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What is a scientist after all?
It is a curious man looking through a keyhole,

the keyhole of nature, trying to know what s going on.
-Jacques Cousteau-

This is the strangest life I have ever known
-Jim Morrison

Hey Ho, Let s Go
-The Ramones-
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ABBREVIATIONS

AAV Adeno associated virus
CUB Clr/Cls, Urchin EGF-like protein and Bone

morphogenic protein 1
E embyonic day
EC endothelial cell
ECM extracellular matrix
Ig immunoglobulin
IFP interstitial fluid pressure
IHC immunohistochemistry
K14 keratin 14
kb kilo base pair
kDa kilodalton
LYVE-1 lymphatic vessel endothelial hyaluronan receptor-1
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mRNA        messenger ribonucleid acid
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PDGF          platelet-derived growth factor
PDGFR        platelet-derived growth factor receptor
PECAM-1  platelet endothelial cell adhesion molecule-1
PlGF            placenta growth factor
SMA smooth muscle actin
SMC smooth muscle cell
TK                tyrosine kinase
VEGF           vascular endothelial growth factor
VEGFR        vascular endothelial growth factor receptor
VSMC vascular smooth muscle cell
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ABSTRACT

Over the last decade or so, different angiogenic factors have been studied
intensively. Several factors have been associated with cancer growth and vascular
diseases, such as atherosclerosis. One of the most researched and important families
of growth factors has been the PDGF/VEGF family. PDGFs are major mitogens for
several cell types of mesenchymal origin, such as smooth muscle cells and
fibroblasts. In vascular formation during vasculogenesis and angiogenesis, pericytes
and vascular smooth muscle cells form a supporting structure around endothelial cell
tubes to complete the formation of functional blood vessels. Without these cells the
nacent vessels are leaky and vessels of both increased and decreased diameter are
seen. PDGFs have been identified as some of the most important mitogens and
chemoattractans to pericytes and vascular smooth muscle cells. For decades, only
two chains of PDGF were known, PDGF-A and PDGF-B and only a few years ago
two additional members of this family were discovered and named PDGF-C and
PDGF-D.

This study presents the cloning and characterization one of these novel members of
this family, PDGF-D. We have defined its receptor binding specifity, finding that it
binds both PDGF receptors,  and . We have also elucidated its domain structure,
discovering that it and its closest relative PDGF-C have a CUB domain at the N-
terminal end of the propeptide, a domain that is lacking from the two other
members of the PDGF family. We have also solved the processing of PDGF-D,
from a latent propeptide tothe active protein, which requires proteolytical removal
of the CUB domain. We found out that PDGF-D is expressed in several normal and
tumor tissues. Finally, we have used mouse models to find out that when
overexpressed, PDGF-D is a strong recruiter of macrophages to tissues or wounded
areas. We were able to use PDGF-D in combination with a known angiogenic
factor, VEGF-E, to grow better functioning blood vasculature in mice.

This study addresses the basic questions concerning the nature of PDGF-D, and
gives clues about its probable role in pathological conditions, such as atherosclerosis
and wound healing. Our studies also suggest possible future uses of PDGF-D in e.g.
wound healing therapy or for growing of new, functional blood vessels to ischemic
tissues.
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REVIEW OF THE LITERATURE

THE DEVELOPMENT OF BLOOD VESSELS

Vasculogenesis and angiogenesis

The vascular system provides oxygen and nutrients to all proliferating or developing
tissues. During embryogenesis, the development of the vascular system occurs via
two processes, vasculogenesis and angiogenesis Figure 1 . Vasculogenesis involves
the differentiation of endothelial cells ECs  from mesoderm derived precursor cells,
the hemangioblasts Risau and Flamme 1995 . From these are derived the EC
precursors angioblasts  and the hematopoietic cell precursors. The hemangioblasts
form primary blood islands, in which the cells are divided into interior and
peripheral layers. Cells in the interior layer differentiate into hematopoietic stem
cells and the cells in the periphery  differentiate into angioblasts, which then cluster
and reorganize to form capillary-like tubes Asahara et al., 1997 .

After the primary vascular plexus is formed, new capillaries form by sprouting or by
splitting intussusception  from pre-existing vessels. This process is called
angiogenesis Figure 1 Risau, 1997 . Further remodelling occurs when new vessels
mature and form vessels of different sizes. Some vessels fuse to form larger ones
while some regress. In the primary capillary plexus the ECs start to differentiate
into arterial or venous type Yancopoulos et al., 1998 . Layers of pericytes and
vascular smooth muscle cells VSMCs  start to gather around newly formed EC
tubes.  Basal laminae form between the cells and provide further support to the new
vessels. In pathological angiogenesis, the maturation and stabilization of the vessels
occur improperly and the vessels remain immature Hashizume 2000; Shunichi
2002 . Angiogenesis is tightly regulated by intercellular signalling mechanisms,
growth factors and cytokines. For some time now, the induction of angiogenesis has
also been seen as a way of treating tissue ischemia reviewed in Ferrara et al., 2003 .
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Figure 1. Schematic illustration of vasculogenic and angiogenic processes
in developing embryos. In vasculogenesis, mesodermal cells first differentiate
into hemangioblasts, whereafter endoderm-mesoderm interactions are required for
further blood island differentiation Risau and Flamme, 1995 . After the formation
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of the primary capillary plexus, new vessels are generated via angiogenesis Risau,
1997 . During sprouting angiogenesis, ECs degrade the underlying basement
membrane, migrate, proliferate and reassemble into tubes. In non-sprouting
angiogenesis, new vessels are formed by intussusceptive growth or the existing
vessels increase in size through intercalated growth. The formed vasculature is
remodeled into a tree-like hierarchy, containing vessels of different sizes. When
excess branches are pruned, some vessels regress and others fuse to form larger
vessels. The vessels further mature by recruitment of pericytes and smooth muscle
cells. Formation of the extracellular matrix and particularly the basal lamina gives
support to the vessels. The most important growth factors or their receptors
mediating blood vessel growth and maturation are indicated on the right. EC=
endothelial cell, PC= pericyte, SMC= smooth muscle cell. Modified from Saaristo
et al., 2002  and Carmeliet and Collen, 2000 .

Endothelial cells

Endothelial cells are very diverse in their morphology, function and gene-expression
profiles. Morphologically, they differ in size, shape, thickness, number of microvilli,
and the position of the nucleus. For example, aortic endothelial cells are generally
thicker but cover a smaller area than those lining the pulmonary artery Conway and
Carmeliet, 2004 . ECs function in a variety of physiological situations, and therefore
the capillary endothelium of each individual normal tissue is highly specialized.
There are also results which show some specific EC markers that are present only in
tumor vasculature Arap et al., 1998 .

Pericytes and vascular smooth muscle cells

Pericytes and vascular smooth muscle cells VSCMs  form a supporting structure
around EC tubes to complete the formation of functional blood vessels. Without
these cells the forming vessels are leaky and vessel diameter varies extensively
Hellstrom et al., 2001 . In the mature vascular system, arteries are surrounded by

VSMCs but smallest capillaries are only partially covered by pericytes. Vessels of
intermediate size, arterioles and venules, have cells that have properties of both
pericytes and VSMCs.

Pericytes and VSMCs originate from multiple sources including mesenchymal cells,
neural crest cells and epicardial cells Hungerford and Little, 1999 . In embryonic
mesodermal cells they have common progenitors with the ECs Flk-1 positive
embryonic stem cells , which can differentiate into ECs in presence of vascular
endothelial factor VEGF  or into VSMCs in the presence of platelet-derived
growth factor B PDGF-B  Yamashita et al., 2000 . Pericytes and VSMCs are
closely related and they can interconvert into each other Nehls and Drenckhahn,
1993; Nicosia and Villaschi, 1995 . There are however, some major differences
between the two. Pericytes are adjacent to and surround the endothelium, share a
common basement membrane with the endothelium, and have gap-junction
connections with the endothelial cells. VSMCs  also surround ECs, but they do not
share the basal layer with them and do not have direct connection with ECs as
pericytes do.

The location of pericytes and VSMCs at the interface between the endothelium and
the surrounding tissue makes them ideally positioned to take an active part in the
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angiogenic process Allt and Lawrenson, 2001 . In many diseases involving
angiogenesis, such as tumour growth and diabetic retinopathy, inhibition of
pathological neovascularization is one possible treatment and recent results now
indicate pericytes as possible antiangiogenic targets Benjamin et al., 1999; Gee et
al., 2003 . On the other hand, pericytes and VSMCs are also coming into focus in
proangiogenic therapies, especially when there is a need to stabilize newly formed
vessels after successful neovascularization Cao et al., 2003; Dor et al., 2002;
Richardson et al., 2001 .

VASCULAR ENDOTHELIAL GROWTH FACTORS  AND THEIR
RECEPTORS

The VEGF family of growth factors consists of five polypetides VEGF-A, -B, -C, -
D and placenta growth factor, PlGF  which are able to bind variably to vascular
endothelial growth factor receptors VEGFR  1, 2 and  3.

         

VEGF-A

VEGFR-1 VEGFR-2 VEGFR-3

VEGF-D
VEGF-C

VEGF-B

VEGF-E
PlGF

VEGF-A

VEGF-D
VEGF-C
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Figure 2.  Receptor binding of VEGF family members. VEGFR-1 and
VEGFR-2 are predominantly expressed in the endothelium of blood vessels, and
VEGFR-3 in the endothelium of lymphatic vessels.

VEGF

VEGF or VEGF-A  is a major regulator of vasculogenesis and angiogenesis and
binds to and activates VEGFR-1 and VEGFR 2. VEGF is also known to induce
vascular permeability Senger et al., 1983  Dvorak et al., 1995 . VEGF is expressed as
several isoforms of different amino acid chain lengths VEGF121, VEGF145, VEGF165,
VEGF183, VEGF189, VEGF206 Ferrara et al., 2003 . Of these, VEGF165 seems to be
most efficent inductor of angiogenesis Stalmans et al., 2002 .VEGF is a highly
specific mitogen for vascular ECs Connolly et al., 1989; Ferrara and Davis-Smyth,
1997; Ferrara and Henzel, 1989; Leung et al., 1989; Plouet et al., 1989  and it is also a
survival factor for ECs, both in vitro and in vivo Alon et al., 1995; Gerber et al.,
1998 . Pericyte coverage of the new vessels has been proposed to be one of the
critical factors that determine the sensitivity of ECs to VEGF Benjamin et al.,
1999 . VEGF has also an effect on the blood cells; it can promote monocyte
chemotaxis and induce colony formation by mature granulocyte-macrophage
progenitor cells Clauss et al., 1990 Broxmeyer et al., 1995 . In the ischemic brain
VEGF exerts an acute neuroprotective effect, as well as longer latency effects on the
survival of new neurons Sun et al., 2003 .

VEGF-B

VEGF-B has two, differentially spliced isoforms, VEGF-B167 and VEGF186. The
more abundant in vivo form is VEGF-B167 Li and Eriksson, 2001; Olofsson et al.,
1996 . Its highest expression levels are found in brown fat, skeletal muscle and the
myocardium Olofsson et al., 1999 . The only VEGFR that VEGF-B activates is
VEGFR-1 Olofsson et al., 1998 . The function of VEGF-B has long been unclear,
and although it is abundant in some tumor types Salven et al., 1998  there has been
no conclusive evidence of its effects.

VEGF-C and VEGF-D

VEGF-C and VEGF-D are the two members of the VEGF family which are capable
of inducing the proliferation and migration of lymphatic endothelial cells in vitro and
growth of new lymphatic vessels in vivo Achen et al., 1998; Jeltsch et al., 1997;
Joukov et al., 1996; Makinen et al., 2001 . Unprocessed VEGF-C binds to VEGFR-3
but only the fully processed form can bind to and activate VEGFR-2 Joukov et al.,
1997 . Simnilarly, human VEGF-D can bind to and activate both VEGFR-2 and
VEGFR-3 when fully processed Achen et al., 1998 . At high concentrations these
fully processed factors can promote angiogenesis and increase vascular permeability,
although not as much as VEGF-A Joukov et al., 1997; Oh et al., 1997;
Witzenbichler et al., 1998 .

PlGF

Placenta growth factor PlGF  has three isoforms, PlGF-1, 2 and 3; all bind
specifically to VEGFR-1 Cao et al., 1997; Maglione et al., 1991; Maglione et al., 1993;



Marko Uutela

14

Park et al., 1994 . PlGF can also form heterodimers with VEGF, and the
VEGF/PlGF heterodimers have been shown to bind to VEGFR-2  DiSalvo et al.,
1995 . PlGF homodimers are chemotactic for monocytes and ECs in vitro Clauss et
al., 1996  and PlGF is angiogenic and arteriogenic in vivo Pipp et al., 2003 . PlGF
may induce myocardial revascularization by amplifying the angiogenic activity of
VEGF, which is upregulated in the ischemic myocardium. In addition, PlGF may
stimulate myocardial angiogenesis by increasing VEGF expression by fibroblasts,
which are abundant in the myocardial stroma Luttun et al., 2002 .

VEGF-E

VEGF-E is sometimes included as a sixth member of the VEGF protein family. It is
a viral protein discovered from the genome of the Orf virus OV , which is an
epitheliotropic parapoxvirus of cattle and sheep Cottone et al., 1998; Lyttle et al.,
1994 . Twenty four different forms of VEGF-E are known so far Mercer et al.,
2002 . Of these VEGF-E NZ-2, VEGF-E NZ-7 and VEGF-ED1701 are the best
characterized. These three forms all bind to VEGFR-2, all with essentially the same
activity Lyttle et al., 1994; Meyer et al., 1999; Wise et al., 1999 . Of these forms
VEGF-E NZ-7 has been most used in research so far. Overexpression of this factor
induces strong angiogenesis, although the quality of the newly made blood vessels is
poor Kiba et al., 2003  III .

VEGFR-1

VEGFR-1 has seven immunoglobulin Ig  homology domains in the extracellular
part, a trans-membrane region and an intracellular tyrosine kinase TK  domain,
which is interrupted by a kinase-insert domain Matthews et al., 1991; Shibuya et al.,
1990; Terman et al., 1991 . It is present mostly in ECs and binds VEGF, PlGF Park
et al., 1994  and VEGF-B Olofsson et al., 1998 . An alternatively spliced form
producing soluble form of VEGFR-1 has been shown to inhibit VEGF activity
Kendall and Thomas, 1993 . The precise function of VEGFR-1 is still debated, but

it has been implicated in negative regulation of VEGF activity Fong et al., 1999 .
VEGFR-1 phosphorylation is very weak in vitro after VEGF stimulation Seetharam
et al., 1995; Waltenberger et al., 1994 , and high concentrations of PlGF that
saturate the VEGFR-1 sites for binding, have been shown to potentiate the activity
of VEGF both in vivo and in vitro, suggesting that VEGFR-1 may act as a decoy
receptor for VEGF in the ECs, not primarily transmitting a mitogenic signal, but
rather binding VEGF to make it less available for VEGFR-2 Park et al., 1994 .

However, other results have indicated that VEGFR-1 is able to interact with various
signal-transducing proteins and generate a mitogenic signal Landgren et al., 1998;
Zeng et al., 2001 . In addition to ECs, VEGFR-1 is expressed in monocytes,
macrophages, pericytes, placental trophoblasts, renal mesangial cells and in some
bone marrow derived hematopoietic stem cells Barleon et al., 1994; Clauss et al.,
1996; Hattori et al., 2002; Ziegler et al., 1993 .

VEGFR-2

The structure of VEGFR-2 is similar to VEGFR-1, but VEGFR-2 binds VEGF,
VEGF-C, VEGF-D and viral VEGF-E. It is primarily present in ECs, but also
expressed in megakaryocytes, platelets, retinal progenitor cells, some hematopoietic
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stem cells and in circulating endothelial precursor cells Katoh et al., 1995; Ziegler et
al., 1999 . Although VEGFR-2 binds VEGF with lower affinity than VEGFR-1,
there is a general agreement that most of the biological effects of VEGF are
mediated via VEGFR-2. Receptor specific mutant forms of VEGF have been used
to show that VEGFR-2 is the major mediator of the mitogenic, angiogenic and
permeability- enhancing effects of VEGF and that EC survival is dependent on
VEGFR-2 Gerber et al., 1998; Gille et al., 2001; Keyt et al., 1996 .

VEGFR-3

VEGFR-3 is a receptor that binds VEGF-C and VEGF-D Achen et al., 1998;
Joukov et al., 1996 . Furthermore, the lymphangiogenic effects of VEGF-C and
VEGF-D are thought to be mediated via VEGFR-3 Veikkola et al., 2001 . VEGFR-
3 has only six immunoglobulin Ig homology domains in the extracellular domain, a
transmembrane region and a tyrosine kinase TK  domain. Two different forms of
VEGFR-3 are expressed in humans. The long form is more abundant, the short form
having 65 amino acids less in its C-terminus Hughes 2001 .  During early vascular
development VEGFR-3 is expressed in the endothelium of the developing
vasculature, but when lymphatic vessels form, it is expressed almost exclusively in
the lymphatic endothelium Kaipainen et al., 1995 .

PLATELET DERIVED GROWTH FACTORS

Platelet-derived growth factors PDGFs  are major mitogens for several cell types of
mesenchymal origin, such as smooth muscle cells and fibroblasts. Originally, PDGF
was identified as a constituent of whole blood serum that was absent in cell-free
plasma-derived serum Kohler and Lipton, 1974; Ross et al., 1974; Westermark and
Wasteson, 1976 . Not very long afterwards, PDGF was purified from human
platelets, thus gaining its name Antoniades et al., 1979; Heldin et al., 1979; Kaplan
et al., 1979 . Later it was discovered that PDGFs are synthesized by a number of
different cell types. PDGFs are composed of homo- and heterodimeric polypetide
chains. For a long time only two different chains were known, PDGF-A and PDGF-
B, the so called classic PDGFs. Later two additional chains were discovered, PDGF-
C Li et al., 2000  and PDGF-D I , LaRochelle et al., 2001 . These four members
of the family bind to and activate two PDGF receptors, PDGFR-  and PDGFR-

, which also form either homo- or heterodimeric complexes on the cell surface
after ligand binding.

PDGFs have a knot with eight cysteine residues that are conserved and present in
all four chains. It is known that in the two classical PDGFs, two of the cysteine
residues second and fourth  are involved in cysteine bonds between the two
subunits in the PDGF dimer, the other six are engaged in intrachain disulfide bonds
Haniu et al., 1994; Haniu et al., 1993 . In the new  PDGFs, there are four extra

cysteine residues in PDGF-C and two extra ones in PDGF-D. At the moment it is
unclear what kind of effect these extra cysteins have on the three dimensional
structure of PDGF-C and PDGF-D.
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PDGF-A

The gene producing the PDGF-A chain is located on chromosome 7 Betsholtz et
al., 1986 . PDGF-A occurs as two different splice forms, producing mRNAs of 2.1
and 2.4 kb in length and encoding protein chains of 196 and 211 amino acid residues.
The gene has 7 exons, exon 1 encoding the signal sequence, exons 2 and 3 precursor
sequences that are removed during processing, while exons 4 and 5 encode most of
the mature PDGF-A protein. Exon 6 encodes a C-terminal sequence, which is
spliced out when the 211 aa splice form is produced. Exon 7 is mainly noncoding, but
has the stop-codon for the 196 aa form Bonthron et al., 1988 . PDGF-A is
synthesized and assembled into disulphide-linked dimers in the endoplasmic
reticulum, but to make it active, the N-terminal extension is cleaved and the mature
form activated in the exocytic pathway and then released into extracellular matrix
Ostman et al., 1992 .  PDGF-AA binds to and activates only the PDGFR-

 homodimer. Several cell types express PDGF-A, e.g. fibroblasts Paulsson et al.,
1987 , VSMCs Nilsson et al., 1985; Paulsson et al., 1987 , ECs  Collins et al., 1987 ,
macrophages Nagaoka et al., 1992  and astrocytes Noble et al., 1988; Richardson et
al., 1988 . At the tissue level the highest expression levels are found in the heart,
pancreas and skeletal muscle Fredriksson et al., 2004 .

Notably, PDGF-A also forms dimers with PDGF-B. PDGF-AB actually produces a
strong mitogenic and chemotactic effect on cells, especially in cells expressing both

 and   receptors Heidaran et al., 1990 .

PDGF-B

The gene producing the PDGF-B chain is located on chromosome 22 Dalla-Favera
et al., 1982; Swan et al., 1982 . PDGF-B gene produces mRNA of 3.5 kb in length and
encodes a protein chain 241 amino acids long. The structure of the gene is similar to
PDGF-A, except that exon 7 is completely noncoding. Exons 2 and 3 encode an N-
terminal part and exon 6 a C-terminal part that have to be proteolytically removed
before PDGF-B is activated Johnsson et al., 1984 . PDGF-B is produced and
cleaved in the exocytic pathway Ostman et al., 1992 . PDGF-Bs expression pattern
in different cell types is much like PDGF-As, it is expressed in several different cell
types, e.g. VSMCs Majesky et al., 1988 , ECs Hellstrom et al., 1999 , macrophages
Ross et al., 1990  and fibroblasts Raines, 1991 . During development PDGF-B is

mostly expressed in the developing vasculature, where PDGF-B is produced by
endothelial cells Hellstrom et al., 1999 . At the tissue level in adults, most abundant
expression of PDGF-B is found from heart and placenta Fredriksson et al., 2004 .

PDGF-C

PDGF-C was the first of the two so called new PDGFs to be discovered. As with
the classical PDGFs, PDGF-C forms dimers, but only homodimers, which bind
primarily toPDGFR-  homodimer Li et al., 2000 , but there are reports showing
that it can activate also the PDGFR-  heterodimer Cao et al., 2002; Gilbertson et
al., 2001 . The gene is located in the human chromosome 4, and, uniquely among the
PDGFs, has only 6 exons II . The first exon encodes a signal sequence, while exons
2 and 3 encode an N-terminal CUB domain Clr/Cls, Urchin EGF-like protein and
bone morphogenic protein 1 Bork, 1991 . Exon 4 encodes the so called hinge area in
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front of the PDGF-homology domain, which is encoded by exons 5 and 6 II . Full
length PDGF-C is 345 amino acids long and to make PDGF-C active, the N-
terminal CUB domain must be cleaved off proteolytically Li et al., 2000 . PDGF-C
mRNA is expressed in a variety of tissue types, most strongly in the heart, pancreas
and kidney Gilbertson et al., 2001; Li et al., 2000 . In human cell types PDGF-C
expression has been detected in VSMCs, ECs and fibroblasts II Gilbertson et al.,
2001 .

Platelet derived growth factor receptors

PDGF receptors are proteins which have five immunoglobulin-like extracellular
domains, a transmembrane domain and an intracellular tyrosine kinase domain
Claesson-Welsh, 1989; Matsui et al., 1989; Yarden et al., 1986 . Since PDGFs are

dimeric molecules, they bind to two receptors simultaneously and thus dimerize the
receptors and become activated Bishayee et al., 1989; Heldin et al., 1989; Seifert,
1989 . The structures of the PDGFRs are similar to those of the colony stimulating
factor-1 CSF-1  receptor Coussens et al., 1986  and the stem cell factor SCF
receptor Yarden et al., 1987 . The level of PDGF receptor expression on cell
surfaces is not constant, for instance during inflammation the levels of PDGFR-  on
connective tissue cells goes radically up Rubin et al., 1988 , and stimulation with
basic fibroblast growth factor or tumor necrosis factor  selectively increases the
expression of PDGFR-  in VSMCs Schollmann et al., 1992; Sihvola et al., 1999 .

PDGFR-

The human PDGFR-  gene is located on chromosome 4 Spritz et al., 1994 . It
binds and is activated by any of the following combinations of PDGF dimers;
PDGF-AA, PDGF-AB, PDGF-BB or PDGF-CC. Activation of PDGFR-
transduces powerful mitogenic signals, and stimulates chemotaxis Hosang et al.,
1989; Shure et al., 1992  in certain cell types but is also claimed to inhibit chemotaxis
in other types, such as SMCs Siegbahn et al., 1990  Koyama et al., 1996 Yokote et
al., 1996 . The classic target cells for PDGFs such as fibroblasts and SMCs express
both receptor types, but there are some cell types which express only the other one.
O-2A glial precursor cells, human platelets and rat liver endothelial cells are cell
types known to express only PDGFR-  Hart et al., 1989; Heldin et al., 1991;
Vassbotn et al., 1994 . 

PDGFR-

The human PDGFR-  gene is located in chromosome 5 Yarden et al., 1986 . It
binds to and is activated only by PDGF-BB and PDGF-DD. As is the case with
PDGFR- ,  activation of PDGFR-  is also source of powerful mitogenic signals and
chemotaxis Heldin and Westermark, 1996; Siegbahn et al., 1990 . PDGFR-   also
mediates the formation of circular actin structures on the dorsal cell surface
Eriksson et al., 1992 , whereas receptor  does not. Fibroblasts and SMCs express

both receptors, but usually they express PDGFR-  at higher levels Heldin and
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Westermark, 1996 . The cellular expression pattern of PDGFR-  is mostly similar
to PDGFR- , but some types of cells express only receptor . Such kinds of cell
types are, for example, certain capillary ECs, pericytes and mammary epithelial cells
Bar et al., 1989; Smits et al., 1989; Sundberg et al., 1993; Taverna et al., 1991 .

PDGFs in development

Deletion of PDGF-A chain in mice leads to defective development of alveoli of the
lung, giving an emphysema-like phenotype. This is caused by the lack of distal
spreading of alveolar smooth muscle cell progenitors during lung development,
leading to death of the mice around 3 wk of age Bostr m, 1996; Lindahl et al.,
1997b . PDGFR-  deficient mice die during embryogenesis, the embryos displaying
cranial malformations and defiency of myotome formation Soriano, 1997 .
Genetically partially rescued PDGFR-  null mouse chimeras display similar
phenotype to PDGF-A null mice Sun et al., 2000 . The expression patterns of
PDGF-A and PDGFR-  during lung development suggest a paracrine pattern,
where PDGF-A is expressed by the epithelium and PDGFR-  by populations of
adjacent mesenchymal cells Bostr m, 1996; Lindahl et al., 1997b . PDGF-A
deficient mice display also a reduced number of intestinal villi, showing abnormaily
in their length and thickness Karlsson et al., 2000 . During intestinal development
PDGF-A is initially expressed in the intestinal epithelium whereas PDGFR-  is
expressed in proliferating meenchymal cells immediately subjacent to the epithelium
Karlsson et al., 2000 . The loss of PDGF-A results in failure of PDGFR-  positive

cells to localize properly in the gut Karlsson et al., 2000 . This would indicate that
the role of PDGF-A in the development of the gut would be to secure the
placement of the PDGFR-  positive mesenchymal cells. The PDGF-A null mice
also developed a tremor due to severe hypomyelination of the neuronal projections
within the central neural system CNS  Fruttiger et al., 1999 .

Although PDGF-B binds to all three receptor-dimers, during development it seems
to act mostly via PDGFR-  homodimers. This conclusion has been made mostly by
comparing the knock-out models where the deletion of PDGF-B or PDGFR-  has
quite similar effects. The knock-out mice die at embryonic stage from widespread
microvascular bleedings Lev en, 1994 . This is caused by a severe shortage of
VSMCs and pericytes Lindahl et al., 1997a . In both types of mice the mesangial
cells are almost completely missing Lev en, 1994; Soriano, 1994 . This leads to poor
filtration in the glomeruli. In the process of mesangial cell recruitment, ECs express
PDGF-B and mesangial cells PDGFR- , suggesting paracrine signaling similar to
that in capillary formation elsewhere Lindahl et al., 1998 . In contrast to PDGFR-
null mice, the PDGF-B null mice had also heart defects with an increased size and
trabeculation of the myocardium. The fact that this is not detected in the PDGFR-

 null mice indicates that in the heart PDGF-BB may act via PDGFR- .

The roles of the PDGF-C and PDGF-D in embryonic development are still not
known, although the close similarities between the PDGF-B and PDGFR-  null
phenotypes make it difficult to envision a role for PDGF-D as a developmental
ligand for PDGFR- . Such is not the case with PDGF-A and PDGFR- . As PDGF-
B does not explain the differences either, the remaining candidate is PDGF-C Li et
al., 2000 . Some still unpublished results from PDGF-C null mice have indeed given
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an indication that PDGF-C has partially overlapping functions with these two other
ligands Betsholtz, 2004 .

PDGFs in disease and treatment

PDGFs in tumors and tumor therapy

Two decades ago, the transforming gene in Simian Sarcoma Virus, sis, was found to
encode PDGF-B Doolittle et al., 1983; Waterfield et al., 1983 . Since then PDGF
overactivity has been associated with several cancer types. In gliomas and
astrocytomas PDGFs and PDGFRs are upregulated in an autocrine manner and
their expression levels are higher in advanced forms of gliomas than in less
malignant tumors Hermanson et al., 1992; Hermanson et al., 1996 . On the other
hand, ininvasive gastric carcinomas PDGF-A has been found to provide an effective
prognostic marker because high levels of PDGF-A correlate with high grade
carcinomas Nakamura et al., 1997 Katano et al., 1998 . The new PDGFs have also
been associated with some tumors, PDGF-C with Ewing carcinomas Zwerner and
May, 2001  and PDGF-D with e.g. ovarian and lung cancer LaRochelle et al., 2002 .

In development of anti-cancer therapies PDGFs and their receptors are beginning
to draw more attention. Especially PDGFR-  in pericytes constitutes a relevant
target for anti-cancer therapy. This based on results, according to which the
lowering of the the interstitial pressure of the tumor helps the access of
chemotherapeutic drugs to the tumors  and thus enhances their effects Pietras et
al., 2002 . This was obtained mostly by inhibiting the function of PDGFR-

 inside the tumor  using the new PDGF receptor blocker, STU571 i.e. Glivec
Pietras et al., 2001 . Such therapy, combined with for example the new anti-

angiogenic drugs, like Bevacizumab Avastin , Genentech  which is an anti-VEGF
monoclonal antibody Yang et al., 2003 , can prove to be very effective in treatment
of solid tumors.

PDGFs in cardiovascular disease

Atherosclerosis is a complex, largely inflammatory response in large and medium
arteries to a number of different risk factors that results in an accumulation of cells
and extracellular matrix in the intimal space Ross, 1999 . One central player in the
forming of the atherosclerosis is the macrophage. Accumulation of macrophages is
the first cellular event in lesion initiation, and they are present throughout the
stages of lesion development. In fact, reducing macrophage recruitment can
decrease lesion development Boring et al., 1998; Ni et al., 2001 .

PDGFs and their receptors are expressed at low levels in normal vessels, but the
situation changes when atherosclerotic lesions start to form. The lesions
demonstrate increased levels of PDGF-B compared to normal vessels Barrett and
Benditt, 1987 , and the macrophages at the scene express both PDGF-A and PDGF-
B Evanko et al., 1998 . Expression of PDGF-C and PDGF-D by macrophages has
not been reported. PDGF receptor  expression is also increased in atherosclerotic
lesions, most of the expression being in SMCs Rubin et al., 1988  with more
localized expression in macrophages Tanizawa et al., 1996 . Elevated PDGF
receptor  expression has been detected in atherosclerosis, and also from renal
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arterosclerosis Floege et al., 1998; Giese et al., 1999; Sihvola et al., 1999 . The
involvement of PDGFs has been tested in several animal models, for example by
using balloon catheterization of rat carotid arteries. In the denuded artery, there is
an increase of activated PDGF receptors in the vessel wall Abe et al., 1997; Panek et
al., 1997 . The initial thickening of the vessel wall that follows this treatment was
inhibited with PDGF antibodies Ferns et al., 1991 . Furthermore, infused PDGF-
BB into the rat carotid artery following a denudation caused significant thickening
of the lesion area compared to non-treated animals Jawien et al., 1992 .

The blocking of PDGFs or their receptors as a form of treatment in atherosclerosis
was tested some time ago and inhibitors of PDGF-B or PDGFR-  to stop
SMC/pericyte accumulation gave some positive results Maresta et al., 1994 .

Another side to the story is the possible use of PDGFs to help create new blood
vessels after atherosclerosis has created an ischemic area. PDGFs are not very
angiogenic, but they are very important factors in recruiting SMCs and pericytes
around new vessels, therefore the combinations of PDGFs with some effective
angiogenic factors may turn out to be very useful.
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AIMS OF THE STUDY

Specific aims of the study:

I  To clone and characterize a novel growth factor, PDGF D, to find out
its amino acid sequence, domain structure, receptor binding and
activating properties as well as tissue expression.

II  To find the exon intron structure, chromosomal localization of PDGF
D and its expression in normal cells and various types of tumor cells.

III To investigate the potential of PDGF D in treating certain diseases; in
wound healing and growing of new, functional blood vessels in
combination with angiogenic factors.

IV To verify the receptor binding properties of PDGF D, to clarify the
processing   site and to explore the function and significance of the CUB
domain in PDGF D.
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MATERIALS AND METHODS

The materials and methods are described in detail in the original publications,
which are here referred to using Roman numerals.

The cloning of PDGF D cDNA  I

The PDGF-D cDNA was originally identified from NCBI EST database, cloned
with PCR from a human fetal lung 5 -STRETCH PLUS gt10 cDNA library
Clontech . The PCR fragment was labelled to high specific activity by random

priming Amersham Inc.  and the same cDNA library was screened by plaque
hybridisation to isolate several partial cDNA clones. The longest subcloned insert
was 1934 bp in length and encoded the C-terminal of PDGF-D while the 5´-part was
missing. The 5´-part of the cDNA was then amplified by Rapid Amplification of
cDNA Ends RACE  using human heart cDNA as the template Clontech .

mRNA expression of PDGF D in human tissues, cell lines and tumor cell
lines I, II

To test the mRNA expression levels of PDGF-D in human tissues, a human
Multiple Tissue Northern blot Clontech  was hybridised with the 32P-labeled 327 bp
PCR fragment of PDGF-D cDNA. A full length PDGF-B cDNA was used as
control probe.

Human umbilical vein and microvascular endothelial cells and coronary artery SMCs
were obtained from Promocell and cultured in passage 2-5, as recommended by the
supplier. The Wi-38 fetal lung fibroblasts and human tumor cell lines were obtained
from American Type Culture Collection. The isolation of polyadenylated RNA was
by oligo-dT cellulose chromatography; 5 µg was electrophoresed in agarose gels
containing formaldehyde, blotted onto Hybond-N filters Amersham , which were
hybridized with PDGFC and PDGFD cDNA fragments. These were used to find the
expression levels of PDGF-D mRNA in endothelial- and smooth muscle cells and in
different tumor cell lines.

PDGF D expression in mouse sections I, II

For immunohistochemistry, affinity-purified rabbit antibodies to human PDGF-D
were applied onto tissue sections prepared from paraformaldehyde-fixed and
paraffin-embedded mouse embryos.

Production and receptor binding properties of PDGF D protein I, II, IV

Several different methods for producing the PDGF-D protein were used. For the
receptor-Ig binding experiments only a small amount of metabolically labelled
protein was needed, so PDGF-D expression plasmid was transfected into 293T cells
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and the conditioned medium was collected and used for immunoprecipitation with
receptor-Ig proteins PDGFR- -Ig and PDGFR- -Ig, R&D .

To test the receptor competition assay a large amount of purified PDGF-D protein
was needed. This was produced in baculoviral system and checked with SDS-PAGE
under reducing conditions, followed by western blot analysis using the antipeptide
antiserum. The ligand competition binding experiments were carried out using
porcine aortic endothelial PAE  cells expressing human PDGFR-  or PDGFR- .

Analysis of genetic structure and chromosomal location  of PDGFD II

To analyze the exon-intron organization of PDGFC and PDGFD, human genomic
clones for the genes were isolated by PCR-based screening from P1 bacteriophage
and P1 artificial chromosome PAC  human diploid genome libraries Genome
Systems . Genomic organization of PDGFC  and PDGFD  was determined by
sequencing the whole coding sequence and identifying the exon-intron junctions
from the genomic clones.

To find out the chromosomal location of PDGFD gene, fluorescense in situ
hybridization FISH  was used. Genomic DNA clones were nick-translated with
biotin 11-dUTP Sigma  and hybridized on metaphase chromosomes derived from
normal human peripheral blood lymphocytes, which were treated with5-
bromodeoxyuridine BrdU  at early replicating phase to induce banding pattern 10 .
A multicolor image analysis was used for the acquisition, display and quantification
of the hybridization signals. The identification of the chromosomes was based on
4 ,6 -diamino-2-phenylindole banding pattern which resembles G-bands after BrdU
incorporation at the early replicating phase.

Generation and analysis of transgenic K14 PDGF D mice III

Human PDGF-D cDNA bp 176 - 1285; Genbank sequence number: AF336376  was
inserted into the K14 promoter expression vector. The resulting construct was
digested to separate the expression cassette from the rest of the plasmid and
purified. A 5 ng/ml solution of the DNA was injected into fertilized eggs of the
FVB/n-strain of mice and the resulting transgenic mice were maintained in this
strain. For analysis of PDGF-D mRNA expression in the skin of transgenic and wild
type littermate mice, tissues were snap-frozen in liquid nitrogen and homogenized
with a dismembrator. Total RNA was extracted with the RNEasy Kit QIAGEN
GmbH, http://www1.qiagen.com . Using the RNA a northern blot was made and
hybridized with a human PDGF-D probe. Protein expression was verified by
immunohistochemistry, by staining with antibodies against human PDGF-D. Two
transgenic lines were used for the analysis, with similar results.

The skin of the transgenic mice and their wild type littermates was removed, fixed
in paraformaldehyde and paraffin embedded. Some skin samples were snap-frozen in
liquid nitrogen and embedded in Tissue-Tek OCT- compound Sakura-Finetek
Europe BV, http://www.sakuraeu.com .  Sections from these samples were stained
with markers for blood vessels PECAM-1 , lymphatic vessels VEGFR-3 and
LYVE-1 , hematopoietic cells CD45 , T-lymphocytes CD3 , B-lymphocytes B-
220 , granulocytes Ly-6G  and macrophages F4/80 . Measurement of interstitial
fluid pressure from the skin of seven transgenic and seven wild type mice was carried
out by using the modified Wick technique. To analyse the vessels from a wider area
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of the skin, the ears of the transgenic and wild type littermate mice were also whole
mount stained with antibodies against PECAM-1, LYVE-1 and smooth muscle
actin.

Wound healing experiments on K14 PDGF D mice III

One reason for creating the K14-PDGF-D transgenic mouse line was to investigate
the possible participation and effect of PDGF-D in the wound healing process. Two
circular wounds were made on both sides of the back with a 5 mm punch-biopsy
tool. The wounds were allowed to heal for up to 10 days, after which the mice were
sacrificed and the wounds were collected. Sections were stained with haematoxylin
and eosin.  The wound area was quantified by measuring the distance between the
edges of the migrating epidermis and dividing it with that of the original wound,
measured here as the distance between the edges of the panniculus carnosus muscle
layer. Sections were stained for blood- and lymphatic vessels and hemtopoietic cells.
To evaluate connective tissue amount from the wounds, sections were also stained
with Van Gieson s stain and Masson s Trichrome stain.

Production and use of AAVs III

To investigate the effect of strong local overexpression of PDGF-D alone and when
combined with a known angiogenic factor, we created adeno-associated viruses
producing various growth factors. The full length VEGF-E bp 1- 399, Genbank
AF106020 , the full length PDGF-D PDGF-DFL , and a short form PDGF-D N,
bp 917-1285  as well as full length PDGF-B bp 1023-2368, GenBank NM_002608
and human serum albumin HSA, bp 112- 1866, Genbank NM_000477  cDNAs were
cloned into the psub-CMV-WPRE plasmid. The recombinant AAVs were
produced as described before Karkkainen et al., 2001 . 50 µl of purified AAV 5
x1011 genomic particles/ml  was injected into the subcutis of the ear or
gastrocnemius muscle of FVB or NMRI nude mice. Four weeks later the mice were
sacrificed and the tissues were analyzed similarily to the samples from K14-PDGF-D
transgenic mice.

The AAV-injected mice were also used in the vessel permeability test, where FITC-
Dextran was injected intravenously into the mouse tail vein. The ears were
monitored under a fluorescence microscope and pictures exposed for equal time
periods were taken after 1, 2 and 4 minutes.
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RESULTS AND DISCUSSION

1. The cloning and characterization of human PDGF D I, IV

We identified PDGF-D as a human expressed sequence tag EST  in a BLAST
search of the National Center for Biotechnology Information EST database. The
EST sequence was compared to the sequence of PDGF-C and an identity of
approximately 50% between them was detected. Several cDNA clones were isolated
but the 5´end of the complete coding region was lacking and using rapid
amplification of cDNA ends RACE  I was able to generate the missing part. The
full length cDNA of PDGF-D encodes a polypetide which is 370 amino acids long.
It has a signal sequence residues 1-22  and two domains, an N-terminal CUB
domain residues 56-167  and a C-terminal PDGF/VEGF-homology domain
residues 272-362 , which also has the highest identity with the other members of the

PDGF/VEGF-family Figure 3 , especially PDGF-C 50% identity . Only seven of
the eight invariant cysteine residues found in other PDGF/VEGF domains are
present in PDGF-D, the fifth being replaced by glycine residue. Like PDGF-C,
PDGF-D also has an insertion of three amino acid residues between the conserved
cysteine residues, three and four, being the residues NCG in the case of PDGF-D.
This feature among others shows that PDGF-C and PDGF-D form their own
closely related subgroup in the PDGF/VEGF family Figure 4 .
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Figure  3. Alignment of the amino-acid sequences of members of the
PDGF/VEGF family, in which the regions that encompass the conserved cysteine
rich domain are shown. Identical residues to those in PDGF-D are boxed. The fifth
invariant cysteine residue in PDGF-D is replaced by glycine.

PlGF
VEGF
VEGF-B
VEGF-C
VEGF-D
PDGF-C
PDGF-D
PDGF-A
PDGF-B

102030405060

Figure 4. The dendrogram comparison of the growth factor homology
domains in the PDGF/VEGF family. PDGF-C and PDGF-D form a subgroup
of the PDGFs. Numbers show substitutions per 100 residues.

C T P R N Y S V N I R E E L - K L A N V V F - - F P R C L L V Q R C G G N C G C 1 PDGF-D

C T P R N F S V S I R E E L - K R T D T I F - - W P G C L L V K R C G G N C A C 1 PDGF-C

C K T R T V I Y E I P R S Q V D P T S A N F L I W P P C V E V K R C T G - - - C 1 PDGF-A

C K T R T E V F E I S R R L I D R T N A N F L V W P P C V E V Q R C S G - - - C 1 PDGF-B

C H P I E T L V D I F Q E Y P D E I E Y I F K - - P S C V P L M R C G G - - - C 1 VEGF

C R A L E R L V D V V S E Y P S E V E H M F S - - P S C V S L L R C T G - - - C 1 PlGF

C Q P R E V V V P L T V E L M G T V A K Q L V - - P S C V T V Q R C G G - - - C 1 VEGF-B

C M P R E V C I D V G K E F G V A T N T F F K - - P P C V S V Y R C G G - - - C 1 VEGF-C

C S P R E T C V E V A S E L G K S T N T F F K - - P P C V N V F R C G G - - - C 1 VEGF-D

G T V N W R S C T C N S G K T V K K Y H E V L Q F E P G H I K R R G R A K T M A 38 PDGF-D

C L H N C N E C Q C V P S K V T K K Y H E V L Q L R P - - - K T G V R G L H K S 38 PDGF-C

C N T - - S S V K C Q P S R V H H R S V K V A K V E Y V R K K P K L K - - - - - 38 PDGF-A

C N N - - R N V Q C R P T Q V Q L R P V Q V R K I E I V R K K P I F K - - - - - 38 PDGF-B

C N D - - E G L E C V P T E E S N I T M Q I M R I K - P - - H Q G Q H - - - - - 36 VEGF

C G D - - E N L H C V P V E T A N V T M Q L L K I R - S - - G D R P S - - - - - 36 PlGF

C P D - - D G L E C V P T G Q H Q V R M Q I L M I R - - - - Y P S S Q - - - - - 36 VEGF-B

C N S - - E G L Q C M N T S T S Y L S K T L F E I T - V P L S Q G P K - - - - - 36 VEGF-C

C N E - - E S L I C M N T S T S Y I S K Q L F E I S - V P L T S V P E - - - - - 36 VEGF-D

L V D I Q L D H H E R C D C                                                     78 PDGF-D

L T D V A L E H H E E C D C                                                     75 PDGF-C

E V Q V R L E E H L E C A C                                                     71 PDGF-A

K A T V T L E D H L A C K C                                                     71 PDGF-B

I G E M S F L Q H N K C E C                                                     66 VEGF

Y V E L T F S Q H V R C E C                                                     66 PlGF

L G E M S L E E H S Q C E C                                                     65 VEGF-B

P V T I S F A N H T S C R C                                                     68 VEGF-C

L V P V K V A N H T G C K C                                                     68 VEGF-D

Decoration 'Decoration #1': Shade (with solid bright yellow) residues that match 

PDGF-D exactly.

Decoration 'Decoration #2': Box residues that match PDGF-D exactly.
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We expressed the full length form of PDGF-D containing a C-terminal six-histidine
tag, the purified protein was shown to be 55 kDa under reducing and 90 kDa under
non-reducing conditions, therefore showing that it is composed of homodimers. It
is well documented that full length PDGF-C needs proteolytic processing to remove
the CUB domain and release the active PDGF/VEGF homology domain core
domain  which then interacts with the receptor. We could not identify a natural
enzyme which would remove the CUB domain from PDGF-D, but in the presence
of serum, PDGF-D underwent proteolytic processing to generate the active growth
factor dimer of the 23 kD PDGF homology domains, but lacking the N-terminal
CUB domains. To produce enough active protein for our receptor binding
experiments,  we generated a mutated form of PDGF-D. This form included factor
Xa cleavage sites IEGRx2, replacing residues 251-258, including the predicted
cleavage site, RKS/K . When produced in insect cells, this form showed similar
properties in SDS-PAGE to wild-type PDGF-D, under both reducing and non-
reducing conditions. This protein was used in PDGF receptor binding experiment,
which showed that PDGF-D activates only PDGFR- . However, other publications
claimed that PDGF-D would also bind and activate PDGFR /  heterodimers
LaRochelle et al., 2001 .

When PDGFR- -Ig fusion protein became available, we decided to test this
binding again. This time we produced PDGF-D in mammalian cells in the presence
of serum. Suprisingly we noticed that the processed growth factor domain cleaved
from the full-length PDGF-D bound to both PDGFR- -Ig and PDGFR- -Ig. We
produced also another PDGF-D protein called PDGF-D N, starting from the
amino acid 248, 9 amino acids before the predicted cleavage site RKS/K . This
PDGF-D N polypeptide lacking the CUB domain but containing part of the
intervening sequences was not proteolytically processed anymore and bound to
PDGFR-  but only very weakly to the PDGFR- . Another produced protein was
the CUB domain with the whole intervening sequence before PDGF-homology
domain. This did not bind to either PDGF receptor, as expected. When co-
expressed, CUB domain formed a dimer with the naturally matured PDGF-D and
almost totally prevented its binding to PDGFR- , but did not have any effect on
the binding of PDGF-D to PDGFR- .

Because the N form of PDGF-D lacking the CUB domain was not proteolytically
processed at the cleavage site, we wanted to see if the CUB domain can transfer the
cleavage function to another homologous protein. We therefore made a PDGF-D-
VEGF chimeric protein, where the growth factor domain of VEGF was fused to the
N-terminal part of the PDGF-D polypeptide containing the CUB domain so that
the presumed cleavage site was preserved. The chimeric protein was cleaved in
between the CUB domain and VEGF domain and detailed analysis of the various
fusions showed that the cleavage was strongly inhibited when the N-terminal
PDGF-D sequence was further truncated so that the tribasic sequence RKSK was
partly deleted. This suggested that the major cleavage site in the chimeric protein is
located in this sequence.

When the chimeric proteins were analysed in nonreducing conditions, very little of
the homodimeric cleaved VEGF protein could be detected in the gels. Instead, the
major species of the CUB-VEGF protein were the full-length dimer and a
heterodimer formed between the full-length and cleaved CUB-VEGF chimera. This
suggests that the first cleavage separating the N-terminal CUB domain of PDGF-D



Marko Uutela

28

and the VEGF domain is efficient, but the second cleavage is much more inefficient
after the loss of the first CUB domain. All forms bound to VEGFR-1 and VEGFR-
2, indicating that the CUB domain does not transfer the latency to VEGF. The co-
transfection of the PDGF-D and CUB-VEGF vectors led to heterodimerization of
the polypeptides. This co-transfection also had similar effect as co-transfection with
just the CUB domain, namely the binding of mature PDGF-D to PDGFR-  was
mostly prevented while there was no effect on the PDGFR-  binding.

 These results show that PDGF-D is indeed a dimer forming member of the
PDGF/VEGF protein family, and that it is a very close relative to PDGF-C,
described only one year earlier Li et al., 2000 . We show also that the role of the
CUB domain is of great importance in activation of the PDGF-D; it has to be
removed before the PDGF-D dimer can bind to and activate its receptor. We do
not yet know which enzymes are responsible for the processing in vivo. The
discovery that the fully processed PDGF-D binds to both PDGFR-  and - ,
although PDGF-D was first identified as PDGFR-  specific ligand with no affinity
towards PDGFR-  suggests new possible functions for PDGF-D, as PDGFR-   is
expressed in some cell types that do not contain  PDGFR- , such as astrocytes.

Although full length PDGF-D is unable to activate PDGFR- , there is the
interesting possibility of formation of the full length PDGF-D-core domain PDGF-
D dimer, which could bind to the receptor as a monovalent ligand and act as an
antagonist. The tissue expression pattern seems to be similar to that of PDGF-B,
but there are also some differences, suggesting the possibility that in some tissues
PDGF-D might even be the primary ligand for PDGFR- .

When searching the more exact role for the CUB-domain in PDGF-D, our results
indicated that the CUB domain does not mask receptor binding epitopes in a CUB-
VEGF chimeric factor, although such chimera blocked PDGF-D binding to
PDGFR-  and formed heterodimers with PDGF-D. The chimeras formed dimers
not only with each other, but also with full length PDGF-D, demonstrating that
CUB-domains regulate dimer formation specificity. Interestingly, a small amount of
heterodimers was also detected, which included one processed polypeptide and
another one, which was full length.

While previous studies showed that unprocessed PDGF-D has no receptor binding
activity, our experiments employing the various recombinant PDGF-D proteins
indicate that the ability of the N-terminally fused CUB domain to inhibit receptor
binding cannot be transferred to the related VEGF growth factor. CUB-VEGFs as
well as CUB domain alone seems to block PDGF-D binding to PDGFR-  but not
to PDGFR- . This specificity may reflect the fact that the affinity of PDGF-D to
PDGFR-  is lower than to PDGFR- , and thus more easily disturbed. This raises
also the question of the role of the CUB-domain cut loose during the processing of
PDGF-D. Could it have some kind of blocking effect, binding to full length PDGF-
D, forming heterodimers and blocking further processing? This would also provide
some explanation to the functional role of an alternatively spliced form of PDGF-D
which has no PDGF-homology domain. This splice form has been cloned from
mice, but not yet from humans Zhuo et al., 2003 , our unpublished data . This
would also explain the fact that when expressed in mammalian cells, always almost
exactly half of the full length PDGF-D is processed to mature form and the other
half stays intact.
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PDGF-AA
PDGF-AB
PDGF-BB

PDGF-CC
PDGF-DD

PDGF-BB

PDGF-DDPDGF-DD

PDGF-AB

α βα ββα

PDGF-BB
PDGF-CC

Figure 5. Binding of PDGFs to PDGFRs. PDGFRs can form homo- and
heterodimers. PDGFs form five different dimeric isoforms.

2. The structure, chromosomal location and expression patterns of human
PDGFD gene I, II

We obtained human genomic clones of PDGFC and PDGFD from PCR based
screening of P1 artificial chromosome libraries. By sequencing these clones we were
able to determine the exon/intron structure of both genes Figure 6 . PDGFD
consists of 7 exons, PDGFC of 6. Both genes start with a long untranslated sequence
in exon 1, which also encodes the signal peptide. Exons 2 and 3 encode the CUB
domain and are  58% identical. Exons 6 and 7 of PDGFD encode the
PDGF/VEGF homology domain and are  57% identical with PDGFC exons 5 and
6, which encode the homology domain. The main difference between the otherwise
closely related sequences is exon 4 of PDGFD, which contains sequences that
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cannot be identified in PDGFC. This exon encodes residues which are part of the
hinge area between the CUB domain and the PDGF/VEGF homology domain. The
rest of the hinge region is encoded by exon 5 exon 4 in PDGFC . This part of the
hinge region contains a conserved basic sequence motif RKS/K, which may be one
of the targets of proteolytic cleavage needed for releasing of the active form of
PDGF-D.

208 218118 114181196Coding bp

STOP(370)ATG

124 205 181 63 199 215

CCCCGC CC

1 2 3 4 5 6 7
PDGFD

123

STOP (345)ATG

Exon 1 2 3 4 5
PDGFC

CCCCCC CC

6

Figure 6. The genomic organization of PDGFC and PDGFD. Exons shown
are numbered and the length of each coding sequence is marked in bp. Start ATG
and stop codons and polypetide lengths are marked. Signal sequences SS  are shown
in blue, CUB domains in green and PDGF/VEGF homology domains in red.

Genomic clones were also used to find the chromosomal locations of PDGFD and
PDGFC genes. PDGFD was localized to human chromosome 11q22.3 to 23.1 and
PDGFC to 4q32.

The vascular expression patterns of these novel genes were investigated using
antibodiesgenerated against them, and signals from PDGF-D were detected in the
advetitial connective tissue layer of the suprarenal artery, while PDGF-C was
present in the smooth muscle cell SMC  layer. This result was consistent with the
expression patterns in cultured SMCs and fibroblasts.

We analysed the expression of PDGF-D mRNA transcripts in several human tissues
by northern blotting. This showed an approximately 4.0 kb transcript, highest
expression levels occurring in heart, pancreas and ovary. Slightly lower expression
levels were present in the placenta, liver, kidney, prostate, testis, small intestine,
spleen, thymus, colon and peripheral blood leucocytes. No expression was detected
in the brain, lung or skeletal muscle.

 Tissue expression of PDGF-D was also investigated immunohistochemically in
developing mouse embryos during mid-gestation E14.5 . This showed PDGF-D
expression in several tissues, including the developing heart and kidneys. In the
developing kidney we observed a strong staining of the fibrous capsule that
surrounds the embryonic kidney and the metanephric mesenchyme of the cortex.

We also found that these novel PDGFs are expressed in several tumor cell lines.
The 4.0 kb transcript of PDGF-D was present most strongly in a lung alveolar
carcinoma and in breast and prostate carcinoma cell lines.
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Because of the involvement of the PDGFs in blood vessel development and in the
pathogenesis of arteriosclerosis Betsholtz and Raines, 1997; Ross, 1993 , it was of
interest to find expression of the PDGF-C and PDGF-D mRNAs in cultured
microvascular endothelial cells. PDGF-D was found in the adventitial connective
tissue surrounding the suprarenal artery, suggesting that it provides a paracrine
ligand for the arterial SMCs. The biological activity of recombinant PDGF-C and
PDGF-D was confirmed in human coronary artery SMC cultures, where both of
these factors stimulated cell proliferation/survival. In previous studies, both PDGF-
A, which transduces signals via PDGFR- , and PDGF-B, which transduces signals
via both PDGFR- , PDGFR-  and via their heterodimers have been shown to
mediate SMC proliferation stimuli. Several antagonists specific for PDGF or its
receptors have recently been developed and shown to inhibit intimal hyperplasia
formation in various animal models, predominantly via increased SMC apoptosis
and possibly also via interference with SMC migration Leppanen et al., 2000 . Thus
it can be speculated that via their ability to stimulate the PDGFRs, PDGF-C and
PDGF-D could also be involved in the intimal SMC accumulation in
arteriosclerosis.

The role of PDGF-D in the course of embryogenesis is still to be deduced, and will
remain so until the knock-out model is complete and analysed. Our results show
that it is expressed during embryogenesis and has a likely a role during the
development of the heart and kidney.

The PDGF-C and PDGF-D mRNAs were also expressed, along with PDGF-A and
PDGF-B mRNAs, in several tumor cell lines, but the variable expression patterns
seen in a subset of the cell lines indicates that these genes are differently regulated.
The PDGFs secreted by tumor cells could be responsible for some of the stromal
proliferative or so-called desmoplastic reactions around tumors. Others have
obtained similar results regarding the possible involvement of PDGF-D in tumors,
its expression has been detected from a variety of tumors other than those studied
by us LaRochelle et al., 2002 . There has results suggesting involvement of PDGF-
D in prostate cancer, with PDGF-D acting as a potential oncogene Ustach et al.,
2004 .

3. Overexpression of PDGF D induces macrophage accumulation in
normal skin and wound healing and increases the interstitial fluid
pressure III

No obvious differences were detected by macroscopic inspection of the skin of K14-
PDGF-D transgenic mice and their wild type littermates. Epidermal thickness,
dermal cellularity, and blood and lymphatic vessel numbers were similar in
transgenic and wild type skins. Whole mount immunohistochemistry for smooth
muscle actin arteries and larger veins  and microlymphangiography using
fluoresecent dextran lymphatic vessels  showed no differences between the
transgenic and wild type mice. Instead, large numbers of macrophages accumulated
under the skin of transgenic mice. On average the transgenic mice had 3.7 ± 0.4 fold
more macrophages in the skin than their wild-type littermates. No differences were
found in the numbers of granulocytes or B- and T-lymphocytes in the skin or in the
different leukocyte populations in the peripheral blood, neither was there a
difference in the total number of mononuclear cells or monocytes in the circulation.
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There was no difference in the re-epithelialization of  the skin punch biopsy wounds
between the transgenic and wild type mice. When the number of cells in the
granulation tissue were counted from identical surface areas under the
hyperproliferative epithelium in corresponding areas of the wounds, the cellular
density was in general greater in the K14-PDGF-D positive mice. Total cell influx
into the wound area was greatest in the transgenic mice during the first four days
after wounding, being maximally a 39% increased in the transgenic mice, but the
difference did not reach statistical significance during the later stages of wound
healing.

 The most significant difference between the wounds of the transgenic and wild
type mice was the number of macrophages. During the first four days after
wounding, there was no difference in macrophage influx, but between days five and
seven the macrophage numbers started to decrease in the granulation tissue of wild
type mice, while they continued to increase in the transgenic mice. The number of
macrophages peaked on day seven, being about twofold greater in the transgenic
mice, and this difference persisted until day ten. No endogenous PDGF-D mRNA
was found in the wounds by RT-PCR. This is consistent with the recent report that
PDGF-D is not present in platelets Fang et al., 2004 . In the wound granulation
tissue there was no difference detected in number of blood- or lymphatic vessels
between the transgenic and wild-type mice.

 We analyzed the effects of acut e overexpression of PDGF -D in adult skin and
muscle. For this analysis, AAV vectors encoding the full-length PDGF-D DFL  or
the activated form N  lacking the CUB domain were generated and first tested in
vitro. AAV vectors encoding PDGF-B and HSA were used as controls.

 No difference in blood vessel numbers or the amount of c onnective tissue could be
detected in the injected region. However, when the viruses were injected into mice
transplanted with GFP-marked bone marrow cells from a donor of the same mouse
strain, a strong accumulation of GFP positive cells was detected in the ears injected
with AAV-PDGF-DFL or AAV-PDGF-D N and a weaker accumulation in the ears
injected with AAV-PDGF-B. Such an accumulation did not take place in ears
injected with AAV encoding HSA or with PBS alone. Immunohistochemical analysis
indicated the presence of numerous macrophages in the AAV-PDGF-D or AAV-
PDGF-D N injected muscle, but much less in AAV-PDGF-B or AAV-HSA injected
muscles.

PDGF-B has been shown to raise dermal IFP to a normal level after it has been
lowered for example by anaphylaxis Rodt et al., 1996 . The inhibition of the
PDGFR-  signaling lowers interstitial hypertension in tumors Pietras et al., 2001 ,
and increases the efficacy of chemotherapy Salnikov et al., 2003 . In the K-14-
PDGF-D mice the IFP measured from the dermis was between -1.0 and -1.5 ±
0.136  in transgenic mice and -1.1 and -2.1 mmHg ± 0.065  in wild type mice. This
increase in skin IFP of the transgenic mice was statistically significant.

Our results show that enforced PDGF-D expression in skin increases macrophage
recruitment into the unperturbed skin, and that this effect was enhanced during the
wound healing process. We also observed extensive macrophage accumulation in
skeletal muscle injected with AAV-PDGF-D, whereas much less accumulation was
observed in AAV-PDGF-B injected muscle. These results are consistent with
studies showing that PDGF-B induces macrophage migration via the PDGFR-
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receptor Siegbahn et al., 1990 , although PDGF-D seems to be a more potent
chemoattractant for these cells.

Macrophages are known to play an important role in wound healing by producing a
variety of growth factors and cytokines and by phagocytosing cellular and matrix
debris Rappolee et al., 1988 . PDGF purified from platelets accelerates wound
healing by stimulating the chemotaxis and proliferation of fibroblasts, smooth
muscle cells, neutrophils and macrophages Pierce et al., 1991 . These effects are
mediated via the activation of PDGFR- , which is upregulated in connective tissue
cells and epithelial cells during the repair process, explaining the higher
accumulation of cells to wounded areas of the transgenic mice Antoniades et al.,
1991; Reuterdahl et al., 1993 . In addition to smooth muscle cells and macrophages
also fibroblasts, which form a major part of the granulation tissue, express PDGFR-

 Heldin and Westermark, 1999 . The recombinant soluble PDGF-D could provide
another tool to modulate wound healing via this receptor.

IFP affects capillary fluid filtration and the filling of lymphatic vessels. Many solid
tumors demonstrate interstitial hypertension, thus making the delivery of many
anticancer drugs more difficult. Our results are consistent with the fact that
PDGFR-   is essential for the maintenance of steady-state IFP Wiig, 1990 . Many
solid tumors demonstrate interstitial hypertension, thus making the delivery of
many anticancer drugs more difficult. Our results are consistent with the fact that
PDGFR-  is essential for the maintenance of steady-state IFP Pietras et al., 2001 .
Together with earlier results, these define the role of the PDGFR-   and its ligands
in maintaining and controlling IFP.

4. PDGF D in blood vessel maturation during angiogenesis III

To investigate the contribution of PDGF-D to vessel stabilization, we tested AAV-
PDGF-D in combination with AAV producing the angiogenic endothelial mitogen
VEGF-E. We observed that AAV-VEGF-E induced a strong angiogenic response
and that the AAV-VEGF-E infected ears had enlarged vessels. SMA stained vessels
showed a loose, irregular coating by smooth muscle cells arrows in Figure 7  in
comparison to AAV-HSA infected ears. Ears injected with a combination of AAV-
PDGF-D and AAV-VEGF-E displayed the normal tight structure of the smooth
muscle layer, this is similar to when AAV-PDGF-B was used with AAV-VEGF-E.
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AAV-PDGF-D + AAV-VEGF-EAAV-VEGF-E

Figure 7. Whole mount staining for SMA of AAV infected ears. The
arteries from AAV-VEGF-E infected ears show an irregular coating by SMCs.
When AAV-PDGF-D is included the vessels appear normal, a tight SMC layer
structure.

In mouse gastrocnemius muscle infected with AAV-VEGF-E alone the vessels were
enlarged, and,  compared to the vasculature of the untreated mice, the SMC coating
was irregular. When AAV-VEGF-E was administered in combination with AAV-
PDGF-D or with AAV-PDGF-B, the vessels were still enlarged but the SMC
coating was thick and regular.

When tested for vascular leakiness by injecting FITC-Dextran into the tail vein, the
vessels in the ears treated with the combination of AAV-PDGF-D or AAV-PDGF-
B and AAV-VEGF-E had reduced leakiness in comparison to the vessels formed in
the ears injected with AAV-VEGF-E alone. By contrast, a VEGF-E induced
increase in blood capillaries was unaffected by AAV-PDGF-D or AAV-PDGF-B,
which, when used alone, did not appear to have any effect on the smooth muscle cell
coating or permeability of the vessels.

There has been a recent report on the angiogenic potential of PDGF-D Li et al.,
2003 . In our experiments PDGF-D alone was not angiogenic in the ear or skeletal
muscle, but when expressed together with VEGF-E, which can induce a strong
angiogenic response, it promoted stabilization of the newly generated, enlarged and
leaky vessels induced by VEGF-E alone. This effect may be due to the PDGF-D
induced stimulation of the proliferation and migration of SMCs, which we have
shown for coronary artery SMCs in vitro II . Since our results indicate that PDGF-
D has a significant ability to regulate macrophage recruitment, and that both
PDGF-D and PDGF-B improve the SMC coating of angiogenic blood vessels and
decrease their permeability, it follows that PDGF-D may prove useful in the
development of therapeutic tools for the treatment of wounds and for blood vessel
stabilization in tissue engineering and various proangiogenic therapies to counteract
tissue ischemia.
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CONCLUDING REMARKS

Angiogenesis and the molecules involved in it have been under investigation for
many years now. Over the years several published results have shown how
significantly angiogenesis and angiogenetic factors are involved in tumorigenesis and
vascular diseases. It was therefore particularly interesting to discover a new member
of the growth factor family that has a central role in this field.

 Our first results confirmed that PDGF-D is a close relative of the other members
of the PDGF/VEGF family of growth factors, and we were able to analyse the
structure and organization of the PDGFD  gene and its receptor activation
capability, and, after later results somewhat completed the picture, we were really
able to start exploring its function in vivo, and any possible uses in proangiogenic
therapies.

Our results indicate that mature PDGF-D has similar receptor binding properties as
PDGF-B and that the major difference between the two growth factors is the CUB
domain and its possible role in controlling the cleavage of PDGF-D. We were also
able to clarify the role and significance of the CUB domain in PDGF-D and its
closest relative, PDGF-C. The removal of the CUB domain is necessary for PDGF-
D to become active, and we showed that its removal process controls how much
active PDGF-D there is available.

Considering the major role of macrophages in the formation of atherosclerotic
lesions, and the ability of PDGF-D to recruit them, it would be very interesting to
investigate the role of PDGF-D in the formation of these lesions and atherosclerosis
in general, to see if the blocking of PDGF-D possibly have any therapeutic effect.

This study gives first answers of the involvement of PDGF-D in some pathological
conditions, such as wound healing process, and possible future usage as part of some
therapies such as wound healing, growing of new, functional, blood vessels or
chemotherapy.
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