M3;MEt the estimation
parameters must be sought for all the strata applying cralggation. The FRYL
area estimates for each stratum were not very sensitiveeteaiues ofc or geo-
graphical HRA in (V). The field plot weights); ,,, to pixel pj, in stratumh, i.e.
the fuzzy membership values of field plotetain the variation in the training data
in the estimates. The classification accuracy for FRYL ang-lFRYL was not
very high in (IV); the number of field plots within minor steatay be too small
for efficient classification.
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4. Discussion

In (1), the most important parameters for minimising thereation error of the
total volume and volume by tree species at pixel level weeevdilue ofk, the
geographical HRA radius to select the training data and tiadifecation of the
field plot pixels, and training data employing the site clasp. With the parameter
selection criteria employed, the parameters obtained qugte similar in the four
different study areas that represented different geodgapareas of Finland. This
indicates a consistency in the quality of Landsat TM imagia dad in the NFI
field plot data. The selection @&f was based on the the condition of minimum
decrease of 0.5 % betweénand k£ + 1 on a smoothed prediction error curve
in (1). According to McRoberts et al. (2002), the thresholtgentage should be
taken from the minimum RMSE. In general, if there is more tbae criterion for
selecting the estimation parameters, e.g. minimising ti&EMnd retaining some
of the original variation in the field plot data in the estiestit would be more
objective to state and apply them in an analytical way. Theais small value of
k may be appealing because it retains the original variatidheofield plot data in
the produced map data (Franco-Lopez et al. 2001). Howewemsequence may
be thatt—NN yields a MSE larger than the variance in the observaiibttioberts
et al. 2002). Secondly, there is less variation in the fovasiables for units the
size of a Landsat TM pixel (3030 n?) than in the NFl field plots, c.f. Nyyssonen
et al. (1967).

In (1), the geographical HRA radii for mineral land and paat strata were de-
termined using the following criteria: to minimise the MSEtle key variables,

to exclude from the training data field plots that would idwoe bias into the es-
timates (maximum HRA radius) as well as to obtain a sufficremnber of field

plots on average in the training data (minimum HRA radiugkdla (2000) found

a smaller HRA radius to be optimal when the criterion was toimise the MSE

of volume and volume by tree species from the cross-vatidatistimates. How-
ever, Nilsson (1997) recommended that the same number dfdiels should be
employed in the training data as were found to be suitablé) ion( mineral stra-

tum. In northern Finland, there is more variation in thetadte and, according to
experiences in the operative MS-NFI, the use of geograpkiRé will decrease

the bias in the vertical subsets of the training data (Torgi@d. 1998).

Stratifying the image and field plots for mineral strata aedtfand strata signifi-
cantly decreased the bias of the volume estimates withsetetrata in (I). In gen-
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eral, stratifying the low radiometric resolution satellilata employing auxiliary
data that reduces the within strata variation, e.g. a fa@igstguality map (Tokola
& Heikkila 1997) or stand characteristics data (Nilsson7,9%mppo et al. 1999)
will reduce the bias within strata and possibly the globalBM&thek—NN estima-
tion. Thek—NN estimates of forest stand border pixels have a largerthan those
inside the stand and a separate estimation of stand boaadeould decrease this
error (Tokola & Kilpeldinen 1999). The bias in the estimadéso increases close
to non-FRYL map strata in (Il). In (IV), The MS-NFI by strataass employed.
The relatively large amount of training data required Is1tfte number of strata to
be formed. Combining remote sensing data and map data wilggate different
types of error in the output data (Wilkinson 1996). The ffiest remote sens-
ing classification may produce artificial boundaries on thguot thematic maps
(Hutchinson 1982).

In (I and 11), the cross-validation has been applied assgniidlependent sam-
pling, despite the fact that the key forest variables betwesighbouring field
plots within clusters are spatially correlated. E.g. thure for forest and other
wooded land had a correlation coefficient greater than 0.® @pdistance of ap-
proximately 500 m within the same cluster in Central and Nemrt Finland in the
7th NFI (Tomppo et al. 2001). Spatial autocorrelation alsouss in the satellite
image spectral channel values. This derives from both themespatial properties
and the spatial structure of the scene (Collins & Woodcoc9).9 However, in
the cross-validation it has not been detected in practigettie nearest neighbours
would be more often from the same cluster as the target field plevertheless,
the spatial autocorrelation range from the left-out pixetioss-validation should
be taken into account either by modifying the cross-valiaafAltman 1990) or
simply by the 'leave-some-out’ method (Linton & Hardle 1998

It is inevitable that the prediction error at the pixel lewgll be considerable in an
MS-NFI that employs high resolution satellite data. The £ the field plot is
small compared to the instant field of view of the satellites amount of mixed
pixels is large and the image spectral channel values colitdé variation for
well-stocked stands (Ripple et al. 1991, Ard6 1992). Howenaslucing the main
sources of error in the MS-NFI, e.g. in the field plot data, Btialecrease the
prediction error in thé—NN estimates. Reducing the field plot locational error in
the training data not only decreases the RMSE of mean volstmaaes obtained
from the cross-validation, but also retains more of theamirvariation in the esti-
mates (Halme & Tomppo 2001). It also corrects the typicaih&lage towards the
mean in th&k—NN estimates rather more than when a small valueisfused. The
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sampling error in the training data is decreased by the uaeighted mean of BA
observations from a larger area than a field plot (ll).

These results lead to the larger question of the optimal ietfdpling design for
MS-NFI purposes. This will include the questions concegrtime size of the field
plot, the distance between field plots, the representassenf the sample. When
the field sample is used in a remote sensing application, tmalpspatial reso-
lution of the remote sensing data may be selected for theattin (Hyppanen
1996) or the resolution —and the sensor— may be fixed. Undigdbiconstraints,
a balance should be found between the need for a large enaidiplidt size to
provide a good covariation between the remote sensing ddtthe key variables,
and the need for the training data to cover the variation tf fiariables within the
satellite image cover (I). The spatial autocorrelationhia forest variables and in
the remote sensing data should be taken into account inpliimisation process,
cf. Wang et al. (2001).

Further refinement of the estimation parameters could &seréhe accuracy of
the forest variable estimates. The predictive power of dadure space variables
employed can be summarised by applying canonical comelahalysis (Moeur
& Stage 1995) or weighting the features based on optimisatites (Tomppo &
Halme 2004). This is useful when only one set of parameteuses for all the
forest variables. The local adaptation of thheNN method could be used, based
on the selected nearest neighbours or on the spectral ésatlihe largek—NN
estimates also had a larger residual variation and vamidtiashe selected nearest
neighbours in (II) and it might be possible to decrease tlegliption error by
applying a stronger smoothing for the pixels where high naiestimates will be
produced. On the other hand, the spatial distribution ofitmeighbours varies
at the edges of the feature space and the Euclidean distané#d are small
between the field plot pixels of high stand volume, whereaspien land and in
young forests the distances can be quite high.

The confusion matrices used for the calibration in (Ill) evesstimated for entire
forestry centres. If the error probabilities in the confusimatrix vary signifi-

cantly within such large regions, the calibration could pkt snto subregions.A

priori information of the map accuracies, efficient stratificatiorsubregions and
the evaluation of standard errors of the misclassificatiababilities, c.f. (Card
1982), could be used to determine the optimal size and loligioh of the subre-
gions for calibration. In general, the stratified MS-NFI veasiore simple method
than calibration and provided, on average, more accuréteass of the volume
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by tree species for small areas.

The field inventory estimates and their standard errorsafgiel regions and subre-
gions (groups of municipalities) are useful in assessiegsistematic error of the
MS-NFI estimates within a satellite image or some subardg (df; Tomppo &
Katila 1992). The errors for field inventory estimates argddor areas less than
150 000 ha of FRYL, and other methods could be tested to éealtia accuracy
of the MS-NFI results, e.g. post-stratified field inventosgimates or resampling
methods at the municipality level. There is both map errar fanest variable es-
timation error in the aggregates of MS-NFI small-area ests® and this makes
comparison with the field inventory estimates more diffidhn in the cross-
validation at pixel level, where only FRYL field plot pixelseaemployed. The
parameter selection methods studied in (I) and the sma#i-astimation map er-
ror correction methods in (lll and 1V), together with the fieéhventory estimates,
provide a method to reduce the estimation error and a referefithe accuracy
of the MS-NFI results. However, if there is a significant sysétic error in the
small-area estimates of a certain subregion, it may not Bsilpie to remove the
error by varying the parameters studied in (I). In practibe,small-area estimates
are dependent upon where the small area is located withatelspthe employed
satellite image and the training data. The satellite imagekthe large regions
covered by the field inventory data form a mosaic of 'estioraimages’ that are
analysed separately. Consequently, neighbouring pixelsmall areas may em-
ploy training data from different geographical referenaaa. This may cause bias
in the results. It has been found necessary to take the teméespcomposition of
the reference area into greater account , i.e. large seald-tike changes of forest
variables (Tomppo & Halme 2004). This indicates that thaalation between
covariates and the volumes by tree species may not be stnangle to define the
field plot weightsc; ;7 for the small areas, and the use of averages of variables from
a window defined by large scale trends around a municipalégreases the error
in the small-area estimates. The bias in the small-area&tir could be therefore
corrected, e.g. by applying a combinationksfNN estimator and a direct sam-
ple estimator, a composite estimator, weighted by someriai{Schreuder et al.
1993).

The parameter selection in the cross-validation is baseth@mglobal MSE and
bias criteria. The systematic error in the aggregates oflsarea estimates at the
region and subregion levels are assessed by applying fiedshtiory estimates.
The aim in the MS-NFI is to obtain unbiased estimates for thallkareas as well.
The question is open as to, how much the optimal parametesfall areas or
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subregions would differ from the global optimum.

A spatial presentation of the estimation of uncertainty \adne useful for the data
analyst. Building an error estimation method based on ssuo€ error is a com-
plex problem (Bastin et al. 2000). The measures of uncéytaiadied in (I1) may
be far from the true prediction of error and more informatidrihe target pixels,
especially mixed pixels, are needed. The finer resolutioN PAages could help
to assess the representativeness of the field plots andrieedeche estimation er-
ror. Also, the fact that pixel-level estimation errors candpatially autocorrelated
must be taken into account in the error estimation methodg&lton 1988, Flack
1995). Wallerman (2003) in a study employing Landsat TM améhgensive field
sample, found the spatial dependence of the residuals frepatal regression
model to be lower than the residuals from ordinary least mepueegression, but
only with field plot data sampled by distances of less thanrB00

Although a reliable method for estimating pixel-by-pixeta could be produced,
such a method would not be suitable for deriving the erramedes for larger
computation units such as forest stands and municipalifiése error estimates
for larger areas cannot be obtained directly by combinirgeiror estimates for
single pixels due to spatial autocorrelation both in thelitd image and field
data and, in the case of cross-validation error estimatas tal locational errors
in the field plot data. The error variance of the MS-NFI for #raeeas could be
estimated employing models describing the second ordeepties of the MS-NFI
error estimates for pixels, obtained from cross-validatioappi 2001). However,
the field plot volume prediction error of the MS-NFI estimatiepends not only
on distance between pixels but, e.g. on the true volume. ditiad, the k—NN
prediction errors may not be treated as the residuals ohd sarface of a spatial
model. The several sources of error in the MS-NFI, both infiblel plot data
and the remote sensing data, can reduce the reliabilityeo$platial modelling of
errors.
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