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ABSTRACT     

 
Glaucoma is a group of optic neuropathies, characterized by progressive optic nerve 

degeneration, excavation of the optic disc due to apoptosis of retinal ganglion cells and 

corresponding visual field defects. Open angle glaucoma (OAG) is a subtype of glaucoma, 

classified according to the age of onset into juvenile (JOAG) and adult- forms with a cut-

off point of 40 years of age. The prevalence of adult onset OAG is 1-2% of the population 

over 40 years old and higher, even 10%, of over 65-year old individuals, whereas JOAG is 

rare and especially aggregated in families.  

 

Exfoliation syndrome, age, elevated intraocular pressure (IOP) and genetic predisposition 

are known risk factors for OAG. Exfoliation syndrome (XFS) is characterized by 

accumulation of grayish scales of fibrillogranular extracellular material (exfoliation 

material,  XFM)  in  the  anterior  segment  of  the  eye.  XFS  is  overall  the  most  common  

identifiable cause of glaucoma (exfoliation glaucoma, XFG). The prevalence of XFS and 

XFG varies between different ethnic populations, but the average worldwide prevalence 

ranges from 5% to 20% of the population older than 60 years. Familial aggregation and 

twin studies have shown a strong genetic contribution to both OAG and XFS/XFG, but the 

underlying genetic component is in many respects unknown.  

 

During the last decade several candidate loci and three candidate genes, myocilin (MYOC), 

optineurin (OPTN) and WD40-repeat 36 (WDR36), for OAG have been identified. We 

investigated the role of the MYOC and OPTN genes and fourteen candidate loci in eight 

Finnish glaucoma families. Both candidate genes and loci were excluded in families. 

  

To investigate the genetic basis of glaucoma in a large Finnish family with juvenile and 

adult -onset OAG, we analysed the MYOC gene in family members. We identified 

glaucoma associated mutation (Thr377Met) in the MYOC gene segregating with the disease 

in the family. This was the first molecular genetic explanation of glaucoma reported in the 

Finnish population. 

 

In order to identify the genetic susceptibility loci for XFS, we carried out a genome-wide 

scan in the extended Finnish XFS family. This scan produced promising candidate locus on 

chromosomal region 18q12.1-21.33 and several additional putative susceptibility loci for 

XFS.  
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In the past year, three single nucleotide polymorphisms (SNPs) on the lysyl oxidase like 1 

(LOXL1) gene have been repeatedly associated with XFS and XFG in several populations. 

We performed a case-control and family-based association study and family-based linkage 

study to evaluate whether SNPs in the LOXL1 gene contain a risk for XFS, XFG or POAG 

in the Finnish patients. A significant association between the LOXL1 gene SNPs and XFS 

and XFG was confirmed in the Finnish population. However, linkage was not observed for 

LOXL1 risk alleles in the Finnish XFS family. 

 

This thesis describes the first molecular genetic studies of OAG and XFS/XFG in the 

Finnish population. Previously reported candidate genes and loci were not responsible for 

glaucoma in Finnish families, further confirming the heterogeneous nature of OAG. 

Identification of a susceptibility mutation, Thr377Met in the MYOC gene, has great 

significance for the glaucoma family and encourages investigating the MYOC gene also in 

other Finnish OAG families. Genome-wide scan of XFS highlighted an interesting 

candidate region on chromosome 18. This locus provides a solid starting point for the 

future fine-scale mapping studies, which are needed to identify variants conferring 

susceptibility to XFS in the region. Three SNPs in the LOXL1 gene were found to confer 

risk to XFS and XFG in the Finnish population. However, probably other genetic and 

environmental factors also are involved in the pathogenesis of XFS and XFG. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 11 

1 INTRODUCTION 

 

The word "Glaucosis" was first mentioned in Hippocratic writings in ancient Greece, in 

400BC, as a blinding disease occurring most commonly in the elderly. It is thought that 

“glaucosis” probably included various sight-threatening conditions including cataract and 

keratitis in addition to glaucoma. The first clear recognition of absolute glaucoma came 

with Rikchard Banister in 1622 but it was not until the beginning of the 19th century that the 

first excellent description of glaucoma with raised ocular tension was given by the 

Frenchman Dr Antoine-Pierre Demours (1818) (Sorsby 1963). Over the last 100 years, the 

concept of glaucoma has been further refined. Dr Drance (1973) provided for the first time 

a  definition  of  glaucoma as  a  disease  of  the  optic  nerve  (an  optic  neuropathy)  caused  by  

numerous risk factors. Currently, glaucoma refers to a group of eye conditions that cause 

characteristic damage to the optic nerve. 

 

Open angle glaucoma (OAG) is an asymptomatic, progressive optic neuropathy 

characterized by enlarging optic disc cupping and visual field loss. About one half of OAG 

patients are unaware of their disease and it is usually discovered during an adult eye 

evaluation performed for other indications (Sommer et al. 1991; Klein et al. 1992; 

Dielemans et al. 1994; Weih et al. 2001). Without treatment, OAG can end in irreversible 

vision loss. Nowadays glaucoma is the second leading cause of blindness worldwide 

(Resnikoff et al. 2004). Identifying genetic variants that predispose to OAG would facilitate 

early diagnosis and follow-up for individuals at risk and enable the treatment of glaucoma 

on time. With appropriate treatment glaucoma can usually be stopped before significant 

vision loss occurs.  

 

A strong genetic component has been established for OAG suggesting that it is a complex 

disease, caused by several genetic and environmental factors, each contributing minor 

effects and probably interacting with each other (Libby et al. 2005; Hewitt et al. 2006a). 

Molecular genetic studies of OAG during the past decade have yielded some success. 

Several chromosomal candidate loci have been identified, but only three candidate genes, 

myocilin (MYOC), optineurin (OPTN) and WD40-repeat 36 (WDR36), have been 

described, accounting together for less than 10% of OAG (Fan et al. 2006a). The MYOC 

gene has been established as a directly glaucoma causative, whereas the roles of OPTN and 

WDR36 genes are controversial.  
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Exfoliation syndrome (XFS) was first highlighted in 1917 by the Finnish ophthalmologist 

John  Lindberg,  who  noted  progressive  accumulation  of  white,  small  deposits  of  

fibrillogranular extracellular material ocular tissues in 50% of patients with open angle 

glaucoma (Lindberg 1917; Lindberg 1989). In 1925 the Swiss ophthalmologist Alfred Vogt 

suggested the term ‘glaucoma capsulare’  to  describe  glaucoma  occurring  in  an  eye  with  

this syndrome (Vogt 1925). The term pseudoexfoliation syndrome (PXS) was introduced in 

1954 by Dvorak-Theobald (Dvorak-Theobald 1954) to distinguish it from the true 

exfoliation seen in glass-blowers, resulting from infrared radiation damage (Cashwell et al. 

1989). In 1956 Sunde proposed the term exfoliation syndrome (Sunde 1956) and in 1982 

Layden (Layden 1982) suggested exfoliation syndrome to be the most appropriate and 

uncomplicated term considering the rarity of the true exfoliation syndrome. Since 

exfoliation material is found with and without glaucoma the terms exfoliation syndrome 

(XFS) and exfoliation glaucoma (XFG) are used in this thesis.  

 

Familial aggregation and twin studies have confirmed a genetic contribution to XFS/XFG 

(Damji et al. 1998). To date it is generally believed that XFS/XFG is caused by interplay of 

genetic and environmental factors (Lee 2008). In the past year, a strong association 

between three single nucleotide polymorphisms (SNPs) on the lysyl oxidase like 1 (LOXL1) 

gene and XFS/XFG has been reported in several populations (Table 7). 

 

The purpose of this thesis was to investigate the genetic backgrounds underlying OAG and 

XFS and XFG in the Finnish patients. 
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2 REVIEW OF THE LITERATURE 

 

2.1 GLAUCOMA 

 
Glaucoma is a heterogeneous group of progressive optic neuropathies, which is 

characterized by progressive optic nerve degeneration and excavation of the optic disc due 

to apoptosis of retinal ganglion cells, and corresponding visual field defects (Bathija et al. 

1998; Weinreb and Khaw 2004). Glaucomas may be categorized on the basis of etiology 

(primary and secondary), the age of onset (congenital, infantile, juvenile and adult), and 

anatomy of the anterior chamber (open angle and closed angle). In general, glaucomas 

might be classified in three major categories: primary open angle glaucoma (POAG), 

primary congenital glaucoma (PCG) and primary angle-closure glaucoma (PACG). In 

addition a genetically heterogeneous group of developmental disorders known as anterior 

segment dysgenesis (ASD) have been reported to be associated with increased IOP and 

glaucoma (Gould and John 2002). These include Rieger’s anomaly, Peters’ anomaly, iris 

hypoplasia, aniridia and iridogoniodysgenesis. 

 

2.1.1  Prevalence of glaucoma 

 

Glaucoma is of major public health importance worldwide. In 1996 Quigley estimated that 

approximately 66.8 million individuals would be affected with glaucoma worldwide by 

year 2000, of which 6.7 would suffer bilateral blindness (Quigley 1996). Several surveys of 

glaucoma prevalence have been done since then (Mitchell et al. 1996; Bonomi et al. 1998; 

Weih et al. 2001; Jonasson et al. 2003) and in 2006 Quigley and Broman upgraded the 

estimations for the years 2010 and 2020 (Quigley and Broman 2006). By their estimation in 

2010 there will be 60.5 million people with glaucoma, of whom 45 million will suffer open 

angle  glaucoma  (OAG)  and  16  million  will  suffer  angle-closure  glaucoma  (ACG).  The  

number will increase to 79.6 million (58.6 million OAG and 21.0 million ACG) by 2020. It 

has been estimated that in 2010 over 8.4 million people will be bilaterally blind from 

glaucoma (4.5 million from OAG and 3.9 million ACG), rising to 11.1 million (5.9 million 

OAG and 5.3 million ACG) by 2020. According to the World Health Organization’s 

(WHO) bulletin of global visual impairment in the year 2002, cataract is the leading cause 

of blindness in the world accounting for 48% of blindness worldwide, glaucoma is the 

second accounting for 12% and age-related macular degeneration (AMD) is third with a 



 14 

proportion of 9% (Resnikoff et al. 2004). In developed countries AMD is the leading cause 

of blindness (Taylor and Keeffe 2001).    

 

2.1.2         Characteristics of OAG  

 

Open  angle  glaucoma  is  most  often  defined  by  the  presence  of  two  out  of  the  three  

following characteristics: glaucomatous changes in optic nerve head and/or corresponding 

visual field defect and/or elevated intra-ocular pressure >22 mmHg. The optic disc is 

considered as glaucomatous when diffuse damage with cup-to-disc ratios C/D > 0.7, and/or 

localized thinning of the rim, and/or asymmetry of > 0.2 in C/D between the eyes with 

equal  size  discs.  In  open  angle  glaucoma  (OAG)  the  anterior  chamber  angle  is  open  and  

normally developed. In recent epidemiological studies, the definition is exclusively based 

on the appearance of the optic nerve head and visual fields. However, there are still 

differences (Ringvold et al. 1991; Klein et al. 1992; Dielemans et al. 1994; Tielsch et al. 

1994; Hirvelä et al. 1995; Mitchell et al. 1996; Bonomi et al. 1998; Weih et al. 2001; 

Jonasson et al. 2003). 

 

Open angle glaucoma can be classified according to age of onset into two groups:  juvenile- 

and adult-onset forms (Wiggs et al. 1996). Juvenile-onset primary open angle glaucoma 

(JOAG) refers to patients with chronic open angle glaucoma diagnosed between 10 and 40 

years of age. Affected patients are typically present with high IOP, which ultimately 

requires surgical therapy. Characteristic features include a high incidence of myopia and 

angle structures of normal appearance. JOAG usually segregate in families and can be 

inherited as an autosomal dominant trait. Adult-onset primary open angle glaucoma 

(usually abbreviated as POAG) refers to patients diagnosed over the age of 40 years. Most 

of the patients in general practice are over 65 years of age. Traditionally POAG has been 

divided into: eyes having glaucomatous damage and high IOP (high-testion glaucoma HTG 

/ high-pressure glaucoma HPG) (Sommer et al. 1991) and eyes having glaucomatous 

damage but normal IOP (normal-tension glaucoma NTG/ normal-pressure glaucoma NPG) 

(Grosskreutz and Netland 1994). Eyes with elevated IOP with a normal optic nerve head 

and a normal visual field are classified as ocular hypertension (OHT) (Gordon et al. 2002). 

Open angle glaucoma is symptomless until its later stages, and therefore it is often 

presented first at an advanced stage when irreversible glaucomatous changes have occurred 

in the optic disc. Guidelines for glaucoma care have been made by the Finnish 

Opthalmologic Society with the Finnish Glaucoma Society (Glaukooman käypä hoito -
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suositus 2002; Tuulonen et al. 2003) and the European Glaucoma Society (European 

Glaucoma Society 2003).  

 

Risk factors for open angle glaucoma consist of age, elevated intraocular pressure (IOP), 

exfoliation syndrome, race, myopia, diabetes, positive family history of glaucoma and 

decreased perfusion pressure (Tuulonen et al. 2003). IOP is the most common and the only 

threatable risk factor for glaucoma (Sommer et al. 1991). Exfoliation syndrome (XFS) is a 

major risk factor and the most common identifiable cause of glaucoma (Ritch et al. 2003).  

 

2.1.2.1  Prevalence of OAG  
 

The prevalence of OAG varies between ethnic populations, but universally it increases with 

age. OAG is the most common form of glaucoma among Caucasians and Afro-Americans 

(McKinnon et al. 2008) whereas angle-closure glaucoma (ACG) is the most prevalent form 

among Asians (Chew and Aung 2001). Traditionally the prevalence of OAG has been 

reported as 1-2% in persons over 40 years old and higher, even 10%, of over 65-year old 

individuals (Mitchell et al. 1996; Bonomi et al. 1998; Tuck and Crick 1998; Wensor et al. 

1998; Wolfs et al. 2000; Iwase et al. 2004). The general rough estimate is that the risk of 

glaucoma doubles with every decade of age (Tuulonen et al. 2003). 

 

Population-based age-dependent OAG prevalence estimates are presented in Table 1. 

Higher prevalence rates of OAG have been reported in black than in white populations 

(Tielsch et al. 1991; Leske et al. 1995; Racette et al. 2003; Friedman et al. 2004). In the 

Barbados Eye Study (West Indies) the prevalence of POAG in 40-84 year old individuals 

was 7% in blacks, 3.3% in mixed-race, and 0.8% in whites or other participants (Leske et 

al. 1994) and in the Baltimore Eye Study, the prevalence of OAG was four to five times 

higher in blacks (1.23% of 40-49 years; 11.26% of  80 years) as compared with whites 

(0.92% of 40-49 years; 2.16% of  80 years) (Tielsch et al. 1991).  
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Table 1. Prevalence (%) of POAG in different age groups in population-based studies. 

1(Hollows and Graham 1966), 2(Kahn et al. 1977), 3(Dielemans et al. 1994), 4(Tielsch et al. 1991), 5(Coffey et al. 1993), 6(Mitchell et al. 
1996), 7(Jonasson et al. 2003), 8(Klein et al. 1992)

 Age groups (%)  

Population-based 
study 40-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85- 

Prevalence in 
population (n of 
POAG / n of all 

examined) 
Ferndale (Wales)1 
1966 

 
 

0.25 0.84 0.44 1.01 1.13    0.43 (20/4608) 

Framingham (USA)2 

1977 
  0.48 0.92 0.92 1.70 1.94 2.92  1.15 (27/2352) 

Rotterdam Eye Study 
(Netherlands) 3 1994 

  0.2 0.2 0.9 1.8 1.6 3.1 3.3 1.1 (34/ 3062) 

Baltimore (whites) 
(USA)4 1991 

0.18 0.32 0.77 2.85 1.94 1.1 (32/ 2913) 

Roscommon (Eire)5 
1993 

 0.72 1.76 3.20 3.05 1.88 (41/ 2186) 

Blue Mountains 

(Australia)6 1996 
 0.29 1.07 4.17 8.17 2.38 (87/3654) 

Reykjavik Eye Study 

(Iceland)7 2003 
 0.6 2.8 8.0 12.8 4.0 (42/1045) 

Beaver Dam  (USA)8 

1922 
0.99 1.29 2.65 4.71 2.11 (104/4926) 
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In the population based survey of Finland the prevalence of OAG increased clearly with age 

and was 5.4% in individuals over the age of 70 (Hirvelä et al. 1995). According to the statistics 

of the national health insurance refunds for medical expenses compiled by the Social Insurance 

Institution (KELA) 74 088 individuals had the right to receive free medication for glaucoma in 

Finland in the year 2007. Of these 7 were under the age of 5 years, 1 181 individuals belonged 

to age group 5-40 years and 72 900 were 40 years old or older. Both patients with primary 

glaucoma and secondary glaucoma (caused by trauma etc.) and individuals with ocular 

hypertension (OHT), (i.e. high IOP (>30 mmHg) with normal optic nerve head and visual 

fields) are included in KELA’s number of individuals with free medication. The number of 

glaucoma patients receiving free medication increases 3% (approximately 3000 patients) every 

year and highest proportion the is in age group 65-76 years (Vaahtoranta-Lehtonen et al. 2007). 

 

 2.1.3 Characteristics and prevalence of PCG 

 

Primary congenital glaucoma (PCG) is the most common form of glaucoma in infants, with 

more than 80% of cases observed within the first year of life (Vasiliou and Gonzalez 2008). It 

typically  manifests  at  birth  or  within  the  first  year  of  life,  but  may  manifest  as  late  as  three  

years of age (Ho and Walton 2004). PCG is characterized by the improper development of the 

trabecular meshwork in the anterior chamber angle of the eye leading to elevated IOP (>21 mm 

Hg). The eyes have an isolated maldevelopment of the trabecular meshwork, including the 

iridotrabecular junction, which is not associated with any other developmental ocular 

anomalies or ocular diseases that can raise IOP. An increase in IOP can damage the optic nerve 

and result in vision loss and even blindness in untreated individuals (deLuise and Anderson 

1983). Clinical findings in PCG patients typically include epiphora (watery eye), corneal 

edema, photophobia, and buphthalmolos (enlargement of the globe), which result from 

increased IOP (Francois 1980). In approximately 75% of cases, primary congenital glaucoma 

is bilateral (Gencik et al. 1982). 

 

The prevalence of PCG varies across populations from a rate of 1:10 000 newborns in Western 

countries (Francois 1980), 1:2500 in the middle East (Bejjani et al. 2000) and even 1:1250 in 

the Romany population in Slovakia (Gencik et al. 1982). Males are more frequently affected 

than females (65% versus 35%, respectively) (Vasiliou and Gonzalez 2008). 
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2.1.4  Characteristics of XFS and XFG 

 

XFS is an age-related syndrome characterized by abnormal accumulation of white, small 

deposits of fibrillogranular extracellular material (exfoliation material, XFM) in the anterior 

segment of the eye, most commonly seen on intraocular tissues such as: the pupillary border 

and the anterior lens capsule. In most cases dandruffy exfoliation material is seen in lens 

surface, but also along the pupillary margin, and as small deposits in the iris surface, corneal 

epithelium, lens zonules and ciliary processes (Tarkkanen 1962; Morrison and Green 1988). 

Other clinical features are pigment deposition on the corneal endothelium as well as anterior 

chamber  angle  and  liberation  of  pigment  after  papillary  dilation  (Wishart  et  al.  1985;  

Rouhiainen and Terasvirta 1990; Puska 1995). 

 

Clinically, XFS can appear in uni- or bilateral forms. These may represent different stages of 

the disorder and approximately 14-41% of unilateral XFS cases convert to bilateral XFS 

(Hansen and Sellevold 1969; Klemetti 1988). The probability of exfoliation developing in the 

opposite eye was found to be 7% in 5 years and 17% in 10 years (Henry et al. 1987). In a ten-

year follow-up study 38% of 63 studied unilateral XFS patients developed bilateral XFS 

(Puska 2002). Though the clinical impression is a unilateral affection, subtle ultrastructural and 

immunohistochemical alterations typical of XFS were found in the unaffected fellow eye 

(Kivela et al. 1997; Hammer et al. 2001). 

 

Despite extensive research, the exact chemical composition of XFM and mechanism behind its 

production and accumulation remains as yet unknown. Immunohistochemical studies have 

shown that XFM represents a highly glycosylated, cross-linked and enzymatically resistant 

glycoprotein-proteoglycan complex bearing epitopes of the basement membrane and the elastic 

fiber systems and components of elastic microfibrils (Ritch 2001; Ritch et al. 2003). XFM has 

been shown to consist of fibrillin family members, transforming growth factor beta (TGF- ) 

associated and regulated proteins, clusterin, and matrix associated glycoproteins in association 

with chondroitin sulfates, basement membrane proteins such as fibronectin and laminin, and 

extracellular matrix proteins (Lee 2008). Glycoproteins found in intraocular XFM contain 

human natural killer (HNK-1) epitopes. It has been speculated that HNK-1 might bind together 

exfoliation fibres and matrix components that float freely in the aqueous humour and impart 

XFM adhesive properties that attach it to various tissues along the anterior and posterior 

chambers (Uusitalo et al. 1993; Kubota et al. 1997b). Antibodies for a carbohydrate epitope, 
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HNK-1, have been shown to be useful tool for immunohistochemical detection of exfoliation 

deposits (Uusitalo et al. 1993). The exact origin of XFM remains as yet unknown. 

 

Originally XFS was thought to be solely an eye related condition, but later on similar 

dandruffy exfoliation material have been found in various extraocular tissues, such as the skin 

and connective tissue portion of various visceral organs (heart, lungs, kidneys, liver etc) 

(Streeten et al. 1990; Schlötzer-Schrehardt 1992; Streeten et al. 1992). This suggests that XFS 

is a systemic disorder with intraocular manifestation. A possible association between XFS and 

vascular diseases have been studied with controversial results (Repo et al. 1993; Mitchell et al. 

1997; Shrum et al. 2000; Hietanen et al. 2002; Citirik et al. 2007; Tarkkanen et al. 2008). 

 

XFS is overall the most common identifiable cause of glaucoma worldwide, causing both open 

angle glaucoma and angle-closure glaucoma (Ritch 1994). Exfoliation glaucoma (XFG) is 

most often classified as a high-pressure type of secondary open angle glaucoma that develops 

as a consequence of XFS. The amount of XFM in trabecular meshwork correlates with the 

presence or absence of glaucomatous changes in the optic nerve, which suggests a direct 

causative relationship between XFS and glaucoma development (XFG) (Schlotzer-Schrehardt 

and Naumann 1995; Gottanka et al. 1997). The clinical course of XFG is more aggressive than 

that of POAG; i.e. glaucomatous damage progress more rapidly and the prognosis is poorer 

(Olivius and Thorburn 1978; Konstas et al. 1997). In addition its care is more demanding and 

surgical intervention is more frequently a necessity. The presence of exfoliation doubles the 

risk for progressive glaucoma (Leske et al. 2003) and increases the risk for blindness caused by 

glaucoma (Forsman et al. 2007a). 

 
2.1.4.1 Prevalence of XFS and XFG  
 

XFS and XFG occur worldwide but their prevalence varies between different populations 

(Forsius 1979, 1988; Forsius et al. 2002). The prevalence of XFS and XFG increases with age. 

For a long time XFS and XFG were mistakenly thought of as Scandinavian diseases. 

Nowadays, it is believed that XFS is a common condition of worldwide significance and 

underdiagnosis is a cause for the low prevalences of XFS and XFG in certain populations.  

 

The average worldwide prevalence of XFS ranges from 5 to 20% in the general population 

over the age of 60 years (Ringvold 1999). High prevalence figures have been reported in 
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Scandinavian populations (Forsius et al. 1974; Ekström 1987; Forsius 1988; Ringvold et al. 

1991; Hirvelä et al. 1995), rising  from 15 to 25% in subjects over the age of 65 years (Forsius 

1979; Ekström 1987; Ringvold et al. 1991; Hirvelä et al. 1995) up to almost 35% in persons 

over the age of 80 (Jonasson et al. 2003) (Table 2). In a population-based study in Oulu in 

Finland XFS was observed in one or both eyes in 22% of the individuals aged 70 years or older 

(Hirvelä et al. 1995) (Table 3). High prevalence ratios have also been reported from Saudi 

Arabia (9.3%,  40 years) (Summanen and Tonjum 1988), Central Iran (13.1%; 50 years) 

(Nouri-Mahdavi et al. 1999) and in Crete (16.1% 40 years) (Kozobolis et al. 1997) whereas 

among the Inuits, Japanese, Mongolians and Chinese the prevalence of XFS is remarkably low 

(Forsius 1988; Forsius et al. 2002; Foster and Seah 2005) (Table 2). 

 

So far, only one incidence study, carried in Olmsted country in Minnesota, has been published. 

The estimated overall age- and sex-adjusted annual incidence of XFS was 25.9 per 100 000 

over a period of 15 years (Karger et al. 2003). The prevalence of XFS increased with age, from 

2.8 per 100 000 in 40 to 49 year old individuals to 205.7 per 100 000 in individuals over the 

age of 79 years (p<0.001). The age-adjusted incidence was higher in women than in men (32.7 

vs. 16.9 per 10 000, p<0.001). Also, in several other studies XFS has been more prevalent in 

females than in males; the prevalence in females was 27% in Finland (Oulu), 18% in Norway, 

2% in Australia and 12% in Iceland (Reykjavik), whereas corresponding numbers for males 

were 13%, 15%, 1% and 9%, respectively (Ringvold et al. 1991; Hirvelä et al. 1995; Mitchell 

et al. 1999; Jonasson et al. 2003). However, contrary to that, higher prevalences in males than 

in females has been reported in Central Iran, (males 18% and females 8%) (Nouri-Mahdavi et 

al. 1999) and in Greece (males 21% and females 13%) (Kozobolis et al. 1997). 
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Table 2. Age-specific prevalence (%) of exfoliation syndrome in population-based studies. 

study Age groups (%) 
 40-49 50-59 60-64 65-69 70-74 75-79 80-84 85-89 >90 all 

Mid-Norway1 
- - - 10.7 12.8 16.6 22.6 29.6 36.7 16.6 

Central Iran2# 
0 7.5 15.6 22.4 33.3 100 13.1 

Greece3 

(Crete) - 0.8 11 20 47 16.1 

Iceland4 

(Reykjavik Eye Study) - 2.5 8.8 16.7 33.3 10.3 

Australian5 
(Blue Mountains) 

0.2 
 1.0 3.3 4.4 1.7 

South-Africa6 

(Hlabisa, black) 2.0 4.5 13.5 18.9 9.4 
(7.7)* 

South-Africa6 

(Temba, black) 1.1 3.3 9.1 16.5 7.8 
(6.0)* 

1(Ringvold et al. 1991), 2(Nouri-Mahdavi et al. 1999), 3(Kozobolis et al. 1997), 4(Jonasson et al. 2003), 5(Mitchell et al. 1999) 6(Rotchford et 
al. 2003), #age groups slightly different from other studies: (40-50 yrs), (51-60 yrs), (61-70 yrs), (71-80 yrs), (81-90 yrs) and (>90 yrs), *age 
adjusted prevalence (%) 

 

 

Table 3. Age-specific prevalence rates (%) of exfoliation syndrome in different regions in Finland. 

Location (n) Age groups (%) 

 60-69 70-74 75-79 80-84 >85 all ages 

Oulu (455)1 
 

- 14 28 26 30 22 

Oulu (205) 2 10 23.2 35.7 23.4 

Kuusamo (328)2 14.1 21.3 47.2 21 

Helsinki (262)2 19.1 21.6 28.4 23.3 

1(Hirvelä et al. 1995), 2(Krause et al. 1988) 
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The risk for glaucoma is approximately 5-9 times higher in elderly patients with XFS than 

in those without XFS (Tuulonen et al. 2003). XFS is the most common identifiable cause 

of  OAG  worldwide  accounting  for  approximately  20-25%  of  OAG.  OAG  in  eyes  with  

XFS is defined as exfoliation glaucoma (XFG). A high prevalence of XFG have been 

reported in Scandinavian populations, probably because of the high prevalence of XFS 

(Ringvold 1999). In Lindberg’s original study XFS was present in 50% of glaucomatous 

eyes (Lindberg 1917). Similar proportions have been reported in later studies; in central 

Finland 42% (Krause 1973) and in southern Finland 47% (Valle 1988) of patients with 

OAG had XFS. In Norway the corresponding proportion was 40% (Aasved 1971).  

 

On  the  other  hand,  it  has  been  estimated  that  about  60  to  70  million  people  worldwide  

have XFS and of these 25% have elevated IOP, of whom one-third, 5-6 million people, 

have glaucoma (Leske et al. 2003; Bengtsson and Heijl 2005; Grodum et al. 2005). In 

Middle Norway 30% and in Finland (Oulu) 27% of XFS patients had glaucoma, whereas 

the corresponding numbers in individuals without XFS were 4% and 8%, respectively 

(Ringvold et al. 1991; Hirvelä et al. 1995).  

 

In a 5-years follow-up study in Central Sweden (Tierp) 17% of the 413 study subjects 

(aged between 65-74 years) developed XFS and of these 14% developed glaucoma 

(Ekström 1993). In a 9-years follow-up period in Sweden, Malmö, the glaucoma 

conversion rate was twice as high in patients with XFS and OH (55%) as in age-matched 

OH patients without XFS (27.6%) (risk ratio =2.0, p<0.0001) (Grodum et al. 2005). 

During 10 years follow-up period in Finnish cohort of 56 non-glaucomatous patients with 

unilateral XFS, 32% of initially exfoliative eyes and 38% of initially nonexfoliative fellow 

eyes converted to XFG, whereas POAG developed in 3.5% of non-exfoliative eyes (Puska 

2002). In addition, an association between the initial IOP and conversion to XFG (relative 

risk = 1.4, P =0.0001) was demonstrated. However, for some unknown reason all patients 

with XFS do not develop glaucoma (XFG) in their lifetime; about 65% of eyes with 

exfoliation remain nonglaucomatous (Klemetti 1988).  

 

Only few XFS/XFG prevalence studies outside of Scandinavian have been published. In 

the Blue Mountains Eye Study in Australia glaucoma was found at almost a seven times 

higher frequent in eyes with XFS (14 %) than in eyes without XFS (2%) (OR 5.0; 95% 
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CI, 2.6-9.6) (Mitchell et al. 1999). In the 15-years community-based follow-up study of 

XFS in  all  residents  of  Olmsted  County,  Minnesota,  16% of  XFS cases  were  placed  on  

therapy  at  the  time  of  the  diagnosis  (due  to  glaucomatous  changes  or  OH)  and  the  

probability of remaining patients being placed on therapy in over the next 15 years was 

44%  (Jeng et al. 2007). In an incidence study carried on the same population, the 

estimated overall age- and sex-adjusted incidence of XFG was 9.9 per 100 000 population 

per year (Karger et al. 2003). The incidence increased with age, rising from 0.6 per 

100 000 in persons 40-49 years to 114.3 per 100 000 in persons above 79 years (p<0.001). 

The incidence was higher in women than in men. 

 

 

2.2 GENETIC MAPPING STRATEGIES FOR COMPLEX DISORDERS 

 

Genetic mapping studies have been applied to identify genetic loci that include variants, 

which influence the trait of interest. This is attained by identifying correlation between the 

genetic marker locus and the studied trait. The highest level of success in genetic mapping 

has been achieved by mapping monogenic disorders posing Mendelian inheritance 

pattern, where one mutation has a strong functional effect, which makes the correlation 

between genotype and phenotype clear cut. In contrast, genetic mapping of common 

complex disease has resulted only in limited success (Altmuller et al. 2001). In complex 

diseases several predisposing and preventing genetic variants and environmental factors 

are involved in the pathogenesis of diseases and those individuals whose liability exceeds 

a certain threshold will eventually develop the disease. Such interplay between genetic 

and environmental factors makes the inheritance pattern of the trait less clear and the 

genetic studies more challenging (Risch 2000; Weiss and Terwilliger 2000; Glatt and 

Freimer 2002). In addition, in complex disorders any individual genetic variant generally 

has a relative small effect on the disease risk and hence correlation between a single 

disease locus and a phenotype is weaker and more difficult to identify than in monogenic 

disorders.  
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Complex disease gene mapping strategies fall broadly into two categories: candidate gene 

studies and genome-wide studies. The selection of the study approach is made based on 

prior knowledge of the biology of the trait. If hypothesis-based candidate loci or genes are 

known, the investigations are directed to these regions (candidate gene studies). Candidate 

gene studies can be done by using association, linkage or resequencing approaches. When 

no prior knowledge of candidate regions exists, genome-wide approaches are used. 

Genome-wide studies are divided into two approaches; genome-wide linkage studies and 

genome-wide association studies.  

 

In genome-wide linkage analysis the only essential information needed is that the trait is 

inheritable. The first step in genetic linkage analyses is to collect family material of a 

sufficient  size,  with  DNA  from  at  least  two  affected  subjects  per  family.  In  a  whole  

genome linkage scan hundreds (400-1000) highly polymorphic microsatellite markers 

spread approximately 4-10cM intervals throughout the genome are analyzed in order to 

identify  genomic  regions  that  co-segregate  with  the  trait  in  familial  or  siblings  material.  

The positive regions obtained from the genome wide scan are often too wide for candidate 

gene studies containing possibly several hundreds of genes. By fine scale mapping, using 

more families and denser marker map, critical regions could be narrowed down. If the 

linkage remains after narrowing the region, the next step is to analyze regional candidate 

genes, primarily those biologically relevant candidates for the studied trait. Variations 

influencing the trait could be identified from candidate regions or genes by SNP 

association analyses and mutation screening (direct sequencing) (Figure 1).  
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Figure 1. Main steps of gene mapping strategy to identify genetic region of interest. A 

genome-wide scan with hundreds of genetic markers is followed up by analysis of 

positive regions with denser marker map and larger set samples (fine scale mapping). 

Positional candidate genes are searched from databases. Direct sequencing of candidate 

genes or association analysis is performed in order to reveal possible underlying sequence 

alterations and the validity of mutations are tested by functional analysis. 

 

2.2.1  Genetic markers and maps 

 

A genetic marker is specified as a region on the genome where genetic variation between 

individuals exists. Nowadays the most widely used markers are microsatellites (short 

tandem repeats, STR) and Single Nucleotide Polymorphisms (SNP). Microsatellite 

markers are the di- tri- tetra- or pentanucleotide repeat sections on the chromosomes of 

whose lengths vary between individuals, usually being between 30 - 50 nucleotides. 

Single nucleotide polymorphisms (SNPs) are diallelic variations of a single nucleotide 

with minor allele frequency more than 1%. SNPs are the most common type of variant in 

human genome occurring approximately once in 300bp, which makes them well suited to 

high-resolution genotyping. The human genome is 99.9% identical in all individuals; the 

remaining 0.1% makes us unique and explains all differences in genetic traits between 

individuals (e.g. genetic diseases and individual drug response). SNPs constitute 

approximately 90% of this genetic variation in the population (Kruglyak and Nickerson 

2001; Reich et al. 2003; The International HapMap Consortium 2003). The dbSNP 
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database contains nearly 9 million SNPs, including most of the ~10 million SNPs which 

are estimated to exist in the human genome (Sachidanandam et al. 2001; The International 

HapMap Consortium 2003; Hirschhorn and Daly 2005).  

 

Meiotic recombination is an event when the maternal and paternal chromosomes 

exchange corresponding segments of DNA (cross over) resulting in a chromosome that is 

a mosaic of the two parental haplotypes. The probability of recombination event is called 

the recombination fraction ( ). In genetic maps the recombination fraction is  used  as  a  

distant measure, whose primarily used unit is the centiMorgan (cM) representing a 1% 

probability of crossover. The total genetic length of the human genome is approximately 

3700 cM. In physical maps distance is measured in base pairs (bp) of DNA. On average, 

1cM on genetic map corresponds to about 1 million bp (1 Mb) on a physical map. 

However this proportionality factor varies approximately from 0 to 9cM per Mb by 

gender, by chromosomal regions (e.g. recombination hotspots and deserts) and by other 

factors (Yu et al. 2001). 

 
2.2.2  Parametric linkage analysis 

 

In parametric linkage analysis statistical analyses are used to test if a particular allele 

(genetic marker) segregates with the disease status in a family more commonly than 

expected by chance. The primary goal is to identify genomic regions that co-segregate 

with the studied trait within families. In parametric linkage analysis (also called model-

based analysis) several parameters, such as inheritance model, recombination fraction, 

penetrance of the disease allele, disease allele frequency, marker allele frequencies, and 

phenocopy rate, have to be specified prior to analysis. In complex diseases true values of 

these  parameters  are  unknown.  However  it  has  been  proposed  that  a  robust  method  for  

identification of linkage in complex disorders, is parametric linkage analysis with both 

autosomal dominant and recessive models, despite the fact that this model is not entirely 

correct (Greenberg et al. 1998; Xu et al. 1998; Abreu et al. 1999; Durner et al. 1999). The 

recombination fraction ( ) is used in linkage analysis as a distance measure between a 

marker allele and a disease locus. The recombination fraction ( ) increases with the 

physical distance between two loci, from zero for adjacent loci (complete linkage) to a 

limiting value of a half meaning that the two loci are unlinked and that loci are far apart 
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(>50cM) or on different chromosomes. The closer the theta is  to zero the stronger is  the 

linkage between loci.  

 

Linkage analysis is based on maximum-likelihood estimation (MLE) for which specifying 

and testing of hypothesis is essential. The null-hypothesis in linkage analysis means that 

the marker locus (or loci) is not linked to the trait locus (H0:   =  0.5).  An  alternative  

hypothesis is that linkage between a marker locus (or loci) and trait locus does exist (H1:  

 0.5). The goal of MLE is to find such a parameter value, in the linkage analysis , which 

maximizes the value of likelihood function. Hypothesis testing is done by comparing the 

likelihood function of a given estimated parameter (L( )) with likelihood function when 

H0 holds true (L(0.5)) and and examining whether the likelihood functions differ more  

than expected by chance. Hypothesis testing is based on statistical measurement of  the 

logarithm of odds, (Z = LOD score) (Morton 1955), which is assessed using the following 

formula: 

 

Z( ) = log10[L( )/L(0.5) 

 

In Mendelian disorders traditionally lods of -2.0 is considered convincing evidence 

against linkage and lods of +3.0 convincing evidence in favour of linkage (Morton 1955). 

A lod score of +3.0 corresponds to a conventional p-value of 0.0001 (Xu et al. 1998; Ott 

1999), which means that two loci are 1000 times more likely to be linked than not linked. 

More restrictive criteria are needed for complex diseases, multipoint methods and dense 

marker maps. Lander and Kruglyak (1995) suggested a guideline of a lods of 3.3 or for the 

nonparametric statistic NPL of 3.6 (Lander and Kruglyak 1995). Multipoint linkage 

analysis, in which two or more marker loci are used simultaneously, can be used to 

increase the power to localize the disease gene.  

 

2.2.3  Non-parametric linkage analysis 

 

The paramertic linkage method is powerful especially in monogenic disorders, where the 

required parameters are known, but in complex disorders, the parameters are usually 

unknown. This dilemma can be circumvented by using non-parametric linkage analysis 

(also called model free analysis or relative pair method), in which specification of 

inheritance model is not needed. Instead non-parametric linkage analysis is based on allele 
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sharing in affected relatives. Alleles of genotyped relatives are distinguished according to 

whether they are identical by descend (IBD) or identical by state (IBS). Alleles IBD are 

copies  of  the  same  ancestral  allele,  whereas  alleles  IBS  are  the  same  alleles  but  their  

ancestral origin allele is different. The simplest model of non-parametric linkage analysis 

is affected sibpair analysis (ASP-analysis), in which allele sharing is followed in large 

sample size of sibpairs. Affected sibpairs are more likely to share marker alleles IBD in 

the neighbourhood of the disease locus than random pair of sibs. The expected allele 

sharing in full sibs, when linkage does not exist and thus H0 holds true,  is  0,  1,  2 alleles 

shared with probabilities 0.25, 0.50, 0.25, respectively. When a marker locus is linked to 

the disease locus affected sibpairs should share more alleles IBD than expected by chance. 

Statistical tests such as 2 or  means  test  are  used  to  test  whether  allele  sharing  in  IBD  

differs from that expected. Extensions of ASP that allow missing data (missing 

information  of  marker  alleles)  or  take  all  affected  siblings  of  the  family  to  analysis  (not  

just sibpairs) or take all affected relatives of the family to analysis (extended relative pair 

analysis, ERPA) have been developed.  

 

2.2.4  Association analysis 

 

Association analysis is utilized to identify variations that associate with a trait. The basic 

idea is simply to measure whether or not a certain allele of particular locus is found in 

affected individuals with a significantly different frequency than in unaffected individuals 

in study sample set.  Association analysis can either be based on case-control samples or 

family based samples (Laird and Lange 2006). Association analysis can be divided into 

two approaches; direct association when functional variant is studied directly and indirect 

association (LD-mapping) when genetic marker is in linkage disequilibrium (LD) with 

functional variant. LD means non-random association between alleles of different loci. In 

LD-mapping association between genetic marker and studied trait exists if a marker locus 

and disease alleles are not separated by recombination events and thus segregate together 

more frequently than expected by chance. Statistical analyses are used to test the 

association and to observe possible LD. LD- mapping has been claimed to be more 

suitable and powerful than linkage-based methods for fine-scale mapping purposes and 

for mapping of common complex traits, which are caused by several susceptibility genes 

with only modest impact size (Risch and Merikangas 1996; Hirschhorn and Daly 2005; 

Newton-Cheh and Hirschhorn 2005; Wang et al. 2005).  
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High genome-wide frequency, low mutation rate and amenability to automation makes 

single nucleotide polymorphisms (SNPs) well suited and the most commonly used genetic 

markers in association mapping (Landegren et al. 1998; Wang et al. 1998). A set of SNPs 

on a single chromatid, which are not being separated by recombination events in history 

are in LD and are transmitted together in so-called haplotype blocks. All polymorphic 

sites in haplotype can be identified unambiguously by analyzing only one SNP of the 

haplotype, called haplotype tagging SNP (tagSNP). The International Hap Map Project 

has produced new information about tagSNPs and haplotype structures of the entire 

genome in several populations (from Nigeria, China, Japan, US with Northern and 

Western European ancestry) (The International HapMap Consortium 2003). Most 

recently, the International Hap Map Project reported a haplotype map which characterizes 

over 3.1 million human SNPs from four geographically diverse populations and included 

25–35% of the common SNP variation in the populations surveyed (Frazer et al. 2007). 

The big advantage of tagSNPs is that they enable us to reduce the number of SNPs needed 

for the whole genome wide association studies making these studies more comprehensive, 

efficient and less expensive. On the basis of empirical studies, it has been estimated that 

most of the information about genetic variation represented by the 10 million common 

SNPs in the population could be provided by genotyping 200,000 to 1,000,000 tagSNPs 

across the genome (Patil et al. 2001; Gabriel et al. 2002; Carlson et al. 2003; Goldstein et 

al. 2003). Thus, by using knowledge of the LD present in the genome, a substantial 

reduction in the amount of genotyping can be obtained with little loss of information. 

 

 
2.3 ESTABLISHING THE GENETIC COMPONENT IN OAG  

 

A genetic predisposition for glaucoma was first suggested as early as 1842 when Benedict 

reported the presence of glaucoma in two sisters (Benedict 1842). In 1869, von Graefe 

mentioned hereditary glaucoma (von Graefe 1869) and in 1941 Duke-Elder described 

familial glaucoma which was inherited in a dominant manner (Duke-Elder 1941). In the 

following decades a strong genetic component of OAG has been confirmed in several 

studies (Leighton 1976; Rosenthal and Perkins 1985; Vernon 1991; Charliat et al. 1994; 

Lichter 1994; Tielsch et al. 1994). 
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2.3.1  Twin and family aggregation studies 

 

Twin and adoption studies have been valuable in determining the influence of genetic and 

environmental factors for the phenotype. Twin studies compare the concordance of a trait 

in monodygotic (MZ) and dizygotic (DZ) twin pairs. Higher concordance in MZ twin 

pairs than in DZ twin pairs indicates a strong genetic effect, whereas equal concordance in 

MZ  and  DZ  twin  pairs  or  lower  concordance  in  MZ  twin  pairs  indicates  that  

environmental effect is stronger (Allen et al. 1967). The heritability of the trait illustrates 

which proportion of the total variance of the phenotype is due to genetic factors 

(h2=HGenetic/VPhenotype) (Strachan and Read 2004). In the Finnish population-based twin 

study  3  of  29  MZ twin  pair  and  3  of  79  DZ twin  pairs  were  concordant  for  OAG.  The  

heritability of OAG was 10.2% and the heritability of OAG and XFG combined was 13%, 

suggesting a complex model of inheritance (Teikari 1987). A higher concordance was 

reported in an Icelandic twin study, in which 50 MZ twin pairs ( 55 years) concordance 

was 98% and their spouses concordance was 70% (Sverrisson 1994; Gottfredsdottir et al. 

1999). 

 

Family aggregation studies have been used to determine the genetic component of the 

trait. A genetic component is involved when the risk of disease is increased in first degree 

relatives  compared  to  more  distant  relatives  or  the  general  population.  In  Wolfs  and  

colleagues study, based on population-based Rotterdam Eye study (Netherland) 

(Dielemans et al. 1994), familial aggregation of POAG was investigated by examining the 

first-degree  relatives (siblings and offspring) of glaucoma cases (n=45) and first degree 

relatives of their age- and sex-matched randomly selected control individuals (n=135) 

from the Rotterdam study (Wolfs et al. 1998). The strength of the study was that both first 

degree relatives of glaucoma patients and controls were ophthalmologically examined. 

The prevalence of glaucoma was 10.4% in siblings and 1.1% in offspring of patients, 

compared with 0.7% in siblings and 0% in offspring of the controls. Low prevalence of 

glaucoma in offspring groups is probably due to their young age (mean age in cases 

offspring 42.2 years and in controls offspring 48.7 years). The lifetime risk of glaucoma at 

the age of 80 years was 22.0% in relatives of patients versus 2.3% in relatives of controls, 

yielding a risk ratio for POAG of 9.2 (95%CI= 1.2-73.9). The population attributable risk 

of glaucoma was as low as 16.4%, indicating that other, non-genetic, factors determine the 

overall occurrence of glaucoma to a great extent (Wolfs et al. 1998).  
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2.3.2  Family history of glaucoma in population-based studies 

 

The weakness in population-based studies investigating of family history of glaucoma is 

that information about positive family history of disease has been self-reported and 

relatives of patients have not been ophthalmologically examined. Individuals’ that are 

aware of their glaucoma diagnosis are usually more aware of their parental glaucoma 

history than those who are unaware of their glaucoma diagnosis or are unaffected. 

However, the awareness of disease of other family members is not always reliable, even 

though glaucoma diagnosis exists. This was demonstrated in the Glaucoma Inheritance 

Study in Tasmania (GIST) where 27% of previously diagnosed POAG patients from five 

families  with  strong  family  history  of  POAG  were  completely  unaware  of  their  family  

history, mostly in those who had distant relatives affected (McNaught et al. 2000). 

Similarly in a study including white, black, Hispanic and Asian origin participants, 56% 

of the first degree relatives of glaucoma patients had never had their eye pressure 

measured depicting a lack of awareness about the disease (Vegini et al. 2008).  

 

Generally in population-based studies, family members of OAG patient have a 2-4 -fold 

increased risk of OAG and in first-degree relatives the risk has increased up to 10-fold 

(Wilson et al. 1987; Charliat et al. 1994; Leske et al. 1996; Wolfs et al. 1998; Tuulonen et 

al. 2003). In the population-based Baltimore Eye Survey (both black and white ancestral 

participants) the proportion of individuals reporting a family history of POAG was more 

than two-fold higher among cases (16%) than among controls (7%). Higher risk for 

glaucoma was found in siblings (OR 3.69, 95% CI 2.10-6.48) than in parents (OR 2.17, 

95% CI 1.07-4.41) or in children (OR 1.12, 95% CI 0.26-4.86) of known glaucoma 

patients (Tielsch et al. 1994). In the Barbados Family Study (black individuals) the 

frequency of self-reported family history of glaucoma was 4-fold higher in affected (17%) 

than in unaffected men (4%, OR 7.88,  95% CI 4.07-15.23) and a 3-fold higher in affected 

(19%) than in unaffected women (7%, OR 2.4, 95% CI 1.46-4.23) (Leske et al. 1995). The 

risk of glaucoma was higher in siblings (OR  5.7, 95% CI 3.5 - 9.1) than in parents 

(mother OR 4.6, 95% CI 2.8-7.6; father 4.7, 95% CI 2.4-9.2) (Nemesure et al. 1996). In 

the population-based study in Australia (Visual Impairment Study in Victoria) interviews 

and ophthalmic examinations were performed for a random sample of 4744 participants. 

In multivariate logistic regression models, individuals with a family history of glaucoma 

had a threefold increased risk of possible, probable or definite glaucoma. Family history 
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of glaucoma was the only risk factor other than age, which remained significantly 

associated with increased risk of definite glaucoma (OR, 3.5; 95% CI, 1.9- 6.7) (Weih et 

al. 2001).  

 

2.3.3   Inheritance of OAG 

 

The majority of adult onset OAG families represent complex genetic inheritance caused 

by several predisposing and preventing genetic and environmental factors, each 

contributing minor or large effects and probably interacting with each other (Wiggs et al. 

1996; Booth et al. 1997; Budde 2000; Libby et al. 2005; Hewitt et al. 2006a; Wiggs 2007). 

Although adult-onset OAG does not typically exhibit traditional Mendelian inheritance 

patterns, rare pedigrees in which OAG is clearly inherited as either an autosomal 

dominant (Posner and Schlossman 1949; Francois 1981) or an autosomal recessive 

inheritance pattern (Pimentel 1941; Waardenburg 1950; Biro 1951) have been reported. 

Juvenile-onset OAG (JOAG) is typically inherited as an autosomal dominant model, with 

penetrance varying from 60% to 100% (Stokes 1940; Crombie and Cullen 1964; Goldwyn 

et al. 1970; Leydhecker 1979; Francois 1981; Fleck and Cullen 1986; Johnson 1993; 

Lichter 1994; Wiggs et al. 1995).  

 

2.4 OAG ASSOCIATED LOCI 

 

Thus far, at least 22 genetic loci for OAG have been reported, reflecting the complex 

genetic background of  OAG (Table 4) Fourteen of these loci has been designated 

(GLC1A-GLC1N) by the HUGO Genome Nomenclature Committee. Five of the loci are 

linked to the juvenile type of open angle glaucoma (GLC1A, GLC1J, GLC1K, GLC1M 

and GLC1N), whereas the rest are associated with adult onset open angle glaucoma. Most 

of the loci have been reported only in single, large and usually Caucasian pedigrees and 

therefore their contribution to OAG has not been established. Only three candidate genes 

have  been  identified  from  these  loci;  myocilin (MYOC), optineurin (OPTN) and WD40-

repeat 36 (WDR36), which together account for less than 10% of OAG (Fan et al. 2006a).  
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Table 4. Genetic loci for primary open angle glaucoma. 

Chromosomal 
location 

Locus 
name 

Gene 
name 

Phenotypes Ethnicity Original study 

1q21-q31 GLC1A MYOC JOAG Caucasian (Sheffield et al. 1993; 
Stone et al. 1997) 

2p14 - - POAG mainly 
Caucasian 

(Wiggs et al. 2000) 

2p16.3-p15 GLC1H - POAG Caucasian, 
Afro 
Caribbean 

(Suriyapperuma et al. 
2007) 

2cen-q13 GLC1B - POAG Caucasian  (Stoilova et al. 1996) 

2q33-q34 - - POAG African  (Nemesure et al. 
2003)  

3p21-p22 GLC1L - POAG Caucasian (Baird et al. 2005) 

3q21-q24 GLC1C - POAG Caucasian  (Wirtz et al. 1997) 

5q22.1 GLC1G WDR36 POAG Caucasian (Monemi et al. 2003; 
Monemi et al. 2005) 

5q22.1-q32 GLC1M - JOAG Asian  (Fan et al. 2007) 

7q35-q36 GLC1F - POAG Caucasian  (Wirtz et al. 1999) 

8q23 GLC1D - POAG Caucasian  (Trifan et al. 1998) 

9q22 GLC1J - JOAG - (Wiggs et al. 2004) 

10p12-p13 - - POAG African (Nemesure et al. 
2003) 

10p15-p14 GLC1E OPTN NTG Caucasian  (Sarfarazi et al. 
1998; Rezaie et al. 
2002) 

14q11 - - POAG mainly 
Caucasian 

(Wiggs et al. 2000) 

14q21-q22 - - POAG mainly 
Caucasian 

(Wiggs et al. 2000) 

15q11q13 GLC1I - POAG Caucasian, 
Afro-
American 

(Allingham et al. 
2005) 

15q22-q24 GLC1N - JOAG Asian  (Wang et al. 2006) 

17p13 - - POAG mainly 
Caucasian 

(Wiggs et al. 2000) 

17q25 - - POAG mainly 
Caucasian 

(Wiggs et al. 2000) 

19q12-q14 - - POAG mainly 
Caucasian 

(Wiggs et al. 2000) 

20p12 GLC1K - JOAG - (Wiggs et al. 2004) 
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2.5 OAG SUSCEPTIBILITY GENES  

 

Three candidate genes have been identified so far: myocilin (MYOC), optineurin (OPTN) 

and WD40- repeat 36 (WDR36), which together account for less than 10% of OAG (Fan 

et al. 2006a). 

 

2.5.1  MYOC: the first OAG susceptibility gene 

 

The first OAG associated gene, myocilin (MYOC), was identified from locus GLC1A on 

chromosomal region 1q21-q31 by Stone and co-workers in 1997 (Stone et al. 1997). They 

identified three mutations (Tyr430His, Gly357Val, Gln361Stop) in 4% of familial 

glaucoma patients, in 3% of sporadic glaucoma patients and in 0.3% of general 

population. Most patients with MYOC mutations had juvenile- onset open angle glaucoma 

(JOAG) but some had adult-onset POAG. The MYOC protein was independently 

discovered  by  Kubota  et  al.  (Kubota  et  al.  1997a),  who  named  the  protein  myocilin  

(MYOC) and Nguyen et al. (Nguyen et al. 1998), who named it Trabecular meshwork-

induced glucocorticoid response protein (TIGR). Since the original report, more than 70 

MYOC mutations with slight phenotypic differences have been documented (Wiggs et al. 

1998; Fingert et al. 1999; Hewitt et al. 2008a). The MYOC gene plays an important role in 

the pathogenesis of autosomal dominant juvenile-onset glaucoma with high intraocular 

pressure, but is also involved in a small but significant subset of adult-onset POAG.  

 

2.5.1.1 MYOC structure 
 

The MYOC -gene  consists  of  three  exons  and  encodes  a  504  amino  acid  protein  called  

myocilin (Figure 2). An amino terminal signal sequence, that may target myocilin protein 

for secretion, is situated on the N-terminal of the myocilin protein (Kubota et al. 1997a). 

Near the N-terminal is located an alpha helical coiled coil region, which is called the 

myosin-like domain because it forms a region resembling the myosin tail fibre. This 

domain contains a leucine zipper motif, which enables the protein to interact with itself or 

other proteins containing a similar motif. Homology between the myosin-like domain and 

myosin is relatively low (Kubota et al. 1997a; Ortego et al. 1997). Myocilin contains two 

hydrophobic regions, a flexible linker region and several potential phosphorylation and 

glycosylation sites. Near the C-terminal lies an olfactomedin-like domain. Olfactomedin is 



 

 35 

a component of the mucus layer that surrounds the chemosensory dendrites of olfactory 

neurons in frogs. Homologous olfactomedin related glycoproteins have been identified in 

the  neurons  of  the  rat,  mouse,  and  human brain  (Danielson  et  al.  1994;  Karavanich  and  

Anholt 1998a; Karavanich and Anholt 1998b; Nagano et al. 1998). The olfactomedin-like 

domain is primarily a  beta sheet with a disulfide between Cys245-Cys433 (Fautsch and 

Johnson 2001). Cys433 has been conserved in olfactomedin and the olfactomedin-like 

proteins through evolution in different organisms (Mukhopadhyay et al. 2002). It has been 

suggested that both the leucine zipper and the cysteine residue at amino acid 433 are 

involved in myocilin dimerization and oligomerization (Morissette et al. 1998). 

Oligomerization mediated by cysteine residues are characteristic of olfactomedin related 

proteins (Karavanich and Anholt 1998a; Karavanich and Anholt 1998b) and proper 

dimerization and oligomerisation is probably necessary for the function of normal MYOC 

protein. The majority of MYOC mutations are located in the olfactomedin-like domain in 

the third exon of the gene (Figure 3). Olfactomedin in frogs has 31-40% amino acid 

residues  in  common  with  MYOC,  while  the  human  and  rat  olfactomedin  related  

glycoproteins have 46-50% amino acid residues in common with MYOC (Adam et al. 

1997; Kubota et al. 1997a; Ortego et al. 1997). However, if additional conservative amino 

acid substitutions are taken into account, the homology with olfactomedin-related 

glycoproteins is more than 80%. In the C-terminal of MYOC lie three amino acids serine, 

lysine and methionine (Adam et al. 1997), which have been shown to function as a 

peroxisome targeting sequence in other proteins (Subramani 1993).  

 
 

Figure 2. Putative functional domains of myocilin protein. Modified from Fingert and 

colleagues (Fingert et al. 2002). 
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Figure 3. Position of mutations in the MYOC gene. The position of MYOC mutations 

are shown on the diagram with a vertical line. The height of the vertical line is 

proportional to the number of unrelated glaucoma patients found to harbor each mutation. 

The shaded segment of exon 3 is the olfactomedin homology domain. Modified from 

Fingert and co-workers (Fingert et al. 2002). 

 
 
2.5.1.2 MYOC mutation frequency and genotype-phenotype correlation  

Since in 1997, when the MYOC gene was reported as a susceptibility gene for glaucoma, 

more than 180 MYOC variants have been documented (Myocilin Allele-Specific 

Glaucoma Phenotype Database). Roughly 40% of the identified sequence changes are 

disease causing, of which the majority (~85%) are missense mutations (Hewitt et al. 

2008a). It has been approximated that one in 30 unselected patients with OAG have 

disease-causing mutation(s) in the MYOC gene in which case approximately 2-5% of 

OAG cases have MYOC mutation(s) worldwide (Stone et al. 1997; Alward et al. 1998; 

Wiggs et al. 1998; Challa et al. 2002). Several large population-based studies have 

confirmed this approximation; according population-specific estimates the MYOC gene 

accounts for 1-4% of unselected POAG patients in different ethnic populations (Stone et 

al. 1997; Suzuki et al. 1997; Alward et al. 1998; Stoilova et al. 1998; Wiggs et al. 1998; 

Fingert et al. 1999; Kubota et al. 2000; Lam et al. 2000; Faucher et al. 2002; Pang and 
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Lam 2002; Pang et al. 2002; Kanagavalli et al. 2003; Gong et al. 2004; Sripriya et al. 

2004; Fan et al. 2006b). However, the MYOC gene  is  associated  most  strongly  with  

familial cases of juvenile-onset open angle glaucoma (JOAG). Prevalences of MYOC 

mutations  in  JOAG  families  range  from  8%  to  36%  of  affected  pedigrees  (Adam  et  al.  

1997; Wiggs et al. 1998; Shimizu et al. 2000; Bruttini et al. 2003).  

Although patents with MYOC mutation usually have early onset glaucoma with high 

intraocular pressure (IOP), there is a wide variability in the phenotype, depending on the 

mutation  (Hewitt  et  al.  2008a).  The  most  common  MYOC mutation, nonsense mutation 

Gln368Stop, is most frequently found in patients with adult-onset OAG (Allingham et al. 

1998; Alward et al. 1998; Angius et al. 2000). This mutation results in a 135 amino acids 

truncated polypeptide. Individuals with Gln368Stop are diagnosed with glaucoma at an 

average age of 59 years and maximum IOP of 30 mm Hg, so the IOP elevation is a lower 

level than with several missense mutations in the MYOC gene. Instead, two commonly 

found MYOC mutations Pro370Leu and Tyr437His, are associated with severe, juvenile-

onset subtype of open angle glaucoma. Patients with Tyr437His mutation are diagnosed at 

an average at the age of 20 years and mean maximum IOP of 44 mmHg. Patients with the 

Gly364Val mutation represent a glaucoma phenotype intermediate to that of the 

Gln368Stop and Tyr437His phenotypes (Alward et al. 1998; Fingert et al. 2002). In 

patients with Tyr437His (Johnson et al. 1993), Val426Phe (Mansergh et al. 1998) or 

1177GACA>T (Angius et al. 1998) medical therapy has commonly failed to lower IOP 

and usually these patients have required filtration surgery. 

 

2.5.1.3 Functional consequences of MYOC mutations 
 

Myocilin is expressed in most ocular tissues; trabecular meshwork (TM), sclera, iris, 

cornea, lens, ciliary body, retina, optic nerve and aqueous humor, but also in many 

extraocular tissues (Fingert et al. 2002). However, the normal physiologic function of 

MYOC is unknown. MYOC related glaucoma is usually associated with elevated IOP 

(Fingert et al. 2002) suggesting that MYOC is related to IOP elevation, probably 

facilitating the aqueous humour outflow through the trabecular meshwork (TM) (Johnson 

2000). However, several studies have on the contrary suggested that myocilin is not 

needed for normal aqueous humour outflow (Lam et al. 2000; Kim et al. 2001; Wiggs and 

Vollrath 2001). Recently, a novel theory for IOP elevation mechanism was presented, in 
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which glaucoma-causing MYOC mutants were suggested to require the Peroxisomal 

targeting signal-1 receptor (PTS1R) to elevate intraocular pressure. Mutations in human 

MYOC were shown to induce exposure of a cryptic peroxisomal targeting sequence whose 

interaction with the PTS1R was necessary for IOP elevation (Shepard et al. 2007). 

However the exact role, if any, that normal MYOC plays in IOP homeostasis is still 

unclear.  

 

Several studies have shown that early truncating mutations or deletion in the MYOC -gene 

are not as pathogenic as some missense mutations (Lam et al. 2000; Wiggs and Vollrath 

2001; Pang et al. 2002). For example Gln368Stop mutation leads to a truncated form of 

the MYOC protein, but is associated with an older -onset of POAG and lower level of IOP 

elevation than several missense mutations (Allingham et al. 1998; Alward et al. 1998; 

Angius et al. 2000). This suggests that truncated MYOC still have some physiological 

function while missense mutations cause more problematic glaucoma. In a French-

Canadian family three siblings heterozygous for Lys423Glu mutation on MYOC 

developed glaucoma, but four siblings with the same mutation in the homozygous form 

did not have glaucomatous symptoms (Morissette et al. 1998). This dominant 

heterozygote specific disease phenotype may be due to mutant myocilin’s different shape 

that prevents its interactions with the normal myocilin, but when the mutation is 

homozygous and the both copies of MYOC are mutant, the proteins may interact and 

glaucoma does not occur (Morissette et al. 1998). In agreement with this, heterozygous or 

homozygous MYOC knockout mice or mice overexpressing wild-type mouse or human 

MYOC do not develop elevated IOP or morphologic changes in the eye (Kim et al. 2001; 

Gould et al. 2004; Zillig et al. 2005). These findings suggest that the pathogenesis of 

MYOC mutations are not due to loss of function or haplosufficiency, but to a gain of 

function (Fingert et al. 2002; Gong et al. 2004). 

 

At the cellular level wild type myocilin secretes from the trabecular meshwork (TM), and 

is  found  in  the  aqueous  humor,  whereas mutant  myocilin  misfolds  and  does  not  secrete 

from TM cells (Jacobson et al. 2001; Joe et al. 2003). Inhibition of MYOC secretion into 

the aqueous humor was also demonstrated in transgenic mice carrying the Tyr423His 

mutation (corresponding to the Tyr437His mutation in the human MYOC gene) (Gould et 

al. 2006; Senatorov et al. 2006) and in transgenic mouse carrying the human MYOC gene 

with Tyr437His point mutation (Zillig et al. 2005). In addition to stopping the secretion of 
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myocilin, mutant MYOC has also a negative effect on wild-type myocilin secretion 

(Jacobson et al. 2001). Misfolding of MYOC prevents its normal interactions 

(multimerization) and results in an increased production of monomeric forms, which 

aggregate in the endopalsmic reticulum (ER) of TM cells (Jacobson et al. 2001; Joe et al. 

2003). Mutant MYOC also forms heterodimers and heteromultimers with wild-type 

MYOC and these complexes remain sequestered intracellularly (Gobeil et al. 2004). 

Mutations such as Gly364Val, Gln368Stop, Lys423Glu, Tyr437His and Ile477Asn, have 

been reported to stop the secretion of myocilin and found as aggregates in the 

endoplasmic reticulum of TM cells (Joe et al., 2003) 

 

Interestingly, transgenic mouse carrying the full-length human MYOC gene with 

Tyr437His point mutation showed changes similar to those observed in human OAG 

(Zhou et al. 2008). Likewise, transgenic mice with Tyr423His mutation (corresponding 

Tyr437His mutation in human MYOC gene) demonstrated similar pathogenical changes 

observed in the eyes of glaucoma patients (Senatorov et al. 2006). The retinal damage and 

the degree of IOP elevation produced by expression of the mutant human myocilin were 

comparable to that obtained with the mutant mouse myocilin. However, contrary results 

were obtained in a study where transgenic mouse carrying mouse MYOCTyr423His did not 

develop high IOP or glaucoma (Gould et al. 2006). Clarification of the exact mechanism 

whereby MYOC mutations cause POAG will rely on further investigation of signalling 

pathways of the MYOC gene. 

 

 
2.5.2  The OPTN gene on GLC1E locus 

 

The second OAG associated gene, optineurin (OPTN) located to the GLC1E locus on 

chromosome 10p14-15 (Sarfarazi et al. 1998) was first reported in 2002 by Rezaie and 

colleagues (Rezaie et al. 2002). Optineurin was previously known as NEMO-related 

protein (NRP) (Schwamborn et al. 2000) or FIP2 (Li et al. 1998). Rezaie and co-workers 

identified three putative disease-causing alterations (E50K, c.691_692insAG and R545Q) 

in the OPTN gene in 16.7% of Caucasian families with autosomal dominant adult-onset 

POAG (Rezaie et al. 2002). In addition a risk-associated alteration (M98K) was found in 

12%  of  sporadic  POAG  cases.  The  majority  of  both  familial  and  sporadic  patients  had  

normal IOP (less than 22 mmHg). 
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2.5.2.1 OPTN structure 
 

The OPTN gene contains 16 exons of which the three first are noncoding and the 

remaining 13 code for a protein about 66 kDa with 577 amino acids (Figure 4). The 

optineurin has at least three transcripts, which are expressed both in ocular tissues such as 

trabecular meshwork, nonpigmented ciliary epithelium, retina, Schlemm’s canal and also 

in the aqueous humor (Rezaie et al. 2002; Sarfarazi and Rezaie 2003) and non-ocular 

tissues such as the heart, brain, liver, skeletal muscle, kidney, placenta, and pancreas (Li et 

al. 1998).  

 

 

 

 

Figure 4. Schematic representation of the OPTN gene. Putative functional motifs; basic 

leucine zipper transcription factor (bZIP), leucine zipper (LZ) and zinc finger C2H2-type 

(ZF-C2H2) as well as 4 known protein interaction regions are shown above the exon line. 

The sizes of each 3 non-coding and 13 coding-exon are indicated below the exon line. 

Modified from Rezaie and colleagues (Rezaie et al. 2002).  

 

2.5.2.2 OPTN variants in OAG 
 

Since the original study, a large number of studies have been undertaken in order to 

identify defects in the OPTN gene predisposing to OAG (Alward et al. 2003; Aung et al. 

2003; Leung et al. 2003; Melki et al. 2003a; Wiggs et al. 2003; Baird et al. 2004; 

Funayama et al. 2004; Fuse et al. 2004; Toda et al. 2004; Willoughby et al. 2004; 

Weisschuh et al. 2005). The results have been conflicting and the role of OPTN mutations 

in the etiology of POAG is still controversial (Walter et al. 2002; Alward et al. 2003; Tang 

et al. 2003; Wiggs et al. 2003; Fuse et al. 2004; Ariani et al. 2006). Combining the results 

from all the published studies, mutations in the OPTN gene seem to be very rare cause of 
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glaucoma, constituting only approximately 0.1% of unselected POAG cases worldwide 

(Alward et al. 2003; Aung et al. 2003; Wiggs et al. 2003). However, in Asian populations, 

especially in Japan, the prevalence of NTG is relatively high (Shiose et al. 1991) and thus 

the OPTN gene has been studied extensively in China, Japan and India. In the Chinese 

population OPTN mutations accounted for 1.6% of sporadic OAG cases of whom 60% 

had high tension glaucoma (HTG) (Leung et al. 2003). The mutation pattern and allele 

frequencies are different China than in Caucasian populations (Lam et al. 2000; Pang et al. 

2002; Rezaie et al. 2002; Leung et al. 2003). In the Japanese the prevalence of OPTN 

mutations was slightly higher than in Caucasian populations (Alward et al. 2003; Tang et 

al. 2003; Fuse et al. 2004), whereas in the Indian population OPTN sequence changes 

have been reported to play a minor role in glaucoma (Mukhopadhyay et al. 2005; Sripriya 

et al. 2006).  

 

The most common disease causing variant in the OPTN gene, Glu50Lys, was initially 

identified in 13.5% of Caucasian NTG families (Rezaie et al. 2002). In the following 

studies it was found in 0.1-0.6% of OAG (Alward et al. 2003; Aung et al. 2003; Hauser et 

al. 2006b; Ayala-Lugo et al. 2007) and 1.5-2.9% of NTG patients in Caucasian and 

Hispanic populations (Aung et al. 2003; Hauser et al. 2006b; Ayala-Lugo et al. 2007). The 

Glu50Lys has been suggested to be a private mutation to the Caucasian and Hispanic 

populations, because it has not been found in several other studies, including reports of 

237 POAG cases with Chinese ancestry or 961 POAG cases of Japanese ancestry (Alward 

et al. 2003; Leung et al. 2003; Tang et al. 2003; Chen et al. 2004; Funayama et al. 2004; 

Fuse et al. 2004; Toda et al. 2004; Umeda et al. 2004).  

 

The clinical importance of other OPTN variants remains controversial. Especially findings 

of Met98Lys are contradictory. In the original study, the Met98Lys, variant was defined 

as a risk associated variation since it was found at significantly higher frequency in the 

OAG group (13.6%) than in the control group (2.1%) (Rezaie et al. 2002). In the 

following studies evidence for and against association have been represented (Ayala-Lugo 

et  al.  2007).  In  the  combined  analysis  of  more  than  a  dozen  studies  the  Met98Lys  was  

found in Asian and African populations at more than twice the frequency seen in 

Caucasian and Hispanic populations (Ayala-Lugo et al. 2007). Despite the fact that there 

have been several investigations it is still unclear whether Met98Lys is a risk associated 

allele for glaucoma or not (Craig et al. 2006; Ayala-Lugo et al. 2007). 
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The Arg545Gln mutation was initially reported as a disease causing mutation (Rezaie et 

al. 2002), but later work confirmed it to be a polymorphism. Since the original study an 

Arg545Gln variant has been found only in Asian populations (Chinese, Japanese, Korean, 

Filipino, Indian) (Alward et al. 2003; Leung et al. 2003; Tang et al. 2003; Chen et al. 

2004; Funayama et al. 2004; Fuse et al. 2004; Umeda et al. 2004; Fan et al. 2005; Ayala-

Lugo et al. 2007) and in mixed ancestry population (Willoughby et al. 2004) with similar 

allele frequencies in cases and controls. However, it should be noted that in one Indian 

study Arg545Gln was reported preferentially in glaucoma cases (Mukhopadhyay et al. 

2005). The Arg545Gln variant has been suggested to be a private non-disease causing 

polymorphism of Asian populations (Ayala-Lugo et al. 2007).  

 

The c.691_692insAG is an extremely rare OPTN variation seen so far only in two 

Caucasian  OAG  cases  but  not  in  controls  (Rezaie  et  al.  2002;  Ayala-Lugo  et  al.  2007).  

This frameshift mutation might be causative, although no conclusion could be drawn 

because of its rare occurrence. 

 

2.5.2.3 OPTN function 
 

It has been hypothesized that OPTN has a neuroprotective role in the eye and optic nerve, 

but when defective, it produce typical normal- and high-pressure glaucoma symptoms, 

such as optic neuropathy and progressing visual filed loss (Rezaie et al. 2002). Optineurin 

does not show any enzymatic activity and hence its functions are likely to be mediated by 

interaction with other cellular proteins. Optineurin interacts with proteins that link it to the 

regulation of cellular morphogenesis and membrane trafficking (RAB8) (Hattula and 

Peranen 2000), transcription activation (Transcription factor IIIA) (Moreland et al. 2000), 

vesicular trafficking (Huntingtin) (Faber et al. 1998), inhibition of signalling by 

metabotropic glutamate receptor (mGluR1a) (Anborgh et al. 2005) and Golgi ribbon 

formation and exocytosis (myosin VI) (Sahlender et al. 2005). Optineurin probably 

functions through the tissue necrosis factor  (TNF ) and Fas ligand signalling pathway 

(Sarfarazi and Rezaie 2003). The TNF  signalling pathway has been proposed to be 

involved  in  retinal  ganglion  cells  apoptosis  in  patients  with  NTG  or  POAG  (Yan  et  al.  

2000; Yuan and Neufeld 2000). Normal optineurin probably protects the optic nerve from 

TNF  mediated apoptosis in a direct or indirect way, but when defective it might decrease 
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the threshold of ganglion cell apoptosis in patients with glaucoma (Wiggs 2007). In a 

recent  study  the  physiological  role  of  optineurin  in  TNF  signalling  pathway  was  

investigated in more detail (Zhu et al. 2007). It was shown that optineurin inhibits TNF -

induced NF- B activation by binding poly- ubiquitinated rev-interacting protein (RIP) and 

competitively inhibiting the binding of NF- B essential modulator (NEMO) to the RIP. 

NEMO is a component of a kinase complex that activates NF- B  and it has 53% amino 

acid similarity with optineurin. When optineurin is silenced by miRNA markedly 

enhanced TNF  –induced NF- B activity is observed (Zhu et al. 2007). However, the 

precise functional role(s) of optineurin in the normal and glaucomatous eye are unclear.  

 

2.5.3  The WDR36 gene on GLC1G locus 

 

The third OAG associated gene, WD40-repeat 36 gene (WDR36), on chromosomal region 

5q22.1 (GLC1G) (Monemi et al. 2003; Kramer et al. 2004; Samples et al. 2004) was first 

reported in the year 2005 by Monemi and colleagues (Monemi et al. 2005). A coding 

variation, D658G, in the WDR36 gene segregated with the disease in all affected and none 

of the unaffected family members in a large glaucoma family. Further analysis revealed a 

total of four mutations (N355S, A449T, R529Q, D658G), defined as ’predicted disease 

causing mutations’, present in 5% of POAG families (11 unrelated HTG and 6 NTG 

subjects) and none of the 200 control chromosomes. In addition three variations (L25P, 

A163V, Y216P), defined as ‘potential disease susceptibility mutations’, were observed in 

12% of POAG families and 2% of control chromosomes (Monemi et al. 2005).  

 

2.5.3.1 WDR36 structure and function 
 

The WDR36 gene comprises 23 exons and encodes 951 amino acids protein with WD40 

repeats and three other known motifs (Mao et al. 2004). The WD repeat-containing 

proteins comprise a large family implicated in a variety of functions ranging from 

transcription regulation and signal transduction to cell cycle control and apoptosis. A 

common function for all WD-repeat proteins is that they coordinate multiprotein complex 

assemblies where the repeating units serve as a rigid scaffold for protein interactions. 

 

The WDR36 gene  is  proposed  to  contain  five  (Monemi  et  al.  2005)  to  eight  (Mao et  al.  

2004) WD40 repeat, which are tandem repeats of approximately 40 residues, containing a 
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central tryptophan (W) –aspartic acid (D) dipeptide. Sequence variations in the WD40 

repeat domains of protein might interfere with its interactions with other proteins. It has 

been reported that WDR36 is highly coregulated with interleukin 2 (IL2) and may be 

involved in T cell activation in response to IL2 (Mao et al. 2004). Previous studies have 

suggested that some glaucoma patients may have alterations in cellular immunity that are 

IL-2 dependent (Yang et al. 2001) and the T-cell responses may influence glaucomatous 

optic nerve degradation in humans (Bakalash et al. 2005) and in mouse glaucoma model 

(Mo et al. 2003). However, the precise functional role of the WDR36 in normal and 

glaucomatous eye remains to be clarified.  

 

WDR36 have been identified expressed in ocular tissues (such as lens, iris, ciliary 

muscles, sclera, ciliary body, trabecular meshwork, retina and optic nerve) and in non-

ocular tissues (such as heart, placenta, skeletal muscle, liver, kidney and pancreas) 

(Monemi et al. 2005).  

 

2.5.3.2 WDR36 variants in OAG 
 

Since the original study, WDR36 gene studies have produced conflicting results and the 

role of WDR36 mutations in OAG etiology remains controversial (Hauser et al. 2006a; 

Hewitt et al. 2006b; Kramer et al. 2006; Miyazawa et al. 2007; Weisschuh et al. 2007; 

Pasutto et al. 2008a). Originally described disease-causing mutations have since been 

found with an equal low frequency in control individuals as in patients with POAG, 

indicating that WDR36 gene might not be causative for POAG in all populations (Hauser 

et al. 2006a; Hewitt et al. 2006b; Fingert et al. 2007b; Pasutto et al. 2008a). However, in 

some studies the frequency of WDR36 variants has been higher in glaucoma patients 

compared with controls, suggesting that WDR36 is a minor disease-causing gene in 

glaucoma in certain populations (Miyazawa et al. 2007; Weisschuh et al. 2007; Pasutto et 

al. 2008a). Hauser and colleagues suggested WDR36 to be a glaucoma modifier gene 

since they found that sequence variations in the WDR36 gene did not consistently 

segregate with the disease but individuals with variants had more severe glaucoma than 

those without them (Hauser et al. 2006a). Taken together, the current genetic data 

suggests that WDR36 might act as a POAG modifier gene and/or causative gene for 

POAG in certain populations. 
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We  screened  the  WDR36 gene for mutations in Finnish subjects by sequencing its 23 

exons and the respective exon-intron boundaries from the genomic DNA of 21 POAG, 8 

XFG and 1 XFS patients. Two non-synonymous (D658G, I264V), two synonymous 

(V714V, V727V) and one intronic (IVS5+30C>T) sequence alterations were identified 

(unpublished data). Heterozygous D658G alteration was found in one POAG patient (age: 

52 years), but none of the 198 control cases. In the further studies D658G was found in 

three close relatives of the index case, one glaucoma suspect (age: 62 years) and two 

unaffected (ages: 73 and 67 years). In the original study D658G variant was used to refine 

the critical region for the GLC1G gene and was defined as ‘predicted disease-causing 

mutation’ (Monemi et al. 2005). Subsequently, Weisschuh and colleagues found D658G 

in  one  NTG patient,  but  none  of  the  50  controls  German study  group (Weisschuh et  al.  

2007). However, later on it has been found with an equal low frequency in the normal 

population as in the POAG cases and defined as neutral polymorphism (Hauser et al. 

2006a; Hewitt et al. 2006b; Fingert et al. 2007b; Pasutto et al. 2008a; Raymond et al., 

2008). All the other variants we identified had previously been found with equal 

frequencies in cases and controls and categorized as a neutral polymorphisms (Monemi et 

al. 2005; Hauser et al. 2006a; Hewitt et al. 2006b; Pasutto et al. 2008a).  

 

2.5.4  Other candidate gene studies 

 

In addition to the aforementioned candidate genes, at least 16 OAG-associated genes have 

been reported (Table 5). Most them have been identified only in a single study, but some 

of the genes have appeared in several association studies. However due to the conflicting 

results the roles of these genes in glaucoma pathogenesis are still controversial. 

 

One interesting gene is cytochrome P4501B1 (CYP1B1). CYP1B1 is a major cause of the 

primary congenital glaucoma (PCG), but mutations in CYP1B1 have also been reported in 

JOAG patients (Stoilov et al. 2001; Nebert and Russell 2002; Chakrabarti et al. 2005; 

Acharya et al. 2006; Lopez-Garrido et al. 2006; Bayat et al. 2008). In certain pedigrees, 

both  PCG  and  JOAG  segregate,  indicating  that  these  two  forms  of  glaucoma  may  also  

have a common or overlapping CYP1B1-mediated pathophysiological mechanisms 

(Panicker et al. 2002; Soley et al. 2003). In a Canadian JOAG family both variant R368H 

of the CYP1B1 -gene and variant G399V of the MYOC -gene segregated with the disease 

indicating that mutation in the CYP1B1 gene  might  behave  as  a  modifier  of  the  MYOC 
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gene (Vincent et al. 2002). This is an unequivocal piece of evidence showing the 

interaction between MYOC and  another  gene  in  causing  POAG and might  also  serve  as  

one of the mechanisms for incomplete penetrance. Subsequent studies have indicated that 

CYP1B1 mutations are significant risk factors for JOAG also in patients who do not carry 

MYOC mutations (Melki et al. 2004; Acharya et al. 2006; Lopez-Garrido et al. 2006). 

Furthermore, mutations in CYP1B1 have been proposed as potential factors of severity in 

POAG patients (Melki et al. 2005). 

 

 

Gene 
symbol 

Gene name Chromosomal 
location 

Reference 

AGTR2 Angiotensin II receptor, type 2 Xq22-q23 (Hashizume et al. 
2005) 

APOE Apolipoprotein E 19q13.2 (Copin et al. 2002; 
Vickers et al. 2002) 

CDKN1A Cyclin-dependent kinase 
inhibitor 1A 

6p21.2 (Tsai et al. 2004)  

CYP1B1 Cytochrome P450, subfamily I, 
polypeptide I 

2p22-p21 (Vincent et al. 2002) 

EDNRA Endothelin receptor, type A 4q31.2 (Ishikawa et al. 2005) 
GSTM1 Glutathione S-transferase, mu-1 1p13.3 (Juronen et al. 2000) 
IGF2 Insulin-like growth factor II 11p15.5 (Tsai et al. 2003) 

IL1B Interleukin 1-beta 2q14 (Lin et al. 2003b) 

MTHFR 5,10-methylenetetrahydrofolate 
reductase 

1p36.3 (Junemann et al. 2005) 

NOS3 Nitric oxide synthase 3 7q36 (Tunny et al. 1998) 
NPPA Atrial natriuretic peptide 1p36.2 (Tunny et al. 1996) 

OCLM Oculomedin 1q31.1 (Fujiwara et al. 2003) 
OPA1 Optic atrophy 1 3q28-q29 (Aung et al. 2002) 

TAP1 Transporter, ATP-binding 
cassette, major 
histocompatibility complex, 1 

6p21.3 (Lin et al. 2004) 

TNF Tumor necrosis factor 308 6p21.3 (Lin et al. 2003a) 
TP53 Tumor protein p53 17p13.1 (Lin et al. 2002) 

Table 5. OAG associated genes reported in previous studies. Table is modified from 

Fan and collegues 2006 (Fan et al. 2006a). 

 

 



 

 47 

2.6 GENETICS OF PCG 

 

Primary congenital glaucoma is largely an inherited condition and the inheritance is 

primary autosomal recessive with variable penetrance (Stoilov et al. 1997; Sarfarazi and 

Stoilov 2000). Ninety percent of cases are sporadic and pseudodominant transmission has 

been demonstrated in some families (Stoilov et al. 1997). Three loci responsible for 

autosomal recessive forms of congenital glaucoma have been located in the human 

genome; GLC3A at chromosome locus 2p12 (Sarfarazi et al. 1995), GLC3B at 

chromosome locus 1p36 (Akarsu et al. 1996) and GLC3C at chromosome locus 14q24.3-

q31.1 (Stoilov 2002) (Table 6). The first PCG causing gene Cytochrome P4501B1 

(CYP1B1) was identified from the GLC3A locus in 1997 (Stoilov et al. 1997). To date, no 

specific genes have been yet linked to the GLC3B and GLC3C loci.  

 

Locus Chromosomal 
location 

Gene Phenotype Reference 
 

GLC3A 2p21 CYP1B1 PCG (Sarfarazi et al. 1995; 
Stoilov et al. 1997) 

GLC3B 1p36  PCG (Akarsu et al. 1996) 
GLC3C 14q24.3-q31.1  PCG (Stoilov 2002) 

Table 6. Genetic loci for primary congenital glaucoma. 

 

2.6.1  The CYP1B1 gene on GLC3A locus 

 

Mutations in CYP1B1, the gene encoding cytochrome P4501B1, are the predominant 

cause of PCG (Stoilov et al. 1997). The CYP1B1 mutations have been reported in 94-

100% of familial (Bejjani et al. 1998; Stoilov et al. 1998; Plasilova et al. 1999) and in 20-

50% of  sporadic  PCG cases  (Mashima et  al.  2001;  Stoilov  et  al.  2002).  The  CYP1B1 –

gene  has  also  been  identified  as  a  modifier  gene  in  POAG,  and  on  rare  occasions,  as  a  

causative  gene  in  JOAG  as  well  as  in  several  anterior  segment  dysgenesis  (ASD)  

disorders (Vasiliou and Gonzalez 2008). At least 82 mutations have been reported in 

PCG,  Peters  Anomaly  (PA),  Riegers  anomaly  (RA)  and  POAG  patients.  These  include  

missense and nonsense mutations, small deletions, insertions and/or duplications and 

silent mutations accounting for 56%, 12%, 20%, 10% and 2% of the mutations, 

respectively (Vasiliou and Gonzalez 2008). These mutations have been reported 

throughout the gene. 
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The human CYP1B1 -gene consist of three exons and codes for a 543-amino acid-long 

protein that contains three regions; a membrane-bound N-terminal region, a so-called 

hinge, and a cytosolic globular domain. The CYP1B1 gene is expressed in several tissues, 

including the eye, as well as in the nucleus of several cell types, including the tubule cells 

of the kidney and the secretory cells of the breast (Muskhelishvili et al. 2001).  

 

Although  the  role  of  CYP1B1 in PCG is not well understood, the protein is probably 

responsible for the metabolism of compounds that are critical for the developing eye 

(Stoilov et al. 2001). The CYP1B1 -null mice exhibit abnormalities of the ocular drainage 

structure similar to those reported for human PCG patients (Libby et al. 2003).  

 

 
2.7 ESTABLISHING THE GENETIC COMPONENT IN XFS AND XFG 

 

2.7.1  Twin and family studies 

 

In a Finnish twin study a large number of monozygotic (MZ) and dizygotic (DZ) twins 

with chronic OAG and XFG were studied (Teikari 1987). The sample size was large 

enough for determining the heritability of chronic OAG, but insufficient twin pairs made 

it impossible to determine the heritability of XFS and XFG by classic twin analysis. 

However,  the  heritability  of  OAG and XFG combined  was  13%.   In  a  study  examining  

MZ twins over the age of 55 through the Iceland twin registry, eight MZ twins with XFS 

were found; five of them were concordant and three were disconcordant for the XFS 

(Sverrisson 1994; Gottfredsdottir et al. 1999). Spouses of the affected twins were found to 

be free of XFS. The disconcordant twin pairs were in their fifties and thus still may 

develop XFS later in life. 

 

The familial occurrence of XFS was reported already in 1930 by Vogt (Vogt 1930). In the 

following decades familiar aggregation and increased frequency of XFS in relatives of 

affected individuals have been reported in several studies (Gifford 1957; Tarkkanen 1962; 

Tarkkanen et al. 1965; Pohjanpelto and Hurskainen 1972; Aasved 1975; Damji et al. 

1999; Gottfredsdottir et al. 1999; Allingham et al. 2001; Orr et al. 2001). In Norway a 

tenfold higher prevalence of XFS was reported in relatives (children, siblings, 

nieces/nephews, paternal and maternal cousins) of the affected individual over the age of 
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40 years (9.4%) belonging to 25 XFS families (Aasved 1975) than in the general 

population (1%) (Aasved 1971). In Finland the frequency of XFS was reported to be 8% 

in relatives (siblings and children) over the age of 40 and raised to 14% in relatives over 

the age of 60 years (Pohjanpelto and Hurskainen 1972).  

 

2.7.2  Inheritance of XFS and XFG 

 

To date it is generally believed that XFS/XFG is a complex trait caused by an interplay of 

genetic and environmental factors (Jerndal and Svedbergh 1978; Damji et al. 1998; 

Zenkel et al. 2005; Lee 2008). However, several Mendelian inheritance models have been 

suggested (Damji et al. 1998; Orr et al. 2001) of which autosomal dominant model with 

reduced penetrance has been reported most frequently (Tarkkanen 1962; Tarkkanen et al. 

1965; Aasved 1975; Forsius 1993; Ceisler 1994; Sotirova 1999; Orr et al. 2001; Hardie et 

al. 2005; Forsman et al. 2007b). Autosomal recessive transmission (Andersen et al. 1997) 

or maternal inheritance, such as mitochondrial inheritance, X-linked transmission or 

autosomal inheritance with genomic imprinting (Andersen et al. 1997; Damji et al. 1998; 

Damji et al. 1999; Allingham et al. 2001) have been proposed as well. One well-

documented (Orr et al. 2001) and one incompletely documented (Gifford 1957) paternal 

transmissions have been described. Environmental factors suggested to influence XFS are 

untraviolet light exposure, autoimmunity, slow virus infection and trauma (Damji et al. 

1998).  

 

 
2.8 MOLECULAR GENETIC STUDIES OF XFS AND XFG 

 

Our understanding of the field of molecular genetics of XFS and XFG has been advanced 

during the last year by cutting edge molecular genetic approaches studying this disorder. 

Only a few molecular genetics studies of XFS and XFG were published earlier.  Loss of 

heterozygosity (LOH) was reported on loci 13q12.11, 7q21.3, 7q21.11 and 7p13, in XFS 

specimens of the iris and anterior capsule suggesting that a genetic instability at these 

regions could be associated with XFS (Kozobolis et al. 1999; Zalewska et al. 2003). In 

addition, Sotirova and colleagues reported the linkage to XFS on loci 2p14-2Cen and 

2q35-q36 (Sotirova et al 1999) and Wiggs and co-authors suggested 2p16 as a potential 

locus for XFS (Wiggs et al. 1999). However, these results have remained unconfirmed. 
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Gene expression differences in anterior segment tissues (iris, ciliary processes, lens 

epithelium) of eyes with XFG have been investigated using three XFS-associated open 

angle or closed-angle glaucomas and three age-matched glaucomatous control eyes 

without XFS. In total, 23 genes with differential expression pattern were identified 

(Zenkel et al. 2005). Both upregulated genes, such as; latent transforming growth factor 

binding proteins (LTBP-1 and -2), cross-linking enzyme transglutaminase-2 (TGase-2), 

tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), A-kinase anchor protein-2 

(AKAP-2), apolipoprotein D, the adenosine receptor-A3 (AdoR-A3) and   fibrillin-1 and 

downregulated genes, such as; tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), 

clusterin, microsomal glutathione-S-transferase-1 (mGST-1) and serum amyloid A1, were 

found. Most of these genes were related to extracellular matrix metabolism and cellular 

stress. Some overlapping proteins with the gene expression data were identified in 

differential proteomic analysis of anterior lens capsules from cataract surgery patients 

with and without XFS (Ovodenko et al. 2007). This proteomic screen suggests that the 

lens capsules from XFS patients contains extracellular matrix and basement membrane 

structural and metabolic proteins such as fibulin-2, versican, syndecan-3, laminin, 

fibronectin and fibrillin-1. 

 

2.8.1  The LOXL1 gene on chromosome 15 

 

Recently, Thorleifsson and colleagues reported that the lysyl oxidase-like protein 1 

(LOXL1) gene on chromosomal region 15q24.1 is associated, possibly through XFS, with 

XFG in Icelandic and Swedish glaucoma patients (Thorleifsson et al. 2007). In the 

primary stage of the study a genome-wide association study with 304 250 SNPs was 

performed for 195 Icelandic glaucoma cases (90 POAG cases, 75 XFG cases and 30 

individuals with no precise classification) and 14 474 population controls. The strongest 

association to glaucoma was observed with allele T of rs2165241, located on the first 

intron of the LOXL1 gene. Further investigations revealed that this effect was strongest for 

XFG patients (OR = 3.40, P = 4.3 x 10 -12). The finding was replicated in Swedish 

material (200 POAG cases, 199 XFG cases and 198 controls), which resulted in similar 

association for XFG (OR = 3.78, P = 3.1 x 10-17) as in Icelandic material. An additional 55 

Icelandic  XFS  cases  showed  similar  association  with  rs2165241  as  XFG  cases  (OR  =  

3.18, P = 1.9 x 10-8). Subsequently, the association was tested in additional SNPs 

substantially correlated with rs2165241. Two non-synonymous SNPs, rs1048661 (R141L) 
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and rs3825942 (G153D), on exon 1 of the LOXL1 gene  showed  a  strong  association  to  

XFG in combined Iceland and Swedish material (OR=2.46, P=2.3x10-12 for  allele  G  of  

rs1048661 and OR=20.10, P=3.0x10-21 for allele G of rs3825942). These SNPs were in a 

substantial linkage disequilibrium (D’=1) and three of four possible haplotypes were 

found in study material (G/G, T/G, G/A). Haplotype G/A had the lowest estimated risk for 

XFG, whereas, relatively to G/A, the risk haplotypes G/G and T/G yielded OR=27.05 and 

OR=8.90 respectively. The individuals carrying two copies of G/G haplotype were 

estimated to have a 700 -fold higher risk than those carrying two copies of G/A haplotype 

and a 2.47 -fold higher risk than the population average. Two non-synonymous variations 

were estimated to account jointly for over 99% of all XFG cases. The high-risk haplotype, 

G/G, was present also in 50% of individuals in the general Swedish and Iceland 

population (25% in homozygous). 

 

Later on, strong association between LOXL1 SNPs and exfoliation phenotype was 

replicated in several Caucasian populations (Fingert et al. 2007a; Aragon-Martin et al. 

2008; Challa et al. 2008; Fan et al. 2008; Mossbock et al. 2008; Pasutto et al. 2008b; Yang 

et al. 2008), in Australian (Hewitt et al. 2008b), in African-Americans (Fan et al. 2008), 

and in Asian populations from Japan and India (Fuse et al. 2008; Hayashi et al. 2008; 

Mabuchi et al. 2008; Mori et al. 2008; Ozaki et al. 2008; Ramprasad et al. 2008). The 

LOXL1 SNP allelic frequencies in cases and controls and corresponding p-values in 

different populations are presented in Table 7.  
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Table 7. The LOXL1 gene risk allele frequencies for three SNPs and their corresponding p values in different populations. Frq. = frequency; 

XFS/XFG = unclassified XFS patients with or without glaucoma.

rs1048661 G (R141L)  rs3825942 G (G153D) rs2165241 T study origin 
 Frq in  

cases 
Frq in 
controls 

p-value Frq in 
cases  

Frq in 
controls 

p-value Frq in 
cases  

Frq in 
controls 

p-value  

Icelandic XFS 
XFG 

0.79 
0.83 

0.65 1.3x10-3 

1.8x10-6 
0.98 
0.99 

0.85 8.5x10-7 
4.1x10-9 

0.74 
0.75 

0.47 1.9x10-8 
4.3x10-12 

(Thorleifsson et al. 
2007) 

Swedish XFG 0.83 0.68 2.7x10-7 0.99 0.88 9.1x10-14 0.81* 0.54 3.1x10-17 (Thorleifsson et al. 
2007) 

Australian XFS 0.78 0.66 8.49x10-4 0.95 0.84 7.83x10-5 - - - (Hewitt et al. 
2008b) 

Austrian XFG 0.84 0.67 2.55x10-7 0.99 0.82 5.76x10-15 - - - (Mossbock et al. 
2008) 

German XFS 
XFG 

0.79 
0.84 

0.64 7.08x10-7 

1.40x10-15 
0.95 
0.95 

0.86 3.15x10-6 

4.78x10-9 
0.72 
0.77 

0.48 7.04x10-15 

1.74x10-26 
(Pasutto et al. 
2008b) 

Italian XFS 
XFG 

0.84 

0.82 
0.69 
 

0.0024 
0.0053 

1.00 

1.00 
0.82 5.08x10-8 

1.96x10-12 
0.80 
0.80 

0.515 8.79x10-7 
5.18x10-9 

(Pasutto et al. 
2008b) 

Iowa XFS/XFG 0.82 0.60 0.000036 0.99 0.88 0.0003 -  - - (Fingert et al. 
2007a) 

USA, Caucasian XFG 0.79 0.67 0.02 0.94 0.84 0.02 0.67 0.49 0.001 (Challa et al. 2008) 
USA, Caucasian, 
African-American 

XFS 
XFG 

0.80 
0.84 

0.72 0.12 
0.0031 

0.98 
0.99 

0.80 2.7x10-7 

1.3x10-13 
0.75 
0.76 

0.46 1.0x10-6 
1.5x10-10 

(Fan et al. 2008) 

USA, European 
(Caucasian) 

XFS 
XFG 

0.83 
0.85 

0.70 5.44x10-4 

2.53x10-6 
0.92 

0.99 
0.80 1.01x10-4 

5.59x10-13 
0.73 

0.75 
0.45 2.30x10-11 

4.17x10-17 
(Aragon-Martin et 
al. 2008) 

Indian XFS/XFG 0.72 0.63 0.16 0.92 0.74 0.0001 - - - (Ramprasad et al. 
2008) 

Japanese 
 

XFS 
XFG 

0.025 
0.042 

0.49 1.5x10 8 

1.7x10 12 
1.00 
1.00 

0.88 0.027 
5.2x10 3 

- - - (Fuse et al. 2008) 

Japanese XFS 
XFG 

0.02 
0.00 

0.46 1.7x10 11 

1.1x10 10 
1.000 
1.000 

0.86 1.3x10 3 

3.0x10 3 
- - - (Hayashi et al. 

2008) 
Japanese XFS/XFG 0.60 0.45 <0.0001 0.99 0.85 <0.0001 - - - (Mabuchi et al. 

2008) 
Japanese XFS 

XFG 
0.07 
0.04 

0.50 
 

3.39 x10–28 

1.44 x 10–34 
0.99 
0.99 

0.86 
 

1.49 x 10–7 

1.40 x 10–7 
0.02 
0.009 

0.10 
 

5.33 x 10–4 

4.76 x 10–6 
(Ozaki et al. 2008) 
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2.8.1.1 LOXL1 structure and function 
 

The product of the LOXL1 gene modifies elastin fibers that are major components of the 

intraocular lesions in XFG (Figure 5). The LOXL1 protein is a member of the lysyl 

oxidase family of proteins which catalyzes the oxidative deamination of lysine residues of 

tropoelastin that leads to the cross-linking of these residues and consequential formation 

of elastin polymer fibers (Liu et al. 2004; Lucero and Kagan 2006). The lysyl oxidase 

family of proteins has five members: LOX protein and four LOX-like proteins (LOXL1-

LOXL4). All of these have seven exons of which exons 2-7 are highly homologous and 

encodes the C-terminal catalytic domain of these proteins. The most sequence differences 

between genes resides on the first exon, which encodes the N-terminal pro-peptide of the 

protein, that binds to tropoelastine and fibulin-5, and directs the deposition of the enzyme 

onto elastic fibers (Liu et al. 2004; Thomassin et al. 2005), but is subsequently cleaved off 

for catalytic activation of the enzyme. Two non-synonymous SNPs, rs1048661 

(Arg141Leu) and rs3825942 (Gly153Asp) are located on the first exon of the LOXL1 

gene and thus lie on this pro-peptide of the protein (Figure 6). These sequence variants 

might change the role of pro-peptide either by modifying pro-peptide cleavage or 

disturbing interactions with substrates, like tropoelastin and fibulin-5.  

 

The LOXL1 gene is expressed in several ocular tissues (e.g. lamina cribrosa, lens 

epithelium, ciliary muscle, cornea, trabecular meshwork and optic nerve head astrocytes) 

(Urban et al. 2007) and extraocular tissues (e.g. lung, kidney, liver, heart, and muscle 

tissue) (Kenyon et al. 1993; Kim et al. 1995) of which all are known to be affected by 

accumulations of XFS material (Schlötzer-Schrehardt et al. 1992). Mice genetically 

knocked out of the LOXL1 protein display diffuse connective tissue associated changes 

including loose skin, vascular abnormalities and emphysematous changes with large 

alveolar spaces (Liu et al. 2004) as well as pelvic floor and urinary tract disorders 

associated  with  increased  pelvic  floor  laxity  (Liu  et  al.  2006)  secondary  to  failed  elastic  

fiber homeostasis. LOXL1 expression appears to diminish with age (Liu et al. 2006), 

which is interesting since XFS/XFG is an age-related disease. 
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Figure 5. A simplified model for the role of LOXL1 in elastogenesis.  Fibulin-5 binds 

both tropoelastin (TE) and LOXL1, thus bringing substrate (TE) and enzyme (LOXL1) 

into juxtaposition for polymer formation. LOXL1 converts TE into lysyl-deaminated 

form. ‘Activated’ TE associates with one another or deposits onto the existing polymer, 

followed by spontaneous covalent cross-linking. Fibrillin containing microfibrils act as 

scaffolds in this process guiding the cross-linking process and elastin deposition. TE = 

tropoelastin. Modified from Liu and colleagues 2004 (Liu et al. 2004). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The schematic representation the LOXL1 gene.  The  positions  of  the  two  

exonic SNPs (rs1048661, rs3825942) and one intronic SNP (rs2165241) are shown by 

arrows. 
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2.8.2  Other candidate gene studies 

 

Numerous functional candidate genes such as Oculomedin (OCLM) (Jansson et al. 2003a), 

adenosine A3 receptor (ADORA3) (Schlotzer-Schrehardt et al. 2005), glutathione S-

transferases (GSTs) (Yilmaz et al. 2005b), 5,10-methylenetetrahydrofolate reductase 

(MTHFR)  (Junemann et al. 2005; Turacli et al. 2005), apolipoprotein E (ApoE) (Yilmaz 

et al. 2005a), matrix metalloproteinases (MMPs) and tissue inhibitor of 

metalloproteinases (TIMPs) (Schlotzer-Schrehardt  et  al.  2003;  Ho et  al.  2005;  Zenkel  et  

al. 2005), clusterin (Zenkel et al. 2005; Zenkel et al. 2006; Burdon et al. 2008), and genes 

previously associated with OAG (MYOC, OPTN) (Jansson et al. 2003b; Abu-Amero et al. 

2008) have been investigated in XFS patients. However the role of these genes in 

XFS/XFG has remained uncertain (Sjöstrand et al. 2002; Jansson et al. 2003b; Jansson et 

al. 2003a). 
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3 AIMS OF THE PRESENT STUDY 

 
 
 
 
 

I To investigate the role of two glaucoma candidate genes, MYOC and OPTN, in 

glaucoma families originating from Southern Finland. 

 

 

II To analyse 14 genetic candidate loci for POAG in Finnish glaucoma families 

using the linkage analysis approach. 

 

 

III To analyse the role of the MYOC gene in a Finnish family with JOAG and 

POAG. 

 

 

IV To perform a genome-wide scan in a Finnish family with XFS, in order to 

identify susceptibility loci for XFS.  

 

 

V To investigate whether three single nucleotide polymorphisms in the LOXL1 

gene contain risk for Finnish XFS, XFG or POAG. 
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4 SUBJECTS AND METHODS 

 
 

4.1 Patients and families 

 

The  family  material  was  the  same  in  Studies  I  and  II  from  the  Tammisaari  region.  The  

family material used in Study III was collected via the Department of Ophthalmology of 

Helsinki University Hospital. The families and family members included in Studies IV 

and V were identified from the population-based study of Kökar. Sporadic glaucoma 

patients and unaffected individuals in Study V were collected from a private practice in 

Tammisaari (129 XFS/XFG, 64 POAG, 26 controls) and from the Eye Department of 

Helsinki University (12 XFS/XFG, 7 POAG). Anonymous, unexamined blood-donors 

from the Red Cross were used as population-based controls (Figure 7).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Number of patients and controls used in studies I-V. POAG = adult  onset  

primary open angle glaucoma, JOAG = juvenile-onset primary open angle glaucoma, XFS 

= exfoliation syndrome, XFG = exfoliation glaucoma, OHT = ocular hypertension, PDS = 

pigment dispersion syndrome, unaffected = ophthalmologically examined individuals with 

no evidence of OAG or XFS/XFG.  
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A comprehensive ophthtalmologic examination with dilatation was performed for all 

participants except the anonymous blood-donors. The familial and sporadic controls had 

no signs of glaucoma or exfoliation syndrome. 

 

The family material in Study I included eight unrelated families from Tammisaari region, 

three of them having POAG as the only diagnosis and five had both POAG and XFG or 

XFS  (Figure  8).  In  all  families,  the  inheritance  of  the  disease  resembled  that  of  the  

autosomal dominant trait. All family members over the age of 40 were invited to 

comprehensive ophthalmological examination. The phenotype was determined in a total 

of 136 family members and of these glaucoma was diagnosed in a total 53 (44 had POAG, 

7 had XFG and 2 had other types of glaucoma). Of these 136 family members eleven 

subjects,  8  POAG-,  2  XFG-  and  1  XFS-  patient,  representing  different  families,  were  

chosen for molecular genetic studies (Study I). 

 

The subjects for Study II were selected from the eight Finnish glaucoma families 

described in Study I. In total 92 samples were analysed; of these 27 were classified as 

POAG patients with narrow diagnostic category (liability class 1, LC1), 19 individuals 

having ocular hypertension or glaucoma suspicion were classified as affected with broad 

phenotypic classification (liability class 2, LC2) and 46 family members were categorized 

as unaffected. Family members classified to the unaffected category were 

ophthtlamologically examined. XFG was diagnosed in three patients and these individuals 

were included in unaffected category. 

 

The family material used in Study III consist of 52 family members of a six-generation 

family originating from Central Finland in which JOAG/POAG segregate in a fashion 

resembling autosomal dominant inheritance. Extensive clinical heterogeneity was present 

in this family. Of 52 family members 10 had juvenile or adult onset OAG (one of whom 

had NTG), 1 had XFG, 2 had pigment dispersion syndrome (PDS), 6 had ocular 

hypertension (OHT), 27 were unaffected relatives and data was not available for 6 family 

members. The unaffected family members were ophthlamologically examined and were 

found  to  be  without  POAG,  JOAG  or  OHT.  The  youngest  glaucoma  patient  was  

diagnosed at the age of 14 years and oldest at the age of 66 years (mean 34.3 years). 
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The family material of Study IV and V was based on a population-based study performed 

1960-62 by Professors Henrik Forsius and Aldur Eriksson on Kökar Island in the 

southwestern Finnish archipelago. In total 595 individuals (85% of population) were 

examined (mean age 64 years), of which 247 were over 50 years old (89 males/158 

females). Later the same population and earlier unexamined relatives were invited to 

several follow-up-studies. The latest, seventh, was arranged in 2001-02, when 

ophthalmologist Eva Forsman joined the study team. By that time, in total 530 individuals 

(237 males/293 females) over the age of 50 years (mean age of 63 years)  were examined 

at least once (76 XFS, 24 XFG, 12 POAG patients) (Forsman et al. 2007b). In addition to 

these, two women younger than 50 years were affected (one with XFS, and one with 

XFG).  Seventy-five of these 78 XFS positive individuals were linked to an extended 

pedigree with 332 examined subjects, in which XFS segregated in a fashion resembling 

autosomal dominant inheritance. XFS was present in 22% of the examined relatives 

within the family, compared to 14.5% in the whole island population. Over 40 years, the 3 

most recent generations were ophthalmologically examined several times. 

 

The subjects for Study IV were selected from the 183 Kökar inhabitants or descendants 

(28  XFS,  of  these,  9  had  XFG,  7  POAG  patients  and  148  unaffected  family  members)  

who had participated in the latest follow-up examination in Kökar Island. In all, sixty-four 

subjects  from the  family  were  analyzed;  of  these  28  had  XFS (mean age  70,  range  59  -  

90), of whom 9 had XFG, and 36 were ophthalmologically investigated family members 

with no evidence of XFS/XFG (mean age 75.3, range 51 - 94). The control group of 36 

unaffected relatives included 22 first degree and second degree relatives (siblings, uncles, 

aunts, cousins; mean age 77, range 63 - 90), 10 more distant relatives (mean age 80, range 

70-94), and four offspring (mean age 58, range 51 - 65). Furthermore, four glaucoma 

patients (1 with POAG and 3 with XFG) and 70 additional relatives (18 XFS, 6 XFG, 4 

POAG patients and 42 were unaffected relatives) from the Kökar population, were 

selected for the OAG candidate gene study. 

 

The study material for Study V consisted of sporadic case-control material of 238 subjects 

from Tammisaari region and family material of 120 family members from the extended 

family from the Kökar Island (Study IV). The case-control material contained 59 patients 

with XFS, 82 with XFG, 71 with POAG and 26 ophthalmologically examined individuals 

with no evidence of ocular disease (mean age 86 years, range: 81-93 years). A total of 404 
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unexamined Finnish blood donors from Salo (121), Lieksa (108) and Kurikka (175) 

parishes were used as anonymous population-based controls. The family material 

consisted of 19 XFS and 9 XFG patients along with 92 ophthalmologically examined 

unaffected relatives (mean age 63; range 32-92). The linkage analysis was performed for 

64 family members; of these, 28 were XFS/XFG affected (mean age 70; range 59-90) and 

36 were unaffected (mean age 75.3; range 51–94) (Study IV).  

 

4.1.1  Ethical aspects 

 

These studies were approved by the Ethical Committee of the Helsinki University Eye 

Hospital (Studies I, II, III, V) and by the Ethics Committee of the Åland Central Hospital 

(Studies IV, V). For collecting old clinical information for Study I the permission was 

given by Ministry of Social Affairs and Health. All studies were conducted in accordance 

with the Declaration of Helsinki and informed written consent was obtained from all the 

examined study subjects.  

 

4.1.2  Genealogical studies (I, II and IV) 

 

The information regarding the names and birth dates and places of birth of the patients‘ 

parents, grandparents and great grandparents were collected from all participants and were 

used to trace their ancestors back to the 1800s from local church and civil registers. The 

same questionnaire was used throughout the whole Study (IV) in the Kökar population. 

The genealogical study was performed as described earlier by Varilo and colleagues 

(Varilo et al. 1996). Microfilm and microfiche copies of the church records in the Finnish 

National Archives were used for earlier periods. Pedigrees were constructed with the 

CorelDRAW 11 program and Microsoft Office Power Point 2003 using the collected data. 
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4.1.3  Clinical definitions 

 

Clinical  definition of XFS (Studies I,  IV and V) was based on the presence of a greyish 

central disc with/without focal breaks, with/without a peripheral band on the anterior lens 

capsule, and/or fibrillary material on the pupillary ruff, observed after dilation and 

recorded  without  grading.  When  XFS  was  detected  at  least  in  one  eye,  the  subject  was  

defined as being XFS-positive. Suspect changes such as Krukenberg´s spindle and 

pigmentation of cornea endothelium, diffuse haze on the anterior capsule, were noted as 

XFS negative. 

  

The diagnosis  of  open  angle  glaucoma (Studies  I  and  II)  was  based  on  two of  the  three  

characters: 1) IOP > 22 mmHg, 2) presence of glaucomatous changes in the optic nerve 

head, and 3) glaucomatous visual field defect. The disc was considered as glaucomatous 

when one of the following was detected: localized thinning of the rim (notching), diffuse 

damage with cup-to disc ratios C/D > 0.6, or an asymmetry of > 0.2 in C/D between the 

eyes with equal size discs. Individuals were classified as glaucoma suspect if only one of 

the diagnostic criteria was fulfilled or if a disc haemorrhage was detected. Visual field 

defects were graded according to the definitions by Hodapp et al (Hodapp et al. 1993). 

 
In Study III subjects were classified as POAG/JOAG when glaucomatous disc and/or field 

defect and IOP  22 mmHg was detected. Persons were categorized as NTG when 

glaucomatous disc and field defect was detected, but IOP 22 mmHg was never 

documented. The optic disc was graded as glaucomatous in the presence of focal or 

generalized narrowing or disappearance of the neuroretinal rim with increased cupping or 

pallor of the disc. Ocular hypertension (OHT) was demonstrated when the disc, visual 

field, and retinal nerve fiber (NFL) were normal and IOP was 22 mmHg and subject was 

classified as normal when the disc, visual field, and NFL were normal and IOP was < 22 

mmHg. 
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4.2 Methods 

 

The methods used in the present study are listed in Table 8 and briefly summarized below. 

Methods are described in more detail in the original publications I to V. 

 
 
Table 8. Methods and statistical programs used in the original articles (I-V) 
 
Methods Software Original article 

Laboratory procedures   
DNA extraction  I, II, III, IV, V 
Polymerase Chain Reaction 
(PCR) 

 I, II, III, IV, V 

Agarose gel electrophoresis  I, II, III, IV, V 
PCR- sequencing  I, III, IV, V 
Electrophoresis ABI 3100/ABI 

377/ABI3730  
DNA sequencer  

I, II, III, IV, V 

Primer design Primer3 program 0.2 / 
0.4.0 

I, II, III, IV, V 

Analysis methods Analysis programs  

Sequencing Sequencher 4.0.5 / 
Sequencer 4.6 

I, III, IV, V 

Genotyping Genotyper 2.0 / 
Genemapper 3.0 

II 

Genotype error checking Pedcheck 1.1 II, IV, V 
Statistical methods Statistical programs  

Allele frequency calculations Downfreq 2.1 II, IV, V 
Heterogeneity testing, 
calculations of proportion of 
linked families  

Homog 3.35 II, IV, V 

Linkage analyses MLINK/LINKAGE II, IV, V 
Linkage analyses Analyze II, IV, V 
Multipoint linkage analyses Vitesse  IV     
Multipoint linkage analyses Superlink 1.6 V 
Multipoint linkage analyses Simwalk 2.83 IV    
Haplotype construction SNPHAP 1.2.1 V 
Haplotype construction FBAT 2.0.2c V  
Association analysis FBAT 2.0.2c  V 
Association analysis R-program, R 

package epitools 
V 
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4.2.1  Laboratory methods 

 

4.2.1.1 PCR-sequencing 
 

Genomic  DNA  was  extracted  from  peripheral  blood  with  a  DNA  purification  kit  

(PureGene® Gentrasystems, Minneapolis, MI) or with the standard phenol-chloroform 

procedure. Primer sequences were designed using the Primer3 program. The DNA of the 

study subjects was amplified by the polymerase chain reaction (PCR). The polymerase 

chain reaction conditions were as follows: 10 or 3 min at 95°C  followed by 35 cycles of 

the denaturation step: 40 s at 95°C, annealing step: 40 s at temperature specific for each 

primer (50-65°C), the elongation step: 1 min at 68 or 72 °C and final extension for 5 min 

at 72 °C. Sequencing was performed using cycle sequencing with the Big Dye Terminator 

kit (ABI, Foster City, CA, USA) and reactions were run on an ABI 3100 or ABI3730 

capillary sequencer. 

 

4.2.1.2 Genotyping 
 

Markers in Study II were selected from the Marshfield Medical Research Foundation map 

and  the  primer  sequences  were  from  the  Genome  Database  or  designed  by  the  Primer3  

program. Forward primers were labelled at the 5’ -end with the fluorescent dye (6-FAM, 

TET,  NED,  VIC,  PET,  HEX).  PCR-products  were  pooled  and  electrophoresed  on  an  

ABI3730 or ABI 377 DNA sequencer (Applera Corporation, Norwalk, CT). Genotypes 

were assigned using Genotyper 2.0 or Genemapper 3.0 software (Applera Corporation). 

All  microsatellite  and  SNP markers  used  in  this  study  (Studies  II,  IV,  V)  were  checked  

and corrected for Mendelian errors prior to analysis using the Pedceck program 

(O'Connell and Weeks 1998). 

 

4.2.2  Statistical analyses 

 

4.2.2.1 Linkage analysis 
 

The two-point linkage analyses were performed under both homogeneity and 

heterogeneity using the MLINK program of the LINKAGE package (Studies II, IV, V) 

(Lathrop and Lalouel 1984; Lathrop et al. 1986). The HOMOG 3.35 program was used to 
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test for heterogeneity and to calculate the proportion of families showing linkage ( ) (Ott 

1999). Allele frequencies were derived from the data by the DOWNFREQ 2.1 program 

(Terwilliger 1995).  

 

In Study II, an affected-only approach was taken due to late onset of this disease and lack 

of reliable penetrance ratios. The non-parametric option of SIMWALK2.83 was employed 

for multipoint analyses (Sobel and Lange 1996). In studies IV and V clinically unaffected 

family members (n=36) were scored as unaffected in analyses because their mean age at 

the time of the last examination was 75.3 years (range, 51–94) and because using an 

affected-only method would have led to substantial loss of information. However, in 

Study IV the affected-only analyses were also performed, in order to compare the models. 

Multipoint analyses were performed using Vitesse (Study IV) (O'Connell and Weeks 

1995; O'Connell 2001) or Superlink 1.6 (Study V) program (Fishelson and Geiger 2002; 

Fishelson et al. 2005). 

 
4.2.2.2 Association analysis 
 

In Study V, the association was measured by the Pearsons 2 –test with Yates’ continuity 

correction (in R-program). The odds ratios (OR) with 95% confidence intervals (CI) and 

Fisher’s exact p-values were estimated using R package epitools. Levins formula was 

used to estimate population attributable risk (PAR%). The association analysis was 

performed for case-control material using a total of 404 unexamined Finnish blood donors 

as anonymous population-based controls. Hardy-Weinberg was tested in cases and 

controls separately with the chi-square test (with 5% level of significance). In family 

material the association was measured in whole family material using independent 

XFS/XFG cases and unaffected relatives picked from the pedigrees. Haplotypes were 

constructed in case-control material using the SNPHAP 1.2.1 and in family material using 

the FBAT 2.0.2c program (Laird et al. 2000; Horvath et al. 2001). 
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5 RESULTS AND DISCUSSION 

 
 

5.1 Molecular genetic studies of OAG in Finnish glaucoma families 

 

In 2002 when we started molecular genetic studies of OAG, linkage studies had produced 

several candidate loci for OAG and first two candidate genes, MYOC and OPTN, had been 

identified. The MYOC gene was already confirmed glaucoma associated gene but the role 

of novel candidate gene, OPTN, was still unconfirmed. We wanted to investigate OPTN 

and MYOC genes and hitherto known candidate loci in Finnish glaucoma patients. 

Nowadays it is known that the MYOC and OPTN are not as common cause of glaucoma as 

originally thought. 

 

 

5.1.1       Exclusion of candidate genes and loci (I, II) 

In order to screen OAG candidate genes for mutations in eighth Finnish glaucoma 

families, all coding regions and respective exon-intron boundaries of the MYOC and 

OPTN genes were sequenced from the genomic DNA of eleven individuals; eight POAG-, 

two XFG- and one XFS patient, representing different families (Figure 8). No disease 

associated variants in the coding regions or splice sites of the MYOC or OPTN genes were 

identified. Instead, two polymorphisms in the MYOC gene (Tyr347Tyr, Arg76Lys) and 

three in the OPTN gene (Thr34Thr, Glu163Glu, 553-5C) were detected (Figure 8, Table 

9). Synonymous polymorphism Tyr347Tyr in the MYOC gene was found in a mother with 

XFG and her son with POAG and non-synonymous polymorphism Arg76Lys was present 

in one of eight POAG patients. In the OPTN gene, synonymous polymorphism Thr34Thr 

was detected in 6 of 11 subjects, of whom 4 had POAG, 1 had XFG, and 1 had XFS. Yet, 

synonymous polymorphism Glu163Glu was identified in one XFG patient and a novel 

intronic variation 553-5C was detected in 7 of 11 subjects, of whom 5 had POAG, one had 

XFG, and one had XFS. Even though intronic variation is located near the exon-intron 

boundary it does not change splice sites or make any splice site-like formation. 

 

. 
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Figure 8. Pedigrees for Finnish glaucoma families originating from Tammisaari. 

Three of the families had POAG as the only diagnosis and five had both POAG and XFG. 

Disease was inherited resembling autosomal dominant model with reduced penetrance in 

all families. An asterisk (*) indicates that the MYOC and OPTN genes were sequenced. 

Polymorphisms in the MYOC or OPTN genes are marked in the families by arrows. The 

age  of  diagnosis  (for  affected  individuals)  or  age  at  examination  is  presented  below the  

symbol.  

 

Gene Polymorphism Position POAG XFG XFS 
MYOC 

 Tyr347Tyr exon 3/3 1 1  
 Arg76Lys exon 1/3 1   

OPTN 
 Thr34Thr exon 4/16 4 1 1 
 Glu163Glu exon 6/16  1  
 553-5C intron 6 5 1 1 

Table 9. Polymorphisms in the MYOC and OPTN genes 
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Study  II  was  designed  to  further  examine  the  cause  of  OAG  in  the  eight  glaucoma  

families, in which susceptibility variants in the MYOC and OPTN genes were excluded 

(Study I). Fourteen hitherto reported candidate regions, including loci for the MYOC and 

OPTN genes, were analysed in the families (Table 10). Loci for the MYOC and OPTN 

genes were analysed in order to exclude intronic and promoter region variants of these 

genes.  In  total  92  family  members,  of  whom 27 were  classified  as  POAG patients  with  

narrow diagnostic category (liability class 1, LC1), 19 having ocular hypertension or 

glaucoma suspicion were classified as affected with broad phenotypic classification 

(liability class 2, LC2) and 46 diagnosed as unaffected were genotyped using 35 

microsatellite markers on 14 candidate regions. Linkage was tested using the affected-

only approach, autosomal dominant inheritance model, low phenocopy rate and rare 

disease allele frequency. 

 

No evidence for linkage was found in any of the analysed loci in two point or multipoint 

linkage analyses (Table 10). The slightly interesting locus in the analyses was GLC1D on 

chromosome 8q23, in which two markers, D8S257 and D8S1471, locating 12cM apart, 

provided slightly positive pair-wise LOD scores of 0.27 (LC1, dominant model) and 1.24 

(LC2, dominant model), respectively. However, the surrounding markers did not give any 

evidence of linkage. Neither non-parametric multipoint analysis on the GLC1D locus 

yielded increased LOD scores. The increased pair-wise LOD scores were most likely 

overestimates,  probably  due  to  recombinations,  which  were  not  shown  in  the  two-point  

analysis but were revealed in the multipoint analysis. 
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Region Loci Gene Zmax LC  Reference 

1q21–q31 GLC1A MYOC 0.625     LC2 (Sheffield et al. 1993; 
Stone et al. 1997). 

2cen–q13 GLC1B  0.001     LC1 (Stoilova et al. 1996)  

2q33-q34   0.125     LC2 (Nemesure et al. 2003) 

2p14   0.002     LC2 (Wiggs et al. 2000) 

3q21–q24 GLC1C  0.094     LC2 (Wirtz et al. 1997) 

7q35–q36 GLC1F  0.000 - (Wirtz et al. 1999) 

8q23 GLC1D  1.243     LC2 (Trifan et al. 1998) 

10p12-p13   0.323 LC2 (Nemesure et al. 2003) 

10p14–p15 GLC1E OPTN 0.600     LC2 (Sarfarazi et al. 1998; 
Rezaie et al. 2002) 

14q11   0.000     - (Wiggs et al. 2000)   

14q21-q22   0.124     LC2 (Wiggs et al. 2000) 

17q25   0.019     LC2 (Wiggs et al. 2000) 

17p13   0.111     LC2 (Wiggs et al. 2000) 

19q12-q14   0.087     LC1 (Wiggs et al. 2000) 

Table 10.  Highest two-point heterogeneity lod score (LodHet) obtained from each 

analysed candidate locus. LOD scores are maximized over recombination fractions ( ) 

ranging from 0 to 0.5. LOD scores with the diagnostic classification (LC) that yielded the 

highest LOD score are shown.  

 

5.1.2  Susceptibility mutation in the MYOC gene (III) 

 

Sequencing the coding region and the exon-intron boundaries of the MYOC gene resulted 

in the identification of a cytosine to thymine (C>T) transition at nucleotide 1130 in the 

third exon of the MYOC gene in the family proband (IV-23 in Figure 9). The mutation 

leads to substitution of the threonine residue with methionine (Thr377Met) in the 

olfactomedin like domain of the myocilin protein. To examine the segregation of the 

mutation in the family, the DNA of a total of 52 family members was analysed. The 

Thr377Met segregated in the right branch of the pedigree, in which 20 of 44 individuals 

older than 12 years carried the mutation. Of these 9 (45%) were glaucomatous (8 high 

pressure glaucoma and 1 normal tension glaucoma) and 2 (10%) had ocular hypertension 
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(OHT), demonstrating a wide clinical intrafamilal heterogeneity. The mean age at 

diagnosis of glaucoma was 34.3 years (range: 14-66 years) and seven of nine patients had 

glaucoma before the age of 35 years. No evidence of glaucoma was identified in 9 

mutation carriers (ages 12-61, mean 38.3), some of them at the age when disease could 

have manifested. A sixty-one-year old unaffected family member with Thr377Met 

mutation was the oldest hitherto reported unaffected mutation carrier. In total 24 family 

members did not carry Thr377Met and of these one (IV-34) had JOAG, three had OH and 

one had pigment dispersion syndrome (PDS). None of the eight individuals in the left 

branch of the family carried the mutation (Figure 9).  

 

The  age  of  onset  was  the  earliest  hitherto  described  with  the  Thr377Met  mutation;  the  

youngest patient was diagnosed at the age of 14 years. The penetrance of Thr377Met 

mutation in the family was 5% in family members under the age of 15 years, 35% at the 

ages 16-35 years, 40% at ages 36-50 years and 45% over 50 years. 

 

 

 
 

 

 

Figure  9. The pedigree of the glaucoma family with Thr377Met mutation in the 

MYOC gene. The Thr377Met mutation segregates on the right branch of the family. 
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5.1.3  Discussion of genetic basis of glaucoma (I, II, III) 

 

The prevalence of glaucoma in the families included in studies I and II was 35% among 

examined first and/or second degree relatives, corresponding to previous reports (Shin et 

al. 1977; Lindberg 1989; Nemesure et al. 1996). The proportion of glaucoma suspects was 

even 28% among family members considered unaffected. Although the genetic 

contribution was clear and glaucoma segregated in a fashion resembling autosomal 

dominant inheritance in all families, the genetic background underlying glaucoma 

remained unidentified. No functional variants in the MYOC and OPTN genes  were  

established and linkage was not observed for any of the 14 OAG candidate loci. 

Preliminary results for the most recently identified candidate gene WDR36 suggest that 

neither it has a major role in the glaucoma in the families (unpublished data). These 

negative results confirm previous results from other populations, where hitherto known 

candidate genes and loci have been shown to be a rare cause glaucoma (Libby et al. 2005; 

Fan et al. 2006a). At the same time, the results encourage a search for novel susceptibility 

genes for glaucoma. These results are suggestive due to the small number of analysed 

families, but as the first molecular genetic studies of OAG in Finland this was the first 

step in a new era.  

 

The results of Study III provided the first molecular genetic explanation for glaucoma in 

Finland. The glaucoma associated mutation Thr377Met in the MYOC gene segregated 

with the disease in the Central Finnish JOAG/POAG family. For this glaucoma family the 

most important effect of identifying susceptibility mutation is enabling accurate screening 

of risk individuals before they show any manifestation of the disease and hence 

facilitating early diagnosis and follow-up for family members at risk. The finding of a 

causative variant enables the treatment of glaucoma on time, which is important in such a 

late-onset, insidiously progressing disease. 

 

The finding of the Thr377Met mutation in the glaucoma family confirmed the 

contribution of the MYOC gene to the pathogenesis of glaucoma also in the Finnish 

population. It has been hypothesized that the Thr377Met has been introduced to Finland 

from the East, the connection is at least 1,500 years old, from when the Finno-Ugric 

(Huns) people migrated from Central Asia (Hewitt et al. 2007). Thus far, the Thr377Met 

mutation has been reported at least in 14 studies, mainly in JOAG or POAG patients with 
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Caucasian ethnicity, but also in patients originating e.g. from India, Morocco and 

Macedonia (Wiggs et al. 1996; Allingham et al. 1998; Alward et al. 1998; Wiggs et al. 

1998; Fingert et al. 1999; Simm et al. 1999; Shimizu et al. 2000; Wiggs and Vollrath 

2001; Vincent et al. 2002; Kanagavalli et al. 2003; Mackey et al. 2003; Melki et al. 2003b; 

Wilkinson et al. 2003; Petersen et al. 2006) (myocilin allele-specific glaucoma phenotype 

database). The disease type is similar in patients with the Thr377Met mutation in most of 

the studies. The varying age of onset, demonstrated in the present study (mean: 34.3 years, 

range: 14-66), has been detected also in previous studies (mean 39.9 ± 13.1 years) 

(myocilin allele-specific glaucoma phenotype database). Severe disease type in the family, 

leading in surgical procedures in 56% glaucomatous mutation carriers correspond 

previous  studies,  where  c.a.  53%  of  the  cases  required  trabeculectomy  (myocilin  allele-

specific glaucoma phenotype database). Incomplete penetrance of the Thr377Met 

mutation has been reported in several studies (Alward et al. 1998; Mackey et al. 2003) 

(myocilin allele-specific glaucoma phenotype database). In the present study Thr377Met 

was found in nine non-glaucomatous family members, but was missing in one JOAG 

patient, indicating that other genetic or environmental factors may contribute to the 

pathogenesis of OAG. 

 

According to the myocilin database Thr377Met mutation accounts for approximately 

5.6% of diseases causing variants in the MYOC gene (myocilin allele-specific glaucoma 

phenotype database). Both Thr377Met mutation and Tyr347Tyr polymorphism (Study I) 

lie within  the olfactomedin-like domain where majority of  glaucoma associated MYOC 

variants are located (Adam et al. 1997; Stone et al. 1997; Suzuki et al. 1997). The 

olfactomedin-like region shows strong sequence homology to a protein found in the 

neuro-olfactory epithelium of the nose, called olfactomedin (Snyder et al. 1991; Nguyen 

et al. 1998). The amino acid Thr377 is the phosphorylation substrate of the casein kinase 

II  (CK2)  -site  and  its  phosphorylation  is  important  for  normal  myocilin  function.  It  has  

been predicted that the Thr377Met mutation does not make a structural change to the 

myocilin  protein,  but  alters  this  target  residue  of  a  conserved  CK2  motif  (Rozsa  et  al.  

1998). The Thr377Met alteration changes the polarity and the putative phosphorylation 

substrate itself, presumably eliminating phosphorylation of Thr377 at the CK2-site (Rozsa 

et al. 1998). The Arg76Lys polymorphism (Study I) lies outside of both olfactomedin 

domain and leucine zipper region and has been classified as non-causative because of its 
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similar  frequencies  in  both  POAG cases  and  controls  (Alward  et  al.  1998;  Fingert  et  al.  

1999).  

 
 
5.2  Molecular genetic studies of XFS and XFG in Finnish patients 

 

During the last year there has been remarkable progress in the field of molecular genetics 

of XFS and XFG, although the pathogenesis is still poorly understood. In year 2002, when 

we started molecular genetic studies of XFS and XFG the information of the genetic 

background underlying XFS and XFG was limited. Chromosomal regions 2p16, 2p14-

2cen and 2q35-q36  had been suggested as possible candidate loci for OAG but results 

had remained unconfirmed (Sotirova et al. 1999; Wiggs et al. 1999). To identify genetic 

susceptibility loci for XFS we performed the genome wide scan for an extended Finnish 

XFS family (Figure 10). Shortly after we had published the results of the genome-wide 

scan, an Icelandic study group reported a strong association between three LOXL1 gene 

SNPs and XFS and XFG in the Scandinavian populations. The association was 

subsequently replicated in several other populations. As we were interested in whether the 

LOXL1 gene SNPs confers risk to Finnish XFS, XFG or POAG, we analysed the SNPs in 

Finnish patient and control cohorts. 

 

5.2.1  Genome-wide scan of XFS (IV) 

 

The genome-wide scan of exfoliation syndrome using 1104 microsatellite markers evenly 

distributed in the genome was performed for 64 family members of an extended XFS 

family; of these 28 were XFS affected (mean age 70, range 59-90), of whom 9 had XFG, 

and 36 were unaffected (mean age 75.3, range 51 - 94). Seven markers at chromosomal 

regions 2q32.3, 5q33.3, 17p13.3, 18q12.1-21.33 and Xp22.2 suggested evidence for 

linkage (Zmax dom >1.5) (Table 11). Moreover, seventeen markers (at regions 1q, 4p, 4q, 5p, 

7p, 7q, 10p, 10q, 13q, 15q, 16q, 19q, Xp, Xq) exceeded a two-point LOD score of 1.0 

(dominant/recessive model). The most promising chromosomal region was located at 

18q12.1-21.33, where marker D18S468 produced the highest two-point LOD score of 

3.45 (dominant model). Four markers surrounding the best marker exceeded a two-point 

LOD score of 1.0; D18S1135 (Zmax dom=1.39), D18S450 (Zmax dom =1.49), D18S64 (Zmax 

dom =1.70) and D18S1147 (Zmax dom =1.68) (Table 11). Four additional markers on the 
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region produced LOD score > 0.5 and three markers yielded LOD score > 0.2. Combining 

information from adjacent markers; D18S1102–D18S468, D18S468–D18S1143, and 

D18S1143–D18S450 in the best region produced maximum three point LOD scores of 

1.85, 2.28, and 1.73, respectively. Markers D181135 and D18S468, located 5 cM apart, 

yielded  the maximum three-point LOD score of 2.80 and by using markers D18S468 and 

D18S450, located 8 cM apart, the highest three-point LOD score of 4.33 was obtained. 

The locus 18q12.1-21.33 extends 30.9 cM or 27.1 Mb, with markers D18S1135 and 

D18S1147 defining flanking boundaries at 58 - 89cM or 30.4 - 57.6 Mb (UCSC Human 

Genome Browser). An interesting detail was that one allele on the best marker D18S468 

was found more often (37%) in XFS affected than in unaffected (26%) whereas another 

allele was more often present in XFS unaffected (34%) than in affected (25%) individuals.  

 

 

Marker Location Position 
(cM) 

Zmax -value -value 

D2S117 2q32.3 199 1.725 0.06 1.00 
D5S2049 5q33.3 166 1.605 0.00 1.00 
D17S849 17p13.3 0.07 1.911 0.04 1.00 
D18S1135 18q12.1 58 1.385 0.14 1.00 
D18S468 18q12.3 63 3.446 0.04 1.00 
D18S450 18q21.1 71 1.491 0.08 1.00 
D18S64 18q21.32 84 1.695 0.08 0.84 
D18S1147 18q21.33 89 1.682 0.12 0.83 
DXS7108 Xp22.2 20 1.519 0.12 1.00 

 

Table 11. Highest two-point LOD scores. Markers  with  Zmax dom>1.5 on the whole 

genome wide scan and markers with Zmax dom>1.0 on the locus 18q12.1-21.33. The LOD 

scores are maximised over recombination fractions ( ) ranging from 0 to 0.5.  ranging 

from 0 to 1.0 indicates the proportion of families showing linkage. 

 

In order to screen glaucoma candidate genes for mutations in the family, we sequenced 

coding regions and respective exon-intron boundaries of OPTN and MYOC genes from the 

genomic DNA of four family members (3 with XFG and 1 with POAG). All  three XFG 

patients had Arg76Lys change, the variation that has previously been reported as a non-

disease causing polymorphism (Alward et al. 1998), in the first exon of MYOC gene 
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(Figure 10). One XFG patient had Met98Lys variation in the fifth exon of the OPTN gene 

(Figure 10). The Met98Lys variant was found also in one of two sons and in two nephews 

of the index case. None of the mutation carriers, except for the index case, had any 

symptoms of XFS/XFG or POAG at the time of the examination (age, 40–61 years). The 

variation was not found in the additional 67 family members, of whom 18 had XFS, 6 had 

XFG, 4 had POAG and 39 were healthy relatives. The Met98Lys was initially defined a 

risk-associated variant (Rezaie et al. 2002), but due to the following contradictory results 

its role in OAG is still unclear (Ayala-Lugo et al. 2007).  

 

 

 

 

 

 
 

 

 

 

 

 

Figure 10. The pedigree of the Finnish XFS family. The family was divided into five 

subfamilies in order to perform linkage analysis. Three last generations have undergone 

ophthalmological examination. Individuals included in the genome wide scan are marked 

by asterisks (*). Sequence alterations in MYOC (Arg76Lys) and OPTN (Met98Lys) genes 

are shown by arrows and symbols “M” and “O”.  
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5.2.2       Association of the LOXL1 gene variants to the XFS and XFG (V) 

 

The fifth study was designed to investigate whether three single nucleotide 

polymorphisms (SNPs) in the lysyl oxidase-like 1 gene (LOXL1) are associated to Finnish 

XFS, XFG or POAG. Three SNPs, rs1048661 (R141L), rs3825942 (G153D) and 

rs2165241, were genotyped from the genomic DNA of study subjects from sporadic case-

control material and family material from Kökar island (Study IV). All three SNPs were 

significantly associated with XFS and XFG, but not with POAG, in Finnish patients. The 

risk allele T of intronic SNP rs2165241 was preferentially present both in the sporadic ( 2 

test, p=2.62x10-13) and familial XFS and XFG cases ( 2 test, p<0.0001), compared to the 

blood donor controls or unaffected family members, respectively (Table 12). Similarly, 

the risk allele G of exonic SNPs rs1048661 was significantly associated with XFS and 

XFG both in sporadic cases when compared to blood donor controls ( 2 test, p=2.65x10-5) 

and in familial cases when compared to unaffected family members ( 2 test, p=0.0007). 

The  highest  odds  ratio  of  6.43  was  obtained  with  the  allele  G  of  the  coding  SNP  

rs3825942 in sporadic case-control material (Table 12). Interestingly, allele G of 

rs3825942 was overrepresented in sporadic XFS and XFG cases when compared to the 

blood donor controls ( 2 test, p=2.24x10-8), but was present with an equally high 

frequency both in familial XFS/XFG cases and in unaffected family members (Table 12).  

Presumably, genotype TT of the intronic SNP rs2165241 showed the strongest association 

to  XFS  and  XFG  ( 2 test, p=6.92x10-11), although association of genotypes GG of 

rs1048661 and rs3825942 was also remarkable ( 2 test, p=5.61x10-5 and p=8.88x10-8, 

respectively) in sporadic cases when compared to blood donor controls.  

The haplotype GG of two coding SNPs, rs1048661 and rs3825942, was the most 

outstandingly overrepresented in sporadic XFS and XFG cases ( 2 test p=9.11x10-16) but 

not in POAG cases ( 2 test, p=0.98) compared to the blood donor controls (Table 13). The 

risk haplotype GG was present in 95% of sporadic XFS/XFG patients (of these 70% were 

GG homozygous) and in 72% of unexamined blood donor controls (of whom 40% were 

homozygous). Other two coding locus haplotypes, TG and GA, were underrepresented in 

XFS/XFG cases compared to blood donor controls (freq. 0.17 versus 0.31, 2 test, 

p=1.61x10-5 and freq. 0.03 versus 0.18, 2 test, p=4.32x10-9, respectively). Interestingly, 

one XFS patient homozygous for GA haplotype was identified. When haplotypes GG and 
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TG were compared to GA haplotype odds ratios of 9.37 (p=2.46x10-14) and 3.16 

(p=0.002) respectively were obtained (Figure 11).  

 

The three-locus haplotype GGT was highly overrepresented both in the sporadic 

XFS/XFG group ( 2 test, p=5.97x10-14) compared to unexamined blood donor controls and 

in familial XFS/XFG group compared to unaffected family members ( 2 test, p=0.0001). 

(Table 12, Table 13). As expected, association for POAG was not observed (Table 13). 

Approximately 93% of the sporadic XFS/XFG cases carried the risk haplotype GGT (of 

these 59% were GGT homozygous), whereas 69% of unexamined blood donors had GGT 

haplotype (34% homozygous). Both TGC and GAC haplotypes were underrepresented in 

sporadic XFS/XFG cases compared to blood donor controls (freq. 0.16 versus 0.30, 2 test, 

p=2.79x10-5 and freq. 0.02 versus 0.18, 2 test, p=2.19x10-10, respectively) (Table 13). 

Again one aforementioned XFS patient was found homozygous for the low risk haplotype 

GAC. Comparison of GGT and TGC haplotypes relative to GAC haplotype in sporadic 

XFS/XFG cases yielded odds ratios of 14.91 (p=1.67x10-16) and 4.98 (p=0.00018), 

respectively (Figure 11). 

 

In the sporadic case-control material population attributable risks (PARs) for alleles G of 

rs1048661 and rs3825942 and T of rs2165241 were of 45%, 82%, 50%, respectively and 

the corresponding genotype risks were 50%, 79%, and 62%, respectively. The PAR value 

for the two-locus haplotype GG was 60% and for the three-locus haplotype GGT was 

52%. 

 

In the original genome-wide scan of XFS, the area around LOXL1 showed a suggestive 

LOD score of 1.19 ( =0.10, =1.00), with marker D15S1032 at region 15q21.2, locating 

some 21cM apart from the aforementioned SNPs on the LOXL1 gene (Study IV). Yet, the 

nearest markers of the LOXL1 gene did not show any hint of linkage. Two-point and 

multipoint linkage were calculated in LOXL1 SNP genotypes, by adding the familial 

LOXL1 SNP genotype data with chromosome 15 microsatellite genotype data from the 

genome  wide  scan  (Study  IV).  No  significant  two-  or  multipoint  LOD  scores  were  

obtained with any of three LOXL1 SNPs, or with the surrounding markers.  
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Table 12. Upper part: Risk allele counts, frequencies, odds ratios with 95% confidence interval and their corresponding p-values at three LOXL1 SNPs, rs1048661 (R141L), rs3825942 

(G153D) and rs2165241, in the sporadic case-control material are presented. Anonymous, unexamined blood donors were used as controls. Lower part: Risk allele and haplotype 

frequencies and allele and haplotype associations in the family material from Kökar island. Association is measured by 2 test using independent XFS/XFG cases and unaffected relatives 

picked from the pedigrees. 2 test statistic and p-values were calculated for combined three-locus haplotype GGT compared to all the other haplotypes. Frq=frequency, OR= odds ratio.  

 rs1048661 G (R141L) rs3825942G (G153D) rs2165241 T 
Study Groups 
(n) 

Frq.  
(counts) 

OR  
(95% CI) 

p-value Frq. 
(counts) 

OR  
(95% CI) 

p-value Frq. 
(counts) 

OR  
(95% CI) 

p-value 

Finnish case-control material 
blood donor 
controls (404) 

0.68  
(444/650) 

  0.82 
(535/650)  

  0.47 
(296/632) 

  

exfoliation 
combined (141) 

0.83 
(208/252) 

2.19  
(1.53-3.18) 

1.47 x10-5 0.97 
(244/252)  

6.43 
 (3.29-14.60) 

4.82x10-10 0.73 
(205/280) 

3.10  
(2.28-4.23) 

7.36x10-14 

XFS (59) 0.82 
(82/100) 

2.10 
(1.25-3.40) 

0.0048 0.94 
(94/100)  

3.29  
(1.52-8.67) 

0.0020 0.72 
(85/118) 

2.91  
(1.91-4.54) 

4.12 x 10-7 

XFG (82) 0.83  
(126/152) 

2.24 
(1.44-3.59) 

0.00032 0.99 
(150/152)  

14.97 
(4.69-98.14) 

2.43 x10-9 0.74 
(120/162) 

3.23  
(2.22-4.79) 

4.12 x 10-10 

POAG (71) 0.69  
(93/134) 

1.05 
 (0.71-1.59) 

0.84 0.79 
(107/136) 

0.79 
 (0.51 -1.27) 

0.33 0.46 
(64/140) 

0.96  
(0.66-1.38) 

0.85 

Finnish family material 
Study Groups Frq.  2 test 

statistic  
p-value 
 

Frq.  2 test 
statistic  

p-value Frq.  2 test 
statistic  

p-value 
 

unaffected  
 

0.45 
 

  0.93 
 

  0.40 
 

  

exfoliation 
combined 

0.79 
 

11.55 
 

0.0007 0.98 
 

0.49  0.79 
 

15.21 
 

<0.0001 

 Combined haplotype GGT 
unaffected  0.38 

 
   

exfoliation 
combined 

0.77 
 

14.77 0.0001  
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  XFS XFG exfoliation 
combined 

POAG blood donor 
controls 

rs1048661 rs3825942  
G G freq: 

p-value: 
OR (95% CI): 

0.78 
1.42x10-7 

3.40 (2.13-5.63) 

0.82 
3.67x10-13 
4.45 (2.90-7.04) 

0.80 
1.12x10-16 
3.97 (2.83-5.67) 

0.50 
0.92 
0.98 (0.67-1.42) 

0.51 

T G freq: 
p-value: 
OR (95% CI): 

0.17 
0.0024 
0.44 (0.25-0.74) 

0.17 
0.00026 
0.44 (0.27-0.69) 

0.17 
9.07x10-06 
0.44 (0.30- 0.64) 

0.29 
0.68  
0.90 (0.59-1.35) 

0.31 

G A freq: 
p-value: 
OR (95% CI): 

0.06 
0.00052 
0.27 (0.10-0.59) 

0.01 
7.45x10-10 

0.062(0.01-0.20) 

0.03 
8.82x10-11 
0.14 (0.06-0.28) 

0.20 
0.62  
1.14 (0.71-1.81) 

0.18 

T A freq: 
p-value: 
OR (95% CI): 

0.00 0.00 0.00 0.007 0.00 

Combined haplotypes 
GGT freq: 

p-value: 
OR (95% CI): 

0.74 
9.02x10-8 

3.34 (2.13-5.39) 

0.74 
2.32x10-10 

3.39 (2.30-5.10) 

0.74 
1.66x10-14 

3.38 (2.45-4.69) 

0.46 
1 
0.99 (0.68-1.44) 

0.46 

TGC freq: 
p-value: 
OR (95% CI): 

0.17 
0.0034 
0.46 (0.26-0.78) 

0.16 
0.00033 
0.44 (0.27-0.69) 

0.16 
1.66x10-5 

0.45 (0.31-0.65) 

0.29 
0.84 
0.94 (0.62-1.41) 

0.30 

GAC freq: 
p-value: 
OR (95% CI): 

0.03 
8.14x10-6 

0.14 (0.03-0.37) 

0.01 
1.32x10-9 

0.06 (0.01-0.20) 

0.02 
4.96x10-13 

0.09 (0.03-0.20) 

0.20 
0.54 
1.16 (0.71-1.83) 

0.18 

GGC freq: 
p-value: 
OR (95% CI): 

0.04 
1.00 
0.83 (0.23-2.21) 

0.08 
0.15 
1.75 (0.83-3.52) 

0.06 
0.39 
1.35 (0.69-2.57) 

0.04 
1.00 
0.97 (0.35-2.28) 

0.05 

TGT freq: 
p-value: 
OR (95% CI): 

0.00 
1.00 
1.12 (0.04-7.35) 

0.006 
1.00 
0.78 (0.03-5.11) 

0.004 
0.67 
0.46 (0.02-3.00) 

0.00 
 
 

0.009 

GAT freq: 
p-value: 
OR (95% CI): 

0.03 
0.02 
14.27 (1.64-411.64) 

0.00 
 

0.01 
0.10 
5.76 (0.67-165.75) 

0.00 
 
 

0.002 

TAT freq: 
p-value: 
OR (95% CI): 

0.00 
 

0.00 
 

0.00 
 

0.007 
 

0.00 
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Table 13.  Two- and three-loci haplotype frequencies formed by LOXL1 SNPs, rs1048661 (R141L), rs3825942 (G153D) and rs2165241, 

their odds ratios with 95% confidence interval and corresponding p-values in the sporadic case-control material are provided. Unexamined 

blood donors were used as population-based controls. The odds ratios and p-values were calculated for each individual haplotype compared 

to all the other haplotypes. Frq=frequency, OR= odds ratio.  

 

 

Figure 11. The association of two-locus 

haplotypes    GG,  TG  and  GA  of  (SNPs  

rs1048661 and rs3825942) to a) XFS b) 

combined XFS and XFG cohort and three-locus 

haplotypes  GGT,  TGC  and  GAC  (SNPs  

rs1048661, rs3825942 and rs2165241) to c) XFS 

d) combined XFS and XFG patient material. The 

figures depict pairwise comparisons between the 

haplotype box. Haplotype frequencies in 

sporadic cases and unexamined blood donor 

controls are shown in parentheses below each 

haplotype box. 
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5.2.3  Discussion of the genetic basis of XFS and XFG (IV, V) 

 

The ophthalmologically well-characterized and relatively isolated population of Kökar 

provided a suitable material for the search for genetic susceptibility loci for XFS and 

XFG. The small population size has made it possible to examine and follow-up nearly all 

inhabitants of the island during the last 40 years. It can be hypothesized that the Kökar 

population is characterized by genetic and environmental homogeneity that should make it 

easier to identify common predisposing alleles that are identical by descent (IBD). Despite 

the common nature of the XFS and the high prevalence of the syndrome in elderly (over 

the age of 70 years) in the mainland of Finland (22%) and in Kökar (18.4%), the 

possibility of a founder effect in the family could not be excluded. Nearly all the 

examined XFS positive individuals on the island were linked to an extended pedigree, in 

which XFS segregated in a fashion resembling autosomal dominant inheritance. XFS was 

present in 22% of examined family members within the family.  

The genetic mapping approach was utilized to investigate the genetic background of XFS 

in the Kökar family (study IV). However, a large and inbred family with complex and 

late-onset disease was not an easy combination for linkage analysis. Most of the nowadays 

linkage software packages are not capable of analysing such an extended family as a 

whole and thus family had to be divided into five subfamilies leading to substantial loss of 

linkage information. Moreover, the family contained several internal links, meaning that 

many family members were related to each other through many routes, which made loop 

structures and provided an extra challenge for linkage analysis. Although detailed 

phenotypes were available even from the three most recent generations, DNA was mostly 

available from the first and second generations and only three genotyped parent-offspring 

pairs existed in the family. It is obvious that with the sample size available it was possible 

to locate only variants with relatively strong effects. 

The most promising region in the genome-wide scan at 18q12.1-21.33 is considerable in 

size, extending 30.9 cM or 27.1 Mb and containing approximately 150 genes with known 

or unknown functions (UCSC Human Genome Browser, Ensembl Genome Browser). 

Most of these genes are also expressed in the eye at some level. Some interesting genes 

expressed in ocular tissues are listed in Table 14. Selecting candidate genes for XFS/XFG 

is difficult because of the systemic nature of the disease. XFM is detected also in non-
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ocular tissues and the candidate gene might have quite a ubiquitous expression. Genes 

related to aging might be interesting candidates. Mitochondrial dysfunction is associated 

with aging and mitochondria are implicated in the pathogenesis of age-related 

neurodegenerative diseases (including Alzheimer's disease, Parkinson's disease, and 

amyotrophic lateral sclerosis) (Lin and Beal 2006; Kanda et al. 2007). The 

LOC387715/high temperature requirement factor A-1 (HTRA1) gene, of which protein is 

localized to the mitochondrial outer membrane, has been found to be associated with age-

related macula degeneration (AMD) (Rivera et al. 2005; Kanda et al. 2007; Fritsche et al. 

2008). With this in mind, mitochondrian proteins might be interesting candidates also in 

XFS/XFG. 

 

Growth factors circulating with the aqueous have suggested to have an important role in 

the pathogenesis of XFS (Schlotzer-Schrehardt et al. 2001). Increased concentration of 

TGF- 1 (Koliakos et al. 2001; Schlotzer-Schrehardt et al. 2001) and CTGF (connective 

tissue growth factor) (Ho et al. 2005) in the aqueous humor of XFS eyes compared to 

control eyes have been demonstrated in previous studies. However no difference in levels 

of TGF- 2 between XFS and control eyes has been detected (Koliakos et al. 2001; 

Schlotzer-Schrehardt et al. 2001). Thus genes interacting with TGF- 1 might be 

interesting from the XFS/XFG point of view. 

 

This solid linkage finding for chromosome 18 provides an excellent starting point for 

follow up studies. More genotyped family members, if possible in successive generations, 

are needed for further fine-scale mapping, in order to narrow the linkage region and to 

identify positional candidate genes and sequence variants contributing to the susceptibility 

of XFS/XFG in this locus. Several additional regions showed positive linkage values, 

suggesting that many underlying genetic variants might be associated with XFS.  
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Gene 
symbol 

Gene name  Location Tissue specificity / 
Subcellular location  

Function 

RIT2 GTP-binding protein 
Rit2 

18q12.3 Neuron-specific/ Cell 
membrane 

Binds and exchanges GTP and 
GDP 

ATP5A1 ATP synthase, H+ 
transporting, 
mitochondrial F1  

18q21.1 Fetal lung, heart, liver, gut, 
kidney. High expression: 
fetal brain, retina, spinal 
cord / Mitochondrion inner 
membrane. 

Catalyzes ATP synthesis  

SMAD2 Sma- and Mad-
related protein 2 

18q21.1 Ubiquitous. High 
expression: skeletal muscle, 
heart and placenta / 
cytoplasm, nucleus. 

Transcriptional modulator 
activated by TGF-  and activin 
type 1 receptor kinase. May act 
as a tumor suppressor gene. 

SMAD 7 SMAD family 
member 7  

18q21.1 Ubiquitous. High 
expression: lung, vascular 
endothelium / cytoplasm, 
nucleus. 

Antagonist of signaling by TGF-
 type 1 receptor superfamily 

members. 

ACAA2 Acetyl-coenzyme A 
acyltransferase 2  

18q21.1 - / Mitochondrion Catalyzes the mitochondrial fatty 
acid beta-oxidation. 

ME2 Malic enzyme 2, 
NAD(+)-dependent, 
mitochondrial  

18q21.2 Ubiquitous / Mitochondrion Catalyzes the oxidative 
decarboxylation of malate to 
pyruvate 

SMAD4 Mothers against 
decapentaplegic 
homolog 4 

18q21.2 Ubiquitous / cytoplasm, 
nucleus 

Common mediator of signal 
transduction by TGF-  
superfamily. May act as a tumor 
suppressor gene. 

MEX3C Ring finger and KH 
domain containing 2 

18q21.2 Ubiquitous. High 
expression: fetal brain and 
testis / cytoplasm, nucleus   

RNA-binding protein.  

WDR7 rabconnectin-3 beta 
isoform 2 

18q21.31 Ubiquitous / - WDR proteins are involved in a 
variety of cellular processes, eg. 
cell cycle progression, signal 
transduction, apoptosis, and gene 
regulation. 

FECH ferrochelatase 
isoform b precursor 

18q21.31 Ubiquitous / Mitochondrion Catalyzes the ferrous insertion 
into protoporphyrin IX in the 
heme synthesis pathway 

NEDD4L neural precursor cell 
expressed, 
developmentally  

18q21.31 Ubiquitous. High 
expression: prostate, 
pancreas, kidney / 
cytoplasm 

E3 ubiquitin-protein ligase. 
Inhibits TGF-beta signaling by 
triggering SMAD2 and TGFR1 
ubiquitination and proteasome-
dependent degradation. 

RAX retina and anterior 
neural fold 
homeobox  

18q21.32 developing eye, weakly 
expressed in the adult retina 
/ nucleus 

Critical role in eye formation by 
regulating the initial 
specification of retinal cells 
and/or their subsequent 
proliferation. 

CPLX4 complexin 4 18q21.32 eye, brain, muscle, pineal 
gland / membrane, lipid-
anchor, cell junction, 
synapse 

Regulates a synaptic vesicle 
exocytosis. 

PMAIP1 Phorbol-12-
myristate-13-acetate-
induced protein 1 

18q21.32 Ubiquitous. High 
expression: adult T-cell 
leukemia cell line / 
Mitochondrion. 

Promotes activation of caspases 
and apoptosis. Promotes 
mitochondrial membrane 
changes and efflux of 
apoptogenic proteins from the 
mitochondria. 

Table 14. Some interesting genes located in the XFS candidate locus on the chromosomal region 18q12.1-21.33. 
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Results of the study V show that the LOXL1 gene SNPs, rs1048661 (R141L), rs3825942 

(G153D) and rs2165241, are not linked to XFS/XFG in the Kökar family. However, a 

strong association between LOXL1 risk alleles and XFS/XFG was demonstrated. The 

absence of linkage might be explained by the small family material and most importantly 

by low power of linkage methods to map common variants with low genotypic relative 

risk (Risch and Merikangas 1996; Risch 2000; Cardon and Bell 2001; Tabor et al. 2002; 

Hirschhorn and Daly 2005; Laird and Lange 2006). Further studies are needed to 

investigate the genetic background underlying XFS/XFG in the Kökar family. After 

identifying possible susceptibility variants on chromosome 18, their role in XFS/XFG and 

possible interaction with LOXL1 variants should be investigated by biochemical and 

functional studies in order to eventually understand the molecular pathology underlying 

XFS/XFG in the Kökar family. 

A  strong  association  of  LOXL1 gene  SNPs  to  XFS  and  XFG,  but  not  to  POAG,  was  

observed in the Finnish patients (study V), which is convergent with previous studies in 

several Caucasian populations (Scandinavians, European and American populations) 

(Fingert et al. 2007a; Aragon-Martin et al. 2008; Challa et al. 2008; Fan et al. 2008; 

Mossbock et al. 2008; Pasutto et al. 2008b; Yang et al. 2008), in the Australian population 

(Hewitt et al. 2008b), in African-Americans (Fan et al. 2008) and in Asian populations 

(Japan and India)  (Fuse et al. 2008; Hayashi et al. 2008; Mabuchi et al. 2008; Mori et al. 

2008; Ozaki et al. 2008; Ramprasad et al. 2008). The strongest allelic association was 

detected for allele T of intronic SNP rs2165241, but also allele G of coding SNP 

rs1048661 showed strong association to XFS and XFG both in case-control and family 

materials. Interestingly, allele G of rs3825942 was strongly associated to XFS and XFG in 

the case-control material but not in the family material. This was due to the enrichment of 

the G allele in the Kökar family, both in affected and unaffected family members. The 

mean age of the unaffected family members was 63 years (n=92, range: 32-92), 

suggesting that a significant number of them might develop XFS in their later years.  

Similar distribution of two- and three-locus haplotypes was detected in Finland as in other 

Caucasian populations  (Thorleifsson et al. 2007; Aragon-Martin et al. 2008; Mossbock et 

al. 2008; Pasutto et al. 2008b). Two locus-haplotype GG, of coding SNPs rs1048661- 

rs3825942, conferred the highest risk to XFS and XFG, whereas TG and GA haplotypes 

were underrepresented in sporadic XFS and XFG cases compared to blood donor controls. 
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Likewise, when all three SNPs were considered, the risk haplotype GGT was the most 

significantly associated with XFS and XFG both in the case-control and in the family 

material and TGC and GAC haplotypes were underrepresented XFS and XFG cases. Two-

locus risk haplotype GG increased the risk of XFS and XFG nine-fold, relative to the low-

risk haplotype GA, whereas three-locus risk haplotype GGT increased the risk almost 

fifteen-fold relative to the GAC haplotype. High risk ratios have also been reported in the 

other Caucasian populations; in Icelandic and Swedish XFG cohorts GG haplotype 

increased the risk of exfoliation 27-fold and in European and American XFS/XFG patient 

groups the risk increased almost 8-fold relative to the GA haplotype (Thorleifsson et al. 

2007; Aragon-Martin et al. 2008).  

 

The high risk haplotypes, GG and GGT, seems to be common in XFS and XFG patients, 

but also in general populations. In the present study the two-locus risk haplotype GG was 

found in 95% of XFS and XFG cases (66% in homozygous) and in 72% of the general 

population (29% in homozygous). In agreement with this, the GG haplotype was present 

in 50% of the general Swedish and Icelandic populations (25% in homozygous) and 50% 

in unaffected inividuals of mainly European decent (Thorleifsson et al. 2007; Aragon-

Martin et al. 2008). In the present case-control material three-locus haplotype GGT was 

found in 93% of XFS and XFG cases and 69% of population based controls. The high 

prevalence of XFS in Scandinavia (22% of the population >70 years old in Finland) and 

the fact that controls were unexamined and not age matched and hence some of them 

might have XFS or develop XFS in their later years, might partly explain the high 

frequencies of risk haplotypes in the Finnish general population.  

 

We have hypothesized that XFS is a normal phenomenon associated with aging. This 

theorem is supported by the fact that the disease-associated variants (R141L and G153D) 

of the LOXL1 gene  are  common  ancestral  wild  type  alleles  and  evolutionary  conserved  

across mammalian species (Hewitt et al. 2008b). Added to this, the high prevalence of 

LOXL1 risk  haplotypes  in  the  general  populations  and  the  association  of  the  risk  alleles  

with XFS and XFG in diverse ethnic groups, suggests that XFS is a normal age-related 

condition. Yet, some elderly persons with risk haplotype do not have exfoliation; of our 

examined over 80-year old unaffected control individuals (n=26) as many as 42% carried 

the risk haplotype GG and 35% carried the risk haplotype GGT. The protective 

mechanism that delays the onset of the XFS in these individuals is unknown.  
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Taken together, the high prevalence of risk haplotypes in the general Finnish population 

(69-72%) and in the elderly non-XFS/XFG cohort (35-42%) as well as the identification 

of one XFS patient homozygous for low risk haplotype GAC, suggest that LOXL1 does 

not alone explain the genetic background underlying XFS and XFG, but probably also 

other predisposing and/or preventing genetic and environmental factors are involved in 

the pathogenesis of XFS/XFG (Figure 12). In addition based upon the known presence of 

many proteins that constitute the XFM (Ritch and Schlotzer-Schrehardt 2001; Conway et 

al. 2004; Schlotzer-Schrehardt and Naumann 2006), extracellular matrix and elastic 

connective tissue fibers, it is likely that many other genes are associated with the 

development of XFM and glaucoma in addition to LOXL1 (Lee 2008). Several genetic 

loci have been suggested to be associated with XFS in the previous studies (Zenkel et al. 

2005; Lemmela et al. 2007; Burdon et al. 2008; Lee 2008). These loci might contain 

predisposing genetic factors, but also protective factors, which prevent or delay the onset 

of XFS in those elderly unaffected individuals with risk haplotypes.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. XFS and XFG are probably caused by interplay of protective and predisposing 

genetic and environmental factors. The LOXL1 gene has been shown to be associated with 

both XFS and XFG, but whether association to XFG is just a reflection of its association 

to XFS is unknown. Also the factors that are involved in the conversion of XFS to XFG 

remain to be clarified. 
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Although our knowledge of XFS and XFG genetics has increased recently, there are 

several open questions waiting for answers, such as; why some elderly individuals with 

LOXL1 risk haplotype have not developed XFS, why only some individuals with XFS 

develop XFG and why XFS appears not to have full penetrance in the families. 

 

Recently, deCode genetics began offering genetic testing for XFS risk based upon 

analysis of three high risk LOXL1 SNPs.  The  utility  of  this  genetic  test  in  general  

population is not known, since the frequency of these SNPs in the worldwide population 

is unknown and since LOXL1 risk alleles occur also in elderly individuals without 

XFS/XFG. Based upon our present knowledge it is likely that many other genes are 

associated with the development of XFS and XFG in addition to LOXL1. Further studies 

in XFG patients in different populations are necessary to determine the worldwide risk 

associated with LOXL1 SNPs and the presence of XFM and development of glaucoma. 

 

5.3 Complex genetic nature of glaucoma of exfoliation syndrome    

 

Molecular genetic studies of adult onset OAG and XFS/XFG have been challenging due 

to the asymptomatic and complex genetic nature of traits and small study materials. The 

late age of onset makes it difficult to collect multi-generation families with these 

disorders. Parents of the affected patient are often deceased and their offspring are too 

young to manifest the disease. Exceptionally, in Kökar XFS family detailed phenotypes 

where available even from the three most recent generations due to the long follow-up 

period. The asymptomatic nature of the traits makes the clinical diagnosis difficult. OAG 

is asymptomatic in its early stage and develops insidiously afterwards and thus diagnosis 

cannot  be  made  until  patients  are  elderly.  XFS  and  XFG  often  go  unrecognised,  or  are  

misdiagnosed, because of the subtlety of the clinical signs. In some populations XFS and 

XFG might be underdiagnosed because many ophthalmologists still believe that they 

occur mainly in some areas of Europe. Probably these are the reasons why most 

XFS/XFG and OAG studies are based on only a few, small or incomplete pedigrees, 

which make the hypothesis of inheritance model uncertain.  

 

The most common traits and diseases are complex in nature, for which the phenotype is 

determined by the sum total of, and/or interactions between, multiple genetic and 

environmental factors (Risch and Merikangas 1996; Hirschhorn and Daly 2005; Newton-
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Cheh and Hirschhorn 2005; Wang et al. 2005; Iyengar 2007). Causative genetic variants 

underlying common diseases have likely arisen before the divergence of peoples because 

the disorders are widespread globally (Doris 2002). The frequency of these variants is 

largely unknown, but it has been hypothesized common variants (with frequencies of 

>1%, SNPs) influence common disease susceptibility (common disease - common 

variants hypothesis, CD/CV) (Lander 1996; Chakravarti 1999; Lander et al. 2001; Reich 

and Lander 2001; Doris 2002). Common variants have a low impact on a single individual 

but a high impact at the population level  (Lander 1996; Chakravarti 1999; Reich and 

Lander 2001; Hirschhorn and Daly 2005; Newton-Cheh and Hirschhorn 2005). Therefore 

any individual genetic variant generally has a relative small effect on the disease risk, 

which makes their detection challenging.  

 

To  date,  there  are  several  examples  of  common  variants  contributing  to  a  common  

disease, most of which increase the risk by two-fold or less in large populations (Altshuler 

et al. 2000; Rioux et al. 2001; Stefansson et al. 2002; Lohmueller et al. 2003; Ueda et al. 

2003). One such example is common age-related eye disease, adult type macular 

degeneration (AMD) (Edwards et al. 2005; Hageman et al. 2005; Haines et al. 2005). 

Several common variants  (e.g.  SNPs)  are  also  associated  with  OAG (Tunny et  al.  1996;  

Suzuki et al. 2000; Colomb et al. 2001; Copin et al. 2002; Lin et al. 2003a; Polansky et al. 

2003; Gong et al. 2004; Hewitt et al. 2006a) and three common SNPs on the LOXL1 gene 

are strongly associated with XFS and XFG (Table 7).  

  

The CD/CV -hypothesis might not explain the whole genetic background of common 

diseases. An alternative theorem is that rare mutations at many different loci could cause 

common diseases and explain their high prevalence (Pritchard 2001). This is evidenced in 

MYOC associated glaucoma, in which a great number of rare mutations in the MYOC -

gene contribute to a relatively common disease OAG (Gong et al. 2004; Libby et al. 2005; 

Hewitt et al. 2006a). However, the probable explanation for  the  high  prevalence  of  

common diseases, such as OAG and XFS/XFG, is an interplay between many common 

and/or many rare variants and environmental risk factors. 

 

Discussion of whether genome-wide linkage studies are accurate approach for detecting 

genes in complex diseases has been going on lately. The linkage-based methods have a 

low power to map common susceptibility variants that have modest effects on the disease 
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(Risch and Merikangas 1996; Risch 2000; Cardon and Bell 2001; Tabor et al. 2002; 

Hirschhorn and Daly 2005; Laird and Lange 2006). Moreover, collecting a sufficient size 

of family material for linkage studies is a challenging and time demanding task. Anyhow, 

genome-wide linkage analysis have been carried out for many common diseases of which 

some have led to the discovery of variants contributing to susceptibility of diseases, such 

as type 1 diabetes (Nistico et al. 1996), inflammatory bowel disease (Hugot et al. 2001; 

Ogura et al. 2001; Rioux et al. 2001; Stoll et al. 2004) and schizophrenia (Stefansson et al. 

2002). Identification of single risk allele for AMD in the complement factor H gene 

(CFH) was achived through a focused fine SNP association analyses of linkage regions 

obtained from prior genome-wide linkage studies (Edwards et al. 2005; Hageman et al. 

2005; Haines et al. 2005). The success story of AMD is encouraging for further analyse of 

the XFS candidate region on chromosome 18 e.g. by fine-scale SNP association analysis 

(Study IV). For the most common diseases, however, linkage analysis has attained only 

limited success (Altmuller et al. 2001; Hirschhorn and Daly 2005; Laird and Lange 2006) 

and genes discovered by linkage analysis usually explain only a small fraction of the 

overall heritability of the disease. This is the current situation in OAG research where 

linkage has been pointed in nearly every chromosome but only three candidate genes, 

contributing together for less than 10% of OAG, have been identified (Fan et al. 2006a). 

 

Genome-wide association studies (GWAS) have been suggested to be more powerful 

means of identifying the common variants that underlie complex traits than linkage based 

methods (Risch and Merikangas 1996; Cardon and Bell 2001; Tabor et al. 2002; Carlson 

et al. 2004; Hirschhorn and Daly 2005; Newton-Cheh and Hirschhorn 2005; Laird and 

Lange 2006). Moreover, family material is not required in GWAS and sporadic case-

control material is simpler and faster to collect. To date, extensive genome-wide 

association studies for several complex diseases have been established (Sladek et al. 2007; 

The Wellcome Trust Case Control Consortium 2007); of which from our point of view 

one of the most interesting was the genome-wide association study of XFS (Thorleifsson 

et al. 2007). 
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6 CONCLUDING REMARKS AND FUTURE PROSPECTS 

 

Overall we have little understanding of the genetics of OAG and even less of an 

understanding of the cell biology underlying it. In the genetic mapping studies of OAG 

linkage has been pointed in nearly every chromosome, but only three candidate genes 

have been identified, accounting together for less than tenth of OAG. In the present study 

two of these candidate genes, MYOC and OPTN, and  14  additional  candidate  loci  were  

excluded in eight Finnish glaucoma families, further confirming the heterogeneous nature 

of OAG. Subsequently, the mutation in the MYOC gene was found to segregate with 

glaucoma in the Finnish JOAG/POAG family, providing the first molecular genetic 

explanation of glaucoma in the Finnish population. Identification of a susceptibility 

mutation in the glaucoma family facilitates early diagnosis and follow-up for family 

members  at  risk  and  enables  the  treatment  of  glaucoma  on  time,  which  is  important  in  

such a late-onset, insidiously progressing disease. The MYOC gene should also be 

investigated as a candidate gene for glaucoma in other Finnish families, especially those 

manifesting juvenile-onset glaucoma. 

 

During the last year there has been remarkable progress in the fields of XFS/XFG 

genetics. Genome-wide scan of XFS, described in this thesis, highlighted an interesting 

candidate region on chromosome 18 and produced several additional suggestive regions. 

The locus on chromosome 18 provides a solid starting point for the future fine-scale 

mapping studies, which are needed to identify variants conferring susceptibility to XFS in 

the region. Subsequently, association between three LOXL1 gene SNPs and XFS/XFG 

was reported in several populations. In the present study, these SNPs were found to confer 

risk for XFS and XFG also in the Finnish population. The possible defect in LOXL1 and 

the way it contributes to the pathogenesis of XFS and XFG is not fully understood and 

hence functional studies of the LOXL1 gene are of special importance. 

Since it is likely that combination of common susceptibility variants with small individual 

effects are responsible for at least some part of XFS/XFG and OAG, large scale genome-

wide  association  studies  with  extensive  sample  sets  might  be  useful.  It  is  of  great  

importance in future studies to collect sufficiently large sample sets or combine samples 

through meta-analysis in order to achieve the relevant statistical power to identify 

susceptibility variants conferring only modest increases in risk. The correct research 
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strategy combined with large study materials led to the identification of XFS/XFG risk 

variants in a recent genome-wide association study. However, pedigree linkage studies 

and extensive mutation screening of the positional candidates have a good power for 

detecting uncommon genes with major effects, as was the case for OAG susceptibility 

genes MYOC and OPTN. Rapid development of the genotyping and gene-expression 

technologies as well as bioinformatics are now enabling cheaper, faster and more robust 

massive high-throughput research. Fully exploiting these possibilities would enhance our 

understanding of the genetic bases of OAG and XFS/XFG. 

Genetics is, however, powerless without sufficient knowledge of clinical aspects of the 

disease of interest. Different forms and subtypes of glaucoma have been described. 

Several partially overlapping phenotypes may represent a continuum of the same 

underlying genetic defect or may have separate genetic background. Confusion still exists 

whether NTG is a subtype of OAG or a different type of glaucoma. Preliminary studies 

show that OAG and NTG share at least partially common genetic background. However, 

the possibility is not discounted that there exist phenotype specific predisposing variants 

for each phenotype. Breaking down the OAG phenotype into its constitutional anatomical 

or pathophysiological components and studying these intermediate phenotypes (such as 

IOP, cup-disc ratio) can be more powerful than simply ascertain whether disease is 

present or absent. 

In the long run, identification of genetic factors behind OAG and XFS/XFG along with 

biochemical and functional studies will hopefully expand our understanding of the 

molecular pathology underlying these common eye disorders. With an increased 

knowledge of the underlying pathology it may be possible to develop novel treatments 

targeted at the root cause of the disorders as opposed to the currently available  

rather empirical treatments.
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