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PART A 
 

i. List of original publications 
 

The thesis is based on the following original publications, which are referred to in the text by 

their roman numerals. 

I. Guse K, Dias JD, Bauerschmitz GJ, Hakkarainen T, Aavik E, Ranki T, Pisto T, Särkioja M, 

Desmond RA, Kanerva A, Hemminki A. 

Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo. 

Gene Ther. 2007 Jun;14(11):902-11. 

II. Guse K, Ranki T, Ala-Opas M, Bono P, Särkioja M, Rajecki M, Kanerva A, Hakkarainen 

T, Hemminki A. 

Treatment of metastatic renal cell cancer with capsid modified oncolytic 

adenoviruses. 

Mol Cancer Ther. 2007 Oct;6(10):2728-36. 

III. Guse K, Diaconu I, Rajecki M, Sloniecka M, Hakkarainen T, Kanerva A, Pesonen S, 

Hemminki A. 

Ad5/3-9HIF-Δ24-VEGFR-1-Ig, an infectivity enhanced, dual-targeted and 

antiangiogenic oncolytic adenovirus for treatment of renal cell cancer. 

Accepted for publication in Gene Therapy. 

IV. Eriksson M, Guse K, Bauerschmitz G, Virkkunen P, Tarkkanen M, Tanner M, 

Hakkarainen T, Kanerva A, Desmond RA, Pesonen S, Hemminki A. 

Oncolytic Adenoviruses Kill Breast Cancer Initiating CD44+CD24-/low cells. 

Mol Ther. 2007 Dec;15(12):2088-93. 
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ii. Abbreviations 
 

5-FU  5-fluorouracil 
Ad  adenovirus 
bp  base pair 
CAR  coxsackie-adenovirus receptor 
CD  cytosine deaminase 
Cox-2  cyclooxygenase-2 
CBGr  click beetle green 
CBr  click beetle red 
CMV  cytomegalovirus 
CR  constant region 
CRAd  conditionally replicating adenovirus 
CTL  cytotoxic T-lymphocytes 
FACS  fluorescence activated cell sorting 
FCS  fetal calf serum 
GCV  ganciclovir 
HCC  hepatocellular carcinoma 
HSV-TK  herpes simplex thymidine kinase 
i.ha.  intrahepatic artery 
i.p.  intraperitoneal 
i.t.  intratumoral 
ITR  inverted terminal repeat 
i.v.  intravenous 

LacZ  β-galactosidase 
luc  luciferase 
MAP  mitomycin C + doxorubicin + cisplatin 
MOI  multiplicity of infection 

NF-κB  nuclear factor κB 
oct4  octamer-4 
pfu  plaque forming unit 
pK  polylysine 
Rb  Retinoblastoma 
RGD  arginine-glycine-aspartic acid 
SCCHN  squamous cell carcinoma of the head and neck 
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sox2  sex determining region Y box 2 
TCID50  tissue culture infective dose 50 
VEGF  vascular endothelial growth factor 
vp  virus particle 
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iii. Abstract 

Metastatic kidney and breast cancer are devastating diseases currently lacking efficient 

treatment options. One promising developmental approach in cancer treatment are 

oncolytic adenoviruses, which have demonstrated excellent safety in many clinical trials. 

However, antitumor efficacy needs to be improved in order to make oncolytic viruses a 

viable treatment alternative. To be able to follow oncolytic virus replication in vivo, we set 

up a non-invasive imaging system based on coinjection of a replication deficient luciferase 

expressing virus and a replication competent virus. The system was validated in vitro and in 

vivo and used in other projects of the thesis. In another study we showed that capsid 

modifications on adenoviruses result in enhanced gene transfer and increased oncolytic 

effect on renal cancer cells in vitro. Moreover, capsid modified oncolytic adenoviruses 

demonstrated significantly improved antitumor efficacy in murine kidney cancer models. To 

transcriptionally target kidney cancer tissue we evaluated two hypoxia response elements 

for their usability as tissue specific promoters using a novel dual luciferase imaging system. 

Based on the results of the promoter evaluation and the studies on capsid modifications, we 

constructed a transcriptionally and transductionally targeted oncolytic adenovirus armed 

with an antiangiogenic transgene for enhanced renal cell cancer specificity and improved 

antitumor efficacy. This virus exhibited kidney cancer specific replication and significantly 

improved antitumor effect in a murine model of intraperitoneal disseminated renal cell 

cancer. Cancer stem cells are thought to be resistant to conventional cancer drugs and might 

play an important role in breast cancer relapse and the formation of metastasis. Therefore, 

we examined if capsid modified oncolytic adenoviruses are able to kill these cells proposed 

to be breast cancer initiating. Efficient oncolytic effect and significant antitumor efficacy on 

tumors established with breast cancer initiating cells was observed, suggesting that oncolytic 

adenoviruses might be able to prevent breast cancer relapse and could be used in the 

treatment of metastatic disease. 
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In conclusion, the results presented in this thesis suggest that genetically engineered 

oncolytic adenoviruses have great potential in the treatment of metastatic kidney and breast 

cancer. 



6 

 

PART B 

1 REVIEW OF THE LITERATURE 

1.1 Introduction 

Cancer is a devastating disease, which is still mostly incurable especially in advanced stages 

when metastatic. Researchers all over the world are investigating new approaches in an 

effort to treat cancer patients more effectively, and this has led to many promising 

preliminary results. However, the great breakthrough is still to come. 

Surgery had been the predominant form of cancer treatment until radiotherapy was 

introduced in the early 1900s and chemotherapy in the 1950s. Only in the past 20 years 

more efficient and less toxic treatments such as targeted therapies (small molecule 

inhibitors and monoclonal antibodies including angiogenesis inhibitors) and immunotherapy 

have been developed. 

The role of viruses in cancer treatment has a long history. Already from the mid 1800s on 

several case reports appeared describing tumor regressions in coincidence with natural virus 

infections (Bierman et al., 1953; Dock, 1904; Pelner et al., 1958). Based on these 

observations oncolytic Hepatitis B virus (Hoster et al., 1949), West Nile virus (Egypt 

101)(Southam and Moore, 1952), adenovirus (Huebner et al., 1956) and many other viruses 

were enthusiastically administered to cancer patients in early clinical trials performed in the 

1940s and 1950s and anticancer efficacy could be observed. However, severe and 

sometimes fatal side effects were also seen. In the 1970s and 1980s the number of reported 

clinical trials employing oncolytic viruses fell dramatically. Among other issues and 

considerations it became apparent that a high dose application of non-attenuated 

replicating viruses can cause uncontrollable side effects posing a danger to patients and 
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therefore it would be difficult to gain regulatory approval for these agents (Kelly and Russell, 

2007). 

With the rapid development of modern biotechnology in the 1980s it became possible to 

genetically engineer viruses. In the last 15 years researchers attenuated wild type viruses by 

deleting or mutating those virus genes necessary for replication (Kelly and Russell, 2007). 

Besides replication deficient viruses as gene transfer vectors, oncolytic viruses featuring 

cancer selective replication were generated to improve the safety of virotherapeutics 

(Bischoff et al., 1996). Other approaches to render oncolytic viruses more cancer selective 

include the employment of cancer tissue specific promoters to drive viral genes necessary 

for replication and genetic modifications of the viral capsid to make virus transduction more 

preferential for tumor tissue (Liu and Kirn, 2008). In recent years more than 50 phase I or II 

clinical trials have been conducted with different engineered oncolytic viruses (Kelly and 

Russell, 2007) and one phase III trial has been published with the oncolytic adenovirus H101 

(Xia et al., 2004). The Chinese regulatory agencies subsequently granted market approval for 

H101 to be used in combination with chemotherapy for the treatment of head and neck 

cancers, making H101 the first approved oncolytic virus product ever worldwide. 

Oncolytic viruses have shown encouraging safety results in clinical trials over the past 

decade. However, antitumor efficacy as a single agent was limited (Liu et al., 2007) for a 

number of reasons. Thus, to overcome obstacles towards efficacious virotherapeutics novel 

virus constructs with improved antitumor efficacy and further enhanced cancer selectivity 

have to be generated. 

 

1.2 Cancer 

Cancer is a global life threatening disease with an estimated 10.9 million new cases and 6.7 

million deaths worldwide in 2002 (Parkin et al., 2005) being the second most common cause 

of death in developed countries and the fourth most common worldwide. Moreover, it is 
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estimated that global cancer rates will double by 2020 unless preventive measures are 

adopted (Eaton, 2003). 

1.2.1 Renal Cell Cancer 

In 2002 renal cell cancer (RCC) accounted for more than 100,000 deaths worldwide and 

more than 200,000 new cases were diagnosed during the same year (Parkin et al., 2005). 

Histological classification divides RCC into four different subtypes: clear cell, papillary, 

chromophobe and collecting duct. Clear cell RCC which make up 70-80% of the cases, is the 

most common form of kidney cancer and it is also the most aggressive subtype (Amin et al., 

2002). 

RCC presents with about 30% metastatic cases at initial diagnosis (Levy et al., 1998) and 

another 30% of initially organ confined cases develop metastasis during follow-up (Uchida et 

al., 2002). The median survival for patients with metastatic RCC is 10-12 months (Motzer et 

al., 1999). 

1.2.1.1 Molecular mechanisms of renal cell cancer 

Carcinogenesis usually involves a series of mutations in the genome of normal cells, 

ultimately transforming them into cancer cells. In most cancers, mutations in tumor 

suppressor genes (p53, retinoblastoma (Rb) and others) and proto-oncogenes (e.g. ras family 

genes) are found. Mutated proto-oncogenes can become oncogenes, which are factors that 

lead to increased cell survival by promoting cell propagation, inducing loss of the ability to 

undergo apoptosis and other mechanisms. Altered tumor suppressor genes lead to loss of 

cell cycle control, a requisite for carcinogenesis. Whereas most cancers feature mutations in 

the p53 and Rb pathways, the predominantly mutated tumor suppressor gene in kidney 

cancer is Von-Hippel-Lindau (VHL) (Shuin et al., 1994). In fact, it has been shown that a total 

of 40-80% of sporadic clear cell carcinomas are linked to biallelic VHL inactivation (Kaelin, 

2004). The VHL gene product, pVHL, has multiple functions, but the one that has been most 
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extensively studied relates to the regulation of the transcription factor hypoxia inducible 

factor (HIF) (Kaelin, 2004). HIF is a heterodimer that consists of an unstable α-subunit (HIF-

1α) and a stable β-subunit (HIF-1β). Under normal conditions (in the presence of oxygen) 

pVHL binds to HIF-1α which leads to proteasomal degradation of the complex (Figure 1). In 

cells that lack functional pVHL, or that are exposed to low oxygen (hypoxia), HIF-1α 

accumulates and binds to the HIF-1β partner protein (Maxwell et al., 1999). This HIF 

heterodimer binds to specific DNA sequences, called hypoxia response elements (HRE), and 

transcriptionally activates genes involved in acute or chronic adaptation to hypoxia, such as 

vascular endothelial growth factor (VEGF) and other mitogenic factors (TGFα, TGFβ, cyclin D, 

etc.) (Kaelin, 2004). In renal cell cancer with non-functional pVHL, HIF permanently activates 

HREs independently from the oxygen supply. The expressed HRE regulated proteins 

significantly contribute to carcinogenesis and tumor growth. 

 Figure 1: 

Under normal oxygen supply (normoxic condition) in normal cells pVHL binds to HIF-1α and the 
complex is degraded at the proteasome (A). When oxygen supply is insufficient (hypoxic 
condition) or in renal cancer cells with defective pVHL degradation of HIF-1α does not take 
place (B). HIF-1α heterodimerizes with HIF-1β and the complex act as a transcription factor on 
hypoxia response elements (HRE) which activates expression of VEGF and other factors. 
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1.2.1.2 Angiogenesis in kidney tumors 

Tumors need to build up a vast network of blood vessels to be sufficiently supplied with 

blood (Ferrara and Kerbel, 2005). This is especially true in the case of renal cell cancer which 

is characterized by high vascularization, due to strong angiogenic activity (Fukata et al., 

2005), mediated in part by VHL/HIF pathway defects (Kim and Kaelin, 2004). A major player 

in tumor angiogenesis is VEGF which was found to be highly expressed in renal cell cancers 

(Nicol et al., 1997). VEGF binds to fms-like-tyrosine-kinase receptor (flt-1 or VEGFR-1) and 

kinase domain region receptor (KDR or VEGFR-2) with high affinity (Ferrara, 1999). 

Moreover, the naturally occurring soluble VEGFR-1 (sFlt) also binds VEGF but does not 

induce vascular endothelial cells mitogenesis (Kendall et al., 1996). 

Antiangiogenic therapy approaches have been shown to be effective in many cancer types 

but especially in kidney cancer (Escudier et al., 2007b). 

1.2.1.3 Treatment options for renal cell cancer 

Surgery is effective for localized RCC. However, metastatic disease poses a therapeutic 

problem because it is chemotherapy resistant and radiotherapy is only palliative (Godley and 

Kim, 2002; Longo et al., 2007). Aggressive treatment of metastatic RCC with radical 

nephrectomy and interleukin-2 or interferon alpha immunotherapy seems to provide 

survival benefit in a subset of patients, although this has not yet been shown prospectively 

(Pantuck et al., 2001). Recent advances in elucidating deregulated cancer pathways have led 

to the development of targeted therapeutics such as sorafenib, sunitinib and temsirolimus. 

Sorafenib and sunitinib are broad spectrum tyrosine kinase inhibitors targeting VEGF 

receptors, PDGF receptors and others (Stadler, 2005). These agents are active against 

various types of cancer and have demonstrated significant improvements in progression free 

survival in phase III clinical trials with advanced kidney cancer patients (Escudier et al., 

2007a; Motzer et al., 2007). 
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Temsirolimus is an inhibitor of mammalian target of rapamycin (mTOR) and has been shown 

to lead to G1 cell cycle arrest in cancer cells (Stadler, 2005). Temsirolimus has demonstrated 

prolonged overall survival in phase III clinical trials with advanced kidney cancer patients 

(Hudes et al., 2007). 

Another promising agent for the treatment of kidney cancer is bevacizumab, a humanized 

monoclonal antibody directed against VEGF. Bevacizumab has shown significantly improved 

median progression free survival in two phase III clinical trials (Escudier et al., 2007b; Rini et 

al., 2008). Other VEGF blocking molecules, like VEGF-trap (aflibercept), are being evaluated 

in preclinical studies for the treatment of kidney cancer (Verheul et al., 2007). 

1.2.2 Breast Cancer 

Breast cancer is by far the most frequent form of cancer afflicting women (23% of all 

cancers) with 1.15 million new cases worldwide in 2002 (Parkin et al., 2005). Moreover, it is 

the leading cause of cancer mortality in women, totalling 411,000 annual deaths (Parkin et 

al., 2005). The 5-year survival rate for localized breast cancer is 89%, which is very favorable. 

However, metastasis will develop in 20-85% of diagnosed patients depending on the initial 

disease stage, tumor biology, and treatment strategy used (Greenberg et al., 1996). Despite 

extensive research, metastatic breast cancer remains essentially incurable with a median 

survival of 2 years (Bernard-Marty et al., 2004). 

1.2.2.1 Molecular mechanisms of breast cancer 

Control of cell proliferation in the normal mammary gland is steroid hormone dependent 

and involves complex interactions with other hormones, growth factors and cytokines. 

Normal cell cycle progression is also dependent on the activation of three proto-oncogenes 

(c-Myc, cyclin D1 and cyclin E1) that are rate limiting for the G1 to S phase transition (Butt et 

al., 2008). Mammary epithelial cell-specific overexpression of these oncogenes is involved in 

the induction of breast cancer. Besides these oncogenes, inactivation of the tumor 
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suppressor p53 and Rb is connected to carcinogenesis. p53 has been shown to be non-

functional in approximately 30-40% of breast cancers (Oesterreich and Fuqua, 1999) and Rb 

was reported to be inactivated in 20-30% of the cases (T'Ang et al., 1988). 

Mutations of the tumor suppressors BRCA1 and BRCA2 are involved in familial hereditary 

breast cancer. In fact, carriers of mutations in BRCA1 and BRCA2 are considered to be at high 

risk (30-40%) for breast and ovarian cancer (Venkitaraman, 2002). 

Human epidermal growth factor receptor 2 (HER-2, also known as EGFR2 or erbB2/neu) is a 

member of the epidermal growth factor receptor (EGFR) tyrosine kinase family, which is 

involved in regulation of cell growth and proliferation. HER-2 is highly expressed in 20-30% 

of breast cancers, typically because of amplification of the gene, and is associated with an 

aggressive phenotype and a poor prognosis for breast cancer patients (Meric-Bernstam and 

Hung, 2006). 

Estrogen is a hormone that signals cells to grow and divide which is important in the normal 

development of the breast but also in breast tumor development and growth (Yager and 

Davidson, 2006). In fact, about 80% of breast cancers are dependent on estrogen supply for 

growth. 

1.2.2.2 Breast cancer initiating cells 

The rather new theory of cancer stem cells is based on the idea that there are cancerous 

cells present within solid tumors that have the same or similar properties as normal stem 

cells (Jordan et al., 2006). The main features of these cells are capacity for self-renewal, 

asymmetric replication, the potential to develop into any cell in the overall tumor 

population, and the proliferative ability to drive continued expansion of the malignant cell 

population (Jordan et al., 2006). Given these features, it is thought that cancer stem cells 

arise by mutation or epigenetic changes from normal stem cells or progenitors (Figure 2A) 

(Cozzio et al., 2003; Krivtsov et al., 2006). These relatively rare populations of "tumor-

initiating" cancer stem cells have been identified in cancers of the hematopoietic system, 

brain, breast and many others (Al-Hajj et al., 2003; Lapidot et al., 1994; Singh et al., 2004). 
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Since these cells might possess the ability to travel from the primary tumor to distant sites 

and because very low cell numbers are thought to be sufficient to form tumors, cancer stem 

cells could play an important role in the formation of metastases (Figure 2C) (Jordan et al., 

2006). Furthermore, the fact that cancer stem cells self-renew themselves slowly and that 

they have the ability to expel chemical compounds, might make them resistant to 

conventional antitumor agents (Figure 2B) (Ischenko et al., 2008). Therefore, these cells may 

play an important role in cancer relapse following treatment and could be the reason for the 

incurable nature of metastatic breast cancer.  

 
Figure 2: Scenarios Involving Cancer Stem Cells.

For tumors in which cancer stem cells play a role, at least three scenarios are possible. First, 
mutation of a normal stem cell or progenitor cell may create a cancer stem cell, which will then 
generate a primary tumor (A). Second, during treatment with chemotherapy, the majority of 
cells in a primary tumor may be destroyed, but if the cancer stem cells are not eradicated, the 
tumor may regrow and cause a relapse (B). Third, cancer stem cells arising from a primary 
tumor may emigrate to distal sites and create metastatic lesions (C). (Adapted from Jordan et 
al, 2006) 
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For many tumor types it has proven difficult to clearly identify cancer stem cell populations 

because of the lack of unique cellular markers. However, Al-Hajj et al showed that the 

CD44+CD24−/low cell population found in many breast cancers exhibits stem cell 

characteristics, such as self-renewal and differentiation along various mammary epithelial 

lineages as well as resistance to conventional anti-tumor drug treatments (Al-Hajj et al., 

2003; Ponti et al., 2005). In comparison to unsorted cells, a low number of CD44+CD24−/low 

cells are sufficient for initiation of tumors in mice (Ponti et al., 2005). Based on these 

properties, the CD44+CD24−/low cell population might harbor actual cancer stem cells (Al-Hajj 

et al., 2003). 

1.2.2.3 Treatment options for breast cancer 

Breast tumors are usually surgically removed along with sentinel lymph nodes. After surgery 

most breast cancer patients receive adjuvant therapy being chemotherapy, radiotherapy, 

endocrine therapy or biological therapy or combinations of these (Colozza et al., 2006). 

Chemotherapy was proven to significantly reduce the risk for relapse and death in operated 

breast cancer patients (1998). Combination regimens including adriamycin, 

cyclophosphamide, epirubicin and taxanes are usually used. 

Also radiotherapy significantly lowers the risk for relapse in operated breast cancer patients 

(Colozza et al., 2006). 

Hormone receptor positive breast cancer patients usually undergo endocrine therapy with 

tamoxifen or aromatase inhibitors. Tamoxifen is a selective estrogen receptor modulator 

(SERM), which competes with estrogen for binding sites on the estrogen receptor. Thereby, 

tamoxifen blocks the cell proliferative effect that estrogen has on cancer and precancerous 

cells which was shown to significantly decrease relapses in breast cancers (Howell et al., 

2005). Aromatase inhibitors block the enzyme aromatase, which is responsible for the 

conversion of androgens into estrogens. Lowering estrogen levels in this way has been 

proven to be effective in the treatment of breast cancer (Howell et al., 2005). 
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Overexpression of HER-2 on breast cancer cells, found in roughly a quarter of the patients, is 

associated with an aggressive phenotype and poor prognosis (Meric-Bernstam and Hung, 

2006). The approved monoclonal antibody trastuzumab, directed against HER2/neu 

receptor, has demonstrated a 46% reduced risk for relapse in HER2 positive patients (Piccart-

Gebhart et al., 2005). 

 

1.3 Cancer Gene Therapy 

Cancer is a life-threatening disease that in most cases lacks curative therapy options 

especially when metastatic. Therefore, researchers are investigating a variety of new 

treatment approaches to improve anticancer efficacy and reduce side effects. One approach, 

that appears promising, is ‘cancer gene therapy’ which can be divided into different 

categories: 

• In one approach, missing or altered genes are replaced with their healthy ‘copies’. 

Because some missing or altered genes (e.g. p53) are involved in carcinogenesis and 

tumor growth, replacing them with their intact copies may be used to treat cancer. 

• Researchers are also trying to insert genes into cancer cells that make them more 

susceptible to chemotherapy, radiotherapy or other treatments. 

• In another approach ‘suicide genes’ are introduced into cancer cells. A pro-drug is then 

given to the patient, which is converted into a toxic drug by the pro-drug converting 

enzyme that is produced by the suicide gene. The toxic drug then kills the cancer cells 

containing the ‘suicide gene’ and tumor cells surrounding them by the so-called 

bystander effect. 

• Gene therapy can also be used to improve the patient’s immune response to cancer. 
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• Furthermore, tumor angiogenesis can be inhibited with gene therapy approaches. This 

should deprive the tumor of sufficient blood supply and therefore inhibit cancer 

development. 

• Finally, oncolytic viruses are another promising approach for treating cancers. 

 

1.4 Oncolytic Viruses 

Oncolytic viruses are replicating viruses that infect and lyse cancer cells. Most oncolytic 

viruses preferentially replicate in cancer cells, which are destroyed at the end of the 

replication cycle thereby releasing viral progeny that is able to infect and lyse other tumor 

cells. Depending on the virus species the number of released viruses can be several 

thousand times the number of viruses that originally infected the cell. Many different virus 

species have been shown to possess oncolytic properties. Among the most important 

oncolytic viruses, which are studied for their application in cancer therapy are: Adenovirus, 

herpes simplex virus, vaccinia, newcastle disease virus, reovirus, measles, mumps, west nile 

and vesicular stomatitis virus. 

1.4.1 Adenoviruses 

1.4.1.1 General virology 

Adenoviruses have been extensively characterized since their initial description in the early 

1950s (Rowe et al., 1953). They are generally not considered to be highly pathogenic 

because adenoviruses are mostly associated with self-contained respiratory infections, 

epidemic conjunctivitis and infantile gastroenteritis (Berk, 2006). However, in children and 

immune suppressed individuals, adenoviruses can cause severe infections. 

The family of adenoviruses (adenoviridae) is divided into 4 genera (aviadenovirus, 

atadenovirus, mastadenovirus, siadenovirus) with further subdivision into subgroups A-F. 
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Division into serotypes, of which so far 51 have been identified (De Jong et al., 1999), has 

historically been the basis of classification (Russell, 2000). 

Adenoviruses are nonenveloped icosahedral particles, approximately 90 nm in diameter, 

with fibers projecting from the vertices of the icosahedron. The virions contain protein (87% 

of mass), DNA (13% of mass) and trace amounts of carbohydrate but no lipids (Rux and 

Burnett, 2004). The protein fraction consists of three major proteins (hexon (II), penton base 

(III) and knobbed fiber (IV)) and five minor proteins (VI, VIII, XI, IIIa and IVa2) (Figure 3). The 

virus genome is a linear, double-stranded DNA with a terminal protein (TP) covalently 

 

Figure 3:

Adenovirus structure; adapted 
from (Russell, 2000). 
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attached to the 5’ termini (Rekosh et al., 1977) which have inverted terminal repeats (ITRs). 

Also protein VII and the small peptide mu are directly associated with the virus DNA 

(Anderson et al., 1989). Protein V is packaged with this DNA-protein complex and seems to 

provide a structural link to the capsid via protein VI (Matthews and Russell, 1995). 

Furthermore, the virus contains a protease, which is necessary for processing some of the 

structural proteins to produce mature infectious virus. 

The adenovirus infectious cycle can be divided into early and late phases. The early phase 

covers the entry of the virus into the host cell and the passage of the virus genome to the 

nucleus, followed by the selective transcription and translation of the early genes (Figure 

4)(Russell, 2000). The entry of the virus is initiated through knob binding to specific 

receptors on the target cell surface. The binding receptor for adenoviruses of the subgroups 

A and C-F was shown to be the coxsackie-adenovirus-receptor (CAR) in in vitro settings 

(Roelvink et al., 1998). However, cell entry in vivo seems to be more complex but the exact 

mechanisms have not been completely elucidated yet. After the interaction with the primary 

binding receptor cellular αvβ integrins interact with the viral penton base arginine-glycine-

 

Figure 4: 

Adenovirus life cycle (see text 
for detailed explanation) 
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aspartic acid (RGD) motif, thereby initiating endocytosis in clathrin coated pits (Berk, 2006). 

While the virus containing endosome moves towards the nucleus, a pH change occurs which 

leads to partial disassembly of the virion. Eventually the endosomal membrane is disrupted 

and the virus particle attaches to the nuclear pore complex of the nucleus (Berk, 2006). 

Here, the virus DNA is injected into the nucleus and transcription is initiated.  

Adenovirus transcription can be defined as a two-phase event, early and late, respectively 

occurring before and after viral DNA replication. Early transcription cassettes are termed E1-

E4 and late transcription cassettes are divided into L1-L5 (Berk, 2006). E1 gene products can 

be subdivided into E1A and E1B. E1A proteins are primarily concerned with modulating 

cellular metabolism to make the cell more susceptible to virus replication. Cells respond to 

virus infections with mechanisms that invoke innate and adaptive immune response largely 

mediated by the transcription factor NF-κB (Berk, 2006). Moreover, infected cells may 

induce apoptosis via a number of routes, most importantly through p53 or retinoblastoma 

(Rb) pathways. E1A and E1B proteins are able to block these cellular defense mechanisms 

(e.g. binding of E1A to Rb) to ensure virus replication (Berk, 2006). One important factor that 

is released from Rb upon E1A binding is E2F inducing S-phase which is necessary for 

production of a range of viral proteins (Brehm et al., 1998). E2 gene products provide the 

machinery for virus DNA replication (Hay et al., 1995). E3 genes, which are dispensable for 

virus replication in tissue culture, provide a compendium of proteins that subverts the host 

defense mechanisms (Russell, 2000). One of these E3 gene products has been termed the 

adenovirus death protein (ADP) since it facilitates late cytolysis of the infected cell and 

thereby releases viral progeny more efficiently (Tollefson et al., 1996). The E3 gp19K is 

localized in the ER membrane and binds the MHC class I heavy chain thereby preventing 

transport to the cell surface, where it would be recognized by cytotoxic T-lymphocytes 

(CTLs). In addition, the gp19K protein delays expression of MHC I (Bennett et al., 1999). E4 

gene products mainly facilitate virus messenger RNA metabolism (Goodrum and Ornelles, 

1999) and provide functions to promote virus DNA replication and shut-off of host protein 

synthesis (Halbert et al., 1985). Further, they are associated with resistance to lysis by CTLs 

(Kaplan et al., 1999). Transcription of the late genes (L1-L5) leads to production of the virus 
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structural components and the encapsidation and maturation of the particles in the nucleus 

(Russell, 2000). 

1.4.1.2 Adenoviruses as gene transfer vehicles 

Genetically engineered adenoviruses based on serotype 5 are a widely used tool for gene 

transfer in many fields of basic research. Moreover, they hold great promise as gene therapy 

vectors for the treatment of various diseases (Russell, 2000). 

In first generation adenoviral vectors, the E1 gene cassette is replaced with the gene of 

interest, which results in replication deficient viruses expressing the desired protein (Shen, 

2006). These vectors are among the most commonly used gene transfer vehicles for 

transient gene expression in basic research (Russell, 2000) as well as for gene therapy trials 

(Bainbridge et al., 2008; Immonen et al., 2004; Li et al., 2007; Shirakawa et al., 2007; Stewart 

et al., 2006). 

Second generation adenovirus vectors typically have deletions in E2 or E4 in addition to 

deleted E1 and E3 regions (Shen, 2006). These vectors are supposed to cause a milder host 

immune response and therefore transgene expression is supposed to be prolonged 

compared to the more immunogenic first generation vectors (Shen, 2006). Moreover, due to 

additional deletions in the virus genome, larger and/or more genes of interest can be 

inserted into second generation vectors. 

To further decrease immunogenicity and increase genetic payload, helper-dependant also 

known as gutless adenoviral vectors have been constructed representing the third 

generation (Shen, 2006). In these vectors, basically all viral genes except the ITRs and the 

packaging signal were deleted. 

1.4.1.3 Transductional targeting to cancer cells 

Adenoviruses efficiently transduce a wide range of epithelial tissues. Virus tropism is mainly 

determined by recognition of the primary receptor, which is the coxsackie-adenovirus-
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receptor (CAR) for the widely used serotype 5 adenoviruses (Roelvink et al., 1998). Increased 

CAR expression seems to inhibit growth of some cancer cell lines, while decreased CAR 

expression correlates with tumor progression and advanced cancer stage (Okegawa et al., 

2001). Furthermore, CAR appears to play a role in cell adhesion and its expression may be 

cell-cycle dependent (Cohen et al., 2001). Since efficient gene transfer is the basis for 

successful cancer gene therapy, low CAR expression on tumor cells is a major challenge 

(Okegawa et al., 2001). To overcome CAR deficiency, adenoviruses can be transductionally 

retargeted by adapter-molecule based approaches or genetic manipulation of the virus 

capsid. 

Adapter-molecule based targeting is based on a molecule that crosslinks the adenovirus 

particle with an alternative cell surface receptor. This targeting approach therefore 

represents a two-component system, which is a potential drawback. The stability of such 

two-component systems in humans is not well known and the effects the adapter molecule 

itself has in organisms should be studied first. A one-component system, such as genetic 

capsid modifications, which is more stable, might therefore be safer. 

 

Figure 5:

Adenovirus displaying a polylysine 
chain attached to the C terminus of 
the knob (a), the RGD motif 
inserted in HI loop of the knob (b), 
a 5/3 serotype chimeric knob (c) 
and a serotype 5 wild type knob for 
comparison (d). 
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So far, three different genetic capsid manipulation strategies for retargeting adenoviruses 

have been developed: the so-called ‘fiber-pseudotyping’, ligand incorporation into the fiber 

knob and ‘de-knobbing’ of the fiber coupled with ligand addition (Glasgow et al., 2006). 

Fiber-pseudotyping was first accomplished by Krasnykh et al who replaced the knob of a 

serotype 5 adenovirus with a serotype 3 knob (Figure 5c)(Krasnykh et al., 1996). The 

adenovirus 3 receptor is still disputed but CD46 (Sirena et al., 2004), CD80 and CD86 (Short 

et al., 2004) as well as an additional unknown receptor (Tuve et al., 2006) and heparan 

sulfate proteoglycans (Tuve et al., 2008) were shown to be involved in cell entry. 5/3 

chimera viruses have displayed significantly enhanced transduction to tumor cells in vitro 

and in vivo in many types of cancer (Kanerva et al., 2002a; Kangasniemi et al., 2006; Volk et 

al., 2003; Zheng et al., 2007). 

Other studies have revealed the feasibility of manipulating the C-terminus and the HI-loop 

within the fiber (Figure 5). Wickham et al (Wickham et al., 1997) added a polylysine tail to 

the C-terminus (Figure 5a) to mediate adenovirus binding to heparan sulfate proteoglycans 

(HSPGs), which are highly expressed on cancer cells (Matsuda et al., 2001). Adenoviruses 

with 7 lysine residues at the C-terminus (pK7) have demonstrated improved transduction to 

cancer cells (Kangasniemi et al., 2006; Ranki et al., 2007a; Stoff-Khalili et al., 2005; Zheng et 

al., 2007). Another promising location for incorporation of targeting moieties is the HI-loop 

of the knob which is exposed towards the outside and can tolerate up to 100 amino acids 

(Krasnykh et al., 1998). Dmitriev et al (Dmitriev et al., 1998) inserted an arginine-lysine-

aspartic acid (RGD) motif into the HI-loop (Figure 5b), which resulted in enhanced infectivity 

of various cancer cell types (Kanerva et al., 2002b; Kangasniemi et al., 2006; Volk et al., 2003; 

Zheng et al., 2007). An asparagine-glycine-arginine (NGR) motif incorporated in the HI-loop 

also demonstrated improved adenovirus transduction to cancer cells (Mizuguchi et al., 

2001). Wu et al combined the polylysine tail in C-terminus modification with RGD motif in 

the HI-loop incorporation and achieved increased transduction to CAR deficient cells (Wu et 

al., 2002). 
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Also other locations for incorporation of targeting moieties have been explored. Vigne et al 

incorporated an RGD motif into the hexon monomer protein achieving enhanced gene 

delivery to CAR deficient cells (Vigne et al., 1999). Furthermore, replacing the RGD motif of 

the penton base with receptor specific peptide motifs can target the adenovirus to different 

kinds of cancer tissue (Wickham et al., 1995). Also the pIX location was found to be useful for 

incorporating peptide motifs for retargeting or imaging purposes (Dmitriev et al., 2002; Le et 

al., 2004). 

1.4.1.4 Transcriptional targeting to cancer cells 

To achieve cancer cells selective adenoviral gene expression, transcriptional targeting can be 

employed. For cancer gene therapy purposes, tumor specific promoters can be used to 

control the expression of genes coding for peptides with antitumor activity. A vast number 

of tumor specific promoters have been used for cancer gene therapy (Glasgow et al., 2004). 

Notable examples are carcinoembryonic antigen (CEA) promoter for gastric and lung cancer 

(Brand et al., 1998; Osaki et al., 1994), cyclooxygenase 2 (COX-2) promoter for gastric, 

pancreatic and ovarian cancer (Casado et al., 2001; Wesseling et al., 2001; Yamamoto et al., 

2001), and hypoxia response elements (HREs) for kidney cancer (Binley et al., 2003). 

As described in chapter 1.2.1.1 most kidney cancers feature Von-Hippel-Lindau (VHL) 

mutations, which lead to a permanently high expression of the hypoxia inducible factor 

(HIF). HIF in turn acts as a transcription factor on hypoxia response elements (HRE) (Kaelin, 

2004). Under non-pathogenic conditions, HIF expression can only be detected in the eye 

(Ashton et al., 1954). Therefore, HREs appear to be useful tissue specific promoters for 

targeting kidney cancer. In fact, Binley et al showed that an HRE was more than 1000 times 

more active in tumor environment when compared to normal tissue (Binley et al., 2003). 

Also other groups have shown renal cell cancer selective expression of genes under the 

control of HREs (Cuevas et al., 2003; Ogura et al., 2005).  

Most researchers have used tissue specific promoters in first generation adenoviral vectors 

to express certain transgenes. However, this kind of transcriptional targeting can also be 
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applied to replicating adenoviruses, where the genes necessary for replication are placed 

under the control of the tissue specific promoters. Replication and oncolytic effect should 

then be restricted to tumor tissue thereby reducing possible toxicity. In these transcriptional 

targeting approaches the E1A gene cassette of oncolytic adenoviruses was placed under the 

control of various tissue specific promoters, such as E2F (Tsukuda et al., 2002), CXCR4 (Haviv 

et al., 2004) and hTERT (Hashimoto et al., 2008). Cuevas et al and Cho et al were able to 

generate oncolytic adenoviruses controlled by HREs and demonstrated selective replicating 

in kidney cancer models (Cho et al., 2004; Cuevas et al., 2003). 

1.4.1.5 Targeted conditionally replicating adenoviruses for cancer therapy 

Solid tumor masses are large and complex and therefore difficult to efficiently transduce 

with first generation, replication deficient viruses. Thus, oncolytic viruses may be more 

useful having the advantage of multiplying themselves inside the tumor and are therefore 

able to spread more efficiently and subsequently transduce more cancer cells. Transduction 

of cancer cells as the first step in the adenovirus life cycle will finally lead to cell lysis 

resulting in antitumor efficacy. However, administering wild type adenoviruses to human 

cancer patients might not be acceptable because of possible uncontrollable replication in 

healthy tissue which could lead to severe toxicity. Therefore, transductional and/or 

transcriptional targeting methods have to be employed. Moreover, replication can be 

restricted to tumor cells by deleting adenoviral genes that are necessary for replication in 

normal cells but not in cancer cells. Viruses that have been rendered tumor specific in this 

way are called ‘conditionally replicating adenoviruses’ or CRAds. 

The first published CRAd, which was named dl1520 and is nowadays better known as ONYX-

015, has two mutations in the E1B gene, which codes for the E1B-55kD protein (Bischoff et 

al., 1996). p53 is one of the major tumor suppressor proteins and is activated upon virus 

infection causing cell cycle arrest or apoptosis. To avoid this cellular shutdown, adenoviruses 

have evolved countermeasures in form of the expression of E1B-55kD. This protein binds 

and inactivates p53 leading to induction of S-phase-like state which is required for viral 



25 

 

replication (Berk, 2006). Deletion of E1B-55kD will render the virus unable to replicate in 

normal cells since p53 will initiate cell cycle arrest or apoptosis. However, since most tumor 

cells have a defective p53 pathway no cellular shutdown occurs and the virus will be able to 

replicate (Bischoff et al., 1996). It turned out that some tumor cells fail to support replication 

of E1B-55kD deleted viruses. One reason might be that the E1B-55kD protein is also 

responsible for preventing host mRNA nuclear export and therefore the E1B mutant viruses 

might fail to initiate host protein shutoff (O'Shea et al., 2005). 

Another strategy to create CRAds is to delete 24 bps in the constant region 2 of the E1A. The 

resulting E1A protein is not able to inactivate the function of the tumor suppressor/cell cycle 

regulator Rb anymore. The result is very similar to that caused by dl1520, which was 

described in the previous paragraph: replication is attenuated in normal cells, however, in 

cancer cells with mostly defective Rb pathways (Sherr, 1996) replication is unhampered 

 

Figure 6: Mechanism for cancer cell selective replication.

Wild type adenovirus is able to replicate in normal cells since Rb is inhibited by the E1A 
protein (A). In a cancer cell with non-functional Rb replication occurs as well (B). A CRAd with 
a 24 bp deletion in E1A is unable to inhibit Rb and therefore no replication in normal cells 
occurs (C). However, a Δ24 CRAd can replicate in cancer cells with mutated Rb (D). 
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(Figure 6). Viruses featuring this 24 bp deletion were shown to be selective for cancer cells 

without losing their oncolytic potential (Fueyo et al., 2000; Heise et al., 2000). 

To maximize cancer selective replication and minimize side effects, the described targeting 

methods can be combined. Bauerschmitz et al showed in a triple targeting approach that a 

conditionally replicating adenovirus, which in addition is transductionally and 

transcriptionally targeted, exhibited increased tumor cell selectivity while retaining oncolytic 

potency (Bauerschmitz et al., 2006). 

In theory, a targeted oncolytic adenovirus would selectively replicate in the tumor cells of a 

cancer patient until all of them are lysed. It could spread through the system, find 

metastases, replicate in them and lyse them as well. Subsequently, the virus would not find 

any cells that allow replication anymore and therefore be cleared out from the system. 

1.4.1.6 Arming approaches for enhanced antitumor efficacy 

Targeted oncolytic adenoviruses have been shown to be safe in many preclinical models as 

well as human clinical trials (see chapter 1.5). However, treatment with virus alone has only 

rarely led to significant responses in patients with advanced cancers. This might be due to 

the complexity of large human tumors featuring stromal barriers as well as necrotic, 

hyperbaric, acidic and hypoxic region, which are difficult to penetrate by oncolytic 

adenoviruses (Cheng et al., 2007; Hay, 2005). Furthermore, ambitious approaches to restrict 

replication through over-stringent methods might have resulted in ‘overly safe’ adenoviruses 

that no longer have sufficient oncolytic potency to act as effective anticancer agents. 

The efficacy of oncolytic adenoviruses can be enhanced by arming them with transgenes 

coding for therapeutic proteins. The advantage of this approach is that the expressed 

therapeutic protein has a different tumor cell killing mechanism than the oncolytic virus 

itself. Therefore, a wider range of cancer cell populations can be affected which might 

improve the overall antitumor efficacy. 
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Prodrug converting enzyme also known as ‘suicide genes’ have been used in several studies 

as therapeutic transgenes (Hermiston and Kuhn, 2002). One of the most famous suicide 

genes is herpes simplex thymidine kinase (HSV-TK), which converts the non-toxic drug 

ganciclovir (GCV) into a cytotoxic metabolite. The active metabolite can spread into 

surrounding cells causing the so-called cytotoxic bystander effect. Some studies have shown 

that GCV enhances the antitumor efficacy of HSV-TK armed oncolytic adenoviruses (Nanda 

et al., 2001; Raki et al., 2007). However, others have reported that activated GCV might 

inhibit virus replication and therefore does not augment antitumor efficacy (Hakkarainen et 

al., 2006; Lambright et al., 2001). Cytosine deaminase (CD) is another suicide gene that 

converts 5-fluorocytosine into a toxic metabolite. Oncolytic adenoviruses armed with CD 

have shown improved antitumor efficacy in several cancer models (Liu and Deisseroth, 2006; 

Zhan et al., 2005). Oncolytic adenoviruses with both HSV-TK and CD combined with 

radiotherapy have also shown promising results in preclinical models (Freytag et al., 1998; 

Rogulski et al., 2000) and in a clinical trial (Freytag et al., 2003). 

Another promising approach is to arm oncolytic adenoviruses with antiangiogenic molecules 

since tumors are often highly vascularized and antiangiogenic therapies have demonstrated 

efficacy in cancer therapy (Ferrara and Kerbel, 2005). Several groups have demonstrated 

improved antitumor efficacy with oncolytic adenoviruses featuring different antiangiogenic 

transgenes that target VEGF (Yoo et al., 2007; Zhang et al., 2005). 

Furthermore, oncolytic adenoviruses expressing interleukins (Lee et al., 2006; Post et al., 

2007) and p53 (Idema et al., 2007; Wang et al., 2008) have shown enhanced anticancer 

activity. 

 

1.5 Clinical Trials with Oncolytic Viruses 

Oncolytic viruses have a long history in the treatment of cancer (Kelly and Russell, 2007) as 

described in chapter 1.1. Modern-era phase I-III clinical trials with non-engineered and 
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engineered oncolytic viruses were initiated in the 1990s using different virus species such as 

adenovirus, vaccinia, measles, new castle disease virus, reovirus and herpes simplex virus 

(Liu and Kirn, 2007). ONYX-015 (see chapter 1.4.1.5 for description of the virus) was the first 

targeted oncolytic adenovirus used in a phase I study resulting in 14% regression rate in 

head and neck cancer patients (Ganly et al., 2000). In combination with cisplatin and 5-FU, 

ONYX-015 resulted in tumor regression in 65% of the patients in a phase II trial (Khuri et al., 

2000). A randomized phase III trial with H101 (an oncolytic adenovirus closely related to 

ONYX-015) in combination with chemotherapy was performed in 2004 in China reporting 

79% response rate in the combination group versus 40% in the chemotherapy only group 

(Xia et al., 2004). The Chinese regulatory agencies subsequently granted market approval for 

H101 to be used in combination with chemotherapy for the treatment of head and neck 

cancers, making H101 the first approved oncolytic virus product ever worldwide. Other 

selected clinical trials with oncolytic adenoviruses are listed in Table 1. 

Also other oncolytic viruses have shown promising results during clinical testing. In a phase I 

trial for metastatic melanoma JX-594, an oncolytic vaccinia virus armed with GM-CSF, 

resulted in 71% objective responses at injection sites (Mastrangelo et al., 1999). Moreover, 4 

of 7 patients showed regressions of non-injected dermal metastasis and two patients with 

complete tumor eradication were disease free for at least 1.5 years. JX-594 showed also 

promising results in a phase I trial for hepatocellular cancer (Park et al., 2008). 

In summary, clinical trials with oncolytic viruses have demonstrated excellent safety. 

However, antitumor efficacy greatly varied depending on treated tumor type and 

administration route. 
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Table 1: List of selected clinical trials with oncolytic adenoviruses 

Virus/ 
treatment agents 

Genetic 
modification 

Phase  
Administration 
route 

Max. dose Cancer type 
Responses/ 
total number 
of patients 

Reference 

ONYX-015 
E1B-55kD 
deletion 

I i.t. 1x1011 pfu SCCHN 2/22 
(Ganly et 
al., 2000) 

ONYX-015 
E1B-55kD 
deletion 

I i.t. 1x1011 pfu 
Pancreatic 
cancer 

0/23 
(Mulvihill et 
al., 2001) 

ONYX-015 
E1B-55kD 
deletion 

I i.v. 2x1013 vp 
Cancer 
metastatic to 
the lung 

0/10 
(Nemunaitis 
et al., 
2001a) 

ONYX-015 
E1B-55kD 
deletion 

I i.p. 
1x1011 pfu/d 
on 5 days 

Ovarian cancer 0/16 
(Vasey et 
al., 2002) 

ONYX-015 
E1B-55kD 
deletion 

I i.v., i.t. 3x1011 pfu HCC 1/5 
(Habib et 
al., 2002) 

ONYX-015 + 5-FU 
+ leucovorin 

E1B-55kD 
deletion 

I i.ha. 2x1012 vp 

Colorectal 
cancer 
metastatic to 
the liver 

1/11 
(Reid et al., 
2001) 

ONYX-015 
E1B-55kD 
deletion 

I i.t. 1x1010 pfu Glioma 3/24 
(Chiocca et 
al., 2004) 

ONYX-015 + 
etarnercept 

E1B-55kD 
deletion 

I i.v. 1x1012 pfu 
Advanced 
cancers 

0/9 
(Nemunaitis 
et al., 2007) 

CV706 
PSA promoter 
controlling 
E1A 

I i.t. 1x1013 vp 
Prostate 
cancer 

5/20 
(DeWeese 
et al., 2001) 

Ad5-CD/TKrep + 
GCV/5-FU + 
radiation 

E1B-55kD 
deletion + 
TK/CD 
transgene 

I i.t. 1x1012 vp 
Prostate 
cancer 

15/15 
(Freytag et 
al., 2003) 

ONYX-015 + 5-FU 
E1B-55kD 
deletion 

I-II i.t., i.ha., i.v. 3x1011 pfu 

HCC and 
colorectal 
cancer 
metastatic to 
the liver 

3/16 
(Habib et 
al., 2001) 

ONYX-015 
E1B-55kD 
deletion 

II i.t. 
2x1011 vp on 
10 days 

SCCHN 5/40 
(Nemunaitis 
et al., 
2001b) 

ONYX-015 + 
cisplatin + 5-FU 

E1B-55kD 
deletion 

II i.t. 
1x1010 vp/d 
on 5 days 

SCCHN 19/37 
(Khuri et al., 
2000) 
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ONYX-015 + 
gemcitabine 

E1B-55kD 
deletion 

I-II i.t. 
2x1011 
vp/wk; 8 
cycles 

Pancreatic 
cancer 

2/21 
(Hecht et 
al., 2003) 

ONYX-015 
E1B-55kD 
deletion 

II i.v. 
2x1012 vp 
every 2 
weeks 

Metastatic 
colorectal 
cancer 

0/18 
(Hamid et 
al., 2003) 

H101 + 
cisplatin/adriamy
cin + 5-FU 

E1B-55kD 
deletion 

III i.t. 
1.5x1012 vp/d 
on 5 days 

SCCHN 71/160 
(Xia et al., 
2004) 

ONYX-015 + MAP 
chemotherapy 

E1B-55kD 
deletion 

I-II i.t. 5x1010 pfu Sarcoma  1/6 
(Galanis et 
al., 2005) 

CD: cytosine deaminase; HSV-TK: herpes simplex virus thymidine kinase; i.t.: intratumoral; i.v.: 
intravenous; i.p.: intraperitoneal; i.ha.: intrahepatic artery; 5-FU: 5-fluorouracil; MAP: mitomycin C + 
doxorubicin + cisplatin; pfu: plaque forming units; SCCHN: squamous cell carcinoma of the head and 
neck; vp: virus particles 

 

1.6 In vivo Bioluminescence Imaging 

In vivo bioluminescence imaging has become a powerful tool in gene therapy and other 

fields of research. 

Bioluminescence is defined as the production and emission of light by a living organism as 

the result of a chemical reaction during which chemical energy is converted into light energy. 

This phenomenon naturally occurs in marine vertebrates and invertebrates, terrestrial 

insects, mushrooms and microorganisms. Bioluminescence has been widely used in 

biological research. Especially firefly luciferase, derived from photinus pyralis, is commonly 

employed as a reporter gene in biomedical research but other luciferases such as click beetle 

red (CBr) and click beetle green (CBGr) luciferase can also be used. Firefly, CBr and CBGr 

luciferase all convert the same substrate (D-luciferin), however the light emission spectra 

differ from each other (Figure 7). 

Cells transfected with luciferase emit light upon addition of the substrate luciferin and the 

light intensity correlates with the amount of luciferase mRNA present in the cell. Therefore, 

luciferase can be used to assess the transcriptional activity in cells that are transfected with 
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a genetic construct containing luciferase under the control of a promoter of interest. 

Furthermore transfection and transduction efficiency can be evaluated with luciferase as a 

reporter gene. 

Luciferase has also become a powerful technique for in vivo imaging purposes. Different 

types of cells (e.g. cancer cells) or viruses can be engineered to express luciferase allowing 

their non-invasive visualization inside a live animal using a sensitive charge-coupled device 

(CCD) camera. The main advantages over in vivo fluorescence imaging are the high sensitivity 

of bioluminescence systems and the low background of non-transfected tissue. 

Figure 7: Emission spectra of 
click beetle green (CBGr), firefly 
and click beetle red (CBr) 
luciferases 
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2 AIMS OF THE STUDY 

 

1. To set up an imaging system for following adenovirus replication kinetics in vivo. (I) 

2. To evaluate whether capsid modification can improve the antitumor efficacy of 

oncolytic adenoviruses for the treatment of kidney cancer. (II) 

3. To evaluate tissue specific promoters for renal cell cancer and to generate a targeted 

and armed oncolytic adenovirus for enhanced selectivity and improved antitumor 

efficacy in kidney cancer models. (III) 

4. To evaluate whether breast cancer initiating cells can be killed by oncolytic adenoviruses 

for improving treatment of metastatic breast cancer. (IV) 
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3 MATERIALS AND METHODS 

3.1 Cell lines, tumor samples and isolation of breast cancer stem 

cells 

Characteristics of the cell lines used in the studies are described in Table 2. 

Table 2: List of human cell lines used in the studies 

Cell line name Description Used in 

293 Transformed embryonic kidney cells I, II, III 

911 Transformed embryonic retinoblasts III 

A549 Lung adenocarcinoma I, II, III 

HEY Ovarian adenocarcinoma I 

786-O Renal cell adenocarcinoma I, II, III 

786-O-CBGr 
Renal cell adenocarcinoma stably transfected with 
click beetle green luciferase 

III 

ACHN Renal cell adenocarcinoma II, III 

Caki-2 Renal cell carcinoma II, III 

769-P Renal cell adenocarcinoma II, III 

Sv7tert Renal cell carcinoma III 

SN12C Renal cell carcinoma III 

SN12L1 Renal cell carcinoma III 

SN12L1-luc 
Renal cell carcinoma stably transfected with firefly 
luciferase 

III 

FHS173WE fibroblasts III 

HUVEC Human umbilical vein endothelial cells III 

JIMT-1 Human breast carcinoma IV 

 

Cells were subcultured under recommended conditions up to a passage number of 30. 
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786-O-CBGr, which stably expresses click beetle green luciferase, was generated by 

transfection of 786-O cells with a plasmid carrying the puromycin resistance gene and the 

click beetle green luciferase gene and subsequent antibiotic selection of surviving cell clones. 

Kidney tumor samples were obtained with signed informed consent and ethical committee 

approval from patients undergoing surgery at Helsinki University Central Hospital. 

Breast cancer pleural effusion samples were obtained (with ethics committee approval and 

after obtaining an informed consent) directly from thoracocentesis and washed with 

Dulbecco’s modified Eagle’s medium-F12 supplemented with 10 ng/ml basic fibroblast 

growth factor, 20 ng/ml epidermal growth factor, 5 μg/ml insulin, and 0.4% bovine serum 

albumin (all from Sigma, St. Louis, MO). Cells from pleural effusion samples and JIMT-1 cells 

were sorted with fluorescein isothiocyanate–labeled anti-CD44 and phycoerythrin-labeled 

anti-CD24 antibodies (BD Pharmingen, Franklin Lakes, NJ), which were collected with 

fluorescein isothiocyanate- and phycoerythrin-conjugated magnetic beads, respectively 

(Miltenyi Biotech, Bergisch Gladbach, Germany). The collected cell populations were 

confirmed to be CD24 negative and CD44 positive by flow cytometry. Both unsorted and 

CD44+CD24−/low living cell populations were stained with Hoechst 33342 (5 μg/ml; Sigma, St. 

Louis, MO) at 37 °C, mounted on glass slides and viewed under a fluorescence microscope. 

 

3.2 Adenoviruses 

3.2.1 Replication deficient viruses (I, II, III, IV) 

Main features of the replication deficient adenoviruses used in the studies are described in 

Table 3.  

For large scale production, adenoviruses were amplified on 293 cells and purified on double 

cesium chloride gradients. Virus particle (vp) concentrations were assessed by measuring 

absorbance at 260 nm and plaque forming unit titers were determined with standard TCID50 



35 

 

assay on 293 cells. The presence of inserted genes and absence of wild type virus was 

confirmed by PCR and sequencing. 

Table 3: List of replication deficient adenoviruses used in the studies 

Virus name E1 * Fiber Used in Reference 

Ad5luc1 Luciferase Wild type serotype 5 II, III, IV 
(Kanerva et al., 
2002a) 

Ad5/3luc1 Luciferase 5/3 serotype chimerism I, II, III 
(Kanerva et al., 
2002a) 

Ad5lucRGD Luciferase RGD motif in HI loop II 
(Dmitriev et al., 
1998) 

Ad5(GL) GFP + luciferase Wild type serotype 5 II (Wu et al., 2002) 

Ad5.pK7(GL) GFP + luciferase 7 lysine residues at C-terminus II (Wu et al., 2002) 

Ad5.RGD.pK7 (GL) GFP + luciferase 
RGD motif in HI loop and 7 lysine 
residues at C-terminus 

II (Wu et al., 2002) 

Ad5LacZ LacZ Wild type serotype 5 II 
(Yotnda et al., 
2004) 

Ad5pK21-LacZ LacZ 21 lysine residues at C-terminus II 
(Yotnda et al., 
2004) 

Ad5-9HIF-luc 
Luciferase under control of 
9HIF promoter  

Wild type serotype 5 III Study III 

Ad5-OB36-luc 
Luciferase under control of 
OB36 promoter 

Wild type serotype 5 III Study III 

* The marker genes in E1 are under control of the CMV promoter if not stated otherwise. The 
luciferase gene in these viruses codes for the firefly luciferase enzyme. 

3.2.2 Replication competent adenoviruses (I, II, III, IV) 

Main features of the replication competent adenoviruses used in the studies are described in 

Table 4. 

For large scale amplification, adenoviruses were amplified on A549 cells and purified on 

double cesium chloride gradients. VP concentrations were assessed by measuring 

absorbance at 260nm and plaque forming unit titers were determined with standard TCID50 
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assay on 293 cells. Presence of inserted genes and absence of wild type virus was confirmed 

by PCR and sequencing. 

 

Table 4: List of replication competent adenoviruses used in the studies 

Virus name E1 E3 Fiber Used in Reference 

Ad300wt Wild type Wild type 
Wild type 
serotype 5 

I, II, III, IV ATCC1 

Ad5-Δ24E3 24 bp deletion2 Wild type 
Wild type 
serotype 5 

I, II, IV 
(Kanerva et al., 
2003) 

Ad5/3-Δ24 24 bp deletion2 Wild type 
5/3 serotype 
chimerism 

I, II, III, IV 
(Kanerva et al., 
2003) 

Ad5-Δ24RGD 24 bp deletion2 Wild type 
RGD motif in 
HI loop 

I, II, IV 
(Suzuki et al., 
2001) 

Ad5.pK7-Δ24 24 bp deletion2 Wild type 
7 lysine 
residues at C-
terminus 

I, II, IV 
(Ranki et al., 
2007a) 

Ad5luc3 Wild type 
Luciferase under 
control of CMV 
promoter 

Wild type 
serotype 5 

I 
(Krasnykh et 
al., 1996) 

Ad5/3cox2LE1 Cox-2 promoter Wild type 
5/3 serotype 
chimerism 

I 
(Bauerschmitz 
et al., 2006) 

Ad5/3cox2Ld24 
Cox-2 promoter and  
24 bp deletion2 

Wild type 
5/3 serotype 
chimerism 

I 
(Bauerschmitz 
et al., 2006) 

Ad5/3cox2Ld2d24 
Cox-2 promoter, 2 bp3 
and 24 bp deletion 2 

Wild type 
5/3 serotype 
chimerism 

I 
(Bauerschmitz 
et al., 2006) 

Ad5/3-9HIF-Δ24-E3 
9HIF promoter and  
24 bp deletion2 

Wild type 
5/3 serotype 
chimerism 

III Study III 

Ad5/3-9HIF-Δ24-VEGFR-1-Ig 
9HIF promoter and  
24 bp deletion2 

VEGFR-1-Ig 
5/3 serotype 
chimerism 

III Study III 

1 virus purchased from American Type Culture Collection (ATCC)  
2 24 bps deleted in the constant region 2 (CR2) of the E1A gene  
3 2 bps deleted in the constant region 1 (CR1) of the E1A gene 
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3.2.3 Construction of Ad5-9HIF-luc, Ad5-OB36-luc,  

Ad5/3-9HIF-Δ24-VEGFR-1-Ig and Ad5/3-9HIF-Δ24-E3 (III) 

For construction of Ad5-9HIF-luc and Ad5-OB36-luc, expression cassettes with either 9HIF 

(Aragones et al., 2001) or OB36 (Boast et al., 1999) hypoxia response elements controlling 

firefly luciferase were inserted into the multiple cloning site of pShuttle (Stratagene, La Jolla, 

CA, USA). Shuttle plasmids were recombined with pAdeasy-1 plasmid (Stratagene), which 

carries the whole adenovirus genome, and resulting rescue plasmids were transfected to 293 

cells to generate Ad5-9HIF-luc and Ad5-OB36-luc. 

For construction of oncolytic Ad5/3-9HIF-Δ24-VEGFR-1-Ig and Ad5/3-9HIF-Δ24-E3, the gene 

for VEGFR-1-Ig (first five domains of VEGF receptor 1 fused to Fc tail of human IgG antibody, 

kindly provided by Dr. Kari Alitalo, University of Helsinki, Finland) was cloned into pTHSN 

plasmid that contains the E3 region of the adenoviral genome replacing the 6.7K/gp19K 

genes (Kanerva et al., 2005). The resulting plasmid was recombined with pAdeasy-1.5/3-Δ24, 

an adenovirus rescue plasmid containing the serotype 3 knob and a 24 bp deletion in E1A 

(Kanerva et al., 2005), resulting in pAdeasy-1.5/3-Δ24-VEGFR-1-Ig. 9HIF was inserted into 

pSEΔ24 (Bauerschmitz et al., 2006), a shuttle plasmid containing the E1 region and a 24 bp 

deletion in E1A, to construct pSEΔ24-9HIF. This shuttle plasmid was then recombined with 

pAdeasy-1.5/3-Δ24-VEGFR-1-Ig and pAdeasy-1.5/3- Δ24 resulting in pAdeasy-1.5/3-9HIF-

Δ24-VEGFR-1-Ig and pAdeasy-1.5/3-9HIF-Δ24-E3, which were transfected to 911 cells for 

generation of Ad5/3-9HIF-Δ24-VEGFR-1-Ig and Ad5/3-9HIF-Δ24-E3. 
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3.3 In vitro studies 

3.3.1 Replication kinetics analysis of virus combinations (I) 

250,000 HEY or 786-O cells per well were infected with 1.25x106 vp of the respective 

replicating adenovirus or control virus in combination with 1.25x106 vp of Ad5/3luc1. For the 

assay with the replicating, luciferase expressing virus, 1.25x106 vp of either Ad5luc3 or 

Ad5luc1 alone was used to infect cells. On day 1, 3, 5 and 7 after infection cells were 

harvested and analyzed by TCID50 assays with 293 cells (Adeasy application manual, 

QBiogene)., luciferase expression (Luciferase Assay System, Promega, Madison, WI) and 

qPCR for luciferase. For TCID50 assays cell samples were freeze-thawed thrice to release the 

virus, for luciferase expression assays the provided reporter lysis buffer was used and for 

qPCR DNA was extracted from samples using QIAamp DNA Mini Kit (Qiagen, Hilden, 

Germany). Analyses were done in triplicates for each virus, day and analytical method. 

3.3.2 qPCR for luciferase (I) 

Luciferase specific primers (forward 5’- GAAATCCCTGGTAATCCGTT -3’ and reverse 5’- 

ATCACAGAATCGTCGTATGC -3’) were used to perform real time quantitative PCR with a SYBR 

green assay using a RotorGene system. The efficiency of the reaction was assumed to be 2, 

therefore values were calculated using the formula: 2(MockCycleNumber - SampleCycleNumber). 

3.3.3 Quantification of infectious particles of in vivo samples (I) 

Tumors were minced, suspended in 1ml DMEM growth medium without FCS and freeze-

thawed three times (Kanerva et al., 2005). The supernatant was then used for duplicate 

TCID50 assays with 293 cells. 
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3.3.4 Flow cytometric analysis for receptor expression (II) 

Renal cancer cells were incubated with anti-CD46 (BD Biosciences, Franklin Lakes, NJ, USA), 

anti-integrin αvβ3 (Chemicon International, Temecula, CA, USA), anti-integrin αvβ5 (Chemicon 

International), anti-HSPG (Seikagaku, Falmouth, MA, USA), anti-CAR RmcB antibodies or 

FACS buffer. Cells were then washed and incubated with phycoerythrin (PE) labeled goat 

anti-mouse immunoglobulin polyclonal antibody (BD Biosciences) prior to flow cytometry. 

For analysis of clinical samples, tumor pieces were minced, suspended in growth medium 

with 0.2 Wünsch units/mL Liberase Blendzyme (Roche Diagnostics, Indianapolis, IN, USA) 

and incubated at 37°C for 2 hours for enzymatic dissociation prior to FACS. 

3.3.5 Marker gene transfer assays (II, III) 

Cells were infected with replication deficient, marker gene expressing viruses for 30 min. and 

then washed and incubated with complete growth medium at 37°C. 24 hours later luciferase 

(Luciferase Assay System, Promega) or β-gal (Galacto Light Plus, Tropix, Bedford, MA, USA) 

assays were performed according to the manufacturer’s manual. 

Clinical samples were minced and washed twice. Samples were resuspended in 2% RPMI and 

then infected with 5000 VP/cell. Luciferase or b-gal assays were performed as described 

above. 

3.3.6 Cytotoxicity assays (II, III, IV) 

104 cells per well on 96 well plates were infected with indicated viruses. After 1 hour, 

infection medium was replaced with growth medium containing 5% FCS, which was changed 

every other day. 5-14 days later cell viability was analyzed with MTS assay (Cell Titer 96 

AQueous One Solution Cell Proliferation Assay, Promega). 

For study IV, cytotoxicity assays were done with samples containing 100% CD44+CD24−/low 

cells because virus infection was performed after sorting, except PL1, which was analyzed 
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without sorting. The complete PL1 sample was used for infection and therefore the 

proportion of CD44+CD24−/low cell could not be analyzed. The total number and proportion of 

viable cells in patient sample PL11 was also studied with trypan blue staining (Invitrogen, 

Carlsbad, CA) 8 days after infection. 

3.3.7 Western blot for VEGFR-1-Ig (III) 

Cells were infected with Ad5/3-9HIF-Δ24-VEGFR-1-Ig, Ad5/3-9HIF-Δ24-E3 or mock at an MOI 

of 10 vp/cell, medium was changed after one hour and cells were incubated for 72 hours. 

Western blot was done with cell culture supernatant using anti-human-IgG antibody (GE 

Healthcare, Barrington, IL, USA) for detection of VEGFR-1-Ig protein. 

3.3.8 Immunofluorescence staining (III) 

Tumor cryosections of 4-5µm thickness were prepared and fixed in acetone for ten minutes 

at -200C. Sections were incubated with normal donkey serum for 15 minutes, and then 

reacted with primary polyclonal rabbit anti Von Willebrand Factor (1:200 dilution, 

DakoCytomation, Denmark) overnight. After washing with PBS, sections were incubated with 

Alexa Fluor 594 labeled secondary antibody (1:250 dilution, Molecular Probes, Invitrogen) 

for 30 minutes. Sections were fixed in 4% paraformaldehyde and mounted with Vectashield 

mounting medium (Vector Laboratories, Burlingame, CA, USA). Representative pictures of 

areas of the tumors with the highest microvessel density were captured at 20x 

magnification. 

3.3.9 Expression of stem cell markers (IV) 

Messenger RNA was isolated using RNAeasy (Qiagen). The following primers were used for 

real-time-PCR; oct4 forward 5′-CGCACCACTGGCATTGTCAT-3′, reverse 5′-

TTCTCCTTGATGTCACGCAC-3′, sox2 forward 5′-GGCAGCTACGCATGATGCAGGAGC-3′, reverse 

5′-CTGGTCATGGAGTTGTACTGCACG-3′ β-actin forward 5′-CGAGGCCCAGAGCAAGACA-3′, 
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reverse 5′-CACAGCTTCTCCTTAATGTCACG-3′. Immunofluorescence staining of 

paraformaldehyde-fixed CD44+CD24−/low cells was performed with Oct3/4 and CD44 

antibodies (Santa Cruz Biotechnology, Santa Cruz, CA; BD Pharmingen, Franklin Lakes, NJ). 

 

3.4 In vivo studies 

All experiments were approved by the Experimental Committee of the University of Helsinki 

and the Provincial Government of Southern Finland. Mice at the age of 4-5 weeks were 

purchased from Taconic (Ejby, Denmark) and quarantined for at least one week. The animals 

were frequently monitored for their health status and euthanized as soon as any sign of pain 

or distress was noticed. 

For tumor volume determination, the largest diameter of the tumor and the diameter 

perpendicular to it were measured with calipers. Volumes were calculated using the 

formula: (larger diameter) x (smaller diameter)2 x 0.52. 

3.4.1 Bioluminescence imaging (I, II, III) 

Mice were injected intraperitoneally with 4.5 mg of D-Luciferin (Promega, Madison, WI) 

diluted in 100 μl RPMI without FCS and after 10 min images were captured with the IVIS 

imaging system series 100 (Xenogen, Alameda, CA). Photon emission values were calculated 

with Living Image v2.5 software (Xenogen). 

In the experiment with the dual luciferase imaging system GFP, DsRed or no emission filter 

were applied to separately measure cells (expressing click beetle green luciferase) or virus 

(expressing firefly luciferase). 
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3.4.2 Animals models in study I 

For the ovarian cancer xenograft model, female NMRI nude mice were subcutaneously 

injected with 5x106 Hey ovarian adenocarcinoma cells in both flanks. When tumors reached 

a volume of ca. 65 mm3, mice were randomized into seven groups of four animals each 

receiving indicated virus or no virus intratumorally on three consecutive days (days 0, 1, 2) 

and again on day 10 (n=8 tumors per group). Each injection contained 3x108 vp of the 

replicating virus and 3x108 vp of Ad5/3luc1. Half of the mice were killed on day 3 and the 

rest on day 17. All tumors were collected and stored at -80°C. 

For the renal cancer model, subcutaneous tumors were induced in female NMRI nude mice 

by injecting 5x106 786-O renal cancer cells as above. The mice were randomized into six 

groups and treated on three consecutive days (days 0, 1, 2) with 3x108 vp of the replicating 

virus and 3x108 vp of Ad5/3luc1 (n=8 tumors per group). In another experiment 3x108 vp of 

Ad5luc3 alone was injected intratumorally on three consecutive days. Half of the mice were 

killed on day 3 and the rest on day 9. 

3.4.3 Animals models in study II 

3.4.3.1 Biodistribution experiment 

ACHN cells were injected intraperitoneally into Fox chase SCID mice and 35 days later 108 vp 

of indicated replication deficient, marker gene expressing viruses were administered 

intraperitoneally. 48 hours later mice were killed and selected organs collected and analyzed 

for marker gene expression as described earlier (Kanerva et al., 2002b). 

3.4.3.2 Subcutaneous tumor growth inhibition experiment 

786-O tumors were grown in nude mice and a mixture of 3x108 vp of indicated oncolytic 

virus and 3x108 vp of Ad5/3luc1 was injected intratumorally on three consecutive days (day 

1, 2 and 3). On day 4 and 10 mice were imaged for luciferase. 
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3.4.3.3 Survival experiment 

ACHN cells were injected intraperitoneally into SCID mice. 7, 14 and 21 days later 108 vp of 

indicated viruses were injected also intraperitoneally. 50 μg bevacizumab (Avastin, 

Genentech, South San Francisco, CA, USA) was given intraperitoneally once weekly for 5 

weeks starting at day 11. 

3.4.4 Animals models in study III 

3.4.4.1 Luciferase activity experiment 

For luciferase expression experiments, nude mice were injected subcutaneously with 5x106 

786-O cells. When diameters of tumors were approximately 5mm, 3x108 vp was injected 

intratumorally. Two days later, mice were imaged and then killed, tumors were excised, 

ground and resuspended in lysis buffer and analyzed for luciferase expression as described 

above. 

For the intraperitoneal models, tumors were induced with 107 786-O or 786-O-CBGr cells. 

After 20 days mice were imaged and 108 vp was administered intraperitoneally. Two days 

later mice were imaged again for tumor and virus location. Mice were then killed, livers were 

excised and prepared and analyzed for luciferase expression as described above. 

3.4.4.2 Subcutaneous tumor growth inhibition experiment 

In the oncolytic efficacy experiments, nude mice were injected subcutaneously with 5x106 

786-O cells. When diameters of tumors were approximately 5mm, 108 vp were injected 

intratumorally. Blood samples were taken on day 7, 11 and 15 after virus injection and 

VEGFR-1-Ig concentration in the collected mouse serum was determined with a human IgG 

elisa kit (Immunology Consultants Laboratory, Newberg, OR, USA). At the end of the 

experiment on day 17, mice were killed and tumors were excised and frozen for 

immunofluorescence staining. 
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3.4.4.3 Survival experiment 

For the survival experiment, SCID mice were injected intraperitoneally with 107 SN12L1-luc 

cells. A single intraperitoneal virus injection of 5x108 vp was performed on day 10 after cell 

injection. Mice were monitored for survival and imaged on day 9, 18, 25 and 32 after cell 

injection. 

3.4.5 Animals models in study IV 

2 × 106 sorted or unsorted patient pleural effusion or JIMT-1 cells were injected together 

with Matrigel (BD Pharmingen, Franklin Lakes, NJ) into the uppermost mammary fat pads of 

non-obese diabetic/severe combined immunodeficient mice. The quantity of CD44+CD24−/low 

cells available limited the number of mice that could be included in the experiments. Mice 

were also injected with 1 mg/kg Estradurin (Pfizer, New York, NY) every 3 weeks throughout 

the experiment. Intratumoral injections were performed with 3×109 vp of indicated viruses 

at different time points. 

3.5 Statistics 

3.5.1 Statistical analysis for study I 

The significance of antitumor efficacy for the ovarian cancer model experiment was 

calculated using a non-parametric change-point test to show a systematic change in the 

pattern of observations as opposed to fluctuation due to chance. The Proc Mixed procedure 

in SAS v.6.12 (SAS Institute, Cary, NC) was used to examine the effects of group and time on 

tumor growth. Pairwise comparisons were performed to compare groups. 

RLU, qPCR, TCID50, in vivo photon emission and tumor volume values for all CRAds were 

entered into scatter plots and correlation (two tailed Pearson t-test) was determined using 

GraphPad Prism 4 software (GraphPad Software Inc, San Diego, CA). 
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3.5.2 Statistical analysis for study II and III 

To compare differences between groups in in vitro assays, two tailed student’s t-test was 

used and a p-value of <0.05 was considered significant. P-values of the in vivo subcutaneous 

experiment were calculated by Mann-Whitney test (SPSS 13.0). Data of survival experiments 

was plotted as Kaplan-Meier graphs and a log rank t-test (SPSS 13.0) was used for pairwise 

comparison of groups. 

3.5.3 Statistical analysis for study IV 

The repeated measures growth model in PROC MIXED (SAS 9.1; SAS, Cary, NC) was used for 

comparison of tumor sizes. Data was log-transformed for normality. The effects of the 

treatment group, time and the interaction between the treatment group and time were 

evaluated by F tests. Curvature in the growth curves was tested by a quadratic term for time. 

A priori planned comparisons of differences in the predicted treatment means of all groups 

to mock were computed by Tukey–Kramer adjusted two-sided t-statistics averaged over all 

time points. 
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4 RESULTS AND DISCUSSION 

4.1 Coinfection of a replicating with a non-replicating luciferase 

expressing adenovirus allows monitoring of virus replication in 

vivo (I) 

The efficacy of oncolytic adenoviruses is linked to infection of target cells and subsequent 

productive replication. Other variables include intratumoral barriers, access to target cells, 

uptake by non-target organs and immune response. Each of these aspects relates to the 

location and degree of virus replication. Unfortunately, detection of in vivo replication has 

been difficult, labor intensive and costly and therefore not much studied. We hypothesized 

that by co-infection of a luciferase expressing E1-deleted virus with an oncolytic virus, both 

viruses would replicate when present in the same cell. Subsequent imaging for luciferase 

could be used for quantitation of the amplitude, persistence and dynamics of oncolytic virus 

replication in vivo, which would be helpful for the development of more effective and safe 

agents. 

In vitro replication kinetics of a panel of CRAds and control viruses (Table 1 in study I) in 

combination with the replication deficient, luciferase expressing Ad5/3luc1 were assessed 

on HEY and 786-O cells. The samples were analyzed for viral titers by TCID50 assay, for 

luciferase activity by luminescence measurement and for luciferase gene copy number by 

qPCR. Significant correlation of the measured parameters was found (Fig.1d-f and 2d-f in 

study I). 

The experiments were repeated with Ad5luc3, a replicating adenovirus expressing luciferase 

representing a one component system as opposed to the two component system evaluated 

earlier. Ad5luc3 showed similar results compared to the system with two viruses (Figure 3 in 
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study I) suggesting that luciferase imaging could track replication regardless of E1 provided 

in trans or by the same virus. 

The coinfection approach was subsequently analyzed in a subcutaneous in vivo model of 

ovarian cancer induced with HEY cells. Tumors were injected with CRAds featuring Cox-2 

promoters and/or E1A region mutations and control viruses (Table 1 in study I) in 

combination with the replication deficient Ad5/3luc1. Tumor sizes were measured, mice 

were imaged and tumors were harvested for determination of viral titers (Figures 4 and 5a-c 

in study I). Ad5/3-Δ24 and Ad5/3Cox2Ld24 exhibited significant antitumor efficacy and 

significant correlations between production of infectious virions, photon emission values and 

tumor size were observed (Figures 5a and d-f in study I). 

To verify the findings, we repeated the experiment using a subcutaneous renal cell cancer 

model with 786-O cells. In this model, all CRAds exhibited significant antitumor efficacy 

compared to the replication deficient control virus and again significant correlations 

between infectious virions titers, photon emission values and tumor size were found (Figures 

7a and d-f in study I). In another in vivo experiment, Ad5luc3 was injected subcutaneously 

and the obtained results were comparable to those of the two component coinjection 

system (Figure 8 in study I). 

These data suggest that in vivo luciferase imaging can be used to estimate virus replication in 

live animals. Interestingly, we also saw positive correlation between tumor volume and 

infectious virus production, and between tumor volume and photon emission, which initially 

seemed partly counterintuitive. One would expect more replication to result in more 

antitumor activity and therefore smaller tumors. However, we assume that the strongest 

virus replication took place in the first days (days 0-2) in the tumors which in the end showed 

the best antitumor responses. Therefore, correlation of tumor size with photon and virus 

counts occurs mostly at later time points and presumably reflecting a situation where the 

tumor is not completely eradicated (due to intratumoral barriers), but virus replication 

persists. 
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In conclusion, the proposed system of coinjecting a luciferase expressing, replication 

deficient adenovirus with a replication competent adenovirus could be employed for non-

invasive evaluation of virus replication. Laborious TCID50 assays with tissue samples from 

euthanized animals could be replaced with the proposed system, which would reduce the 

amount of work, costs and the number of test animals needed.  

 

4.2 Capsid modified adenoviruses display enhance transduction 

to renal cancer cells and kidney cancer specimens with high 

levels of target receptors (II) 

Adenoviruses have great potential in gene therapy approaches for the treatment of cancer. 

However, preclinical studies and clinical trials have demonstrated that high transduction of 

all areas of the tumor is difficult to achieve. Besides intratumoral barriers, one major reason 

for insufficient transduction has probably been downregulation of the primary receptor for 

adenovirus entry (CAR), which was reported for many types of cancer, including kidney 

cancer (Bauerschmitz et al., 2002; Haviv et al., 2002). To circumvent CAR dependency, 

adenoviruses with genetically engineered capsid modifications, which transductionally target 

them to non-CAR receptors, can be constructed. We hypothesized that capsid modifications 

(5/3, pK7, pK21 and RGD capsid modifications; see chapter 1.4.1.3 for description of these 

modifications) on adenoviruses would enhance transduction to renal cancer cells and kidney 

cancer specimens. Because expression of the receptors relevant for entry of these viruses 

can vary between individual tumors, we sought to evaluate if fluorescence activated cell 

sorting (FACS) could be used to predict which virus would be most useful for each tumor.  

FACS analysis of renal cancer cell lines, clinical tumor specimens and tumor xenografts 

showed high expression of CD46 (proposed receptor for Ad5/3 based viruses), HSPGs (target 

receptor for Ad5.pK based viruses) and integrins (αvβ3 and αvβ5 integrins are target 

receptors for Ad5-RGD viruses)(Supplementary Figures 1, 2 and 3 in study II). Consequently, 
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transductional targeting with 5/3, pK7, pK21 and RGD capsid modifications resulted in high 

levels of gene delivery. Ad5.pK7 and Ad5/3luc1 showed more than 300 and 400 fold 

increased transduction respectively compared to a virus with wild type capsid (Figure 1a and 

b in study II). For all cell lines, viruses with polylysine modifications or 5/3 chimerism 

demonstrated significantly enhanced gene delivery compared to the respective wild type 

capsid control viruses, which correlated with high target receptor expressions seen by FACS.  

With one of the analyzed kidney cancer tumor samples, a 17 fold increase in gene delivery 

was seen with Ad5.pK21-LacZ (Figure 2a in study II), whose target receptor was shown to 

have high expression levels (Supplementary Figure 2 in study II). 

In summary, adenoviruses with capsid modifications transduce renal cancer cells and kidney 

tumor samples significantly better than wild type capsid viruses and their target receptors 

were shown to be highly expressed. These findings suggests that in a clinical setting it might 

be useful to analyze receptor expression before deciding which virus would be most useful 

for each cancer patient, assuming a panel of treatment agents were available. 

 

4.3 Improving oncolytic effect in vitro and antitumor effect in 

vivo with capsid modified oncolytic adenoviruses (II) 

Next we hypothesized that the enhanced transduction of capsid modified adenoviruses 

would translate into increased oncolytic effect of oncolytic adenoviruses featuring the same 

capsid modifications. 

In vitro, all capsid modified viruses exhibited increased oncolytic effect compared to wild 

type capsid viruses (Figure 3 in study II). In particular, Ad5/3-Δ24 showed the highest cell 

killing effect on all tested kidney cancer cell lines. 

In vivo, in a subcutaneous murine model of kidney cancer, intratumoral injection of capsid 

modified viruses resulted in significantly better antitumor efficacy compared to wild type 
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virus (Figure 4a in study II). The in vivo imaging system for monitoring replication (described 

in chapter 4.1) was applied to this model demonstrating highest replication activity for 

Ad5/3-Δ24 (Figure 4b and c in study II). 

Since kidney tumors are highly vascularized (Fukata et al., 2005) and antiangiogenic 

treatments have proven efficacy in this disease (Escudier et al., 2007b) we sought to 

evaluate whether combining oncolytic adenoviruses with bevacizumab (a monoclonal 

antibody against VEGF) would result in additive or synergistic antitumor efficacy. Therefore, 

we set up an intraperitoneal murine model of disseminated kidney cancer, where we 

injected capsid modified oncolytic viruses alone or in combination with bevacizumab. All 

capsid modified viruses resulted in significantly prolonged survival compared to wild type 

virus (Figure 5b in study II). In particular, Ad5/3-Δ24 demonstrated the best therapeutic 

effect with 50% of the mice being alive after 320 days, suggesting that these mice were 

cured. Combination treatment with bevacizumab was generally not as efficient as virus 

alone. This might be due to bevacizumab mediated collapse of the tumor vasculature that 

would prevent intratumoral dissemination of the virus. Moreover, oncolytic viruses may 

exert part of their effect via release into the systemic circulation and subsequent reinfection 

of tumors, which might be compromised if vessels are no longer available (Jain, 2005). 

In conclusion, we could show that capsid modified CRAds have improved antitumor efficacy 

in murine renal cell cancer models. Therefore, these viruses might be valuable agents for the 

treatment of kidney cancer in humans. 

 

4.4 Dual luciferase imaging system for simultaneous in vivo 

imaging of viruses and tumor cells (III) 

We sought to develop a dual luciferase imaging system based on viruses coding for firefly 

luciferase and a cell line stably transfected with click beetle green luciferase to localize virus 

gene expression in an in vivo kidney cancer model. 
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Both click beetle green luciferase and firefly luciferase convert D-luciferin but they emit light 

with different peak wavelengths, 550nm and 610nm respectively, which can be filtered out 

with the GFP and DsRed filters (emission passbands: 515-575 nm and 575-650 nm). To create 

a luciferase expressing cell line, we stably transfected the kidney cancer cell line 786-O with 

the gene for click beetle green luciferase, thereby creating 786-O-CBGr. 786-O and 786-O-

CBGr cells were infected with Ad5luc1, which expresses firefly luciferase under the 

ubiquitous CMV promoter. With the DsRed filter only in the wells infected with 1000 vp/cell 

of virus light emission could be detected (Figure 3a in study III). Using the GFP filter, light 

emission from all 786-O-CBGr wells was seen. No light was detected in the 786-O wells with 

the GFP filter, as expected. These results suggest that the DsRed and GFP filters are useful to 

separate light signals from firefly and CBGr luciferases. 

For in vivo evaluation of the system, SCID mice were injected intraperitoneally with 786-O or 

786-O-CBGr cells. When the mice were imaged 20 days later without a filter, light emission 

was detected in 786-O-CBGr injected mice (Figure 3b in study III). Using the (virus specific) 

DsRed filter, basically no light was detected, whereas with the (cell specific) GFP filter light 

emission was comparable to that observed without filters. 

Immediately after imaging, the mice were injected intraperitoneally with Ad5luc1 and 

imaged again two days later. Without a filter and with the virus specific DsRed filter strong 

light emission from the liver and peritoneum was detected (Figure 3c in study III). When 

applying the CBGr luciferase specific GFP filter, no light was detected from 786-O injected 

mice, whereas 786-O-CBGr mice showed similar light emission as before virus injection. 

In summary, it was possible to specifically image for virus mediated firefly luciferase or 

tumor cell mediated CBGr luciferase in vivo, and therefore, this system can be used to 

localize tumors and viruses in live animals. 
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4.5 Promoter evaluation for transcriptional targeting to renal cell 

cancer (III) 

For tumor tissue specific gene expression and replication of oncolytic viruses, tissue specific 

promoters can be used. Because of high HIF expression in renal cell cancer tissue (see 

chapter 1.2.1.1), hypoxia response elements are promising candidates for controlling kidney 

cancer specific gene expression. Therefore, we sought to evaluate the activity of two 

different hypoxia response elements in kidney cancer and normal cells and tissues. 

Replication deficient adenoviruses with 9HIF and OB36 hypoxia response elements 

controlling firefly luciferase (Ad5-9HIF-luc and Ad5-OB36-luc) were constructed and their 

luciferase activity was compared to Ad5luc1 with the highly active CMV promoter driving 

luciferase. 9HIF demonstrated rather low but highly selective activity in kidney cancer cells in 

vitro (Figure 1 in study III). In vivo, in a subcutaneous kidney cancer model both elements 

exhibited activity, which was higher than with the control virus with CMV driven luciferase, 

suggesting efficient induction of hypoxia response elements in the in vivo setting (Figure 2 in 

study III). In an intraperitoneal kidney cancer model, luciferase expression specific to the 

tumors was demonstrated for Ad5-9HIF-luc (Figure 4a in study III) using the dual luciferase 

imaging system (see chapter 4.4). Moreover, when livers of the injected mice were analyzed 

ex vivo, significantly reduced luciferase activity was seen for Ad5-9HIF-luc (Figure 4b in study 

III). 

In conclusion, we were able to identify 9HIF as a useful promoter for targeting kidney cancer. 
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4.6 An infectivity enhanced, targeted and armed oncolytic 

adenovirus exhibits high specificity for renal cell cancer and 

improved antitumor effect (III) 

We hypothesized that targeted oncolytic adenovirus armed with an antiangiogenic 

transgene would exhibit enhanced specificity and increased antitumor effect with regard to 

renal cell cancer. Therefore, based on the transductional targeting studies and the promoter 

evaluation we generated Ad5/3-9HIF-Δ24-VEGFR-1-Ig, a dual-targeted, infectivity enhanced 

and antiangiogenic oncolytic adenovirus for the treatment of kidney cancer. This virus 

features the 5/3 capsid modification for infectivity enhancement and transductional 

targeting, 9HIF controlling E1A for transcriptional targeting and the antiangiogenic molecule 

VEGFR-1-Ig in the E3 region for improved antitumor efficacy (Figure 5a in study III). Ad5/3-

9HIF-Δ24-E3, an isogenic unarmed control virus was also constructed. 

Expression of VEGFR-1-Ig from infected cells was confirmed by western blot (Figure 5b in 

study III). In vitro with kidney cancer cells, oncolytic effect of Ad5/3-9HIF-Δ24-VEGFR-1-Ig 

and Ad5/3-9HIF-Δ24-E3 was weaker than that of the non-targeted, non-armed control 

Ad5/3-Δ24 but usually stronger than with wild type virus Ad300wt (Figures 6a and b and 

Supplementary Figure 2 in study III). This was an expected result, since 9HIF activity was 

shown to be low in vitro (Figure 1 in study III), reducing replication of Ad5/3-9HIF-Δ24-

VEGFR-1-Ig and Ad5/3-9HIF-Δ24-E3. Also, VEGFR-1-Ig is not expected to add utility in vitro. 

Practically no effect of Ad5/3-9HIF-Δ24-VEGFR-1-Ig and Ad5/3-9HIF-Δ24-E3 was seen on 

fibroblasts, which underscores the high specificity for cancer cells of these viruses (Figure 6c 

in study III). The non-targeted viruses killed HUVECs very efficiently while Ad5/3-9HIF-Δ24-E3 

had no effect (Figure 6d in study III) since HIF is not active in these cells under normoxic 

conditions (Calvani et al., 2006). However, Ad5/3-9HIF-Δ24-VEGFR-1-Ig caused about a 30% 

reduction in cell viability, suggesting that low levels of VEGFR-1-Ig are expressed from this 

virus even in the absence of oncolysis. 
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In a subcutaneous in vivo experiment, Ad5/3-9HIF-Δ24-E3 and Ad5/3-Δ24 showed the best 

antitumor effects with complete eradication of 38% of the tumors in both groups (Figure 7a 

in study III). This confirmed the high induction of HREs in vivo compared to in vitro. While 

also Ad5/3-9HIF-Δ24-VEGFR-1-Ig had antitumor efficacy, it was not more potent than Ad5/3-

9HIF-Δ24-E3 and Ad5/3-Δ24, despite confirmed VEGFR-1-Ig expression (Figure 7b in study 

III). Reduction of tumor vasculature was also seen (Figure 7c in study III). A reason for Ad5/3-

9HIF-Δ24-VEGFR-1-Ig being less effective than Ad5/3-9HIF-Δ24-E3 in this model might be 

collapse of vasculature due to VEGFR-1-Ig compromising intratumoral dissemination and/or 

vascular reinfection, as suggested before (Guse et al., 2007). Moreover, the antiangiogenic 

effect might result in larger necrotic parts within the tumor, which would not decrease 

tumor size over the course of such a short animal experiment. Furthermore, necrosis and 

hypoxia might compromise viral dissemination (Heldin et al., 2004). 

Because subcutaneous tumors may not be a clinicinally meaningful representation of 

metastatic renal cell cancer, we set up a model of intraperitoneally disseminated kidney 

cancer with SN12L1-luc cells. Ad5/3-9HIF-Δ24-VEGFR-1-Ig treated mice survived significantly 

longer than any other group suggesting that in this model the antiangiogenic effect was 

useful (Figure 8 in study III). One reason for the superior antitumor efficacy in this model 

might be that in the intraperitoneal scenario, virus can spread within the tumor better 

through non-vascular routes as compared to the subcutaneous model. 

In conclusion, our data shows that triple targeting, including dual-level transcriptional 

targeting and capsid modification can increase the selectivity, and antiangiogenic arming can 

improve antitumor efficacy of oncolytic adenoviruses for renal cell cancer. Such a virus might 

therefore be a promising agent for patients with kidney cancer resistant to all other available 

treatments. 
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4.7 Identification of breast cancer initiating cells in pleural 

effusions from breast cancer patients (IV) 

Cancer stem cells might play an important role in the relapse of breast cancer following 

conventional treatment and could be one of the reasons for the incurable nature of 

metastatic breast cancer. These cancer stem cells are thought to be found in the CD44+CD24-

/low side population present in many breast cancers (Al-Hajj et al., 2003). Therefore, we 

sought to characterize breast cancer initiating CD44+CD24-/low cells from pleural effusions of 

breast cancer patients. 

Seven out of thirteen pleural effusion samples that we obtained contained a CD44+CD24-/low 

subpopulation, which typically comprised 20–50% of the sample (Figure 1 and 

Supplementary Figure S1 in study IV). A feature suggested for both tumor and normal tissue 

stem cells is the membrane transporter–mediated capacity for Hoechst 33342 exclusion, 

which might serve as a useful surrogate marker for resistance to lipophilic anticancer drugs 

(Dean et al., 2005). CD44+CD24-/low sorting enriched this subpopulation from 1% (±1.1%) to 

7% (±2.1%) (p = 0.0001, Figure 2a and b in study IV). To further evaluate the possible stem 

cell characteristics of the CD44+CD24-/low population, expression of oct4 and sox2 was 

studied by means of a semi-quantitative reverse transcriptase polymerase chain reaction 

analysis (real-time-PCR) (Nichols et al., 1998; Zhao et al., 2004). Surprisingly, we found an 

unequal amplification of β-actin, which had been included as a control for the amount of 

total RNA. This had been reported before (Cowan et al., 1999; Lee et al., 2003) and thus β-

actin may not be the optimal control to use when analyzing putative stem cells. 

Nevertheless, since we only wanted to gain qualitative information about oct4 and sox2 

expression, the non-reliability of β-actin did not interfere with our interpretation of the 

results. All samples were positive for oct4 and sox2, suggesting that when a CD44+CD24-/low 

population is present, it contains stem cell-like cells (Figure 2c in study IV). Oct4 and CD44 

protein expression was confirmed by immunofluorescence staining (Figure 2d in study IV). 
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In summary, we confirmed that CD44+CD24-/low cells can be purified from pleural effusions of 

breast cancer patients and that these cells exhibit stem cell properties. However, further 

studies are needed to investigate if true stem cells reside in this population. 

 

4.8 Capsid modified oncolytic adenoviruses efficiently kill 

CD44+CD24-/low breast cancer initiating cells (IV) 

Next we were wondering whether breast cancer initiating CD44+CD24-/low cells, thought to be 

resistant to conventional cancer treatments, could be killed with oncolytic adenoviruses. 

Ad5/3-Δ24 and Ad5.pK7-Δ24 resulted in efficient cell killing of unsorted cells as well as 

CD44+CD24-/low cells (Figure 3 and Supplementary Figure 3 in study IV). Ad5-Δ24RGD and wild 

type Ad5 (Ad300wt) were less potent suggesting that 5/3 and pK7 capsid modification could 

be useful for increasing antitumor efficacy. To confirm that capsid modified oncolytic viruses 

can completely eradicate the CD44+CD24−/low population, trypan blue staining was 

performed (Figure 3e in study IV). Approximately 85% of the uninfected cells were alive after 

8 days, whereas none of the cells infected with Ad5/3-Δ24 and Ad5.pk7-Δ24 survived. 

In conclusion, we showed that oncolytic adenoviruses efficiently kill CD44+CD24−/low cells 

which are thought to harbor the true cancer stem cell population. Moreover, adenoviral 

capsid modifications were able to significantly increase the oncolytic potency on this cell 

population. 
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4.9 Oncolytic adenoviruses exhibit antitumor efficacy against 

tumors established with CD44+CD24-/low breast cancer initiating 

cells (IV) 

Based on the in vitro data described in chapter 4.8, we hypothesized that capsid modified 

oncolytic adenoviruses would be able to inhibit growth of tumors induced with 

CD44+CD24−/low cells. 

Unsorted or CD44+CD24−/low cells from a breast cancer patient formed tumors in all non-

obese diabetic/severe combined immunodeficient mice by day 95. The first tumors in mice 

injected with CD24+ cells appeared on day 113 (Figure 4 in study IV), confirming previous 

data that sorting for CD44+CD24−/low selects for a population capable of forming tumors more 

rapidly. When cells were infected with Ad5/3-Δ24 prior to injection, no tumors grew (Figure 

4 in study IV). 

CD44+/CD24−/low JIMT-1 cells (a low passage pleural effusion explant) formed tumors in the 

mammary fat pads of non-obese diabetic/severe combined immunodeficient. However, 

when cells were pretreated with Ad5/3-Δ24, no tumors formed (Figure 4 in study IV). To 

analyze the effect of Ad5/3-Δ24 on orthotopic pre-terminal CD44+/CD24−/low–derived 

disease, tumors were allowed to grow as large as animal regulations allowed. Then, 

intratumoral virus injections were performed, and abrogation of tumor growth was seen 

(Figure 4b in study IV). In a larger subsequent experiment, Ad5/3-Δ24 and Ad5.pK7-Δ24 

resulted in significant antitumor efficacy versus mock (both p < 0.0001, Figure 5 in study IV). 

Initially, 10% of JIMT-1 cells were CD44+CD24−/low. After sorting, 100% of cells injected into 

mice were CD44+CD24−/low, but when tumors were removed on day 48, the CD44+CD24−/low 

cell proportion had returned to 11%. After virus injections, 6.4% (Ad300wt), 5.0% (Ad5/3-

Δ24), 1.1% (Ad5.pK7-Δ24), and 3.8% (Ad5-Δ24RGD) of cells were of CD44+CD24−/low type 

(Figure 8A). 14% (±3.4%) versus 3.0% (±0.9%) of cells in the CD44+CD24−/low population of 

untreated versus treated tumors were capable of Hoechst exclusion (p < 0.001, Figure 8B). 
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In conclusion, we showed that capsid modified oncolytic adenoviruses are able to efficiently 

kill breast cancer initiating cells leading to significant antitumor efficacy. Promising 

preclinical data had been obtained earlier using capsid modified adenoviruses in breast 

cancer cell lines, clinical specimens, and orthotopic animal models of both locally advanced 

and metastatic breast cancer (Ranki et al., 2007a; Ranki et al., 2007b). Therefore, these 

viruses may be effective in the killing of both “differentiated” and “tumor initiating” breast 

cancer cells, which might be useful in treating patients suffering from incurable metastatic 

breast cancer. 

 

Figure 8: Stem cell properties of cells from virus treated tumors

CD44+/CD24-/low cell sorting with untreated and virus treated tumors (A). Hoechst exclusion of 
CD44+/CD24-/low cells from untreated and virus treated tumors (B). 
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5 SUMMARY AND CONCLUSIONS 

 

The overall goal of this thesis was to improve treatment options for kidney and breast cancer 

using oncolytic adenoviruses. 

An in vivo imaging system for following virus replication of oncolytic adenoviruses was 

successfully set up in study I and used in study II. This system might be useful for replacing or 

complementing tedious ex vivo assays with tissue samples and could reduce the number of 

required test animals because the killing of animals is not required. 

Genetically engineered capsid modifications proved to be useful for transductional targeting 

to renal cell cancer tissue and for increasing the antitumor potency of oncolytic adenoviruses 

(study II). However, combining oncolytic adenoviruses with the antiangiogenic antibody did 

not result in improved antitumor efficacy in an intraperitoneal mouse model of disseminated 

kidney cancer. In this setting the combination therapy might not be beneficial because 

antiangiogenic treatment results in reduced tumor vascularity, which might compromise 

viral spread. Furthermore, the timing might not have been optimal. Instead of the 

simultaneous therapy used here, a consecutive therapy approach could be more useful so as 

to gain the full therapeutic effect of each drug without the risk of antagonism. 

We set up a dual luciferase imaging system for simultaneous imaging of tumors and viruses 

in vivo. In an evaluation of hypoxia response elements we identified a renal cell cancer 

specific promoter using the novel dual luciferase imaging system. Based on these data and 

the results obtained in study II, we generated an infectivity enhanced, transductionally and 

transcriptionally targeted, antiangiogenic oncolytic adenovirus (Ad5/3-9HIF-Δ24-VEGFR-1-Ig) 

for kidney cancer treatment. Although, the data of study II did not support the combination 

of oncolytic virus therapy with antiangiogenic approaches for kidney cancer treatment, we 

believed that the situation could be different for an oncolytic virus that itself expresses an 

antiangiogenic molecule. Virus mediated expression of an antiangiogenic molecule will result 
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in high local concentration in the tumor and low systemic levels, thereby minimizing toxicity. 

The high local concentration within the tumor might result in necrosis inside the tumor, 

whereas a systemically administered antiangiogenic molecule might predominantly inhibit 

the vasculature from the outside of the tumor. Therefore, viral reinfection of the tumor 

might not be as much inhibited by an antiangiogenically armed adenovirus. Unfortunately, in 

a subcutaneous kidney cancer model Ad5/3-9HIF-Δ24-VEGFR-1-Ig did not result in smaller 

tumor sizes compared to the unarmed control virus. However, we found markedly 

decreased numbers of blood vessels in tumors treated with the antiangiogenic virus that 

might have led to larger areas of necrosis, which unfortunately does not necessarily result in 

smaller tumor sizes. It seemed that in an intraperitoneal model of kidney cancer 

representing a clinically more relevant model, Ad5/3-9HIF-Δ24-VEGFR-1-Ig could exhibit its 

potential much better since significantly prolonged survival compared to all other groups 

was observed. 

Cancer stem cells might be key players in the relapse of tumors and in the formation of 

metastases. We found that growth of tumors induced with putative actual cancer stem cells, 

could be inhibited with capsid modified adenoviruses. Therefore, oncolytic adenovirus 

therapy might be useful for breast cancer treatment especially with regard to prevention of 

relapse and metastasis. 

In conclusion, the studies in this thesis contribute to the understanding of how oncolytic 

adenoviruses can be improved to become viable treatment options for cancer. In particular, 

we provide tools for development and evaluation of oncolytic viruses and we present for the 

first time that combining three targeting moieties with an arming approach in one oncolytic 

virus is feasible and results in an anticancer agent with improved properties. Furthermore, 

evidence that oncolytic viruses might be useful for killing tumor initiating cells is provided. 
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