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Imagine a single cell in your body, turning against you, becoming malignant,

and eventually causing a life-threatening disease.

Cancer is both fascinating and horrifying. For decades, scientists have battled to unravel the

underlying mechanisms. Although significant progress has been made,

the heart of the mystery remains unsolved.

- AL -
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1. INTRODUCTION

Cancer is one of the leading causes of death in the Western countries. Up to every third

individual will develop cancer at some point in life. Typically cancer strikes elderly people.

However, younger people also develop tumors, especially when having inherited a

predisposing gene mutation. An estimated 5-15% of all cancers are hereditary (Houlston et

al., 1992; Lynch & de la Chapelle, 1999). Several hereditary cancer syndromes have been

identified, most of which are extremely rare.

One might question the relevance of studying rare cancer syndromes. The first obvious

argument is that when dealing with an inherited disease, it is not just about that one affected

patient, rather it concerns the whole family as well as relatives. By identifying the disease-

causing mutation in the family, all at-risk relatives can be scrutinized and can either be taken

into surveillance programs or be relieved of an excessive fear of cancer. The second

argument is that in most cases the same genes underlying the inherited syndromes are also

involved in the sporadic cases of the same cancer type. Thus, study of hereditary syndromes

will enlighten the development and progression of the more common sporadic cancers.

Cancer is a devastating disease, but it is no longer a death sentence. Using advanced

diagnostic methods and regular screenings, tumors can often be found at an early, pre-

malignant stage, and surgery combined with radiotherapy and cytotoxic drugs cures a great

deal of patients. Importantly, the earlier the diagnosis is made, the better the prognosis. In the

future, more advanced therapies, including gene therapy, will hopefully further increase the

cure rate.

The aim of this thesis was to improve the diagnosis of hereditary nonpolyposis colorectal

cancer (HNPCC) by utilizing molecular methods. In HNPCC, accurate diagnosis is essential

since patients have a high risk for synchronous and metachronous tumors, and since cancer

deaths can be prevented by early removal of benign tumors and carcinomas (Järvinen et al.,

2000).
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2. REVIEW OF THE LITERATURE

2.1. Cancer

Progressing from normal to malignant cells involves multiple steps, during which several

distinguishable properties are acquired. Most importantly, cancer cells lose the ability to

control growth, and can proliferate almost inevitably. They are able to promote angiogenesis

(Folkman, 1975; Taunton, 1997), and thus guarantee an unlimited supply of nutrients and

oxygen. The telomerase enzyme is reactivated and maintains stable telomeres during repeated

cycles of cell proliferation (de Lange, 1994). Cancer cells no longer respond to apoptotic

signals (Rudin & Thompson, 1998). In the final stages of progression, cancer cells are able to

detach from their original site, travel through blood or lymphatic veins to new destinations,

and form new colonies, a property called metastasis.

On the tissue level, cancers can be categorized on the basis of their origin. For example,

sarcomas are derived from soft tissue and bone, whereas leukemias originate from blood

cells. Carcinoma, derived from epithelial tissue, is the most common type of cancer. It

typically starts within a benign, well-differentiated tumor (Muto, 1975), which has a structure

resembling that of normal tissue. The next stage is carcinoma in situ, i. e., local tumor. After

reaching the invasive stage, cancer is able to penetrate the basal membrane, and infiltrate the

underlying tissue. Finally, the ability to metastasize is acquired. The clinical stages of

carcinoma are illustrated in Figure 1.

Figure 1. Clinical stages of carcinomas. The underlying molecular events can be divided into
initiation, promotion, and progression.

Several well-known environmental factors increase cancer risk. Proven risk factors include

smoking and asbestos for lung cancer, certain diet components for colorectal cancer, and UV-

radiation for skin cancer. Viral infections have been associated with cervical cancer (Human

Normal
tissue

Benign
tumor

Carcinoma
in situ

Invasive
cancer

Metastatic
cancer

Initiation Promotion Progression
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papilloma virus) (Marx, 1986) and hepatocarcinoma (Hepatitis B –virus) (Zuckerman, 1979;

Hadziyannis, 1981). In addition, Helicobacter pylori infection increases the risk of gastric

cancer (Markwick, 1990; Graham, 2000). In many cancers, however, the etiology remains

obscure. The most common cancer types in males and females are presented in Table 1.

Table 1. Most common cancer types (Finnish Cancer Registry, 1997).

2.2. Cancer Genes

Cancer is a disease caused by gene defects. The mutations can be hereditary (5-15% of cases)

or acquired (85-95% of cases). In hereditary cases, the gene mutations are present in the

germline, and thus, in every single cell of the body. The defect is passed from parents to

children through gametes, resulting in accumulation of cancer in the family. In the acquired -

or sporadic case, the gene mutation is induced, for example, by exposure to carcinogens.

Since the defect happens in a single peripheral cell, it is passed only to this cell’s

descendants. Sporadic cancer thus happens by chance, and no familial clustering of cancer

can be observed. Three different gene categories are known to be involved in cancer, both in

the hereditary forms as well as in the sporadic cases. In addition to clear-cut mutations in

clearly predisposing genes, a variety of polymorphisms and low penetrance-genes may

contribute to cancer predisposition.

Female

Breast 3333 (30%)

Colorectal 1110 (10%)

Endometrial 684 (6%)

Ovarian 586 (5%)

Lung                 466    (4%)  

Total 11153 cases

Male

Prostate 2681 (26%)

Lung 1662 (16%)

Colorectal 950 (9%)

Bladder 638 (6%)

Gastric             527    (5%)  

Total 10358 cases
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2.2.1. Proto-oncogenes and hereditary cancer

Proto-oncogenes are normal cellular components involved in controlling cell proliferation

and differentiation. They can be classified according to their function into growth factors,

growth factor receptors, signal transducers, cell cycle regulators, and transcription factors

(Park, 1998). Activation of these genes results in uncontrolled cell proliferation. Mechanisms

of proto-oncogene activation include point mutations, gene amplifications, and chromosomal

translocations (Park, 1998). Oncogenes are dominant genes. Thus, mutation in either of the

alleles is sufficient to cause intensive proliferation. So far, approximately 100 proto-

oncogenes have been identified, but only a few of these have been associated with hereditary

cancer (RET in thyroid cancer, CDK4 in melanoma, and MET in papillary renal cell

carcinoma) (Mulligan et al., 1993; Zuo et al., 1996; Schmidt et al., 1997).

2.2.2. Tumor suppressor genes and hereditary cancer

Tumor suppressor genes are negative regulators of cell growth (Marshall, 1991; Weinberg,

1991) and are thus often called “gatekeepers”. They can be classified as cell cycle regulators,

transcriptional regulators, or signaling proteins. According to the well-established two-hit

hypothesis (Knudson, 1971), inactivation of both alleles of a tumor suppressor gene are

needed for cancer formation. Several tumor suppressor genes are involved in hereditary

cancer syndromes (see Table 2). In hereditary forms, one allele is already inactivated by the

inherited mutation, and the second hit is typically due to large deletions visualized by loss of

heterozygosity (LOH).

2.2.3. DNA repair genes and hereditary cancer

DNA repair genes are responsible for the recognition and repair of damaged DNA, and are

thus often called “caretakers”. Mistakes happening during DNA replication and due to

exogenous factors need to be repaired in order to keep the genome intact. Inactivation of a

caretaker gene results in a greatly increased mutation rate and is equivalent to a constant

exposure to mutagens (Kinzler & Vogelstein, 1998), the result of which is a mutator

phenotype (Perucho, 1996). DNA repair genes may, in a sense, be considered tumor

suppressor genes since they also drive tumor formation through loss of function. These genes

are recessive, meaning that both alleles need to be inactivated in order for a cell to acquire a

mutator phenotype. In hereditary forms, one allele is already inactivated by the inherited
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mutation, and the second hit can be due to, e.g., somatic mutation, loss of heterozygosity, or

hypermethylation. Germline mismatch repair (MMR) gene mutations are associated with

hereditary nonpolyposis colorectal cancer (HNPCC) (Kinzler & Vogelstein, 1996). Other

examples of DNA repair gene involvement in hereditary cancer syndromes include ATM-

gene in ataxia telangiectasia (Savitsky et al., 1995) and BLM-gene in Bloom syndrome (Ellis

et al., 1995).

Gene                     Syndrome                                                              Reference                           
RB Familial Retinoblastoma Bookstein et al., 1988
TP53 Li-Fraumeni Syndrome Malkin et al., 1990
WT1 Familial Wilms Tumor Call et al., 1990;

Gessler et al., 1990
APC Familial Adenomatous Polyposis Groden et al., 1991
NF1 Neurofibromatosis Type 1 Wallace et al., 1990
NF2 Neurofibromatosis Type 2 Rouleau et al., 1993
VHL von Hippel-Lindau Disease Latif et al., 1993
BRCA1 Familial Breast Cancer Miki et al., 1994
BRCA2 Familial Breast Cancer Wooster et al., 1995
p16 Familial Melanoma Liu et al., 1995b
EXT1 Multiple Exostoses Ahn et al., 1995
EXT2 Multiple Exostoses Stickens et al., 1996
PTCH Nevoid Basal Cell Carcinoma Syndrome Hahn et al., 1996a
PTEN / MMAC1 Cowden Syndrome Liaw et al., 1997
MEN1 Multiple Endocrine Neoplasia Type 1 Lemmens et al., 1997
TSC1 Tuberous Sclerosis van Slegtenhorst et al., 1997
TSC2 Tuberous Sclerosis *
LKB1 / STK11 Peutz-Jeghers Syndrome Hemminki et al., 1998
SMAD4 / DPC4 Juvenile Polyposis Howe et al., 1998
E-CADHERIN Familial Gastric Cancer Guilford et al., 1998
TGF-βRII Hereditary Nonpolyposis Colorectal Cancer Lu et al., 1998
                                                                                                                                                           
Table 2. Tumor suppressor genes associated with inherited cancer syndromes.

* European Chromosome 16 Tuberous Sclerosis Consortium, 1993

2.3. Colorectal Cancer

Colorectal cancer (CRC) is the second most common malignancy as a cause of death in the

Western countries (Dunlop, 1992). At least 50% of Western the population will develop a

colorectal tumor by the age of 70, and in approximately 1 in 10 of these, progression will
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proceed to malignancy (Kinzler & Vogelstein, 1996). Several environmental factors, such as

diets containing high fat, excess of calories, low fiber, alcohol, or inadequate intake of

vitamins and minerals, are implicated as risk factors for the development of colorectal cancer

(Giovannucci & Willett, 1994; Nixon, 1995; Ferguson & Harris, 1996; Wargovich & Levin,

1996; Le Marchand et al., 1997). Furthermore, low physical activity has been associated with

an increased risk for CRC (Sternfeld, 1992). A family history of CRC represents an

independent risk factor and may account for up to 15% of all cases (Cannon-Albright et al.,

1988; Houlston et al., 1992). The remaining 85% of colorectal cancer cases are considered

“sporadic”, i.e., without a clear inheritance pattern. However, the inheritability of cancer may

sometimes remain unrecognized due to low-penetrance predisposing genes.

2.3.1. The adenoma-carcinoma sequence

Most colorectal cancers arise within an adenoma, a pre-neoplastic lesion (Muto, 1975; Jass,

1989). The progression from a benign adenoma to a malignant carcinoma passes through a

series of well-defined histological stages, and may take 10 to 15 years (Muto, 1975). This

progress is referred to as the adenoma-carcinoma sequence (Vogelstein et al., 1988).

Colorectal adenomas are fairly common in the general population, but only 5-10% progress

to a malignant tumor (Winawer et al., 1990).

Kinzler and Vogelstein (1996) demonstrated that colorectal tumor initiation and progression

requires at least seven different somatic changes before a cell can develop into a carcinoma.

Cytogenetic analysis of colorectal carcinomas has revealed that tumor cells undergo loss or

gain of parts of chromosomes. The most frequently observed losses involve chromosomal

regions 5q, 17p, and 18q (Vogelstein et al., 1988). These chromosomal segments are known

to encompass important tumor suppressor genes including APC on 5q, TP53 on 17p, and

DPC4 and DCC on 18q. Molecular characterization at different histopathological stages of

the adenoma-carcinoma sequence has indicated that specific changes are associated with

specific biological stages of tumor development. This suggests that not only the accumulation

of these genetic lesions, but also their order of occurrence is important. These observations

have led to the development of a genetic model for colorectal tumorigenesis (Fearon &

Vogelstein, 1990; Kinzler & Vogelstein, 1996) (Figure 2).
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Figure 2. “The adenoma-carcinoma sequence” (modified from Fearon & Vogelstein, 1990;
Vogelstein & Kinzler, 1993; Kinzler & Vogelstein, 1996).

In the majority of cases, the neoplastic process is initiated by mutations in the tumor

suppressor gene Adenomatous Polyposis Coli (APC) (Powell et al., 1992). The inactivation of

APC is already observed in the smallest precursor lesions of adenomas, the dysplastic

aberrant crypt loci (ACF) (Jen et al., 1994; Smith et al., 1994). Therefore, APC is called the

“gatekeeper” of colonic epithelial cell proliferation, as its inactivation is a rate-limiting event

in the initiation of the adenoma-carcinoma sequence.

Mutations in the K-RAS proto-oncogene on chromosome 12p are thought to be involved in

the progression of early adenomas (Vogelstein et al., 1988; Shibata et al., 1993). Although

mutations in K-RAS are also frequently detected in early stages of progression, K-RAS does

not seem to be involved in the initiation of adenomas. Colonic cells with K-RAS mutations

will form foci of hyper-proliferating cells with normal intracellular and intercellular

organization (Pretlow et al., 1993).

Loss of chromosome 18q occurs in about 50% of late adenomas and in 70% of colorectal

carcinomas (Vogelstein et al., 1988; Fearon et al., 1990). Several putative tumor suppressor

genes are thought to reside in chromosomal region 18q21, the most attractive candidate being

DPC4 (Deleted in Pancreatic Cancer-4) (Hahn et al., 1996b; Thiagalingam et al., 1996).

DCC and SMAD2 also reside in this region (Eppert et al., 1996, Thiagalingam et al., 1996).

The SMAD genes play a role in transforming growth factor-β (TGF-β) signal transduction

pathways (Massague et al., 1998). TGF-β is one of the most potent inhibitors of cell growth.

Many malignancies of epithelial origin, such as those of the breast and colon, are resistant to
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TGF-β, indicating an important role of this pathway in epithelial tumorigenesis. Tumors can

become resistant to TGF-β either by loss of function of one of the two receptors, TGF-βRI

and TGF-βRII, which interact with the TGF-β ligand (Lu et al., 1995; Markowitz et al.,

1995), or by mutations in other genes, e.g., members of the SMAD family, involved in the

downstream signaling cascade.

Loss of heterozygosity (LOH) at chromosome 17p and missense mutations in the TP53 tumor

suppressor gene on the remaining chromosome 17 are found in more than 80% of colorectal

cancers and represent a late event in the adenoma-carcinoma sequence (Vogelstein et al.,

1988; Baker et al., 1989, 1990). TP53 acts as a checkpoint control protein that determines

cellular fate upon DNA damages (Kuerbitz et al., 1992). TP53 can delay the progression of

the cell cycle from G1 to S phase, thus allowing for repair of DNA damage (Kastan et al.,

1991). Alternatively, TP53 can trigger apoptosis in response to DNA damage, most probably

when the lesions are too extensive and DNA repair fails (Lane, 1993). Loss of TP53 tumor

suppressor activity results in cells tolerating DNA damage, which eventually may lead to

cancer formation due to inability to eliminate damaged cells by apoptosis.

Activating mutations in SRC have been detected in 12% of advanced colon cancers (Irby et

al., 1999). Activation of this proto-oncogene is predicted to promote metastasis. Most likely a

number of additional, as yet uncharacterized genes are involved in the adenoma-carcinoma

sequence.

Beside mutations in proto-oncogenes and tumor suppressor genes, inactivation of genes

involved in DNA repair are also associated with colorectal cancer (Leach et al., 1993; Fishel

et al., 1993; Bronner et al., 1994; Papadopoulos et al., 1994; Nicolaides et al., 1994; Miyaki

et al., 1997). Although mutations in these repair genes are not directly responsible for tumor

initiation or progression, cells which are deficient in DNA mismatch repair accumulate

genetic alterations at very high rates in the proto-oncogenes and tumor suppressor genes

known to have significant roles in colorectal cancer (Ionov et al., 1993; Strickler et al., 1994;

Uchida et al., 1994). The phenomenon of increased mutation rate due to genomic instability

is called MSI (microsatellite instability). Approximately 10-15% of colorectal cancers are

MSI-positive (Aaltonen et al., 1993, 1994; Ionov et al., 1993; Pedroni et al., 1999), in most

sporadic cases due to MLH1 promoter hypermethylation (Kane et al., 1997; Cunningham et

al., 1998; Herman et al., 1998; Wheeler et al., 1999). Besides colorectal cancer, genomic
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instability has been observed in several different types of sporadic tumors including

endometrial carcinoma (Risinger et al., 1993; Burks et al., 1994; Duggan et al., 1994),

pancreatic and gastric cancers (Han et al., 1993; Yamamoto et al., 1997), breast (Patel et al.,

1994; Yee et al., 1994), ovarian (Orth et al., 1994), bladder (Gonzalez-Zulueta et al., 1993),

prostate (Suzuki et al., 1995), and cervical cancers (Larson et al., 1996), and soft tissue

sarcoma (Wooster et al., 1994).

2.3.2. Alternative pathways

The adenoma-carcinoma sequence proposed by Kinzler and Vogelstein (1996) is an excellent

model for the sequence of events. However, it is not the only feasible one, and several

modifications are bound to exist. Recent evidence has suggested that the order of events is

not as straightforward as formerly believed. Dysplasia-carcinoma sequence is perhaps a better

term, as it allows for the possibility that cells might acquire all genetic mutations necessary

for malignant behavior without ever forming a visible adenomatous polyp (Lynch et al.,

1995). Current studies have demonstrated MSI-positive adenomas and carcinomas showing

similar degrees of genetic diversity, determined by microsatellite sequence mutation analysis

(Shibata et al., 1996). Thus, an equally long period of progression has been proposed (Tsao et

al., 2000). Adenomas may arise after long periods of occult progression, rather than simply

being the starting points for carcinomas (Tsao et al., 2000).

One possible modification to the sequence of events is the so-called CpG island methylator

phenotype (CIMP) (Toyota et al., 1999). CpG islands are short sequences rich in the CpG

dinucleotide and can be found in the 5’-region of about half of all human genes (Larsen et al.,

1992). Methylation of cytosine within 5’-CpGs is associated with loss of expression. Several

tumor suppressor genes, such as p16, RB, MLH1, and BRCA1 that have been shown to be

mutated in the germline of patients with hereditary cancer syndrome have also been shown to

be aberrantly methylated in some proportion of sporadic cancers (Jones, 1996; Kane et al.,

1997; Baylin et al., 1998; Myöhänen et al., 1998; Esteller et al., 2000). CpG-island

methylation has been proposed to serve as an alternative mechanism of gene inactivation in

cancer (Jones & Laird, 1999).

The causes for aberrant methylation are still unclear. Aging could play a role in this process

since the majority of CpG islands methylated in colon cancer are also methylated in a subset
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of normal colonic cells during the process of aging (Issa et al., 1994). CIMP can lead to

cancer development through the simultaneous inactivation of multiple tumor suppressor

genes, such as p16, and induction of mismatch repair deficiency through inactivation of

MLH1.

Methylation has important implications in tumorigenesis other than the methylator

phenotype. CpG sites within genes are possible hot spots for inactivating mutations in tumor

suppressor genes (Rideout et al., 1990). Approximately 25% of the point mutations in p53

occur at CpG sites (Greenblatt et al., 1994). Spontaneous deamination of 5-methylcytosine

results in formation of a T:G mismatch (Lindahl, 1993). Either side of the mismatch can be

repaired, giving rise to a correct or incorrect sequence, respectively.

In addition to the CIMP phenotype, another possible factor in the sequence of events is loss

of imprinting (LOI). Genomic imprinting is an epigenetic modification in the gamete or

zygote that causes expression of a specific parental allele of a gene in somatic cells of the

offspring (Cui et al., 1998). The mechanisms for the loss of this imprinting remain obscure,

but may involve alteration in the methylation pattern of DNA (Miyaki, 1998). LOI can

involve activation of the normally silent allele of a growth-promoting gene, or silencing of

the normally expressed allele of a growth-inhibitory gene (Feinberg, 1998). LOI has been

found both in cancer and normal tissues of a subset of cancer patients with MSI-positive

tumors (Cui et al., 1998). Thus, LOI might have potential as a diagnostic marker, since LOI

in normal mucosa and peripheral blood cells may be useful in identifying patients who will

develop tumors with MSI (Cui et al., 1998; Miyaki, 1998).

MSI-positive colorectal cancers appear to follow a different path from MSI-negative ones.

While MSI-positive cancers show infrequent LOH, as well as infrequent APC, K-RAS and

TP53 mutations, MSI-negative cancers frequently show the above-mentioned mutations and

loss of 5q, 17p, and 18q (Konishi et al., 1996; Jass et al., 1999). An inverse relationship

seems to exist between chromosomal and DNA instability. However, the two forms may co-

exist in a tumor with mild instability (MSI-L) (Jass, 1999). An intriguing property of MSI-

positive cancers is DNA hypermethylation (Jass, 1999). The mechanisms linking

hypermethylation and microsatellite instability are obscure and need to be elucidated to

enhance the understanding of the etiology and pathogenesis of colorectal cancer (Toyota et

al., 1999).
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2.3.3. Different hereditary syndromes

Inherited colorectal cancer syndromes are typically divided into the polyposis and

nonpolyposis syndromes. The former are further divided into adenomatous and

hamartomatous polyposis syndromes. In the following paragraphs, the most prominent

syndromes will be briefly introduced.

2.3.3.1. Familial adenomatous polyposis

The most common polyposis syndrome is familial adenomatous polyposis (FAP), affecting

approximately 1 in 10 000 individuals. FAP accounts for 0.5-1% of the total CRC burden

(Mulvihill, 1983; Järvinen, 1992), and the gene underlying this hereditary syndrome is APC

(Groden et al., 1991; Nishisho et al., 1991). The most prominent feature of FAP is the

appearance of hundreds, or even thousands, of polyps in the colon. Unless these patients

undergo prophylactic colectomy, they will develop colorectal cancer by the fourth decade of

life (Bussey, 1975).

2.3.3.2. Turcot syndrome

Turcot syndrome is a genetically heterogenous disease characterized by the occurrence of

tumors of the central nervous system as well as colorectal adenomas and carcinomas. A

portion of Turcot patients have germline mutations in the APC gene and are characterized by

a risk of CRC and medulloblastoma-type brain tumors (Hamilton et al., 1995). Another

portion have germline mutations in mismatch repair genes and for those, the brain tumor is of

the glioneural line, typically glioblastoma (Hamilton et al., 1995). In light of recent findings,

Turcot syndrome might be a recessively inherited disease caused by homozygous or

compound heterozygous low-penetrance mutations in APC and mismatch repair genes such

as PMS2 (De Rosa et al., 2000).

2.3.3.3. Peutz-Jeghers syndrome

Peutz-Jeghers syndrome (PJS) is a rare cancer-predisposing syndrome with hamartoma-type

polyps in the gastrointestinal (GI) tract. Another characteristic feature of PJS is

mucocutaneous pigmentation of the lips and oral area (Peutz, 1921; Jeghers, 1949). The gene

underlying PJS is LKB1 (STK11), a serine/threonine kinase with a tumor suppressor function

(Hemminki et al., 1998). PJS patients have an elevated risk for both gastrointestinal and

extra-gastrointestinal tumors. The most commonly associated malignancies are cancers of the

colon, stomach, small intestine, pancreas, breast, ovary, and testis (Giardiello et al., 1987;
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Spigelman et al., 1989). The prevalence of PJS is estimated to be in the order of one twentieth

that of FAP (Spigelman & Phillips, 1994).

2.3.3.4. Juvenile polyposis

Juvenile polyposis (JP) is characterized by the appearance of multiple hamartomatous polyps

in the GI tract and an increased risk for gastrointestinal cancer. In addition, a variety of

malformations have been associated with JP, including congenital heart disease, cleft

lip/palate, and mental retardation (Shepherd & Bussey, 1990; Järvinen, 1993). JP is a rare

disorder affecting approximately 1 in 100 000 people (Burt et al., 1993). The underlying gene

for JP is SMAD4 (DPC4) (Howe et al., 1998), a prominent member of the TGF-β signaling

pathway  (Zhang et al., 1997).

2.3.3.5. Cowden syndrome

Another hamartomatous polyposis is the Cowden syndrome, characterized by multiple

lesions of the skin, mucous membranes, breast, thyroid, and gastrointestinal tract (Lloyd &

Dennis, 1963). Cowden syndrome patients do not seem to have an elevated risk for colorectal

cancer, but instead have a high risk for breast, thyroid, and endometrial cancers (Starink et

al., 1986; Eng, 1997; Eng, in press). The gene predisposing to Cowden syndrome is PTEN

(Liaw et al., 1997).

2.3.3.6. Nonpolyposis syndromes

Nonpolyposis syndromes can be distinguished from polyposis syndromes simply by the

absence of numerous benign tumors in the GI tract. Nevertheless, some attenuated forms of

polyposis syndromes, such as attenuated adenomatous polyposis coli (AAPC), may

complicate this distinction. The following paragraphs will focus on the clinical and genetic

features of hereditary nonpolyposis colorectal cancer (HNPCC).

2.4. Clinical features of HNPCC

Hereditary nonpolyposis colorectal cancer (HNPCC), originally called the “Cancer Family

Syndrome”, and also known as the Lynch syndrome, is an autosomal dominantly inherited

cancer syndrome. It was originally described by Warthin in 1913, in a report of a family with

an aggregation of cancers of the colon, endometrium, and stomach (Warthin, 1913). In the
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past few years, the genetic basis of this disease has been partly unraveled, providing valuable

insights into the process of colorectal tumorigenesis.

HNPCC accounts for 1-5% of all colorectal cancers (Mecklin, 1987; Kee & Collins, 1991;

Ponz de Leon, 1994; Aaltonen et al., 1998). The population frequency of HNPCC is at least

1:1000, which makes it one of the most common hereditary syndromes. HNPCC is

characterized by familial aggregation of colorectal cancer that is often diagnosed at an early

age (mean age 42 years), has a predominance of proximal location, and an excess of

synchronous and metachronous tumors. Microsatellite instability (MSI) is found in more than

85% of the cases (Aaltonen et al., 1994; Liu et al., 1996; Pedroni et al., 1999).

In addition to colorectal cancer, some extracolonic tumors are often associated with HNPCC,

and particularly cancers of the endometrium, stomach, small bowel, urinary tract, biliary

tract, renal pelvis, ovary, and brain are frequently observed in HNPCC families (Watson &

Lynch, 1993; Vasen et al., 1999). The absence or presence of extracolonic tumors has been

the basis for subdividing HNPCC into Lynch syndrome I (CRC only) and Lynch syndrome II

(CRC and extracolonic tumors) (Lynch et al., 1988). This division is somewhat artificial,

even though there is some evidence of a genotype/phenotype correlation (Vasen et al., 1996;

Jäger et al., 1997; Lin et al., 1998). The cumulative risks for the most common cancers in

HNPCC patients are indicated in Table 3.

Cancer type             Cumulative risk           Order of magnitude                                            
Colorectal 78% 150x (at the age of 40 years
Endometrial 43% 10x
Gastric 19% 4x
Biliary tract 18% 5x
Urinary tract 10% 22x
Ovarian 9% 3.5x
Small bowel small 25x
                                                                                                                                                           

Table 3. Cumulative risk (by 80 years of age) for the most common HNPCC-associated
cancers (Watson & Lynch, 1993; Aarnio et al., 1995, Voskuil et al., 1997).

HNPCC tumors do not harbor any pathognomonic clinical features that could be used for

diagnosis. In general, HNPCC patients exhibit an increased proportion of mucinous tumors,

poorly differentiated tumors, and tumors with marked host-lymphocyte infiltration and
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lymphoid aggregation at the tumor margin (Kim et al., 1994). In addition, HNPCC tumors are

often diploid or nearly diploid (Kouri et al., 1990).

The penetrance of HNPCC is very high, but it does not quite reach 100% (Vasen et al., 1996).

The 5-year survival rate of patients with HNPCC is significantly better as compared with that

of sporadic CRC patients (65% vs. 44%, respectively) (Sankila et al., 1996). The reason for

the better survival rate is somewhat obscure. One theory is that immunological defense

mechanisms may for some reason be more active in HNPCC, as indicated by the presence of

a lymphoid reaction around the tumor (Kim et al., 1994). Another theory suggests that the

high mutation rate in MSI-positive tumors is incompatible with tumor survival (Shibata,

1994). The better survival could also simply be due to the diploidy observed in HNPCC

tumors, since diploid tumors generally have better prognosis (Kokal et al., 1986).

HNPCC patients form adenomas only at a slightly higher rate than the general population

(Järvinen et al., 2000). Adenomas in HNPCC tend to be large and show a villous architecture

and high-grade dysplasia (Jass & Stewart, 1992). It is possible that the mutator phenotype

characteristic of HNPCC tumors drives the promotion of adenoma to carcinoma. Consistent

with this hypothesis, adenomas in HNPCC patients are slightly more likely to progress to

carcinoma than are adenomas in the general population (Jass et al., 1994; Lynch et al., 1995).

It is estimated that in HNPCC patients a colorectal adenoma may evolve into carcinoma in

only 2-3 years, whereas in non-HNPCC patients it may take as long as 8-10 years (Jass &

Stewart, 1992). MSI can be seen at an early stage in HNPCC tumors, but is usually observed

at later stages in sporadic colorectal tumorigenesis (Konishi et al., 1996). Indeed, adenomas

from patients with HNPCC frequently show MSI as opposed to 0-3% of apparently sporadic

colorectal adenomas (Young et al., 1993; Aaltonen et al., 1994).

Colonoscopic screening in individuals with HNPCC gene mutations provides an efficient

method of cancer prevention (Järvinen et al., 1995). In a recently completed 15-year

screening program focused on HNPCC mutation-positive individuals, both early detection of

cancer and removal of premalignant adenomas resulted in a 65% reduction in cancer

mortality (Järvinen et al., 2000). Similar but less dramatic benefits of colonoscopic cancer

surveillance in the general population have been observed before (Winawer et al., 1993).

Given the high (approximately 80%) risk of colorectal cancer in individuals who have

germline HNPCC mutations (Watson & Lynch, 1993; Aarnio et al., 1995; Lynch & Smyrk,
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1998) and the common occurrence of metachronous tumors in HNPCC patients, it is highly

desirable to determine which patients with colorectal adenomas and carcinomas have

HNPCC.

2.5. Genetic features of HNPCC

2.5.1. Predisposing genes

A unique approach was utilized during the cloning of HNPCC genes. First, a predisposing

locus was mapped to chromosome 2p in several families with classical HNPCC features

(Peltomäki et al., 1993). Tumors in patients with linkage to 2p showed widespread alterations

in short repeated DNA sequences, suggesting that numerous replication errors had taken

place during tumorigenesis (Aaltonen et al., 1993). A candidate gene was identified in

chromosomal region 2p16 by virtue of its homology to bacterial MutS mismatch repair genes,

previously shown to produce microsatellite instability when defective (Levinson & Gutman,

1987; Strand et al., 1993). Finally, germline mutations of the gene, named MSH2, were

discovered in HNPCC patients (Leach et al., 1993, Fishel et al., 1993). Similarly, another

HNPCC locus was first assigned to chromosome 3p by linkage studies (Lindblom et al.,

1993), and the predisposing gene, MLH1, with homology to the bacterial DNA mismatch

repair gene MutL, was identified  (Bronner et al., 1994; Papadopoulos et al., 1994).

Three more mismatch repair genes have been cloned, and to date germline mutations in at

least five different genes, i.e., MSH2, MLH1, PMS1, PMS2, and MSH6 are known to cause

HNPCC (Leach et al., 1993; Fishel et al., 1993; Bronner et al., 1994; Papadopoulos et al.,

1994; Nicolaides et al., 1994; Miyaki et al., 1997). Approximately 90% of mutations so far

reported in HNPCC affect MLH1 and MSH2 (Peltomäki & Vasen, 1997;

http//www.nfdht.nl/), perhaps because most studies have focused on these genes. Table 4

presents the number of different mutations found in HNPCC worldwide and in Finland.

The inheritance of HNPCC is dominant despite the recessive nature of the underlying MMR-

genes. No clear explanation exists, but this inconsistency can be reasoned. Since one allele is

already defective due to the inherited mutation, all that is needed is for the other allele to

mutate as well. This is very likely to happen sooner or later in cells that divide frequently, as
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in the epithelium of the gastrointestinal tract. As soon as the other allele is silenced, the cell

can no longer repair replication errors and begins to accumulate mutations. Eventually

mutations strike tumor suppressor genes or oncogenes, and cancer starts to develop.

Gene                     Mutations  worldwide           Mutations in Finland                                     

MLH1 151 8
MSH2 119 3
MSH6 25 -
PMS1 1 -
PMS2 2 -
TGF-βRII 1 -
                                                                                                                                                           

Table 4. Number of mutations found in HNPCC genes worldwide and in Finland (according
to the 31-AUG-1999 update of the HNPCC mutation database at: http//www.nfdht.nl/).

Mutations in different genes can cause slightly different phenotypes. There is one report of a

family with a germline MSH6 mutation and a non-typical HNPCC with an older age of onset,

excess of gynecologic cancers, and only a weak family history of gastrointestinal tumors

(Akiyama et al., 1997b). A clear example of genetic heterogeneity of this disease is the

discovery of a germline TGF-βRII mutation in an HNPCC family with MSI-negative tumors

and a late onset (Lu et al., 1998). Quite possibly more HNPCC genes remain to be

discovered.

A strong founder effect has been detected in HNPCC in Finland. Finns were founded some

2000 years ago (de la Chapelle & Wright, 1998) by a very limited number of individuals.

Most likely due to the small founder population, two MLH1 founder mutations have become

enriched in the population, accounting for more than 50% of all mutations detected in Finland

(Nyström-Lahti et al., 1996; Aaltonen et al., 1998). Such a strong founder effect has

implications in genetic testing, and makes screening for HNPCC feasible.

2.5.2. MSI phenomenon

DNA mismatch repair (MMR) genes encode enzymes that survey the newly replicated DNA

for errors and repair all mismatched bases. Defects in MMR-genes result in replication errors

and genetic instability (de la Chapelle & Peltomäki, 1995), which can easily be observed in
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repetitive sequences such as microsatellites (Ionov et al., 1993), hence referred to as

microsatellite instability (MSI).

Microsatellite DNA sequences are short tandem-repeats that are distributed throughout the

human genome, covering at least 1% of the sequence (Strachan & Read, 1999). Typically, the

tandem sequences consist of DNA repeats of six base pairs or fewer, and the total length of

the stretch is less than 100 base pairs. In humans, the most common repeat sequences are

(A)n/(T)n and (CA)n/(GT)n, which are characteristically located within non-coding DNA

sequences.

Microsatellite instability (MSI), also known as replication error (RER), is defined as a change

of length due to either insertion or deletion of repeated units in a microsatellite within a tumor

as compared with normal tissue. Mono-, di-, tri-, and tetranucleotide markers can be used for

studying MSI. In 1997, “The International Workshop on Microsatellite Instability and RER

Phenotypes in Cancer Detection and Familial Predisposition” proposed a panel of five

microsatellite markers to be used in MSI analysis (Boland et al., 1998). For the purpose of

providing some uniformity, two mononucleotide repeats (BAT25 and BAT26) and three

dinucleotide repeats (D2S123, D5S346, and D17S250) were recommended. Using this

reference panel, tumors having instability in two or more markers are defined as MSI-H (high

instability), tumors having instability in one marker are defined as MSI-L (low instability),

and tumors where none of the markers exhibit MSI are defined as MSS (microsatellite

stable).

The mononucleotide marker BAT26 has some advantages over other markers in MSI

analysis. It is extremely sensitive (Hoang et al., 1997; Aaltonen et al., 1998; Samowitz et al.,

1999; Sutter et al., 1999) and shows negligible size variation between both alleles of one

individual and among individuals (Hoang et al., 1997). Several studies support the use of

BAT26 on tumor DNA alone, without matching normal DNA (Hoang et al., 1997; Aaltonen

et al., 1998; Zhou et al., 1998). However, a germline polymorphism in the BAT26 locus has

been detected in 7.7-12.6% of African Americans (Pyatt et al., 1999; Samowitz et al., 1999)

and in 0.08% of Caucasians (Samowitz et al., 1999). Thus, the presence of allelic variations,

although rare, emphasizes the need for the matching normal DNA to avoid misclassification.
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Sixty to seventy percent of colorectal tumors fall into the group lacking MSI, and the

remaining tumors are nearly evenly split between the MSI-H and MSI-L groups (Boland et

al., 1998). Arguments in favor of combining the MSI-L and MSS groups include the fact that

the baseline mutation rate for microsatellites in apparently stable colorectal cancers is not

precisely known. The distinction between these two groups is highly dependent on both the

type and the number of microsatellites analyzed. Given the use of enough markers, it may be

that all colorectal cancers will exhibit some level of MSI (Boland et al., 1998).

Typically MSI-positive tumors acquire somatic deletions and insertions in simple repeated

sequences. Several genes involved in tumorigenesis contain mononucleotide repeats in their

coding regions. Somatic deletions have been seen in the Insulin-like Growth Factor Receptor

type II (IGFIIR) (Souza et al., 1996) and in the BCL2-associated protein BAX involved in the

regulation of apoptosis (Rampino et al., 1997). One specific mutation is almost invariably

found in mismatch repair-deficient colorectal tumors. About 90% of the DNA mismatch

repair-deficient colorectal carcinomas display mutations in the poly-A tract present in the

coding sequence of the Transforming Growth Factor-β Receptor type II gene (TGF-β RII)

(Lu et al., 1995; Markowitz et al., 1995; Parsons et al., 1995; Akiyama et al., 1997a).

Moreover,  the mismatch repair genes MSH3 and MSH6 frequently show somatic deletions

(Malkhosyan et al., 1996), Accumulation of somatic mutations in these mismatch repair

genes is believed to further increase genetic instability. The target for mutations in MSH3 is

an (A)8 repeat, whereas MSH6 has a (C)8 repeat. Both genes have confirmed roles in human

mismatch repair, and germline MSH6 mutations are associated with a minor subset of

HNPCC cases (Akiyama et al., 1997b; Miyaki et al., 1997; Verma et al., 1999). Although

these genes have no prominent roles in hereditary susceptibility to MSI-positive tumors, they

appear to be targets for secondary hits.

2.6. DNA mismatch repair machinery

In general, there are three major types of errors that alter DNA. First, environmental factors

can damage single nucleotides. Exposure to UV light can lead to cross-linking of pyrimidine

residues. The resulting thymidine dimers block normal replication of DNA. Spontaneous

deamination of cytosine residues into uracil residues is another example of injury. These

errors are corrected by a system called nucleotide excision repair (Chung & Rustgi, 1995; de
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Boer & Hoeijmakers, 2000). The second type of error is due to genetic recombination

producing regions of heteroduplex DNA that may contain mismatched nucleotides. Third,

misincorporation of nucleotides during DNA replication can yield mismatched base pairs and

nucleotide insertions and deletions. Although the DNA polymerase is very precise, it is not

100% accurate (Chung & Rustgi, 1995). A unique situation involves repetitive sequences of

DNA that are more prone to replication errors. The system responsible for correcting these

defects is the DNA mismatch repair system.

The human mismatch repair machinery is complex. Mismatches and insertion/deletion loops

(IDLs) are recognized by MSH2/MSH6 heterodimers (Kolodner, 1996; Jiricny, 2000). In the

absence of MSH6, the recognition of IDLs can be mediated by MSH2/MSH3 heterodimers,

indicating redundant functions of MSH6 and MSH3 (Marsischky et al., 1996; Umar et al.,

1998; Edelmann et al., 2000; Jiricny, 2000). The actual mismatch repair is mediated by

MLH1/PMS2 heterodimers (Prolla et al., 1994; Li et al., 1995). Figure 3 illustrates a

schematic representation of the human mismatch repair machinery.

The mismatch repair complex probably includes a number of additional components. Similar

to the repair in bacteria, exonuclease, helicase, polymerase, and ligase activities are likely

needed to complete the repair (Kolodner, 1996). PMS1 has been identified on the basis of

sequence homology with bacterial MutL genes. A germline mutation in PMS1 has been

detected in a HNPCC kindred (Nicolaides et al., 1994), but little is known about its

biochemical function in DNA mismatch repair (Kolodner, 1995). A novel DNA mismatch

repair gene MBD4, also known as MED1, has recently been cloned (Bellacosa et al., 1999),

but its function in DNA mismatch repair is obscure. Similarly, the possible role of another

novel DNA mismatch repair gene, MLH3 (Lipkin et al., 2000), is unclear.

A critical aspect of DNA mismatch repair is strand-specificity, i.e., incision of the newly

synthesized DNA strand carrying the mutation. In bacteria, the newly synthesized strand is

recognized by MutH proteins on the basis of its hemimethylated status (Kolodner, 1995;

Modrich, 1997). The mechanisms for strand-specificity in eukaryotes are still unknown. The

novel MMR-protein MBD4 forms a complex with MLH1, binds to methyl-CpG-containing

DNA and fails to bind unmethylated DNA, and has single- and double-strand endonuclease

activity (Bellacosa et al., 1999). Thus, MBD4 is a possible mediator of methylation-based

strand-specificity in eukaryotic mismatch repair.
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Figure 3. The human mismatch repair machinery. (A) Sequence with a mismatch; on the left
a mismatched base pair, and on the right an IDL. (B) Mismatch recognition. A MSH2/MSH6
heterodimer can recognize both mismatches and IDLs, while the MSH2/MSH3 heterodimer
preferentially recognizes IDLs. (C) Mismatch repair is mediated by the MLH1/PMS2
heterodimer. (D) Repaired sequence where the wild-type sequence has been retained.

An association between MLH3 and DNA mismatch repair can be proposed based on the

following evidence: MLH3 is homologous to bacterial MutL genes, is predicted to have an

MLH1 interaction domain, and is believed to be involved in mismatch repair in yeast (Lipkin

et al., 2000). Furthermore, overexpressed dominant negative MLH3 induces MSI in

mammalian cell culture (Lipkin et al., 2000). The predicted MLH1 interaction domain

indicates that MLH3 might replace PMS2 in the mismatch repair complex. Very few

germline mutations have been found in PMS2, and Pms2-/- mice do not display colon cancer

susceptibility (Prolla et al., 1998). However, MLH3 might have a unique role in mismatch

repair, since it does not show great similarity to PMS2.
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2.7. Diagnosis of HNPCC

2.7.1. Utilizing family history

In the absence of clinical hallmarks, the diagnosis of HNPCC has mainly been based on

family history of cancer. In an attempt to standardize the diagnosis, the so-called Amsterdam

criteria were established by the International Collaborative Group on HNPCC (ICG-HNPCC)

(Vasen et al., 1991). These criteria include the presence of histologically verified colorectal

cancer in at least three relatives (one of whom must be a first-degree relative of the other

two), the presence of at least two affected successive generations, and an age at onset of

colorectal cancer of less than 50 years in at least one of the patients. In addition, Familial

adenomatous polyposis (FAP) must be excluded. Considerable criticism has been aimed at

these criteria excluding some classic HNPCC families because they fail to take into account

the extracolonic cancers that are part of the syndrome. An estimated 20% of HNPCC families

with germline MMR gene mutations do not meet the Amsterdam criteria (Rodriguez-Bigas et

al., 1997). To improve the selection criteria, the ICG-HNPCC introduced new selection

criteria (Vasen et al., 1999), known as Amsterdam criteria II. These criteria are otherwise

identical to the previous ones, except that all HNPCC-associated cancers (CRC, cancer of the

endometrium, small bowel, ureter, and renal pelvis) are included. Since the Amsterdam

criteria are quite strict especially for small families, the utility of these criteria in diagnosis is

questionable.

As an attempt to improve diagnosis based on family criteria, a mathematical algorithm was

introduced by Wijnen and colleagues (1998b). This algorithm is based on simple variables

(mean age of CRC diagnosis in the family, fulfillment of Amsterdam criteria I, and presence

of endometrial cancer in the family), and can be easily used to calculate the probability of

finding a deleterious MLH1 or MSH2 mutation. A probability of 20% or higher has been

considered sufficient to justify mutation analyses (Wijnen et al., 1998b). An alternative

algorithm to be used in small families was also proposed, including the mean age of CRC in

the family, the number of patients with CRC in the family, and the number of patients with

endometrial cancer in the family.  This algorithm was retrospectively established based on

184 Dutch HNPCC or HNPCC-like kindreds, and has not been prospectively evaluated.
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Recently, selection criteria for molecular diagnosis of HNPCC were proposed (Aaltonen et

al., 1998). These simple criteria include: (1) age of onset of CRC less than 50 years, or (2)

synchronous or metachronous CRC or endometrial cancer, or (3) at least one first-degree

relative with CRC or endometrial cancer. According to Aaltonen and colleagues (1998),

criteria-positive patients are analyzed for microsatellite instability, and MSI-positive patients

are included in MLH1 and MSH2 mutation analyses. These selection criteria have been

retrospectively established utilizing a series of 509 unselected colorectal cancer patients

including 10 patients with a germline MLH1 or MSH2 mutation, and have not so far been

prospectively evaluated.

2.7.2. Utilizing MSI analysis followed by mutation analysis

Microsatellite instability (MSI) has potential use as a marker of patients and families who

need a more detailed study of germline DNA to identify HNPCC individuals. Eighty-five to

ninety percent of HNPCC patients show MSI (Aaltonen et al., 1994, Pedroni et al., 1999),

whereas only 10-15% of sporadic colorectal tumors do so (Ionov et al., 1993; Aaltonen et al.,

1994; Pedroni et al., 1999). Thus, MSI is a relatively sensitive, but unspecific marker for

HNPCC.

MSI analysis is typically performed by amplifying microsatellite markers either with

fluorescently labeled primers or with radioactive labeling of the PCR product. A necessity for

a successful MSI analysis is a representative tumor sample with a high tumor cell percentage

and thus a careful histological evaluation of the tumor specimen is needed. One possibility is

to microdissect tumor tissue to enrich the percentage of tumor cells in the specimen. Another

important factor is an optimal marker panel. The recommended panel of five microsatellite

markers (Boland et al., 1998) has not been empirically evaluated and most groups use panels

of their own. One of the recommended markers, a mononucleotide marker called BAT26, is

perhaps considered to be the most sensitive of all known microsatellite markers (Hoang et al.,

1997; Iacopetta & Hamelin, 1998; Bradshaw et al., 1999; Cravo et al., 1999; Samowitz et al.,

1999) and is widely used in MSI analysis.

Another feasible way to identify MSI-positive tumors is analysis of MLH1 and MSH2

protein expression by immunohistochemistry. Specific antibodies have been raised against

these proteins, and immunohistochemistry can be utilized in screening tumor sections for loss
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of expression in a cost-effective and fast way (Marcus et al., 1999; Debniak et al., 2000). No

need for DNA extraction, PCR amplifications or enrichment of tumor cells exists, since the

expression patterns can be compared with the histology of the section. Immunohistochemical

analysis of tumors may possibly substitute the PCR-based MSI analysis in a considerable

percentage of the HNPCC cases (Thibodeau et al., 1998; Cawkwell et al., 1999; Jass, 1999).

The presence of a mutation in a mismatch repair gene confirms the diagnosis. Even though

recent data implicates a possible involvement of MSH6 in a considerable proportion of

HNPCC cases (Miyaki et al., 1997; Akiyama et al., 1997b; Verma et al., 1999), over 90% of

mutations identified to date have been detected in MLH1 and MSH2, and mutation searches

typically concentrate on these genes. However, genes responsible for HNPCC are not yet

fully known, and some might be associated with more attenuated phenotypes (Boland et al.,

1998).
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3. AIMS OF THE STUDY

1. To evaluate the frequency of hereditary nonpolyposis colorectal cancer (HNPCC) and

the common founder mutations in Finnish unselected colorectal cancer and adenoma

patients

2. To test whether MSI analysis can be used in prescreening unselected colorectal cancer

and adenoma patients for HNPCC

3. To evaluate the recently established (Aaltonen et al., 1998) selection criteria for

molecular analysis of HNPCC, and to test the power of a mathematical model proposed

by Wijnen and colleagues (1998b) in predicting the probability of finding a deleterious

MLH1 or MSH2 mutation in unselected colorectal cancer specimens

4. To evaluate the possible role of two novel DNA mismatch repair genes, MBD4 and

MLH3, in HNPCC and MSI-positive colorectal cancer
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4. MATERIALS AND METHODS

4.1. Colorectal carcinoma patients (I,III,IV,V)

Altogether 1044 unselected colorectal cancer patients were included in the study. Fresh-

frozen tumor tissue was obtained from the Finnish central hospitals in Helsinki, Joensuu,

Jyväskylä, Kajaani, Kotka, Kuopio, Lappeenranta, Mikkeli, and Savonlinna between May

1994 and June 1998. All tumor samples were histologically evaluated by a pathologist at the

Department of Pathology, University of Helsinki. The study protocol was approved by the

Ethics committee of the Department of Medical Genetics, University of Helsinki. Informed

consent was obtained from the patients. Either peripheral blood or fresh-frozen tissue of the

normal colonic epithelium was available in most cases. The specimens representing normal

mucosa were always derived from a separate site, not from tumor margins. Family history of

first-degree relatives (parents, siblings, and children) was obtained through official

population registries. On average, eight first-degree relatives per family were identified. Data

on patients and relatives were cross-linked with the Finnish Cancer Registry, as well as the

Finnish HNPCC registry to reveal possible connections to previously identified HNPCC

families.

4.2. Colorectal adenoma patients (II)

In all, 402 colorectal adenoma samples from 378 patients were obtained from nine central

hospitals in Eastern Finland between June 1994 and June 1998. The study protocol was

approved by the Ethics committee of the Department of Medical Genetics, University of

Helsinki. Informed consent was obtained from the patients. The number of adenomas

obtained from one individual varied from one to seven, but was typically one. Most (84%) of

the samples were obtained during colonoscopy and some (11%) during surgery (information

not available in 19 cases). All samples were evaluated by a pathologist at the respective

hospital. The patient data were cross-linked with the Finnish HNPCC registry data, as well as

the Finnish Cancer Registry data. The series was found to contain 11 patients from known

HNPCC-families. Seven families segregate characterized MLH1 mutations. Either peripheral

blood or fresh-frozen tissue from the normal colonic epithelium was available in most cases.
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4.3. Endometrial and pancreatic tumors, and cell lines (IV)

In all, 45 endometrial carcinoma samples (9 MSI-positive and 36 MSS), 46 pancreatic tumors

(5 MSI-positive and 41 MSS), 6 MSI-positive cell lines, and 8 MSS cell lines were included

in study IV in addition to 42 MSI-positive and 39 MSS colorectal carcinomas, previously

described in detail in section 4.1. Corresponding normal DNA was available from

endometrial and pancreatic cancer patients, as well as from colorectal carcinoma patients.

4.4. Cancer-free control individuals (I,II,V)

Blood samples from anonymous cancer-free individuals were obtained from the Finnish Red

Cross, Helsinki. These control individuals were used in studies I, II, and V to verify the

nature and population frequency of several sequence variants.

4.5. DNA and RNA extraction (I,II,III,IV,V)

DNA was extracted from fresh-frozen tissue and peripheral blood by a standard non-

enzymatic procedure (Lahiri & Nürnberger, 1991). In study II, a rapid method to lyse white

cells from 0.5 ml of whole blood (Higuchi, 1989) was used for anonymous blood donors.

Total cellular RNA was extracted from fresh-frozen tissue by RNA extraction kit (Qiagen

GmbH, Hilden, Germany).

4.6. Microsatellite instability (MSI) analysis (I,II)

In the series of 1044 unselected colorectal cancer patients, MSI analysis and subsequent

MLH1 and MSH2 mutation analysis had already been performed for 509 samples (Aaltonen

et al., 1998). In this study, MSI analysis was performed for 535 colorectal cancer samples and

for 402 colorectal adenoma samples utilizing mononucleotide markers BAT26 [(A)26] and

TGFβRII [(A)10]. The procedure is explained in detail in studies I and II. Briefly,

microsatellite markers were amplified from the tumor DNA utilizing fluorescently labeled
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primers, and PCR products were loaded on 6% polyacrylamide gels and run on an ABI

PRISM 377 DNA Sequencer (Perkin Elmer Applied Biosystems, Foster City, CA, USA). The

data were collected automatically and analyzed by GeneScan 3.1 software (Perkin Elmer).

The results were evaluated visually by two reviewers. All tumors showing aberrant patterns

were re-analyzed with the matching normal DNA to confirm the somatic origin of the

aberrant alleles. Patients whose tumors showed alleles that were not present in the

corresponding normal DNA were acknowledged as MSI-positive (MSI+).

4.7. Mutation analysis

4.7.1. HNPCC founder mutation analysis (I,II)

All 535 CRC patients and 378 adenoma patients were analyzed for the two most common

Finnish HNPCC founder mutations. MUTATION 1 is a 3.5-kb genomic deletion causing an

in-frame 165-bp deletion comprising MLH1 exon 16. It was analyzed by PCR, followed by

agarose gel electrophoresis (Nyström-Lahti et al., 1995). Three primers, (1) GAGCCTCCAA

TACAATGTTGAATAGAAG, (2) ACATATGTGACATCCTCTCCACTCG, and (3) GTCA

ATCAGAAGGGGTAATCCAATCAG, were used in a single amplification reaction. Primers

(1) and (2) amplify a fragment of 634 bp specific for the mutated allele (in the normal allele

the distance between these primers is about 4 kb, and therefore no product is obtained by

conventional PCR). Primers (2) and (3) amplify a 475-bp fragment specific for the normal

allele. PCR was carried out in a 50-µl volume containing 100 ng of genomic DNA, 1 x PCR

buffer (Finnzymes, Espoo, Finland), 200 µM of each dNTP (Finnzymes), 0.4 µM of each

primer, and 1 unit of Dynazyme polymerase (Finnzymes). The MgCl2 concentration was 1.5

mM. The following PCR cycles were used for amplification: 94° for 5 min, 35 cycles of 94°

for 1 min, 60° for 1 min, and 72° for 1 min. The final extension was 72° for 10 min. The PCR

products were run on a 1% agarose gel (NuSieve, FMC BioProducts, Rockland, Maine,

USA).

MUTATION 2 is a splice acceptor mutation in MLH1 (exon 6, G→A at 454 – 1) leading to

the deletion of exon 6, and causing frame-shift and a premature stop codon. It was analyzed

by allele-specific oligonucleotide hybridization (ASO) (Nyström-Lahti et al., 1995). The

primer sequences used were: (F): CTTTTGCCAGGACATCTTG and (R): ACAAATCTCA
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GAGACCCAC.  PCR was carried out in a 25-µl volume containing 100 ng of genomic DNA,

1 x PCR buffer (Perkin Elmer), 200 µM of each dNTP (Finnzymes), 0.4 µM of each primer,

and 1.5 units of AmpliTaq polymerase (Perkin Elmer). The MgCl2 concentration was 1.5

mM.  The following PCR cycles were used for amplification: 94° for 5 min, 35 cycles of 94°

for 1 min, 58° for 1 min, and 72° for 1 min. The final extension was 72° for 10 min. PCR

fragments were run on 2% agarose gel to verify the amplification, thus avoiding the need for

hybridization with the wild-type probe. PCR products from three individuals were pooled

together into the filter. A probe containing the mutant sequence (5´-CTTCTGTTCAAGTGG

AGGAC-3´) was labeled with γ-P32ATP utilizing T4-polynucleotide kinase (New England

BioLabs, Schwalbach, Germany). Filters were hybridized at +65°C with the mutant probe. If

a positive signal was obtained, the respective samples were rehybridized separately in a new

filter.

In addition, a rapid screening method was developed for the third most common Finnish

mutation, founder MUTATION 3 [MLH1 exon 4 missense type of change 320T→G

(Ile→Arg)], utilizing ASO. All 376 adenoma patients were analyzed for this founder

mutation. This mutation has been studied functionally and shown to be pathogenic

(Shimodaira et al., 1998).   The primers used were: (F): CAGATAACCTTTCCCTTTGGTG

and (R): TATGCACACTT TCCATCAGC, and the PCR-reactions were carried out in a 20-µl

reaction volume containing 100 ng of genomic DNA, 1 x PCR buffer (Perkin Elmer), 500

µM of each dNTP (Finnzymes), 0.7 µM of each primer, and 1 unit of AmpliTaqGOLD

polymerase (Perkin Elmer). The MgCl2 concentration was 2.75 mM. The following PCR

cycles were used for amplification: 95° for 10 min, 40 cycles of 95° for 1 min, 57° for 1 min,

and 72° for 1 min. Final extension was 72° for 10 min. PCR products were run on 2%

agarose (NuSieve) gel to verify the amplification, thus avoiding the need for hybridization

with a wild-type probe. PCR products from three individuals were pooled together into the

filter. Filters were hybridized at +62°C with a probe containing the mutant sequence (5'-CTT

TGGCCAGCAGAAGCCAT-3'). If a positive signal was obtained, the respective samples

were rehybridized separately in a new filter.

In study II, DNA derived from 2497 anonymous blood donors was analyzed by semi-

automated screening methods for mutation 1 and 2. The aim was to roughly estimate the

population frequency of these mutations. Details of this analysis are described in study II and

by Syvänen and colleagues (1992).
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4.7.2. Analysis of other MLH1 and MSH2 germline mutations (I, II)

If neither of the two founder mutations were found in MSI-positive CRC samples, or if none

of the three mutations were found in MSI-positive adenoma samples, a thorough MLH1 and

MSH2 mutation analysis was performed by direct genomic sequencing. Each exon as well as

the promoter region was amplified separately utilizing PCR amplification kits containing

primers, nucleotides, and buffer (Perkin Elmer, commercial kit, unpublished data), and

AmpliTaqGOLD polymerase (Perkin Elmer). Direct sequencing was performed utilizing the

ABI PRISM Dye Terminator or ABI PRISM dRhodamine cycle sequencing kits (Perkin

Elmer). Sequencing products were electrophoresed on 6% Long Ranger gels (FMC

BioProducts) and analyzed on an Applied Biosystems model 373A or 377 DNA sequencer

(Perkin Elmer).

4.7.3. Restriction enzyme analyses and ASO in evaluating sequence variants

(I)

Restriction enzyme digestion was used to screen cancer-free controls for sequence variants of

MLH1 and MSH2 in study I. The MLH1 exon 4, 378C→G (Tyr→Stop) nonsense change was

analyzed in 90 cancer-free individuals by MnlI (New England BioLabs) digestion. The

primers used were: (F): GGTGACCCAGCAGTGAGTTT and (R): TTACTCTGAGACCTA

GGCAAAAA. PCR reactions were carried out in a 20-µl reaction volume containing 50 ng

of genomic DNA, 1 x PCR buffer (Perkin Elmer), 300 µM of each dNTP (Finnzymes), 0.6

µM of each primer, and 1 unit of AmpliTaqGOLD polymerase (Perkin Elmer). The MgCl2

concentration was 2.1 mM. The following PCR cycles were used for amplification: 95° for

10 min, 40 cycles of 95° for 1 min, 58° for 1 min, and 72° for 1 min. Final extension was 72°

for 10 min. PCR products were run on 2% agarose (NuSieve) gel to verify amplification. The

digestions were performed in 1xNEBuffer (New England BioLabs) at +37°C overnight. After

digestion, the PCR products were run on 3% agarose gel. MnlI cuts the PCR fragment (196

bp), which contains the substitution, into two fragments of approximately equal size, whereas

the wild-type PCR fragment lacks the restriction site and is not digested.

A rapid screening method based on ASO was established to evaluate the occurrence of the

MSH2 exon 12, 1808G→A (Asp→Asn) missense change in 90 cancer-free individuals.

Details of this analysis are presented in study I.
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A missense change 965G→A (Gly→Asp) in MSH2 exon 6 has been reported both as a

pathogenic mutation and as a polymorphism (http://www.nfdht.nl/database/mdbchoice.htm).

The presence of this change was evaluated in 89 cancer-free individuals by HinfI (New

England BioLabs) digestion. Details of this analysis are presented in study I.

4.7.4. MBD4 mutation analysis (IV)

In study IV, somatic deletions and insertions in four [(A6)–(A10)] poly-A tracts residing in the

coding region of MBD4 were analyzed in 56 MSI tumors (42 colorectal carcinomas, nine

endometrial carcinomas, and five pancreatic tumors) by SSCP. The same repeats were

analyzed in 116 MSS tumors (39 colorectal, 36 endometrial, and 41 pancreatic tumors) as

well as in six MSI-positive cell lines and eight MSS cell lines. All aberrant samples were

cloned utilizing the pGEM®-T Easy Vector System (Promega, Madison, WI, USA) and

sequenced to study the mutations. The corresponding normal DNA was analyzed to confirm

the somatic origin of the changes. An (A)8 tract in PMS2 and (A)9 tracts in DNA helicase

genes BLM and RECQL were analyzed in all 56 MSI-positive tumors as controls for the

overall mutation rate.

Possible biallelic inactivation was studied in six colorectal carcinomas showing somatic

deletions of MBD4. For LOH analysis, MBD4 was first localized by FISH (fluorescent in situ

hybridization), as previously described (Fan et al., 1990), to chromosomal region 3q21-22,

and markers were identified in this region by screening the GeneMap database

(http://www.ncbi.nlm.nih.gov/genemap98/). LOH analysis was performed by radioactive

polyacrylamide gel electrophoresis (PAGE) utilizing 11 markers residing in this

chromosomal region.

4.7.5. MSH6 mutation analysis (unpublished data)

In study IV, five MSI-positive CRC patients, in which germline MLH1 and MSH2 mutations

had been excluded by direct sequencing, were found to have somatic MBD4 mutations. To

confirm the absence of germline HNPCC predisposition, mutations in MSH6 were scrutinized

by RT-PCR and direct sequencing. Fresh-frozen tissue was available in four cases. 20 µl of

cDNA was created from 0.8 µg of both normal and tumor RNA using standard random

priming methods with 200 units of M-MLV reverse transcriptase (Promega), 1 x reaction
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buffer (Promega), 10 µM of random hexamer and 60 units of RNAse inhibitor (Promega).

The reaction was carried out at 42°C for 45 min, and then 95°C for 10 min.

The gene was amplified in 13 overlapping fragments using primers designed by utilizing the

Primer3 server (http://www-genome.wi.mit.edu/cgi-bin/primer/primer3.cgi). The primer

sequences used were (F1): AGATGCGGTGCTTTTAGGAG, (R1): GTAAACCAGACAA

GGCCACC; (F2): ACCAGGAGATTTGGTTTGGG, (R2): CGTAAGTTGTGCCTACCTC

CA; (F3): GGCTTGAATTGGCAGTTTGT, (R3): AGGGCGTTTCCTTCCTAGAG; (F4):

ATGGTGACTGGAAATGGCTC, (R4): CCCCACCTTGTAACAGATGAC; (F5): ATGAG

GAAGTGGTGGCAGAT, (R5): TTACTGTAGTTCTCAGAGGGATCA; (F6): TGATAGA

GTGGTGAGGAGGGA, (R6): GAGCCGGGTATCAGACCTTC; (F7): TCTAAAGAGTTC

ATTGTCCTGTTCTC, (R7): AGCACCATTCGTTGATAGGC; (F8): ATATTCCCTTGGA

TTCTGACAC, (R8): GCTGTCTGGGTGGTTCTGAC; (F9): AAGACCTCATGGTTGTGC

CT, (R9): TTTCGAGCCTTTTCATGGTC; (F10): TCCTGAAGGTCGTTTTCCTG, (R10):

CTTCAATGATACATCCCTCCG; (F11): CCAAGAAGGGCTGTAAACGA, (R11): CATA

AGCGTAGACTTGCCCC; (F12): CTGTGAGGAAGAGGAGCAGG, (R12): CTAGGCGC

ACAGCAACATT; and (F13): GTCGTACATTATTTTCAACTCACTACC, (R13): TTGTC

AGAAGTCAACTCAAAGC.

The PCR reactions were carried out in a 50-µl volume containing 3 µl of cDNA, 1 x PCR

buffer (Perkin Elmer), 250 µM of each dNTP (Finnzymes), 0.8 µM of each primer, and 2.5

units of AmpliTaqGOLD polymerase (Perkin Elmer). The MgCl2 concentration was 1.5 mM

(2.5 mM for fragments 5 and 10). The following PCR cycles were used for amplification: 95°

for 10 min, 40 cycles of 95° for 45 s, 57° for 45 s (56° for 45 s for fragments 1 and 13), and

72° for 45 s. Final extension was 72° for 10 min.  PCR products were run on a 3% agarose

gel (NuSieve) to verify the specificity of the reaction. PCR products were purified using the

QIAquick PCR purification kit (Qiagen). Direct sequencing of the purified PCR products was

performed as previously described. Mutation analysis was performed on tumor cDNA, and

for all aberrant sequences, the corresponding normal cDNA was analyzed to unravel the

origin of the variants.
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4.7.6. MLH3 mutation analysis (V)

4.7.6.1. MLH3 germline mutation analysis

In study V, 46 MSI-positive and six MSI-negative colorectal cancer patients from the series

of 1044 unselected CRC patients were analyzed for germline MLH3 mutations by SSCP

analysis. The SSCP procedure and PCR conditions are described in detail in study V. In

short, MLH3 was amplified in 24 fragments including all coding regions and exon-intron

boundaries. Primers were designed utilizing the Primer3 server (http://www-

genome.wi.mit.edu/cgi-bin/primer/primer3.cgi). PCR fragments were denatured and run on

0.6 x MDE gel (FMC BioProducts) for 14-34 hours to separate the complementary strands.

MDE gels were silver-stained according to standard procedure. All aberrant bands were

sequenced. All sequence variants were screened in cancer free-individuals to determine their

nature.

4.7.6.2. MLH3 somatic mutation analysis

Ninety-three MSI-positive colorectal cancer patients from the series of 1044 unselected CRC

patients were analyzed for somatic mutations in the eight poly-A repeats [(A6)–(A9)] in the

coding region of MLH3 by radioactive PAGE analysis. Primers for short PCR fragments (100

bp or less) were designed utilizing the Primer3 server (http://www-genome.wi.mit.edu/cgi-

bin/primer/primer3.cgi) to maximize the separation on polyacrylamide gel. Details of the

PAGE-analysis as well as the PCR conditions are described in study V. In short, 10 µl of

radioactive PCR product was mixed with 7 µl of loading buffer, and run on 6%

polyacrylamide gels with a constant power of 80 watts. After electrophoresis, the gels were

dried and exposed to Kodak Scientific Imaging films (Eastman Kodak Company, Rochester,

NY, USA). All aberrant PAGE bands were sequenced, and in all aberrant cases the

corresponding normal DNA was analyzed to confirm the somatic nature of the mutation.

To estimate the background poly-A mutation rate, the same 93 tumor samples were analyzed

for somatic deletions and insertions in (A)8 and (A)9 repeats in the intron of OBR-gene by

radioactive PAGE analysis. The following primers were used: (A8F): CAATTATTTTCCAC

CAACAGACC, (A8R): AAAATCTTTCTGTTGCCACATTC, (A9F): TGTATGCAGATTG

ATGCAGATTT, and (A9R): TTTTCAATACCACTGTAAACAGGAA. PCR reactions were

carried out in a 10-µl volume containing 50 ng of genomic DNA, 1 x PCR buffer (Perkin

Elmer), dCTP at 20 µM, 500 µM each of dATP, dGTP, and dTTP (Amersham Pharmacia
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Biotech, Piscataway, NJ), 1 µM of each primer, and 1 unit of AmpliTaqGOLD polymerase

(Perkin Elmer). The MgCl2 concentration was 4 mM for the (A)8 repeat and 11.5 mM for the

(A)9 repeat. The following PCR cycles were used for amplification: 95° for 10 min, 38 cycles

of 95° for 45 s, 57° for 45 s [(A)8] or 61° for 45 s [(A)9], and 72° for 45 s. Final extension

was 72° for 10 min.

4.8. Evaluation of selection criteria for the molecular analysis (I)

Selection criteria for the molecular diagnosis of HNPCC have recently been proposed

(Aaltonen et al., 1998). These simple criteria include: (1) age of onset of CRC less than 50

years, or (2) synchronous or metachronous CRC or endometrial cancer, or (3) at least one

first-degree relative with CRC or endometrial cancer. We prospectively evaluated these

criteria in a series of 535 unselected colorectal cancer patients.

4.9. Mathematical analysis (III)

Wijnen and colleagues (1998b) proposed an algorithm to be used for predicting the

probability of finding a deleterious germline MLH1 or MSH2 mutation in patients with

HNPCC or an HNPCC-like condition. Details of this mathematical analysis are described in

chapter 2.7.1 and in study III. We prospectively tested this algorithm in our series of 509

unselected CRC patients, including 10 mutation-positive patients, to find out whether it could

be used for screening for HNPCC. An error was made in the formula used in the original

publication of study III presenting data on 509 patients. The error was corrected with results

on an additional 535 patients, yielding results on a total of 1044 CRC patients, including 28

mutation-positive patients. Pedigrees comprising first-degree relatives (on average, 8 family

members identified) were available for all patients, and extended pedigrees (on average, 38

family members identified) were available on all MLH1 or MSH2 germline mutation-positive

patients.
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4.10. Gene expression studies (unpublished data)

MLH1 expression was analyzed in four MSI-positive colorectal tumors, in which no germline

MLH1or MSH2 mutation had been detected, by RT-PCR. A colon cDNA library (Clontech,

Palo Alto, CA, USA) was used as a control template. The following primers were used to

amplify 236 base pairs of the 5’-end of MLH1: (F): AGATCCAAGACAATGGCACC and

(R): AGGGGCTTTCAGTTTTCCAT, and as a control for amplification strength, 446 base

pairs of the 3’-end of MSH6: (F): CTGTGAGGAAGAGGAGCAGG and (R): CTAGGCGC

ACAGCAACATT. PCR reactions were carried out in a 50-µl volume containing 5 µl of

cDNA, 1 x PCR buffer (Perkin Elmer), 200 µM of each dNTP (Finnzymes), 0.4 µM of each

of the four primers, and 2.5 units of AmpliTaqGOLD polymerase (Perkin Elmer). The MgCl2

concentration was 1.5 mM. The following PCR cycles were used for amplification: 95° for

10 min, 40 cycles of 95° for 1 min, 57° for 1 min, and 72° for 1 min. The final extension was

72° for 10 min. The PCR products were run on a 3% agarose gel, and the PCR bands

representing both genes were compared with the colon library cDNA. In addition, MLH1 and

MSH2 expression was scrutinized in tumor sections by immunohistochemistry.
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5. RESULTS

5.1. MSI analysis (I,II)

Of the 535 unselected colorectal cancer patients, 66 (12%) had an MSI-positive tumor. All

showed deletions in BAT26, and 58 of these 66 (88%) also showed TGF-βRII deletions. Of

the 378 adenoma patients, 6 (1.6%) showed MSI. One patient had two independent MSI-

positive adenomas. All seven MSI-positive adenomas displayed instability at the BAT26

locus, and three displayed TGF-βRII poly-A deletions. BAT26 and TGF-βRII results of an

MSI-positive CRC patient are illustrated in Figure 4.

Figure 4. MSI analysis of an MSI-positive patient utilizing BAT26 and TGF-βRII
mononucleotide markers. The length of the PCR product is indicated in base pairs, and the
intensity of the amplification is indicated on the right. MSI is detected as novel alleles in the
tumor DNA that are absent in the normal DNA.
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5.2. MLH1 and MSH2 mutation analysis (I,II)

Among 535 colorectal cancer patients, 18 (3.4%) had an MLH1 or MSH2 mutation. Nine

patients had founder mutation 1, and four had mutation 2. Three patients were found to have

founder mutation 3 [MLH1 exon 4, 320T→G (Ile→Arg)]. In addition, two novel mutations

were found: MLH1 exon 4, 378C→G (Tyr→Stop) and MSH2 exon 12, 1808G→A

(Asp→Asn). These novel variants were not present in the 90 cancer-free individuals. All

mutations occurred in MSI-positive patients. None of the MSI-negative patients had

mutation 1 or mutation 2. A previously described sequence variant of unclear nature [MSH2

exon 6, 965G→A (Gly→Asp)] was confirmed as a polymorphism.

Among 378 adenoma patients, five (1.3%) had an MLH1 mutation. Two patients had founder

mutation 1, one patient had founder mutation 2, and one patient had mutation 3. In addition, a

previously described (Nyström-Lahti et al., 1996) MLH1 exon 17 nonsense mutation

1975C→T (Arg→Stop) was detected in one patient. No MSH2 mutations were found. All

mutations occurred in MSI-positive patients and none of the MSI-negative patients had

mutation 1, mutation 2, or mutation 3.

None of the 2497 anonymous blood donors had mutation 1 or 2. The carrier frequency of

these mutations in the cancer-free population appears to be low, perhaps less than 1/2500 or

0.0004 in the geographic area of highest HNPCC incidence in Finland.

5.3. Evaluation of selection criteria for molecular diagnosis (I)

Evaluation of the newly proposed selection criteria for molecular diagnosis (Aaltonen et al.,

1998) in a series of 535 unselected colorectal cancer patients confirmed the practicality of

these criteria. In all, 117 of 535 patients fulfilled at least one of the criteria, 34 of these

criteria-positive patients were MSI-positive, and notably 17 of the 34 (50%) had a germline

MLH1 or MSH2 mutation. Altogether, 17 of 18 (94%) mutation-positive patients had at least

one of these features; five were less than 50 years old, seven had a previous or synchronous

colorectal or endometrial cancer, and 15 had at least one first-degree relative with colorectal

or endometrial cancer.
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5.4. Mathematical analysis (III)

The series of 1044 unselected CRC patients contained 28 MLH1 or MSH2 mutation-positive

individuals. Using the algorithm of Wijnen and colleagues (1998b), 18% (basic formula) and

46% (alternative formula) of the mutation-positive individuals had a probability of 20 % or

higher to be mutation-positive when first-degree pedigrees were utilized. The respective

probabilities were 64% and 75% when extended family history was taken into account. In

addition, these formulae yielded a probability of 20% or higher for 11 patients in whom no

MLH1 or MSH2 mutations were detected.

5.5. MBD4 mutation analysis (IV)

Fourteen of 56 (25%) MSI-positive tumors were found to have somatic deletions in the poly-

A tracts in the coding region of MBD4. The observed frequencies were 26.2%, 22.2%, and

20.0% in colorectal, endometrial, and pancreatic tumors, respectively. Deletions were seen

both in CRC patients with MLH1 germline mutation as well as in sporadic cases. Thirteen

deletions occurred in the (A)10 tract, and one deletion was observed in the (A)6 tract. One

colorectal tumor had somatic deletions in both alleles in the (A)10 repeat; a 1-bp deletion in

one and a 2-bp deletion in the other allele. In addition, a somatic MBD4 deletion was detected

in one of six MSI-positive cell lines. The control repeat (A)8 tract of the PMS2 gene showed

no deletions, and the (A)9 tracts of the BLM and RECQL genes showed only 2 (3.6%)

deletions. None of the 116 MSS colorectal cancers had a MBD4 mutation, and neither did any

of the eight MSS cell lines. LOH, as evidence of biallelic inactivation, was detected in four of

six colorectal tumors.

5.6. MSH6 mutation analysis (unpublished data)

No germline MSH6 mutations were found in the four sporadic MSI-positive colorectal cancer

samples. One of four samples had a somatic 1-bp deletion in the (G)8 of the MSH6 coding

region.  Another sample had a somatic 1980T→C (Leu→Pro) change.
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5.7. MLH1 expression studies (unpublished data)

All four tumor-RNAs studied showed MLH1 expression when scrutinized by RT-PCR

analysis. Expression was slightly decreased in one tumor. The 446-bp MSH6 fragment

amplified in the same reaction as a control for amplification strength showed strong MSH6

expression in all tumors but the one showing a somatic 1-bp deletion in mutation studies. In

that sample, MSH6 expression was decreased. Immunohistochemistry revealed loss of

expression of MLH1 in three cases and loss of expression of MSH2 in one case. Expression of

MLH1 was also absent in that one sporadic sample for which no fresh-frozen tissue was

available.

5.8. MLH3 mutation analysis (V)

No MLH3 germline mutations were found among the 52 CRC patients included in SSCP

analysis. Several sequence variants were detected. In exon 1, a missense type of change

1258G→A (Val→Ile) (allele frequency 2.9%) was discovered. The same change was seen in

3 of 56 cancer-free controls (allele frequency 2.7%), confirming its benign nature. In exon 11,

a silent change 4377G→A (Gln→Gln) was detected in 28 patients in heterozygous form and

in 10 patients in homozygous form, giving an allele frequency of 46%. The same change was

seen in 30 of 57 and in 13 of 57 cancer-free controls in heterozygous and homozygous forms,

respectively (allele frequency 49%). In addition to these exonic variants, two intronic

polymorphisms were detected.

A 1234A→G (Lys→Glu) change was seen in 1 of 13 tumor samples in exon 1 (allele

frequency 3.8%). The change was present both in the tumor as well as in the normal DNA of

the patient. The same change was seen in 2 of 92 (allele frequency 1.1%) cancer-free

controls. The fact that the patient showing this change has a germline MLH1 mutation favors

the benign nature of the change.

Mutation analysis of poly-A repeats in the coding region of MLH3 revealed somatic deletions

in 8 of 93 (8.3%) MSI-positive CRC patients. Seven patients showed a 1 bp deletion in the

(A)9 tract in exon 1 (starting at nucleotide 1861 in mRNA). One patient showed a deletion of
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1-bp in the (A)8 tract in exon 1 (starting at nucleotide 2128). Deletions of 1 bp in these poly-

A tracts cause frameshifts and predicted premature stops at codons 609 and 679, respectively.

None of these mutations were present in the corresponding normal DNA.

Somatic deletions in the intronic OBR (A)8 and (A)9 repeats were seen in 3 of 93 (3.2%), and

in 3 of 93 (3.2%) tumors, respectively. None of these mutations were present in the

corresponding normal DNA.
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6. DISCUSSION

6.1. MSI analysis (I, II)

MSI analysis is a sensitive method for prescreening for HNPCC with 85-95% of HNPCC

patients showing MSI (Aaltonen et al., 1993, 1994; Pedroni et al., 1999). The major

drawback is, however, its low specificity, since 10-15% of sporadic colorectal tumors also

show MSI (Aaltonen et al., 1993, 1994; Ionov et al., 1993; Pedroni et al., 1999). The

frequency of MSI in HNPCC patients and sporadic cases in study I was 100% (18/18) and

9.3% (48/517), respectively, consistent with previous findings.

Of 535 unselected colorectal cancer patients, 66 (12%) had an MSI-positive tumor. MSI

detected in colorectal carcinomas predicted germline mutations in MLH1 or MSH2 with a

moderate specificity, as 18 of 66 (27%) MSI-positive CRC patients were mutation-positive.

The sensitivity of MSI analysis, however, seems to be very high since no founder mutations

were found among the 469 MSI-negative patients. MSI-negative patients were excluded from

thorough mutation analysis. If some of them did in fact carry a germline defect in some

cancer-predisposing gene, it most likely would be another, perhaps yet unknown gene,

judging from the absence of the mutator phenotype associated with MLH1 and MSH2

mutations. In 97% of the tumor specimens used for DNA extraction, the proportion of tumor

cells was more than 50%, which is generally sufficient for detection of novel alleles in the

tumor.

We confirm the reliable use of BAT26 in MSI analysis, even without the matching normal

DNA. However, in studies I and II, the analysis was repeated with the matching normal DNA

for all tumor samples showing aberrant alleles to confirm the somatic origin of the changes.

In a separate study utilizing both tumor and normal DNA of approximately 500 Finnish CRC

patients, we did not encounter a single case of germline polymorphism (unpublished data), in

agreement with previous findings (Hoang et al., 1997). Nevertheless, the possibility of

germline polymorphisms should be considered, especially when studying individuals of

African origin (Pyatt et al., 1999; Samowitz et al., 1999), as germline polymorphisms appear

relatively frequently (7.7-12.6%) among the African-American population (Pyatt et al., 1999;

Samowitz et al., 1999).
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Relying on BAT26 alone in MSI analysis has prompted the question of possible loss of

sensitivity and specificity. The proposed panel of five microsatellite markers (Boland et al.,

1998) aims at dividing tumors into categories of MSI-H, MSI-L, and MSS, of which only

MSI-H tumors are considered as major candidates for HNPCC. When relying on one marker,

distinguishing between MSI-H and MSI-L is impossible. Our results, based on a study of 500

tumors utilizing the recommended panel, suggest that BAT26 alone identifies over 95% of

MSI-H tumors (unpublished data), and may only fail to identify a subset of MSI-L tumors.

As mentioned above, the involvement of MLH1 or MSH2 in MSI-L cases is most unlikely.

Using non-colonic tumors for MSI testing could be an option in cases where colorectal

adenomas or carcinomas are unavailable. When considering screening for MSI, the issues of

sensitivity and specificity need to be acknowledged. It seems that a high percentage of

HNPCC patients’ extracolonic tumors show MSI (Aarnio et al., 1997; Ichikawa et al., 1999),

but so do a considerable proportion of the sporadic tumors, e.g., endometrial (Risinger et al.,

1993; Burks et al., 1994; Duggan et al., 1994), gastric (Han et al., 1993; Yamamoto et al.,

1997), and ovarian cancers (Orth et al., 1994), and renal cell carcinoma (Uchida et al., 1994).

In sporadic endometrial and gastric cancers, as in sporadic CRC, MLH1 and MSH2 mutations

are infrequent (Kobayashi et al., 1996; Lim et al., 1996; Keller et al., 1996; Wu et al., 1997),

and the reason for MSI is hypermethylation of the MLH1 promoter region (Simpkins et al.,

1999; Leung et al., 1999). Large, population-based studies are needed to evaluate the

feasibility of MSI analysis of extracolonic tumors in screening for HNPCC.

6.2. Germline mutation analysis (I, II, V)

The three founder mutations in MLH1 accounted for 89% (16/18) of mutations found in a

series of 535 unselected colorectal cancer patients. Such a strong founder effect has some

practical advantages since it makes predictive testing feasible. Simple PCR-based tests have

been developed for each founder mutation (Nyström-Lahti et al., 1995; study II), enabling

asymptomatic mutation carriers to be distinguished from non-carriers, and careful

surveillance aimed at detecting tumors for early removal can be offered to the former group.

At the same time, non-carriers can be released from systematic screening procedures and also

be relieved of an excessive fear of cancer. When dealing with gene testing, the ethical
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questions should always be taken into consideration. Proper genetic counseling must be a

prerequisite for all further procedures.

The sensitivity of the mutation screening method has a definite impact on the accuracy of

mutation detection. Direct genomic sequencing, including exons and exon-intron boundaries,

seems to be one of the most sensitive methods, although it has its drawbacks. Large genomic

deletions, which may account for up to 10% of MSH2 mutations (Wijnen et al., 1998a),

cannot be detected by this method. We must thus acknowledge the possibility of having

missed a few mutations.

No germline MLH3 mutations were found in 46 MSI-positive and six MSI-negative

colorectal cancer patients, excluding its frequent role as a gene predisposing to HNPCC.

Again, the sensitivity of the mutation detection method, in this case SSCP, should be taken

into consideration. SSCP analysis is estimated to have a sensitivity of 70-95% (Castellvi-Bel

et al., 1999; Moore et al., 2000), strongly depending on conditions used. Multiple conditions

with variable temperatures and ionic concentrations are suggested for optimal sensitivity.

When followed by sequencing of all aberrant bands, SSCP analysis should be adequate for

detecting mutations. It is an effective and reasonably inexpensive method. However, we

cannot overrule the possibility of a lack of sensitivity, and it is indeed possible that we missed

some mutations. Despite our negative results, it is plausible that MLH3 is involved in

HNPCC on rare occasions, similar to PMS1, PMS2, and TGFβRII. Furthermore, the patient

panel used in this study can perhaps be criticized. Of the 46 MSI-positive patients, 43 had at

least one additional first- or second-degree relative with cancer (in 32 cases an HNPCC-

associated cancer, and in 11 cases some non-HNPCC cancer), and three patients were

selected based on young age (mean 40 years). The germline role of MLH3 in HNPCC

perhaps needs to be further evaluated in a larger panel of samples with strong features of

HNPCC.

MSI-negative patients were included in MLH3 mutation analysis for two reasons. First, the

connection between MLH3 and microsatellite instability is not yet well established. Second,

MLH3 resides in the chromosomal region 14q24.3, and 14q deletions have previously been

shown in the tumors of these six patients by comparative genomic hybridization (CGH)

(unpublished data). Although 14q deletions are associated with 17.8% of sporadic colon
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cancers (Vogelstein et al., 1989), until now potential cancer genes have not been identified in

this region.

6.3. Frequency of HNPCC (I)

HNPCC is one of the most common hereditary cancer syndromes identified to date. The

estimated incidence has ranged from 2% in Finland (Aaltonen et al., 1998) to 13% in the

United Kingdom (Houlston et al., 1992). Frequencies of less than 5% have been found in

Italy (Ponz de Leon et al., 1993), Northern Ireland (Kee & Collins, 1991), and England

(Stephenson et al., 1991). Differences in the frequencies in part reflect difficulties in

diagnosis, and can be explained by several reasons. One major reason is that only a few

studies are based on the frequency of MMR gene mutations throughout the general

population. Some studies may suffer from overestimation due to familial clustering of

phenocopies, or underestimation due to variable phenotypic expression of deleterious

mutations. In addition, interactions between the genotype and environmental factors may

cause regional differences (Modica et al., 1995).

Combining the results obtained from 535 colorectal cancer patients in study I and a previous

study including 509 similar Finnish patients (Aaltonen et al., 1998), we ended up with 1044

unselected colorectal cancer patients, 28 (2.7%) of which had a germline MLH1 or MSH2

mutation. Thus, the proportion of HNPCC in Finnish colorectal patients seems to be close to

3%. There are, however, several possible reasons for overestimation, or conversely,

underestimation of the frequency. The most obvious reasons for overestimation, i.e., bias in

favor of young patients, or of proximal tumors, both of which are characteristic of HNPCC,

can mostly be overruled by the design of the study calling for accrual of every tumor,

whenever possible. However, it is plausible that the existence of founder mutations in Finland

increased the overall HNPCC incidence. By excluding the three most common Finnish

founder mutations, we end up with only 5 of 1044 (0.5%) mutation-positive patients.

It is reasonable to suggest that 2.7% is an underestimate of HNPCC in the population we

studied. MSI can show false negative results either for technical reasons or because the

specimen contains an inadequate amount of tumor DNA. The sensitivity of direct genomic

sequencing in detecting heterozygous mutations is difficult to evaluate, but it is certainly not
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100% (Liu et al., 1995a). Moreover, large deletions that are undetectable by most methods

(except Southern hybridization) exist in MSH2, and could account for up to 10% of all

mutations (Wijnen et al., 1998a). Underestimation can also be due to only CRC patients

being screened. If patients with endometrial cancer or other common HNPCC-associated

cancers had been screened in the same population at the same time, some additional HNPCC

cases would probably have been detected. In addition, the involvement of genes other than

MLH1 and MSH2, such as MSH6 (Akiyama et al., 1997b; Miyaki et al., 1997; Verma et al.,

1999), needs to be taken into consideration.

 6.4. Adenomas in HNPCC patients (II)

HNPCC tumors are likely to arise within adenomas. However, the role of adenomas in the

process leading to HNPCC cancer is less clear than in familial adenomatous polyposis (FAP)

(Jass, 1989; Lynch et al., 1995; Tsao et al., 1999). Furthermore, in contrast to FAP, where

hundreds of polyps appear in the GI tract (Bussey, 1975), HNPCC patients typically develop

only one or a few lesions.

In a series of 378 adenoma patients, we found six (1.6%) MSI-positive patients identified by

BAT26 deletions. Of MSI-positive lesions, three of seven (43%) carried somatic truncating

mutations of the TGF-βRII gene. These mutations have also previously been found in

adenomas from individuals with HNPCC (Akiyama et al., 1997a), which suggests that TGF-

βRII inactivation is an early event in HNPCC colon neoplasia. MSI detected in adenomas

predicted germline mutations in MLH1 or MSH2 with a high specificity, as five of six (83%)

MSI-positive adenoma patients were mutation-positive. The one patient with MSI-positive

adenoma who had no association with an HNPCC kindred, and in whom no MLH1 or MSH2

mutations were detected, was a 66-year-old female. The pedigree of the patient was extended,

and data on the relatives was linked to the Finnish Cancer Registry. No cancer had been

reported for the patient’s brother (aged 69 years) or four children (aged 37 to 40 years). Thus,

strong features of HNPCC were not revealed.

The aim of the study was to evaluate MSI analysis in prescreening unselected colorectal

adenoma patients for HNPCC. However, during genealogical studies, the series of 378
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patients was found to contain 11 patients from known HNPCC families, and in seven of 11

families, the mutation segregating in the family was known. Therefore, the series used was

not entirely unselected.

The frequency of MSI in adenomas derived from patients with a germline MMR-mutation

was 100% (6/6), whereas the frequency in sporadic adenomas was 0.3% (1/396). This is in

accordance with previous reports (Aaltonen et al., 1993, 1994; Young et al., 1993; Samowitz

et al., 1999). The small number of mutation-positive individuals prevents the formation of

definitive conclusions. Nevertheless, MSI in adenomas appears to be a specific marker for

HNPCC. As MSI is very rare in sporadic adenomas, routine screening of such lesions for

MSI may not be feasible. However, MSI analysis of adenomas is likely to be useful in cases

with features of hereditary predisposition. This aspect is clearly illustrated in study II, in

which two adenoma patients were members of known HNPCC families, but had MSI-

negative adenomas and were shown not to carry the mutation segregating in the family. The

case for utilizing MSI analysis in adenomas is even stronger in colon cancer families with

MSI-positive tumors and unidentified mutations. Adenomas are common in the general

population, but the detection of an adenoma in colonoscopic screening frequently causes

uncertainty and confusion. MSI analysis adds an important parameter to be considered in the

interpretation of the patient's cancer risk.

6.5. Target genes for MSI (IV, V)

Mismatch repair-deficient cells acquire somatic deletions and insertions in simple repeated

sequences throughout the genome (Perucho, 1996). Several genes involved in tumorigenesis

harbor mononucleotide repeats in their coding regions and are thus attractive targets for

somatic mutations.

Deletions and insertions of a couple of base pairs cause frameshifts and premature stop

codons, and are likely to abolish the function of the gene. MMR-genes MSH3 and MSH6

frequently show somatic deletions in MSI-positive tumors (Malkhosyan et al., 1996;

Akiyama et al., 1997c). Both genes have confirmed roles in human mismatch repair and

appear to be selected targets for secondary hits. Accumulation of somatic mutations in
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mismatch repair genes, such as MSH3 and MSH6, is believed to further increase genetic

instability (Malkhosyan et al., 1996).

Accumulation of somatic mutations in proto-oncogenes and tumor suppressor genes is the

cause of cancer in HNPCC patients, as well as in all cancer patients. The increased mutation

rate leads to accelerated progression, manifesting in early onset of cancer. Somatic mutations

in the poly-A tract in the coding region of TGF-β RII are almost invariably detected in

mismatch repair-deficient colorectal tumors (Lu et al., 1995; Markowitz et al., 1995; Parsons

et al., 1995; Akiyama et al., 1997a). Truncating mutations in this receptor lead to resistance to

inhibitory signals and thus promote cell proliferation.

The recently cloned DNA mismatch repair gene MBD4 (MED1) (Bellacosa et al., 1999) does

not have a confirmed role in mismatch repair. However, an association between MBD4 and

human mismatch repair has been proposed based on functional homology to bacterial MutH

genes. To study whether MBD4 is involved in MSI-positive colorectal tumorigenesis, we

performed somatic mutation analysis of MBD4 on 52 MSI-positive tumors. In its coding

region MBD4 harbors four potentially hypermutable tracts: one (A)10 tract and three (A)6

tracts. Somatic deletions in MBD4 were detected in 25% of MSI-positive tumors. The lack of

frequent deletions in similar control repeats implicates the involvement of MBD4 as a

selected target for MSI. Taken together with a recent study in which MBD4 somatic deletions

were found in 40% of MSI-positive tumors (Bader et al., 1999), the somatic role of MBD4 in

MSI-positive tumorigenesis is confirmed. Further studies are needed to evaluate its possible

role as a gene predisposing to HNPCC.

MBD4 mutations were found both in sporadic tumors as well as in HNPCC tumors. MLH1

and MSH2 mutations had previously been excluded in the sporadic cases, and to further

confirm the sporadic nature of these tumors, MSH6 mutation analysis was performed. The

limited sensitivity of the mutation detection method used, namely RT-PCR, should be noted.

Mutant alleles may differ in their relative expression level, or may have lower stability and

are thus often underrepresented. Furthermore, RT-PCR fails to detect splice-site mutations as

such, although the result of a splice-site mutation is typically visualized as a shorter PCR

product. Thus, it is plausible that we missed some MSH6 mutations.
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Similarly, the role of the recently cloned MLH3 gene (Lipkin et al., 2000) in mismatch repair

is still obscure. An association between MLH3 and DNA mismatch repair can be proposed

based on its homology to bacterial MutL genes and since overexpressed dominant negative

MLH3 induces MSI in mammalian cell culture. To study the possible involvement of MLH3

in HNPCC and MSI-positive colorectal cancer, we performed germline mutation analysis on

46 MSI-positive and six MSI-negative colorectal cancer patients, with negative results, and

somatic mutation analysis on 93 MSI-positive colorectal tumors. MLH3 harbors eight poly-A

tracts in its coding region: six discrete (A)6 repeats, one (A)8 repeat, and one (A)9 repeat.

Despite the abundant targets for MSI, the frequency of somatic deletions detected in MLH3

(8.6%) did not significantly differ (p>0.05) from the frequency of deletions detected in

similar repeats in the non-coding region (6.5%). Thus, it seems that MLH3 is not a selected

target for MSI, but only accumulates mutations at a more or less equivalent rate to any

sequence in the genome with similar nucleotide composition. Possible explanations for the

lack of selection for MLH3 somatic mutations include the possibility that MLH3 does not

have a prominent role in human mismatch repair, and thus inactivating mutations do not

contribute to tumor formation. Alternatively, redundant functions of MLH3 and PMS2 may

prohibit the manifestation of MLH3 deficiency.

Exonic repeats have typically been used as controls for the background mutation rate. The

problem in this approach is the difficulty in estimating the possible selective advantage cells

with mutations in these repeats may have. In addition, mutations in some essential genes are

not compatible with survival and thus their observed frequency is an underestimate. Our

analysis of the intronic repeats gives valuable information on the background mutation rate in

MSI-positive tumors. Since these intronic mutations most likely have no impact on tumor

development, they are not selected for or against. The observed mutation frequencies were

3.2% in (A)9 and 3.2% in (A)8  repeats. These frequencies can be used as controls in future

studies on possible target genes for MSI. Importantly, it is not known whether the

background mutation frequencies in different repeats, i.e., (A)n vs. (G)n, are different, and

thus the mutation frequencies observed in a given gene should be compared with the

background mutation rate of a similar repeat.

In order to give perspective to the present findings, some target genes in MSI-positive

colorectal tumorigenesis are presented in Table 5. More target genes apparently exist and will
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likely be revealed in further studies concentrating on genes harboring potentially

hypermutable tracts in their coding regions.

Gene           Function                             Repeat             Frequency      Reference                      

MSH6 MMR-gene (C)8 30% Malkhosyan et al., 1996
MSH3 MMR-gene (A)8 39-58% Malkhosyan et al., 1996;

Akiyama et a., 1997c 
BAX promotes apoptosis (G)8 51% Rampino et al., 1997
IGFIIR growth factor receptor (G)8 6-13% Souza et al., 1996

Ouyang et al., 1997

TGF-βRII growth factor receptor (A)10 88-90% Parsons et al., 1995; Study I
TCF-4 TF a involved in the APC/ (A)9 34% Duval et al., 1999

β-cathenin pathway
CHK1 G2 checkpoint kinase (A)9 10% Bertoni et al., 1999
RIZ RB-interacting zinc finger (A)9, (A)8 37.5% Chadwick et al., 2000

protein
MBD4 MMR-gene (?) (A)10, (A)6 26.2-40% Bader et al., 1999; Study IV
MLH3 MMR-gene (?) (A)9, (A)8 8.6% Study V
Intron b not known (A)9, (A)8 6.5% Study V

                                                                                                                                                           

Table 5. Frequencies of somatic deletions/insertions in intragenic repeats of several genes in
MSI-positive colorectal tumors.  a transcription factor, b intron of the leptin receptor gene
OBR.

6.6. Diagnosis of HNPCC (I, II, III)

Characteristic features of HNPCC include frequent synchronous and metachronous tumors as

well as an early age of onset (Mecklin & Järvinen, 1986; Vasen et al., 1990; Farrington et al.,

1996). Affected individuals are estimated to have a 40% risk for a second colorectal cancer

over the next 10 years. Accordingly HNPCC patients need regular surveillance. These facts

alone are sufficient to indicate the urgent need for reliable diagnosis of this disease.

Identification of HNPCC patients enables prevention of colorectal cancer by means of

colonoscopy and polypectomies. Regular colonoscopy is a powerful tool for the detection of

premalignant adenomas and early carcinomas, resulting in improved survival (Vasen et al.,

1995, 1998). Colonoscopic screenings at 3-year intervals have been found to decrease the risk

for CRC by 50-60%, and prevent cancer deaths in HNPCC patients (Järvinen et al., 2000).

Prophylactic subtotal colectomy can be offered as an alternative to lifetime colonoscopic
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surveillance for mutation-positive individuals. Unfortunately, the prevention of other

HNPCC-associated malignancies is not as straightforward due to the lack of appropriate

screening methods.

The means for prevention of colorectal cancer exist. One of the major problems at the

moment lies in the difficulties in diagnosing. Traditionally, the diagnosis of HNPCC has been

based on a family history of cancer. The so-called Amsterdam criteria were established in an

attempt to standardize the diagnosis (Vasen et al., 1991, 1999).  These criteria have high

specificity, since a considerable proportion of criteria positive patients are found to have a

germline MMR-mutation (Nyström-Lahti et al., 1996; Wijnen et al., 1997, 1998b), but are

often regarded as overly stringent. By utilizing these criteria, a large proportion of HNPCC

patients will be missed, especially if only first-degree pedigrees are available (Rodriguez-

Bigas et al., 1997). In a combined series (Aaltonen et al., 1998; study I) of 1044 CRC patients

including 28 MMR germline mutation-positive patients, only 3 of 28 (11%) fulfilled these

criteria (I) when pedigrees of an average of 8 family members were available. After

extending the pedigrees to include an average of 38 family members, 16 of 28 (57%) patients

fulfilled the criteria. The low sensitivity of these criteria impedes their use in diagnosis.

In an attempt to improve the diagnosis based on family history, a mathematical algorithm

based on 184 Dutch HNPCC kindreds was introduced (Wijnen et al., 1998b). This algorithm

is based on simple variables (mean age of CRC diagnosis in the family, fulfillment of

Amsterdam criteria, and presence of endometrial cancer in the family) and can be easily used

to calculate the probability of finding a deleterious MLH1 or MSH2 mutation. In addition, an

alternative algorithm to be used in small families was also proposed. A probability of 20% or

higher was proposed to justify mutation analyses (Wijnen et al., 1998b). We prospectively

evaluated the power of this algorithm in screening patients for HNPCC in our series of 1044

unselected colorectal cancer patients including 28 mutation-positive patients. When first-

degree pedigrees were utilized, 18% (basic formula) and 46% (alternative formula) of the

mutation-positive individuals had a probability of 20% or higher. The respective probabilities

were 64% and 75% when extensive family history was considered. In addition, these

formulae yielded a probability of 20% or higher for 11 patients in whom no MLH1 or MSH2

mutations were detected. Extensive pedigree data are difficult to obtain in clinical practice. In

contrast, first-degree pedigrees are generally easily obtained during patient interview. We

must conclude that this algorithm cannot be used for screening for HNPCC due to its low
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sensitivity. However, it most likely has some utility in evaluating the probability of HNPCC

in individual situations.

MSI analysis has been successfully used for pre-diagnosing colorectal cancer patients for

HNPCC. Its major drawback is low specificity since the MSI-phenomenon is not inclusive

for HNPCC. As neither family criteria nor MSI-analysis alone are adequate for diagnosis,

perhaps these two could be consolidated. To test this, selection criteria for the molecular

diagnosis of HNPCC were retrospectively established on the basis of 509 colorectal cancer

patients including 10 mutation-positive patients (Aaltonen et al., 1998). These criteria include

(1) age of onset of CRC less than 50 years, or (2) a previous or synchronous CRC or

endometrial cancer, or (3) at least one first-degree relative with CRC or endometrial cancer.

Criteria-positive patients are subjected to MSI analysis, and MSI-positive patients are then

analyzed for MLH1 and MSH2 mutations. We prospectively evaluated the combination of

these criteria and MSI analysis in 535 colorectal cancer patients to confirm specificity and

sensitivity. The MSI and mutation status of these patients was determined before the

implementation of these criteria in a procedure where all 66 MSI-positive patients were

subjected to mutation analysis.

Utilizing these simple selection criteria, the number of patients in MSI analysis could be

reduced from 535 to 117 (reduction 78%), and the number of patients in mutation analysis

reduced from 66 to 34 (reduction 48%). Implementation of these criteria increased the

specificity of MSI analysis from 27% (18/66 MSI-positive patients had a mutation) to 50%,

since 17 of 34 MSI-positive patients had a germline mutation. The sensitivity was only

slightly decreased, with 17 of 18 (94%) mutation-positive patients being identified.

When combining the patient material from study I and from Aaltonen and colleagues (1998),

we ended up with a series of 1044 unselected colorectal cancer patients including 28

mutation-positive patients. Utilizing this material, it is possible to compare the outcomes of

different diagnosing procedures. As concluded above, the Amsterdam criteria as well as the

mathematical algorithm rely heavily on extensive family history, and have a questionable

value in diagnosing for HNPCC. Figure 5 presents the different flowcharts when utilizing (A)

direct MSI analysis followed by mutation analysis and (B) implementation of the selection

criteria (Aaltonen et al., 1998) prior to MSI and mutation analyses. By using these simple
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selection criteria, the specificity and cost-effectiveness of the screening procedure can be

considerably increased.

Figure 5. Flow chart for the diagnosis of HNPCC using (A) direct MSI analysis followed by
mutation analysis, and (B) selection criteria (Aaltonen et al., 1998) prior to MSI analysis and
mutation analysis.

An optimal procedure for diagnosing should maximize both sensitivity (as few false

negatives as possible) and specificity (as few false positives as possible). Because extensive

pedigree information and verified data on cancer in distant family members cannot always be

obtained, the procedure should be based on family data of first-degree relatives only. The use

of MSI as a prescreening test in every case is recommended, as it appears to carry only a 5-

15% false negative rate (Vasen et al., 1999; Verma et al., 1999). Based on these cornerstones,

we propose the following: perform MSI test for patients that fulfill at least one of the three

selection criteria proposed by Aaltonen and colleagues (1998), and search for mutations in

A. MSI analysis and mutation
analysis

B. Selection criteria

1044 tumors 1044 tumors

239 criteria +

54 MSI +129 MSI +

27 mutation  +28 mutation +

2.7% (28/1044)
22% (28/129 MSI+)

2.6% (27/1044)
50% (27/54 MSI+)

Select only those fulfilling one or
more of the criteria

MSI analysis for 23% (239/1044)

MLH1/MSH2 mutation analysis
for 5% (54/1044)

MLH1/MSH2 mutation analysis for
12% (129/1044)

MSI analysis for 100% (1044/1044)
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those patients whose tumors are MSI-positive. The outcome of the combined series of 1044

unselected colorectal cancer patients (Aaltonen et al., 1998 and study I) resulted in MSI and

mutation analyses for only 23% and 5% of the patients, respectively. Utilizing these simple

and cost-effective procedures, 96% of HNPCC patients will be identified.

The model we propose relies heavily on the MSI test as a primary screen. A high sensitivity

is suggested by the fact that 85-95% of HNPCC tumors have been shown to be MSI-positive

(Aaltonen et al., 1994; Lynch & Smyrk, 1998). Our study provided an excellent test of this

since we screened all 1044 patients for two founder mutations that account for over half of all

mutations detected in Finland so far. Of all 129 MSI-positive patients, 19 were found to have

one of these mutations, while of 915 MSI-negative patients, neither of the mutations were

found. This indicates that MSI, when appropriately determined, shows a high sensitivity for

mutation-positive HNPCC tumors. These data also confirm that BAT26 alone is a sensitive

indicator of MSI, as previously suggested (de la Chapelle, 1999; Samowitz et al., 1999; Sutter

et al., 1999). However, the specificity of MSI is low mainly because a large proportion of all

MSI-positive tumors are due to epigenetic silencing of the MLH1 gene, a somatic event

caused by promoter methylation (Kane et al., 1997). We show here that the specificity can be

enhanced to some 50% by selecting patients fulfilling certain simple clinical criteria.
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7. FUTURE PROSPECTS

Colorectal cancer develops through complicated pathways. Although a model for sequential

events has been proposed (Kinzler & Vogelstein, 1996), increasing evidence supporting

deviations and modifications of the basic theme is mounting. The identification of all factors

in the sequence of events is important. Molecular profiling allows for the identification of

novel prognostic markers and possible targets for subsequent gene therapy. As an example,

allelic loss of chromosome 18q implicates a poor prognosis (Ogunbiyi et al., 1998).

Similarly, loss of imprinting (LOI) might have potential as a diagnostic marker since it has

been detected both in cancer tissue and in the normal mucosa and peripheral blood cells of a

subset of cancer patients with MSI-positive tumors (Cui et al., 1998). Furthermore, detection

of MSI in urine DNA serves as a feasible test for follow-up of patients with transitional cell

carcinoma of the bladder (Steiner et al., 1997).

Differences in target genes in different subtypes of colorectal cancer may lead to differential

prognosis and survival rates.  While it is a well-known fact that MSI-positive tumors have a

better prognosis (Sankila et al., 1996), patients with MSI-positive tumors have a high risk for

multiple tumors (Cawkwell et al., 1999). Although the underlying mechanisms are somewhat

obscure, the importance of determining the MSI status, perhaps in all newly diagnosed cases,

is clear. Another important point related to the MSI status is that mismatch repair-deficient

cells are highly tolerant of methylating chemotherapeutic drugs such as streptozocin and

temazolomide (Claij & Riele, 1999). Interestingly, aspirin appears to suppress the mutator

phenotype in vitro (Rüschoff et al., 1998), and also has a possible preventive effect in vivo

(Barnes & Lee, 1998; Gupta & DuBois, 1998).

When considering HNPCC specifically, future prospects include determining the composition

of an optimal microsatellite marker panel for MSI analysis, yielding reliable results with a

minimum amount of time and resources. The use of immunohistochemistry in evaluating

MSI status seems to be a feasible method, but needs to be carefully evaluated. Possible new

genes predisposing to HNPCC await identification. For example, the possible germline role

of MBD4 needs to be studied. Furthermore, the possibility of frequent germline MSH6

mutations should be considered in future studies. The selection criteria for molecular analysis

will be further tested. Collection of colorectal cancer samples on the basis of the selection
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criteria, followed by MSI and mutation analyses will give a reliable estimation of the

specificity of these criteria.

Since colorectal cancer can be effectively controlled by colonoscopic screenings and early

removal of lesions, more attention should be directed at extracolonic cancers. Importantly,

establishing efficient screening methods for the common extracolonic tumors would further

reduce the morbidity and mortality of HNPCC.
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8. SUMMARY AND CONCLUSIONS

We evaluated molecular diagnosing methods for the most common form of inherited

colorectal cancer, i.e., hereditary nonpolyposis colorectal cancer (HNPCC). Early and reliable

diagnosis of HNPCC is essential, since cancer deaths can be prevented by early removal of

adenomas and carcinomas. As many as 85-95% of HNPCC patients show microsatellite

instability (MSI), a phenomenon reflecting defects in DNA mismatch repair genes. Although

MSI analysis shows high sensitivity, it is an unspecific marker for HNPCC as some 10-15%

of sporadic colorectal tumors are also MSI-positive. However, a germline mutation in one of

the DNA mismatch repair genes can confirm the diagnosis.

The combination of microsatellite instability (MSI) analysis and mutation analysis was tested

in unselected colorectal carcinoma and adenoma patients (studies I and II). In addition, newly

created selection criteria for molecular diagnosis of HNPCC (Aaltonen et al., 1998) and a

mathematical model (Wijnen et al., 1998b) were prospectively evaluated (studies I and III).

To further study the molecular background of HNPCC and MSI-positive colorectal cancer,

the possible involvement of two novel DNA mismatch repair genes, MBD4 and MLH3, was

studied (studies IV and V). The present study allows for the following conclusions to be

drawn:

1. The frequency of HNPCC in Finnish unselected colorectal cancer patients was 3.4%

(18/535). Three founder mutations in MLH1 accounted for 89% of all cases. The

frequency of HNPCC in colorectal adenoma patients was 1.3% (5/378), with founder

mutations accounting for 80% of these cases. Probably due to MLH1 founder

mutations, MSH2 mutations (1/23) are underrepresented in Finnish HNPCC patients.

2. MSI was detected in 12% of unselected colorectal cancer patients. A germline MLH1

or MSH2 mutation was identified in 18 of 66 (27%) MSI-positive CRC patients. Thus,

the sensitivity of MSI analysis in pre-screening for HNPCC was moderate (27%), but

since no founder mutations were found in the 469 MSI-negative patients, the false

negative rate is likely very low. Altogether 1.7% (7/402) of adenoma samples showed

MSI, and 5 of 6 (83%) MSI-positive adenoma patients had a germline MLH1

mutation. Therefore, the sensitivity of MSI analysis in screening for HNPCC was very
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high (83%). Again, the false negative rate is likely to be very low, since no founder

mutations were detected among the 372 MSI-negative adenoma patients. In

conclusion, MSI analysis is a promising method to pre-screen colorectal carcinoma

and adenoma patients for HNPCC.

3. Fulfillment of the following selection criteria for molecular analysis were evaluated

among unselected CRC patients: (1) age of onset less than 50 years, or (2)

previous/synchronous CRC or endometrial cancer, or (3) at least one first-degree

relative with CRC or endometrial cancer. By selecting only criteria-positive patients

for further analyses, the sensitivity of MSI analysis can be increased. Of 535 CRC

patients, 117 (22%) were-criteria positive and 34 of these 117 (29%) were MSI-

positive; 17 of the 18 (94%) mutation-positive individuals were among these 34.

These simple criteria can be used routinely in clinics for identifying patients for more

detailed diagnostic analyses (i.e. MSI and mutation analyses). Implementation of

these selection criteria assures a significantly higher specificity (50%), with only a

minor reduction in sensitivity.

 In a series of 1044 colorectal cancer patients, the mathematical algorithm (Wijnen et

al., 1998b) utilizing family history was able to identify 18% and 64% of mutation-

positive patients when first-degree pedigrees (on average, 8 family members) and

extended family histories (on average, 38 family members), respectively, were used.

The corresponding proportions for an alternative formula designed for small families

were 46% and 75%. Thus, the mathematical algorithm (Wijnen et al., 1998b) cannot

be relied on when screening for HNPCC.

4. The involvement of recently cloned human mismatch repair genes MBD4 (Bellacosa

et al., 1999) and MLH3 (Lipkin et al., 2000) was evaluated in MSI-positive tumors.

Both genes harbor simple mononucleotide repeats in their coding regions which

makes them attractive targets for the mutator phenotype. Somatic deletions of MBD4

were observed in 25% of MSI-positive tumors, indicating a selective advantage in

tumorigenesis. Possible germline involvement was not studied. Somatic deletions in

MLH3 were observed in 8.6% of MSI-positive colorectal tumors. A frequency of

6.5% was detected in similar repeats in noncoding regions, indicating that the MLH3

deletions are merely a consequence of the MSI phenotype, rather than selected events
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driving tumorigenesis. No germline MLH3 mutations were found, which excluded the

possibility of it being a frequent HNPCC gene.

MSI analysis is recommended for colorectal adenoma patients with features of hereditary

predisposition. Especially patients in families with MSI-positive tumors and either identified

or unidentified mutations benefit from MSI analysis. A negative MSI result in these cases

favors the sporadic nature of the adenoma, whereas a positive result strongly suggests the

presence of HNPCC.

As a final conclusion, we propose the following procedure for diagnosing HNPCC. All

colorectal cancer patients should be evaluated for the selection criteria. All criteria-positive

patients should be included in MSI analysis utilizing at least the BAT26 mononucleotide

marker, or, if feasible, utilizing immunohistochemistry for MLH1, MSH2, and possibly

MSH6. All MSI-positive patients should be analyzed for MLH1 and MSH2 germline

mutations. In addition, the possible involvement of MSH6 mutations should be considered.

This scenario implicates doing MSI and mutation analyses for approximately 23% and 5% of

patients, respectively. By utilizing this cost-effective procedure, 96% of HNPCC patients will

be identified.
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