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ABSTRACT

The genetic aetiology of colorectal cancer (CRC) is one of the best characterized of
all human cancer types. Genes involved in cell cycle regulation or DNA error repair
systems have been shown to predispose to familial CRC. Most of the identified
susceptibility alleles are rare in the general population and may thus explain only a
minority of all CRC cases. However, the more prevalent but less well characterized
low-penetrance susceptibility alleles could associate with a majority of heritable
cases. More information on the specific low-penetrance susceptibility alleles is thus
required.

CRC progresses via two main pathways: the chromosomal instability (CIN) and
microsatellite instability (MSI) pathways. Most CRCs display CIN with gross
chromosomal alterations but the exact mechanisms initiating the instability phenotype
are not well characterized. A smaller subset of the CRCs display MSI, i.e. small
deletions or insertions in short repetitive regions of the genome, as a result of
defective DNA mismatch repair (MMR) system. This study aimed at identifying the
molecular mechanisms involved in CRC predisposition and progression in both of the
instability pathways.

Novel susceptibility loci were sought by identifying commonly deleted or amplified
regions in familial CIN CRC cases. Especially chromosome 20g13 was seen to
harbour amplifications more frequently in familial than in sporadic CRCs indicating
the possible existence of novel predisposing oncogene(s) within that amplicon. A
20013 gene AURKA was chosen for further analysis since it has been suggested to
function as a low-penetrance susceptibility gene. A 91A-specific amplification pattern
was observed in the familial cases. Furthermore, a trend between younger age at
diagnosis and 91A was observed, supporting the role of this alele in CRC
predisposition.

Around 15% of all CRCs display MSI and are associated with inactive MMR genes
MLH1 or MSH2, and less frequently PMS2 or MSH6. Causative mutation has not
been identified in a subset of the MSI cases, indicating the possible involvement of
other genes. We investigated the putative role of MMR gene MLH3 in CRC
predisposition. A patient with mild CRC clustering in the family harboured a germline
missense mutation that was not found in the cancer-free controls. The variant is not an
attractive disease-causing candidate, thus MLH3 does not seem to play a major role in
CRC predisposition.

We investigated the possible role of SEMGL1 as a novel target for microsatellite
mutations in MSI CRCs. Although frequently mutated, the SEMG1 microsatdlite
mutations do not seem to be selected for during tumorigenesis. Intergenic
microsatellites were studied to obtain information on the general background mutation
frequency of MSI CRCs. One microsatellite was frequently mutated, indicating that
mutation frequency alone cannot be utilized to identify true MSI target genes.



REVIEW OF THE LITERATURE

1. Cancer genetics and epigenetics

Cancer originates from a single cell that acquires a clonal growth advantage over the
surrounding cells. Additional genetic and epigenetic changes occurring in the progeny
cells facilitate malignant transformation by producing genetically and biologically
abnormal cells. This clonal progresson model of cancer indicates that cancer
formation requires several changes in a given cell (Nowell 1976). Thus age is a
prominent factor in cancer susceptibility (Miller 1980) but cancer risk is higher in
individuals with an inherited genetic predisposition.

Malignant transformation is a result of exogenous and endogenous factors disrupting
cellular homeostasis normally controlled by the cell cycle, differentiation, and
apoptosis pathways. It has been suggested that dmost all cancer types display the
following six features untypical of normal cells: self-sufficiency in growth signals,
insensitivity to growth inhibitory signals, evasion of apoptosis, limitless replication
potential, sustained angiogenesis, and metastasis (Hanahan and Weinberg 2000).
These abnormal cellular features are caused by alterations in tumour suppressor genes
and oncogenes that control the cellular homeostasis in an antagonist manner.

1.1 Tumour suppressor genes

Tumour suppressor genes inhibit abnormal cells from progressing in the cell cycle.
Inactivation of both alleles of a tumour suppressor gene is required for uncontrolled
cell growth, thus tumour suppressor genes are recessive a the cellular level
(Knudson's two-hit hypothesis) (Knudson 1971). Individuals with an inherited tumour
suppressor gene mutation are at a higher cancer risk because all cells harbour one
inactive allele. Inherited mutations in tumour suppressor genes are typically small
changes such as point mutations or small insertions/deletions. The second alteration
affecting the wild-type allele is often larger, such as deletion of a whole chromosome.

A haploinsufficiency model suggests that inactivation of one allele of certain tumour
suppressor genes is enough to promote tumorigenesis. Evidence of some
haploinsufficient tumour suppressor genes have been obtained, for example the
colorectal cancer (CRC)-associated genes PTEN and LKB1 (Di Cristofano et al. 1998,
Miyoshi et al. 2002, Rossi et al. 2002). Loss of the wild-type allele might provide a
further growth advantage to the affected cells as suggested by the more frequent
LKB1 loss of heterozygosity (LOH) observed in carcinomas than in polyps (Entius et
al. 2001).

Tumour suppressor genes can be divided into three groups. gatekeepers, landscapers,
and caretakers (Kinzler and Vogelstein 1997, Kinzler and Vogelstein 1998).
Gatekeepers control cell growth by inhibiting cell cycle progression and promoting
apoptosis of abnormal cells. Landscaper gene mutations affect the cellular
microenvironment (stromal cells) rather than growth pattern of the neoplastic cells
themselves. Caretaker tumour suppressor genes are involved in controlling genomic
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stability by repairing DNA errors (Kinzler and Vogelstein 1997, Kinzler and
Vogelstein 1998).

1.1.1 DNA repair genes

DNA repair genes are caretaker tumour suppressor genes involved in controlling
genomic stability. Exogenous and endogenous factors, such as radiation, reactive
oxygen species, and DNA replication and recombination, constantly cause DNA
sequence alterations that need to be corrected in order to maintain proper cellular
functions. An array of DNA repair systems have been identified with at least five
main DNA error correction mechanisms functioning in human cells: 1. base excision
repair (BER) corrects residues modified by endogenous agents, 2. nucleotide excision
repair (NER) restores mainly helix-distorting errors caused by environmental
mutagens, 3. mismatch repair (MMR) corrects nucleotide mismatches and small
insertion/deletion loops (IDLs) generated during DNA replication or recombination,
4. direct repair reverses DNA damage, and 5. double-strand break repair (DSBR)
corrects breakage in the double helix (Hoeijmakers 2001, Friedberg 2003). Mutations
in BER, NER, MMR, and DSBR genes have been shown to be causative in cancer
predisposition syndromes, such as MYH-associated colorectal polyposis, xeroderma
pigmentosum (XP), hereditary non-polyposis colorectal cancer (HNPCC), and breast
cancer, respectively (Al-Tassan et al. 2002, Friedberg 2003).

1.2 Oncogenes

Oncogenes are excessively active counterparts of cellular proto-oncogenes
functioning as, for example, growth factors, growth factor receptors, intracellular
messengers, or transcription factors. Oncogenes promote cell proliferation by
inducing mitosis and inhibiting differentiation and apoptosis. Gain of function
mutations, such as point mutations, amplifications, or chromosomal rearrangements
transform proto-oncogenes into excessively active oncogenes. Oncogenes function in
a dominant manner, hence activating mutation in the other allele is sufficient to
promote tumorigenesis (Bishop 1991).

Inherited oncogene mutations are rare, possibly because of negative selection pressure
during embryonic development. Some known exceptions are germline mutations in
RET, MET, CDK4, and KIT that have been found causative in cancer predisposition
syndromes multiple endocrine neoplasia type 2 (MEN2) (Donis-Keller et al. 1993,
Mulligan et al. 1993), hereditary papillary renal carcinoma (HPRC) (Zuo et al. 1996),
familial malignant melanoma (FMM) (Schmidt et al. 1997), and familia
gastrointestinal stromal tumour (GIST) syndrome (Nishida et al. 1998), respectively.

1.3 Epigenetic factors

Tumorigenic processes can also advance through epigenetic changes that affect gene
expression levels without directly altering the DNA sequence. Epigenetic events such
as dtered methylation patterns, pos-trandational modification of histones, or
arrangement of nucleosomes can lead to inactivation of tumour suppressor genes,
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activation of oncogenes, or atered imprinting patterns (Lund and van Lohuizen
2004).

A prime example of an epigenetic event affecting tumour formation is the
hypermethylation of MLH1 promoter frequently observed in sporadic CRCs with
microsatellite instability (MSI) (Kane et al. 1997, Cunningham et al. 1998, Herman et
al. 1998, Veigl et al. 1998). Hypermethylation seems to be the main mechanism of
MLH1 inactivation in sporadic MSI CRCs (Kane et al. 1997, Cunningham et al. 1998,
Herman et al. 1998, Veigl et al. 1998). MLH1 inactivation abrogates normal MMR
functions and results in a mutator phenotype due to the accumulation of microsatellite
mutations. Other genes, for example MGMT and CDKN2A are also frequently
hypermethylated already in adenomas of the colon (Petko et al. 2005).

Regulation of gene expression via loss of imprinting (LOI) has also been implicated
in CRC (Kinouchi et al. 1996). Retained biallelic expression of IGF2 has been linked
to uncontrolled cell growth (Ogawa et al. 1993) and increased CRC risk (Cui et al.
2003).

2. Cancer susceptibility

Although a majority of cancer cases occur sporadically, hereditary counterparts of
many cancer types have been identified (Vogelstein and Kinzler 2004). The risk of
developing cancer is higher in individuals with an inherited predisposition. The total
risk is dependent on the mode of inheritance, penetrance, contributing genetic factors
(modifier genes), as well as on dietary, lifestyle, and environmental factors. Most of
the cancer susceptibility syndromes have an autosomal dominant mode of inheritance
but some rare examples of autosomal recessive syndromes exist, such as the MYH-
associated colorectal polyposis (Al-Tassan et al. 2002). Inheriting a high-penetrance
susceptibility allele increases cancer risk per se. Cancer families with mutations in
high-penetrance genes are often characterized by: 1. younger age at onset than
patients with sporadic disease, 2. bilateral disease or multiple disease sites in one
organ, 3. multiple primary malignancies, 4. occurrence of cancer in the less usually
affected sex, 5. cancer clustering in the family, and 6. cancer patients displaying other
rare conditions (Marsh and Zori 2002). In comparison, the risk conferred by a low-
penetrance susceptibility allele is influenced more by other genetic alterations and
environmental factors. Therefore cancer usually manifests later and the degree of
familial clustering islower than for high-penetrance mutations (Kemp et al. 2004).

A single gene can harbour both high- and low-penetrance susceptibility alleles, as
exemplified by the different sequence alterations in APC associated with diverse CRC
risks and phenotypic manifestations. Different APC alterations can predispose either
to: 1. a numerous amount of adenomatous polyps in familial adenomatous polyposis
(FAP) patients with a near 100% risk of developing CRC if untreated (Kinzler and
Vogelstein 1996), 2. a less severe polyposis phenotype and CRC risk in attenuated
familial adenomatous polyposis (AFAP) patients (Kinzler and Vogelstein 1996), or 3.
a modest, 1.5-2 fold increased CRC risk without an associated polyposis phenotype
for example in Ashkenazi Jewish populations (Locker and Lynch 2004).
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First-degree relatives of cancer patients with many common cancer types are at a 2-3
fold increased risk of developing cancer at the same site (Peto and Houlston 2001).
Much of this familial aggregation is due to inherited susceptibility (Lichtenstein et al.
2000). Lichtenstein et al. (2000) estimated the heritability of cancer at 28 anatomical
sites by studying almost 45000 twin pairs. The contribution of heritable factors was
highest in prostate, colorectal, and breast cancer. An estimated 42% of the total
prostate cancer risk was attributed to heritable factors, and the estimates for colorectal
and breast cancer were 35% and 27%, respectively (Lichtenstein et al. 2000).

3. Familial colorectal cancer

Colorecta cancer (CRC) is the third most common cancer type and the fourth most
common cause of cancer deaths worldwide (Parkin et al. 2005). CRC is more
prevalent in the Western countries possibly due to environmental and dietary factors
(Potter 1999). Hereditary factors have an important role in CRC with an estimated
35% of the total risk attributed to inherited susceptibility (Lichtenstein et al. 2000).

To date, a number of CRC susceptibility syndromes have been characterized that can
be divided into two main groups based on the presence or absence of polyposis.
Polyposis syndromes can be further divided into adenomatous and hamartomatous
polyposis based on the disease phenotype. MYH-associated polyposis, familial
adenomatous polyposis (FAP), and its variants attenuated familial adenomatous
polyposis (AFAP), Gardner syndrome, and Turcot syndrome (TS) are characterized
by adenomatous polyposis. Hamartomatous polyposis syndromes juvenile polyposis
(JP), Peutz-Jeghers syndrome (PJS), Cowden syndrome (CS), and its variant
Bannayan-Riley-Ruvalcaba syndrome have lower cancer risk than in adenomatous
polyposis syndromes. The non-polyposis syndromes hereditary non-polyposis
colorectal cancer (HNPCC) and its variants Muir-Torre syndrome (MTS) and Turcot
syndrome are typically devoid of florid polyposis.

The most common and best characterized hereditary CRC syndromes FAP and
HNPCC will be described in more detail in the following sections.

3.1 Familial adenomatous polyposis, FAP

FAP is characterized by the formation of hundreds, even thousands of adenomatous
polyps and microadenomas in the large intestine already in adolescence or early
adulthood. If untreated, colorectal cancer formation is inevitable by the early forties
due to florid polyposis (Fearnhead et al. 2001). FAP is caused by mutations in APC
(Groden et al. 1991, Nishisho et al. 1991). APC acts as a negative regulator of -
catenin in the WNT signalling pathway (Munemitsu et al. 1995). B-catenin in turn
interacts with TCF and LEF transcription factors that control the expression levels of
many genes, including oncogene c-Myc (He et al. 1998). Most APC mutations result
in C-terminally truncated protein products with abrogated -catenin binding (Kinzler
and Vogelstein 1996). This leads to constitutive upregulation of the WNT signalling
target genes (Korinek et al. 1997). Furthermore, truncated APC cannot promote the
assembly of microtubules (Munemitsu et al. 1994, Smith et al. 1994) and may thus
contribute to chromosomal instability (Fodde et al. 2001, Kaplan et al. 2001).
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FAP patients display highly variable clinicopathological characteristics. For example,
the number of polyps, age at cancer onset, and extracolonic manifestations such as the
occurrence of desmoid tumours can vary between but also within families. This can
be partly explained by the mutation spectrum of APC. For example, mutations leading
to severe polyposis phenotype and early age at onset occur mostly in the central
region of the gene (Nagase et al. 1992, Caspari et al. 1994, Gayther et al. 1994). In
comparison, attenuated FAP is associated with mutations in the first or last third of
APC (Spirio et al. 1993, Friedl et al. 1996, van der Luijt et al. 1996). The phenotype
of FAP patients with the same APC mutation may also vary within and between
families. This could be accounted for by inaccurate diagnosis, variability in the micro-
or macroenvironmental conditions, or modifier genes (Houlston et al. 2001, Crabtree
et al. 2002).

3.1.1 FAP modifier genes

Crabtree et al. (2002) compared phenotypes between close and more distant relatives
with FAP and found evidence to support the existence of genetic modifiers of the
disease. The modifier hypothesis is further supported by studies on Min (multiple
intestinal neoplasia) mouse model of FAP. Moml and Mom_2, the modifier loci of
Min, have been localized by linkage analysis to mouse chromosomes 4 and 18,
respectively (Dietrich et al. 1993, Silverman et al. 2002). No evident mouse modifiers
in Mom2 locus have been identified to date (Silverman et al. 2003) but in Moml
locus, the variants of Pla2g2a (Pla2s) and Myh have been seen to modify polyp
number (MacPhee et al. 1995, Sieber et al. 2004). However, the human homologs
PLA2G2A or MYH do not seem to modify the FAP phenotype (Dobbie et al. 1996,
Tomlinson et al. 1996, Plasilova et al. 2004, Kairupan et al. 2005). In humans,
variants of N-acetyltransferases NAT1 and NAT2 have been suggested to modify the
FAP phenotype (Crabtree et al. 2004).

3.2 Hereditary non-polyposis colorectal cancer, HNPCC

HNPCC patients are typically devoid of florid polyposis and adenoma development
seems to be as frequent as in the general population. The aggressive adenoma theory
of Jass (1995) suggests that the adenomas progress into carcinomas more rapidly
and/or more often than in the general population. The culprit behind this accelerated
tumour formation in HNPCC patients is defective mismatch repair (MMR) system
unable to correct the small insertion/deletion mutations frequently generated during
the replication of repeat sequences. Because the mutations cannot be corrected,
malignant transformation is promoted because of accumulating microsatellite
mutations (microsatellite instability, MSI) in genes involved in cell growth,
differentiation, and apoptosis.

HNPCC is caused by monoallelic germline mutations of MMR genes and subsequent
somatic hits that render the MMR system inactive. Germline mutations in MMR
genes MLH1, MSH2, PMX2, and MSH6 have been found causative in HNPCC (Fishel
et al. 1993, Leach et al. 1993, Bronner et al. 1994, Nicolaides et al. 1994,
Papadopoulos et al. 1994, Akiyama et al. 1997a, Miyaki et al. 1997, Worthley et al.
2005). A majority of HNPCC cases are caused by mutations in MMR genes MLH1
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and MSH2 (Peltomaki and Vasen 2004). Although most mutations (81%) are unique
and specific to each family (Peltoméki and Vasen 2004), there are some founder
mutations in, for example, the Ashkenazi Jews (Foulkes et al. 2002), Finns (Nystrom-
Lahti et al. 1995), and Newfoundlanders (Froggatt et al. 1999). Altogether 13% of the
mutation positive cases seem to be associated with three of the most common MLH1
and MSH2 mutations (Peltoméki and Vasen 2004).

HNPCC is a somewhat misleading designation due to the occurrence of cancer in a
number of other tissue types as well. Hence, the name Lynch syndrome has been used
in parallel. The syndrome is associated with an increased cancer risk of, for example
endometrium, stomach, ovary, ureter/rena pelvis, small bowel, and hepatobiliary tract
(Watson and Lynch 1993, Aarnio et al. 1995). The risk of developing CRC or
endometrial cancer seems to be highest. Cumulative CRC risk values ranging from
54% to 100% have been obtained, partly depending on the mutated gene in question,
and endometrial cancer risk estimations have varied between 24% and 62%
(Quehenberger et al. 2005). Quehenberger et al. (2005) suggest, however, that the
previously presented CRC risks were overestimations due to the inclusion of mostly
high risk families in the analyses.

Phenotypic manifestations in a given HNPCC family seem to be dependent on the
mutant MMR gene in question. MSH2 mutation carriers might be at higher risk of
developing cancer at any site than MLH1 mutation carriers (Vasen et al. 1996, Vasen
et al. 2001). CRC risk associated with MSH6 seems to be lower than for MLH1 or
MSH2, but the risk of endometrial cancer could be higher (Wijnen et al. 1999,
Hendriks et al. 2004). Mutations in PMS2 have been previously identified mostly in
families with features of Turcot syndrome (Peltomé&ki and Vasen 2004) but were
recently identified also in a bone fide HNPCC family (Worthley et al. 2005). Similar
to FAP patients, HNPCC patients with identical mutations can display different
disease phenotypes indicating the importance of environmental factors and/or
modifier genes.

The role of MMR genes other than MLH1, MSH2, PMX2, and MSH6 has been
considered since a fraction of the HNPCC cases do not seem to associate with these
genes (Liu et al. 1996). The implications of PMSL, MLH3, and MSH3 mutations are
however not clear. It has also been postulated that using expression-based mutation
detection methods, the known predisposition genes might be found to be causative in
a fraction of the previously seemingly mutation negative cases (Renkonen et al.
2003).

3.2.1 Amsterdam and Bethesda criteria

Amsterdam criterial were proposed in 1991 to facilitate the identification of HNPCC
families (Vasen et al. 1991). In 1999, the Amsterdam criteria | were supplemented to
contain the extracolonic features associated with HNPCC (Vasen et al. 1999). The
Amgerdam criteriall are asfollows:

At least three family members should be affected with an HNPCC-associated

cancer (CRC, cancer of the endometrium, ureter, renal pelvis, or small bowel)
and in addition, the following criteria should be met:
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one patient should be afirst-degree relative of the other two patients

at least two successive generations should be affected

at least one of the associated cancers should be diagnosed before age 50
FAP should be excluded

pathological examinations should verify the tumours

The Bethesda guidelines were introduced in 1997 to help specifying the tumours that
should be tested for M SI, atypical characteristic of HNPCC. The Bethesda criteria are
based on age at diagnosis, pathological characteristics, family history, and the
presence of extracolonic tumours (Rodriguez-Bigas et al. 1997). In 1998, a Bethesda
panel consisting of five microsatellite markers BAT25, BAT26, D5S346, D2S123,
and D17S250 was introduced to unify M SI-testing (Boland et al. 1998). Interpretation
of the results obtained with the Bethesda panel was proposed as following:

= if two or more markers display ingtability, high level MSI (MSI-H) is scored
= if ingability is detected with one marker, low level MSI (MSI-L) is scored
= if al markers are stable, microsatellite stability (MSS) is scored

In case of MSI-L, additional markers should be analyzed. MSI-L could be scored if
less than 30% of the markers show MSI (Boland et al. 1998).

The revised Bethesda guidelines introduced in 2004 suggest that more
mononucleotide repeats could be analyzed to increase the detection sensitivity of
MSI-H tumours (Umar et al. 2004). Furthermore, MSI-L specific markers, such as
MYCL, could be used. However, the division of CRCs into three distinct groups based
on the degree of microsatellite instability has been a matter of debate (Umar et al.
2004). Thisissue will be discussed in the following chapter.

4. Geneticinstability in colorectal cancer

CRC arises from a stem cell in the colonic crypt and the earliest identifiable lesion is
an aberrant crypt focus (ACF). The progression into carcinoma proceeds via two main
pathways, chromosomal instability (CIN) pathway or the microsatellite instability
(MSI) pathway (Vogelstein et al. 1988, Fearon and Vogelstein 1990, Aaltonen et al.
1993, lonov et al. 1993, Thibodeau et al. 1993). Typically around 85% of all CRC
cases display CIN with gross chromosomal aberrations whereas the remaining 15%
display MSI with more subtle aberrations in microsatellites. FAP is atypical example
of a CRC syndrome displaying CIN whereas M Sl is a typical feature of HNPCC.

A mild MSI phenotype (MSI-L) characterizes a subset of CRC cases and they have
been suggested to constitute a distinct entity. Attempts to differentiate MSI-L from
MSS tumours according to their clinicopathological or molecular features have
produced conflicting results (Thibodeau et al. 1998, Jass et al. 1999, Halford et al.
2002, Laiho et al. 2002). It has also been suggested that if enough microsatellite
markers are analyzed, ailmost all CRCs display MSI-L (Halford et al. 2002, Laiho et
al. 2002). However, a subset of MSI-L CRCs seems to display distinct morphological
features including atypical saw-toothed or serrated epithelial structure. This epithelial
morphology characterizes also a small subset of MSS tumours suggesting the
heterogeneity of the so-called serrated pathway (Sawyer et al. 2002). The pathway
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depicts the progression of hyperplastic polyps to serrated adenomas and further to
serrated CRCs (lino et al. 1999, Jass 1999, Hawkins and Ward 2001). High incidence
of BRAF mutations in serrated polyps proposes the early involvement of BRAF in the
serrated neoplasia pathway (Chan et al. 2003). An expression analysis on serrated
CRCs suggests that they form not only morphologically but also biologically distinct
class of CRCs (Laiho et al, unpublished data).

4.1 Features of colorectal tumours arising through the CIN and MSI pathways

MSS or CIN CRCs are typicaly aneuploid, left-sided, behave aggressively, and
harbour characteristic mutations in, for example KRAS, APC, and TP53. In contrast,
MSI CRCs are predominantly diploid, right-sided, poorly differentiated, often
characterized by a strong lymphocyte infiltration, and harbour distinct mutations in,
for example TGFARIlI and BAX (Smyrk and Lynch 1999). Most of the published
studies suggest a better prognosis for patients with MSI CRC (Pawlik et al. 2004).

The clinicopathological and molecular differences between proximal and distal CRCs
might be partly explained by the different embryological origin and blood vasculature
of the colonic components. Differences in the colonic microenvironment might cause
a different cellular response to different genetic changes and environmental factors
(Bufill 1990, Bardelli et al. 2001, Glebov et al. 2003).

4.2 Adenoma-carcinoma sequence

The clonal progression of CIN CRCs is depicted by the adenoma-carcinoma sequence
(Figure 1) (Vogelstein et al. 1988, Fearon and Vogelstein 1990). Multiple alterations
in both oncogenes and tumour suppressor genes are required for malignant
transformation. Although the alterations often seem to follow a distinct sequence, the
number of changes seems to be the critical aspect rather than the actual order of the
molecular alterations (Fearon and Vogelstein 1990).

The primary alterations in the adenoma-carcinoma sequence affect APC. APC
mutations or 5q LOH targeting APC have been detected already in a large proportion
of early adenomas, but equally frequently also in carcinomas (Vogelstein et al. 1988,
Powell et al. 1992, Ledlie et al. 2002). Mutations in oncogene KRAS are found equally
frequently in large adenomas and carcinomas, but less frequently in small adenomas
suggesting the role of KRAS in promoting growth rather than initiating tumorigenesis
(Vogelstein et al. 1988, Ledlie et al. 2002). KRas is involved in controlling cellular
proliferation and differentiation pathways.

In addition to 5q deletions, 18q LOH is a frequent event in CRC tumorigenesis.
Approximately 70% of carcinomas and a smaller proportion of early adenomas
harbour 18q deletions (Vogelstein et al. 1988, Boland et al. 1995, Ledlie et al. 2002).
The most likely target genes for 18 deletions are SMIAD2 and SVIAD4 or the
previoudly proposed DCC (Ledlie et al. 2002). Both SMADs are involved in the TGF-
B signalling pathway regulating for example cell growth, differentiation, and
apoptoss (Heldin et al. 1997). Loss of chromosome 17p that targets TP53 is also
frequently observed in CRCs (Vogelstein et al. 1988, Leslie et al. 2002). TP53
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alterations are more frequent in carcinomas than in adenomas indicating the possible
association of defective p53 in adenoma-carcinoma transition. p53 maintains genomic
stability by controlling cell cycle progression and apoptosis.

Progression into metastatic CRC requires additional molecular changes in order for
the tumour to invade surrounding tissues, be released into the circulation, and
colonize new sites such as the liver. The exact molecular events controlling CRC
metastasis are not fully known. The involvement of, for example, PRL-3 and multiple
factorsin the WNT/B-catenin pathway has been suggested (Brabletz et al. 2001, Rivat
et al. 2003, Zeng et al. 2003, Pai et al. 2004, Dhawan et al. 2005). Furthermore,
recent protein expression comparisons between primary CRCs and hepatic metastases
identified 9 differentially expressed proteins, such as proapolipoprotein and beta-
globin, with potential involvement in carcinogenesis and metastatic processes (Yu et
al. 2004).

SMAD2

SMAD4 Other
APC KRAS DCC TP53 genes
Normal » Dysplastic » Early » Intermediate » Late » Carcinoma » Metastasis
epithelium aberrant crypt adenoma adenoma adenoma

foci

Figure 1. The sequential progression model of CRC tumorigenesis. Modified from
Fearon and Vogelstein (1990) and Kinzler and Vogelstein (1996).

The exact mechanisms initiating CIN are not well known and over 100 candidate
genes have been proposed in yeast (Lengauer et al. 1998, Jallepalli and Lengauer
2001). Many of the candidate genes are involved in cell cycle checkpoints and some
of these genes, for example RAD17 and AURKA have been linked to tumorigenic
processes based on the observed overexpression in CRCs (Bischoff et al. 1998, Bao et
al. 1999). Furthermore, BUB1 and BUBR1 mutations have been observed in CRCs
(Cahill et al. 1998). In addition to the checkpoint genes, telomere integrity is known
to suppress CIN.

4.3 Microsatellite instability pathway

An alternative pathway of tumorigenesis is the microsatellite instability (MSI)
pathway caused by defective DNA mismatch repair sysem (MMR) (Figure 2). Cells
with inactive MMR genes, mostly MLH1 and MSH2, have approximately 100-fold
higher mutation frequencies (lonov et al. 1993, Strand et al. 1993, Bhattacharyya et
al. 1994, Shibata et al. 1994). The mutations following MMR inactivation can affect
genes important in for example cell cycle regulation and DNA repair. These events
are required for malignant transformation and occur before visible tumour formation
(Tsao et al. 2000, Shibata 2001). The number of microsatellite mutations can reflect
the pattern of tumour progression and serve as molecular tumour clocks (Shibata et al.
1996).
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There are several potential mutational targets in MMR deficient cells since
microsatellites are abundantly found in coding and non-coding regions of the human
genome (Toth et al. 2000). Microsatellite mutations have been observed in a number
of putative M SI target genes and the tumorigenic implications of these mutations have
been presented in some cases, such as TGFSRII and BAX (Wang et al. 1995, lonov et
al. 2000). Current knowledge on MSI target genes will be discussed in more detail in
section 4.3.2.

MLH1 TGFBRII, MSH3, MSH6, BAX,

MSH2 other genes
L »
I v
Normal epithelium Microsatellite-unstable carcinoma

Figure 2. Microsatellite-unstable colorectal cancer progression.

4.3.1 DNA mismatch repair, MMR

MMR sysem maintains genomic stability mainly by correcting single base
mismatches and small insertion/deletion loops (IDLs) that escape the nucleotide
selection and proofreading activities of DNA polymerases during DNA replication.
MMR proteins are also involved in: 1. inhibiting recombination of divergent DNA
sequences, 2. correcting errors caused by mutagens such as alkylating agents, 3.
participating in double-strand break repair as well as transcription coupled repair
together with NER proteins, and 4. regulating DNA damage signalling and apoptosis
(Harfe and Jinks-Robertson 2000).

MMR mechanisms are highly conserved in eukaryotes and prokaryotes. The E.coli
MMR system is the best characterized and multiple MutS, MutL, and MutH proteins
are known to function in mismatch recognition, mediating recognition and repair
processes, and targeting repair to the newly synthesized DNA strand, respectively. All
eukaryotic organisms studied to date have been shown to possess multiple MutS
homologs (MSH proteins) and MutL homologs (MLH proteins) but no convincing
MutH homologs have been identified (Harfe and Jinks-Robertson 2000).

In human error repair systems, mismatches are recognized by the MSH2/MSH6
complex (MutSe) and IDL recognition is mediated through MutSe and the
MSH2/MSH3 (MutSB) complex. Subsequently, MutS complexes interact with MutL
complexes MLH1/PMS2 (MutLa) and occasionally with MLHL/MLH3 or
MLHY/PMSL1 (MutLB). The MutL complexes mediate the error recognition to the
downstream events involved in error repair (Kolodner and Marsischky 1999, Marra
and Schar 1999, Harfe and Jinks-Robertson 2000) (Figure 3). The mechanism used to
recognize the newly synthesized strand in human cells is not known. In E.coli the
synthesized strand is transiently undermethylated but in humans the methylation
patterns are irregular. It has been postulated that replication of the lagging strand as
Okazaki fragments and formation of nicks during the process could aid in the
discrimination of the DNA strands. The leading strand could be identified by the
growing 3' end. The role of PCNA in strand recognition has also been suggested due
to the observed interaction with MMR proteins.
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Mismatch Insertion/deletion loop

Figure 3. Principal proteins involved in DNA mismatch repair in humans.
Interactions between MutS (MSH2/MSH6/MSH3) and MutL (MLHL/PMS2)
homologs mediate the recognition of base mismatches and insertion/deletion loops.
Modified from Marraand Schér (1999).

The excision of the newly synthesized DNA fragment containing the error involves
DNA exonuclease(s) and at least EXO1 has been linked to human MMR system
(Tishkoff et al. 1997). Resynthesis of the excised strand is mediated by DNA
polymerases and replication factors. DNA ligases subsequently complete the MMR
processes.

The functional redundancy of MMR proteins in error recognition has an impact on the
MSl status of tumours with mutations in different MMR genes. MLH1 or MSH2
deficient cells display high degree of MSI because of the involvement of these
proteinsin all MutL and MutS complexes, respectively. However, the variable degree
of MSI in MSH6 deficient tumours is explained by the ability of MSH2/MSH3
complex to compensate for the IDL correction.

Interestingly, homozygous germline mutations of MMR genes MLH1 and MSH2 have
been linked to neurofibromatosis type 1 and early onset haematological malignancy
(Ricciardone et al. 1999, Wang et al. 1999, Whiteside et al. 2002). Defective MMR
has been shown to render NF1 susceptible to somatic frameshift mutations (Wang et
al. 2003). Furthermore, a woman heterozygous for two different MLH1 missense
mutations developed breast cancer at the age of 35. The mild phenotype observed in
the patient might be due to aresidual MLH1 activity from the other allele (Hackman
et al. 1997).

4.3.2 MSl target genes

Cells with defective MMR system accumulate microsatellite mutations in both
noncoding and coding regions of the genome. If genes involved in controlling cell
growth or maintaining genomic integrity are affected, tumour progression may be
promoted. Generally these consequential mutations occur in coding microsatellites,
leading to the formation of altered protein products or their degradation via nonsense-
mediated decay (NMD). In addition to coding region mutations, mutations occurring
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in regulatory non-coding regions may also have an impact on the gene functions.
Usualy, however, non-coding microsatellite mutations are thought to be
inconsequential background events.

High mutation frequency has been considered as a useful criterion for defining true
MSI target genes (Boland et al. 1998). Other criteria suggested by Boland et al.
(1998) included functional evidence, biallelic inactivation, role in a growth suppressor
pathway, and inactivation of the same growth suppressor pathway in MSS tumours.
Some of these criteria have been questioned since. Monoallelic mutations might
suffice in case of haploinsufficiency or dominant negative effect (Liu et al. 2000,
Yamamoto et al. 2000). The affected genes might also have roles other than tumour
suppressor functions, as exemplified by somatic microsatellite mutations observed in
MMR genes MSH3 and MSH6. Of note, somatic inactivation of MSH3 and MSH6 has
been shown to further increase the instability phenotype (Akiyama et al. 1997b,
Baranovskaya et al. 2001, Duval et al. 2001). Furthermore, the pathways involved in
MSS and MSI tumours seem to differ. Hence, the most widely accepted criteria for
defining true MSI target genes have been high mutation frequency and functional
evidence.

Duval and Hamelin (2002) have suggested that genes mutated in MSI tumours could
be divided into four groups based on the observed mutation frequency and the roles of
the protein products. Survivor genes (1.) with essential cellular roles would be rarely
mutated due to negative selection pressure. Hibernator genes (2.) with unimportant
functions would accumulate mutations at the background level. The effect of co-
operator gene (3.) mutations would be emphasized when occurring in parallel with
mutations in other co-operator genes. Their mutation frequency would therefore vary
depending on the context in which they occur. The highest mutation frequencies
would be observed in transformator genes (4.) because the mutations confer a growth
advantage (Duva and Hamelin 2002).

The mutation frequencies of true MSI target genes can thus vary extensively
depending on their role in the affected cells. Furthermore, the mutation frequency of a
given microsatellite seems to be dependent on the repeat type and length, as well as
yet unknown influence from the surrounding sequence (Zhang et al. 2001, Suzuki et
al. 2002, Vilkki et al. 2002). It is important to study the general background mutation
frequency of MSI tumours to obtain information on the possible sequence elements
affecting replication fidelity. In addition, functional evidence has to be provided to
prove the importance of a given gene in MSI tumorigenesis (Perucho 2003).

To date, MSI tumours have been analyzed for microsatellite mutations in a large
number of genes, but only a handful of genes have been shown to contribute to the
MSI pathway of tumour progression. The first gene identified with somatic
microsatellite mutations was TGFARII. Subsequently, around 90% of MSI CRCs have
been shown to harbour TGFSRII mutations, often in a biallelic form (Parsons et al.
1995). Functional studies have indicated a loss of TGFARII tumour suppressor
function as a result of these repeat mutations (Wang et al. 1995). Furthermore,
TGFSRII mutations seem to be an early event in MSI tumorigenesis (Grady et al.
1998, Duval et al. 2001). In addition to TGFpRII, mutations in for example
proapoptotic factor BAX and growth factor receptor IGFRIlI have been shown to
contribute to MSI tumorigenesis (Souza et al. 1999, lonov et al. 2000).
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5. Prospects of CRC studies

The thus far identified hereditary polyposis and non-polyposis syndromes together
account for approximately 5% of all CRC cases (Burt and Neklason 2005). Novel
CRC susceptibility genes are still to be identified and evidence for putative loci on 9q
and 159 has been obtained (Tomlinson et al. 1999, Jaeger et al. 2003, Wiesner et al.
2003). The underlying high penetrant mutations are most likely rare in the general
population and are therefore causative in a minority of all CRC cases. In comparison,
the more frequent low-penetrance susceptibility alleles might contribute to a larger
proportion of all CRC cases.

L ow-penetrance genes confer a modestly increased cancer risk and mild clustering of
disease in the family. Therefore, the identification of causative genetic alterations
needs to be pursued by methods other than linkage, a successfully utilized method in
the identification of high-penetrance susceptibility genes (Houlston and Peto 2004).
Allelic association analyses of low-penetrance genes can be performed with much
smaller sample size than linkage analyses (Risch and Merikangas 1996, Camp 1997)
and the number of cases needed for association analysis would be even lower if
affected relatives were included in the analyses (Houlston and Peto 2003). In fact,
association analysis has been the most common method in identifying low-penetrance
susceptibility alleles (Houlston and Tomlinson 2001).

5.1 Candidate low-penetrance CRC susceptibility alleles

To date, multiple association analyses have been performed to estimate the CRC risk
conferred by sequence variants in different genes. With increasing numbers of
association analyses, some pooled analyses have also been undertaken to increase the
number of samples per polymorphism analyzed (Houlston and Tomlinson 2001, de
Jong et al. 2002, Chen et al. 2005).

One meta-analysis suggested APC 11307K as a candidate low-penetrance
susceptibility allele (Houlston and Tomlinson 2001). The APC 11307K change is
more frequent in CRC patients than in healthy controls in Ashkenazi Jewish
populations. The amino acid change creates a hypermutable poly-A tract that is easily
affected by a deletion or amplification event (Laken et al. 1997). In addition to APC
11307K, an association between HRAS'VNTR as well as MTHFR variants and CRC
risk has been suggested (Houlston and Tomlinson 2001, de Jong et al. 2002). HRAS
oncogene is involved in the mitogenic signal transduction and differentiation.
Variable number of tandem repeats (VNTR) located ~1kb downstream of HRAS has
been shown to interact with transcriptional regulatory elements and control the
expression levels of nearby genes. MTHFR in turn catalyzes the conversion of 5,10-
methylenetetrahydrofolate to 5-methyltetrahydrofolate which is the primary
circulatory form of folate. The availability of folate and other methyl group donors
has been suggested to affect methylation (Kim et al. 1996).

The role of GSTT1 genotype and NAT2 phenotype has also been suggested in two
meta-analyses (de Jong et al. 2002, Chen et al. 2005). GSTT1 and NAT2 are
carcinogen metabolism enzymes mediating defenses againgt a number of chemical
carcinogens and environmental toxins (Upton et al. 2001, Hayes et al. 2005).
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5.2 Identification of novel low-penetrance susceptibility alleles

A number of association studies have been performed to identify low-penetrance CRC
susceptibility alleles. The relative risk attributed to a given polymorphism varies
between the analyses and the meta-analyses discussed above. For example, the role of
MTHFR alleles in CRC was supported by Houlston and Tomlinson (2001) and de
Jong et al. (2002) but questioned by Chen et al. (2005). This may be due to different
composition of studies included in the meta-analysis. Furthermore, there may be
differences in the variables, for example ethnicity, gender, and tumour localization,
that were taken into account when assessing the relative risks. When assessing the
importance of a given polymorphism based on current literature, it has to be
remembered that publication bias might have hindered the publication of negative
results.

The limitation of association analysis is that in the absence of a good candidate
polymorphism, the number of associations tested can be prohibitively large and the
problem of multiple testing also rises. The number of markers needed for association
analysis with sufficient power is dependent on the extent of linkage disequilibrium
(LD) between a marker and a causal locus. Typically LD extends ~50-60kb in the
human genome but even further in populations with homogeneous gene pool (Reich et
al. 2001). The extent of LD can also be higher in young admixed populations that
have been formed by gene flow from two or more genetically distinct founding
populations (Stephens et al. 1994). Mixing of genetic materia creates LD between
linked but also unlinked loci that have different allele frequencies in the founding
populations. Therefore, methods to discriminate between spurious and true
associations need to be utilized (Pfaff et al. 2001).

Identification of low-penetrance cancer susceptibility genes can benefit from
advances in gene-mapping techniques in mice. Crosses between susceptible and
resistant strains have produced information on several mouse tumour susceptibility
loci (Demant 2003). Furthermore, studying the interactions between multiple
polymorphisms is much more straightforward in mice (Mao and Balmain 2003).
However, information obtained from mouse studies might not be applicable in
humans due to inter-species differences. This is exemplified by the discrepancies
between mouse and human studies on modifying factors of FAP, as discussed in
section 3.1.1.

For the reasons stated above, the identification of low-penetrance susceptibility alleles
is understandably a laborious effort. Since these alleles can occur frequently in the
general population, they can have a vast impact on general public hedlth. It is
therefore important to study the genotype-phenotype correlations and utilize novel
technologies, for example dense SNP maps, SNP arrays, and array-CGH in the
identification of the low-penetrance susceptibility alleles. Furthermore, prior
information on potentially interesting genomic positions or gene functions would
decrease the number of associations tested. A candidate genomic region may be
assigned by utilizing chromosomal clues of for example commonly deleted or
amplified genomic regions. Emerging novel technologies combined with novel
information from cellular pathways can facilitate the identification of low-penetrance
susceptibility alleles.

23



AIMSOF THE STUDY

Novel genes and loci associated with microsatellite stable colorectal cancer

predisposition

I Identification of novel susceptibility loci in familial colorectal cancer.

[ Role of AURKA in colorectal cancer susceptibility: a candidate gene selected
based on study I.

Causes and characteristics of colorectal cancers displaying microsatellite instability

[l Evaluation of the putative role of MLH3 in microsatellite-unstable colorectal
cancer.

vV Assessment of SEMGL1 as a candidate microsatellite instability target gene and

evaluation of the general background mutation frequency of microsatellite-
unstable colorectal cancers.

24



MATERIALSAND METHODS

1. Colorectal cancer patientsand DNA samples

The colorectal carcinoma and corresponding normal tissue samples utilized in studies
I-1V were chosen from sample series collected since 1994 (Aaltonen et al. 1998,
Salovaara et al. 2000, Laiho et al. unpublished data). The series contain samples from
altogether 1579 patients (at the time of the thesis' last project). Information on the
family background was obtained from official population registries and cancer
occurrence in the family from the Finnish Cancer Registries. A mgority (86%) of the
patients have no first-degree relatives affected with CRC. Familial cases were defined
as having at least one first-degree relative affected with CRC. Most of the families
display a mild CRC clustering. The samples and patient information were obtained
with approval from the Ethics committees of the Department of Medical Genetics,
University of Helsinki, Helsinki University Central Hospital, and Hospital District of
Helsinki and Uusimaa.

The normal tissue DNA was extracted from blood or normal colonic epithelium
distant from the tumour margins. The fresh frozen tumour tissue samples were
histologically evaluated by a pathologist before DNA extraction. Each tumour sample
undergoes an M S| analysis and of the currently established M S| cases, 22% (35/162)
harbour germline MLH1, MSH2, or MSH6 mutations (Aaltonen et al. 1998, Salovaara
et al. 2000, Loukola et al. 2001).

1.1 Common regions of allelic imbalance (1)

Normal and tumour tissue samples were analyzed with microsatellite markers to
detect common genomic regions of loss of heterozygosity/amplification (alelic
imbalance, Al). Samples from altogether 99 familial and 186 sporadic Finnish CRC
patients were utilized in study |. Polyposis cases (FAP, PJS, and JP) as well as
HNPCC and other cases with MSI were excluded from the study. All tumour samples
displayed at least 50%, and typically ~75%, of carcinoma tissue.

Additional normal tissue and CRC samples obtained from collaborators in Denmark
and UK were analyzed for Al with microsatellite marker D20S178. Samples from
altogether 18 familial and 24 sporadic cases from Denmark, and 67 familial and 96
sporadic cases from the UK were included instudy I.

1.2 Genetic analyses of AURKA (1)

Normal and tumour tissue DNA samples from 125 familial and 110 sporadic Finnish
MSS CRC cases were analyzed. Polyposis cases (FAP, PJS, JP, and M YH-associated
polyposis) as well as HNPCC and other cases displaying MSI were excluded from the
study. A majority (68%) of the cases had been analyzed for Al in study I. A majority
of the tumour samples (91%) displayed at least 60% carcinoma tissue.
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In addition, samples from 94 anonymous cancer-free blood donors provided by the
Finnish Red Cross Blood Transfusion Centre were utilized.

1.3 MLH3 mutation analysis (111)

Normal tissue DNA samples from 30 Finnish CRC patients displaying MSI were
included in study Ill. The samples were chosen based on the molecular features
suggested to be causally associated with MLH3 defects (Wu et al. 2001). Namely,
samples from 17 familial and 6 sporadic CRC patients were included, all of which
were stable when analyzed with mononucleotide repeat marker BAT26. In addition,
samples from all 7 available mutation-negative HNPCC patients were analyzed. The
mutation negative HNPCC samples were provided by Professor Paivi Peltomaki. A
tumour tissue sample from a patient with germline MLH3 Met809Va mutation was
analyzed. The tumour tissue sample displayed 70% carcinoma tissue.

In addition, samples from 713 anonymous cancer-free blood donors provided by the
Finnish Red Cross Blood Transfusion Centre were utilized.

1.4 Genetic analyses of SEMG1 and intergenic T9 repeats (1V)

Tumour tissue samples from 146 MSI CRC patients were utilized in study 1V. The
respective normal tissue samples available from 144 patients were also analyzed. In
addition, MSS CRC samples from 238 patients and normal tissue samples from 50
cancer-free blood donors from the Finnish Red Cross Blood Transfusion Centre were
utilized.

Most of the tumour samples used in study 1V (92%) contained > 50% carcinoma cells.
Altogether 20% of the MSI CRC patients included in study IV harbour germline

MLH1 or MSH2 mutations (Aaltonen et al. 1998, Salovaara et al. 2000, Loukola et al.
2001).

2. Cancer cdl lines(1V)

In study 1V, we utilized 31 cancer cell lines originating from colon (n=28), prostate
(n=2), and endometrium (n=1). Of the CRC cell lines, 10 displayed MS| and 18 were
MSS. Both prostate cancer cell lines as well as the endometrial cancer cell line
displayed MS!.

3. Analysis methods

3.1 Common regions of allelic imbalance (1)
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3.1.1 Microsatellite marker analysis

The Al frequency of familial and sporadic tumour sets was determined by using
microsatellite marker analysis. Normal and tumour tissue samples from 29 familial
and 75 sporadic CRC patients were analyzed with 372 microsatellite markers (ABI
PRISM Linkage Mapping Set MD-10, P/N 450067, 10 cM density, Applied
Biosystems (AB) Division, Foster City, CA). The DNA samples were amplified using
fluorescent labelled primers and run on an ABI PRISM 377 DNA Sequencer (AB)
according to manufacturer’s instructions. The fragments were analyzed using
GeneScan 3.1 and Genotyper 2.5 programs (AB). The samples displaying Al were
determined using the previously published mathematical model (Canzian et al. 1996).
In effect, Al was scored if the other allele emitted at least 40% less fluorescence.
From this primary dataset of 372 markers, those markers showing the most promising
association of Al and familial CRC were further analyzed using additional normal and
tumour tissue samples from 70 familial and 111 sporadic CRC patients.

The samples obtained from collaborators in Denmark and UK were analyzed with one
specific microsatellite marker, D20S178, to determine the Al frequencies in the
familial and sporadic groups.

3.1.2 Comparative genomic hybridization

Data from a previously performed, unpublished CGH analysis was utilized to obtain
information on the mechanisms underlying Al. Tumour samples from 26 of the
familial patients were fluorescent labelled and co-hybridized with a differently
labelled normal tissue DNA to metaphase chromosomes.

3.1.3 Quantitative PCR

Quantitative PCR (gPCR) experiments with TagMan chemistry were performed on
tumour tissue DNA samples from 26 familial and 26 stage and sex matched sporadic
cases. The familial cases were already included in the CGH analysis. DNA was
amplified using primers for microsatellite marker D20S178 and the PCR products
were run on a GeneAmp 5700 Sequence detection system (AB). The relative copy
numbers on chromosome 20 were determined relative to three normal tissue samples.
As a reference, we used microsatellite markers D10S586, D11S1315, and D21S1904
from genomic regions stable according to the Al analysis.

3.2 Genetic analyses of AURKA (1)

3.2.1 AURKA sequencing

The AURKA coding region and exon-intron borders were sequenced in the normal
tissue DNA from 10 familial CRC patients. The DNA samples were amplified and run
on an ABI3730 automatic DNA sequencer according to manufacturer’s instructions
(AB). The frequency of the observed sequence variants was assessed by sequencing a
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larger normal tissue sample set from additional familial and sporadic CRC patients.
The occurrence of the sequence variants was also assessed in Finnish cancer-free
controls by sequencing.

3.2.2 Amplification analysis by sequencing and fragment analysis

After identifying AURKA sequence variants, we analyzed the possible preferential
amplification of either allele in the heterozygous individuals by sequencing or
fragment analysis. The PCR fragments were run on an ABI3730 automatic DNA
sequencer according to manufacturer’s instructions (AB). The sequence graphs were
analyzed with Chromas 2.21 (Technelysium Pty Ltd, Queensland, Australia) and the
fragment analysis graphs with GeneMapper 3.0 (AB). Amplification scoring was
performed according to Canzian et al. (1996).

3.3 MLH3 mutation analysis (I11)

3.3.1 MLH3 sequencing and denaturing high-performance liquid chromatography
(dHPLC) analysis

MLHS3 sequence variants were screened in the normal tissue DNA of 30 CRC patients
by sequencing the coding region and exon-intron borders. The PCR fragments were
run on an ABI3100 according to manufacturer’s instructions (AB). The possible
occurrence of the detected sequence variants was assessed in Finnish cancer-free
controls by dHPLC. For dHPLC, the PCR fragments were denatured and reanneal ed,
and the heteroduplex analysis was performed using automated HPL C instrumentation
with an Agilent 2G experimental dsDNA 2.1 X 75 mm 3.5u column (Agilent, Palo
Alto, CA). Samples displaying aberrant dHPLC graphs were sequenced to verify the
alterations.

The previoudly published MLH3 germline alterations (Wu et al. 2001) were aso
screened in the Finnish cancer-free controls by dHPLC.

3.4 Genetic analyses of SEMG1 and intergenic T9 repeats (1V)

3.4.1 SEEMG1 sequencing and denaturing high-performance liquid chromatography
(dHPLC) analysis

The occurrence of SEMG1 IV S2+5(T)9 mutations was determined by sequencing and
dHPLC. Tumour samples from 121 MSI and 21 MSS CRC patients were analyzed by
sequencing and a set of 93 MSI and 230 MSS CRCs were analyzed by dHPLC. Some
of the tumour samples were analyzed using both methods to confirm their SEMG1
status. Altogether 146 MSI and 238 M SS tumour samples were analyzed. As controls,
we assessed the normal tissue DNA of 144 MSI CRC patients and samples from 50
Finnish cancer-free controls by sequencing.

The coding region and exon-intron borders of SEMG1 were screened for other
possible sequence variants by sequencing (exons 2 and 3) and dHPLC (exon 1). We
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analyzed 20 MSI CRCs, 20 MSS CRCs, and 7 céll lines including 5 MSI CRC, 1
MSS CRC, and 1 MSI endometrial cancer cell line. Samples producing aberrant peaks
in dHPL C were sequenced.

3.4.2 Evaluation of SEMG1 mRNA levels by quantitative PCR

The possible effect of the SEMG1 IVS2+5(T)9 mutation at the RNA level was
assessed by gPCR with SYBR Green chemistry. RNA from six CRC cell lines was
extracted and the generated cDNA was amplified using cDNA-specific primers. The
PCR amplifications were monitored using a GeneAmp 5700 Sequence detection
system (AB). The SEMGL1 expression levels were determined relative to the GAPDH
expression levels using the formula 2*4“* (ABI PRISM 7700 Sequence Detection
System User Bulletin #2, AB).

3.4.3 Evaluation of SEMGL1 protein levels by Western blotting

The putative effect of the SEMG1 1VS2+5(T)9 mutation at the protein level was
assessed by Western blotting. Total protein was extracted from cell lysates and cell
culture media of six CRC cell lines. From each cell line, equal amounts of total
protein were loaded into a 10% Tris-HCI gel. Tota protein was blotted on a polyvinyl
membrane and SEMGL1 was detected using a polyclonal SEMG1 antibody (Biocarta,
San Diego, CA). Total protein staining and the GAPDH protein levels were used as
running controls. The protein band intensities were measured using a FluorChem8800
imaging system (Alpha Innotech, San Leandro, CA).

3.4.4 Sequencing of intergenic T9 repeats

The general background mutation frequency of MSI CRCs was assessed by
sequencing a panel of 29 MSI CRCs for mutations in ten intergenic T9 repeats. To
exclude polymorphisms, the respective normal tissue samples of patients harbouring
mutations in the T9 repeats were sequenced.
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RESULTS

1. Common regions of allelicimbalance (1)

After analyzing the 29 familial and 75 sporadic Finnish CRC cases with a genome-
wide panel of 372 microsatellite markers, the Al frequencies for each marker in
familial and sporadic patient groups were calculated. Markers indicating an
association between familial cancer and Al were chosen for further analysis. Namely,
10 markers from separate genomic areas were chosen, 7 of which showed at least
10% units more Al in the familial group than in the sporadic group and the adjacent
marker showed such a difference as well. The 7 markers selected from each cluster
were the ones showing the biggest difference in the Al frequencies between familial
and sporadic groups. Furthermore, 3 markers were chosen that harboured near 30%
units more Al in the familial group although the adjacent markers showed equal Al
frequencies in both groups.

In the second round of analysis, new samples from 59 familial and 64 sporadic cases
were analyzed with the 10 markers. Combining results from the two rounds indicated
an association between Al on chromosome 20 and familial cancer. The remaining
available familial cases (n=11) and a set of sporadic cases (n=47) were then analyzed
with the chromosome 20 markers. Altogether, the 99 familial and 186 sporadic cases
indicated a significant difference (p < 0.01) in the Al frequencies between familial
and sporadic patients on 20q13 marker D20S178.

Subsequently, the frequency of Al on D20S178 was determined in sample sets from
other populations. The small Danish set of 18 familial and 24 sporadic cases showed a
significant difference (p=0.002) between the two groups. However, Al was observed
equally frequently in the groups consisting of 67 familial and 96 sporadic cases from
the UK (p=0.68).

Based on CGH analysis performed on 26 familial CRCs, amplifications rather than
deletions were underlying Al on chromosome 20g. Amplifications on 20g were found
in 85% of the tumours. gPCR experiments on 26 familial and 26 sporadic cases
indicated that amplifications were equally common in familial (72%) and in sporadic
(73%) CRCs.

2. Analyses of AURKA (11)

We sequenced the coding region and exon-intron borders of AURKA, a candidate
CRC susceptibility gene on chromosome 20g13. Sequencing of normal tissue DNA
samples from 10 Finnish familial CRC patients revealed 3 missense variants
(Phe3llle, Val57lle, and Met373Val) and a 61bp duplication in intron 4 (1VS4+2-
62dup). To determine the allele frequencies of these sequence variants, we analyzed
altogether 125 familial and 110 sporadic samples for the occurrence of Phe3llle,
Val57lle, and 1V34+2-62dup variants. The Met373Val variant was screened in 42
familial and 46 sporadic cases. The allele frequencies of each sequence alteration
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were similar in the familial and sporadic patient groups, as well as in the 94 cancer-
free controls (Table 1).

Table 1. AURKA allele frequencies in the Finnish CRC patients and cancer-free
controls.

Sequence alteration Allele frequency % (no. of cases)
Familial CRCs Sporadic CRCs Cancer-free controls

IV S4+2-62dup 18/82 17/83 20/80

(++/+-1--) (3/39/83) (2/33/75) (6/26/62)

91T>A, Phe3llle 74/26 70/30 72/28

(TT/TAIAA) (70/44/11) (52/50/8) (46/43/5)

169G>A, va5s7lle 82/18 83/17 80/20

(GGIGA/AA) (83/39/3) (75/133/2) (62/26/6)

1683A>G, Met373Vvad 91/9 95/5 90/10

(AA/AGIGG) (34/7/0) (40/4/0) (76/18/0)

The allele specific amplification patterns of the four sequence alterations were
assessed in the heterozygous individuals. The amplification frequencies of 91T>A
(Phe31lle) alleles were significantly different from the expected (p=0.03) (Table 2),
whereas the other variants did not show allele specific amplification patterns. The
amplification of 91A was more pronounced in the familial group (p=0.03) than in the
gporadic group (p=0.36) (Table 2). Subsequently, the clinicopathological
characteristics of the familial and sporadic CRC patients were compared with respect
to the genotypes at each variant. The only correlation observed was a trend between
younger age at diagnosis in the group consisting of familial heterozygous carriers and
homozygous individuals for the more rare 91A allele (p=0.06).

Table 2. Frequencies of AURKA 91T>A genotypes in the Finnish familial and
gporadic CRC cases. The proportion of amplified alleles in the tumour samples is
depicted.

Samplesanalyzed (no. Genotype frequencies A amplified T amplified p
of samples) TTITA/AA

Familid CRCs(125)  70/44/11 20/44 (45%) 5/44 (11%)  0.03
Sporadic CRCs (110)  52/50/8 18/50 (36%)  11/50 (22%) 0.36
Combined (235) 122/94/19 38/94 (40%) 16/94 (17%) 0.03

We assessed aneuploidy of the tumours by combining results from studies | and I1.
Aneuploidy was scored in a given chromosome arm if Al was detected in at least 50%
of the informative markers. In chromosomes 9q, 11q, 13g, and 20q, more Al was
observed in tumours from 91T>A heterozygous than 91T homozygous individuals
with p-values of 0.04, 0.02, 0.01, and 0.007, respectively. However, Al on 2q was
observed more frequently in tumours from 91T homozygous individuals with a p-
value of 0.01.

31



3. MLH3 mutation analysis (I11)

Sequencing of the MLH3 coding region and exon-intron borders in the normal tissue
DNA of 30 Finnish CRC patients revealed 5 missense variants. Phe390lle, Val420lle,
Glu624GIn, Met809Val, and Aspl105Glu. The allele frequency of each variant was
1.7% (Table 3). Variants Phe390Ile, Val420lle, Glu624GIn, and Aspl1105Glu were
detected in the Finnish cancer-free controls with allele frequencies of 0.6%, 1.1%,
1.1%, and 0.2%, respectively. The Met809Val variant found in a familial case with
mild MSI was not found in the 713 cancer-free controls analyzed by dHPLC (Table
3). No LOH was observed in the tumour tissue of the patient harbouring the
Met809Val change.

In the cancer-free control samples, 3 missense variants Asp385His, Thro42lle, and
Ser966Pro were detected with allele frequencies of 0.6%, 0.9%, and 0.9%,
respectively (Table 3). These variants were not identified in the CRC patients normal
tissue DNA.

Table 3. Allele frequencies of MLH3 germline variants identified in Finnish CRC
patients and cancer-free controls.

MLH3variant No. of CRC patients No. of cancer-free controls

(allele frequency) (allele frequency)

Asp385His 0/30 1/90 (0.6%)
Phe390Ile 1/30 (1.7%) 1/90 (0.6%)
Val420lle 1/30 (1.7%) 2/90 (1.1%)
Glu624GIn 1/30 (1.7%) 4/180 (1.1%)
Met809Val 1/30 (1.7%) 0/713

Thr942lle 0/30 3/174 (0.9%)
Ser966Pro 0/30 3/174 (0.9%)
Aspl105Glu 1/30 (1.7%) 1/268 (0.2%)

The previously published 10 MLH3 variants were also screened in the cancer-free
controls with an emphasis on the frameshift mutation 2578delA (Wu et al. 2001). One
of the published variants, Glu624GIn, was observed in one normal tissue sample from
a Finnish CRC patient and was also found in the cancer-free controls with an allele
frequency of 1.1%. The other sequence variants detected by Wu et al. (2001) were not
detected in the Finnish cancer-free controls. A total of 707 control samples were
analyzed for the 2578del A alteration.

4. Genetic analyses of SEMGL1 and intergenic T9 repeats (1V)

SEMGL1 intron 2 T9 repeat [IVS2+5(T)9] mutations were observed in 51% (75/146)
of the MSI tumours analyzed. None of the successfully analyzed respective normal
tissue samples (n=141) displayed the mutations. Furthermore, no alterations were
detected in the 238 M'SS tumours or in the 50 cancer-free controls. In the 31 cell lines
studied, only MSI cell lines were affected with a mutation frequency of 62% (8/13)
(Table 4).
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A possible second hit was screened by sequencing the SEMG1 coding region and
exon-intron bordersin 20 MSI CRCs, 20 MSS CRCs, and 7 cell linesincluding 5 MSI
CRC, 1 MSS CRC, and 1 MSI endometrial cancer cell line. We observed 5 sequence
variants C1386T, Argd47His, Argd57GIn, C1417T, and IVS2+30A>G that were
present also in the respective normal tissue DNA. The sequence alterations were also
found in the cancer-free controls with similar allele frequencies.

The putative effects of the IVS2+5(T)9 mutations were analyzed at the RNA and
protein levels. No differences were detected in the RNA or protein levels or sizes
between the six CRC cell lineswith different SEMGL1 1V S2+5(T)9 status.

The clinicopathological characteristics of the MSI CRC patients with (n=75) and
without (n=71) the IVS2+5(T)9 mutations were compared. No correlations were
observed between the mutation status and age at onset, sex distribution, location or
staging of the tumour, or presence of germline MMR mutation.

Subsequently, the general background mutation frequency of MSI CRCs was assessed
by sequencing 29 MSI CRCs for mutations in ten intergenic T9 repeats.
Polymorphisms were excluded by screening the respective normal tissue samples
from those patients displaying mutations in the tumour samples. After analyzing the
tumour and normal tissue samples, we detected mutation frequencies of 0% for
AL161657, 7% for AC103870, 10% for AL445240, 10% for AC108706, 27% for
AP002759, 28% for AP002801, 29% for AC008163/1, 30% for AC008163/2, 27%
for AC004006, and 86% for AC027013. Due to the high mutation frequency inthe T9
repeat in AC027013, we extended our analysis to include a total of 145 MSI CRCs
and respective normal tissue samples. Mutation frequency of 70% (102/145) was
observed in the tumour samples, whereas none of the 143 available and successfully
analyzed normal tissue samples displayed the mutation (Table 4).

Table 4. Frequency of SEMG1 and AC027013 T9 mutations.

Samples analyzed Mutation frequency, % (no. of cases)
SEMG1 AC027013

MSI CRCs 51 (75/146) 70 (102/145)
MSS CRCs 0 (0/238) nd
Cancer cdl lines

MSI CRC 70 (7/10) nd

MSS CRC 0 (0/18) nd

MSI prostate 0 (0/2) nd

MSI endometrial 100 (1/12) nd
Normal tissue samples 0 (0/141) 0 (0/143)
Cancer-free controls 0 (0/50) nd

nd=not determined
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DISCUSSION

1. Novel colorectal cancer susceptibility loci (1)

The known polyposis and non-polyposis CRC syndromes together account for
approximately 5% of all CRC cases. Since an estimated 35% of all CRCs can be
attributed to heritable factors, the existence of novel susceptibility genes is evident
(Lichtenstein et al. 2000). Linkage studies performed in the past decade further
support the existence of novel genes predisposing to CRC. For example, linkage
against known CRC susceptibility loci was observed in 10 families with excess
clustering of the disease (Lewis et al. 1996). Furthermore, linkage to novel loci on 9q
and 15q has been obtained by analyzing affected siblings or Ashkenazi families,
respectively (Tomlinson et al. 1999, Jaeger et al. 2003, Wiesner et al. 2003). Most of
the familial CRC clustering might be explained by a number of more prevalent low-
penetrance susceptibility alleles. Implications for the general public health can be vast
thus making the identification of these novel susceptibility genes important.

There are typically only two affected core family members in the non-syndromic CRC
families of our sample collection. The underlying predisposing genes therefore confer
a modestly increased cancer risk. ldentification of these genes is best performed by
means other than linkage analysis, especially since samples are mostly available only
from the proband. Therefore, a genome-wide microsatellite marker analysis was
performed to obtain information on commonly deleted or amplified regions, to form a
basis for candidate gene analysis. This approach is based on the notion that Al can be
detected more frequently in the familial cases at a given susceptibility locus. This
allelotyping approach has the advantage that it does not require multiple samples from
affected relatives. Although this method may be hampered by genetic heterogeneity, it
is feasible in homogeneous populations. The Finnish population is ideal for this kind
of studies due to founder effect, population isolates, and genetic drift that together
have formed the gene pool homogeneous. Furthermore, this approach identified 13q
deletions especially in familial breast cancer cases prior localizing the 13g gene
BRCAZ2 associated with breast cancer susceptibility (Thorlacius et al. 1991, Wooster
et al. 1995).

We used a genome-wide microsatellite marker panel to allelotype Finnish familial
CRCs with mild clustering of cancer in the family, as well as Finnish sporadic CRCs.
All samples used in this study were from patients with MSS CRC. Furthermore,
known polyposis cases were excluded from the analyses. We identified a significant
difference in the Al frequencies between familial and sporadic cases on chromosome
20g13. From the microsatellite marker analysis graphs, it is difficult to interpret
weather deletions or amplifications are causing the difference between the allele
intensities. Based on our CGH experiments, the imbalances detected on 20913 were
caused by amplifications indicating a potential oncogenic mode of action for the
putative CRC susceptibility gene within the affected region.

When assessing the frequency and amplitude of amplifications in the familial and

gporadic CRCs by gPCR, both familial and sporadic cases seemed to harbour
amplifications equally frequently. The gPCR method utilized here cannot separate the
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aleles. Therefore, both alleles of sporadic CRCs might be frequently amplified
whereas amplifications seem to preferentialy target the other dlele in the familial
cases. Similar phenomenon has been seen with preferential amplification of a mutant
MET dlele in papillary renal cell cancer indicating the importance of mutant MET
allele copy number in cancer formation (Fischer et al. 1998).

In previous studies, 20q amplifications have been detected in sporadic CRC cases
from different populations but this is the first time amplifications were seen in excess
in familia cases. Subsequently, sample sets obtained from CRC patients from
Denmark and UK were analyzed for imbalances on 20g13. The small Danish set gave
similar results but the UK set showed no differences between the familial and
sporadic groups. These results indicate the possibility of inter-population variation
due to the involvement of different susceptibility genes or modifying factors (genetic
or environmental) in different populations.

The p-values obtained from the Al frequency comparisons between familial and
sporadic groups have not been corrected for multiple testing. It is acknowledged that
the probability of finding significant correlations increases with increasing numbers of
comparisons made. However, the utility of, for example Bonferroni adjustments for
multiple testing can be questioned. Although it protects from the type | errors (false
positives), typically type Il errors increase and true associations can be missed
especidly if the number of testsis high.

The identification of 20gl3 amplifications preferentially in the familial CRCs
suggests the presence of putative oncogene(s) predisposing to CRC within the
amplicon. Some candidate CRC genes reside within the amplicon. For example,
AURKA has recently been suggested to function as a low-penetrance susceptibility
gene (Ewart-Toland et al. 2003) and ZNF217 copy number changes have been linked
to poorer survival and metastatic potential (Hidaka et al. 2000, Rooney et al. 2004).
Furthermore, the potential tumorigenic role of other less well characterized genes
within the 20913 amplicon cannot be overlooked. Identification of the causative gene
alterations would benefit from a more detailed delineation of the amplified region by
using for example a more dense microsatellite marker map or array-CGH.
Furthermore, expression analysis of genes within the amplicon and discovery of
sequence alterations within candidate genes followed by association analyses might
facilitate the identification of causative alterations.

2. AURKA, a novel low-penetrance susceptibility gene (11)

In study I, alele specific amplifications of 20913 were seen more frequently in
familial than in sporadic CRC cases indicating the possible existence of novel
susceptibility gene(s) within the amplicon. A recently published association analysis
suggested a role for 20913 gene AURKA in CRC predisposition (Ewart-Toland et al.
2003). AURKA located within a genomic region orthologous to a mouse quantitative
trait locus (QTL) associated with cancer susceptibility. Analyses on unselected CRC
and healthy control individuals of Northern European ancestry indicated a trend
between 91T>A (Phe3llle) change and higher CRC risk. The potential tumorigenic
role of the sequence alteration was highlighted by a stronger transforming potential of
the 91A allele in cell culture experiments. Furthermore, a preferential amplification of
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91A allele was detected together with a more aneuploid phenotype of the tumours
from heterozygous individuals. The 91T>A change could therefore affect the normal
function of AURKA in chromosome segregation (Zhou et al. 1998, Ewart-Toland et
al. 2003). AURKA is also involved in the p53 pathway by controlling the degradation
of p53 together with MDM2 (Katayama et al. 2004). AURKA overexpression leadsto
an increased degradation of p53 which in turn leads to downregulation of cell cycle
checkpoint pathways and oncogenic transformation of affected cells (Katayama et al.
2004).

Since the study of Ewart-Toland et al. (2003), association analyses on other cancer
types have produced similar results emphasizing the role of AURKA as a low-
penetrance susceptibility gene (Dai et al. 2004, DiCioccio et al. 2004, Miao et al.
2004, Sun et al. 2004). The results have been somewhat conflicting as to weather the
91T>A change contributes solely or in combination with other AURKA changes.
However, a recently published meta-analysis on several cancer types revealed a
significantly increased cancer risk in 91T>A heterozygous individuals (Ewart-Toland
et al. 2005)

In study 11, the presence of possible AURKA sequence changes and their preferential
amplification patterns were evaluated in samples from CRC patients with and without
family history of the disease. The samples used in this study were from patients with
non-syndromic MSS CRC. Prior to this study, confirmation to the preferential
amplification of 91A had not been pursued and the role of AURKA had not been
evaluated in familia cancer.

Sequencing of the AURKA coding region and exon-intron borders revealed 3 missense
changes (Phe3llle, Va57lle, and Met373Val) and a 61bp duplication in intron 4
(IV$4+2-62dup). The frequency of these alterations was assessed in a larger set of
normal tissue samples from familial and sporadic patients and the amplification
patterns were evaluated in the heterozygous individuals. The frequency of each
sequence variant was similar in both familial and sporadic groups as well as in cancer-
free controls. The amplification patterns of 169G>A (Val57lle), 1683A>G
(Met373Val), and 1VHA+2-62dup did not differ from the expected. Consistent with
previous findings, the 91A allele was more frequently amplified than the 91T allele in
the heterozygous individuals (p=0.03). As a novel finding, a difference between the
familial and sporadic groups was detected: in the familial group, the amplification of
91A dlele was significantly more frequent (p=0.03) whereas in the sporadic group a
non-significant p-value of 0.36 was obtained.

Patients with different AURKA genotypes were compared within the familial and
sporadic groups to find possible genotype-phenotype correlations. Comparisons were
carried out between patients homozygous for the common allele and patient group
containing both heterozygous carriers and homozygous patients for the rarer dlele.
No indications were obtained for the tumorigenic role of Val57lle, Met373Val, or
IV S4+2-62dup changes from comparisons of age at diagnosis, sex, tumour location,
or gaging of the tumour. However, familial 91T>A heterozygotes and 91A
homozygotes were diagnosed at a younger age than familial patients with the more
common 91T genotype (p=0.06). This trend was not seen in the sporadic group.
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Ewart-Toland et al. (2003) further observed that tumours from 91T>A heterozygous
individuals were more aneuploid, a finding that has not been confirmed to date. We
combined the results from studies | and |1 to evaluate the ploidy of each tumour with
respect to the AURKA genotype. We obtained evidence in favour of more frequent
chromosomal imbalances on 9q, 11q, 13g, and 20q in heterozygous individuals.
However, chromosome 2q was more aneuploid in tumours from 91T homozygous
individuals.

In study 11 we sought for a potential target gene for the 20g13 amplification observed
in study I. We evaluated the most promising candidate AURKA but, understandably,
other possible amplification targets may exist. Other putative candidates, such as
ZNF217 could be analyzed to further elucidate the implications of the observed
amplification. However, the results produced in study Il indicate that the 20913
amplifications target AURKA in an allele-specific manner and support the role of the
91T>A change in CRC predisposition. The difference in the amplification patterns of
AURKA 91T and 91A alleles between the familial and sporadic groups indicates that
the 91A dlele could have a more pronounced effect in cases with family history of the
disease. A modifying genetic factor could further emphasize the effect of 91A change
in the familial patients. Further analyses are thus warranted.

3. Role of MLH3 in microsatellite-unstable colorectal cancer (111)

Mutations in the MMR genes MLH1 and MSH2 have been shown to underlie a
majority of the HNPCC cases whereas a smaller proportion is due to mutations in
MMR genes PMS2 and MSH6 (Peltoméki and Vasen 2004). Causative mutations have
not been detected in a subset of the families meeting the Amsterdam criteria,
indicating the possible involvement of additional gene(s) in MSI CRC (Liu et al.
1996). In 2000, the identification of a human homolog of the S. cerevisae MIh3p was
published (Lipkin et al. 2000). MIh3p had previousy been shown to function in
MMR in yeast (Floress-Rozas and Kolodner 1998). Lipkin et al. (2000) suggested
interactions between human MLH3 and MLH1 and, furthermore, a link between
MLH3 defects and MSI. These findings prompted several genetic analyses on the role
of MLH3 in CRC predisposition. The first studies revealed no germline mutations or
reported missense type of changes that did not present themselves as attractive
disease-causing candidates (Loukola et al. 2000, Lipkin et al. 2001).

In 2001, Wu and co-workers suggested that MLH3 could have a more pronounced
role in HNPCC than had previously been considered (Wu et al. 2001). They identified
10 germline MLHS3 variants, including a one bp deletion and 9 missense variants, that
were absent in the cancer-free controls. All variants were detected in patients
suspected of HNPCC. Segregation analyses of the observed variants could not be
performed. MSI analysis of tumours from patients with MLH3 variants indicated more
pronounced MS! in dinucleotide and tetranucleotide repeats than in mononucleotide
repeats, atypical of MSI tumours caused by mutations in other MMR genes (Wu et al.
2001).

To further assessthe role of MLH3 in CRC predisposition, we selected CRC cases for

germline mutation analysis based on the MLH3 defect features suggested by Wu et al.
(2001). MLH3 germline mutations were screened by sequencing the coding region
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and exon-intron borders of all available mutation negative HNPCC cases (n=7), as
well as familial (n=17) and sporadic (n=6) CRC patients with more pronounced M SI
in dinucleotide and tetranucl eotide repeats than in mononucleotide repeats.

We identified five missense mutations (Phe390Ile, Val420lle, Glu624Gin,
Met809Val, and Aspll05Glu) with allele frequencies of 1.7%. Of note, the
Glu624GIn change had been previously published by Wu et al. (2001) as a potential
CRC-associated mutation. We detected al variants except Met809Val also in the
cancer-free controls with similar allele frequencies as in CRC patients. The
Met809Val change was not found in 713 cancer-free controls analyzed. However, it
seems to affect a non-conserved residue located outside functionally relevant domains
(Kondo et al. 2001).

In study 11, 3 missense variants (Asp385His, Thro42lle, and Ser966Pro) were
detected in the Finnish cancer-free controls with allele frequencies varying between
0.6 and 0.9%. These variants were not present in the CRC cases analyzed. The cancer-
free controls were analyzed for the occurrence of previously identified MLH3 variants
with a main focus on the most promising disease-associated mutation, 2578delA (Wu
et al. 2001). One of the previoudy identified missense variants (Glu624GIn) was
found in the controls. The other sequence changes, including the 2578delA, were not
detected in the controls or in CRC cases analyzed.

Recently de Jong et al. (2004) examined the allele frequencies of a subset of the
MLH3 exon 1 variants published by Wu et al. (2001). The frequencies of the variants
were determined in sporadic CRC patients and controls. A Ser817Gly missense
variant reported by Wu et al. (2001) with an allele frequency of 0.2% was identified
in the sporadic CRC patients and controls with similar allele frequencies (0.3% and
0.2%, respectively). Another missense variant affecting the same amino acid residue
(Ser817Arg) was identified by de Jong et al. (2004) in the sporadic CRC patients.
This variant was absent in the cancer-free controls. The truncating 2578delA mutation
reported by Wu et al. (2001) was not found in 467 sporadic CRC patients or 497
controls. Furthermore, the Met809Val missense variant identified in study Il was
found in the Dutch sporadic CRC patients and control individuals with allele
frequencies of 0.2% and 0.3%, respectively (de Jong et al. 2004).

Liu et al. (2003) have also analyzed the occurrence of MLH3 variants in 70 unrelated
individuals from families suggestive of a genetic predisposition to CRC. They
identified one frameshift mutation (885delG) and 11 missense mutations in 16 index
patients with M Sl-negative tumours. The results therefore suggest mechanisms other
than deficient MMR for MLH3-associated CRC. Liu and co-workers (2003) are the
first to study the segregation of detected MLH3 variants in the cancer families.
Segregation analyses supported the role of 3 MLH3 variants (885delG, G2221T, and
T3826C) as causative for the disease, but most probably representing low risk alleles.
They hypothesized that MLH3 could contribute to CRC risk together with other low-
penetrance genes (Liu et al. 2003).

Taken together, MLH3 seems to harbour a wide range of sequence alterations. Most
of the variants seem to lack apparent functional significance because of their
localization in non-conserved residues, lack of clear segregation, and similar allele
frequencies in familial and sporadic cancer cases aswell as in controls (Loukola et al.
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2000, Lipkin et al. 2001, Wu et al. 2001, Liu et al. 2003, de Jong et al. 2004, study
[11). The role of MLH3 as a low-penetrance susceptibility gene needs to be studied
further by association analyses. Since there seems to be inter-population differences in
the MLH3 variants detected, population specific association analyses would have to
be performed.

4. High frequency of microsatellite mutations in SEMG1 and intergenic T9
repeats (1V)

Mutations in the MMR genes lead to general instability phenomenon characterized by
the accumulation of microsatellite mutations. These mutations affect tumour growth
when occurring within genes having growth related or caretaker functions. A number
of genes have been studied for MSI and mutations have been detected in the coding
region of genes coding for growth factors, growth factor receptors, transcription
factors, and apoptotic factors (Woerner et al. 2003). In 1998, Boland et al. suggested
criteriathat could be used to ascertain real MSI target genes. Two of the criteria, high
mutation frequency and functional evidence, have been the most widely accepted.

Most of the MSI target gene studies published to date have relied solely on mutation
frequency data in defining true target genes, partly because obtaining and interpreting
functional evidence can be a laborious task. In the absence of functional evidence, the
importance of control samples accentuates. To avoid miscalling of mutations, normal
tissue DNA samples and MSS samples need to be analyzed. Furthermore, to obtain
more reliable estimation on the true mutation frequency, primary tumours need to be
assessed since estimations based on M S| cell lines can lead to overestimations (Duval
et al. 2001, Suzuki et al. 2002). To facilitate true target gene identification, mutation
frequency cut-off levels have been suggested (Duval et al. 2001, Woerner et al.
2003). However, it has also been presented that the tumorigenic role of a given gene
can be difficult to ascertain solely from the mutation frequency data (Duval and
Hamelin 2002, Perucho 2003). For example, mutations in survivor genes with
fundamental roles in cellular homeostasis can be negatively selected for. In addition,
mutations in co-operator genes can be sparse and have a mild but nonetheless
significant effect that is further emphasized when occurring together with mutations
in other genes operating in the same pathway (Y amamoto et al. 2000).

Generally non-coding microsatellite mutations are thought to be inconsequential
background events and the mutation frequencies are therefore considered to be low.
However, the functional importance of repeat elements outside the coding regions is
not fully understood. They have been suggested to play a role in genome evolution,
chromatin organization, and in the regulation of gene activity and DNA metabolic
processes (Kashi et al. 1997, Li et al. 2002). In fact, some non-coding microsatellite
mutations have been shown to have functional consequences. For example, 93% of
primary MSI CRCs were seen to harbour mutations in MRE11 intron 4 acceptor site
that lead to a partial splicing defect and reduced mRNA and protein levels (Giannini
et al. 2002). Furthermore, the ability of MRE11 to function in S-phase checkpoint was
impaired (Giannini et al. 2002). In addition, evidence for the role of CA-repeats and
CA-rich elements as splicing regulators has recently been obtained (Hui et al. 2003,
Hui et al. 2005). CA-elements were seen to control splicing by acting either as
enhancers or silencers depending on the distance between the elements and the
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alternative 5 splice sites (Hui et al. 2005). In another recently published study, CA-
repeats were seen to control the promoter activity of Cyr61 (Wang et al. 2005). These
studies highlight the potential importance of non-coding microsatellites as, for
example, gene expression regulators and indicate the need for further, large-scale
studies of non-coding microsatellite mutations and their implications.

When assessing the background mutation frequency of MSI CRCs, we observed a
relatively high mutation frequency in a T9 repeat in SEMG1 intron 2. Subsequently
we extended the analysis to include a larger number of MSI CRCs and a mutation
frequency of 51% was observed. No SEMG1 T9 repeat alterations were detected in
the MSS CRCs or respective normal tissue controls analyzed, thus the SEMG1
mutations seem to associate with MMR deficiency. The mutation frequency observed
here is much higher than the cut-off levels used to determine true MSI target genes
(Duval et al. 2001, Woerner et al. 2003) and much higher than in some of the
proposed true target genes. To search for a possible effect of the SEMGL1 intron 2
mutations, we conducted RNA and protein level analyses but observed no differences
between CRC cell lines with different SEMG1 status. This indicates either that the
mutation has an effect that cannot be detected by the methods used here, or that the
mutations are bystander events without functional consequence. If the latter
hypothesis holds, it shows that extremely high mutation frequencies can be detected
in non-coding microsatellites even without selection pressure.

To assess the background mutation frequency of MSI CRCs further, we analyzed a
panel of 29 primary MSI CRCs for mutations in 10 intergenic T9 repeats. The repeats
were chosen from genomic regions distant from known genes or ESTs. The T9
repeats were altered in 0 — 86% of the studied CRCs. To exclude germline
polymorphisms, we analyzed the normal tissue DNA of patients showing alterations
in the tumour sample. Only one of the repeats showed alterations in the normal tissue
samples. However, the 86% mutation frequency in a T9 repeat in genomic contig
ACO027013 persisted.

Subsequently, we extended our analysis to the whole set of 145 MSI CRCs and
observed a mutation frequency of 71% without mutations in the respective normal
tissue DNA samples. This result further indicates that high mutation frequencies can
be found without any apparent functional consequence of the mutations. Of note, after
scrutinizing the latest Celera database update, two novel transcripts were detected in
the AC027013 T9 repeat region. With respect to the first transcript, the T9 repeat
locates in the first intron, 2.7 and 16.9kb away from the exon-intron borders. The
other transcript was located downstream of the T9 repeat with 1.1kb between the
repeat and transcription start site: putative promoter regions were sought by several
programs but none were found. Thus these observations speak against a functional
consequence of the T9 repeat mutations. Due to the constantly growing knowledge on
human transcriptomics, the intergenic nature of the T9 repeats studied here will need
to be re-evaluated. To date, new transcripts have not been presented in the vicinity of
AC027013 T9 repeat.

The variability observed in the mutation frequencies between non-coding repeats of
the same composition and size might be at least partly explained by mechanisms
controlling DNA replication. Replication accuracy is controlled by DNA polymerase
fidelity as well as DNA sequence context. Polymerase fidelity is dependent on the
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geometric selection of the correct nucleotide for insertion into DNA as well as on the
3-5 exonuclease activity of the polymerase (Goodman 1997). Mechanisms
underlying DNA context-dependent replication accuracy are less well understood but
they may depend on DNA duplex stability and base-stacking properties. Furthermore,
GC content or point substitution rates of flanking sequences have been suggested to
affect microsatellite stability (Brock et al. 1999, Santibanez-Koref et al. 2001).

Taken together, the results provided by study 1V emphasize the need of thorough
large-scale analyses of microsatellite mutations in non-coding regions of the genome.
Information on intronic and intergenic repeats from several genomic regions are
needed since the mutation frequencies seem to vary quite extensively between repeats
of the same base composition and size. Results produced by these studies would
benefit the ongoing MSI target gene analyses and provide material for sequence
comparisons to identify sequence elements controlling replication fidelity. As
indicated by the results in study 1V, mutation frequency alone cannot be utilized to
identify putative MSI target genes. Thus, the tumorigenic role of the previously
published candidate MSI target genes needs to be interpreted with caution in the
absence of functional evidence.
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CONCLUSIONS AND FUTURE PROSPECTS

Many colorectal cancer (CRC) predisposition syndromes have been characterized to
date and the molecular changes driving CRC progression are perhaps the best
characterized of all human cancer types. However, many questions remain and
accumulating evidence suggests the existence of novel CRC susceptibility genes,
especially of low-penetrance. This study aimed at identifying novel genes and loci
associated with CRC predisposition and progression in both chromosomal instability
(CIN) and microsatellite instability (MSI) pathways.

1. Identification of novel CRC susceptibility loci was pursued by assessing common
regions of allelic imbalance in CIN CRCs. Chromosome 20913 was seen to harbour
amplifications more frequently in cases with family history of the disease, indicating
the potential existence of novel predisposing oncogene(s) within the amplicon.
Further investigations on the importance of the amplification are warranted. The
putative tumorigenic role of one 20913 candidate gene, AURKA, was analyzed in
study I1.

2. A candidate CRC susceptibility gene on chromosome 20913, AURKA, was assessed
in CIN CRC cases with and without family history of the disease. The observed
preferential amplification of 91A allele in the familial cases and association with
younger age at diagnosis support the role of AURKA as a novel CRC susceptibility
gene. Further analyses could elucidate the potential modifying factors of AURKA-
associated CRC. Studies | and Il indicate the feasibility of using chromosomal clues
inthe identification of candidate loci and causative cancer genes.

3. A subset of MSI CRCs cannot be ascribed to the MMR genes currently associated
with CRC predisposition. The role of MMR gene MLH3 was assessed in mutation
negative HNPCC cases, as well as in familial and sporadic CRC patients displaying
distinct MSI features. Five missense mutations were identified, four of which were
found in cancer-free controls as well. The remaining missense mutation is not an
attractive disease-causing candidate. The results provided by study Il and other
recently published MLH3 studies suggest a minor role for MLH3 in CRC
predisposition, to be evaluated further by association analyses.

4. MSI target genes have previously been proposed mainly based on high mutation
frequency data. In study 1V, two non-coding microsatellites were seen to display
mutation frequencies higher than those observed in the coding regions of many
suggested M Sl target genes. Thus, mutation data alone is not sufficient to indicate the
role of a given gene in MSI tumorigenesis and functional evidence should therefore
be provided. MS| target gene studies would benefit from evaluations on the general
background mutation frequency of MSI CRCs. Furthermore, information provided
therein could elucidate the mechanisms governing the sequence context dependence
of DNA replication fidelity.
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