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ABSTRACT

Functional loss of tumor suppressor protein p53 is a common feature in diverse 
human cancers. The ability of this protein to sense cellular damage and halt 
the progression of the cell cycle or direct the cells to apoptosis is essential in 
preventing tumorigenesis. Tumors having wild-type p53 also respond better 
to current chemotherapies. The loss of p53 function may arise from TP53 
mutations or dysregulation of factors controlling its levels and activity. Probably 
the most signifi cant inhibitor of p53 function is Mdm2, a protein mediating its 
degradation and inactivation. Clearly, the maintenance of a strictly controlled 
p53-Mdm2 route is of great importance in preventing neoplastic transformation. 
Moreover, impairing Mdm2 function could be a nongenotoxic way to increase 
p53 levels and activity. Understanding the precise molecular mechanisms behind 
p53-Mdm2 relationship is thus essential from a therapeutic point of view.

The aim of this thesis study was to discover factors affecting the negative 
regulation of p53 by Mdm2, causing activation of p53 in stressed cells. As a 
model of cellular damage, we used UVC radiation, inducing a complex cellular 
stress pathway. Exposure to UVC, as well as to several chemotherapeutic drugs, 
causes robust transcriptional stress in the cells and leads to activation of p53. By 
using this model of cellular stress, our goal was to understand how and by which 
proteins p53 is regulated. Furthermore, we wanted to address whether these 
pathways affecting p53 function could be  altered in human cancers. 

In the study, two different p53 pathway proteins, nucleophosmin (NPM) and 
promyelocytic leukemia protein (PML), were found to participate in the p53 
stress response following UV stress. Subcellular translocations of these proteins 
were discovered rapidly after exposure to UV. The alterations in the cellular 
localizations were connected to transient interactions with p53 and Mdm2, 
implicating their signifi cance in the regulation of p53 stress response. NPM was 
shown to control Mdm2-p53 interface and mediate p53 stabilization by blocking 
the ability of Mdm2 to promote p53 degradation. Furthermore, NPM mediated 
p53 stabilization upon viral insult. We further detected a connection between 
cellular pathways of NPM and PML, as PML was found to associate with NPM 
in UV-radiated cells. The observed temporal UV-induced interactions strongly 
imply existence of a multiprotein complex participating in the p53 response. In 
addition, PML controlled the UV response of NPM, its localization and complex 
formation with chromatin associated factors. 

The relevance of the UV-promoted interactions was demonstrated in studies in 
a human leukemia cell line, being under abnormal transcriptional repression due 
to expression of oncogenic PML-RARα fusion protein. Reversing the leukemic 
phenotype with a therapeutically signifi cant drug was associated with similar 
complex formation between p53 and its partners as following UV. In conclusion, 
this thesis study identifi es novel p53 pathway interactions associated with the 
recovery from UV-promoted as well as oncogenic transcriptional repression. 
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ABBREVIATIONS

6-4PP (6-4)-photoproduct
ALCL Anaplastic large cell lymphoma
AML Acute myeloid leukemia
APL Acute promyelocytic leukemia
ARF alternative reading frame
ATM Ataxia telangiectasia mutated
ATO arsenic trioxide, As

2
O
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ATR Ataxia telangiectasia-related
Bcl-2 B-cell lymphoma 2
BER base excision repair
BLM Bloom syndrome
C carboxy
CDK cyclin dependent kinase
CDKI cyclin dependent kinase inhibitor
CPD cyclobutane-type pyrimidine dimer
CS Cockayne syndrome
DBD DNA binding domain
DFC dense fi brillar component
DRB 5, 6-dichloro-1-β-D-ribofuranosylbenzimidazole
DSB double strand break
FC fi brillar center
FRAP fl uorescence recovery after photobleaching
GC granular component
GGR global genomic repair
HAT histone acetyl-transferase
HDAC histone deacetylase
Hdm2 human Mdm2 
HIPK2 homeodomain-interacting protein kinase-2
HR homologous recombination
IFN interferon
IR ionizing radiation
JNK c-Jun N-terminal kinase
KSHV Kaposi´s sarcoma associated herpesvirus
MAP mitogen-activated protein
Mdm2 murine double minute 2
MDS Myelodysplastic syndrome
MEF mouse embryo fi broblast
MMR mismatch repair
N amino
NB nuclear body 
NER nucleotide excision repair
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NES nuclear export signal
NHEJ non-homologous end-joining
NLS nuclear localization signal
NoLS nucleolar localization signal
NPM nucleophosmin
NPMc+ cytoplasmic NPM mutant
PCNA proliferating cell nuclear antigen
PI-3-K phosphoinositide-3-kinase
PML Promyelocytic leukemia
PRD proline-rich domain
RA retinoic acid
RAR retinoic acid receptor
Rb retinoblastoma 
RPA replication protein A
RXR retinoic-X receptor 
SUMO small ubiquitin-related modifi er
TAD transactivation domain
TCR transcription-coupled repair
TET tetramerization domain
TSA trichostatin A
UV ultraviolet
UVC ultraviolet C radiation
Wt wild type
XP Xeroderma pigmentosum
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INTRODUCTION

Cancer, a disease defi ned as abnormal proliferation and invasion of the cells, is 
one of the major causes of death in the western societies. The cellular changes 
leading to this disease may take several years to develop and due to the longer 
lifespan of the population, the frequency of cancer has increased dramatically. 

The multistep process of cancer development requires several genetic chang-
es over a long period of time. Each cell contains the genetic information that 
has to be replicated and passed to the next progeny in the process of cell cycle. 
This hereditary code is, however, altered constantly due to external pressure and 
the DNA in most of the cells experience numerous mutations every day. To sup-
port the precise genetic code from one cell generation to the next one,  the cells 
have developed a number of regulatory pathways to monitor the entire process. 
Despite the high fi delity of this machinery, some occasional mistakes can be 
passed by this system and be further transferred to the progeny. Errors in the 
control of the damage response may lead to the accumulation of genetic lesions 
and multiple phases of clonal selection eventually results in uncontrolled growth 
and predisposition to cancer.  

One of the key proteins in the regulation of the genomic integrity is tumor 
suppressor protein p53. p53 can prevent accumulation of harmfull mutations, 
inhibiting tumor-promotion. Upon exposure to various kind of damage, p53 
protein is activated and halts the cell cycle to give the repair machinery some 
time to solve the errors in the hereditary material. In case of excessive damage, 
however, the DNA may be in an unrepairable condition and the cell may have to 
choose a cell death pathway instead of the growth arrest to insure maintenance 
of the genome. The ability of p53 to induce this programmed cell death, apopto-
sis, is probably its major function in preventing the neoplastic transformation.

The early events leading to cellular p53 response are not totally understood, 
even though they have been studied extensively over the past two decades. Inac-
tivation of the p53 pathway is very common in cancers and reactivation a poten-
tial key factor in killing tumor cells. Although preventing the incidence of can-
cer by eliminating the risk factors would probably be the most effective way of 
reducing the number of cancer cases, new therapeutic possibilities are required. 
Activation of the p53 pathway may have an important role in this process. Thus, 
knowing the factors that affect the function of p53 are critical to understand in 
detail. This study has concentrated on exploring the proteins that regulate p53 
stability and functional activity in DNA-damaged cells. In addition, the aim was 
to fi nd how these regulatory steps could be defective in human cancers.      
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REVIEW OF THE LITERATURE

CONTROL OF CELL PROLIFERATION

Formation of a multi-cellular organism requires proper regulation of the cell di-
vision and death in the developmental stage as well as in the renewal and main-
tenance of the functions of different tissues and organs in the adult body. Cells 
reproduce themselves by transmitting their genetic information to their daughter 
cells in a strictly controlled process of cell cycle. Any mistakes in the network 
of cell cycle-regulatory proteins may lead to aberrations of cellular functions in 
the next progeny and alterations in these key proteins of the cycle is thus a very 
common feature for a number of cancers. 

The cell cycle

The eukaryotic cell cycle is divided into four phases (Figure 1) (reviewed in 
Nurse, 2000). The duplication of DNA takes place during the synthesis or S 
phase of the cycle. This phase of the cycle is the most time consuming, requiring 
usually about half of the cell cycle time. The segregation of the newly synthe-
sized chromosomes to new daughter cells occurs in the mitosis, M phase of the 
cycle. Two gap phases, G1 and G2, are inserted between the synthesis and mi-
tosis phases of the cycle. G1 and G2 phases provide the cell more time to grow 
and produce proteins required for DNA synthesis and cell division. During these 
periods, the cell can also monitor outside and inside signalling to ascertain that 
the conditions are appropriate for proceeding further in the cycle. Cells are also 
able to exit the division cycle to stay in a quiescent state, G0.

The cell cycle control system is conserved in all eukaryotes. The central reg-
ulatory proteins responsible for this system are the cyclins and their partners, 
cyclin dependent kinases, CDKs (Nurse, 2000). Sequential activation and inac-
tivation of these protein complexes allows progression through the cycle (Fig-
ure 1). During G1, CDK4 and its homologue CDK6 are activated by complex 
formation with D-type cyclins. The expression of cyclin D is controlled by the 
mitogen-activated protein kinase (MAPK) pathway, playing a major role in entry 
to G1 phase (Lavoie et al., 1996). CDK4/6 phosphorylate and inactivate retino-
blastoma protein (pRb), a tumor suppressor protein responsible for normal cell 
cycle progression (Weinberg, 1995; Classon and Harlow, 2002). In early G1, 
pRB is in its hypophosphorylated form, blocking the synthesis of DNA through 
inactivation of transcription factor E2F. When CDK4/6-cyclin D complex be-
comes active, it allows phosphorylation of pRB in late G1, leading to release 
of E2F and transcription of genes involved in DNA synthesis (Weinberg, 1995; 
Classon and Harlow, 2002). At the end of G1, CDK2 complexes with cyclin E 
and commits the cell to DNA replication phase (Tsai et al., 1993). CDK2 further 
phosphorylates pRb, resulting in complete inactivation of pRb. In S phase cyclin 
A replaces cyclin E from the complex and regulates DNA replication (Pagano et 
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al., 1992). The same cyclin can bind mitotic CDK1 and participate in the G2/M 
transition, although the key mitotic regulator is cyclin B in complex with CDK1 
(Smits and Medema, 2001).

Figure 1. Regulation of the cell cycle. Progression through the cell cycle is precisely con-
trolled by fl uctuating activities of the cyclin-CDK complexes and CDK target pRb. See text 
for further details. CDK, cyclin-dependent kinase; P, phosphorylated; R, restriction point.

The oscillations in the activities of different CDK-cyclin complexes is infl u-
enced by several different factors, including rise and fall in the levels of cyclins 
through proteolytic degradation, inhibitory phosphorylations of the CDKs and 
binding of CDKs by their specifi c inhibitory proteins, cyclin dependent kinase 
inhibitors, CDKIs (Nurse, 2000). The CDKIs are further divided into two fami-
lies: Ink4- and Cip/Kip-families, of which the Ink4 family members, p16Ink4a, 
p15Ink4b, p18Ink4c and p19Ink4d prevent the activity of CDK4/6 by utilizing the same 
binding domain as D-type cyclins and Cip/Kip family proteins, p21Cip1, p27Kip2 
and p57Kip2 which bind and inactivate CDK1, CDK2 as well as CDK4/6 (Pines, 
1997; Pavletich, 1999) (Figure 1).
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Cell cycle checkpoints

Cells are in a continuous pressure on facing endogenous damage and stress due 
to changes in their environment and alterations in the growth conditions. Pre-
serving genetic stability in the next generation of cells requires that cells are 
able to sensor and respond to extra- and intracellular signalling and that events 
in the cell cycle are properly timed and occur in an exact order. In addition, 
these events can occur only once in a cycle. To secure normal functions, cells 
have a specifi c control system that monitors the condition of the cell and is able 
to delay the progression of the cycle subsequent to damage, contact inhibition, 
senescence or growth inhibitory signals from other cells. These control points, 
referred to as checkpoints, screen and holdup the cell cycle at specifi c phases 
of the cycle and gain time for the cell to respond to the situation (Hartwell and 
Weinert 1989; Bartek and Lukas 2001b; Lukas et al., 2004). 

The cell cycle checkpoints operate in late G1, S-phase and G2/M transition 
of the cycle and are controlled by the activation of pathways involving Cip/Kip 
and Ink4 family members (Figure 1). Transition from G1 phase to S phase re-
quires the presence of growth factors. During mid and late G1, cells sensor 
outside and inside signalling for favourable conditions and request for a license 
to continue in the cycle. Loss in mitogenic signalling leads to rapid degradation 
of cyclin D and inhibits the cells from entering the S phase (Matsushime et al., 
1991). In the presence of mitogenic signalling, active CDK4/6-cyclin D com-
plex drives the cells into S phase through a point after which there is no return. If 
cells are allowed to bypass this restriction point (R) they start to synthesize DNA 
and the division is completed without extracellular signals, unless the conditions 
for some reason turn unfavourable (Pardee 1989; Bartek and Lukas 2001a &b) 
(Figure 1). Loss in the control of this restriction point appears to be a universal 
feature in the development of tumors, leading to aberrant mitosis. The S phase 
checkpoint insures proper replication of DNA and that the genetic material has 
been duplicated only once per cycle before cell division. In addition, this check-
point monitors correct duplication of the centrosomes. After progression to G2,  
the cells can still assess the condition of the replicated DNA and halt the cy-
cle if required. Lastly, the mitosis checkpoint, also referred to as spindle point 
checkpoint, monitors the attachment of chromosomes to the mitotic spindle. 
Any negative signal from an unattached kinetochore blocks progression to ana-
phase and delays the cycle.

DNA damage checkpoints 

Genotoxic stress and errors in the DNA replication processes challenge the 
damage sensoring system continuously. Depending on the damaging source, 
genetic material is subjected to different kind of mutations. Ionizing and ul-
traviolet radiation, mutagenic compounds and reactive oxygen species from 
metabolic pathways of the cell each cause particular type of lesions, trigger-
ing specifi c signalling cascades. The DNA damage checkpoints are evolution-
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ary conserved and they largely overlap with the cell cycle checkpoints (Zhou 
and Elledge, 2000) (Figure 2). G1/S checkpoint delays entry into S phase if 
damaged DNA is discovered. In S phase, the replication-independent intra-S 
checkpoint slows down the DNA replication in damaged cells. G2/M check-
point  inhibits cells from going into mitosis if cells are exposed to DNA dam-
age during G2 or they have unrepairable damage left from the preceeding 
phases of the cycle. 

The DNA damage checkpoint system composes of multiple factors forming a 
complex signalling pathway. Although the checkpoints are in the different phas-
es of the cycle, many of their signalling components are common  and share the 
same upstream events (Bartek and Lukas 2001b; Lukas et al., 2004). Proteins of 
the checkpoint pathways can be divided into three groups: sensoring factors that 
initially recognize the damaged site, signal transducers that mediate the signal 
further in the cascade and effector proteins, which induce the fi nal response in 
the pathway (Iliakis et al., 2003). One of the most prominent sensors and activa-
tors of the checkpoint responses are the phosphoinositide-3-kinases (PI-3-Ks), 
Ataxia telangiectasia mutated (ATM) and Ataxia telangiectasia-related (ATR) 
kinases (Abraham, 2001; Shiloh, 2003). Activation of these primary sensors of 
lesions is followed by DNA damage in G1/S, S and  G2/M phases of the cycle. 
Despite partly overlapping functions of  these kinases, ATM seems to be more 
important in double strand breaks (DSBs) induced by ionizing radiation, while 
ATR responds to broader range of damage types, including UV radiation. ATM 
and ATR work through a signalling cascade involving checkpoint kinases, Chk1 
and Chk2. In the activation of G1/S checkpoint, Chk1/Chk2 kinases mediate 
the degradation of Cdc25A phosphatase, holding cyclin E/CDK2 complexes 
inactive through an inhibitory phosphorylation (Mailand et al., 2000; Bartek 
and Lukas, 2001a). This response is acute, leading to a transient cell cycle ar-
rest (Lukas et al., 2004). A slower and more sustained response is mediated by 
the p53 protein through its key downstream effector p21, resulting in delayed 
inhibition of the cyclin E/CDK2 complex (Sherr and Roberts, 1999; Bartek and 
Lucas, 2001b; Wahl and Carr, 2001).  The intra-S-phase checkpoint is able to 
delay the progression of the cycle in a p53-independent manner, operating main-
ly through Cdc25A degradation pathway and cyclin E/CDK2, cyclin A/CDK2 
or alternatively through Nbs1/SMC1 pathway (Falck et al., 2002; Yazdi et al., 
2002). Activation of both of these pathways cause a transient delay of the cycle, 
rather than a proper cell cycle arrest. In G2/M phase of the cycle the ATM/
ATR and Chk1/Chk2 signalling cascades lead to inactivation of cyclin B/CDK1 
complexes through inhibition of the Cdc25c (Abraham, 2001; Nyberg et al., 
2002) (Figure 2). Additionally, p53 operates through p21, GADD45 and 14-3-
3σ proteins for long term silencing of cyclin B/CDK1 (Taylor and Stark, 2001), 
although this p53-induced pathway is probably not essential for the sustained 
G2 arrest. Even though the upstream signalling is overlapping in most of the 
checkpoint pathways, the downstream signalling in response to various kinds 
of damage follow separate routes and may have distinct outcomes (reviewed in 
Lukas et al., 2004). Despite the fi nal response of each route, the common task of 
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these pathways is to ultimately eliminate the DNA lesions and secure the genetic 
stability of the cells. 

Figure 2. DNA damage checkpoints. The cells respond to DNA lesions by halting progres-
sion of the cycle through several independent pathways leading to inhibition of CDK-cyclin 
complexes. See text for details.  
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DNA DAMAGE RESPONSES

Repair of the damaged DNA

During the cell cycle arrest the cells have time to deal with the damage they have 
experienced. Human cells have several, partly overlapping, mechanisms for re-
pairing different kind of damage lesions. Plenty over 100 genes are involved in 
the different repair pathways (Wood et al., 2001), summarized in table 1.

Direct reversal is probably the simplest repair pathway. This single enzyme 
reaction is responsible for the removal of DNA adducts, like miscoding methyl-
ated bases, caused by DNA alkylating agents or endogenous catabolites. Several 
DNA methyltransferases are involved in this process (Mishina et al., 2006). The 
most common repair pathways are base excision repair (BER) and nucleotide ex-
cision repair (NER). BER pathway utilizes a group of specifi c DNA glycosylas-
es for excision of the altered bases and is mainly induced by cellular metabolites 
(Lindahl and Wood, 1999). NER is a versatile repair pathway, managing several 
types of lesions and will be later discussed in more detail in the context of its 
relevance in the UV-induced damage repair. Mismatch repair (MMR) corrects 
noncomplementary base pairs and other DNA structure-distorting loops dur-
ing replication as well as in damaged cells (Jiricny, 2000). MMR is a multistep 
process, consisting of recognition and excision of the incorrect site, resynthesis 
and ligation of the newly synthesized strand and involves numerous different 
proteins, including human mutS homolog (MSH) family proteins and mutL ho-
molog 1 (MLH1) forming mismatch recognition complexes, proliferating cell 
nuclear antigen (PCNA) and replication protein A (RPA) (Jiricny, 2000). The 
removal of double-strand breaks, induced by ionizing radiation, chemical agents 
or cellular dysfunctions, occurs through two major pathways. Non-homologous 
end-joining (NHEJ) is the main DSB-repair pathway in humans, while the sec-
ond pathway, homologous recombination (HR) is preferred in S and G2 phases 
of the cell cycle (Haber, 2000). The initiating signal in NHEJ pathway is by the 
DNA-PK kinase, while the ATM kinase is the major coordinator of the damage 
response in the HR pathway. Both of these pathways eventually lead to acti-
vation of the Mre11-Rad50-Nbs1 complex, involved in sensing and repairing 
the damaged site (Petrini & Stracker, 2003). In addition to activation of several 
other repair proteins, these kinase pathways also activate many downstream sub-
strates, like Chk2 and p53, involved in halting the cell cycle. A variety of human 
diseases are associated with defects in the DNA repair capacity of the cells. 
Many of these diseases are inherited conditions, leading to a higher mutation 
rate and predisposition to cancer in the carriers of these defective DNA repair 
genes, as discussed later. 
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Repair mechanism Activating event and special features

Nucleotide excision repair, NER
(Hanawalt et al., 2003; Peterson and

Côté, 2004)

Several types of bulky lesions induced 
by UV radiation, chemicals and DNA 
crosslinking agents

Base excision repair, BER
(Lindahl and Wood, 1999)

Altered bases and damage induced 
mainly by cellular metabolites

Mismatch repair, MMR
(Jiricny, 2000)

Noncomplementary base pairs, causing 
distortion in the DNA helix during 
replication or DNA damage

Non-homologous end-joining, NHEJ
(Haber, 2000; Petrini & Stracker, 2003)

DSBs induced by ionizing radiation 
and other DNA damaging agents; Main 
pathway for DSB repair in humans.

Homologous recombination, HR
(Haber, 2000; Petrini & Stracker, 2003)

DSBs induced by ionizing radiation and 
other DNA damaging agents; Activated 
mainly in S/G2 phases.

Direct reversal
(Mishina et al., 2006)

Methylated base-adducts in DNA, 
caused by DNA methylating agents or 
cellular catabolites

Table 1. Summary of the main repair pathways in human cells. Several DNA repair 
systems have evolved for the repair of the damaged DNA caused by cellular processes and 
metabolic byproducts. These same repair pathways are utilized for the correction of lesions, 
induced by extracellular agents, which could contribute to accumulation of genetic instabil-
ity, carcinogenesis as well as lethality due to malfunction in essential cellular pathways.

Apoptosis

Besides the strict control of cell division, equally important for the interests of 
functional organisms is to control the number of cells by cell death. By inducing 
an intracellular death program, programmed cell death or apoptosis, cells that 
are superfl uous or cells that could be of threat to the organism, are destroyed. 
Triggering this suicide pathway may be the only alternative in cells exposed to 
excessive DNA damage. 

The evolutionary conserved program of apoptosis is mainly affected by a 
family of proteases, caspases, which mediate the cleavage of their specifi c target 
proteins. Caspase pathway is activated by intracellular or extracellular stimuli. 
External activation can occur through the death receptors by ligand binding, 
which induce a signalling pathway leading to activation of the caspase pathway 
(Muppidi et al., 2004). Internal signalling requires release of mitochondrial cy-
tochrome c. B-cell lymphoma 2 (Bcl-2) family members are the key regulators 
of caspases and apoptosis, directly impacting the permeabilization of the outer-
membrane of mitochondria and cytochrome c release (Spierings et al., 2005). 
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This family contains both apoptotic and anti-apoptotic factors and their signifi -
cance is underlined by the knowledge that lack of the apoptosis inducing factors 
of this group makes the cells extremely resistant to programmed cell death. On 
the other hand, the anti-apoptotic factors of this family, like Bcl-2, are overex-
pressed in several cancer types (Willis and Dyer, 2000).

During the apoptotic response, the release of cytochrome c activates Apaf-
1, apoptotic protease-activating factor, triggering caspase pathway and simulta-
neously blocking other anti-apoptotic factors, like IAPs, inhibitor of apoptosis 
proteins (Li P. et al., 1997; Zou et al., 1997). The fi nal outcome of this process 
is associated with specifi c cellular features including shrinkage of the cell size 
and disruption of the cytoskeletal structure, breakage of the nuclear envelope as 
well as fragmentation of the DNA. The remains of the apoptotic cell are rapidly 
phagocytosed, causing no damage to the neighbouring cells. 
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UV DAMAGE RESPONSES

UV radiation-induced DNA damage

UV radiation of the sun is associated with skin cancers, including basal cell car-
cinoma, squamous cell carcinoma and malignant melanoma (de Gruijl, 1999). It 
is invisible electromagnetic radiation that can be divided into three wavelenght 
areas: UVA 315-380 nm, UVB 280-315 nm and UVC 190-280 nm, the shorter 
wavelength radiation being the most harmful (Tyrrell, 1994). Most of the ra-
diation reaching the ground of earth is UVA, but the proportion of the shorter 
wavelength light is unfortunately increasing due to a decline in thickness of the 
ozone layer. 

UV radiation induces bulky DNA-lesions, cyclobutane-type pyrimidine dim-
ers (CPDs) and structurally more distorting (6-4)-photoproducts (6-4PPs), which 
cross-link DNA bases, inhibiting transcription (Ravanat et al., 2001; Thoma et 
al., 1999; Tornaletti et al., 1999; Mitchell et al., 2003). UVA and UVB radiation 
are somewhat more environmentally relevant as most of the shorter wavelength 
radiation is still absorbed by the ozone layer. However, the UV-induced tran-
scriptional stress is more effi ciently triggered by UVC due to higher energy 
absorbance by DNA from this type of light (Ravanat et al., 2001) and most of the 
studies have for this reason used UVC as a model. As the wavelength increases, 
UV radiation-induced oxidative stress becomes more likely (Kielbassa et al., 
1997). UVB causes different proportion of 6-4PPs than does UVC and addition-
ally it causes the oxidative lesions and interacts also with other molecules than 
DNA. In addition, some DNA strand-breaks and protein-DNA cross-links can 
be detected after exposure to longer wavelengths of UV radiation. 

Cellular responses induced by UV radiation

UV radiation-induced DNA damage evokes a set of cellular responses, including 
transcriptional inhibition, damage recognition and activation of several signal-
ling pathways (de Gruijl et al., 2001). The early response in UV-damaged cells 
is provoked by ATR-Chk1 kinase pathway, leading to phosphorylation of several 
downstream targets. In addition to this pathway, the MAP kinases, Erk, JNK and 
p38 are essential and activated upon UV damage in a dose dependent manner 
(Davis, 2000; Bode and Dong, 2003). The changes in the cell surface receptors 
trigger these intracellular signalling pathways and their activation plays a role 
in the control of cell growth, changes in the chromatin structure and apoptotic 
responses (Bode and Dong, 2003). Depending on the damage-induced cascade, 
different target genes are activate through activation of UV-induced transcrip-
tion factors, including p53, antiapoptotic factor nuclear factor κB (NFκB) and 
activating protein 1 (AP-1) (Ryan et al., 2000; Shaulian and Karin, 2002; Chen 
and Greene, 2004). Activation of a certain cascade is dependent on the amount 
of UV dose and affects eventually the fi nal transcriptional response, leading to 
either cell cycle arrest and DNA repair or to apoptosis, if cells are subjected to 



16

excessive amounts of lesions (Gentile et al., 2003). Transcriptional responses 
differ also depending on the cell type (Valery et al., 2001; Sesto et al., 2002; 
Gentile et al., 2003). In addition to growth arrest and apoptotic response, ex-
posure to UV light provokes immunosuppression, possibly contributing to neo-
plastic transformation (Clydesdale et al., 2001).

Nucleotide excision repair

Nucleotide excision repair, NER, is probably the most comprehensive repair 
pathway, facilitating the repair of a variety of dissimilar lesions in DNA, includ-
ing UV-induced CPDs and 6-4PPs (Peterson and Côté, 2004). The complex NER 
pathway is well conserved in bacteria, yeast and mammals (Eisen and Hana-
walt, 1999; Petit and Sancar, 1999) and the mammalian NER function requires 
nearly 30 different factors for full activity (Lindahl and Wood, 1999; Volker et 
al., 2001). NER is divided into two different subpathways, transcription-cou-
pled repair (TCR) and global genomic repair (GGR) (reviewed in Hanawalt et 
al., 2003; Peterson and Côté, 2004). TCR is less well understood and repairs 
damage sites found in transcribed DNA strands of genes, while GGR is a more 
general repair machinery, correcting lesions throughout the whole genome. 

The action of NER involves the following steps: lesion detection in DNA and 
chromatin remodelling, removal of the lesion and resynthesis of the nucleotide 
sequence and ligation of the newly-synthesized strand to the pre-existing one 
(Figure 3). The initial lesion detection in TCR and GGR is done by separate 
proteins, although many of the other enzymatic processes in GGR and TCR 
have overlapping factors. The GGR proteins are, however, usually kept at low 
levels until the cells are exposed to DNA damage. Several of the proteins in 
Xeroderma pigmentosum (XP) complementation group play a role in both sub-
pathways (Friedberg et al., 2004). For these repair pathways to work effi ciently 
the chromatin structure has to be altered (Smerdon and Lieberman, 1978). In 
TCR the chromatin accessibility appears to be ensured by the presence of the 
transcription machinery itself (Friedberg, 2001), while in GGR the chromatin 
accessibility has to be achieved by other factors (Tijsterman et al., 1999; Fried-
man, 2001). Initial recognition of lesions by GGR include the mammalian XPC-
HR23B-centrin2 complex and XPA protein (Sugasawa et al., 1998; Volker et al., 
2001). Additionally, UV-DDB, UV DNA damage binding protein is required in 
some damage types like CPDs (Tang and Chu, 2002; Wakasugi et al., 2002). 
These factors can also recruit histone acetylatransferase (HAT) activities to fur-
ther increase the access to these sites. In TCR, the Cockayne syndrome proteins, 
CSA and CSB as well as XAB2 protein, initially target NER to stalled RNA pol 
II on DNA strands (Tornaletti and Hanawalt, 1999; Mitchell et al., 2003). CSB/
Rad26 remodelling complex may also facilitate increased accessibility to the 
damage sites during TCR. In addition, the UVSS, ultraviolet-sensitive syndrome 
protein has been shown to be essential for properly functioning TCR (Spivak et 
al., 2002). Further verifi cation and direction of unwinding in the damaged area 
is performed in both subpathways by a multisubunit transcription factor/repair 
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protein TFIIH and its partners XPB and XPD (Giglia-Mari et al., 2004). This is 
followed by incision of the lesion area by XPF and XPG proteins with the help 
of XPA and RPA proteins, stabilizing the formation of the repair complex. The 
formed gap is fi lled when synthesis of a new DNA strand by DNA pol δ/ε and 
PCNA takes place (de Laat et al., 1999; Peterson and Côté, 2004) (Figure 3). 

Failure in NER function leads to increased cancer incidence, as observed 
in the hereditary Xeroderma pigmentosum in humans (Friedberg, 2004). XP is 
defi ned as a group of recessive disorders caused by defects in the nucleotide ex-
cision repair genes. The GGR defi cient cells of these patients have weaker apop-
totic signalling resulting in higher mutation rates and transformation of the sur-
viving cells. Due to this XP patients are very prone to sunlight-induced diseases, 
like skin cancers, developing both benign and malignant neoplasms (Bootsma, 
1993). Cockayne´s syndrome and UV-sensitive syndrome of humans are both 
diseases associated with defective TCR DNA repair of the cells (Spivak, 2005). 
However, these syndromes are not associated with increased cancer risk as cells 
defi cient in TCR are even more prone to UV-induced apoptosis (Ljungman and 
Zhang, 1996). Cell survival as well as cancer incidence so appears to be more 
dependent on functional GGR than TCR and cellular damage left after defi cient 
TCR function can be still rescued by GGR machinery. 
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Figure 3. Nucleotide excision repair pathway. NER is composed of two subpathways, TCR 
and GGR, specifi ed by their differencies in the initial lesion detection factors. The repair 
of the damage site is overlapping for both pathways, including 1) unwinding of the lesion 
surroundings by TFIIH and its partners XPB and XBD, 2) incision of the damaged area by 
XPF and XPG and 3) synthesis of a new DNA strand by DNA pol δ/ε and PCNA. Finally 
the newly synthesized strand is ligated to the pre-existing one and the structure is restored 
by chromatin modifi ers.
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Nucleolar stress response

Nucleoli are specifi c subcompartments of the nucleus, clearly visible dense struc-
tures under the microscope. The main function of these dynamic compartments 
is to act as ribosome factory. Nucleoli orchestrate the synthesis and processing 
of ribosomal RNAs (rRNAs) and their assembly to pre-ribosomal particles in 
specifi c compartments of the nucleolus (Carmo-Fonseca et al., 2000; Olson & 
Dundr, 2005). The nucleolus is formed of small fi brillar centers (FCs), which 
are responsible for the initiation of the rRNA transcription. These structures are 
surrounded by dense fi brillar component (DFC), processing the nascent rRNA 
transcripts. Finally the further processing occurs in the granular component 
(GC), surrounding FC and DFC structures. The rate and effi ciency of this proc-
ess refl ects the transcriptional activity of the cell, being high in rapidly prolifer-
ating cells. Cancer cells often have very prominent nucleoli (Derenzinin et al., 
2000).  In addition to its traditional role in ribosome biogenesis, nucleolus has 
lately been connected to several other functions due to its protein composition 
(Andersen et al., 2005; Pendle et al., 2005; Leung et al., 2006). Many of the 
nucleolus-associated proteins have roles in the cell cycle control, aging, viral 
replication, nuclear export and telomerase activity, refl ecting the versatility of 
the functions of nucleolar compartment (Carmo-Fonseca et al., 2000; Olson et 
al., 2002). Furthermore, recent results show the importance of nucleolus as a 
stress sensor, responding to various kind of cellular damage and mediating p53 
stabilization (Rubbi and Milner, 2003b; Olson et al., 2004; Mayer et al., 2005). 

Exposure of the cells to external and internal stress, including UV radia-
tion, hypoxia, heat shock and nucleotide depletion, causes so called “nucleolar 
stress” impairing the function of these sub-nuclear compartments (Rubbi and 
Milner 2003b; Olson et al., 2004; Mayer and Grummt, 2005). All of these stress 
inducers are basically inhibitors of the transcription and disruption of this key 
function of the nucleolus leads to reorganization of its structure and several 
nucleolar proteins are released to nucleoplasm (Olson et al., 2004; Shav-Tal et 
al., 2005) (Figure 4). For instance, Ki-67, nucleolin, fi brillarin, p120 and Hrad17 
have been shown to relocalize from the nucleoli upon UV-induced stress (Chang 
et al., 1999; Daniely et al., 2002; Rubbi and Milner, 2003; Al-Baker et al., 2004). 
The structure of the nucleoli reorganizes rapidly upon transcriptional inhibition 
and the FC compartments move to the perinucleolar area (Panse et al., 1999). 
These kind of dotted compartments called “nucleolar necklaces” were already 
described in the 1970´s (Granick & Granick, 1971; Granick, 1975). The func-
tion of these necklaces is still not clear, even though several proteins have been 
reported to colocalize with them upon cellular stress (Fuchsová et al., 2002; 
Hoogstraten et al., 2002).

The mechanism leading to reorganization in the nucleolar structure and 
translocations of different proteins to the perinucleolar area is not totally un-
derstood, although it is possible that the initiating signal comes from the RNA 
pol II inhibition by UV radiation. One of the key factors regulating the nucleo-
lar structure could be transcription factor TIFIA, which regulates the activity 
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of RNA polI (Schnapp et al., 1990). In stressed cells TIFIA is phosphorylated 
by c-Jun N-terminal kinases (JNK2), disrupting the TIFIA-RNA polI connec-
tions and leading to nucleoplasmic TIFIA upon reorganization of the nucleolus 
(Mayer et al., 2005). The importance of this pathway is highlighted by the fact 
that inactivation of TIFIA phosphorylation by JNK results in stress-resistance 
of PolI transcription and rRNA synthesis. The recent reports show the versatil-
ity of the nucleolar functions and underline its importance as a stress sensor in 
damaged cells. 

Figure 4. Reorganization of the nucleoli upon transcriptional inhibition. The nucleoli 
are damage sensors, undergoing rapid morphological changes in stressed cells. The fi brillar 
centers (FC) relocalize to the perinucleolar area and several nucleolar proteins are released 
to the nucleoplasm (Olson et al., 2004; Shav-Tal et al., 2005), and may thus affect the stress 
response through specifi c targets in the nucleoplasmic compartment.
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UNCONTROLLED GROWTH AND CANCER

Every day one single human cell has to deal with thousands of errors in its ge-
nome due to endogenous and exogenous damaging agents (Friedberg, 2001). 
Even though the cells have effi cient and overlapping machineries for repairing 
the altered sites, sometimes the systems and their backups fail and cells with 
mutated genomes continue multiplying. In the worst situation, the mutations 
may give the cell selective advantage, allowing it divide more effi ciently than 
the neighbouring ones. Over time the cells may also acquire more genetic altera-
tions that lead to tumorigenesis, driving the cells from normal human cells into 
cancerous derivatives. As normal cells act in the benefi t of the whole organism, 
by either resting, dividing, differentiating or dying, the cancerous cells have for-
gotten about these normal rules of cell behaviour leading to uncontrolled growth 
of the cells at the expense of the whole cell community.

The development of malignant tumors in a long period of time requires se-
quental steps of mutations contributing to loss of tumor suppressor gene func-
tions and gain of function with oncogenes, as well as epigenetic changes. By-
passing the phenomenon of replicative senescence leads to immortalization of 
the cells and is prerequisite for the malignant transformation. Basically, six dif-
ferent alterations in the normal cell functions have been suggested to lead to tu-
morigenesis in most of the cancer types. These features include: Self-suffi ciency 
in maintaining growth signals, unresponsiveness to growth-inhibiting signals, 
inhibition of the apoptotic pathways, unlimited replication potential, angiogenic 
signalling and potential to metastasize (Hanahan and Weinberg, 2000). Trans-
forming cells are capable of generating their own growth-inducing signals by 
producing growth-factors of their own, by inducing their neighbours to release 
these signals or by switching on the downstream signalling of the growth factors 
inside the cell. Many of the oncogenes can as well mimick the players in the sig-
nalling pathway and promote transfer from the quiescent state to a proliferative 
one. For example, about a quarter of the human cancers have upregulation of the 
Ras-signalling pathway, leading to mitogenic signals inside the cell (Medema 
and Bos, 1993). The insensitivity to growth-inhibiting signals results often from 
deregulation of the TGF-β pathway and its intracellular targets (Levy and Hill, 
2006). TGF-β inhibits cyclin D/CDK4/6 complex, prerequisite for pRb phos-
phorylation and progression into S phase (Hannon and Beach, 1994; Weinberg, 
1995). pRB and its regulatory pathway is one of the main targets in tumorigen-
esis, in addition to the p53 pathway. Furthermore, unresponsiveness to TGF-β 
leads to upregulation of growth promoting c-Myc (Adhikary and Eilers, 2005). 
Features of the transformed cells also include amplifi cation of the centrosomes, 
contributing to chromosome instability, further giving the tumor cells a more 
malignant potential (Brinkley and Goepfert, 1998; D`Assoro et al., 2002).

Cancer incidence is increasing, mostly due to longer life time expectancy 
and living habits. In addition to spontaneous mutations affecting cancer devel-
opment, some germline mutations, linked to inherited susceptibility to certain 
cancers, have been found. These mutated genes, usually associated with DNA 
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damage checkpoints, repair functions and apoptosis, can be either recessively or 
dominantly inherited and can cause a specifi c cancer phenotype or just general 
increased risk of cancer incidence. In addition, phenotypically similar cancers 
can result from a single gene or a group of genes acting in the same cellular 
pathway. Usually the cancer–linked genes have several different mutations af-
fecting the activity of its respective protein product, leading to either low-or 
high-risk predisposition for certain cancers, the high-penetrance mutations af-
fecting its carriers with relatively early age. The most well-studied inherited 
forms of cancer involve breast and ovarian cancer, which have been linked to 
mutations in checkpoint proteins BRCA1 and BRCA2 genes (Easton et al., 
1993; Miki et al., 1994; Wooster et al., 1995). Other well-known dominantly 
inherited forms of cancer involve mutations of the Rb gene, causing retinoblas-
toma of the eye (Ward et al., 1984),  APC tumor suppressor gene, mutations of 
which cause familial adenomatous polyposis (FAP) and high susceptibility to 
colorectal cancers (Bodmer et al., 1987) and some forms of melanoma, which 
have been linked to mutations in the CDKN2A gene, encoding p14ARF and 
p16 proteins (Cannon-Albright et al., 1994). Li-Fraumeni syndrome, causing 
susceptibility to several kinds of cancers, including breast cancers, soft tissue 
sarcomas, brain tumors, leukemia, osteosarcoma and adenocortical carcinoma, 
has been linked to both tumor suppressor protein p53 as well as DNA damage 
kinase Chk2 (Li and Fraumeni, 1969; Malkin et al., 1990; Bell et al., 1999). 
Most studied recessively inherited forms of cancers are probably Xeroderma 
pigmentosum (XP), described earlier in the nucleotide excision repair chapter 
as well as Bloom syndrome and Ataxia-Telangiectasia, caused by mutations in 
the BLM and ATM genes respectively (Ellis et al., 1995; Savitsky et al., 1995). 
These genes are involved in DNA checkpoint functions and repair, and muta-
tions in both cases cause abnormalities in the development as well as increased 
cancer risk, especially for leukemias and lymphomas (German et al., 1997). 
Despite these cancer associated genetic disorders, the inherited genetic suscepti-
bility for cancer is still quite rare and most of the cancers are sporadic and occur 
due to risks caused by the individual itself or the living environment.  
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TUMOR SUPPRESSOR PROTEIN p53

p53 tumor suppressor protein, also known as “the guardian of the genome” 
was initially identifi ed as an oncogenic protein, in complex with viral proteins 
(DeLeo et al., 1979; Kress et al., 1979; Lane and Crawford, 1979; Linzer and 
Levine, 1979; Melero et al., 1979). Later, this transcription factor was found to 
be essential for the prevention of tumor formation, dependent on its ability to 
induce apoptosis. Despite its essential role in inhibition of neoplastic transfor-
mation, p53 expression is not essential during the development of mice in utero 
(Donehower, 1996). 

Somatic mutations in p53 are found in approximately 50% of the cancers, 
positioning p53 as the most frequently mutated gene in human malignancies 
(Hollstein et al., 1991; Levine et al., 1996). Even one mutant p53 allele can 
result in a gain-of-function phenotype with acquired new oncogenic properties 
and inactivation of the wt p53 allele (Lang et al., 2004; Olive et al., 2004; Chan 
et al., 2004). As mentioned in the previous chapter, p53 is also mutated in Li-
Fraumeni syndrome, a rare inherited syndrome predisposing the carriers of p53 
germline mutations to early-onset tumors (Varley, 2003). Further support for the 
essential role of p53 in prevention of cancer formation comes from the mouse 
models, which show highly increased predisposition to malignancies in p53 null 
mice and mice with mutated p53 (Donehower et al., 1992; Jacks et al., 1994). 
The tumor spectrum of p53 null mice include lymphomas, soft tissue sarcomas, 
brain and lung tumors, while the heterozygous mice have a more variable tumor 
spectrum corresponding better to tumor incidence in Li-Fraumeni syndrome 
(Donehower, 1996).

Structure

Human p53 protein, encoded by the TP53 gene in chromosome 17, is constructed 
of 393 amino acids and contains several different functional domains (fi gure 5). 
The amino-terminus of p53 forms its transactivation domain (TAD) and is heav-
ily modifi ed in response to cellular stress (Appella and Anderson, 2001). TAD 
participates in the transcriptional regulation and binds several factors required 
for p53-mediated response (Lin et al., 1994; Zhu et al., 1998). In addition, regu-
lation of p53 occurs through TAD via binding to Mdm2 protein, which blocks 
the transactivation activity of p53. The crystal structure of p53-Mdm2 interface 
has been solved (Kussie et al., 1996). Mdm2 contains a hydrophobic pocket in 
which the hydrophobic site of the amphipathic p53 α-helix, amino acids 19-26 
respectively, are inserted (Chen et al., 1993; Kussie et al., 1996; Bottger et al., 
1997). This tight confi guration of the binding cleft probably hinders p53 interac-
tions with the transcriptional machinery. The proline-rich domain (PRD) follows 
the TAD and is presumably involved in the apoptotic response of p53 (Zhu et al., 
2000; Baptiste et al., 2002; Edwards et al., 2003). It also mediates the co-factor 
binding through interaction with acetyltransferase p300 (Dornan et al., 2003). 
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The central domain of p53 contains its highly conserved DNA binding do-
main (DBD) required for its transcriptional properties and for identifying the 
p53 DNA consensus recognition elements on its target promoters (Kern et al., 
1991). DBD, composed of a β-sandwich and three loop-based structures, binds 
different p53 target sequences with variable affi nities, resulting in great varia-
tions in the transactivation potential (Inga et al., 2002). Most of the tumor-asso-
ciated p53 mutations occur in this DNA-binding domain of the protein, leading 
to inactivation of p53 functions through disruption of its sequence-specifi c bind-
ing or through destabilization of its tertiary structure (Cho et al., 1994; Bhullock 
et al., 1997; Royds and Iacopetta, 2006). The structure is stabilized by a zinc 
atom, connecting the residues C176 and H179 of the second loop and C238 and 
C242 of the third loop of DBD (Cho et al., 1994). Interference of this structure 
disturbes DNA-binding of p53 as well as its tumor suppressive properties. 

Carboxy-terminus of p53 is composed of a linker region, oligomerization/ 
tetramerization (TET) site and a basic C-terminal DNA-binding domain (CTD). 
The oligomerization site is composed of a β-sheet-turn-α-helix structure (Clore 
et al., 1995), essential for p53 ability to form tetramers. The tetramers are also 
the most active forms of this protein (Jeffrey et al., 1995; Arrowsmith and Morin, 
1996; McLure and Lee, 1998). CTD contains a number of phosphorylation, 
acetylation, sumoylation and ubiquitination sites associated with the regulation 
of p53 functions (Appella and Anderson, 2001). While the DBD recognizes spe-
cifi c target sequences, CTD binds DNA without any sequence specifi city (Kim 
and Deppert, 2006; Liu and Kulesz-Martin, 2006). As CTD is also capable of 
binding various lesions, it has been associated with the DNA damage recogni-
tion (Bakalkin, 1995; Lee et al., 1995; Reed et al., 1995). 

p53 function can also be infl uenced via its cellular localization, regulated 
by the nuclear localization signal (NLS) and nuclear export signal (NES) of the 
protein (Shaulsky et al., 1991) as well as interactions with some of its partner 
proteins. p53 has a major NLS in its linker region and two other NLS sequences 
in its very C-terminal end (Dang and Lee, 1989; Shaulsky et al., 1990). The 
nuclear export signal (NES) of p53 lies within the tetramerization domain and is 
possibly masked by the formation of oligomeric forms (Stommel et al., 1999). 
Another NES has been found in p53 N-terminus, in the Mdm2 binding domain 
(Zhang and Xiong 2001).

p53 protein is very well conserved (Soussi et al., 1990) and it belongs to a 
family consisting of two other proteins, p63 and p73 (Yang et al., 2002). These 
proteins are structurally very similar and have several overlapping duties with 
p53 in cellular stress response (Yang et al., 2002) besides their specifi c roles in 
the development (Irwin and Kaelin, 2001). p63 and p73 isoforms lacking their 
TAD domain may inhibit p53 function through oligomer formation, while some 
p53 mutants are able to attenuate the function of p63 and p73 and contribute 
to oncogenesis in this way (Yang et al., 2002; Olive et al., 2004). In addition to 
the p53 family members, multiple splice variants from an alternative promoter 
of p53 are expressed in a tissue-dependent manner and may infl uence the activ-
ity of the full length protein (Bourdon, 2005). These forms can regulate p53 
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transcriptional activity by enhancing gene expression from specifi c promoters 
or by blocking the activity of the full length p53. Furthermore, distinct expres-
sion patterns of these isoforms have been discovered in human tumors, possibly 
affecting the response to therapeutic drugs and general biological features of 
different cancer types.

Figure 5. Organization of p53 functional domains. TAD, transactivation domain (aa 1-42); 
PRD, proline-rich domain (aa 63-97); DBD, DNA binding domain (aa 102-292); linker re-
gion (aa 300-318); TET, tetramerization domain (aa 323-356); CTD, C-terminal DNA bind-
ing domain (aa 363-393); NES, nuclear export signal; NLS, nuclear localization signal. 

Regulation of p53  stability and activity

p53 stability and activity are tightly controlled and the protein levels are kept 
low and in latent form in unstressed cells. However, in reponse to various kind 
of cellular damage, p53 is stabilized and its transcriptional activity is rapidly 
enhanced through several existing mechanisms. The stabilization of p53 is not 
required for its transactivation activity, suggesting that these events are at least 
partly independent of each other (Hupp, 1999).

 p53 protein is constantly synthesized and its accumulation in response to 
stress has been thought to be mainly based on inhibition of its degradation, not 
on de novo gene transcription and translation. A recent paper has, however, 
shown that increased translation of p53 mRNA is also an important step in the 
induction of p53 protein in DNA-damaged cells (Takagi et al., 2005). Despite 
extensive studies on the stabilization mechanisms of this protein, these stress-
induced pathways leading to stable p53 are not yet fully understood. Yet, both 
the activation and stabilization events of p53 have been proposed to include a 
number of site-and time-specifi c post-translational modifi cations, like phospho-
rylations, acetylations and sumoylation, as well as interactions with other activa-
tors. Alterations in the localization pattern of p53 may as well play a role in its 
function, as nuclear localization of p53 has been shown to be critical for its full 
activity (Shaulsky et al., 1991). 

The major regulation of p53 occurs via its degradation. p53 is degraded 
through the ubiquitin-proteasome pathway (Maki et al., 1996), which was for 
the fi rst time discovered from papilloma virus-infected cells (Scheffner et al., 
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1990 &1993). The papilloma virus protein E6 was shown to mediate the degra-
dation of p53 and play a role in this way in the oncogenesis of the infected cells 
(Scheffner et al., 1990 &1993). Later, Mdm2 (murine double minute 2) protein 
was found to be the major mediator of the ubiquitination and proteasomal deg-
radation of p53 (Haupt et al., 1997; Honda et al., 1997; Kubbutat et al., 1997). 
The ubiquitination of p53 C-terminal residues competes for its acetylation on 
the very same sites (Ito et al., 2002; Li et al., 2002). Acetylation by p300/CBP 
blocks p53 degradation (Ito et al., 2001) and may contribute to p53 activation 
upon various cellular stress situations (Gu and Roeder, 1997; Lill et al., 1997; 
Sakaguchi et al.,1998; Liu et al., 1999). In addition to acetylation, several phos-
phorylations of p53 N-terminus and C-terminus have been proposed to play a 
key role in controlling p53 stability and activity as well as target gene selection 
(Siliciano et al., 1997; Banin et al., 1998; Canman et al., 1998; Khanna et al., 
1998; reviewed in Xu, 2003). Phosphorylations on p53 N-terminus, especially 
residues serine 15 and serine 20 have been thought to block the interaction be-
tween p53 and Mdm2 in DNA damaged cells and in this way lead to elevation in 
p53 levels (Shieh et al., 1997; Craig et al., 1999; Prives and Hall, 1999; Unger et 
al., 1999; Kapoor et al., 2000; Zhang and Xiong, 2001). Later, phosphorylation 
of threonine 18 was shown to be the only critical residue, affecting Mdm2-p53 
interface (Lai et al., 2000; Schon et al., 2002). 

Although these phosphorylations in many models contribute to p53-Mdm2 
interactions, contrasting reports also exist (Ashcroft et al., 1999) and the in vivo 
data has showed no evidence of any p53 phosphorylations being critical for its 
stabilization or activation (Blattner et al., 1999; Xu et al., 2003). Similarly, the 
in vivo results about the effect of p53 acetylation on the protein stability are 
confl icting with the previous studies (Feng et al., 2005; Krummel et al., 2005). 
According to Feng et al., acetylation plays a role in p53 transactivation activ-
ity, while the other study proposed that this modifi cation only appears to have a 
slight effect in fi ne-tuning the p53 response (Krummel et al., 2005). p53 has also 
been shown to be modifi ed by SUMO, a small ubiquitin like protein, on its C-
terminal Lys386. This modifi cation was proposed to enhance its transcriptional 
activity (Gostissa et al., 1999; Rodriguez et al., 1999; Melchior and Hengst, 
2002), although contrasting results again exist (Kwek et al., 2001). Additional 
modifi cations, including neddylation and methylation of p53 have also been dis-
covered under certain stress situations, but their infl uence on p53 regulation still 
remains rather unknown. 

The C-terminal domain of p53 has been proposed to infl uence its activity, by 
mediating the conversion from the latent form to an active DNA-binding pro-
tein (Hupp et al., 1992). The latent form of p53 can also be in tetrameric form 
(Hupp and Lane, 1994), but the regulation of the conversion to active p53 has 
been proposed to involve allosteric transition through the C-terminal site of p53 
in DNA-damaged cells (Hupp and Lane, 1994; Waterman et al., 1995). Accord-
ing to this model, the stress-induced p53 modifi cations in its CTD would affect 
positively the ability of DBD to bind its target sequences (Gu and Roeder, 1997; 
Sakaguchi et al., 1998; Luo et al., 2004). Later, this model has been questioned 
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by other studies (Ayed et al., 2001; Krummel et al., 2005) and several different 
hypothesis about the role of CTD in the activation of p53 has emerged. Some 
studies propose that CTD acts as a negative regulator for DBD by binding DNA 
non-specifi cally and that the post-translational modifi cations of this domain 
upon stress blocks this function of CTD, allowing sequence-specifi c binding 
of DBD (Anderson et al., 1997; Friedler et al., 2005). C-terminus has also been 
suggested to play a role in enhancing the recognition of specifi c p53-response 
elements through the central domain (Ahn and Prives, 2001; McKinney et al., 
2004). The study of McKinney et al. (2004) showed the ability of CTD to dif-
fuse linearly on DNA, acting as a positive regulator for the sequence-specifi c 
binding, independently of the modifi cation status of CTD. Moreover two stud-
ies have shown the requirement for intact C-terminus for the effi cient promoter 
activation of p53 in vivo (Liu et al., 2004; McKinney et a., 2004). In all, the 
network regulating p53 stability and activity seems to be very complex, showing 
no simple on-off features. 

Mdm2

Mdm2 (murine double minute 2) was fi rst identifi ed from transformed murine 
3T3 fi broblasts (BALB/c), amplifi ed in small extrachromosomal nuclear bodies 
(Cahilly-Snyder et al., 1987; Fakharzadeh et al., 1991). It was later shown to 
decrease p53 activity, suggesting that this function of Mdm2 was responsible 
for its oncogenic potential (Momand et al., 1992, Oliner et al., 1992). Mdm2 
can inhibit p53 transactivation and act as its E3-ligase, mediating the degrada-
tion of p53 through the proteasome pathway (Haupt et al., 1997; Honda et al., 
1997; Kubbutat et al., 1997). The degradation through the proteasome pathway 
requires the polyubiquitination of the target protein (Thrower et al., 2000) and is 
controlled by three enzymes: ubiquitin-activating enzyme E1, ubiquitin-conju-
gating enzyme E2 and ubiquitin ligase E3. Mdm2 acts as the E3-ligase enzyme 
towards p53 and determines its fate to be degraded through this pathway. The 
importance of Mdm2 as a p53 regulator was proven by mice knock-out studies, 
where loss of p53 rescued the embryonic lethality of Mdm2 null mice (Jones et 
al., 1995; Montes De Oca Luna et al., 1995). Mdm2 itself is a p53 target gene, 
induced by cellular stress (Perry et al., 1993; Saucedo et al., 1999), creating a 
negative feedback loop between these proteins (Wu et al., 1993). 

Mdm2 gene is composed of 12 exons, which locate under two different pro-
moters, the other one being p53 responsive. The two promoters result in two 
different Mdm2 forms, p90 and p76, of which p76 does not bind p53 and acts 
as a dominant negative inhibitor of the full length form (Perry et al., 2000). In 
addition, a number of different Mdm2 splice variants exists and some of them 
also control the activity of the full length form (Bartel et al., 2002). Mdm2 gene 
is amplifi ed in one third of human sarcomas and approximately 7% of all human 
cancers (Oliner et al., 1992; Bond et al, 2004). Polymorphisms in its promoter 
region in a subgroup of human population may also lead to enhanced Mdm2 
expression and downregulation of p53 (Bond et al, 2004).
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The N-terminal site of the full length 491-amino acid Mdm2 is required for 
binding the p53 transactivation domain and repression of its activity (Chen et 
al., 1993, Oliner et al., 1993) (Figure 6). The amino acids 25-109 of Mdm2 
form a hydrophobic pocket, which bind the N-terminus of p53 and hide it from 
the transcriptional machinery (Chen et al., 1993; Kussie et al., 1996). Recent-
ly, another binding site between the DBD of p53 and acidic-domain of Mdm2 
has been reported (Shimizu et al., 2002; Yu GW et al., 2005). This interaction 
could possibly stabilize the Mdm2-p53 complex and modulate p53 degradation. 
Besides mediating p53 degradation and transactivation, Mdm2 may use other 
means in regulating p53 functions. Mdm2 controls the location of p53 protein, 
targeting it either to cytoplasm or nucleus (Roth et al., 1998; Freedman et al., 
1998), possibly sequestering it from its target genes. The shuttling of Mdm2 
requires its nuclear localization (NLS) and nuclear export signals (NES) (Figure 
6.). The C-terminus of Mdm2 contains its RING-domain, coordinating the E3-
ligase activity and ubiquitination of p53 C-terminal lysines (Nakamura et al., 
2000; Rodriguez et al., 2000). Additionally, Mdm2 is able to mediate its own 
degradation through the same domain (Fang et al., 2000; Honda et al., 2000).

For a long time it was thought that Mdm2 alone promotes p53 polyubiquiti-
nation. More recent data suggests that it actually mediates monoubiquitination 
of p53 on several lysine residues and participates in polyubiquitination in co-op-
eration with other factors (Lai et al., 2001). Because the degradation through the 
proteasome pathway requires polyubiquitination, other proteins besides Mdm2 
must be required for effi cient degradation of p53. One of these proteins is p300/
CBP (Grossman et al., 1998; Zhu et al., 2001; Grossman et al., 2003). In un-
stressed cells Mdm2-p300-p53 form complexes, in which p53 is not modifi ed 
by p300 and stays transcriptionally inactive (Kobet et al., 2000; Ito et al., 2001). 
The degradation of p53 can take place in both cytoplasm and nucleus (Xirodi-
mas et al., 2001; Joseph et al., 2003), although the cytoplasmic translocation 
was at fi rst suggested to be prerequisite for p53 degradation (Freedman and Lev-
ine, 1998; Tao and Levine, 1999a). The nuclear degradation function appears to 
be critical for shutting off the p53 activity in later stages of the damage response 
(Shirangi et al., 2002), while low levels of Mdm2 in unstressed cells induce 
p53 monoubiquitination and subsequent translocation to the cytoplasm (Geyer 
et al., 2000; Li et al., 2003). Other factors besides Mdm2 could be responsible 
for degrading p53 in unstressed cells possesing low Mdm2 levels. Whether the 
monoubiquitination of p53 by Mdm2 triggers some other unknown p53 func-
tions, still remains to be solved. 

In addition to p53 modifi cations in the Mdm2-p53 interface, Mdm2 protein 
is also heavily modifi ed in response to cellular stress, possibly affecting their 
interactions (Meek and Knippschild, 2003; Moll and Petrenko, 2003). Mdm2 is 
acetylated in its RING domain, inactivating it and leading to p53 transactivation 
(Wang et al., 2004). Several phosphorylations/dephosphorylations on Mdm2 
have also been shown to modify its effect on p53 degradation and inhibition of 
its transactivation activity in stressed cells (Maya et al., 2001; Okamoto et al., 
2002; Blattner et al., 2002). ATM, for instance, phosphorylates Mdm2 on Ser 
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395 and inhibits p53 degradation (Khosravi et al., 1999; de Toledo et al., 2000; 
Maya et al., 2001). Mdm2 is also a target of the AKT-kinase pathway, which 
phosphorylates Mdm2 and targets it to nucleus where it is able to ubiquitinate 
p53 (Mayo and Donner, 2000). Tumor suppressor protein PTEN on the other 
hand is able to reverse this action of AKT and  protect p53 from the Mdm2-me-
diated degradation (Mayo et al., 2002; Freeman et al., 2003). DNA damage also 
promotes new interactions with Mdm2 and its partner proteins, possibly contrib-
uting to p53 activation and stabilization. In addition to the control of p53-Mdm2 
interaction, the levels of Mdm2 could be critical in regulating p53 stability and 
activity and Mdm2 protein and mRNA levels have been shown to decrease upon 
various treatments that lead to elevated levels of p53 (Wu and Levine, 1997; Ar-
riola et al., 1999; Ashcroft et al., 2000; Inoue et al., 2001; Wang et al., 2002). 

Besides its function as a regulator of p53 activity, Mdm2 is capable of affect-
ing the cell cycle, DNA repair, basal transcription, differentiation and cell fate 
determination independently of p53 (reviewed in Ganguli and Wasylyk, 2003). 
Splice variants of Mdm2 having no p53 binding domain clearly operate in p53-
independent functions. Mdm2 binds DNA pol ε (Vlatkovic et al., 2000) and 
stimulates its activity (Asahara et al., 2003). DNA pol ε has roles in DNA repair, 
recombination, replication, damage sensing and chromatin remodelling, linking 
Mdm2 to regulation of these functions. Possible role in ribosome biosynthesis 
and in translational regulation comes from Mdm2 interaction with L5 (Marcchal 
et al., 1994). Mdm2 could also affect transcription as it interacts with general 
transcription factors (Ganguli and Wasylyk, 2003). The cell cycle regulatory 
role of Mdm2 derives from its ability to bind Rb and perturb Rb-mediated G1-
arrest (Xiao et al., 1995) and cooperate with E2F, stimulating E2F-dependent 
activation of some promoters involved in DNA synthesis (Martin et al., 1995). 
Interestingly, Mdm2 has also two cell cycle arrest-inducing domains (ID1 and 
ID2), which do not overlap with p53 interaction domain (Brown et al., 1998). 
These domains could be lost during the tumorigenesis, as Mdm2 is mostly asso-
ciated with transformation of the cells. Overexpression of the entire Mdm2 gene 
predisposis to spontaneous tumor formation in a cell type-dependent manner 
(Jones et al., 1998). Mdm2 also contributes to the transformed phenotype in the 
absence of p53 and confers to a growth advantage in cells that lack p53 and Rb 
and can overcome the cell cycle arrest induced by p107 (Dubs-Poterszman et al., 
1995). Tumors with both p53 mutation and Mdm2 amplifi cation are rare but lead 
to poorer prognosis, further underlining the p53-independent role of Mdm2 in 
cellular transformation (Cordon-Cardo et al., 1994). Mdm2 promoter is also a 
target of Ras/MAPK pathway and activation of this pathway can increase Mdm2 
levels during neoplastic transformation, giving a growth advantage for the cells 
(Ries et al., 2000). 
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Figure 6. Structure of Mdm2 protein. N, N-terminal domain; C, C-terminal domain; NLS; 
nuclear localization signal; NES, nuclear export signal; NoLS, nucleolar localization sig-
nal. 

MdmX

MdmX (Mdm4), a Mdm2 homologue, is also an important negative regulator of 
p53 activity, as the embryonic lethal phenotype of MdmX null mice is rescued 
by p53 knock-out (Parant et al., 2001; Finch et al., 2002; Migliorini et al., 2002) 
and amplifi cation of MdmX directly affects to tumor formation by inhibiting 
the tumor suppressor activity of p53 (Danovi et al., 2004). Several studies on 
this Mdm2 homologue has been published, but the relevance of MdmX in the 
regulation of p53 is not fully understood and many contradictory results exist 
(reviewed in Marine and Jochemsen, 2005). 

MdmX is able to bind p53 and structurally resembles Mdm2, but does not 
contain the C-terminal domain responsible for the E3-ligase activity. It seems 
to play a dual role in the regulation of p53 stability and activity, as it can inhibit 
Mdm2 and stabilize p53 when overexpressed, still keeping p53 in an inactive 
form (Jackson and Berberich, 2000). However, when the MdmX protein remains 
at low physiological levels, it co-operates with Mdm2 in p53 downregulation 
(Gu et al., 2002). One of the mechanisms in regulation of p53 activity could be 
the inhibitory effect of MdmX on the acetylation of p53 C-terminus (Sabbatini 
and McCormick, 2002). A recent paper by Toledo et al. (2006) showed a mouse 
model expressing p53 mutant lacking the proline-rich domain (p53DeltaP) and 
with reduced p53 apoptotic response. Expression of this mutant rescued the le-
thal phenotype of MdmX defi ciency, but not Mdm2 defi ciency. Furthermore, 
decreasing Mdm2 levels increased p53DeltaP levels without altering its trans-
activation, suggesting that MdmX mainly regulates p53 activity while Mdm2 
controls p53 stability. Interestingly, MdmX is a target for Mdm2-mediated ubiq-
uitination and proteasomal degradation in DNA-damaged cells, indicating that 
Mdm2 can also insure proper p53 transactivation activity (de Graaf et al., 2003; 
Kawai et al., 2003). The ubiquitination of MdmX by Mdm2 is also enhanced 
by tumor suppressor protein ARF, correlating with the ability of ARF to bind 
Mdm2 (Pan and Chen, 2003). Regardless of many unknown aspects in p53-
MdmX-Mdm2 relationship, MdmX probably has as important biological impact 
on p53 function as its homologue, Mdm2

Mdm2 
491 aa

N C

p53 binding 
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acidic domain Zinc finger RING finger 
domain

NLS NES NoLS
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Other regulators of p53 stability

Mdm2 was for long thought to be the single E3-ligase for p53. Nowadays a 
few other proteins accomplishing this same duty have been discovered. Two of 
these factors are Pirh2 and Cop1, also E3-ligases for p53 and able to trigger p53 
degradation in a Mdm2-independent manner (Leng et al., 2003; Dornan et al., 
2004). Similarly to Mdm2, both of these genes are p53 targets, upregulated in 
cellular stress and forming an autoregulatory negative feedback loop with p53. 
Recently, another new E3-ligase, ARF-BP1, was found to be a mediator of p53 
degradation (Chen et al., 2005). This protein is a major binding-partner of ARF 
tumor suppressor protein and its negative effect on p53 levels is prevented by 
this complex formation. As ARF-BP1 is not a p53 target gene in cellular stress, 
it could be responsible for maintaining the basal levels of p53, while Mdm2, 
together with Pirh2 and Cop1, could be the key regulators of p53 in stressed 
cells as at least Mdm2 levels are regulated by p53 only in response to cellular 
stress  (Figure 7).   

Figure 7. Cellular stress blocks p53 degrada-
tion by the proteasome pathway and leads to 
stable and active p53. p53 regulates the tran-
scription of its target genes, including Mdm2, 
Pirh2 and Cop1 creating an autoregulatory loop 
in the control of  p53 levels. 
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p53-mediated stress responses

p53  is a versatile, stress-induced protein, responding to a variety of cellular 
stress (Duthu et al., 1985; Fritsche et al., 1993; Hall et al., 1993; Lu and Lane; 
1993; Graeber et al., 1994; Yamaizumi et al., 1994) (Figure 8). Most of the p53 
functions coordinating cellular responses to stress are exerted by transcriptional 
activation of p53 target genes involved in cell cycle arrest, apoptosis or DNA re-
pair (Ko & Prives, 1996). p53 acts as a transcription factor, recruiting a number 
of other transcriptional regulators and chromatin modifying proteins, like TFIIH 
and p300/CBP to promote the transcription of its target genes through DNA-
binding upon stress (Xiao et al., 1994; Espinosa and Emerson, 2001). The func-
tional activation of p53 leads to either up-regulation (Harms et al., 2004; Yu and 
Zhang et al., 2005) or down-regulation (Mirza et al., 2003) of numerous differ-
ent p53 targets. Depending on the severity of the damage, p53 is able to either 
promote cell cycle arrest and DNA repair or in the case of excessive damage, 
lead the cells to apoptosis (Vousden and Lu, 2002). How p53 determines the 
destiny of the cell is not totally clear. It may, however, be dependent on the levels 
of p53 (Chen et al., 1996), p53 modifi cations and interactions or interplay with 
other regulatory pathways.

Figure  8. p53 responds to a variety of cellular stress and  regulates apoptosis, cell cycle ar-
rest and DNA repair by transcription-dependent and -independent means. 
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Cell cycle arrest

Following DNA damage, activation of p53 leads to halting the cell cycle pro-
gression. The p53-dependent arrest in G1 phase of the cycle mainly relies on its 
target gene p21WAF1/CIP1 (El-Deiry et al., 1993; Dulick et al., 1994; El-Deiry et al., 
1994), which inhibits CDKs and concomitantly entry to S-phase (Harper et al., 
1993; Xiong et al., 1993). Although p53 is not required for delaying the cell cycle 
progression in S phase upon DNA damage, it is directly involved in the control 
of centrosome duplication (Tarapore et al., 2001). In undamaged cells cyclin 
E/CDK2 complex triggers DNA synthesis as well as centrosome duplication. 
However, in the presence of impaired DNA synthesis p21-mediated inhibition 
of the cyclin E/CDK2 complex stops the centrosome cycle and protects the cells 
from centrosome amplifi cation (Hinchcliffe et al., 1999; Lacey et al., 1999). This 
control of the centrosome duplication cycle is maintaned in a p53-dependent 
manner (Tarapore et al., 2001). In G2 phase, the p53-dependent response is con-
trolled by its targets 14-3-3σ and GADD45, in addition to its major transactiva-
tion target p21 (Hermeking et al., 1997; Taylor and Stark, 2001). However, p53 
seems not to be essential for this checkpoint as many cell types defi cient for p53 
still accumulate in G2 upon DNA damage (Lukas et al., 2004). In addition, p53 
participates in the spindle checkpoint, ensuring proper chromatin segragation 
and maintenance of ploidy in the daughter cells (Cross et al., 1995).

DNA repair

p53 is a major player in the DNA damage-induced pathways and has an essential 
role in the maintenance of intact genome (Lane, 1992; Levine, 1997). Its role in 
several repair networks either directly or indirectly was discovered quite early 
and evidence for p53 involvement in NER, BER, MMR and the repair of DSBs 
has come from numerous studies (Reviewed in Sengupta and Harris, 2005; Gatz 
and Wiesmuller, 2006). p53 regulates the damage repair by either inducing the 
transcription of repair proteins or through interactions with the repair machin-
ery (Gatz and Wiesmuller, 2006 and references therein) or by recognizing  and 
associating with the damage sites themselves (Bakalkin et al., 1995; Lee et al., 
1995; Reed et al., 1995). p53 is also capable of catalyzing the reannealing of 
the DNA strands (Oberosler et al., 1993; Brain and Jenkins, 1994) and has 3´-5´ 
exonuclease activity (Mummenbrauer et al., 1996; Huang, 1998; Janus et al., 
1999; Skalski et al., 2000).

The evidence for the involvement of p53 in mismatch repair comes mainly 
from its ability to transactivate some MMR genes, such as MSH2, MLH1 and 
PMS2 (Scherer et al., 2000; Warmick et al., 2001; Chen and Sadowski, 2005). 
The role of p53 in BER can be either direct or indirect, and a few BER genes are 
under the transcriptional regulation of p53 (Offer et al., 1999; Offer et al, 2001; 
Seo et al., 2002; Zurer et al., 2004; Lu et al., 2004). The regulation of the DSB 
repair by p53 seems not to require p53 transcriptional activation. Several studies 
have suggested a direct role for p53 in the repair of DSBs: p53 can bind many 
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central DSB repair proteins, like Rad51, RPA, BRCA1 and BRCA2, Bloom´s 
syndrome protein and Werner´s syndrome protein. It also represses HR upon 
DSBs and stalling of the replication fork, independently of its transactivation 
activity (Gatz and Wiesmuller, 2006 and references therein). p53 function may 
thus be required for inhibiting error-prone DSB repair and for halting replica-
tion until the damage has been repaired. Similarly p53 can probably contribute 
to the nonhomologous end-joining of DSBs to secure error-free NHEJ (Bill et 
al., 1997; Dahm-Daphi et al., 2005).

p53 in nucleotide excision repair

UV radiation and some DNA-damaging agents induce DNA lesions that block 
the transcription by RNA pol II and trigger nucleotide excision repair (Mello et 
al., 1995; Selby et al., 1997; Culliane et al., 1999). The formation of DNA dam-
age-induced lesions and transcriptional inhibition acts as a signal for p53 induc-
tion (Yamaizumi et al., 1994; Ljungman and Zhang, 1996; Dumaz et al., 1997; 
Ljungman et al., 1999; Ljungman et al., 2001). p53 seems to have a transcrip-
tion-dependent and -independent role in NER network . Its function in NER is 
independent of its stabilization, induced already by smaller amounts of damage. 
Cells expressing very low levels of wt p53 have been reported to have defective 
NER (Ford and Hanawalt, 1995; Smith et al., 1995; Wang et al., 1995) and the 
cells derived from Li-Fraumeni patients or cells infected with HPV-E6 to have 
defective GGR (Ford and Hanawalt, 1995; Zhu Q et al., 2000). p53´s involve-
ment in GGR has been widely accepted, while its effect on TCR is somewhat 
contradictory, some papers supporting the association of p53 in TCR (Wang et 
al., 1995; Mirzayans et al., 1996; McKay et al., 1999; Therrien et al., 1999; Ma-
thonnet et al., 2003) whereas others do not (Ford and Hanawalt, 1995 & 1997; 
Ford et al., 1998; Wani et al, 2000). The differencies in these results may, how-
ever, partly result from variable experimental setups as well as different wave-
lengths used in the UV studies (Therrien et al., 1999; Mathonnet et al., 2003). 

p53 participates in the repair of both UV-induced 6-4PPs and CPDs and its 
activity is essential for CPD repair (Ford and Hanawalt, 1995; Ford and Hana-
walt, 1997; Ford et al., 1998; Bowman et al., 2000). The presence of p53 is re-
quired for the repair of other types of DNA adducts as well, induced by exposure 
to environmental carcinogens, benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) or 
benzo(g)chrysene (B(g)CDE) (Lloyd and Hanawalt, 2000; Lloyd and Hanawalt, 
2002). p53´s ability to participate in NER comes from its direct interactions  
with the repair factors of this pathway, like TFIIH (Wang et al., 1995; Gatz and 
Wiesmuller, 2006 and references therein) and it also controls the expression of 
XPC, XPE,  a GGR repair protein p48 and Gadd45, a factor involved in growth 
arrest as well as NER (Hwang et al., 1999; Smith et al., 2000; Amundson et al., 
2002; Adimoolam et al., 2002; Adimoolam and Ford, 2002; Tan and Chu, 2002). 
Additionally, p53 may have a role in mediating histone modifi cations and act as 
a chromatin accessibility factor to assist in the GGR pathway of the nucleotide 
excision repair (Rubbi and Milner, 2003a). 
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p53-induced apoptosis

The apoptosis-inducing activity of p53 is probably its major function in prevent-
ing tumor formation (Symonds et al., 1994; Schmitt et al., 2002). p53 coordi-
nates apoptosis by either inducing several pro-apoptotic genes or by repressing 
anti-apoptotic factors. The most studied and relevant apoptotic p53 targets are 
Bax, Noxa, PUMA, Apaf-1 and p53AIP1 (Miyshita and Reed, 1995; Oda E. et 
al., 2000; Oda K. et al., 2000; Moroni et al., 2001; Nakano and Vousden, 2001). 
These targets play a role in the mitochondrial apoptotic pathway (Chipuk and 
Green, 2006) and deletion of any of them results in resistance to p53-mediated 
apoptosis, depending on the stress stimulus and cell type (Jeffers et al., 2003; 
Shibue et al., 2003; Villunger et al., 2003). p53-mediated gene repression also 
takes place under some stress conditions. For example, in hypoxic cells p53 
supresses the anti-apoptotic survivin to promote activation of the caspase path-
way (Hoffman et al., 2002; Hammond and Giaccia, 2005). Additionally, p53 
contributes to the external signalling pathway of apoptosis by inducing several 
different death receptors, like Fas/APO1, PERP and KILLER/DR5 (Muller et 
al., 1998; Benchimol, 2001) and by participating in their intracellular transport 
(Bennett et a., 1998).

In addition to the transcriptional regulation of apoptosis, p53 also contributes 
to the death pathway by directly associating with the Bcl-2 family members 
in the cytoplasm. p53 is rapidly translocated to the mitochondria in response 
to multiple death stimuli and binds anti-apoptotic factors Bcl-2 and Bcl-xL as 
well as apoptotic Bak and Bax to release cytochrome c from the mitochondria 
(Marchenko et al., 2000; Mihara et al., 2003; Chipuk et al., 2004; Leu et al., 
2004). This rapid mitochondrial response inducing apoptosis may represent the 
immediate death signal, the transcriptional activation being the second-wave 
response to death stimuli (Erster et al., 2004). The p53 DNA-binding domain 
probably plays an important role in mediating this fi rst-wave reponse through its 
interactions with Bcl-2 family proteins (Petros et al., 2004), again underlining 
the importance of this domain in tumor-suppression.  

The apoptotic function of p53 is controlled by several p53-binding and mod-
ulating proteins, like the ASPP family proteins (Samuels-Lev et al., 2001). The 
ASSP family consists of ASSP1, ASPP2 and iASPP proteins, regulating p53-
induced apoptosis. iASSP is likely to be an oncoprotein and acts as inhibitor 
of p53-mediated apoptosis by binding to p53 C-terminus (Bergamaschi et al., 
2003).  ASPP1 and ASPP2 are activated by DNA damage or oncogenic stress and 
bind to p53 and other p53 family members and stimulate their ability to induce 
apoptosis through proapoptotic genes, like Bax, PUMA and PIG3 (Samuels-Lev 
et al., 2001). The importance of the ASPP proteins is underscored by the fi nd-
ing that the ASPP contacting residues in p53 are mutated with high frequency 
in human cancers and that either overexpression of iASSP or downregulation of 
the ASPP1 and 2 are common in human tumors (Gorina and Pavletich, 1996; 
Samuels-Lev et al., 2001; Bergamaschi et al., 2003). Expression of E2F proteins 
also regulates p53-mediated apoptosis and E2Fs are induced by several types of 
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DNA-damaging agents that activate p53 (O´Connor and Lu, 2000). Increased 
E2F-levels can enhance p53 activity through induction of ASPPs (Fogal et al., 
2005b) or through complex formation between p53 and E2F that enhance the 
apoptotic activity of p53 in damaged cells (Hsieh et al., 2002). In addition to 
ASPPs and E2Fs, other factors not reviewed in here, may  modulate p53 re-
sponse in the decision to choose the cell death pathway. 

Senescence

The phenomenon of senescence prevents normal human fi broblasts from divid-
ing indefi nitely in cell cultures (Hayfl ick, 1965). Senescence is associated with 
shortening of telomeres in the ends of chromosomes during each cell cycle (Har-
ley et al., 1990) and this shortening can be reversed by the action of telomerase 
enzyme, promoting the replicative potential of the cells (Bodnar et al., 1998). 
In addition to tumor suppressor protein Rb, p53 is the major controller of  
cellular senescence (Ithana et al., 2001; Schmitt et al., 2002b; Beausejour, 
2003) and can also induce premature senescence upon oncogenic signal-
ling (Serrano et al., 1997). Cellular senescence is associated with changes 
in p53 modifi cations and enhanced p53 transcriptional activity (Atadja 
et al., 1995; Bond et al., 1996; Vaziri et al., 1997; Webley et al., 2000). 
ATM and Chk-kinases are recruited to the shortened telomeres and may 
promote a DNA-damage signalling cascade, leading to phosphorylation 
of  p53 (d´Adda di Fagagna et al., 2003; Gire et al., 2004, Herbig et al., 
2004). Subsequently, p53 can be regulated by p300-mediated acetylation, 
which can be controlled for example by the ING-family protein ING2 
(Pedeux et al., 2005). Upon activation, p53 helps to maintain a nonpro-
liferative state in the late passage cells mainly by upregulating p21 ex-
pression (Beausejour, 2003). Moreover, it can participate in the cellular 
senescence by decreasing the expression of the catalytic subunit of telom-
erase, hTERT (Xu et al., 2000). As cells need to bypass the senescence to 
become transformed (Shay and Roninson, 2004), this may be an essential 
function for p53´s tumor suppressive properties. 

p53 response to UV radiation

p53 is stabilized and activated by UV radiation and has an essential role in the 
protective UV response (Maltzman and Czyzyk, 1984; Ziegler et al., 1994). It is 
the key player in inducing UV radiation-promoted cell cycle arrest or apoptosis 
upon higher exposure to UV (Decraene et al., 2001). Mutations disturbing these 
functions are also frequently associated with skin cancers (Ziegler et al., 1994; 
Hartmann et al., 1996; Haapajärvi et al., 1999). The extent of p53-mediated 
cellular responses in the skin keratinocytes depend on the age and differentia-
tion state of the cells, being more prominent in differentiated keratinocytes and 
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impaired in the aged ones (Latonen and Laiho, 2005 and references therein). 
Additionally, p53 has a protective role in the skin through participitation to the 
melanin production and tanning process (Nylander et al., 2000). 

Most of the studies on p53 responses to DNA damage have been performed 
with ionizing radiation or cytotoxic damage. Despite some overlapping features 
of the p53 response to DSBs, many of the UV-induced events in p53 activa-
tion are distinct (Reviewed in Latonen and Laiho, 2005). p53 modifi cations and 
stabilization for example occur with slower kinetics than with IR (Saito et al., 
2003). p53 can be phosphorylated on its N-terminus by the ATM/ATR-pathway 
(Canman et al., 1998; Khanna et al., 1998; Khosravi et al., 1999;  Chebab et 
al., 2000). Upon UV radiation, p53 is phosphorylated primarly by ATR and its 
downstream kinase Chk1. UV damage-induced kinases, DNA-PK, p38, HIPK2, 
JNK, TAFII250 and CK2 also phosphorylate p53 on its N-or C-terminal sites 
(Xu, 2003 and references therein). In addition, p53 is modifi ed by acetylations 
and sumoylation upon UV radiation of the cells (Sakaguchi et al., 1998; Ljung-
man et al., 2001; Melchior and Hengst, 2002). As previously dicussed, these 
modifi cations can possibly affect p53 stress response by fi netuning its transcrip-
tional activity or by enhancing its stability and interactions with other proteins, 
although contrasting results exist. Some p53 modifi cations, like Ser 392 phos-
phorylation, are associated only with UV damage (Latonen and Laiho., 2005 
and references therein) and many of the modifi cations occur in a dose-depend-
ent manner (Reinke and Lozano, 1997; Latonen et al., 2001). For example, p53 
phoshorylation on Ser 46 after higher doses of UV by homeodomain-interact-
ing protein kinase-2 (HIPK2), has been linked to the apoptotic p53 response 
(D´Orazi et al., 2002). 

Low doses of UVC radiation induce a transient p53 activation and cell cycle 
arrest, while higher doses, leading to persistent transcription blockage, induce 
slower and more prominent induction of p53. The apoptotic response is associat-
ed with the activation of apoptotic p53 target genes and downregulation of anti-
apoptotic p53 targets (Cotton and Spandau, 1997; Reinke and Lozano, 1997; 
Wu and Levine, 1997; Latonen et al., 2001). The transient activation of p53, 
leading to transactivation of cell cycle-regulatory genes, also leads to induction 
of Mdm2 levels and is associated with the feedback loop that is lacking from the 
apoptotic cells (Perry et al., 1993; Latonen et al., 2001). 

In addition to the posttranslational modifi cations, p53 function is modulat-
ed by several protein-protein interactions upon UV damage. Prolyl isomerase 
(Pin1) controls p53 stability upon various kind of stress and regulates p53 acti-
vation by modulating its interactions with DNA and some cofactors (Wulf et al., 
2002; Zacchi et al., 2002; Mantovani et al., 2004). In UV-damaged cells Pin1 
is required for the Chk2 phosphorylation of p53 on Ser 20, leading to dissocia-
tion from Mdm2 and p53 stabilization (Zacchi et al., 2002; Berger et al., 2005). 
Several of the known stress-induced protein-protein associations and effects oc-
cur in a UV dose-dependent manner. For example p33ING1b and ASPP1 and 
ASPP2 proteins contribute to p53-induced apoptosis upon higher doses of UV 
radiation (Samuels-Lev et al., 2001; Cheung and Li, 2002).



38

As discussed above, p53 also participates in NER pathway in UV-damaged 
cells. While p53 participates in the repair of DNA lesions, it is also capable 
of protecting the cells against UV- or cisplatin-induced apoptosis in a TCR- 
and transcriptional recovery-dependent manner (McKay and Ljungman, 1999; 
McKay et al., 1999, 2000 and 2001). TCR-defi cient cells undergo massive apop-
tosis upon UV radiation. Even though the induction of apoptosis correlates with 
p53 stability, it is not p53-dependent and p53 actually contributes to inhibition 
of apoptosis in TCR-profi cient fi broblasts (Ljungman and Zhang, 1996; McKay 
et al., 1998; Ljungman et al., 1999; McKay et al., 2001). 
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p53-PATHWAY PROTEINS

This chapter introduces the most relevant  p53-pathway proteins with respect of 
this study.

ARF

Alternative reading frame (ARF) protein is encoded by the Ink4a/ARF locus, 
producing both p16INK4a and p19ARF proteins (Quelle et al., 1995). p19ARF (mouse 
ARF) and p14ARF (human ARF) are nucleolar proteins involved in the p53 path-
way (Quelle et al., 1995; Pomerantz et al., 1998; Weber et al., 1999; Zhang and 
Xiong, 1999). The proteins of the Ink4a/ARF locus control the progression of 
the cell cycle mainly by regulating the activites of Rb and p53 (Sharpless and 
DePinho, 1999). The gene products of Ink4a/ARF locus are also commonly in-
activated in human cancers.

ARF is activated upon oncogene expression, like Ras, c-Myc, v-Abl and ad-
enovirus E1A, leading to downstream activation of p53 (De Stanchina et al., 
1998; Palmero et al., 1998; Radfar et al., 1998; Zindy et al., 1998; Sherr, 2001). 
ARF may also perform its growth suppressive activities in p53-independent 
manner (Sugimoto et al., 2003). The activation of p53 downstream of ARF is 
independent of p53 modifi cations (de Stantchina et al., 1998) as ARF exerts 
its p53-inducing functions by binding to Mdm2 RING domain and inhibiting 
the Mdm2-mediated degradation of p53 (Kamijo et a., 1998; Pomerantz et al., 
1998; Stott et al, 1998; Zhang et al., 1998; Honda and Yasuda, 1999). Several 
mechanisms have been proposed for the ARF-mediated activation of p53, in-
cluding degradation of Mdm2 by ARF (Zhang et al., 1998), and ARF-mediated 
relocalization of Mdm2 to nucleoli (Tao and Levine, 1999; Weber et al., 1999),  
which requires nucleolar localization signal (NoLS) of both proteins (Honda 
and Yasuda, 1999; Lohrum et al., 2000). This could possibly enable p53 accu-
mulation in the nucleoplasm, although contrasting reports on the importance of 
this nucleolar Mdm2 relocalization exist (Llanos et al., 2001). Another model 
has proposed that Mdm2-p53 complex could exit from the nucleus to cytoplasm 
via nucleoli and that ARF-Mdm2 interaction could interfere with this function 
(Tao and Levine, 1999). ARF, Mdm2 and p53 have also been detected in the nu-
clear bodies in the nucleoplasm and this has been linked to ARF´s capability of 
stabilizing p53 (Xhang and Xiong, 1999). Recently, a new p53 E3-ligase, ARF-
BP1, was discovered (Chen et al., 2005). Blockage of the function of ARF-BP1 
by ARF may be one way to stabilize p53.

Nucleophosmin

Nucleophosmin, NPM, (also referred to as B23, numatrin or NO38) is an abun-
dant nucleolar phosphoprotein, shuttling constantly between the nucleoli and cy-
toplasm (Schmidt-Zachmann et al., 1987; Schmidt-Zachmann and Franke, 1988; 
Borer et al., 1989). Npm is essential for the development and its loss in germ-line 
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leads to embryonic lethality (Colombo et al., 2005; Grisendi et al., 2005). The 
fi rst identifi ed functions for this protein involved ribosome biogenesis and trans-
port of the pre-ribosomal particles (Prestayko et al., 1974; Spector et al., 1984; 
Olson et al., 1986; Herrera et al., 1995; Savkur and Olson, 1998). Depletion of 
NPM modifi es pre-RNA processing and alters maturation of the ribosomes (Itha-
na et al., 2003; Grisendi et al., 2005). The survival of  Npm-/- mouse embryos to 
mid-gestation does not suggest that NPM is an essential factor in the biogenesis 
of ribosomes (Colombo et al., 2005; Grisendi et al., 2005). NPM has also been 
linked to various other cellular processes, including stress response, DNA-repair 
and maintenance of the genomic integrity (Grisendi et al., 2006). 

NPM belongs to a nuclear chaperone family of nucleoplasmins and can act as 
a chaperone for nucleic acids and proteins (Szebeni and Olson, 1999; Okuwaki 
et al., 2001). The chaperone activity of NPM has been mapped to its N-terminal 
domain (Hingorani et al., 2000) (Figure 9). NPM can also act as a histone chap-
erone and this may refl ect its importance in the regulation of chromatin structure 
and transcription (Okuwaki et al., 2001; Swaminathan et al., 2005). In addition, 
NPM seems to be involved in the centrosome cycle (Okuda et al., 2002). It 
associates with unduplicated centrosomes during G1 and is dissociated from 
the centrosomes by phosphorylation on Thr 199 by cyclin E/CDK2 complex 
(Okuda et al., 2000; Tokuyama et al., 2001; Okuda et al., 2002; Tarapore et al., 
2002). This allows the duplication of  centrosomes during S phase of the cycle. 
Recent results also show that Ran-CRM1 complex, involved in the nucleo-cy-
toplasmic transport of NPM, is involved in controlling the NPM localization at 
the centrosomes (Wang et al., 2005). During mitosis, NPM re-associates with 
centrosomes and colocalizes with NUMA and  BRCA1-BARD1 proteins (Zat-
sepina et al., 1999; Sato et al., 2004). The importance of controlled regulation of 
NPM during the centrosome cycle is underlined by the fi nding that centrosome 
amplifi cation has been detected in the presence of excessively phosphorylated 
NPM (Saavedra et al., 2003; Zhang et al., 2004) and that its functional loss also 
leads to centrosome amplifi cation and aneuploidy (Grisendi et al., 2005). 

NPM protein exists in two different isoforms, B23.1 and B23.2, due to alter-
native splicing (Chang and Olson, 1989; Chang and Olson, 1990; Wang et al., 
1993). Of these forms B23.1 is the major form and localizes predominantly in the 
nucleoli and functions in ribosome biogenesis. B23.2, lacking the DNA and RNA 
binding domain of NPM C-terminus localizes to nucleoplasm and also nucleoli 
through its interactions with the full length form (Wang et al., 1994; Okuwaki et 
al., 2002; Wang et al., 1993). In native conditions, NPM exists in an oligomeric 
form, as a hexamer (Herrera et al., 1996) and the splice variants are able to form 
multimers as well (Chang and Olson, 1989; Umekawa et al., 1993).
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Fig 9. Functional domains of NPM (B23.1). The hydrophobic N-terminus of NPM contains 
its chaperone activity as well as the domain required for oligomer formation. The central 
region contains two acidic domains (*), responsible for histone binding. Binding of DNA 
and RNA occurs through the C-terminal domain, of which 35 last residues are lacking in 
the spliced form, B23.2. Ribonuclease activity requires both the C-terminal domain and the 
region between the two acidic domains. Additionally, NPM contains nuclear export signal 
(NES), two nuclear localization signals (NLS) and a nucleolar localization signal (NoLS). 

NPM and cancer 

In addition to its role in various cellular functions, NPM has been linked to 
neoplastic transformation (see Grisendi et al., 2006 for review). NPM is a tran-
scriptional target of Myc-oncogene and may support cell proliferation in trans-
formed cells through enhanced ribosome biosynthesis (Boon et al., 2001; Zeller 
et al., 2001). Its expression is enhanced in response to mitogenic signals and its 
protein level is often high in rapidly proliferating and malignant cells (Feuer-
stein et al., 1988; Chan et al., 1989; Gubin et al., 1999; Dergunova et al., 2002). 
Overexpression of NPM is detected in several cancer types, including melano-
ma, prostate, gastric, colon and ovarian carcinomas, possibly refl ecting the high 
translational activity of these cells (Tanaka et al., 1992; Nozawa et al., 1996; 
Shields et al., 1997; Subong et al., Skaar et al., 1998;  Bernard et al., 2003; 1999; 
Tsui et al., 2004). Opposite to highly proliferating cells, NPM levels in apoptotic 
or quiescent cells are decreased (Jiang and Yung, 1999; Wu et al., 1999; You et 
al., 1999). In addition to a supportive role in ribosome biogenesis, high levels 
of NPM may enhance proliferation by inhibiting apoptotic pathways (Ye, 2005). 
NPM may for instance inhibit apoptosis by blocking the activity of transcription 
factor IRF-1 (Kondo et al., 1997) and eukaryotic initiation factor 2 kinase PKR 
(Pang et al., 2003) or by mediating the anti-apoptotic activity of nerve growth 
factor, NGF (Ahn et al., 2005). 

Interestingly, recent knock-out studies have shown that NPM has also growth-
suppressive properties and an important role in the cellular stress response. NPM 
protein has for long been known to react to various kind of stress and several 
DNA-damaging or cytotoxic drugs. These cause NPM translocation from the 
nucleoli to the nucleoplasm (Yung et al., 1985; Chan et al., 1987; Yung et al., 
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1990; Bor et al., 1992; Chan, 1992; Wu and Yung, 2002). In DNA-damaged cells 
NPM can promote repair of lesions by upregulating PCNA protein (Wu et al., 
2002) and through regulating the localization of GADD45, a protein involved 
in DNA repair and chromatin remodelling (Gao et al., 2005). Moreover, Npm-/- 
cells show increased γ-H2AX-ATM DNA damage foci formation (Colombo et 
al., 2005) and Npm-/- or hypomorphic MEFs show genomic instability (Grisen-
di et al., 2005), indicating an essential role for NPM in the maintenance of the 
integrity of the genome.  

NPM binds ARF in the nucleoli in a quantitative manner (Bertwistle et al., 
2004). The complex relationship between these proteins has been studied ex-
tensively over the last few years and is still not fully understood. ARF has been 
found to inhibit the growth-promoting effect of NPM by blocking its function 
in rRNA processing and the transport of pre-ribosomal particles (Savkur et al, 
1998; Ithana et al., 2003; Sugimoto et al., 2003; Brady et al., 2004) and by me-
diating NPM degradation (Itahana et al., 2003). NPM, on the other hand, stabi-
lizes ARF, and ARF mutants lacking NPM binding domain have been shown to 
be more unstable (Kuo et al., 2004). Moreover, in MEFs lacking both p53 and 
NPM, ARF is relocalized to nucleoplasm and is found in lower protein levels 
(Colombo et al., 2005). Such cells are also more prone to transformation. Thus 
NPM´s potential tumor-suppressive functions could occur through ARF path-
way upon oncogenic stress. An opposite study has, however,  suggested that 
ARF function could be inhibited through its nucleolar sequesteration by NPM 
(Korgaonkar et al., 2005).  

NPM may also affect p53 pathway by directly associating with p53 or through 
controlling p53 pathway proteins. The indirect control of p53 pathway can oc-
cur for example through GADD45 nuclear localization. In this way NPM could 
participate in the p53-mediated growth arrest (Wang et al., 1999; Gao et al., 
2005). Several studies suggest that NPM acts as a negative regulator of p53 (Li 
et al., 2004; Chan et al., 2005; Li et al., 2005). NPM has been proposed to inhibit 
p53-induced apoptosis in hypoxic cells through reduced p53 Ser 15 phosphor-
ylation by competing for the same kinase (Li et al., 2004; Li et al., 2005). NPM 
has also been found to affect p53 stability and activity in a positive way upon 
DNA damage (Colombo et al., 2002). Deletion of NPM gene, however, results 
in p53 activation. This occurs probably through an indirect mechanism due to 
DNA damage (Colombo et al., 2005) and aneuploidy of these cells (Grisendi et 
al., 2005). 

NPM is associated with several hematopoietic malignancies, including acute 
myeloid leukemia (AML), anaplastic large cell lymphoma (ALCL) and acute 
promyelocytic leukemia (APL), through chromosomal translocations forming 
oncogenic fusion proteins (Raimondi et al., 1989; Morris et al., 1994; Yoneda-
Kato et al., 1996; Redner et al., 2002; Chiarle et al., 2003) (Table 2). In addition, 
NPM is often deleted in myelodysplastic syndrome (MDS), and mice hetero-
zygous for Npm develop hematological abnormalities, resembeling this human 
syndrome (Olney and Le Beau, 2002; Grisendi et al., 2005, Berger et al., 2006). 
Mutations causing cytoplasmic NPM (NPMc+) have been detected in AML (Al-
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calay et al., 2005; Falini et al., 2005; Falini et al., 2006). The cytoplasmic locali-
zation of NPM probably alters its normal nucleolar functions, but it also affects 
other NPM-binding proteins, including ARF which is relocalized to cytoplasm 
in NPMc+ -expressing cells (den Besten et al., 2005; Colombo et al., 2006).

The complex nature of NPM has led to several contrasting reports on its role 
as either an oncogene or tumor suppressor. Most likely NPM has both tumor-
suppressive and -promoting functions through its role in ribosome biogenesis 
and interactions with important tumor suppressor proteins, these functions be-
ing dependent on its levels and localization as well as the genetic background 
of the cell. The aberrant overexpression of NPM could then lead to neoplastic 
transformation and too low levels again to genomic instability, pointing out the 
importance of the strict regulation of NPM levels and localization. 

hematological malignancy associated genetic alterations

acute promyelocytic leukemia, APL
(Redner et al., 2002)

NPM-RARα fusion due to 
t(5;17)(q35;q12) translocation

acute myeloid leukemia, AML
(Raimondi et al., 1989; Yoneda-Kato et 
al., 1996; Alcalay et al., 2005; Falini et 
al., 2005)

NPMc+ mutations; NPM-MLF1 fusion 
due to t(3;5)(q25;q35) translocation; 

deletion (-5q35, -5)

anaplastic large cell lymphoma, 
ALCL
(Morris et al., 1994)

NPM-ALK1 fusion due to 
t(2;5)(p23;q35)

myelodysplastic syndrome, MDS
(Yoneda-Kato et al., 1996; Olney and Le 
Beau, 2002; Berger et al., 2006)

NPM-MLF1 fusion due to 
t(3;5)(q25;q35) translocation; deletion  

(-5q35, -5)

Table 2. Genetic alterations of NPM in human hematological malignancies. 

Promyelocytic leukemia protein

Promyelocytic leukemia protein, PML, was initially found as a fusion protein 
with retinoic acid receptor α in patients with specifi c types of leukemia (de The 
et al., 1990 & 1991).  PML protein is responsible for the formation of so-called 
PML or nuclear bodies, NBs (Also previously referred to as ND10 or promy-
elocytic oncogenic domains, PODs). These nuclear matrix-associated structures 
are usually about 0.2- 0.5 µm in diameter and their number in the nucleus varies 
between 5-20 (Ascoli and Maul, 1991; Stuurman et al., 1992). The PML bodies 
were described already in 1984 by Bernstein et al. and unlike the cytoplasmic 
organelles, these subnuclear compartments are not surrounded by a lipid bilayer. 
Several regulatory factors, including Sp100, Daxx, SUMO-1, CBP, p53, HIPK2 
and some DNA damage repair proteins are localized to these sites in a PML-
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dependent manner (Szostecki et al., 1990; Boddy et al., 1996; Kamitani et al., 
1998a; Ishov et al., 1999; Kim et al., 1999; Fogal et al., 2000; Li et al., 2000a; 
Lombard and Guarente, 2000; Zhong et al., 2000a; Boisvert et al., 2001). PML 
in NB structures is sumoylated (Sternsdorf et al., 1997; Kamitani et al., 1998a 
& 1998b; Muller et al., 1998). Several studies have suggested that sumoyla-
tion of PML is prerequisite for the recruitment of other proteins to these sites 
(Ishov et al.,1999; Lallemand-Breitenbach et al., 2001; Li & Chen, 2000; Maul 
et al., 2000; Zhong et al., 2000a), whereas sumoylation of p53 was found to be 
dispensable for its relocalization to these structures (Fogal et al., 2000). PML 
itself has three main sumoylation sites, lysines 65, 160 and 490 (Figure 10), of 
which lysine 160 conjugation by SUMO-1 appears to be the most critical one 
for PML body formation. Removal of main sumoylation sites from PML protein 
prevents formation of NBs (Muller et al., 1998; Kamitani et al., 1998, Zhong et 
al., 2000a), although contrasting reports exist as well (Ishov et al., 1999; Lalle-
mand-Breitenbach et al., 2001). Only the nuclear PML seems to be sumoylated, 
as colocalization with SUMO was not detected with cytoplasmic PML body 
aggregates (Ishov et al., 1999).  

PML belongs to a family of nuclear proteins, containing one RBCC motif 
(Borden et al., 1995; Jensen et al., 2001) (Figure 10). PML protein exists as 
seven different, equally expressed isoforms due to alternative splicing, ranging 
from 48-97 kDs (de The et al., 1991; Goddard et al., 1991; Kakizuka et al., 1991; 
Fagioli et al., 1992; Kastner et al., 1992; Jensen et al., 2001). The N-terminal site 
is identical in all isoforms, differing only in their C-terminus or the length of 
the central region (Fagioli et al., 1992; Jensen et al., 2001). The exact functions 
of all the different isoforms is still not fully understood, even though some iso-
forms with specifi ed functions exist. For instance, one isoform with cytoplasmic 
localization and association with TGF-β pathway has been characterized lately 
(Lin et al., 2004). 

The number of PML bodies is known to vary depending on the cell type and 
condition, stress responses and cell cycle, being highest in G2 phase and then 
dispersing in the M phase (Koken et al.,1995; Maul et al., 1995; Terris et al., 
1995; Everett et al., 1999). The number of NBs starts to increase already in G1 
and peaks in G2 due to several fi ssion and fusion events of these structures in S 
phase (Dellaire et al., 2006b). During mitosis, PML is partly found in so called 
“Mitotic accumulations of PML protein” (MAPPs) some of which are in physical 
contact with mitotic chromosomes (Dellaire et al., 2006a). These particles, which 
no longer contain SUMO, Sp100 or Daxx, may explain the partitioning of PML 
in dividing cells and contribute to the reformation of PML NBs in new daughter 
cells. The regulation of PML NB integrity during cell cycle is most likely control-
led through its contacts with chromatin (Eskiw et al., 2003; Eskiw et al., 2004). 
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Multiple functions of  PML 

Several functions have been suggested for PML and PML NBs. The NBs may 
act as storage compartments for several proteins, which can be released upon 
need to other cellular compartments (Everett et al., 1999; Negorev et al., 2001; 
Borden, 2002). In addition, a role in cell cycle and growth control, apoptosis, 
viral infections, DNA repair and transcriptional regulation have been proposed 
for PML and NBs containing several different regulatory factors.

The levels of PML and the number of NBs are induced by interferon, refl ect-
ing their role in response to viral infection (Lavau et al. 1995; Stadler et al., 
1995; Grotzinger et al., 1996; Gaboli et al., 1998). PML NBs  attract several 
viral proteins, including herpes simplex virus type 1, cytomegalovirus (CMV), 
adenovirus 5, Ebstein-Barr virus (EBV) and Simian virus 40 (SV40) proteins 
(Doucas et al., 1996; Ishov & Maul 1996; Maul et al., 1996; Szekely et al., 1996; 
Ishov et al., 1997; Everett 2001). Some of these proteins are able to disperse 
the structural integrity of PML NBs, and start the degradation of specifi c PML 
body associated proteins (Maul et al., 1993; Everett & Maul, 1994; Maul & 
Everett 1994; Ahn and Hayward, 1997; Everett et al., 1998; Chelbi-Alix & de 
The, 1999). The viruses may also utilize PML body associated proteins in their 
lifecycle by recruiting them for viral replication (Doucas et al., 1996). Alter-
natively, the PML NB itself could act as the site for viral DNA replication and 
transcription.

PML protein has growth suppressive properties (Mu et al., 1994; Ahn et al., 
1995; Koken et al., 1995; Le et al., 1996; Quignon et al., 1998) and has been 
accepted as tumor suppressor (Salomoni and Pandolfi , 2002). The expression of 
PML is lost in several human cancer types of multiple histological origins and 
its expression status often correlates with the grade and progression of these 
cancers (Gurrieri et al., 2004a). It also plays a major role in the pathogenesis of 
acute promyelocytic leukemia, which will be described in more detail in the fol-
lowing chapter. PML overexpression leads to either growth arrest or apoptosis 
(Le et al., 1998; Pearson and Pelicci, 2001), and together with its partner Daxx, 
PML participates in nuclear apoptotic pathways (Torii et al., 1999; Zhong et al., 
2000c). PML can inhibit the transformation induced by neu (c-erbB2, ERBB2), 
Ha-Ras and c-Myc as well as mutant p53 (Mu et al., 1994; Liu et al., 1995; Mu 
et al., 1996). It is also able to modulate the cell cycle progression by affecting 
several key proteins involved in the G1/S transition. Stable overexpression of 
PML alters the progression of the cycle and induces growth arrest by lengthen-
ing G1 (Mu et al., 1997). The apoptotic function of PML is probably one of its 
main growth suppressive properties, as PML is required for the induction of 
several apoptotic pathways, including Fas, tumor necrosis factor (TNF), cera-
mide, IR and interferons (Quignon et al., 1998; Wang et al., 1998). Pml null 
mice are protected against several of these pathways. These mouse cells have 
increased proportion of cells in S phase (Wang et al., 1998a) and they are less 
sensitive to lethal doses of γ radiation or Fas antibody treatment, supporting the 
pro-apoptotic role for PML protein (Wang et al., 1998b). Pml-/- mice do not 
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develop spontaneous tumors, but they are subjected to a greater number of skin 
papillomas and B- and T- cell lymphomas when exposed to DMBA (dimethyl-
benzanthracene) and TPA (12-O-tetradecanoylphorbol-13-acetate) (Wang et al., 
1998a and 1998b). 

In addition,  PML is able to recruit several other apoptotic proteins into PML 
NBs (Quignon et al., 1998). PML IV isoform for example regulates p53 locali-
zation  to PML NBs through binding p53 central domain and affecting its tran-
scriptional activity (Fogal et al., 2000). Several studies have suggested that PML 
plays a role in potentiating p53-mediated apoptosis (Fogal et al., 2000; Guo et 
al., 2000; D´Orazi et al., 2002). PML may for example enhance p53 transcrip-
tional activity towards PIG3 promoter, a gene induced in apoptosis (Fogal et al., 
2000), and mediate HIPK2 phosphorylation of p53 upon UV radiation (D´Orazi 
et al., 2002). In addition to apoptotic control, PML is induced by oncogenic Ras 
and regulates p53-dependent senescence in response to oncogenic signalling 
(Ferbeyre et al., 2000; Pearson et al., 2000; Pearson and Pelicci, 2001). Ras has 
been shown to induce PML-p53-CBP complex formation and p53 acetylation in 
a PML-dependent manner in vivo (Pearson et al., 2000).

PML has been suggested to participate in RNA synthesis and processing 
as well as replication and modifi cation of the chromatin structure (de Jong et 
al., 1996). The control of chromatin structure by PML is likely as PML bodies 
include transcription coactivator and histone acetyltransferase CBP as well as 
chromatin modifying proteins, histone deacetylases (HDACs) (LaMorte et al., 
1998; Doucas et al., 1999; Von Mikecz et al., 2000; Bandobashi et al., 2001; 
Boisvert et al., 2001; Wu et al., 2001). PML NBs associate with sites of active 
transcription (Wang, J. et al., 2004). Nascent transcripts have been shown to ac-
cumulate on the surface of PML bodies, although the bodies themselves do not 
contain RNA or DNA (Boisvert et al., 2000). PML and its most studied partner 
Sp100 have been linked to transcriptional control, mainly to repression. PML 
IV interacts with the nonphosphorylated form of Rb and has been shown to 
be required for the transcriptional repression by Rb and Mad (Mu et al., 1994; 
Seeler et al., 1998; Vallian et al., 1998; Li et al., 2000b Alcalay et al., 1998; Khan 
et al., 2001a; Khan et al., 2001b). PML can also control Daxx by sequestering 
it and inhibiting Daxx-mediated transcriptional repression (Li et al., 2000a). In 
addition, PML may regulate the expression of particular genes or gene families 
at specifi c gene loci, like MHC class I gene family and TP53 gene locus, found 
in the vicinity of PML bodies  (Shiels et al., 2001; Sun et al, 2003).

PML may participate in the recognition and repair of DNA lesions. Several 
repair factors, including Nbs1, Rad50, Mre11 and Chk2 are localized to these 
sites and controlled in a damage-dependent manner (reviewed in Dellaire and 
Bazett-Jones, 2004). PML may also affect genomic stability through Bloom 
syndrome protein (BLM). BLM gene encodes a RecQ DNA helicase, whose 
loss in Bloom syndrome patients leads to genomic instability and predisposition 
to cancer due to higher levels of sister-chromatid exchange (SCE) (Ellis et al., 
1995). BLM protein colocalizes with PML NBs and cells lacking PML or ex-
pressing PML-RARα fusion protein, have abnormal BLM localization. Interest-
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ingly, these cells have also higher frequency of SCE, mimicking the phenotype 
of Bloom syndrome cells (Zhong et al., 1999). The control of genomic stability 
by PML may also come from its centrosome association as PML IV isoform has 
been linked to  the control of proper centrosome cycle (Xu et al., 2005). 

Figure 10. Structure of PML protein. PML exists in seven different cellular isoforms due 
to alternative splicing. All of the isoforms share common N-terminal region including a pro-
line rich region, followed by a RING fi nger (C

3
HC

4
 zinc fi nger), two cys-rich B-boxes and a 

-helical coiled-coil domain, together forming the RBCC-domain. The coiled-coil region can 
mediate the formation of PML homodimers (Perez et al., 1993). Three major sumoylation 
site at positions 65, 160 and 490 are indicated with S and breakpoints in APL at positions 394 
and 552 at the C-terminal site. 

Acute promyelocytic leukemia

PML was indicated as a tumor suppressor protein already a decade ago (Mu 
et al., 1994). As mentioned above, the protein was initially discovered in acute 
promyelocytic leukemia, APL patients, where PML was found to be fused to 
retinoic acid receptor α due to a reciprocal translocation event  (de The et al., 
1990 &1991; Goddard et al., 1991; Kakizuka et al., 1991; Pandolfi  et al., 1991; 
Kalantry et al., 1997). APL is a specifi c subtype of acute myeloid leukemia, 
AML, accounting for about 10 % of all AML cases. In APL leukemic cells, 
blocked at the promyelocytic stage, start to accumulate in the bone marrow. 
Cytogenetigally, a translocation between chromosomes 15 and 17, PML and 
RARα genes (t(15;17)(q22;q21)) respectively, is found in most of the APL cases 
(de The et al., 1990; Goddard et al., 1991; Kakizuka et al., 1991; Pandolfi  e  al., 
1991). Two major breakpoints of PML have been described in APLs (de The 
et al., 1991; Goddard et al., 1991; Kakizuka et al., 1991; Pandolfi  et al., 1991; 
Kastner et al., 1992). Depending on the breakpoint either between exons 3 and 
4 or downstream of exon 6, the generated PML-RARα form can be bcr3 (short) 
or bcr1 (long) (Huang et al., 1993; Vahdat et al., 1994) (Figure 10). The shorter 
form localizes to cytoplasmic bodies, CBs, and the patients carrying this bcr3 
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form have generally poorer prognosis than the ones with bcr1 (Vahdat et al., 
1994; Bellodi et al., 2006). While the other allele of PML is lost due to this 
chromosomal translocation, the remainig one may be wt or mutated. Total loss 
of functional PML in APL is associates with poor prognosis due to resistance to 
therapeutic agents (Gurrieri et al., 2004b).

Expression of PML-RARα increases the survival of hematopoietic cell lines 
and causes resistance to apoptosis (Grignani et al., 1993; Wang et al., 1998). The 
fusion protein acts as an oncogenic transcription factor, promoting relocaliza-
tion of PML from NBs through heterodimer formation between PML and PML-
RARα coiled-coil domains (Perez et al., 1993). The loss of normal functions of 
these structures inhibits the tumor suppressive properties of PML and other NB 
proteins, giving the cells growth advantage (Melnick and Licht, 1999) (Figure 
11). The PML NB structure can be reinduced by treatments providing cinical 
remission (Daniel et al., 1993; Dyck et al., 1994; Weis et al., 1994; Koken et 
al., 1994). The development of APL in transgenic mice expressing PML-RARα 
fusion protein has also been described extensively and was shown to occur with 
incomplete penetrance (Brown et al., 1997; Grisolano et al., 1997; He et al., 
1997; He et al., 1998; Kogan et al., 2000; Kogan et al., 2001, Pandolfi  et al., 
2001). In addition, reduction in the levels of the normal PML form, by crossing 
Pml-/- mice with PML-RARα transgenic mice, led to an increase and earlier 
onset in the incidence of leukemia (Rego et al., 2001). 

Expression of PML-RARα also leads to dysregulation of the retinoic acid 
pathway (Kigan et al., 2000). The fusion protein competes with RARα for bind-
ing to RA-response elements of RARα target genes and abnormal binding to 
co-repressor complexes leads changes in transcriptional regulation under physi-
ological concentrations of RA. PML-RARα is also a more potent transcriptional 
repressor and has abnormal associations with corepressor-histone deacetylase 
complex, remodelling the general chromatin stucture to a more condensed con-
fi guration. Additionally, it  is capable of repressing  transcription through a path-
way indepent of HDACs and corepressors (Segalla et al., 2003). Combination 
of PML-RARα homodimerization, enhanced corepressor binding and inhibition 
of the RA-pathway have been proposed to contribute to the hematopoietic dif-
ferentiation block, accumulation of promyelocytic blasts and the development of 
APL (Grignani et al., 1993; Grignani et al., 1998; He et al., 1998; Lin & Evans, 
2000; Lin et al., 1998; Minucci et al., 2000). PML-RARα can in this way act as 
a double dominant-negative fusion protein, affecting both the normal PML and 
RARα functions (Kastner et al., 1992; Perez et al., 1993). 

The oncogenic activity of PML-RARα has been associated with its N-ter-
minal C-C domain, which is required for its sumoylation, microspeckle forma-
tion and for the inhibitory effect on RA-signalling pathway (Kim et al., 2005).
A recent report showed that a sumoylation site, K160, in the N-terminus of PML 
is essential for the ability of PML-RARα to block differentiation and immmor-
talize primary hematopoietic precursor cells (Zhu et al., 2005). This transcrip-
tional repression was due to Daxx binding, which was abolished by mutating the 
K160 residue. 
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Pharmacological concentrations of RA can release the repressor complexes 
from PML-RARα and recruit activator complexes, normalizing the function of 
the cells through differentiation of the leukemic blasts, degradation of the fu-
sion protein and restoration of normal PML NBs (Daniel et al., 1993; Dyck et 
al., 1994; Koken et al., 1994; Weis et al., 1994; He et al., 1999). The transcrip-
tional response by RA is largely PML-RARα-dependent (Meani et al., 2005). 
cDNA microarrays of an APL cell line, NB4, has revealed that over 1100 tran-
scripts may be regulated in APL cells in response to RA. Genes involved in the 
regulation of hematopoietic differentiation cofactors and chromatin modifi ers 
are early targets of RA treatment (Meani et al., 2005). Other targets include 
factors associated with calcium signalling and IFN-signalling pathways (Zheng 
et al., 2005). 

In addition to RA, arsenic trioxide (ATO, As
2
O

3
) has proven to be an effective 

inducer of remission in APL patients (Chen et al., 1997; Zhu et al., 1997). Over 
90 % of the patients benefi t from a high-dose all-trans-retinoic acid (ATRA) 
or arsenic trioxide (ATO) therapy, which induce a complete remission in most 
of the cases (Warrell et al., 1991; Chen et al., 1997; Shen et al., 1997; Shao 
et al., 1998; Shen et al., 2004). Patients treated with RA as a fi rst choice usu-
ally relapse at some point, after which they may be switched to arsenic trioxide 
therapy. ATO has several ways of affecting the differentiation and apoptosis in 
APL cells. Lower concentrations of ATO (0.5 uM) induce differentiation of the 
hematopoietic cells, while the higher concentration (2 uM) is apoptotic. Like 
RA, ATO treatment also leads to the degradation of the fusion protein (Zhu et 
al., 1999; Lallemand-Breitenbach et al., 2001). In addition, PML protein is de-
graded upon this treatment (Lallemand-Breitenbach et al., 2001). Compared to 
RA, ATO also induces changes in less number of regulated genes and they do 
not involve the RA-pathway. The array study of ATO-treated NB4 cells showed 
the downregulation of β1 integrins, upregulation of genes involved in the ubiq-
uitin-proteasome pathway and downregulation of genes involved in the RNA 
processing and protein synthesis (Wang et al., 2003). In general, ATO may exert 
its effects more at the proteome level, affecting posttranslational and transla-
tional modifi cations. ATO and RA may also have additive effects together, as 
some genes involved in differentiation, cell cycle and growth control as well as 
apoptosis regulators have been found to be synergistically modifi ed (Zhen et al., 
2005). Moreover, in clinical studies targeting of PML-RARα oncoprotein by 
combined RA and ATO treatment has led to high-quality disease-free survival 
(Shen et al., 2004).  Basically, the more PML-RARα is degraded, the better the 
recovery is in APL patients (Shen et al., 2004). 
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Figure 11. Cellular events leading to development of acute promyelocytic leukemia. 
Expression of PML-RARα fusion protein disturbs several cellular pathways, including dis-
ruption of the normal functions of NB-associated proteins and PML-dependent apoptotic 
pathways. Blockage of normal RARα and PML functions also inhibits the RA-response and 
prevents differentiation of the hematopoietic cells. PML-RARα fusion protein may also have 
a general impact on chromatin structure and transcriptional regulation through HDACs and 
corepressor recruitment. 
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AIMS OF THE STUDY

Functional loss of p53 is a common feature for most of the cancers. In addition 
to p53 mutations, overexpression of its negative regulator Mdm2 may be re-
sponsible for the inactivation of this essential pathway in signifi cant proportion 
of human cancers. Clearly, the maintenance of a strictly controlled p53-Mdm2 
circuit is of great importance in controlling p53 functions and preventing tum-
origenesis. Understanding the exact molecular mechanisms in p53 pathway is 
thus essential from therapeutic point of view.

The early events leading to p53 stabilization and activation have been studied 
extensively over the last decade. Most of the studies have concentrated on the 
relevance of p53 modifi cations, occuring in response to various kind of DNA 
damage. In addition to the posttranslational modifi cations of p53, its cellular 
localization and complex formation with other proteins may be critical in the 
alteration of its function. 

In our studies we have used UV radiation as a model of DNA damage. UV 
damage activates a complex cellular stress response in the cells, leading to 
transcriptional inhibition and activation of p53. The main aims of this research 
were:
 1) to study the early events in damaged cells leading to release of p53 from
 the negative pressure of Mdm2
 2) compare the cellular localizations of p53 pathway proteins in stressed and 

unstressed cells 
 3) fi nd out which proteins could regulate p53 activity and stability in UV-

damaged cells and unravel the molecular mechanisms behind them
 4) address whether these particular p53 pathways are altered in human can-

cers 
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MATERIALS AND METHODS

Cells

The following cell lines were used in the study:

Cell line    cell type and description     source

A375 human malignant melanoma ATCC, CRL 1619

HL-60 myelocytic leukemia A.Vaheri  (٭)

NB4 acute promyelocytic leukemia, APL A. Vaheri
 (Lanotte et al., 1991)

p53-/-mdm2-/- MEF mouse embryonic fi broblasts G. Lozano (٭٭)
 (Montes de Oca Luna et al., 1995)

Pml-/- MEF mouse embryonic fi broblast P.P. Pandolfi  (٭٭٭)
 (Wang et al., 1998)

SaOS-2 p53-null human osteosarcoma ATCC, HTB 85

U2OS human  osteosarcoma ATCC, HTB 96 

U937 promonocytic leukemia cell line A. Vaheri

WS1 human skin fi broblast ATCC, CRL 1502

Haartman Institute, University of Helsinki, Helsinki, Finland (٭)
University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA (٭٭)

Memorial Sloan-Kettering Cancer Center, New York, New York, USA (٭٭٭)

Cell culture

Cells were cultured in a humidifi ed atmosphere at 5% CO
2
 at 37°C in Dulbecco´s 

modifi ed Eagle medium, DMEM supplemented with 10% fetal calf serum 
(FCS) (GIBCO or PromoCell) (A375 and mouse embryonic fi broblasts), 10% 
FCS + non-essential amino acids (NAA) (WS1 human fi broblasts) or 15% FCS 
(SaOS-2, U2OS cells). Suspension cells (HL-60, NB4, U937) were maintained 
in RPMI, supplemented with 10% FCS. Mononuclear cells were isolated by 
purifi cation through Ficoll gradients from fresh peripheral blood samples, using 
established protocols and the lysates were used for studying p53 and NPM levels 
(III, Fig. 5A).
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Treatment of the cell cultures

UV treatments of the cells were carried out with Stratalinker 2400 (Stratagene, 
La Jolla, CA) and the cells were exposed to either 10 or 35 J/m2 of UVC (254 
nm) (Ι, ΙΙ, ΙΙΙ). For the inhibition of the proteasome activity, the cells were treat-
ed with 10 μM MG132 (Affi nity Research Products) (I, II). Histone deacetylase 
inhibitor experiments were carried out by treating the cells with 100 ng/ml Tri-
chostatin A, TSA (Sigma) (III). Arsenic trioxide (ATO, As

2
O

3
) (Sigma) was used 

at 1μM (Ι) or 2 μM (ΙΙΙ) concentrations. retinoic acid (RA) (Sigma) was used at 
2 μM concentration (ΙΙΙ). 

Mutagenesis

Mdm2 deletion mutants Δ89-222 and ΔNoLS (Δ464-471, nucleolar localiza-
tion-defective mutant Mdm2) were constructed by site-directed mutagenesis 
(QuickChange Site-directed Mutagenesis Kit, Stratagene) and the products were 
verifi ed by DNA sequencing.  

Transfections

Mouse embryonic fi broblasts were transfected by electroporation (Gene Pulser 
ΙΙ, Bio-Rad) with 280 V and 975 μF in Optimem (GIBCO) (Ι,ΙΙ). U2OS cells 
were transfected by lipofection (Lipofectamine 2000, Invitrogen) (ΙΙ,ΙΙΙ) and 
NB4-suspension cells by Amaxa nucleofector, Kit T, program X-001 (ΙΙΙ). The 
following plasmids were used in transfections: PML III (PML-L) in pSG5, 
PML IV (PML-3) and PML IV-3K (sumoylation defi cient triple mutant PML 
IV) in pCDNA3 and PML-RARα in pSG5 (obtained from G. del Sal) (I, III); 
wt Mdm2 and Mdm2 ΔNoLS (Δ464-471, nucleolar localization-defective mu-
tant Mdm2) (I); B231.1-pCHA and B231.2-pCHA (obtained from Dr. Kyosuke 
Nagata, Okuwaki et al., 2001) (II), SUMO-1 expression vector (obtained from 
Dr. Jorma Palvimo) (II); Myc-tagged K-cyclin expression vector (originally ob-
tained from Dr. Sibylle Mittnacht, Ellis et al., 1999) (II); Myc-tagged Xenopus 
NPM (NO38) (obtained from Dr. Marion Schmidt-Zachmann, Zirwes et al., 
1997); NPM-ECGFP (described in Kurki et al., 2006) (III); p53-pCDNA3 (III); 
PG13xRE-luciferase reporter vector (obtained from Dr. Bert Vogelstein) and 
pRLSV40 Renilla Luciferase control vector (III). 

siRNA

siRNA was used to deplete NPM and Mdm2 from U2OS cells (ΙΙΙ). The duplex 
sequences for NPM siRNA were as described in Colombo et al., 2002 (pur-
chased from Dharmacon Research, Inc.). Mdm2 RNAi duplexes containing the 
sequence 5´UGGUUGCA UUGUCCAUGGC3´ targeting Mdm2 mRNA and 
SMARTpool Mdm2 siRNA mix were purchased from Dharmacon Research, 
Inc. The duplexes were transfected into cells by lipofection (Oligofectamine, 
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Invitrogen). The cells were incubated for 1 (Mdm2 siRNA) or 3 days (NPM 
siRNA) posttransfection. 

Luciferase reporter activity assays

For p53 activity assays, NB4 cells were treated with either ATO or RA 24 hours 
prior the transfection (III). p53-pDNA3, PG13xRE luciferase reporter vector 
and Renilla luciferase control vector, pRLSV40, were transfected by using Nu-
cleofector Kit T (Amaxa). Luciferase activities were measured by Dual-Luci-
ferase Reporter Assay System (Promega) and luminometer (DCR-1, Digene 
Diagnostics) fi ve hours post-transfection. Renilla activity was used to normalize 
the transfection effi ciencies. Fold induction of p53 activity was calculated as a 
mean value of at least two separate experiments. 

Preparation of cellular extracts

Monolayer cells were washed with Tris-buffered saline (TBS). EBC lysis buffer 
containing 25 mM Tris-HCl pH 8.0, 120 mM NaCl, 0.5% NP-40, 4 mM NaF, 
100 μM Na

3
VO

4
, 1mM phenylmethylsulfonyl fl uoride, 100 KIU/ml aprotinin 

and 10 μg/ml leupeptin was added on the plates and cells were scraped into ep-
pendorf tubes and incubated on ice for 20 minutes. The insoluble fraction was 
separated from the soluble one by centrifuging the cells with 14 000 rpm for 15 
min. The pellet of the insoluble fraction was boiled in Laemmli sample buffer 
(LSB), containing dithiothreitol (DTT) (100mM) (Ι, ΙΙ, ΙΙΙ). Suspension cells 
were pelleted prior to washing with TBS. Cells were suspended into lysis buffer 
and treated as above to separate the soluble and insoluble fraction (ΙΙΙ). 

The obtain total cellular lysates, cells were resuspended into urea-Tris buffer 
containing 9 M urea, 75 mM Tris-HCl (pH 7.0) and 0.15 M 2-mercaptoethanol 
(ΙΙΙ). The suspension was sonicated briefl y and protein concentrations were de-
termined by Bio-Rad D

c
 protein assay kit (Bio-Rad, Hercules, CA). The samples 

were boiled in LSB-DTT for 5 min. Alternatively, total cell lysates were extract-
ed in LSB-DTT and sonicated briefl y before boiling the samples (Ι).  

Immunoprecipitation

After normalization of protein concentrations, cellular lysates were immuno-
precipitated with specifi c antibodies and the samples were collected on Gam-
maBind-G Sepharose beads (Pharmacia Biotech). The beads were washed four 
times with TBS. Immunocomplexes were boiled in LSB-DTT prior to analysis. 
The following antibodies were used in immunoprecipitations: anti-acetyl-His-
tone H3 (06-599, Upstate) (ΙΙΙ), anti-Mdm2 mix (SMP14, Santa Cruz Biotech-
nology; 2A10; IF2, Oncogene Sciences) (Ι, ΙΙ), anti-c-Myc 9E10 (Biosite) (ΙΙ), 
anti-NPM (Zymed) (ΙΙ, ΙΙΙ), anti-p300 (N-15, Santa Cruz) (ΙΙΙ), anti-p53 mix 
(DO-1, PAb1801, PAb421) (Ι, ΙΙ), anti-p53 (FL393, Santa Cruz Biotechnology) 
(ΙΙΙ), anti-PML (PG-M3, Santa Cruz Biotechnology) (Ι, ΙΙΙ), anti-PML (H-238, 
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Santa Cruz Biotechnology) (ΙΙΙ). To exclude unspecifi c binding, mouse or rabbit 
IgG (Dako Cytomation, Denmark) were used as negative controls (ΙΙ, ΙΙΙ).

Immunoblotting

Lysates and immunoprecipitates were separated by 7.5%, 9%,10% or 12.5% 
sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The 
samples were transferred to nitrocellulose membrane (Trans-Blot, Transfer Me-
dium, Bio-Rad) and the membranes were blocked with either 5% milk in TBS or 
3% bovine serum albumin (BSA). Immunoblotting was carried out by using spe-
cifi c antibody dilutions in 1% BSA. The following antibodies were used in this 
study: anti-acetyl-Histone H3 (06-599 and 06-942, Upstate) (ΙΙΙ), anti-GAPDH 
(Europa Bioproducts, Cambridge, UK) (ΙΙ, ΙΙΙ), anti-GST (clone BC8E8) (ΙΙ, 
ΙΙΙ), anti-Histone H3 (FL-136, Santa Cruz Biotechnology) (ΙΙΙ), anti-Mdm2 
mix (SMP14, Santa Cruz Biotechnology; 2A10; IF2, Oncogene Sciences) (Ι, 
ΙΙ), anti-NPM (Zymed) (ΙΙ, ΙΙΙ), anti-p53 (FL393, Santa Cruz Biotechnology) 
(Ι, ΙΙ, ΙΙΙ), anti-p53 (DO-1) (ΙΙΙ), anti-PML (PG-M3, Santa Cruz Biotechnol-
ogy) (Ι,ΙΙΙ), anti-PML (H-238, Santa Cruz Biotechnology) (Ι,ΙΙΙ), anti-SUMO-1 
(GMP-1, Zymed) (II) and anti-PCNA (Santa Cruz Biotechnology) (III). The pri-
mary antibodies were followed by secondary antibodies coupled to horseradish 
peroxidase, HRP (Dako Cytomation, Denmark). The washes of the membranes 
between primary and secondary antibodies were done in TBS containing 0.05% 
Tween 20 (Amersham Biosciences). The proteins were detected with enhanced 
chemiluminescence, ECL (Amersham Life Sciences or Millipore). 

Immunofl uorescence analysis

Monolayer cells were fi xed for 20 minutes with 3.5% parafolmaldehyde, PFA, 
followed by permeabilization with 0.5% NP-40 lysis buffer and blocking with 
3% BSA (Ι, ΙΙ, ΙΙΙ). Suspension cells were centrifuged for 3 minutes 600 rpm on 
glass slides prior to fi xation with PFA (Shandon cytospin II cytocentrifuge, Ther-
mo Electron Corporation) (ΙΙΙ). The following primary antibodies were used in 
the study: anti-Mdm2 mix (SMP14, Santa Cruz Biotechnology; 2A10; IF2, On-
cogene Sciences) (Ι, ΙΙ), anti-c-Myc 9E10 (Biosite) (ΙΙ, ΙΙΙ), anti-NPM (Zymed) 
(ΙΙ, ΙΙΙ), anti-NPM (C-19, Santa Cruz Biotechnology) (ΙΙ), anti-p53 (FL393, San-
ta Cruz Biotechnology) (Ι, ΙΙ, ΙΙΙ), anti-p53 (DO-1, PAb421, Pab1801) (Ι), anti-
PML (PG-M3, Santa Cruz Biotechnology) (Ι,ΙΙΙ), anti-PML (H-238, Santa Cruz 
Biotechnology) (Ι,ΙΙΙ) or anti-PML antibody mix (A-20 and N-19, Santa Cruz 
Biotechnology). Specifi c antibodies were detected by secondary antibodies con-
jugated to fl uorochromes. The following secondary antibodies were used: swine 
anti-rabbit or rabbit anti-goat FITC (Ι,ΙΙ), rabbit anti-mouse TRITC (DAKO) 
(ΙΙ), goat anti-mouse, goat anti-rabbit or donkey anti-goat antibody conjugated 
Alexa fl uorochromes 488 and 594 (Molecular Probes) (Ι, ΙΙ, ΙΙΙ). The absence 
of crossreactivity was verifi ed in separate experiments. DNA was stained with 
4´,6-diamidino-2-phenylindole (DAPI) (Molecular Probes) (Ι, ΙΙ, ΙΙΙ) and RNA 
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with Syto 12 green fl uorescent nucleic acid stain (Molecular Probes) (ΙΙ). The 
fl uorochromes were visualized with the Zeiss Axioplan 2 Imaging MOT (Jena, 
Germany) equipped with appropriate fi lters (Chroma). Images were captured 
with Zeiss Axiocam CCD-videocamera and image processing and analysis was 
performed with AxioVision programs, versions 3.0 (Ι,ΙΙ) or 4.4 (ΙΙΙ). Confocal 
images in the study Ι were made with Bio-Rad MRC1024. Staining intensities 
in the study ΙΙ were quantifi ed by KS Run 3.0 analysis program (KS 400, Zeiss) 
from 100 nuclei per each time point. 

Fluorescence Recovery After Photobleaching (FRAP) and image 
analysis

U2OS cells were cultured on LabTek II chambered coverglass (Nalge Nunc 
International), and transfected with NPM-ECGFP (III). The cells were treated 
with 35 J/m2 UVC 24 hours post-transfection. For imaging, the medium was 
changed to DMEM without phenol red, supplemented with 25 mM Hepes (Pro-
moCell). Zeiss 510 META confocal laser scanning microscope (LSM, Zeiss) 
with heating stage and Plan-Neofl uar 40x oil objective with 1.3 NA was used 
for photobleaching and imaging of the samples. For imaging, the Argon laser 
line (458 nm) was set at 2% and for bleaching at 100% with 85% output. The 
size and shape of each nucleolus was defi ned with region of interest (ROI) and 
the ROI was bleached after three scans with 30 iterations. 97 post-bleach images 
were collected every second. 

The image analysis and quantifi cation of the fl uorescent intensities were cal-
culated from at least two separate experiments and 8-10 cells. LSM 510 Physiol-
ogy Software was used for measuring the fl uorescent intensities. The method of 
Rabut and Ellenberg (2005) was used for the analysis of mobile fractions and 
recovery halftimes. Statistical signifi cance of the results were evaluated as p-
values by using Student´s t-test. 

In vitro translation

In vitro translation of Mdm2 (I, II), p53 (I, II), NPM (II, III) and different PML 
isoforms (I, III) were performed with TNT Coupled Reticulosyte Lysate Sys-
tem (Promega) from T7 promoter containing expression vectors of each gene, 
either in the presence of 20 µCi of 35S-methionine (specifi c activity 1000 Ci/
mmmol, Amersham) (II, III) or unlabeled methionine (I). Translation products 
were immunoprecipitated as described above. The samples were separated by 
SDS-PAGE and the proteins were analyzed by autoradiography (II, III) or im-
munoblotting (I). 
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GST pulldown assays

Mdm2 GST-fusion proteins (II) (obtained from Dr. David Meek), PML IV-GST 
(III), GST-NPM (III) and GST-protein control (GST-CRP1) (II) were produced 
in BL-21 Escherichia coli cells following induction with IPTG. The fusion pro-
teins were captured on glutathione-Sepharose 4B beads (Amersham) for the pull-
down experiments. Binding of the specifi c 35S-methionine labeled partner pro-
tein, 35S-NPM (II, III) or 35S-PML (III), was performed in 140 mM NaCl, 0.5% 
Nonidet P-40, 50 mM Tris-HCl, pH 8.0, 1 mM EDTA and 1 mM PMSF (TNE-
buffer) overnight at +4 ˚C under rotation, after which the beads were washed ten 
times with TNE-buffer and fi nally with PBS. Washed beads were boiled in LSB 
containing dithiothreitol (10mM) for 5 minutes and the supernatant was loaded 
to SDS-PAGE gels. The proteins were analyzed by autoradiography. 

Chromatin isolation

Chromatin preparations and nucleoplasmic fractions from U2OS cells and 
MEFs were performed as described by Mendez and Stillman (2000) with slight 
modifi cations (III). The samples were separated by SDS-PAGE and analyzed by 
immublotting as described above.
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RESULTS AND DISCUSSION

UV radiation induces stabilization of the tumor suppressor protein p53 (Maltz-
man and Czyzyk, 1984). The stabilization is associated with posttranslational 
modifi cations of both p53 and its negative regulator Mdm2 (Meek and Knipp-
schild, 2003; Xu, 2003) as well as decreased interaction between them (Latonen 
et al., 2001). Release of p53 from the negative pressure of Mdm2 promotes 
transactivation of specifi c p53 target genes in a dose-dependent manner, leading 
to either growth arrest and p53-assisted NER pathway or to apoptosis upon ex-
cessive damage (Latonen et al., 2001; Gentile et al., 2003; Gatz and Wiesmuller, 
2006). In addition to the posttranslational modifi cations, the complex network 
resulting in functional p53 requires multiple stress-induced protein-protein in-
teractions, each contributing to p53 activation (Lavin and Gueven, 2006).

Regulation of the Mdm2-p53 interface has a great potential in the develop-
ment of new therapeutics targeting p53 pathway in cancer cells. Particularly 
potential factors reinducing the p53 pathway in cancer cells could be proteins 
interacting with either Mdm2 or p53, uncoupling the degradation pathway and 
leading to active p53 upon cellular stress. A couple of promising pharmaco-
logical inhibitors of this interaction have recently been described (Issaeva et al., 
2004; Vassilev et al., 2004; Yang et al., 2005). During our studies of the impact 
of cellular stress on p53 and Mdm2 interaction, we observed associations of 
Mdm2 with promyelocytic leukemia protein as well as with nucleolar protein 
nucleophosmin. The similar localization patterns detected upon certain stress 
situations as well as the damage-induced relocalizations of these particular pro-
teins led us to study the possible association of PML and NPM in the regulation 
of p53 pathway through its negative inhibitor Mdm2.

Cellular stress and DNA damage evoke subnuclear translocations of 
p53  pathway proteins (I, II, III)

PML exists in the nucleus mostly attached to PML NBs, in a detergent- insolu-
ble form (Muller et al., 1998; Lallemand-Breitenbach et al., 2001). The size and 
number of these bodies is affected by the phase of the cell cycle as well as expo-
sure to cellular stress (Koken et al.,1995; Maul et al., 1995; Terris et al., 1995; 
Everett et al., 1999). γ radiation for example is known to increase the number 
and size of NBs and attract p53 to these suborganelles (Pearson and Pelicci, 
2001). In contrast to the γ radiation-induced effect on PML NB structure, we 
found that PML bodies lost their nuclear architecture upon UV radiation of the 
cells (I, Figure 1A and 6). The NBs were dispersed to smaller microstructures 
and nucleoplasmic PML staining increased rapidly, starting from one hour after 
UV exposure. Similar effect on PML NB structures has been earlier described 
to occur upon heat shock and exposure to heavy metals, like Cd2+ (Maul et al., 
1995; Ishov et al., 1999; Eskiw et al., 2003; Nefkens et al., 2003). As the level 
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of PML was not upregulated during the early timepoints (I, Figure 5C) and we 
detected an increase in the soluble form and decrease in the insoluble form of 
PML (I, Figure 4A), the evident enhanced nucleoplasmic PML staining was due 
to release of PML from the NBs to a more soluble form. Similar observations 
about the disruption of PML body structures were published by Seker et al., 
2003 and later by Salomoni et al., 2005. The mechanism for this UV-induced 
PML NB dispersion is not known, although DNA damage-induced kinase path-
ways may be involved. UV radiation activates the p38 MAPK and ERK1/2 
kinase pathways, which are regulating PML release from the NBs upon Cd2+-
exposure (Nefkens et al., 2003). Other suggested mechanisms for PML release 
include changes in its sumoylation status, which has been proposed to control 
the formation of PML NBs. Exposure to heat shock, heavy metals or adenovi-
rus E1A expression leads to dispersal of PML bodies through a desumoylation 
event (Eskiw et al., 2003). Also transcriptional acitivity of the cells may play a 
role as inhibition of either RNA pol I (Kiesslich et al., 2002) or RNA pol II by 
DRB (Eskiw et al., 2004; our unpublished results) leads to scattering of PML 
and its associated proteins to the nucleoplasm, suggesting that any stress lead-
ing to inhibition of the transcription may interfere the integrity of these struc-
tures. The reason for PML body dispersal upon transcriptional inhibition may 
result from the alterations in the chromatin structure as only a slight change in 
the conformation of the surrounding DNA is enough to obstruct the mainte-
nance of intact PML NBs in a SUMO-independent manner (Eskiw et al., 2004). 
PML NBs themselves do not contain nucleic acids in their core (Boisvert et 
al., 2000), but they are surrounded by and in extensive contact with chromatin, 
which maintains the structural integrity of NBs in interphase cells (Eskiw et 
al., 2003; Eskiw et al., 2004). This could also mean that DNA damage, causing 
reorganization of the chromatin, may be the only required signal for the insta-
bility of PML NBs.

PML translocation also involved the perinucleolar area, which started to show 
positivity of PML staining in the nucleolar necklace structures, also referred to 
as nucleolar caps, in UV-radiated cells (Figure 12 & I, Figure 1B). Interestingly, 
Mdm2 was also detected in these insoluble  structures, partly colocalizing with 
PML (I, Figure 1B, C & D), while p53 remained in the nucleoplasmic fraction 
(I, data not shown). The signifi cance of this localization pattern of PML and 
Mdm2 is presently not clear, although it could be indicative of their role in 
rRNA transcription. PML bodies are know to contain several factors associated 
with transcription (reviewed by Zhong et al., 2000b). They contain both CBP/
p300 and RNA pol II (Von Mikecz et al., 2000) and associate with RNA pol II 
at the sites of active transcription (Kiesslich et al., 2002). DNA helicase II also 
associates with intact PML NBs and inhibition of transcription leads to translo-
cation of this protein to the perinucleolar area (Fuchsová et al., 2002). Further-
more, Mdm2 could play a role in transcription through its interaction with RNA 
and ribosomal protein L5 (Marechal et al., 1994; Elenbaas et al., 1996). Another 
study, with similar observations on PML and Mdm2 translocation to the peri-
nucleolar area upon DNA-damage caused by cytotoxic drugs, suggested that 
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the nucleolar localization of these proteins affects p53 stabilization (Bernardi et 
al., 2004). According to this model PML would potentiate p53 stabilization in 
stressed cells by sequestering Mdm2 to nucleolus. This hypothesis, however, is 
unlikely due to the slow kinetics of these events and because only a small frac-
tion of the total Mdm2 is being translocated to nucleoli in stressed cells. 

Similarly to UV-induced translocation of PML, we also detected that UV 
exposure induced translocation of the nucleolar protein NPM to the nucleoplas-
mic compartment (II, 1A & B, 3A) as well as to the perinucleolar area around to 
nucleoli (II, data not shown). This kind of translocation has been shown before 
to occur upon some DNA damaging and cytotoxic drugs (Yung et al., 1985; 
Chan et al., 1987; Yung et al., 1990; Bor et al., 1992; Chan, 1992; Wu and Yung, 
2002), and the relocalization upon UV was recently also reported by Rubbi and 
Milner (2003b). The translocation was detected in p53 and ARF null cell lines, 
indicating that it did not require a functional p53 pathway (II, Figure 1A and 
data not shown). The relocalization was also evident in analysis of the insolu-
ble and soluble fractions of the cells, which showed a decrease of NPM in the
nucleoli containing insoluble compartment, associated with an increase in the 
free, soluble nucleoplasmic fraction (II, Figure ID). A slight increase in the 
total levels was also detected, as has been earlier shown also by Wu and Yung 
(2002) (II, 1D). Translocation of nucleophosmin from nucleoli to nucleoplasm 
is known to require ATP (Wu et al., 1995; Finch and Chan, 1996). The activat-
ing signal for this UV-induced effect on NPM distribution is not yet under-
stood. Although the nucleolar structures undergo morphological changes upon 
transcriptional inhibition, the nucleoli themselves are not completely disrupted. 
Therefore, nucleolar disruption may not fully explain the release, as observed 
by staining of the ribosomal RNA in the nucleoli (II, Figure 1C). As NPM is 
a heavily modifi ed phosphoprotein and its cellular localization is known to be 
affected at least during the cell cycle by several phosphorylation events, the 
mechanism could include UV-induced modifi cations, like phosphorylations 
(Grisendi et al. 2006, and references therein). Although many of the kinase 
pathways known to phosphorylate NPM are activated upon UV, we could not 
fi nd any evidence that they would play a role in UV-induced translocation of 
NPM (unpublished results). Other posttranslational modifi cations can be in-
volved as well. An obvious inducer of NPM relocalization could be a direct 
signal from stalled RNA pol II by UV-induced lesions, causing ribosomal stress 
and release of NPM upon disturbance of its main functions in the nucleoli. 

As both NPM and PML were found in the perinucleolar area of the UV-
treated cells, we also studied the colocalization of these proteins. We observed a 
fraction of NPM and PML in necklace structures, the majority still colocalizing 
in the nucleoplasmic fraction (III, Figure 1B). Additionally, we found that NPM 
and PML colocalized in mature PML NBs (III, Figure 1C) as well as at centro-
somes of the metaphase cells (unpublished data). The detection of these colo-
calizations with endogenous proteins and in different compartments, depending 
on the cell phase and stress, suggests that the association of NPM and PML is 
physiologically relevant and function in both stressed and unstressed cells.
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In addition to the observed colocalizations in UV-treated cells, we detected 
similar cellular localization patterns of the p53 pathway proteins Mdm2, PML 
and NPM upon exposure of the cells to other kind of cellular stress as well. 
Proteasome inhibitor MG132 and arsenic trioxide both induced the number of 
PML NBs (I, Figure 1A & C). MG132 induces accumulation of several proteins, 
including many PML NB-associated factors, into the nucleoli (Klibanov et al., 
2001; Mattsson et al., 2001; Latonen et al., 2003). The colocalization of PML 
and Mdm2 was also detected in this compartment as well as in the PML NBs of 
the proteasome-inhibited cells (I, Figure 1A). Mdm2 was also found to colocal-
ize with NPM upon same conditions in the nucleoli (II, Figure 2A). ATO, on 
the other hand, induced recruitment of Mdm2 to larger PML NB aggregates (I, 
Figure 1C), while NPM was not detected in these structures (unpublished data). 
The relocalization of Mdm2 to these larger NBs upon ATO treatment occured 
with slower kinetics than seen with other cellular stress inducers, emphasizing 
the differencies in the timing and spatial distribution of these associations upon 
exposure to various kind of cellular stress. 

               PML                                 Mdm2                              Merge 

Figure 12. UV-induced nucleolar structures in WS1 human fi broblasts. 

UV radiation induces rapid and transient complex formation 
between p53, Mdm2, PML and NPM (I, II, III)

The ability of PML to affect cellular stress responses of p53 has been amply 
demonstrated by many studies (Fogal et al., 2000; Guo et al., 2000; D´Orazi et 
al., 2002; Ferbeyre et al., 2000; Pearson et al., 2000; Pearson and Pelicci, 2001). 
In addition, the positive effect of NPM on p53 function upon DNA damage of 
the cells was shown by Colombo et al. (2002). As we had detected colocaliza-
tions between these p53 pathway proteins and Mdm2, we started to study their 
possible effect on p53 function through Mdm2. Moreover, the impact of PML 
on p53 function upon exposure to UV radiation was largely unknown at the time 
this study was started. 
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Studies were performed using several cell lines, WS1, SaOS-2 and U2OS, 
to detail their dependency on p53 or ARF. The cells were exposed to 35 J/m2 of 
UVC radiation to induce UV stress and p53 stabilization and activation. As ex-
pected, p53 protein in normal WS1 human fi broblasts accumulated clearly upon 
this treatment, starting from three hours postradiation (I, Figure 5A & C). As a 
sign of a transient p53 induction, the feedback loop with Mdm2 was also acti-
vated and the levels of Mdm2 protein were increased at later time points leading 
to enhanced p53-Mdm2 complex formation (I, Figure 5A & C). Interestingly, 
we also observed complex formation between PML and p53 as well as PML and 
Mdm2 (I, Figure 5A). These interactions took place early after radiation, prior 
to p53 stabilization, suggesting a role in the regulation of p53 function in UV-
treated cells. To study whether the novel interaction between Mdm2 and PML 
could be mediated through p53, we performed similar assays in a p53-negative 
cell line, SaOS-2. As Mdm2-PML interaction was also observed in this cell, in a 
dose-dependent manner, the respective complex formation was clearly not p53-
dependent (I, Figure 4B). In addition, we observed the interaction between these 
proteins upon MG132-treatment, blocking the proteasomal degradation of both 
Mdm2 and PML (I, Figure 4B). 

 To address whether the interactions of the proteins are direct we performed 
in vitro interaction assays. These studies showed that PML binding to Mdm2 
was signifi cantly weakened by using Mdm2-deletion constructs lacking the C-
terminal domain of Mdm2 (I, Figure 3B). This domain also contains the Mdm2 
RING domain responsible for its E3-ligase activity. As none of the used Mdm2-
deletion mutants were fully devoid of interaction between these proteins, Mdm2 
may have more than one PML binding site. Mdm2, on the other hand, preferred 
binding to PML isoform IV, independently of its sumoylation status (I, Figure 
3A). Interestingly, p53 has earlier been shown to interact with only this PML 
isoform, and require PML C-terminus and p53 DBD (Fogal et al., 2000). Con-
sidering these results, we performed in vitro competition assays to study whether 
a shared binding site for p53 and Mdm2 is localized in the PML C-terminus (I, 
Figure 7). Higher amounts of PML in the in vitro assay increased the associa-
tion of p53 with Mdm2 and vice versa, the elevation of Mdm2 levels increased 
p53-PML complex formation. The results suggested that rather than competing 
for the same binding site on PML, p53, Mdm2 and PML can form trimeric com-
plexes and that this is promoted by the PML-Mdm2 interaction. As both p53 and 
Mdm2 were found to transiently interact with PML rapidly after UV stress, it is 
possible that a trimeric complex is formed, playing a role in the UV response of 
the tumor suppressor protein p53.

Similarly to PML, we found that NPM forms kinetically rapid and transient 
complexes with Mdm2 early after UV exposure (II, Figure 3B). Moreover, this 
interaction was independent of the p53 status of the cells (II, Figure 3C). A 
recent paper on UV-induced responses of NPM and ARF, showed similar as-
sociation between NPM and Mdm2 following UV-exposure, although with a 
little bit delayed kinetics (Lee C et al., 2005). In vitro interaction analyses using 
GST-pull down experiments showed that interaction is dependent on the N- and 
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C-terminal domains of Mdm2, containing its p53 binding site and the RING 
domain (II, Figure 2C). Although p53 requires the same binding domain for its 
interaction with Mdm2, the in vitro competition assays suggested that p53 is 
able to promote the interaction between NPM and Mdm2. Higher amounts of 
p53, however, competed for the interaction and decreased NPM-Mdm2 com-
plex formation. As p53-NPM interaction has recently been shown to require the 
N-terminal site of p53 (Maiguel et al., 2004), also essential for its Mdm2 bind-
ing, the higher nucleoplasmic NPM levels upon cellular stress might be able to 
disrupt the interaction between p53 and Mdm2, leading to inhibition of the p53 
degradation by the proteasome and its transcriptional activation.  

As we had detected transient interactions between PML, Mdm2 and p53 as 
well as NPM, Mdm2 and p53 following UV stress, we further studied the as-
sociation of PML and NPM proteins in these early complexes. These proteins 
were found to interact within similar kinetics like the other UV-induced tran-
sient complexes (III, Figure 1A). Furthermore, the interaction between PML and 
NPM was independent of the presence of either p53 or ARF (data not shown).  
In vitro interaction analyses of the interacting domains between NPM and PML 
showed that several PML isoforms associate with NPM, which was   dependent 
on the intact N-terminus of NPM and its oligomerization domain (III, Figure 
2A-C). Interestingly, Mdm2 also required this oligomerization domain for bind-
ing to NPM (unpublished results). As all of these transient interactions took 
place with similar kinetics (I, II, III), the results strongly implicate the existence 
of a UV-induced multiprotein complex (Figure 13). The presence of NPM and 
PML in p53-Mdm2 complex may thus potentiate the early events in p53 func-
tional activation following UV damage of the cells. 
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The impact of PML and NPM on p53 stability and activity (I, II)

p53 stabilization has been shown to take place upon numerous cellular stress 
situations, like exposure to UV radiation  and transcriptional inhibition (Maltz-
man and Czyzyk, 1984; Ljungman and Zhang, 1996; Ljungman et al., 1999). 
The stabilization of p53 could involve disruption of the interactions with its 
negative regulators or direct inhibition of their E3-ligase activities. Our results 
showed that Mdm2 and PML interact rapidly and kinetically in a transient man-
ner in UV-stressed cells prior to p53 stabilization (I, Figure 5A). This could 
refl ect a role for PML in p53 activation or stabilization. In addition, the in vitro 
data showed binding of PML to Mdm2 RING fi nger, possibly affecting its E3-
ligase activity towards p53 (I, Figure 3B). An increase in the levels of endog-
enous p53, associated with enhanced PML-Mdm2 complex, was also detected 
following ectopic PML expression in U2OS cells (unpublished observations). 
Moreover, p53 in Pml-/- MEFs is present in a multimodifi ed form compatible 
with ubiquitinated p53, suggesting that PML is necessary for  the inhibition of 
p53 degradation (Louria-Hayon et al. 2003). Recent data from several laborato-
ries has suggested that PML could infl uence p53 stability by inhibiting the abil-

Figure 13. Model for the early events in p53 activation following UV stress. Exposure of 
cells to UV induces site-specifi c translocations of the p53 pathway proteins, associated with 
transient interactions, possibly causing formation of a multiprotein complex involved in p53 
stress response. 
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ity of Mdm2 to degrade p53, either by directly blocking the E3-ligase activity 
(Louria-Hayon et al., 2003), through direct interactions (Zhu et al., 2003) or by 
PML-mediated Mdm2 translocation to nucleoli in stressed cells (Bernardi et al., 
2004). One study in a breast carcinoma cell line, MCF-7, also showed that stable 
suppression of PML expression results in enhanced p53-Mdm2 complex forma-
tion and a decrease in p53 levels due to enhanced degradation (Bao-Lei et al., 
2006). Several reports have thus shown the importance of PML in the control of 
basal and stress-induced p53 levels. 

PML was shown to be required for p53 stabilization upon γ radiation and 
certain cytotoxic drugs (Louria-Hayon et al., 2003; Bernardi et al., 2004). To test 
whether it could also be essential for UV radiation-induced p53 stabilization, we 
performed both immunofl uorescence and western analysis from UV-treated wt 
and Pml-/- MEFs. Although p53 was present in the PML null cells in more ubiq-
uitinated forms, it was stabilized in a similar manner as in the wt MEFs upon 
UV exposure (unpublished results, Figure 14). Similar fi ndings were presented  
in a study of Salomoni et al. (2005), showing equal increase in p53 levels in 
both wt and Pml-/- MEFs in response to UV. Thus, PML seems essential for p53 
stability in unstressed cells and in some, but not all stress-induced pathways. 
Even though PML does not seem to play a role in UV-promoted stabilization of 
p53, it could still infl uence the p53 posttranslational modifi cations or protein-
protein interactions, fi netuning p53 target gene activation or repair functions. 
This is supported by several studies suggesting a role for PML in modifying p53 
activity. Furthermore, PML is itself a p53 target, forming in this way a positive-
feedback loop in the p53 activation (de Stanchina et al., 2004).
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Figure 14. PML is dispensable for p53 stabilization following UV radiation. Immun-
ofl uorescence staining of p53 in control and UV-treated (35 J/m2, 6 h) wt and Pml-/- MEFs.

NPM has been implicated in the regulation of p53 activity in several studies with 
contrasting results, some suggesting that NPM acts as p53 activator (Colombo 
et al., 2002; Zou et al., 2005) and others as repressor (Maiguel et al., 2004; Li et 
al., 2004; Li et al., 2005). We studied the effect of NPM overexpression on p53 
levels in U2OS cells and found that ectopic expression of NPM stabilized both 
p53 and Mdm2 (II, Figure 4A & B). Similar effect of NPM on p53 stability has 
been shown by Colombo et al. (2002). Additionally, we found that the increase 
in Mdm2 levels was clearly independent on the p53 transactivation, as the same 
phenomenon was evident in SaOS-2 cells (II, Figure 4C). The mechanism of 
stabilization of p53 by NPM could involve inhibition of the Mdm2 E3-ligase ac-
tivity, as NPM binds Mdm2 RING fi nger domain (II, Figure 2C). Alternatively, 
NPM could disrupt the interaction between p53 and Mdm2 due to competing 
binding domains (II, Figure 2D and Maiguel et al., 2004). To verify that NPM 
increases p53 stabilization by inhibiting Mdm2, we silenced NPM using siRNA 
in U2OS cells (II, Figure 5A & B). Depletion of NPM from these cells reduced 
the basal levels of p53 as well as the UV-induced stabilization of p53 (II, Figure 
5C). Moreover, the decrease in the levels of p53 was associated with enhanced 

                            Ctrl                                                          UV

wt wt

Pml-/- Pml-/-
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p53 complex-formation with Mdm2, suggesting that NPM can control p53 lev-
els through blocking its interaction with Mdm2 (II, Figure 5C). Further, deple-
tion of Mdm2 together with NPM was able to rescue the negative regulation of 
p53 by NPM siRNA (II, Figure 5D), confi rming the ability of NPM to block 
Mdm2-mediated degradation of p53 through controlling their interaction. 

Several nucleolar proteins have lately been associated with p53 stabilization 
in stressed cells. Ribosomal proteins L5, L11 and L23 have been shown to in-
hibit the Mdm2-mediated degradation of p53 (Lohrum et al., 2003; Dai and Lu, 
2004; Jin et al., 2004; Zhang et al., 2004). The general mechanism controlling 
these proteins and their downstream effects on p53 could be the reorganization 
and disruption of the nucleolar structure upon cellular stress. Cells can toler-
ate relatively high amounts of DNA damage without stabilizing p53. On the 
other hand, nucleolar disruption alone, even in the absence of DNA damage, is 
able to stabilize p53 (Rubbi and Milner 2003b).  The structural and functional 
integrity of the nucleoli was though proposed to be the main signal for p53 
stress response (Rubbi and Milner, 2003b). Interference of rRNA processing has 
also been shown to lead to p53-dependent cell cycle arrest (Pestov et al., 2001). 
The possibility that nucleoli function in maintaining low p53 levels also fi ts to 
the regulation of p53 stability and nucleolar disassembly during the cell cycle 
(David-Pfeuty et al., 1996). Inhibition of the CDKs also leads to disruption of 
the nucleolar structure and accumulation of p53 (David-Pfeuty, 1999; David-
Pfeuty et al., 2001). In accordance, we also found that NPM is translocated to 
nucleoplasm upon CDK2 inhibition by roscovitine treatment, with concomitant 
p53 stabilization (unpublished results). p53 can also be localized to nucleoli in 
unstressed cells. It is colocalized with the sites of rRNA transcription, suggest-
ing that it can sense inhibition of transcription immediately even before disrup-
tion of the nucleolar structure (Rubbi and Milner, 2000). Alternatively, the nu-
cleolar compartment could play a role in p53 degradation, as the ubiquitinated 
p53-Mdm2 complex has been proposed to travel through the nucleoli on its way 
to the proteasome machinery. The inhibition of this pathway upon various stress 
situations could thus affect the nucleolar structure. In stressed cells, NPM may 
be one of the main factors affecting  p53 stability upon nucleolar reorganization. 
However, p53 is stabilized and activated in Npm-/- cells, suggesting that NPM 
may not be essential in the maintenance of p53 levels  (Colombo et al., 2005; 
Grisendi et al., 2005). The deletion of NPM from mice resulted in p53 activation 
probably indirectly due to checkpoint activation in cells with mitotic abberations 
and DNA damage (Colombo et al., 2005). Some of the opposite results on the 
effect of NPM on p53 activity may result from different  experimental settings 
and cell lines. 

Modifi cation of p53 by SUMO has been proposed to affect p53 transcrip-
tional activity (Gostissa et al., 1999; Rodriguez et al., 1999). Conjugation of 
several proteins by SUMO has been linked to regulation of the cellular localiza-
tions, interactions with other proteins and stability of the proteins. We detected 
a slower migrating form of p53 in the insoluble fraction of the cells early after 
UV exposure, correlating kinetically with p53 protein complexes (I, Figure 5B). 
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The slower migrating p53 form corresponded to a SUMO-modifi ed p53, mi-
grating around 65 kDa. Although PML NBs have been linked to sumoylation 
of certain proteins and the 65 kDa form was detected at the same time frame 
with p53-PML interaction, we did not fi nd any evidence for p53 translocation 
to NBs (I, data not shown). Alternatively the 65 kDa p53 form could be bound 
to the chromatin fraction. Due to the kinetics of the early interactions, NPM 
was tested for its ability to induce p53 sumoylation. Ectopic expression of NPM 
led to an increase in a slower migrating, sumoylated p53 form (II, Figure 4F). 
Furthermore, NPM preferred binding to the sumoylated p53 (II, Figure 4F) and 
associated with this form in UV-treated cells (II, Figure 4D & E). Although we 
could not fi nd any evidence for p53 sumoylation taking place in NBs, PML 
could still potentiate the sumoylation event of p53 by acting as a platform for 
protein interactions, in other cellular compartment than PML NB. 

Figure 15. NPM and PML inhibit Mdm2-mediated degradation of p53. Both NPM and 
PML are regulators of p53 stability and may block the Mdm2-mediated degradation of p53 
(Kurki et al., 2003; Louria-Hayon et al., 2003; Zhu et al., 2003; Bernardi et al., 2004; Kurki 
et al., 2004). NPM seems to be essential for p53 stabilization upon UV radiation (Colombo 
et al., 2002; Kurki et al., 2004), γ radiation (Colombo et al., 2002), polyamine depletion (Zou 
et al., 2005) as well as upon viral stress (Kurki et al., 2004). PML plays a role in p53 stabi-
lization upon γ radiation (Louria-Hayon et al., 2003) and after exposure to cytotoxic drugs 
(Bernardi et al., 2004). 

NPM is associated with p53 stabilization in viral insult (II)

NPM interacts with several viral proteins like Rev, HIV and Tat (Fankhauser et 
al., 1991; Miyazaki et al., 1995; Li, 1997). p53 function is also altered by several 
viral proteins, including viral cyclin (K-cyclin) (Verschuren et al., 2002). This 
viral protein is a cyclin-D homologue, encoded by the Kaposi´s sarcoma-associ-
ated herpesvirus (KSHV) and is known to induce p53 stabilization, concomitant 
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with its activation leading to either growth arrest or apoptosis (Verschuren et 
al., 2002). As NPM was required for p53 stabilization upon DNA damage, we 
wanted to assess its possible role in p53 stress response.

We transiently expressed K-cyclin in U2OS cells. Immunofl uorescence anal-
ysis showed a major translocation of NPM to the nucleoplasmic fraction fol-
lowing expression of this protein (II, Figure 6A). This was also evident from the 
soluble fraction of the cells in western analysis (II, Figure 6B), while the total 
levels remained unaltered. NPM may be attracted to the nucleoplasmic fraction 
through its interaction with this viral protein (II, Figure 6C). Alternatively, the 
expression of this protein could affect the function of the nucleoli as nucleolus is 
targeted by several viral proteins (Hiscox, 2002). Thus, viral stress by K-cyclin 
may lead to release of the nucleolar proteins and promote NPM-K-cyclin inter-
action in the nucleoplasmic compartment. 

The effect of K-cyclin expression on p53 levels was similar in U2OS cells as 
described before in MEFs (Verschuren et al., 2002), leading to stabilization of 
the protein (II, Figure 6D). Mdm2 protein was stabilized as well (II, Figure 6E). 
These inductions in the levels of p53 and Mdm2 were associated with increased 
interactions with NPM as well as decreased interaction between p53 and Mdm2, 
suggesting that also following this kind of cellular stress NPM is able to affect 
the negative pressure of Mdm2 on p53 (II, Figure 6D & E). As several viruses 
are able to target nucleoli (Hiscox, 2002) and adenovirus infection for instance 
blocks the rRNA synthesis (Castiglia and Flint, 1983), causing nucleoplasmic 
distribution of NPM (Matthews, 2001), the general pathway affecting p53 in the 
viral infections could take place through the interference of nucleolar functions. 

PML controls the localization of p53 pathway proteins (I, III)

The plurifunctional PML NBs can be divided into subgroups according to their 
protein composition, size and movement. PML is able target several proteins with 
variable functions to PML NBs in a cell cycle phase and stress-dependent man-
ner (Dellaire and Bazett-Jones, 2004). Nowadays over forty proteins are found 
in the database for PML NB proteins, many of these being RING fi nger proteins 
(Dellaire et al., 2003). As we had detected colocalization of Mdm2 with PML fol-
lowing DNA damage, inhibition of the proteasome and treatment with ATO, we 
addressed whether Mdm2 localization was altered by PML itself. Ectopically ex-
pressed PML III or IV was able to relocalize Mdm2 in a dose-dependent manner 
to large PML NB structures in a p53-null background (I, Figure 2). As we did not 
detect a strong interaction between Mdm2 and PML III in vitro, this relocalization 
could involve the endogenous PML IV isoform or other associated proteins. Inter-
estingly, in studies of the capacity of PML to relocalize different Mdm2 deletion 
mutants, we found that Mdm2 lacking its nucleolar localization signal was found 
in the nucleoli in cells treated with  a proteasome inhibitor only when PML was 
colocalizing with it, pointing towards a role of PML in Mdm2 nucleolar entry (I, 
data not shown). The nucleolar localization of Mdm2 is usually affected by its nu-
cleolar localization signal (NoLS) in its C-terminal site (Lohrum et al., 2000), but 
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the results suggest that either PML or some PML associated protein is able to di-
rect Mdm2 to this subnuclear compartment independently of its NoLS sequence. 
This observations was corroborated by a study of Bernardi et al. (2004), in which 
they showed the absence of Mdm2 nucleolar localization in stressed Pml-/- cells. 

Additionally, PML was able to control the localization of NPM, relocalizing 
it from the nucleoli to either perinucleolar area, mature PML bodies or to nu-
cleoplasm in a dose dependent manner (III, Figure 2D). NPM translocation was 
detected with PML III, PML IV, PML IV-3 (sumoylation defective mutant) and 
PML-RARα fusion protein (III, Figure 2D and data not shown). The immun-
ofl uorescence data further confi rmed the in vitro data on association of NPM 
with several PML isoforms and suggested that NPM binding occurs through a 
common domain of different PML isoforms through its N-terminus. To further 
test whether PML could have a role in the UV-promoted translocation of NPM, 
we performed immunofl uorescence stainings of the wt and Pml-/- MEFs. The 
data showed a striking difference already in unstressed Pml null and wt MEFs, 
NPM being prominently nucleoplasmic in the absence of PML (III, Figure 4A). 
Further, translocation following UV stress to the nucleoplasmic fraction was 
also not as evident as in wt MEFs, proposing a defect in the UV response of 
NPM. Additionally, NPM perinucleolar staining pattern, usually detected  at the 
border of nucleoli  within one hour in UV-damaged cells, was delayd in the Pml 
null cells. Whether this refl ects a defect in the reorganization of the nucleolar 
structure upon transcriptional inhibition remains to be studied. 

NPM has an essential role in the maintenance of genomic integrity and 
Npm-/- cells show more increased staining for γ-H2AX repair foci (Colombo 
et al., 2005). NPM is also linked to DNA repair and binds chromatin following 
IR-induced DSBs (Wu et al., 2002; Lee et al., 2005). To verify that the differ-
ent subcellular localization of NPM in Pml-/- cells was not due to increased 
DNA- damage of the PML null cells, we performed immunofl uorescence stain-
ings with γ-H2AX (III, results not shown). The staining was comparable in wt 
and Pml null MEFs, suggesting that NPM translocation probably does not oc-
cur through a mechanism involving damaged DNA. However, PML may affect 
NPM localization directly, or alternatively, it could act as a platform protein, 
mediating some essential modifi cations or protein-protein interactions involved 
in the control of NPM localization and its stress response. 

PML dictates NPM-chromatin association and NPM-p300 complex 
formation in DNA-damaged cells (III)

NPM has been shown to associate with histones (Okuwaki et al., 2001) and bind 
chromatin in γ radiated cells (Lee SY et al., 2005) A recent paper also suggested 
a role for NPM as a general transcriptional regulator through control of histone 
acetylation and nucleosomal disassembly (Swaminathan et al., 2005). We stud-
ied the possible association of NPM with chromatin in UV-treated U2OS cells 
(III, Figure 3A). The results showed that NPM is associated with chromatin, 
without a major change in this property after UV treatment of the cells. As 
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DNase treatment of the cells only partially released NPM from chromatin, this 
fi nding suggested that NPM may actually be more tightly bound to chromatin 
associated proteins than to DNA itself. In contrast, p53 was increasingly as-
sociated with chromatin upon UV radiation, and this association was clearly 
diminished in DNase-treated cells, in similar manner than the association of 
acetylated histones (AcH3, lysine9, respectively) with DNA (III, Figure 3A). 
Furthermore, AcH3 was found to be released from chromatin fractions even 
without DNase-treatment, in response to UV radiation, indicating a conversion 
of acetylated histones to a more soluble form upon DNA relaxation. 

To address whether NPM association with histones was regulated upon UV 
treatment, we studied their interaction using coimmunoprecipitation analyses of 
UV-treated MEFs (III, Figure 3B). The results showed transient complex for-
mation between AcH3 and NPM shortly after radiation. As NPM acetylation 
by p300 has been linked to its association with histones (Swaminathan et al., 
2005) and p300 is also known to regulate chromatin structure through histone 
modifi cations in damaged cells (Chan and La Thangue, 2001), we tested a pos-
sible involvement of NPM in p300-complexes following UV treatment. p300-
NPM interaction was also transiently increased in UV-treated cells, although it 
was clearly detectable already in control cells (III, Figure 3C). p53, known to 
bind p300 (Grossman, 2001), was also tested for its p300 interaction upon UV. 
Their complex formation was also enhanced early after radiation (unpublished 
results). The association of NPM and p300 was further increased by the pres-
ence of trichostatin A (TSA), a known histone deacetylase inhibitor or by over-
expression of PML, suggesting that histone acetylation and PML could play a 
role in regulating this interaction  (III, Figure D). 

To verify whether PML could control the association of NPM with p300 and 
chromatin, we isolated chromatin from wt and Pml null MEFs. Regulation of 
NPM in UV-treated wt MEFs was similar to U2OS, and its nucleoplasmic levels 
increased upon UV radiation and there was no change in its association with the 
chromatin (III, Figure 4B). The increase in the nucleoplasmic NPM levels could 
be due to its translocation from the nucleoli upon rearrangement of the nucleolar 
structure (II, Figure 1A). Interestingly, this increase was not as evident in the 
samples of Pml-/- MEFs, suggesting a role for PML in the proper UV response 
of NPM. The results correlated well with the immunofl uorescence data, showing 
that in Pml-/- MEFs NPM exists in a more soluble fraction, without any major 
changes in its localization pattern upon UV radiation (III; Figure 4A).

We further asked whether PML infl uences p300-NPM interaction (III, Figure 
3D). Wt and Pml-/- MEFs behaved completely differently with respect of p300 
binding upon radiation, as the NPM in wt MEFs transiently interacted with p300 
within one hour timepoint and this same interaction was negligible in cells lack-
ing PML (III, Figure 4C). It is therefore possible that PML controls the acetyla-
tion of NPM through its association with p300 and infl uences the histone and 
chromatin binding properties of NPM. 
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The dynamic movement of NPM is affected by UV radiation (III)

NPM is translocated to nucleoplasm in response to UV (II) and this translocation 
is associated with transient complex formation with p53, Mdm2, PML, p300 
and AcH3 early after radiation, prior to p53 stabilization (II, III). To address 
whether these events affect the mobility and movement of NPM, we utilized op-
tical manipulation of the cells using fl uorescence recovery after photobleaching 
(FRAP). In previous studies NPM mobility in unstressed cells has been shown 
to be high (Phair and Misteli, 2000; Chen and Huang, 2001). We observed that 
the high mobility of this protein was transiently retained one hour after radiation 
(III, Figure 3E). The observed kinetics correlate well with the transient NPM 
protein complexes, suggesting that NPM interactions with its nucleoplasmic 
partners may affect its dynamic movements in response to UV radiation. Alter-
natively, the mobility of NPM could be retained by its association with chroma-
tin (III, Figure 3B, C & D). The mobility of NPM was increased with one hour 
and further six hours after UV damage NPM was almost completely mobile in 
the nucleoplasm (III, Figure 3E and data not shown). This mobility correlated 
with the staining pattern, observed in  immunofl uorescence analysis that could 
be lost by pretreatment of the cells with NP-40 lysis buffer prior to staining with 
NPM antibodies (III, Figure 4A). 

Hypothetical models for the function of early multiprotein 
complexes following UV (I, II, III) 

The detected stress-induced interactions between p53, Mdm2, PML, NPM, 
p300 and AcH3 took place at similar kinetics after radiation, and could pos-
sibly indicate the formation of a multiprotein complex required for p53 stress 
response. Several possibilities for the function of these complexes exist. As 
the interactions occurred prior to p53 stabilization, they could be required for 
the stability of p53 by inhibiting Mdm2 E3 ligase activity or its interaction 
with p53. NPM is essential for the elevation in p53 levels in UV-stressed cells 
(II, Figure 5C). Interestingly, NPM localization is not affected by γ radiation 
(Syrjäkari et al., unpublished results) and the ubiquitination of p53 is also not 
affected following this treatment (Maki and Howley, 1997), indicating sepa-
rate mechanisms leading to p53 stabilization following different kinds of DNA 
damage. We could not fi nd any evidence for the role of PML in the UV-in-
duced stabilization of p53. Still, PML could provide a platform for the protein-
protein interactions and specifi c modifi cations, required for p53 stability or 
transcriptional activity. These interactions could also play a role in the regula-
tion of p53 target gene selectivity. As p300 and AcH3 were also involved in 
the complexes, they could as well participate in the promoter-specifi c histone 
acetylation, required for the activation of specifi c p53 targets. p53-dependent 
histone acetylation of certain promoters, including p21 and PUMA, has been 
shown to occur upon p53 activation (Kaeser and Iggo 2004). In addition, it has 
been suggested that PML and PML NBs are involved in chromatin remodel-
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ling and  could also mediate the access to certain promoter regions (Seeler et 
al., 1998). 

To effectively repair the UV-induced DNA damage, the lesions have to be 
recognized and repaired in the highly condensed chromatin fi bers. Histone mod-
ifi cations like acetylation affect structure of the nucleosomes in a modifi cation-
dependent manner. This may lead to relaxation between the tight histone-DNA 
interface and facilitate binding of NER machinery to these sites. Histones are 
known to be acetylated in response to UV radiation (Ramanathan and Smerdon, 
1986), and the repair of UV-induced lesions by NER is also associated with in-
creased histone acetylation (Brand et al., 2001). Specifi c chromatin accessibility 
factors are required for this task. p53 was shown to act in this manner and to 
mediate histone acetylation in a p300-dependent way upon UV damage (Rubbi 
and Milner, 2003a). Tumor cells lacking functional p53 also have lower levels of 
acetylated histone H3. The basal acetylation of K9 residue of H3 and increase 
in acetylation of K9 and K14 after UV damage have been shown to be affected 
by p53 (Rubbi and Milner, 2003; Allison and Milner, 2003). A recent paper 
also showed the p53-dependent increase in K9 H3 acetylation upon UV dam-
age in Drosophila (Rebollar et al., 2006), suggesting that this function of p53 is 
conserved. Further, p53 can tether Mdm2 to chromatin, where it is able to bind 
histones and promote monoubiquitination H2A and H2B through its RING-do-
main (Minsky and Oren, 2004).  PML and NPM have also been proposed to play 
a role in chromatin modifi cations due to their protein associations. NPM binds 
histones and controls their acetylation (Okuwaki et al., 2001; Swaminathan et 
al., 2005). PML on the other hand interacts with HDACs and p300 and has 
been linked to both condensation and decondensation of the chromatin structure 
(LaMorte et al., 1998; Doucas et al., 1999; Von Mikecz et al., 2000; Bandobashi 
et al., 2001; Boisvert et al., 2001; Wu et al., 2001). PML could as well control 
chromatin structure and act as a chromatin accessibility factor in UV-radiated 
cells. Given that the association of NPM with p300 is PML dependent (III, Fig-
ure 4C) and that PML controls NPM localization in UV-treated cells (III, Figure 
4A) as well as forms transient complexes with it and p53 (I, Figure 5A; III, Fig-
ure IA), the apparent multiprotein complex early after radiation could possibly 
have a role in modifi cations of the chromatin structure. 

p53 is involved in the repair of UV-induced DNA lesions throug affecting 
NER functions by several ways. p53 also controls the localization of PML to the 
sites of DNA damage and nucleotide excision repair in UV-treated cells (Seker 
et al., 2003). PML itself and PML NBs have been proposed to act as damage 
sensors and control the release and localizations of many different repair pro-
teins (Dellaire and Bazett-Jones, 2004), in this way linking it either directly or 
indirectly to the repair processes. NPM also has the ability to promote repair of 
lesions by upregulating PCNA protein (Wu et al., 2002) and through regulating 
the localization of GADD45 (Gao et al., 2005), although evidence about a direct 
association to the lesion sites is missing. The possibility that the detected early 
NPM protein complexes (I, II, III) could affect repair functions, exists, although 
a direct involvement in the repair process seems quite unlikely. 
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PML-RARα fusion protein in acute promyelocytic leukemia cells 
affects the normal function and localization of NPM (III)
Acute promyelocytic leukemia is most often caused by a translocation between 
PML and RARα genes (de The et al., 1990; Goddard et al., 1991; Kakizuka et al., 
1991; Pandolfi  et al., 1991). In some cases, the partner with RARα in the fusion 
protein can also be PLZF, NPM, NuMA or Stat5b (Redner, 2002). However, 
these different subtypes of leukemia display different cytomorphological fea-
tures as well as penetrance of the disease in transgenic mouse models (Rego et 
al., 2006). The NPM-RARα fusion protein in APL does not interact with PML 
and localizes to nucleoli, probably affecting the normal NPM functions and the 
development of APL (Rego et al., 2006; Rush et al., 2006). During this study we 
observed the association of PML-RARα with NPM (III) and became interested 
in their relationship in the development of APL. Even though both NPM and 
PML have been linked to hematological malignancies and are associated with 
APL, this connection has not been studied before. 

We used a APL cell line, NB4, which has a wt PML allele in addition to the 
fusion protein PML-RARα (Lanotte et al., 1991). Even though p53 mutations 
are extremely rare in this type of cancer, p53 status in NB4 cells is mutant (Fleck-
enstein et al., 2002). Correlating with this status, the levels of p53 were also very 
high in this cell line, as observed by Western blot experiments (III, Figure 5A). 
Interestingly, the NPM levels were comparable to other tumor cell lines, A375 
and U2OS, but it was prominently localized to the nucleoplasm (III, Figure 5B). 
This could be due to its sequestration by nucleoplasmic PML-RARα (III, Figure 
5B), which clearly formed complexes with  NPM (III, Figure 5C). The fi ndings 
are concordant with the in vitro interaction data and immunofl uorescence data 
showing that the effect of  PML-RARα expression on NPM localization pat-
tern (III, Figure 2A, B & D). Nucleolar NPM localization may be crucial for its 
proper function, as mutant NPMc+ expression disrupts the ARF pathway (Falini 
et al., 2005), suggesting that the capacity of PML-RARα to sequester NPM may 
alter cellular functions and subject the neoplastic transformation.

The APL phenotype can be reversed by ATO and RA treatments, which induce 
degradation of the fusion protein and clinical remission in most APL patients 
(Zhu J  et al., 2001). To verify whether the abnormal localization of NPM in the 
NB4 APL-cells is due to PML-RARα expression, we treated the cells with these 
drugs and analyzed NPM localization. The nucleolar staining of NPM became 
more intense in the ATO- and RA-treated cells without any change in its protein 
levels, suggesting that a relocalization event occurs in response to PML-RARα 
degradation (III, Figure 6 A& B). ATO treatment induced an almost complete 
degradation of the cellular PML and PML-RARα, while RA treatment promoted 
the formation of normal PML NB structures (III, Figure 6A&B). Immunoprecipi-
tation experiments from cells with similar treatments revealed that RA promoted 
complex formation between p53, NPM, AcH3 and p300 (III, Figure 6C) and that 
this was associated with p53 activation as determined by luciferase reporter as-
says in the presence of exogenous p53 (III, Figure 6D) (Figure 14.). Based on 
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these results we propose a role for this multiprotein complex in the activation of 
p53 pathway following RA treatment of APL. Whether PML acts as a crucial fac-
tor in the activation of p53 upon this treatment, remains to be studied. 

 APL cells, expressing PML-RARα, are blocked at the promyelocyte phase. 
Enhanced co-repressor binding of PML-RARα and inhibition of the RA-path-
way have been proposed to result in this differentiation block and APL develop-
ment (Grignani et al., 1993; Grignani et al., 1998; He et al., 1998; Lin & Evans, 
2000; Lin et al., 1998; Minucci et al., 2000). PML–RARα maintains a more 
condensed chromatin structure due to its association with co-repressor com-
plexes together with HDACs and inactivates target genes by these means (Wu 
et al., 2001; Segalla et al., 2003). Additionally, the fusion protein maintains the 
silenced chromatin state by recruiting DNA methyltransferase activities (Villa 
et al., 2006). Expression of PML-RARα also promotes relocalization of PML 
from PML NBs, affecting the normal functions of these structures (Dyck et 
al., 1994; Koken et al., 1994; Weis et al., 1994) and the apoptotic pathways 
that PML and PML NB proteins are involved in (Takahashi et al., 2004). Fur-
thermore, tumor suppressor protein p53 has been suggested to be inactivated 
in APL by the complex of PML-RARα and HDACs, blocking the proper p53 
response in these cells (Insinga eta al., 2004). Given that HDACs would be the 
only player in p53 inactivation in these types of cancer, one could expect to see 
p53-mediated apoptosis in response to histone deacetylase treatment. However, 
TSA promotes p53-independent apopotosis and we could not detect any p53 ac-
tivation upon this treatment (III, results not shown). On the other hand, another 
histone deacetylase inhibitor, RA, was able to induce formation of a multipro-
tein complex, associated with the activation of p53 pathway (III, Figure 6C & 
D). Although NPM overexpression has been shown to decrease the sensitivity 
of human leukemia cells (HL-60) to retinoic-acid-induced differentiation and 
apoptosis (Hsu and Yung, 1998; Hsu and Yung, 2000; Yung, 2004), we fi nd here 
that it could possibly act as an activating component of the p53 pathway. Histone 
modifi cations and alterations in the chromatin structure seem to be one of the 
outcomes in p53 binding to its target sequences upon stress. Our fi ndings indi-
cate that PML-RARα, in addition to its various effects on chromatin structure, 
also disrupts the normal localization and function of nucleolar protein NPM, 
possibly having an effect in the association of p53 with histone modifying fac-
tors and blocking the activation of p53 pathway in APL.
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Figure 16. Model for p53 activation in APL cells. NPM associates constitutively with 
PML-RARα, and is dissociated from this inhibitory interaction by ATO and RA induced 
degradation of the fusion protein. RA treatment leads to formation of normal PML NBs, and 
binding and activation of p53 through its interactions with NPM, AcH3 and p300. ATO does 
not support PML NB formation or interactions between p53, NPM and p300. 
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CONCLUSIONS

Cancerous cells can be potentially destroyed by activation of the p53 pathway. 
This thesis work has aimed in fi nding new contributors to p53 stabilization and 
activation as well as unravelling the molecular mechanisms behind them. Al-
though many p53 inducing agents have been shown to decrease the levels of p53 
negative regulator Mdm2 and in this way lead to p53 accumulation (Wu and Le-
vine, 1997; Arriola et al., 1999; Ashcroft et al., 2000; Inoue et al., 2001; Wang et 
al., 2002), the stabilization of p53 following transcriptional inhibition does not 
occur due to diminished Mdm2 protein levels (Ashcroft et al., 2000; O´Hagan 
and Ljungman, 2004). The blockage of the p53-Mdm2 interface by modifi ca-
tions and newly formed interactions, followed by UV-induced transcriptional 
inhibition, plays a major role in the regulation of p53 response in this type of 
damage . 

 Transcriptional inhibition by UV exposure of the cells promoted subcellular 
translocations of the p53 pathway proteins Mdm2, NPM and PML, but not p53 
itself. The subsequent rapid and transient interactions of NPM and PML with 
each other as well as with p53 and Mdm2 could be prerequisite for the induction 
of a proper p53 cellular response. Although, the transcriptional inhibition lead-
ing to nucleolar stress response and concomitant release of NPM was found to 
be essential for p53 stabilization, the exact function of the potential multiprotein 
complex between p53, Mdm2, NPM and PML is currently not clear and needs 
to be verifi ed in future studies. The fact that Mdm2 and PML are  associated 
with the nucleolar compartment upon cellular stress, underlines the importance 
of this subnuclear organelle in the regulation of p53 pathway and suggests that 
cellular compartmentalization is important in this type of damage response. 

 NPM and PML are often altered in hematological malignancies and could 
thus contribute to the oncogenesis through alterations in the p53 pathway. More-
over, PML exerts control over the cellular localization of NPM, its UV response 
and  association with chromatin binding factor p300, events which are disrupted 
in cells lacking functional PML. The pathogenesis of APL could so be affected 
through NPM inactivation. The relevance of the UV-induced interactions be-
tween these particular p53 pathway proteins is underscored by the fi nding that 
therapeutically relevant RA, reversing the APL phenotype, induced similar com-
plexes with p53 and its partners leading to transcriptional activation of p53. The 
transcriptional changes by UV radiation or oncogenic PML-RARα could thus 
be overcome by p53 association with NPM and PML, emphasizing their impor-
tance in the regulation of the p53 pathway. To address whether NPM and PML 
dysregulation infl uences p53 function in other types of cancers and whether they 
could have potential as therapeutic targets, will have to be determined by future 
work. 
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Figure 17. Hypothetical model of the RA- and UV-induced p53 complex. Transcriptional 
inhibition by UV-induced damage as well as PML-RARα promoted transcriptional repres-
sion in APL is overcome by the formation of a hypothetical p53-NPM-PML-p300 multi-
protein complex, associated with the recovery of transcriptional competence. APL, acute 
promyelocytic leukemia; RA, retinoic acid. 
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