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ABBREVIATIONS

aa amino acid(s)

Ab antibody

Ag antigen

CR coding region

cRNA complementary RNA

DAN Danish genetic lineage of PUUV

EIA enzyme immunoassay

FIN Finnish lineage

Gn, Gc hantavirus glycoproteins

HFRS hemorrhagic fever with renal syndrome

HPS hantavirus pulmonary syndrome

N nucleocapsid protein

NCR non-coding region

NE nephropathia epidemica

nt nucleotide(s)

NSCA Northern Scandinavian lineage

ORF open reading frame

PUUV Puumala virus

SSCA Southern Scandinavian lineage

RdRp RNA-dependent RNA polymerase

RNP ribonucleoprotein

RT-PCR reverse transcription – polymerase chain reaction

RUS Russian lineage

vRNA viral genomic RNA

Complete list of Puumala virus strains and their abbreviations used in this study are in

Appendix I, page 58
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SUMMARY

Puumala virus (PUUV) is the causative agent of nephropathia epidemica (NE), a mild

form of hemorrhagic fever with renal syndrome. Finland has the highest documented

incidence of NE with around 1000 cases diagnosed annually. PUUV is also found in

other Scandinavian countries, Central Europe and the European part of Russia. PUUV

belongs to the genus Hantavirus in the family Bunyaviridae.

Hantaviruses are rodent-borne viruses each carried by a specific host that is persistently

and asymptomatically infected by the virus. PUUV is carried by the bank voles (Myodes

glareolus, previously known as Clethrionomys glareolus). Hantaviruses have co-evolved

with their carrier rodents for millions of years and these host animals are the evolutionary

scene of hantaviruses.

In this study, PUUV sequences were recovered from bank voles captured in Denmark and

Russian Karelia to study the evolution of PUUV in Fennoscandia. Phylogenetic analysis

of these strains showed a geographical clustering of genetic variants following the

presumed migration pattern of bank voles during the recolonization of Fennoscandia after

the last ice age approximately 10 000 years ago. The currently known PUUV genome

sequences were subjected to in-depth phylogenetic analyses and the results showed that

genetic drift seems to be the major mechanism of PUUV evolution. In general, PUUV

seems to evolve quite slowly following a molecular clock. We also found evidence for

recombination in the evolution of some genetic lineages of PUUV. Viral microevolution

was studied in controlled virus transmission in colonized bank voles and changes in

quasispecies dynamics were recorded as the virus was transmitted from one animal to

another. We witnessed PUUV evolution in vivo, as one synonymous mutation became

repeatedly fixed in the viral genome during the experiment.

The detailed knowledge on the PUUV diversity was used to establish new sensitive and

specific detection methods for this virus. Direct viral invasion of the hypophysis was

demonstrated  for  the  first  time  in  a  lethal  case  of  NE.  PUUV  detection  was  done  by

immunohistochemistry, in situ hybridization and RT-nested-PCR of the autopsy tissue

samples.
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REVIEW OF THE LITERATURE

Discovery of hantaviruses

Hantaviruses are old viruses that have co-evolved with their carrier rodents for millions

of years. The human diseases were described already in Chinese writings from the 10th

century. The mildest form of hantavirus disease, nephropathia epidemica (NE), was first

described in Sweden in 1934 (Myhrman, 1951). An epidemic of NE was reported among

Finnish and German troops in Finnish Lapland during the World War II, and in the 1950s

“Korean hemorrhagic fever” was described during the Korean War (Earle 1954). Bank

voles were suggested as the reservoir of the pathogen by Soviet Union researchers at the

end of 1950s. Gradually it became evident that the severe diseases in Far East and in

China and the mild diseases in Scandinavia and Eastern Europe were caused by related

agents  and  the  term  hemorrhagic  fever  with  renal  syndrome  (HFRS)  was  introduced

(Gajdusek, 1962).

Dr. Ho Wang Lee was the first to identify the causative agent of HFRS. The sera of

Korean hemorrhagic fever patients reacted with tissue sections of the striped field mice

(Apodemus agrarius) (Lee and Lee 1976). Subsequently, the first hantavirus, Hantaan

(HTNV), was isolated by passaging it in laboratory-colonized field mice (Lee and Lee

1978). Later this virus was also isolated in cell culture (French et al., 1981). Following

that lead, Dr. Markus Brummer-Korvenkontio and co-workers showed in 1980 that lung

specimens  of  the  bank  vole  react  with  sera  from  Finnish  NE  patients  (Brummer-

Korvenkontio et al., 1980). The first bank vole samples were collected in the vicinity of

the village Puumala in Southeast Finland and thus the virus was named Puumala

(PUUV). It was first isolated in colonized bank voles (Brummer-Korvenkontio et al.,

1980, 1982) and later also in cell culture (Niklasson and LeDuc 1984, Yanagihara et al.,

1984, Schmaljohn et al., 1985). In the 1980s two other hantaviruses were isolated: Seoul

virus (SEOV) from rats (Rattus norvegicus and Rattus rattus) (Lee et al., 1982) and

Prospect Hill virus (PHV) from meadow voles (Microtus pennsylvanicus) (Lee et al.,

1982). Yet, the first isolated hantavirus was actually the Thottapalayam virus (TPMV)
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carried by shrews (Suncus murinus) (Carey et al.,  1971),  but  it  was  not  identified  as  a

hantavirus until the 1990s (Xiao et al., 1994). The next hantaviruses discovered were the

Thailand virus (THAIV) (Elwell et al., 1985) and the Dobrava virus (DOBV) that causes

severe HFRS in Europe (Avsic-Zupanc et al., 1992, 1995). A turning point in hantavirus

research was reached in the 1990s, when the Sin Nombre virus (SNV) causing the disease

hantavirus pulmonary syndrome (HPS) was discovered (Nichol et al., 1993, Elliott et al.,

1994). Ever since, a number of new hantaviruses have been discovered either through

isolation or by sequencing (see Table 1 for summary).

Table 1. List of hantaviruses and their carrier rodents. In bold are the hantavirus species currently recognized by
the International Committee on Taxonomy of Viruses.

Virus Abbr. Host Area Disease
(if known)

Reference

Hantaviruses carried by rodents from the family Cricetidae, subfamily Arvicolinae
Puumala PUUV Myodes glareolus

(bank vole)
Europe HFRS Brummer-Korvenkontio et al., 1980

Tula TULV Microtus arvalis
(European common vole)

Europe Plyusnin et al., 1994

Topografov TOPV Lemmus sibiricus
Lemming

Asia Plyusnin et al., 1996

Khabarovsk KHAV Microtus fortis
(reed vole)

Asia Hörling et al., 1996

Prospect Hill PHV Microtus pennsylvanicus
(meadow vole)

North America Lee et al., 1982, 1985

Isla Vista ISLAV Microtus californicus
(Californian vole)

North America Song et al., 1995

Bloodland Lake BLLV Microtus ochrogaster
(prairie vole)

North America Song et al., 1995

Vladivostok VLAV Microtus fortis
(reed vole)

Asia Kariwa et al., 1999

Muju MUJV Myodes regulus
(royal vole)

Asia Direct submission to GenBank

Hokkaido HOKV Myodes rufocanus
(red bank vole)

Asia Kariwa et al., 1995

Fusong Myodes rufocanus
(red bank vole)

Asia Direct submission to GenBank

Hantaviruses carried by rodents from the family Cricetidae, subfamily Neotominae
Sin Nombre SNV Peromyscus maniculatus

(deer mouse)
North America HPS Nichol et al., 1993

New York NYV Peromyscus leucopus
(white-footed mouse)

North America HPS Hjelle et al., 1995a, 1995b

El Moro Canyon ELMCV Reithrodontomys megalotis
(western harvest mouse)

North America Hjelle et al., 1994

Rio Segundo RIOSV Reithrodontomys mexicanus
(Mexican harvest mouse)

South America Hjelle et al., 1995

Limestone Canyon LSCV Reithrodontomys megalotis
(western harvest mouse)

North America Sanchez et al., 2001
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Hantaviruses carried by rodents from the family Cricetidae, subfamily Sigmodontinae
Andes ANDV Oligoryzomys longicaudatus

(long-tail pigmy rice rat)
South America HPS Lopez et al., 1996; Meissner et al.,

2002
Bayou BAYV Oryzomys palustris

(rice rat)
North America HPS Morzunov et al., 1995

Black Creek Canal BCCV Sigmodon hispidus
(hispid cotton rat)

North America HPS Ravkov et al., 1995

Cano Delgadito CADV Sigmodon alstoni
(cane mouse)

South America Fulhosrt et al., 1997

Laguna Negra LANV Calomys laucha
(vesper mouse)

South America HPS Johnson et al., 1997

Muleshoe MULV Sigmodon hispidus
(hispid cotton rat)

North America Rawlings et al., 1996

Rio Mamore RIOMV Oligoryzomys microtis
(small-eared pygmy rice rat)

South America Bharadwaj et al., 1997

Blue River BRV Peromyscus leucopus
(white-footed mouse)

North America Morzunov et al., 1998

Monongahela MGLV Peromyscus maniculatus
(deer mouse)

North America HPS Song et al., 1996

Bermejo BMJV Oligoryzomys chacoensis South America Levis et al., 1997
Lechiguanas LECV Oligoryzomys flavescens

(rice rat)
South America HPS Levis et al., 1997

Maciel MCLV Bolomys obscurus
(dark bolo mouse)

South America Levis et al., 1998; Bohlman et al.,
2002

Oran ORNV Oligoryzomys longicaudatus
(long-tail pigmy rice rat)

South America HPS Levis et al., 1998; Bohlman et al.,
2002

Pergamino PRGV Akadon azarae
(Azara's grass mouse)

South America Levis et al., 1998; Bohlman et al.,
2002

Chochlo Oligoryzomys fulvescens
(pygmy rice rat)

N and S
America

HPS Vincent et al., 2000

Calabazo Zygodontomys brevicauda
(short-tailed cane mouse)

South America HPS Vincent et al., 2000

Araraquara Bolomys lasiurus
(hairy-tailed bolo mouse)

South America HPS Johnson et al., 1999

Hantaviruses carried by rodents from the family Muridae, subfamily Murinae
Hantaan HTNV Apodemus agrarius

 (striped field mouse)
Asia HFRS Lee et al., 1978

Seoul SEOV Rattus norvegicus
(Norway rat)

Global HFRS Lee et al., 1982

Dobrava DOBV Apodemus flavicollis
(yellow-necked mouse)

Asia HFRS Avsic-Zupanc et al., 1992, 1995

Thailand THAI Bandicota indica
(bandicoot rat)

Asia Elwell et al., 1985

Amur AMRV Apodemus peninsulae
(Korean field mouse)

Asia HFRS Yashina et al., 2001, Lokugamage et
al., 2002

Soochong SOOV Apodemus peninsulae
(Korean field mouse)

Asia Baek et al., 2006

Da Bie Shan DBSV Niviventer confucianus
(Chinese white-bellied rat)

Asia Wang et al., 2000

Saaremaa SAAV Apodemus agrarius
 (striped field mouse)

Asia HFRS Plyusnin et al., 1997; Nemirov et al.,
1999

Hantavirus carried by an insectivore (non-rodent)
Thottapalayam TPMV Suncus murinus

(shrew)
Asia Carey et al., 1971; Xiao et al., 1994

Taxonomy of hantaviruses

PUUV belongs to the genus Hantavirus, family Bunyaviridae that is comprised of five

genera: Orthobunyavirus, Hantavirus, Nairovirus, Phlebovirus and Tospovirus (Nichol et

al., 2005). All  viruses  in  these  genera  have  a  similar  virion  structure,  genome
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organization and replication strategy. They have 3 molecules of negative or ambisense

ssRNA as their genome. These segments are designated L (large), M (medium) and S

(small) and their total length is 11-19 kb. The L, M and S segments encode, respectively,

the viral RNA-dependent RNA polymerase (L protein), two envelope glycoproteins (Gn

and Gc) and the nucleocapsid protein (N). Each RNA segment is non-covalently circular

and the terminal nucleotides are complementary and form a base-paired panhandle-like

structure. The virions are spherical and they are comprised of enveloped

ribonucleocapsids (Figure 1). Some viruses in this family also encode additional

nonstructural proteins in the M (NSm) or S segment (NSs). Viral replication occurs in the

cytoplasm, and the virions bud into the Golgi cisternae from where they are transported to

the plasma membrane and released (Nichol et al., 2005).

Figure 1. Schematic structure of a hantavirus.

The genus Hantavirus includes 22 officially recognized virus species, and in addition to

these, at least 19 tentative hantavirus species (see Table 1 for a summary). These viruses

are a prime example of emerging pathogens that have attracted more and more attention

in the last decades. Unlike all other viruses in the family Bunyaviridae, hantaviruses lack

an arthropod vector. Instead, they are transmitted from rodent to rodent (and occasionally

Gn Gc

RNP

L protein
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also from rodent to human) via indirect contacts. Each hantavirus is carried by a specific

host and currently there are 50 different rodent species that are reported to be infected by

hantaviruses (Zeier et al., 2005). Human infections are incidental and human-to-human

transmission has only been reported for the Andes virus (Martinez et al., 2005).

Hantaviruses  cause  two  types  of  human  diseases,  HFRS  and  HPS,  and  some  of  the

viruses are apparently non-pathogenic to humans. In the rodent hosts, the viruses cause a

life-long persistent and asymptomatic infection (Plyusnin et al., 1996, Nemirov et al.,

2004a). Hantaviruses are thought to co-evolve with their rodent hosts and this is reflected

in their phylogeny (Figure 2).

Figure 2. Phylogenetic tree of hantavirus N protein sequences (calculated using TreePuzzle) showing their

grouping following the carrier rodents. The abbreviations are described in table 1.
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The International Committee on Taxonomy of Viruses has formulated four criteria to

define hantavirus species. First, the different species should have a different primary

reservoir, i.e. they are found in a unique ecological niche. Second, the aa difference of the

complete glycoprotein precursor protein and the nucleocapsid protein sequences is at

least 7%. Third, the difference in two-way cross-neutralization test is at least four-fold.

Fourth, different hantavirus species do not form reassortants naturally with other species

(Nichol et al., 2005).

Distribution of Puumala virus

PUUV has been isolated and sequences have been recorded from several European

countries (Figure 3): Austria (Aberle et al., 1999, Plyusnina et al., 2006), Belgium

(Escutenaire et al., 2001), Croatia (Cvetko et al., 2005), Denmark (I, IV), Estonia

(Golovljova et al., 2002), Finland (Vapalahti et al., 1992, Plyusnin et al., 1995, 1997,

1999), France (Plyusnina et al., 2007), Germany (Pilaski et al., 1994, Heiske et al., 1999,

Bahr et al., 2006, Essbauer et al., 2006), Norway (Lundkvist et al., 1998), Russia

(Stohwasser et al., 1990, Plyusnin et al., 1994, 1995, I, Dekonenko et al., 2003), Slovenia

(Avsic-Zupanc et al., 2007), and Sweden (Hörling et al., 1996, 1995, Johansson et al.,

2004). The largest collection of hantavirus sequences is available for PUUV. Currently

there are 45 complete S segment sequences and 125 partial S segment sequences

deposited in the GenBank. Furthermore, 9 complete M segment sequences, and 5

complete L segment sequences are available. In addition to bona fide PUUV sequences,

there are two complete S segment sequences from the closely related Hokkaido virus

(HOKV) that is carried by Myodes rufocanus, the red bank vole. Recently, 4 complete S

segment sequences of another related hantavirus, Muju (MUJV) were also deposited in

the GenBank. This virus is carried by Myodes regulus, the royal vole.
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Figure 3. European countries where PUUV is found. Black dots mark countries from where PUUV

genome sequences are available. Grey dots show countries where human PUUV infections have been

found.

Mechanisms of hantavirus evolution

The persistently infected rodents are the evolutionary scene for hantaviruses (Plyusnin et

al., 1996). Genetic analysis has suggested that the main mechanism leading to hantavirus

diversification is the genetic drift, i.e. the gradual accumulation of genomic changes such

as nucleotide substitutions, deletions and insertions (Plyusnin et al., 1995, Rowe et al.,

1995, Lundkvist et al., 1998).  Similarly to many other RNA viruses, hantaviruses appear

as populations of closely related genetic variants, i.e. quasispecies (Plyusnin et al., 1995,

1996, Lundkvist et al., 1997, Feuer et al., 1999). Although this would provide the

possibility for rapid evolution, hantaviruses seem to evolve slowly. They have adapted to

their rodent hosts a long time ago and there is little selection pressure for change in these

animals (Lundkvist et al., 1992). Strong purifying selection is apparent as high level of

strain variation at the nt level is translated only to a low variation at the aa level (Hjelle et
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al., 1995). Hantavirus evolution may also be driven by positive selection in situations

requiring fast adaptation. This has been shown in the adaptation of PUUV to cell culture,

which was accomplished through an expanded quasispecies diversity and fixation of nt

substitutions in the non-coding (NCR) regions of the S segment (Lundkvist et al., 1997).

Two point mutations (one silent and one leading to aa substitution) in the coding region

of the L segment were also found (Nemirov et al., 2003). These minimal changes in the

genotype were translated to clearly distinct phenotypes. The cell culture –adapted PUUV

variant was neither infectious to bank voles (Lundkvist et al., 1997) nor the Cynomolgus

macaques used as a non-human primate model of NE (Groen et al., 1995). Another

situation accompanied by fast adaptation is host switching. In general, hantaviruses are

firmly associated with their rodent hosts. Yet sometimes they have apparently spread and

colonized new hosts as suggested for MGLV/NYV (Morzunov et al., 1998),

TOPV/KHAV (Vapalahti et al., 1999) and DOBV/SAAV (Nemirov et al., 2002)

The life-long hantavirus infection of the carrier rodents provides the possibility of co-

infections and thus recombination or reassortment between different viral strains. These

mechanisms are called the genetic shift. Hantavirus reassortment was first demonstrated

for Sin Nombre virus (Li et al., 1995). The data showed that especially the reassortment

of the M segment may occur. Reassortment of hantaviruses of the same genotype has also

been demonstrated in vitro fairly frequently (Rodriquez et al., 1998). In contrast,

reassortment between two hantavirus genotypes was infrequent, and importantly, these

reassortants were unstable and deleterious. Genetic shift in hantaviruses may also happen

through recombination. This was first demonstrated for Tula virus (Sibold et al., 1999,

Plyusnin et al., 2002) and later also for Puumala virus (II) and Hantaan virus (Chare et

al., 2003).  Recombination is an important feature in the evolution of many RNA viruses

(Worobey et al., 1999). Furthermore, it is known that RNA viruses vary greatly in their

ability to undergo recombination (Posada et al., 2002). The highest rates of

recombination are those of retroviruses such as HIV (Malim et al., 2001), whereas the

lowest rates are observed for the negative-stranded RNA viruses (Chare et al., 2003).

They have their genomes packaged into RNP structures, which may limit their ability to
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recombine. Most recombinants are also likely to be deleterious and thus they will be

removed by purifying selection as seen, e.g. in coronaviruses (Banner and Lai, 1991).

Hantaviral genes and proteins

Similarly to other hantaviruses, PUUV has a tripartite genome of negative-stranded RNA.

The S segment encodes the nucleocapsid protein (N) (Schmaljohn et al., 1986). The

hantaviral nucleocapsid protein has many activities in the viral RNA replication,

encapsidation and virus assembly (Kaukinen et al., 2005). It has a major role in the

protection of the RNA genome through formation of the ribonucleoprotein complexes

(RNP) (Flint et al., 2000). The N protein has to interact with both the viral RNA and

other N protein molecules to form these RNP structures. The terminal non-coding regions

of the hantaviral vRNA molecules have been shown to contain a unique binding site for

the N protein (Severson et al., 1999, Mir and Panganiban, 2004). The RNA-binding

domain of the HTNV N protein has been mapped to the middle part of the protein (aa 175

to 217) and this region is highly conserved among hantaviruses (Xu et al., 2002). The

homotypic interactions of hantavirus N proteins have been mapped to the amino-terminal

and carboxy-terminal regions (Alfadhli et al., 2001, Kaukinen et al., 2003, Yoshimatsu et

al., 2003), and this interaction has been further characterized using in silico modeling and

point mutagenesis (Alfadhli et al., 2002, Kaukinen et al., 2004, Alminaite et al., 2006).

The crystal structure of a partial SNV N protein was solved very recently showing a

coiled-coil structure as predicted earlier (Boudko et al., 2007).

The hantavirus N protein has been shown to interact with cellular proteins such as actin

(Ravkov et al., 1998) and the apoptosis regulator Daxx (Li et al., 2002). Furthermore,

yeast two-hybrid assays have suggested that it can also interact with Ubc-9 and SUMO-1

that are involved in the sumoylation reactions in the host cell (Kaukinen et al., 2003,

Maeda et al., 2003). It has been speculated that the N protein–SUMO-1 interaction would

retain the N protein in the cytoplasm, but further studies are needed to confirm this. The

N protein also interacts with the other viral proteins, the RNA-dependent RNA

polymerase (Kukkonen et al., 2004a, 2004b) and the envelope glycoproteins Gn and Gc.
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The hantaviral L protein is presumably associated with the RNPs and thus it can initiate

viral RNA synthesis immediately after the virus entry into a cell (Schmaljohn and

Dalrymple, 1983). Studies using minigenome systems have shown that only functional

hantaviral L and N proteins are needed for RNA replication and transcription (Flick et al.,

2003). Furthermore, the N protein is highly immunogenic and B-cell epitopes have been

mapped in its N-terminal third (Lundkvist et al., 1995, Vapalahti et al, 1995, Yoshimatsu

et al., 1996) while T-cell epitopes are in the central region of the protein (Ennis et al.,

1997, van Epps et al., 1999, 2002, Park et al., 2000).

The hantavirus M segment encodes the two envelope glycoproteins Gn and Gc that are

synthesized first as a precursor polypeptide, and later cotranslationally cleaved to yield

the two mature proteins (Löber et al., 2001). They are type I integral membrane proteins

with their C-terminal domains in the cytoplasm (Spiropoulou, 2001). The glycoproteins

Gn and Gc are targeted to the endoplasmic reticulum where they form a heterodimer

(Ruusala et al., 1992). They are further transported to the Golgi compartment, where they

are glycosylated (Schmaljohn et al., 1986, Shi and Elliott, 2002). The signal sequence

targeting these proteins to the Golgi complex is most probably located in the cytoplasmic

tail of the Gn protein, similarly to Uukuniemi virus (UUKV) (Andersson et al., 1997). In

the virion, they are embedded in the envelope and exposed on the viral surface.

Presumably they are responsible for binding of the virus to the target cells although this

has not been shown directly yet. The glycoproteins are highly variable and they are the

target for neutralizing antibodies (Dantas et al., 1986, Ruo et al., 1991, Lundkvist et al.,

1993a, 1993b, 1995).

The L segment encodes the putative viral RNA-dependent RNA polymerase (RdRp)

(Stohwasser et al., 1991). It should contain several enzymatic activities such as

endonuclease, transcriptase, replicase and RNA helicase activity (Johnsson and

Schmaljohn, 2001). Conserved motifs common to other RdRps of negative-stranded

RNA viruses have been recognized (Kukkonen et al., 1998, Nemirov et al., 2003). The L

protein is located in the perinuclear region of the cell and it is associated with cellular

membranes (Kukkonen et al., 2004). Indeed, it is known that the RNA synthesis of
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positive-strand RNA viruses is associated with cellular membranes (Salonen et al., 2005),

and this has been suggested for negative-strand RNA viruses as well.

Hantaviral replication cycle

The replication cycle of hantaviruses is comprised of virus attachment, entry,

transcription, translation, RNA replication, virion assembly and release of progeny

viruses. Similarly to many other viruses (Schneider-Schaulies, 2000), hantaviruses use

integrins as their receptors for attachment to the host cell surface (Gavrilovskaya et al.,

1998, 1999, 2002, Mackow et al., 2002). More recently, additional receptors have been

recognized,  but  their  role  is  yet  to  be  defined  (Kim et al., 2002, Mou et al., 2006).

Integrins are essential cell adhesion molecules mediating cell-cell and cell-extracellular

matrix interactions (Hynes, 2002). Interestingly, the pathogenic hantaviruses use 3-

integrins as their receptors while the non-pathogenic hantaviruses seem to use 1-

integrins (Gavrilovskaya et al., 2002). There are two types of 3-integrins: IIb 3 and

3. IIb 3 integrin is mainly expressed on the surface of platelets, and 3 on the

surface of endothelial cells, smooth muscle cells, monocytes, and platelets. This

distribution is in agreement with the studies showing that pathogenic hantaviruses can

infect endothelial cells and monocyte/macrophages in culture (Pensiero et al., 1992,

Temonen et al., 1993). Following attachment, hantaviruses enter the cells via clathrin-

dependent receptor-mediated endocytosis (Jin et al., 2002). The site and mechanism of

uncoating are unknown, but this step seems to be low-pH-dependent (Jin et al., 2002).

Primary transcription of viral mRNAs is initiated shortly after the release of viral RNP

into the cytoplasm and it is started by the viral RdRp in the virion. The viral polymerase

generates primers for viral mRNA synthesis from cellular mRNAs by the “cap snatching”

mechanism. “Prime-and-realign” transcription ensures that copies of the viral RNA have

exact 5’-end sequences (Jonsson and Schmaljohn, 2001). As soon as the viral mRNAs are

synthesized, the translation of viral proteins starts. The S and L segment mRNAs are

translated on free cytoplasmic ribosomes and the M segment mRNA on membrane-bound

ribosomes. The template for viral replication is an exact complementary copy of vRNA,
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i.e.  antigenomic  RNA  (cRNA).  The  newly  made  vRNA  copies  increase  the  mRNA

production and synthesis of viral proteins (Jonsson and Schmaljohn, 2001). The

hantaviral glycoproteins presumably determine the site of virus assembly and maturation,

although the mechanism is currently unknown. Hantavirus particles mature by budding

into vesicles within the Golgi apparatus (Petterson et al., 1991). These vesicles are

transported to the plasma membrane and released. The first released hantavirus particles

appear 24 hours post-infection in cell culture (Kariwa et al., 2003). It has also been

suggested that certain Sigmodontinae/Neotominae-carried hantaviruses actually mature at

the plasma membrane instead of the Golgi apparatus (Ravkov et al., 1997, Spiropoulou et

al., 2003, Shi and Elliott, 2004). The mature hantavirus particles are spherical and they

have an average diameter of 120 nm (range 78-210 nm).

PUUV life cycle in nature

PUUV infects the bank voles persistently. The virus can be detected in different organs of

the animals, and the highest viral loads are found in the lungs (Yanagihara et al., 1985,

Netski et al., 1999). The bank voles shed the virus in the urine, feces and saliva for

months (Gavrilovskaya et al., 1990), and PUUV can survive outside the host in rodent

excreta at least 2 weeks at room temperature (Kallio et al., 2006). Virus transmission

from one animal to another occurs horizontally (Meyer and Schmaljohn, 2000, Kallio et

al., 2006). Maternal antibodies protect the newborn animals for up to 80 days (Kallio et

al., 2006b), and the maturation as well as the breeding success of these animals are

enhanced.   In Finland, the density of the rodents varies cyclically with a peak occurring

every 3-4 years. The number of clinical NE cases follows these cycles (Vapalahti et al.,

2003).

Clinical features of NE

Hantaviruses  cause two types of  human disease,  HFRS and HPS.  PUUV causes a  mild

form of HFRS named NE. Approximately 150 000 HFRS cases occur worldwide

annually while around 1000 HPS cases have been reported so far. PUUV is the most
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common cause of HFRS found all over Europe. PUUV and NE are highly endemic in the

Nordic countries, and in Finland an average of 1000 new cases is diagnosed every year

(Brummer-Korvenkontio et al., 1999). Most PUUV infections remain undiagnosed, and

the clinical cases vary from mild to lethal. This disease has an acute onset of fever and

headache followed by gastrointestinal symptoms, impaired renal function, and blurred

vision. The severe cases are characterized by renal failure, circulatory shock and

hemorrhage (Settergren 2000). Recovery is usually spontaneous, and mortality is less

than 0.1% (Brummer-Korvenkontio et al., 1999). Long-term sequelae are rare, but

hypertension and hypertensive renal disease have been reported (Mäkelä et al., 2000,

Miettinen et al., 2006). In addition, PUUV may infect the pituitary gland leading to

hypophyseal insufficiency that needs to be treated with hormone-replacement therapy. A

lifelong immunity remains after the infection and hantavirus antibodies can be detected

decades after the infection (Settergren et al., 1991). There is a genetic susceptibility for

severe courses of NE associated with human leukocyte antigen B8 haplotype (Mustonen

et al., 1996), whereas HLA B27 correlates with the mild course of the disease (Mustonen

et al., 1998).

Pathogenesis of PUUV infection

Despite many years of hantavirus research, the pathogenesis of these viruses is still

poorly understood. A key feature seems to be increased capillary permeability.

Endothelial cells and monocytes are thought to be the main target cells for hantaviruses,

but the infection alone has no cytopathic effect on these cells (Temonen et al., 1993). In

histological studies, the viral antigens are primarily found within capillary endothelium

throughout various tissues. PUUV antigen has been detected in tissues only rarely in

kidney biopsies in tubular epithelial cells with focal distribution (Groen et al., 1996), or

in autopsy tissue samples (Hautala et al., 2002). Typical histological findings in the

kidney biopsies of NE patients are acute tubulointerstitial nephritis, interstitial edema,

inflammatory cell infiltrations, tubular epithelial and luminal alterations and slight

glomerular changes (Mustonen et al., 1994, Temonen et al., 1996). The pathological

findings in lethal cases of NE include hemorrhages in kidneys, endomyocardium and
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pituitary gland (Linderholm et al., 1991, Valtonen et al., 1995). Pulmonary edema and

venous congestion in other organs including liver, gastrointestinal tract and brain have

also been detected in these studies.

The infiltrating cells found in PUUV-infected tissues are plasma cells,

monocytes/macrophages, polymorphonuclear cells and lymphocytes, and the

predominant ones are the CD8+ T-cells. Increased expression of cytokines, especially

tumor necrosis factor (TNF)- , has been detected at sites of injury (Temonen et al.,

1996). Furthermore, increased plasma levels of TNF- , interleukin(IL)-6 and IL-10 are

reported in NE patients (Linderholm et al., 1996) as well as urinary excretion of IL-6

(Mäkelä et al., 2004). Similarly, Cynomolgus macaques infected with wild-type PUUV

also demonstrated IL-6, IL-10 and TNF-  responses (Klingström et al., 2002). These data

suggest that the immune response plays a critical role in the pathogenesis of PUUV

infection (Terajima et al., 2004). The hypothesis is that hyperactivated PUUV-specific T-

cells attack endothelial cells presenting PUUV epitopes thus causing damage to the

capillary endothelium. The molecular mechanisms of this damage remain unknown.

Recently, the evidence for pro-apoptotic properties of hantaviruses has accumulated both

in cell culture experiments (Markotic et al., 2003, Li et al., 2004, 2005) and in HFRS

patients (Klingström et al., 2006, Liu et al., 2006).

Diagnosis and treatment

Diagnosis of PUUV infections is based on serology, on the detection of serum IgM

antibodies or low-avidity IgG antibodies to PUUV (Vapalahti et al., 1996), and these are

present  already  during  the  first  days  of  the  disease.  A  widely  used  method  is  an

immunofluorescence assay based on viral antigen grown in cell culture, and enzyme

immunoassays based on recombinant nucleocapsid proteins are also used. Alternatively, a

rapid point-of-care immunochromatographic IgM test may be applied (Hujakka et al.,

2001). Typical laboratory findings include proteinuria, an elevated serum creatinine

concentration and thrombocytopenia (Settergren 2000). No specific treatment is currently

available, and maintaining fluid balance is critical in the supportive treatment. Severe
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cases of NE may require dialysis. Ribavirin has been shown to have anti-hantaviral

effects and it may decrease mortality and severity of HFRS symptoms (Huggins et al.,

1991).
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AIMS OF THE STUDY

To analyze the genetic diversity and geographic distribution of PUUV

To elucidate the mechanisms of PUUV evolution

To develop new detection methods of PUUV in clinical samples and use these in

studying pathogenesis of NE in patients
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MATERIALS AND METHODS

The methods are described in detail in the articles referred to by their roman numerals.

Method Described in

Animals V

Antibodies III

Cloning and sequencing I-V

Enzyme immunoassay IV

Immunoblotting I, IV

Immunohistochemistry III

Phylogenetic analysis

PHYLIP I, II, IV, V

SimPlot I, II

SplitsTree II

TreePuzzle II

Wisconsin package (GCG) I, II , IV

RNA extraction

From bank vole tissues I, II, IV, V

From paraffin-embedded tissues III

RNA secondary structure prediction V

Rodent trapping I, IV

RT-PCR I-V

Sequence analysis

Multiple sequence alignment I, II, IV, V

Sequence handling with Bioedit IV, V

Sequence handling with SeqApp I, II

Tissue preparations III

Virus infection V
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RESULTS AND DISCUSSION

Evolutionary history of PUUV in Northern Europe

After the last ice-age, Fennoscandia was deglaciated appr. 8000-13000 years ago. During

the deglaciation, the area was recolonized by a plethora of plant and animal species

(Jaarola et al., 1999). The animals, including the bank voles, had survived the ice-age in

glacial refugia outside the ice-sheet. One refugium was established south of the ice-sheet

in continental Europe, a second refugium was in the east of the current territory of

European Russia, and possibly a third refugium was located along the sea coast in

Northern Scandinavia (Hewitt 1999, Jaarola et al., 1999, Fedorov and Stenseth, 2001).

While retreating from Fennoscandia, the Late Weichselian continental glacier left two

potential immigration routes for flora and fauna to recolonize the uncovered land. There

was a southern route via present Denmark and Southern Sweden when there still was a

land bridge connecting them, and an eastern route via present Russia and Finland. Bank

vole populations following these two routes met in central Sweden, forming a contact

zone (Limes Norrlandicus), which is still only about 50 km wide. Two types of bank

voles (northern and southern) are found in Fennoscandia on different sides of the contact

zone. The northern type is carrying mtDNA that originates from a different species, the

red vole (Myodes rutilus) (Hörling et al., 1996). Studies have shown that also the PUUV

strains on different sides of this zone form two distinct phylogenetic lineages (Hörling et

al., 1996; Lundkvist et al., 1998), thus supporting the hypothesis of hantavirus-host co-

evolution (Plyusnin and Morzunov, 2001, Nemirov et al.,  2004). This study was started

by collecting PUUV strains from two sites along the postulated immigration routes:

Denmark in the southern route and Russian Karelia in the eastern route.

Ninety bank vole tissue samples were collected at three different locations in Russian

Karelia. Twelve samples (13%) were determined positive for PUUV N antigen. One

positive sample from each of the three locations was selected for amplification of full-

length S segment and partial M segment sequences. Five percent (8/152) of the samples

collected in Denmark back in 1990 were Ab-positive, but we were able to recover
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sequences from only one sample. This was most probably because of suboptimal storage.

Thus, two additional Ab-positive bank voles originating from another collection trip in

2001 (IV) were added to the analyses, and the S and M segment sequences were

recovered  from  these  two.  Altogether  six  new  PUUV  strains  were  recovered  and

designated as Puumala/Karhumäki/Cg117/95, Puumala/Gomselga/Cg4/95,

Puumala/Kolodozero/Cg53/95, Puumala/Fyn/Cg19/90, Puumala/Fyn/Cg47/00 and

Puumala/Fyn/Cg131/00. GenBank accession numbers of all the sequences used in this

study are given in Appendix I.

The S segment sequences of the Russian Karelian strains were 1828-1832 nucleotides

(nt) in length, and they all carried a single open reading frame (ORF) of 1302 nt encoding

the 433 amino acid (aa) N protein. The Russian Karelian strains showed highest

similarity to Finnish strains. The values were 91-93% on the nt level and 96-99% on the

aa level. Other PUUV strains were 75-84% identical on nt level and 92-97% identical on

aa  level.  The  PUUV strains  from the  parts  of  European  Russia  were  the  closest  to  the

Finnish and Russian Karelian strains. These results were confirmed by analyses of the M

segment nt sequences and deduced Gc aa sequences, and similarities to the Finnish

strains were 89-94% and 97-100%. Furthermore, the Russian Karelian strains shared aa

fingerprints typical of Finnish strains both in the deduced aa sequence of the N protein

(Met262, Asp309 and Phe388) and of the Gc protein (Val603) (I: Fig. 2).

The Danish PUUV S segment sequences were 1832-1858 in length carrying the ORF for

the 433 aa N protein. These strains did not display a particularly close relatedness to any

other PUUV strain. The identity of the S segment sequence to all other PUUV strains on

the nt level was 74-78% and on the aa level 92-97%, and for the M segment nt and Gc aa

sequences 80-84% and 91-97%. No aa signatures were shared with other PUUV strains,

instead the Danish PUUV strains had their own specific markers in the N protein (Asp272

and Ala305) and in the Gc protein (Leu557)  (I: Fig. 2). Interestingly, in the Gn sequence,

we found one marker shared by the S-SCA (Southern Scandinavian) and Danish strains

(Asn667).
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Phylogenetic trees were calculated for the complete coding region of the S segment (I:

Fig. 3A) and partial M segment sequences (I:  Fig.  3B).  PUUV  strains  formed  seven

lineages showing typical geographical clustering. The Russian Karelian strains were

placed within the Finnish (FIN) lineage with high bootstrap support, suggesting that they

share a common recent ancestor. Thus the area that includes southern and central Finland

and Russian Karelia was most probably recolonized by the same stream of post-glacial

bank vole immigrants.

The Danish PUUV strains formed a distinct genetic lineage on the phylogenetic tree (I:

Figs. 3A and 3B). A detailed analysis of the Danish sequences was needed to reveal

possible evolutionary connections to other PUUV strains. In a similarity plot (I: Fig. 4), a

higher similarity to the NSCA (Northern Scandinavian) lineage was seen at nt 650-850,

and at nt 1050-1250 a higher similarity to the SSCA lineage was detected. These two

connections were also supported in phylogenetic trees calculated for these regions of the

S segment (I: Figs. 4B and 4D).  Especially the Danish strain Fyn19 appeared particularly

close to the Norwegian strain Eidsvoll. Thus it seems that Danish PUUV strains have

something in common with both NSCA and SSCA lineages.  These two lineages are

associated with two distinct bank vole populations, and this has been considered to

support the bi-directional spreading of PUUV into Fennoscandia after the last ice age

(Hörling et al.,1996). However, the phylogeographical pattern of bank voles is perhaps

not that simple, since the Danish population might actually include bank voles of the

north-eastern lineage, in addition to the southern lineage of bank voles (Jaarola et

al.,1999). One possibility is that the northern type of bank voles and virus may have been

imported from Northern Scandinavia along with shipped timber, which has been a

common practice for hundreds of years. Furthermore, the origin of the NSCA PUUV

lineage remains unknown, since no relatives have been found either on the eastern route

(Russian Karelian or Finnish strains) or on the southern route (Danish or SSCA strains).

It has been speculated, that there might have been local refugia in Northern Scandinavia

(Fedorov and Stenseth, 2001) in an area that remained ice-free during the last ice-age

(Ignatius et al., 1981) and this could be the original site of NSCA PUUV lineage.
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Characterization of PUUV in Denmark

The mosaic-like structure of the S segment of the Danish lineage might indicate

recombination event(s) of the precursors of the ancestral lineages. This structure could

also be explained by selective preservation of different regions of the genome.  In order

to study the Danish PUUV strains in more detail, a second trapping expedition was

organized. Small mammals were trapped in three locations on the island of Fyn and also

in three locations on Jutland, south of Aarhus (IV:  Fig.  1).  Altogether  310  small

mammals were trapped including 188 bank voles, and lung samples were available from

159 voles. 305 rodent heart-extract samples were first screened for antibodies (Ab) by

EIA using both PUUV- and DOBV-N antigens (Ag). PUUV Ab–positive (OD > 0.150)

or borderline reactive (OD 0.050-0.150) samples were then analyzed with

immunoblotting, which confirmed 11 samples positive for PUUV-reactive IgG (IV:

Table 2). All bank vole lung tissue samples were also screened for the viral N-Ag by

immunoblotting but only five positive samples were found. The 11 Ab-positive samples

were all screened for the viral genome by RT-PCR, and seven positive were found (IV:

Table 2). The Ab levels in bank voles correlated with the amount of viral RNA and N-Ag

detected in lung tissue. At low Ab levels both viral RNA and N-Ag were undetectable.

With rising Ab levels, first the viral RNA test and then the N-Ag WB-test became

positive. This result is different from a study on Black Creek Canal virus (BCCV) in

Sigmodon hispidus (cotton rat), in which it was shown that in the acute phase low Ab

titers in blood are accompanied by clearly detectable viral RNA in tissues (Hutchinson et

al.,1998). Later, in the chronic phase, high Ab titers and mostly undetectable viral RNA

were seen. In general, hantaviruses are thought to infect their rodent hosts persistently,

but with variable kinetics and dynamics (Meyer and Schmaljohn, 2000). Conclusions

based on our study are limited by the low number of positive samples, and thus further

studies are needed to understand PUUV dynamics in rodents.

Hantaviruses typically have a higher seroprevalence in the older animals than the young

ones (Bernshtein et al., 1999). This was also true in our study although the number of

PUUV- positive bank voles was small (IV: Table 3). Interestingly, PUUV was only found
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on the island of Fyn, while rodents trapped in the Jutland mainland were all negative for

PUUV. Still, bank voles can be found all over Denmark at appropriate landscapes, and in

fact, the Danish islands (Fyn, Zealand and Lolland) as well as the peninsula of Jutland, all

share a similar landscape. The incidence of NE is low in Denmark, and most of the

patients caught their infection on the island of Fyn (H.K. Andersen, unpublished data/

IV). On this island, there are at least two clusters of cases at the southeastern and western

parts of Fyn (IV: Fig. 1). In these locations, PUUV prevalence in the bank voles was

determined to be 22% and 7%, respectively. The overall seroprevalence of 14% is rather

low compared to situation in northern locations (Brummer-Korvenkontio et al., 1982).

Some human cases of NE are also found on the mainland and other parts of Denmark,

and thus PUUV should also circulate there, although we did not find such samples in this

study. However, other pathogenic hantaviruses may also cause human infections in

Denmark, and at least SAAV has been found in Denmark on the island of Lolland

(Nemirov et al., 2004).

Partial M segment sequences (nucleotides 2168-2659) were recovered from the seven

RT-PCR -positive rodents captured on Fyn. Two PUUV strains from Denmark,

Fyn/19Cg/90 (Fyn19 for short) and Fyn/47Cg/00 (Fyn47), were described earlier (I).

Sequences recovered from rodents at the western location (D54, D55, D123, and D131)

were 100% identical to the strain Fyn47, which also originates from the same location.

Two bank voles (D97 and D100) from the southeastern location had identical sequences

that differ from the sequence of Fyn19. This new sequence was designated as

Fyn/97Cg/00 (Fyn97). At the nucleotide level, the difference between western and

southeastern strains was 5%. The deduced amino acid sequences of the partial Gc protein

were all identical. The complete S segment sequences of the two western strains (Fyn47

and Fyn131) differ from each other by 1.4%, and the southeastern strain Fyn19 differs

from these two by 6% (I). In a phylogenetic tree based on the partial PUUV M segment

sequences, the Danish PUUV strains formed a well-supported lineage (IV:  Fig.  2).

Geographical clustering is further supported as the two strains from southeastern

Denmark (Fyn19 and Fyn97) are separated from the western strain (Fyn47). The two

bank vole populations, western and southeastern, are separated by agricultural landscape,
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and this barrier might slow down gene flow between the two populations. The effective

genetic dispersal distance of bank voles has been shown to be no more than 50 km in

forested landscapes (Stacy et al., 1997). Our results agree with previous studies, which

have shown that in a local rodent population, PUUV strains differ at the nucleotide level

up to 2%, and in geographically isolated populations by 6-8% (Plyusnin et al., 1995,

Lundkvist et al., 1998, Escutenaire et al., 2001). The two Danish southeastern strains

(Fyn19 and Fyn97) were recovered from the same location but 10 years apart, and their

difference is 0.8%. Similar results were seen in Montbliart, Belgium, where PUUV

strains recovered 10 years apart differed from each other by 0.8-1.1% (Escutenaire et al.,

2001).

The hypothesis supported by most studies is that the current PUUV lineages were

probably formed after the last ice age during the recolonization of Northern Europe, and

they reflect the immigration routes of bank voles (I). Based on this hypothesis, we would

expect that the closest relative to the Danish PUUV strains would be the southern

Scandinavian strains. Our study has provided evidence supporting this hypothesis, but we

have also seen that the Danish lineage of PUUV is quite unique. Both the Danish PUUV

strains and the Danish bank vole population are also related to the northern lineages (I,

Jaarola et al., 1999). Thus, we may speculate that PUUV in Denmark represents a

recombination between the southern and northern lineages, which has evolved in a rather

isolated location. This view is supported by the evidence accumulating for recombination

of hantaviruses both in vivo and in vitro (Sibold et al., 1999, Plyusnin et al., 2002, Chare

et al., 2003, I, II).

Genetic features of the PUUV S segment sequences

The number of recovered PUUV sequences is the largest of all hantaviruses. A collection

of 42 complete S segment sequences originating from Europe, Russia and Japan was

subjected to a detailed phylogenetic analysis using different methods in an attempt to

understand the evolution of this virus. Previous publications on PUUV evolution had only

used distance matrix methods on a limited number of sequences originating from specific
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geographical areas (Pilaski et al., 1994, Plyusnin et al., 1994, 1995, 1997, 1999, Hörling

et al., 1995, Aberle et al., 1999, Heiske et al., 1999, I, Escutenaire et al., 2001).

In general, the S segment sequence is a good representative of the whole PUUV genome

(I), and thus it was chosen for our analysis. The S segment sequences of PUUV vary in

length from 1784 nt (strain CG1820) to 1882 nt (strain Sollefteå-6). They all have an

ORF for the 433 aa N protein. The 5’ NCR is highly conserved, and it is 42 nt in length.

The 3’ NCR is 442 to 540 nt log, and it is so variable that except for the last ~100 nt, it

can only be aligned within a given genetic lineage of PUUV.  The overall nt composition

of the viral genome is biased: the A content is 33% and the C content only 19%. The

transition/transversion ratio is unusually high: 3.5. The mean values of dS and dN (the

number of synonymous and nonsynonymous substitutions per 100 sites) were calculated

for all PUUV sequences, and they were 88±29 and 2.37±0.83. In general, the dN /dS ratio

was extremely low, suggesting that positive selection is not the primary force driving the

evolution of this virus. However, the coding and non-coding regions of the S segment

seem to function under different selection pressures and the same might be the case for

the different parts of the coding region. For instance, the hypervariable region (aa 233 to

275) of the N protein carries epitopes recognized by both human patient sera and

monoclonal antibodies (Lundkvist et al., 1995, Vapalahti et al., 1995). The rate of

nonsynonymous substitutions is unusually high within this region, indicating that positive

selection may favor certain amino acid replacements in this part of the genome (Hughes

and Friedman, 2000). However, even in this region the ratio dN /dS does not exceed 1,

which would strongly support positive selection (Nei and Gojobori, 1986). Furthermore,

the nonsynonymous changes seem random in this region (Hughes and Friedman, 2000,

Hughes et al., 1990), suggesting weak functional or structural constraints.

Geographical clustering of PUUV genetic variants

First, a phylogenetic tree of hantavirus N protein sequences was constructed (II: Fig. 2).

In this tree, hantaviruses form three clades according to their carrier rodents (Murinae,

Arvicolinae, and Sigmodontinae rodents). PUUV is found in the Arvicolinae clade
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including other viruses carried by voles (Tula, Bloodland lake, Prospect Hill, Isla Vista,

and Khabarovsk viruses) and Topografov virus carried by lemmings. Geographical

clustering of eight distinct genetic lineages (FIN, RUS, NSCA, SSCA, DAN, BEL, BAL,

and JPN) was revealed in a phylogenetic tree based on the PUUV S segment nt sequences

(II: Fig. 2, Table 1). A common ancestor is shared by the first seven lineages, while the

JPN lineage is rather a sister-taxon. The two wild-type strains within the JPN lineage

have in fact been recovered from Myodes rufocanus trapped in Hokkaido (Kariwa et al.,

1995). The Japanese variant also appears to be non-pathogenic for humans (Kariwa et al.,

2000). These virus strains should be considered only PUUV-like, since they are carried

by a distinct host species. Each of the PUUV genetic lineages is further supported by

specific amino acid “signatures” associated with each of them (II: Table 1).  The most

divergent lineage, JPN, has the longest aa signature of 7 specific residues. A closer

relationship of the lineages FIN and RUS is indicated as they share two aa markers (Val34

and Tyr61). The variation between the different lineages is 15-27% at the nt level, and 0-

7.8% at the aa level. Thus, the PUUV N protein diversity sometimes actually exceeds the

aa cutoff level of 7%, which is used as one of the criteria to define distinct hantavirus

species (Nichol et al., 2005). The intralineage diversity in general is 0.3-9.0% at the nt

level. Two lineages, SSCA and RUS, have a higher diversity of 13.4% and 15.6%, and in

fact they are both formed by two sublineages.

Star-like phylogeny suggesting an early split of genetic lineages

The overall topology of the PUUV phylogenetic tree is star-like regardless of which

method was used in the construction of the tree.  The star-like topology suggests an early

split of the genetic lineages. The different lineages are well supported, but the

relationships between them remain obscure, which further indicates the early split. The

bootstrap support values varied depending on the method used, and whether nucleotide or

amino acid sequences were used in the calculations (II: Table 2). This prompted us to

evaluate the accuracy of the tree reconstruction using likelihood mapping option of the

TreePuzzle program (Schmidt et al., 2002). This method can be used to visualize the

phylogenetic content of a sequence alignment. Only 1.6% of PUUV nucleotide sequence
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based quartets were partially or completely unresolved suggesting high accuracy of the

tree reconstruction (II: Fig. 3). The corresponding value for amino acid sequences was

9.4%, which is higher than for nucleotide sequences, but low enough to consider the

reconstruction accurate (Strimmer and von Haeseler, 1997).

Comparison of different phylogenetic methods

One of the aims in this study was to compare different phylogenetic methods, and their

performance in analyzing PUUV evolution. We used distance matrix (DM) methods, both

Fitch-Margoliash and neighbor joining, and maximum parsimony (MP) method of the

PHYLIP package (Felsenstein, 1989). Maximum likelihood (ML) is often considered to

be the best choice to infer phylogenies because of the explicit evolutionary model

implemented in it. Unfortunately, this method can be very time-consuming, especially

with a large data set, and thus traditional ML programs are sometimes inconvenient in

practice. This was also true in our case, and we used the program TreePuzzle as a

surrogate for ML analysis. TreePuzzle considers only four sequences at a time, thus

speeding up the calculations.

All the methods used (DM, MP and ML) agreed on the star-like phylogeny of PUUV.

They also assigned strains to their correct phylogeographic genetic lineages, but with

variable bootstrap support (II: Table 2). As expected, the ML approach gave the most

consistent support values, with essentially the same numbers derived with both the

nucleotide and amino acid sequences.  The bootstrap support values obtained by the MP

method were high, especially for the nucleotide sequences, but there was also some

inconsistency in the values derived for the nt sequences in comparison to aa sequences.

MP works best when the number of sequence changes and, consequently the number of

parsimonius sites is relatively small, and apparently the high divergency of PUUV

sequences affects the performance of this method. The DM bootstrap support values were

the most variable, and in several cases the values were below the generally accepted

confidence limit of 70% (Hillis and Bull, 1993).  This suggests that the models chosen for

correcting distances, Kimura’s two-parameter model of nt substitutions or the Dayhoff’s
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model for aa substitutions, were, to some extent, suboptimal to describe the evolutionary

processes in PUUV.

Slow rate of evolution

The assumption of a molecular clock was tested using the ML ratio test (Felsenstein,

1988). The clock was accepted when applying the gamma distribution of rate

heterogeneity for nucleotide substitutions (II: Fig. 4). The estimated shape parameter

alpha was 0.23 ± 0.01 indicating that most of the sites are evolving slowly with few sites

having a moderate-to-high rate of evolution. Since the likelihood ratio test was passed,

the evolution rate of PUUV could be estimated. Assuming that the viruses have

coevolved with their hosts and taking into account the divergence time-points of the

carrier rodents, the evolutionary rate based on the number of synonymous substitutions

(dS) was 1.9 x 10-7 to 2.2 x 10-6 nucleotide substitutions per site per year (II: Table3, Fig.

4). The result based on the ML branch lengths of the clock-like trees was very similar, 0.7

x 10-7 to 1.1 x 10-6 nt substitutions per site per year. Thus all the values were in the range

of 0.7 x 10-7 to 2.2 x 10-6 nt per site per year showing PUUV as a slow evolver. The low

value (0.23) of the shape parameter alpha of the gamma distribution is indirectly

supporting this slow rate of evolution. The evolution rate of the M segment was estimated

to be in the same range (0.37 x 10-6 to 0.87 x 10-6 nt  per  site  per  year)  as  for  the  S

segment, i.e. both genes of PUUV are apparently evolving at a similar slow rate. This rate

is comparable to the evolutionary rates estimated for other stable RNA viruses like

human T-cell lymphotropic virus type 2 in tribes infected in endemic regions (Salemi et

al., 1999) and hepatitis G virus (Suzuki et al., 1999). Like PUUV, these viruses infect

their primary hosts persistently and are well adapted to them. The vast majority of new

mutations would probably disturb the equilibrium, in which these viruses remain most of

the time close to an adaptive peak, and decrease the fitness of the virus (Salemi et al.,

1999).

The rate estimations are based on the current knowledge on the evolution of the rodent

hosts. The phylogenies of rodents are based on paleontological records and molecular
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data (Catzeflis et al, 1992, Robinson et al., 1997, Kaneko et al., 1998, Conroy and Cook,

1999). The estimated time points for the diversification of rodents are ranging widely in

these reports and sometimes they are even controversial. This leads to a somewhat

unprecise estimation of the PUUV evolutionary rate. Nevertheless, some events in the

PUUV history may now be dated with better accuracy. The split of the Japanese PUUV-

like strains and the branch leading to current PUUV strains seems to have happened not

later than 100 000 years ago (YA). This could be related to the last Weichselian

glaciation of the northern hemisphere starting 115 000 YA. The hypothetical founder

populations of the PUUV genetic lineages were then established not later than 85 000

YA. The geographical separation of the present lineages happened during the last

deglaciation (21 000 to 17 000 YA). Finally, the immigration routes for flora and fauna to

colonize the revealed land after the last ice age are reflected in the evolution of bank

voles carrying PUUV (Hewitt, 1999).

Evidence of recombination

Recombination of hantaviruses was first shown for TULV (Sibold et al., 1999, Plyusnin

et al., 2002). We have also found evidence for PUUV recombination (I), and this

mechanism has been suggested also for HTNV (Chare et al., 2003). In general, the rate of

homologous recombination in negative-sense RNA viruses seems to be low (Chare et al.,

2003). Recombinant sequences were searched for in our collection of complete S segment

sequences of PUUV. The pattern of sequence similarities between the different PUUV

lineages was first visualized with similarity plots (Salminen et al., 1995, Lole et al.,

1999). This analysis suggested that the Baltic strains within the RUS lineage had regions

in their sequence, which were actually more similar to the FIN than to the RUS lineage

(II: Fig. 5). In the molecular clock analysis we had also noticed that the molecular clock

was rejected if either of the Baltic strains was included in the phylogenetic tree. This

supported the idea of recombinant origin for these sequences, since it has been shown that

recombinant sequences disturb the molecular clock (Schierup and Hein, 2000). However,

phylogenetic  trees  created  of  the  partial  S  segment  sequences  did  not  place  the  Baltic

strains within the FIN lineage, but instead they formed a cluster of their own.
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Conflicting phylogenetic signals caused by recombination can also be visualized as

phylogenetic networks. This analysis was performed with the program SplitsTree, which

is based on the split decomposition theory (Bandelt and Dress, 1992). Four lineages

(RUS, BEL, NSCA and DAN) were represented as networks in the SplitsTree indicating

that these lineages might include recombinant sequences (II: Fig. 6). This analysis also

provided further evidence for a recombinant origin of the Baltic strains. They were in a

cluster of their own at the 5’ end and 3’ end of the S segment, whereas the middle section

of the S segment placed them in the same network with FIN and RUS lineages (II: Fig.

6B, 6C, 6D).  The networks of BEL, NSCA and DAN lineages are in line with previous

results suggesting recombination within those lineages (I, Escutenaire et al., 2001).

PUUV evolution in a controlled hantavirus transmission event

Similarly to other RNA viruses, PUUV exists as a population of closely related variants,

i.e. quasispecies. Changes in the PUUV quasispecies dynamics were studied in controlled

transmission of the virus from one animal to another. The in vivo experiments for this

study have been describer earlier (Kallio et al., 2006). Colonized bank voles were

inoculated with PUU-Kazan wt-strain and kept in individual cages. The cage beddings

were contaminated by PUUV excreted from these donor voles. Seventeen days after

inoculation the donor voles were removed and recipient voles were placed into the cages

where they were exposed to the virus for three days. After the exposure, the recipient

voles were moved to individual management cages to develop the infection. Five voles

were exposed to each donor consequently. PUUV infection was confirmed using RT-

nested-PCR to detect PUUV S segment RNA in lung tissue, and enzyme immunoassay to

detect IgG antibodies in serum samples. Bank voles positive for PUUV RNA were used

in our study. The region analyzed in this study (nt 631-1630) included both coding region

(CR) and 3’-noncoding region (3’-NCR) of the S segment RNA and the selected CR

covered both a well-conserved C-terminal and a hypervariable part of the N protein. First,

the level of quasispecies diversity was determined. The frequency of mutations in the

donor voles injected with the virus was 1.5 x 10-3, but almost twice as high in the
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recipient voles (2.6 x 10-3) infected with the virus excreted from the donors (V: Table 2).

The mutation frequency was similar in both coding and non-coding regions of the S

segment analyzed and substitutions were evenly distributed across different codon

positions. There was a strong bias towards transitions, and there were twice as many

nonsynonymous as synonymous substitutions.

An elementary step of PUUV evolution was witnessed in the experiment of controlled

virus transmission. One synonymous mutation (A759G) became dominant in the viral

quasispecies population during a single virus-transmission event and it was seen in

majority of the recipient voles (V: Table 3). This apparently advantageous mutation is a

synonymous substitution and thus it should affect the virus at the RNA level. Studies on

vesicular stomatitis virus have revealed that synonymous mutations may indeed

contribute to adaptation of RNA viruses significantly, and this can be accomplished e.g.

during different steps of viral replication (Novella et al., 2004). Similarly, the mutation

A759G may enhance PUUV replication, since this particular substitution changes the

phenylalanine codon to a more abundant one in the host animal. Alternatively the

mutation may affect the RNA-protein interactions. A single synonymous substitution was

shown  to  affect  the  interaction  of  viral  genomic  RNA  and  Pr55gag protein of HIV-1

leading to a dramatic effect on the virion production (Hamano et al., 2007). It remains to

be studied, what is the role of this particular region of the hantaviral RNA in interactions

with nucleocapsid or some other protein.

Hypophyseal injury caused by Puumala virus

The research on hantavirus pathogenesis has been complicated by the lack of an animal

model mimicking human disease and the lack of sensitive methods of virus detection in

tissues.  Partly  this  is  due  to  the  fact  these  viruses  are  highly  variable  in  sequence.  We

used the knowledge on PUUV divergency to develop a sensitive in situ hybridization

technique  for  detection  of  PUUV  RNA  in  tissues.  We  also  established  an

immunohistochemical method to detect PUUV antigen in tissue samples. Furthermore,

PUUV RNA was detected in clinical samples also by RT-nested-PCR.



38
________________________________________________________________________

The new methods were first evaluated when studying a lethal case of NE. The patient

(case 1) was a 58-year-old farmer who was admitted to the hospital and diagnosed with

acute NE. The patient died unexpectedly and autopsy samples were examined with

immunohistochemical methods. The hypophysis was slightly enlarged with signs of

hemorrhage and necrosis (III, Fig. 1). There were acute proximal tubular necrosis and

small hemorrhages in glomeruli in the kidneys. The liver, spleen, kidneys, and lungs had

venous congestion, and the myocardium was fibrotic. PUUV antigen was detected by

immunohistochemistry in the hypophysis anterior lobe, kidney tubuli and spleen (III, Fig.

2). The infected cells were confirmed as neuroendocrine and endothelial cells in the

hypophysis by using cell type specific immunohistochemical staining. PUUV RNA was

detected by RT-nested-PCR and in situ hybridization in the hypophysis, kidney, lung and

spleen. The recovered nt sequence was 78-92% identical to other Puumala virus

sequences. This was the first report of Puumala virus detection in the hypophysis.

Altogether three cases of severe NE were described in this study. In addition to the lethal

case 1, two other cases were diagnosed by MRI with panhypopituitarism after

hypophyseal hemorrhage during or shortly after acute NE. Both of these patients required

hormone-replacement therapy. These data suggest that hypophyseal dysfunction

following NE might be common and that the burden of possible long-term sequelae or

decreased quality of life may be significant.
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CONCLUDING REMARKS

This thesis summarizes our studies on the molecular genetics and evolution of Puumala

virus (PUUV). In-depth knowledge of the genetic variability and evolution of this human

pathogen is essential for understanding NE epidemiology as well as for diagnostics and

vaccine development.

In our study, we have shown that PUUV is a genetically diverse hantavirus and that

PUUV strains have diverged early on forming distinct geographical lineages. This

clustering of PUUV genetic variants reflects the history of bank vole movements during

the recolonization of Europe after the last ice age. PUUV evolves mainly through genetic

drift, but the data also provide evidence for recombination. This virus is well adapted to

its host and the overall evolutionary rate of PUUV is slow. It is, however, a typical RNA

virus as it exists as a quasispecies swarm. This quality can accelerate adaptation to a new

environment, and in the adaptation process even minor substitutions in the genome may

affect the phenotype profoundly. New methods to manipulate and study hantavirus

phenotypes need to be developed, and a significant step forward can be taken when the

reverse genetics methods are established for hantaviruses.

The constantly increasing sequence data have been useful for the development of new

detection methods of PUUV. These have led to an interesting finding of PUUV invading

the hypophysis in NE, and the question of prolonged sequelae of the hypophyseal

infection has been raised. More studies are clearly needed to understand the involvement

of the central nervous system symptoms (CNS) in NE, and the number of cases

potentially needing hormone-replacement therapy after the infection. Furthermore, the

recent data on NE cases with CNS symptoms have suggested that PUUV genetic variants

with severe pathogenicity might circulate in Northern Finland and in Northern Sweden.

This emphasizes the importance of studying the currently circulating viral strains and

their properties.
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Despite many years of work on PUUV and hantavirus pathogenesis, the mechanisms are

still poorly understood. The immunohistochemical and in situ hybridization methods

established in this work will be helpful in studying the monkey model of NE, the first

animal model that mimicks the human disease. This will hopefully unravel many of the

open questions in hantavirus pathogenesis in near future leading perhaps to new treatment

strategies.
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APPENDIX 1

PUUV strains included in specific genetic lineages and studied in this thesis

LINEAGE PUUV STRAINS ACCESSION NUMBER
(S segment sequences)

FINNISH (FIN) Puumala Z46942
Sotkamo X61035
Virrat Z69985
Karhumaki AJ238788
Kolodozero AJ238789
Gomselga AJ238790
Evo12 Z30702
Evo13 Z30703
Evo14 Z30704
Evo15 Z30705
Pallasjarvi63 AJ314597

RUSSIAN (RUS) Kazan Z84204
U338 Z30708
U444 Z30706
U458 Z30707
U894 Z21497
CG 1820 M32750
P360 L11347
Baltic49 AJ314598
Baltic205 AJ314599

NORTHERN Tavelsjö AJ223380
SCANDINAVIAN (N-SCA) Hundberget AJ223371

Mellansel47 AJ223374
Mellansel49 AJ223375
Vranica/Hällnäs U14137
VindelnL20 Z48586

SOUTHERN Sollefteå3 AJ223376
SCANDINAVIAN (S-SCA) Sollefteå6 AJ223376

Eidsvoll1124v AJ223368
Eidsvoll1138 AJ223369

DANISH (DAN) Fyn131 AJ278093
Fyn47 AJ278092
Fyn19 AJ238791

BELGIAN (BEL) Montbliart23 AJ277031
Thuin33 AJ277030
Momignies55 AJ277033
Momignies47 AJ277032
Couvin59 AJ277034
Cg-Erft AJ238779
CG 13891 U22423

ALPE-ADRIAN (AA) Balkan65 AJ314600
Balkan78 AJ314601

HOKKAIDO VIRUS (HOKV) Kamiiso AB010730
Tobetsu AB010731
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