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ABSTRACT 

 

 

Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is uncontrolled 
in tumor growth and insufficient in tissue ischemia. Similarly, the growth of lymphatic 
vessels, or lymphangiogenesis, is involved in human disease. In particular, insufficient 
lymphatic vessel function is responsible for development of lymphedema, a debilitating 
condition characterized by chronic tissue edema and impaired immunity. Vascular 
endothelial growth factors (VEGFs) stimulate angiogenesis and lymphangiogenesis by 
activating VEGF receptor (VEGFR) tyrosine kinases in endothelial cells. VEGFR-3 is 
present on all endothelia during development, but in the adult its expression becomes 
restricted to the lymphatic endothelium. VEGF-C and VEGF-D are ligands for VEGFR-3, 
and primarily induce lymphangiogenesis in adult tissues.  
 
The objective of this study was to evaluate the potential of natural and engineered growth 
factors in inducing therapeutic lymphatic vessel growth, as well as to elucidate the function 
of VEGFR-3 in angiogenesis in mouse models. Angiopoietin-1 (Ang1), a ligand for the 
endothelial receptor tyrosine kinases Tie1 and Tie2, induced growth of lymphatic vessels 
when overexpressed in the skin. A new mouse model of secondary lymphedema was 
established, which was used to show that collecting lymphatic vessels could be regenerated 
after lymph node removal using adenoviral gene transfer of VEGF-C or VEGF-D. Notably, 
the growth factor therapy greatly improved the outcome of lymph node transplantation, 
including functional reconstitution of the barrier function for tumor metastasis. In order to 
accelerate the process of lymphatic vessel maturation, novel heparin-binding forms of  
VEGF-C were engineered. These chimeric growth factors induced formation of lymphatic 
vessels directly along basement membranes that are rich in heparan sulfate, leading to 
formation of lumenized lymphatic vessels more efficiently than wild-type VEGF-C.  
 
VEGFR-3 expression was observed specifically in blood vessels undergoing angiogenesis in 
adult tissues. Notably, VEGFR-3 was highly expressed in angiogenic sprouts, and blocking 
VEGFR-3 resulted in decreased blood vessel growth in a variety of physiological and 
pathological settings. Stimulation of VEGFR-3 augmented VEGF-induced angiogenesis and 
sustained angiogenesis even in the presence of VEGFR-2 inhibitors, whereas blocking both 
VEGFR-3 and VEGFR-2 in combination resulted in additive inhibition of angiogenesis and 
tumor growth. Furthermore, these studies indicated that the Notch signaling pathway down-
regulates VEGFR-3 in blood vascular endothelial cells, rendering the cells less sensitive to 
angiogenic signals.  
 
These results constitute the first report of growth factor-induced lymphatic vessel maturation 
in adults, as well as a novel strategy to accelerate the process by using engineered heparin-
binding forms of VEGF-C. The approach of combining growth factor expression with lymph 
node transplantation provides a basis for future treatment of lymphedema, whereas 
VEGF/VEGF-C chimeras and angiopoietin-1 could be used to improve and augment    
VEGF-C/D therapy. Furthermore, these results implicate VEGFR-3 as a novel regulator of 
sprouting angiogenesis along with its role in regulating lymphatic vessel growth. Targeting 
VEGFR-3 may provide additional efficacy for anti-angiogenic therapies, especially towards 
vessels that are resistant to VEGF/VEGFR-2 inhibitors. 
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REVIEW OF THE LITERATURE 

 
 

1. Development and function of the cardiovascular and lymphatic systems 

 
 

Large multicellular organisms such as humans have developed a circulatory system, 

the blood vascular system, to distribute oxygen, nutrients, hormones and even cells to tissues, 

as well as to collect carbon dioxide and other metabolic waste products. The principal 

components of blood are red blood cells (erythrocytes), white blood cells (leukocytes), 

platelets (thrombocytes), immunoglobulins, as well as a variety of colloid proteins that help 

maintain the water content of blood higher than in the surrounding tissues. The heart pumps 

the blood through arteries into a fine network of blood vessel capillaries, 10-20 µm in 

diameter, which connect with veins that return the blood back to the heart. The exchange of 

gases from the blood to surrounding tissues occurs through the capillaries, which are found 

within 200 µm of any cell, with the exception avascular tissues such as cartilage, as well as 

the lens and cornea of the eye (Ambati et al., 2006). Blood pressure causes plasma proteins 

accompanied by water molecules to filtrate continuously from the arterial side of the capillary 

bed into the interstitial space. Approximately 90% of the extravasated water is reabsorbed at 

the venous side of the capillary bed, where the colloid osmotic pressure of the blood exceeds 

blood pressure, but the remaining 10% results in a net excess of protein-rich fluid in the 

interstitial space (Figure 1).  

The main function of the lymphatic vasculature is to return this excess fluid back to 

the blood circulation system. Fluid, macromolecules, and cells enter blind-ended lymphatic 

capillaries in tissues. The lymph is further transported towards collecting lymphatic vessels 

and is returned to the blood circulation through the lymphatico-venous junctions at the 

subclavian veins. The collecting lymphatic vessels connect with chains of lymph nodes. 

Therefore the lymphatic vascular system also plays an important role in immune responses by 

serving as a conduit for extravasated leukocytes and activated antigen-presenting cells.  In the 

small intestine, lacteal lymphatic vessels inside the intestinal villi absorb dietary lipids 

released by intestinal epithelial cells in the form of chylomicrons. Lymphatic vessels are 

typically found in all vascularized tissues, with the notable exception of bone marrow and the  
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central nervous system, although some connections between the lymphatic vascular and 

cerebrospinal fluid systems exist (Johnston et al., 2004). Besides the fat-adsorbing small 

intestine, tissues that frequently become in contact with foreign antigens, such as the skin and 

mucous membranes, are particularly rich in lymphatic vessels. The lymphatic vascular 

system is found at least in vertebrates such as teleost fish, amphibians, reptiles and mammals 

(Ny et al., 2005; Kuchler et al., 2006; Yaniv et al., 2006; reviewed in Jeltsch et al., 2003; and 

in Ny et al., 2006), whose complex cardiovascular system and relatively large body size 

require the presence of a secondary vascular system for the maintenance of fluid balance 

(Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Contributions of the blood and lymphatic vascular systems to tissue fluid homeostasis. (a) Blood 
vessels (red) and lymphatic vessels (green) in the mouse ear skin visualized by PECAM-1 and LYVE-1 
immunostaining, respectively. Note that here the intense LYVE-1 staining overlies weak PECAM-1 staining in 
the lymphatic vessels. (b) An artery (A), a vein (V), and a collecting lymphatic vessel (cLV) in the mouse ear. 
Smooth muscle cells are visualized by staining for smooth muscle !-actin (red). (c-f) Mechanisms leading to 
tissue edema. Normal fluid homeostasis in tissues is shown in (c): Colloid proteins and associated water are 
constantly filtrated from the arterial side of the capillary bed into the interstitial space (red arrows). 90% of the 
filtrate is reabsorbed into the capillaries on the venous side of the capillary bed (blue arrows), whereas 10% is 
collected by the lymphatic vessels (brown arrows). (d) In conditions of increased blood vascular permeability, 
such as in inflammation, the amount of filtrate is dramatically increased. Although the lymphatic vessels have a 
remarkable capacity to increase their drainage, net edema remains. (e) Obstruction of the veins, e.g. due to 
venous thrombosis, will impair reabsorption and increase blood pressure within the capillary bed, leading to 
increased filtration. Again, the lymphatic vessels are capable of increasing drainage, yet net edema is generated. 
(f) Inherited or acquired damage to the lymphatic vessels, such as surgery or radiation therapy, block lymphatic 
drainage. This will lead to gradual accumulation of edematous fluid in tissues. Reabs: reabsorption; Filtr: 
filtration. The units in the bar graphs are arbitrary. Note: Only the underlying reasons for edema formation are 
given in each figure, and secondary effects due to e.g. increased interstitial fluid pressure in edematous 
conditions are not accounted for. Scalebars: 100 µm. 
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The blood vascular system 

 

The luminal surface of blood vessels is lined by a monolayer of endothelial cells 

(ECs), which are adjoined by tight junctions and the more plastic adherens junctions 

(reviewed in Risau, 1998). Far from being passive bystanders, ECs have multiple functions: 

They regulate blood flow by releasing nitric oxide to relax smooth muscle that constricts 

vessels; act as gatekeepers for cells and macromolecules in between the blood and the 

interstitium; and respond to growth factors that stimulate the formation of new blood vessels. 

Besides adopting arterial or venous identity in their gene expression pattern (reviewed in 

Hirashima and Suda, 2006), ECs exhibit a wide range of functional and morphological 

differences. For example, the capillary endothelium of endocrine organs, such as the thyroid 

and adrenal glands, and the "-islets of the pancreas, is fenestrated, allowing a high rate of 

transport across the EC monolayer (reviewed in Risau, 1998). On the other hand, ECs of the 

central nervous system form part of the blood-brain barrier, which allows only very selective 

passage of molecules and cells. The high-endothelial venules found in secondary lymphoid 

organs (with the exception of the spleen) are specialized for cell transmigration, allowing 

entry of lymphocytes into the lymphoid tissues. Furthermore, even ECs that appear 

ultrastructurally similar have unique tissue-specific molecular fingerprints, which has 

facilitated the discovery of tissue-specific vascular targets (reviewed in Ruoslahti and 

Rajotte, 2000; and in Trepel et al., 2002).  

The basolateral side of the blood vascular EC monolayer, with the exception of blood 

vessels with a discontinous endothelium found in the liver, spleen and bone marrow, is lined 

with a basement membrane (BM), an approximately 50-100 nm thick sheet of extracellular 

matrix (ECM). The EC monolayer is also supported by mesenchymal mural cells called 

pericytes, which share the BM with the ECs. The pericytes become in contact with the ECs at 

focal points called peg-socket contacts, conferring survival and stability signals to the 

endothelium, and providing physical support against hemodynamic stress (reviewed in 

Armulik et al., 2005; and in von Tell et al., 2006). Arteries are also surrounded by a tunica 

media composed of a concentric ring of contractile smooth muscle cells (SMCs), which 

regulate blood pressure and flow, and an outer connective tissue layer, the tunica adventitia. 

The return of the blood to the heart via the veins is powered by contractions of the 
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surrounding skeletal muscle and venous SMCs, as well as by arterial pulsations, whereas 

intraluminal valves positioned at intervals help to prevent venous backflow.  

During embryogenesis, the cardiovascular system is the first organ system to develop. 

The hematopoietic and EC lineages differentiate from a common precursor, the 

hemangioblast. The early blood vessels of the embryo and yolk sac in mammals develop by 

aggregation of EC precursors, or angioblasts, which are derived from hemangioblasts, into a 

primitive vascular plexus (reviewed in Coultas et al., 2005). This assembly of a vascular 

network by ECs that have differentiated de novo from stem cells is termed vasculogenesis.  

The early vascular plexus undergoes a complex expansion process that is characterized by 

migration, sprouting and proliferation of ECs. This formation of new blood vessels by 

sprouting from pre-existing vasculature is denoted angiogenesis. Angiogenic sprouting 

involves specification of subpopulations of ECs into tip cells, that respond to guidance cues 

in the surrounding microenvironment, and stalk cells that follow the tip cells and proliferate 

to form a lumenized vascular network (Gerhardt et al., 2003).  

The ECs of the newly formed blood vessels adopt an arterial, venous, or capillary 

identity, while the nascent vascular network is remodeled by pruning of excess vessels and by 

the recruitment of pericytes. Interestingly, angiogenesis and organogenesis are closely linked 

processes, as evidenced by the crucial role of ECs in the induction of e.g. the liver and the 

pancreas (Lammert et al., 2001; Matsumoto et al., 2001; LeCouter et al., 2003; Yoshitomi 

and Zaret, 2004; reviewed in Lammert et al., 2003). During pre- and postnatal development 

after organogenesis, the blood vessel networks meet the requirements of growing organs by 

expanding within the tissues by angiogenic sprouting as well as by splitting, intussuception, 

and circumferential enlargement, which are processes that remain poorly understood (Djonov 

et al., 2000).  

Physiological neovascularization is uncommon in stabile adult tissues. However, new 

blood vessels form in response to tissue hypertrophy in e.g. skeletal muscle or fat, during 

wound healing, and during the estrus cycle in fertile females both in developing ovarian 

follicles as well as in the uterine endometrium (Zimmermann et al., 2003; reviewed in 

Carmeliet, 2005). The neovascularization of adult tissues is thought to occur primarily by 

angiogenesis, but the possibility of adult vasculogenesis by bone-marrow derived endothelial 

precursor cells (EPCs) has also been suggested in the literature (reviewed in Aicher et al., 

2005; and in Kopp et al., 2006). Pathological angiogenesis occurs in a variety of conditions, 
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such as in tumors and in proliferative retinal vasculopathies, like age-related macular 

degeneration (AMD) and in late-stage diabetic retinopathy (reviewed in Gariano and 

Gardner, 2005). Conversely, angiogenesis is frequently insufficient in ischemic tissues e.g. 

following arterial occlusion in the heart or the lower limb.  

 Arteriogenesis, or remodeling of angiogenic blood vascular capillaries or small 

arterioles into larger caliber vessels that acquire a thick SMC coating, is known to occur in 

ischemic conditions (reviewed in Schaper and Scholz, 2003). Circumferentially directed 

stress and shear stress acting on the endothelium are key forces that drive arteriogenesis, and 

changes in fluid flow have been shown to regulate gene expression in both blood and 

lymphatic vascular ECs (Garcia-Cardena et al., 2001; Ng et al., 2004; reviewed in Schaper 

and Scholz, 2003). Furthermore, reactive inflammation of the vessel wall and recruitment of 

monocytes/macrophages are important for arteriogenesis (Ito et al., 1997; Arras et al., 1998; 

Pipp et al., 2003) 

 

The lymphatic vascular system 

 

The lymphatic capillaries are thin-walled vessels of approximately 30-80 µm in 

diameter, and composed of a single layer of non-fenestrated lymphatic endothelial cells 

(LECs), which are not ensheathed by pericytes or SMCs, and have little or no BM (Leak and 

Burke, 1966; Leak and Burke, 1968; Leak, 1970). The LEC-LEC junctions in lymphatic 

capillaries are discontinuous, and the interjunctional gaps act as sites of leukocyte entry into 

the vessels (Baluk et al., 2007). Collecting lymphatic vessels are characterized by the 

presence of a SMC layer, a basement membrane, continuous interendothelial junctions, and 

valves (reviewed in Alitalo et al., 2005).  The intrinsic contractility of SMCs, as well as the 

contraction of surrounding skeletal muscles and arterial pulsations are necessary for lymph 

propulsion, whereas valves prevent lymph backflow, implying an analogous structure-

function relationship between collecting lymphatic vessels and veins. The LECs are 

terminally differentiated cells distinct from blood vascular ECs. Both cell types remain 

distinct also in culture conditions (Kriehuber et al., 2001; Mäkinen et al., 2001; Wick et al., 

2007), which has facilitated the discovery of lymphatic vascular specific molecular targets 

that are used for identification of lymphatic vessels in tissues, as well as for finding targets 
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for the specific induction or inhibition of lymphatic vessel growth in pathological conditions 

(reviewed in Saharinen et al., 2004). The most commonly used lymphatic vessel markers are 

the prospero-related homeodomain transcription factor Prox1, the membrane glycoprotein 

podoplanin, vascular endothelial growth factor receptor-3 (VEGFR-3), and lymphatic vessel 

hyaluronan receptor-1 (LYVE-1) (reviewed in Saharinen et al., 2004). Notably, LYVE-1 

expression is restricted to the lymphatic capillaries and it is not found in the collecting vessels 

(Makinen et al., 2005). 

Genetic experiments in mice have validated that mammalian lymphatic vessels 

originate from embryonic veins (Wigle and Oliver, 1999; Wigle et al., 2002; Kärkkäinen et 

al., 2004; Srinivasan et al., 2007), as postulated by the American immunologist Florence 

Sabin already in 1902 (Sabin, 1902). Several timely papers utilizing dynamic imaging in 

developing zebrafish embryos have elegantly demonstrated that this process is conserved in 

evolution (Kuchler et al., 2006; Yaniv et al., 2006). According to this model of lymphatic 

vessel development, a subset of ECs in the large central veins of the embryo begin to express 

Prox1, signifying commitment to the LEC lineage, and sprout laterally to form primordial 

lymphatic vascular structures, the lymph sacs, which expand by sprouting to form the 

lymphatic vascular network (Wigle and Oliver, 1999; Petrova et al., 2002; reviewed in 

Oliver, 2004). Compared to the emergence of blood vessels, lymphatic vessels develop 

considerably later, at around embryonic weeks 6-7 in humans and at embryonic day (E) 10.5 

in mice. However, it is not known whether lymphatic endothelium can differentiate in the 

embryonic mesenchyme in mammals, as has been suggested by experiments in chicks 

(Wilting et al., 2000; Wilting et al., 2006). 

During the course of development, connections between the lymphatics and veins are 

lost, except the sites where lymph enters the blood in the subclavian veins, although 

additional lymphatico-venous communications may exist in other peripheral locations 

(reviewed in Jeltsch et al., 2003). Mice with homozygous mutations in either the tyrosine 

kinase Syk or the adaptor protein Slp76 display arterio-venous shunts and abnormal 

lymphatico-venous communications (Abtahian et al., 2003). Syk and Slp76 are expressed 

almost exclusively in hematopoietic cells, suggesting that these cells contribute to the 

separation of the two vascular systems (Abtahian et al., 2003; Sebzda et al., 2006). 

In adults, lymphangiogenesis occurs physiologically during inflammation, ovarian 

growth, and wound healing (Pullinger and Florey, 1937; Otsuki et al., 1986; Paavonen et al., 



 18 

2000; Baluk et al., 2005). Lymphatic vessel growth is also associated with a number of 

pathological conditions, including tumor metastasis and transplant rejection (Cursiefen et al., 

2004; Kerjaschki et al., 2004; reviewed in Stacker et al., 2002; and in Alitalo et al., 2005). 

Adult lymphangiogenesis occurs primarily by sprouting from pre-existing vessels (Saaristo et 

al., 2002a; He et al., 2004; He et al., 2005), although bone-marrow derived cells, such as 

macrophages, have been suggested to transdifferentiate into lymphatic endothelium at least in 

human kidney transplants (Kerjaschki et al., 2006), and in a mouse model of corneal injury 

(Maruyama et al., 2005). 

Remodeling of the blood vasculature into arteries, capillaries, and veins is known to 

play a critical role in the development of a functional blood vessel network. Although the 

lymphatic vasculature also undergoes significant remodeling after its initial establishment, 

the molecular mechanisms involved in these processes are largely unknown. Developmental 

remodeling of the lymphatic vasculature includes sprouting of lymphatic capillaries from the 

primary lymphatic plexus, while deeper lymphatic vessels recruit SMCs and develop 

lymphatic valves, acquiring a collecting vessel phenotype (reviewed in Kärpanen and Alitalo, 

2007). The ephrins and their Eph receptors have been implicated in repulsive axon guidance 

in the nervous system, and in controlling blood vessel remodeling (reviewed in Adams, 2002; 

and in Coultas et al., 2005). Mutant mice lacking the PDZ domain of ephrinB2 develop 

normal blood vasculature, but display hyperplasia of the collecting lymphatic vessels, lack of 

luminal valve formation, and failure to remodel the primary lymphatic capillary plexus 

(Makinen et al., 2005). The forkhead transcription factor FoxC2 is highly expressed in the 

developing lymphatic vessels as well as in lymphatic valves in adults (Dagenais et al., 2004; 

Petrova et al., 2004). The early development of lymphatic vessels proceeds normally in the 

absence of Foxc2, but the collecting lymphatic vessels in Foxc2-/- mice lack valves, whereas 

the lymphatic capillaries acquire an ectopic coverage by BM components and SMCs, 

indicating that FoxC2 controls the specification of the lymphatic capillary versus collecting 

lymphatic vessel phenotype (Petrova et al., 2004).  
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Lymph nodes 

 

 The first lymph nodes begin to develop as protrusions of connective tissue into the 

lymph sacs at around E12.5. Lymph node induction is initiated by lymphoid tissue inducer 

(LTi) cells of hematopoietic origin, which express interleukin-7-receptor-! (IL-7R!), CD45, 

and CD4, but lack CD3 (Mebius et al., 1997; reviewed in Mebius, 2003). These cells 

differentiate from CD45-/CD4-/CD3- precursor cells in response to tumor necrosis 

factor(TNF)-related activation induced cytokine (TRANCE) (Kim et al., 2000a). Signaling 

via IL-7R! induces the LTi cells to produce lymphotoxin-!1"2 (LT!1"2), a member of the 

TNF family, and associate with stromal cells expressing vascular-cell adhesion molecule-1 

(VCAM-1) and the LT"-receptor (LT"R) (Yoshida et al., 2002). Both LT!1"2 and LT"R are 

absolutely required for lymph node development, which highlights the importance of this 

signaling pathway in lymphoid organogenesis (De Togni et al., 1994; Rennert et al., 1998).  

The lymphoid chemokine CXCL13 activates CXCR5 in the LTi cells, leading to 

increased CXCL13 production from the surrounding cells in a positive feedback loop, as well 

as expression of activated !4"1 integrin, a cell-ECM adhesion molecule, in the LTi cells 

(Ansel et al., 2000; Finke et al., 2002). The stromal cell VCAM-1 activates integrin !4"1, 

resulting in increased expression of adhesion molecules and secreted chemokines, such as 

CCL19, CCL21, CXCL12, and CXCL13 (Finke et al., 2002). This will lead to the 

amplification of both the LTi and the stromal cell populations, and presumably also to the 

differentiation of resident blood vessels into high-endothelial venules (reviewed in Mebius, 

2003). The emergence of these vessels allows T- and B-cells, attracted by CCL 19, CCL21, 

CXCL12, and CXCL13 signals, to enter the lymph node from the bloodstream (Cyster, 1999; 

Okada et al., 2002). These chemokines are also required for the organization of the lymph 

node into B-cell follicles, which become surrounded by T-cell areas (Forster et al., 1996; 

Forster et al., 1999; Gunn et al., 1999; Ansel et al., 2000; Luther et al., 2000) 

Continuous influx of antigen-presenting cells through the afferent lymphatics is 

required for the maintenance of organized lymph nodes (Mebius et al., 1991). Although 

lymph nodes are highly plastic organs in adults, it is not known whether lymph nodes can 

form spontaneously after embryogenesis. Interestingly, artificial lymph nodes composed of 

collagen scaffolds have been shown to attract lymphocytes, which elicit immune responses in 

mouse models, suggesting an approach for the replacement of damaged lymph nodes or for 
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the augmentation of regional immune responses (Okamoto et al., 2007). So-called tertiary 

lymphoid organs consisting of clonally expanding B-cell follicles and T-cells are commonly 

found at sites of chronic inflammation. The organization of these structures may involve 

many of the same chemokines involved in lymph node development (reviewed in Mebius, 

2003; and in Drayton et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 21 

2. Molecular mechanisms of angiogenesis and lymphangiogenesis 

 

 

Vascular endothelial growth factors and their receptors 

 

The mammalian vascular endothelial growth factor (VEGF) gene family comprises 

five dimeric glycoproteins: VEGF, VEGF-B, VEGF-C, VEGF-D and placenta growth factor 

(PlGF). VEGFs bind and activate their cognate high-affinity VEGF-receptor (VEGFR) 

tyrosine kinases (Figure 2), but also interact with neuropilins (NPs) and several integrin class 

cell adhesion molecules (reviewed in Ferrara et al., 2003; and in Tammela et al., 2005a). 

VEGFRs are composed of seven extracellular immunoglobulin (Ig) homology 

domains, a single transmembrane region, and a C-terminal intracellular tyrosine kinase 

domain that is interrupted by a kinase-insert domain (Figure 2). Binding of the VEGF ligand 

induces receptor dimerization and autophosphorylation, as well as C-terminal 

phosphorylation of the receptors by intracellular tyrosine kinases. This is followed by the 

docking and subsequent activation of various intracellular downstream signaling molecules. 

The signals from tyrosine kinase receptors such as VEGFRs typically converge at mitogen-

activated protein kinases (MAPKs), actin cytoskeleton-activating, proteins and the 

serine/threonine kinase Akt, which promote cell proliferation, migration, and survival, 

respectively (reviewed in Olsson et al., 2006). The outcome of VEGFR signals is context-

dependent, i.e. determined by the gene expression profile and the activity of other signaling 

pathways withing the cell, as well as by the surrounding microenvironment (reviewed in 

Olsson et al., 2006). 

Over the past two decades, the VEGFs and their receptors have been shown to be 

essential regulators of vasculogenesis, angiogenesis and lymphangiogenesis (reviewed in 

Ferrara, 2005; and in Tammela et al., 2005a). This signaling system also plays a role in 

immune function, and recent evidence indicates that it may also regulate neurogenesis and 

motoneuron survival (Oosthuyse et al., 2001; reviewed in Carmeliet and Tessier-Lavigne, 

2005; Greenberg and Jin, 2005; and in Carvalho et al., 2007). 
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VEGF 

 

VEGF (also known as VEGF-A) was the first member of the VEGF gene family to be 

discovered (Senger et al., 1983; Ferrara and Henzel, 1989; Leung et al., 1989). Later studies 

demonstrated that VEGF is a ligand for VEGFR-1 and VEGFR-2 (De Vries et al., 1992; 

Quinn et al., 1993), as well as for NP-1 and NP-2 (Soker et al., 1998; Gluzman-Poltorak et 

al., 2000), and that it induces EC proliferation, sprouting, migration and tube formation 

(reviewed in Ferrara, 2005; and in Olsson et al., 2006).  VEGF is also a survival factor for 

ECs during physiological and tumor angiogenesis, as it induces the expression of anti-

apoptotic proteins (Benjamin and Keshet, 1997; Gerber et al., 1998). VEGF was originally 

denoted vascular permeability factor (VPF), as it potently increases blood vascular 

permeability via VEGFR-2 and Src-mediated phosphorylation of VE-cadherin, and 

subsequent disintegration of endothelial adherens junction complexes (Senger et al., 1983; 

reviewed in Bazzoni and Dejana, 2004; and in Gavard and Gutkind, 2006). VEGF also causes 

vasodilation through the induction of the endothelial nitric oxide synthase (eNOS) and 

subsequent increase in nitric oxide production, which leads to the relaxation of vascular 

SMCs (Hood et al., 1998; Kroll and Waltenberger, 1999).  

Although VEGF is ubiquitously expressed during embryonic development, the 

expression is more pronounced at sites of active vasculogenesis and angiogenesis (reviewed 

in Weinstein, 1999). Mice lacking even a single VEGF allele die by E12.5 from defects in 

blood island formation, EC development, and vascular assembly, which highlights the central 

role of VEGF in angiogenesis (Carmeliet et al., 1996; Ferrara et al., 1996). VEGF is strongly 

induced in hypoxic conditions via hypoxia-inducible factor (HIF)-regulated elements of the 

VEGF gene promoter (reviewed in Pugh and Ratcliffe, 2003). In hypoxic conditions, the 

constitutive degradation of HIF-1" is blocked by the inactivation of oxygen-dependent prolyl 

hydroxylases, followed by stabilization of HIF-1", its binding to hypoxia-responsive 

elements in the promoters of hypoxia-inducible genes involved in glucose transport, 

glycolysis, erythropoiesis and angiogenesis (reviewed in Pugh and Ratcliffe, 2003). 

Interestingly, VEGF was recently shown to also be induced independently of HIF-1" by the 

lack of nutrients via induction of the transcriptional coactivator PGC-1! (peroxisome-

proliferator-activated receptor-gamma coactivator-1!), a potent metabolic sensor and 

regulator (Arany et al., 2008).  
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Overexpression of VEGF or application of recombinant VEGF leads to robust 

angiogenesis in a multitude of biological model systems (reviewed in Tammela et al., 2005a). 

Interestingly, adenoviral or transgenic overexpression of VEGF in the skin was shown to 

induce lymphatic vessel enlargement, but not lymphatic vessel sprouting (Nagy et al., 2002; 

Saaristo et al., 2002a; Wirzenius et al., 2007). At least in midgestation mouse embryos, 

VEGF-C but not VEGF had the capacity to induce migration of ECs committed to the 

lymphatic endothelial lineage (Kärkkäinen et al., 2004).  

 

 

 

Figure 2. Vascular endothelial growth factors (VEGFs) and VEGF receptors (VEGFRs). Schematic 
representation of the VEGF family growth factors (ovals), and the VEGFR tyrosine kinases. The VEGFs are 
antiparallel dimers, which induce dimerization and activation of their cognate receptors upon binding. VEGFRs 
are composed of seven immunoglobulin-like domains (spheres) and a split tyrosine kinase domain (double 
ovals). The fifth Ig-like domain of VEGFR-3 is proteolytically cleaved, leaving the fourth and sixth Ig-loops 
attached by a disulfide bond (SS). In adult tissues, VEGFR-1 and VEGFR-2 are predominantly expressed in 
blood vascular endothelial cells, whereas VEGFR-3 is expressed in lymphatic vascular endothelium. Low levels 
of VEGFR-2 are found in lymphatic endothelial cells, and therefore VEGFR-3/VEGFR-2 heterodimers may 
form in these cells. VEGF-E and VEGF-F (in italics) are not mammalian growth factors, being derived from Orf 
viruses and snake venoms, respectively. ECM: extracellular matrix; sVEGFR-1: soluble VEGFR-1; !N!C: Fully 
processed forms of VEGF-C and VEGF-D lacking the N- and C-terminal propeptides.  
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VEGF-C and VEGF-D 

 

 VEGF, PlGF and VEGF-B isoforms are formed through alternative splicing, whereas 

different forms of VEGF-C and VEGF-D are the result of proteolytic processing. Both 

growth factors are produced as precursor proteins, which are activated by intracellular 

secretory proprotein convertases (PC) such as furin, PC5, and PC7 (Joukov et al., 1997; 

Siegfried et al., 2003; McColl et al., 2007). The secreted, disulphide-linked 31/29 kD   

VEGF-C subunits only bind VEGFR-3, but the factor is further proteolyzed in the 

extracellular environment by plasmin and other proteases to generate a 21 kD non-disulfide-

linked homodimeric protein with high affinity for both VEGFR-2 and VEGFR-3 (Joukov et 

al., 1997) (Figure 3a). VEGF-C induces proliferation, migration, and survival of ECs 

(reviewed in Tammela et al., 2005b). During development, VEGF-C is expressed 

predominantly in regions where lymphatic vessels develop (Kukk et al., 1996; Kärkkäinen et 

al., 2004). In adults, VEGF-C expression remains high in the lymph nodes (Lymboussaki et 

al., 1999), arterial SMCs (Partanen et al., 2000), and cortical regions of the brain (P. Haiko 

and T. Tammela, unpublished). Overexpression of VEGF-C potently induces 

lymphangiogenesis with little angiogenesis as demonstrated by early experiments in the chick 

chorioallantoic membrane, and in transgenic mice overexpressing VEGF-C in the skin 

(Jeltsch et al., 1997; Oh et al., 1997). Adenoviral   VEGF-C or VEGF-D gene transduction 

has been shown to induce growth of lymphatic capillaries in several animal models, although 

the mature form of human VEGF-D also potently promotes angiogenesis at least in rabbit 

skeletal muscle (Rissanen et al., 2003). Human VEGF-C and VEGF-D also increase blood 

vascular permeability by activating VEGFR-2 (Veikkola et al., 2001; Saaristo et al., 2002b). 

Specific activation of VEGFR-3 with a mutant form of VEGF-C (VEGF-CC156S) is sufficient 

to induce lymphangiogenesis in vivo without effects on blood vessels (Joukov et al., 1998; 

Veikkola et al., 2001; Saaristo et al., 2002b; Wirzenius et al., 2007). Mouse VEGF-D binds 

only VEGFR-3, suggesting a more limited function for VEGF-D in mice when compared to 

humans (Baldwin et al., 2001).  

Homozygous deletion of Vegfc leads to the complete absence of a lymphatic vascular 

system in mouse embryos, whereas Vegfc+/- mice display severe lymphatic hypoplasia, 

indicating an analogous requirement of VEGF-C for lymphangiogenesis as has been 

described for VEGF in angiogenesis (Kärkkäinen et al., 2004). In mice, Xenopus laevis 
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tadpoles, and zebrafish where Vegfc has been inactivated, LECs initially differentiate in the 

embryonic cardinal veins, but fail to migrate and form the primary lymph sacs (Kärkkäinen et 

al., 2004; Ny et al., 2005; Kuchler et al., 2006). In contrast, deletion of Vegfd does not affect 

development of the lymphatic vasculature in mice, although exogenous VEGF-D protein 

rescues the impaired vessel sprouting in Vegfc-/- embryos (Kärkkäinen et al., 2004; Baldwin 

et al., 2005).  

 

 

 

 

 

 

 

Figure 3. The primary structure of VEGF, VEGF-C, and the VEGF-C/VEGF chimeras used in the study. 

(a) The predominant human VEGF isoforms VEGF121, VEGF165, and VEGF189 are formed as a result of 
alternative splicing. The numbers refer to VEGF exons. VEGF165 and VEGF189 contain exon 7 with 
neuropilin and heparin-binding sequences. In addition, VEGF189 contains exon 6a, which increases the affinity 
of the growth factor towards heparin. VEGF-C is produced as a single prepropeptide, which is proteolytically 
cleaved in intracellular processing compartments to yield the secreted form that contains an aminoterminal 
propeptide (N-term.), as well as a carboxyterminal silk-like propeptide. The propeptides are cleaved in the 
extracellular environment by proteases to yield the mature growth factor, VEGF-C#N#C (C#N#C). (b) The 
chimeric growth factors have been generated by replacing the receptor-binding domains of VEGF165 and 
VEGF189 with VEGF-C#N#C to generate CA65 and CA89, respectively. These factors bind VEGFR-2 and 
VEGFR-3, like VEGF-C#N#C, but in addition have the capacity to bind heparin and neuropilins (III).  
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VEGF-C mRNA is induced in tumor cells by a variety of growth factors and 

oncogenes, but not hypoxia, indicating that VEGF-C does not collaborate with VEGF in the 

initiation of angiogenic responses (Enholm et al., 1997). On the other hand, VEGF-C is 

induced in ECs in response to pro-inflammatory cytokines (Ristimäki et al., 1998), 

suggesting that VEGF-C could regulate lymphatic vessel function during inflammation, 

possibly reflecting the role of the lymphatic vasculature in the control of immune function 

and leukocyte trafficking. Accordingly, both VEGF-C and VEGF-D are produced by 

leukocytes, particularly macrophages, at sites of inflammation (Baluk et al., 2005). 

 

 

Placenta growth factor and VEGF-B 

 

Placenta growth factor (PlGF) and VEGF-B homodimers bind VEGFR-1 and NP-1, 

and Plgf or Vegfb gene-targeted mice survive and lead apparently normal lives (Bellomo et 

al., 2000; Carmeliet et al., 2001a). However, Plgf null mice recover poorly from experimental 

myocardial infarction, and show impaired collateral formation in response to hind limb 

ischemia (Carmeliet et al., 2001a). Overexpression of PlGF in the skin of transgenic mice 

results in marked hyperplasia of cutaneous blood vessels with increased inflammatory and 

permeability responses, while local administration of PlGF potently promotes arteriogenesis 

(Luttun et al., 2002; Odorisio et al., 2002; Oura et al., 2003; Pipp et al., 2003). The effects of 

PlGF are thought to be mediated by displacement of VEGF from VEGFR-1, leading to more 

VEGF available for the activation of VEGFR-2, and by the recruitment of VEGFR-1 

expressing monocytes/macrophages, which are also important for the development of tumor 

stroma (Carmeliet et al., 2001b; Pipp et al., 2003; Fischer et al., 2007). The biological role of 

VEGF-B is poorly characterized. Overexpression of VEGF-B does not lead to angiogenesis 

or to the recruitment of bone-marrow-derived cells. However, as VEGF-B is highly 

expressed in striated muscle, myocardial muscle, and brown fat, its function may be linked to 

high cellular energy metabolism (Enholm et al., 1997; Salven et al., 1998).  
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VEGFR-1 

 

VEGFR-1 (fms-like tyrosine kinase-1, Flt1) transmits weak mitogenic signals in ECs, 

but it can heterodimerize with VEGFR-2, forming a complex with altered signaling 

properties when compared to VEGFR-1 or VEGFR-2 homodimers (Fong et al., 1995; 

Carmeliet et al., 2001b; Huang et al., 2001). VEGFR-1 is expressed in ECs and in 

monocytes/macrophages (Zachary and Gliki, 2001). In fact, VEGFR-1 mediated 

angiogenesis and arteriogenesis have been shown to be dependent on monocytes, and 

angiogenesis in experimental tumors is at least partially inhibited by anti-VEGFR-1 

antibodies (Luttun et al., 2002; Pipp et al., 2003). Vegfr1 gene targeted mice die between 

E8.5 and E9.5 due to disorganization of blood vessels and excessive commitment of 

mesenchymal stem cells to the hemangioblast lineage (Fong et al., 1995; Fong et al., 1999). 

Mice lacking only the intracellular tyrosine kinase domain of VEGFR-1 are normal except 

for impaired angiogenesis during pathological conditions, suggesting a VEGF-trapping 

function at least during the early stages of vascular development (Hiratsuka et al., 1998; 

Hiratsuka et al., 2001). The naturally occurring soluble VEGFR-1 ectodomain (sVEGFR-1) 

potently blocks VEGF-induced angiogenesis (Carmeliet et al., 2001b; Gerhardt et al., 2003). 

High levels of circulating sVEGFR-1 correlate with the incidence of pre-eclampsia, a 

syndrome where hypertension arises in pregnancy in association with significant proteinuria 

(Levine et al., 2004; Levine et al., 2006).  

 

 

VEGFR-2 

 

VEGFR-2 is also known as fetal liver kinase-1 (Flk1) and kinase-insert domain 

receptor (KDR) (reviewed in Ferrara et al., 2003). The binding affinity of VEGF towards 

VEGFR-2 is approximately 10-fold lower than for VEGFR-1, yet VEGFR-2 is the primary 

receptor transducing VEGF signals in ECs, including the induction of vascular permeability 

responses (Meyer et al., 1999; Wise et al., 1999; Gille et al., 2001). VEGF-E (viral VEGF) is 

a VEGFR-2 specific ligand that is encoded by the parapoxviruses Orf-NZ2 and Orf-NZ7 

(Ogawa et al., 1998; Meyer et al., 1999). Certain viper venoms contain VEGF-like proteins, 

collectively termed as VEGF-F, which bind both VEGFR-2 and VEGFR-1 (Suto et al., 2005; 
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Tokunaga et al., 2005; Yamazaki et al., 2005a; Yamazaki et al., 2005b). VEGF-E and  

VEGF-F lack the C-terminal heparin-binding domain found in other heparin-binding VEGFs, 

and differ in the structure of their receptor binding domain from other VEGFs (Ogawa et al., 

1998; Meyer et al., 1999; Suto et al., 2005). 

VEGFR-2 gene targeted mice die at E8.5-E9.5 due to lack of development of the 

blood islands, embryonic vasculature and hematopoietic cells (Shalaby et al., 1995; Gille et 

al., 2001). VEGFR-2 expression is downregulated in the adult blood vascular ECs, but low 

levels of VEGFR-2 and autocrine VEGF signaling are required for EC survival even in 

quiescent vessels (Partanen et al., 1999; Lee et al., 2007). Furthermore, constitutive   

VEGFR-2 expression maintains ECs responsive to angiogenic VEGF signals, which 

upregulate VEGFR-2 in the endothelium (Gerhardt et al., 2003; Suchting et al., 2007). 

During angiogenic sprouting, VEGFR-2 is particularly strongly expressed in the endothelial 

tip cells, rendering the tip cells most sensitive to VEGF signals (Gerhardt et al., 2003). 

Low levels of VEGFR-2 are also found in lymphatic endothelium, but VEGFR-2 

signals alone are not sufficient for inducing sprouting lymphangiogenesis (Nagy et al., 2002; 

Saaristo et al., 2002a; Wirzenius et al., 2007). In fact, careful dissection of the VEGFR-2 and 

VEGFR-3 pathways utilizing receptor-specific ligands and VEGFR-blocking antibodies 

demonstrated that VEGFR-3 signals are required for lymphatic vessel sprouting, whereas 

VEGFR-2 activation leads to circumferential enlargement of the vessels (Wirzenius et al., 

2007). 

 

 

VEGFR-3 

 

Following biosynthesis, VEGFR-3 (fms-like tyrosine kinase 4, Flt4) undergoes 

proteolytic cleavage of the fifth Ig-homology domain, and the resulting polypeptide chains 

remain linked via a disulfide bond (Figure 2) (Pajusola et al., 1994; Lee et al., 1996). 

VEGFR-3 can form heterodimers with VEGFR-2 upon stimulation with the mature forms of 

VEGF-C and VEGF-D, which may lead to unique downstream signals due to asymmetry 

between the intracellular domains of the two receptors (Dixelius et al., 2003; reviewed in 

Olsson et al., 2006). VEGFR-3 is present in all endothelia during development but in the 

adult it becomes restricted to LECs and fenestrated blood vessels in endocrine organs such as 
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the thyroid, the adrenal glands, and pancreas (Partanen et al., 2000). However, VEGFR-3 is 

upregulated in blood vascular ECs in pathological conditions such as in tumors and in 

wounds (Valtola et al., 1999; Paavonen et al., 2000; Bando et al., 2004; Grau et al., 2007). 

Interestingly, blood vascular VEGFR-3 expression has been demonstrated to positively 

correlate with a high tumor grade (Grau et al., 2007). Vegfr3 gene-targeted mice exhibit 

embryonic lethality at E9.5 from defective arterio-venous remodeling of the primary vascular 

plexus and disturbed hematopoiesis (Dumont et al., 1998; Hamada et al., 2000). 

Correspondingly, knock-down of the VEGFR-3 homologue Flt4 in zebrafish using 

morpholino oligonucleotides results in defective segmental artery morphogenesis (Covassin 

et al., 2006). Transgenic mice overexpressing a soluble VEGFR-3 immunoglobulin G 

VEGFR-3-Ig fusion protein in the skin from E14.5 onwards lack dermal lymphatic vessels 

and have hypoplastic deeper lymphatic vessels, but blood vessels in these mice appear 

normal (Makinen et al., 2001a), suggesting that VEGFR-3 signaling is not required for 

expansion of the blood vascular networks after organogenesis. Missense mutations in 

VEGFR-3 have been linked to hereditary lymphedema in humans, as well as in a mouse 

model of lymphedema (Irrthum et al., 2000; Kärkkäinen et al., 2000; Kärkkäinen et al., 

2001).  

VEGFR-3 is also expressed in a subpopulation of monocytes/macrophages, and 

VEGF-C has been shown to promote homing of these cells into tumors and wounds (Skobe et 

al., 2001b; Saaristo et al., 2006). Interestingly, VEGFR-3 is also expressed in antigen-

presenting dendritic cells, and blocking VEGFR-3 suppresses the induction of corneal 

alloimmunity by inhibiting trafficking of these cells (Hamrah et al., 2003; Chen et al., 2004). 
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Neuropilins  

 

Neuropilins (NP-1 and NP-2) are transmembrane receptor glycoproteins that do not 

have enzymatic activities (Takagi et al., 1991; Kolodkin et al., 1997). Neuropilins bind class 

3 semaphorins, which are secreted proteins that mediate repulsive signals during neuronal 

axon guidance, but they also function as receptors for certain VEGFs, and thereby play a role 

in angiogenesis as well as lymphangiogenesis (reviewed in Carmeliet and Tessier-Lavigne, 

2005; and in Klagsbrun and Eichmann, 2005). NP-1 acts as a co-receptor enhancing VEGF-

VEGFR-2 interactions, while it also forms complexes with VEGFR-1 (Soker et al., 2002). 

Np1 gene-targeted mice die at E13.5 from vascular defects such as insufficient development 

of yolk sac vascular networks, deficient neural vascularization, and transposition of large 

vessels (Kawasaki et al., 1999). Interestingly, NP-1 is required for the guidance of angiogenic 

sprouts (Gerhardt et al., 2004), suggesting that maximal sensing of VEGF by the endothelial 

tip cells is crucial for the formation and patterning of vascular networks (Gluzman-Poltorak 

et al., 2000; Soker et al., 2002). 

NP-2 is expressed in veins and lymphatic vessels, and Np2 mutant mice exhibit 

lymphatic capillary hypoplasia (Yuan et al., 2002). Interestingly, both VEGF-C and VEGF-D 

bind to NP-2, which co-internalizes with VEGFR-3 upon ligand stimulation (Kärpänen et al., 

2006a). This indicates an analogy between the VEGF/NP-1/VEGFR-2 and the VEGF-C/NP-

2/VEGFR-3 signaling pathways in angiogenesis and lymphangiogenesis, respectively, and 

suggests that NP-2 may be important in lymphatic vessel sprouting.  
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Notch signaling 

 

The Notch signaling pathway regulates cell fate specification, growth, differentiation, 

and patterning processes in multicellular organisms. In mammals, four Notch receptors 

(Notch1–Notch4) interact with five membrane-bound ligands, Delta-like 1 (Dll1), Dll3, Dll4, 

Jagged1, and Jagged2 (reviewed in Roca and Adams, 2007). Both receptors and ligands are 

EGF repeat-containing transmembrane proteins (Weinmaster, 2000; Lai, 2004; Le Borgne et 

al., 2005; Bray, 2006; Hurlbut et al., 2007). In analogy with ephrins, the Notch ligands also 

contain an intracellular PDZ-binding domain that is conserved in evolution, suggesting the 

possibility of retrograde signaling.  

Upon ligand binding, Notch becomes susceptible to processing by the intracellular 

protease #-secretase (presenilin), which releases the Notch intracellular domain (NICD) 

(Weinmaster, 2000; Selkoe and Kopan, 2003; Schweisguth, 2004; reviewed in Nichols et al., 

2007). Following translocation of the NICD into the nucleus, its interaction with the DNA-

binding protein CSL (RBP-J) and the coactivator MAML-1 leads to the displacement of 

corepressor proteins and associated chromatin-modifying factors from CSL, which triggers 

the transcription of Notch target genes such as the basic helix–loop–helix (bHLH) proteins 

Hes1, Hey1 (Hesr1), and Hey2 (Hesr2), which typically act as repressors of downstream 

genes (Lai, 2002; Fischer and Gessler, 2003; Iso et al., 2003; reviewed in Ehebauer et al., 

2006). 

Notch signaling plays a role in arterial specification, and several Notch receptors and 

ligands are expressed specifically in arteries in mice and in zebrafish (Shutter et al., 2000;  

Mailhos et al., 2001; Lawson et al., 2001; Leslie et al., 2007; Siekmann and Lawson, 2007). 

Furthermore, Notch1 signaling activated by Dll1 is critical for postnatal arteriogenesis 

(Limbourg et al., 2007; Takeshita et al., 2007). In contrast, the orphan nuclear receptor 

COUP-TFII promotes venous EC differentiation by suppressing Notch signaling during 

development (You et al., 2005). Disruption of Notch signaling in zebrafish leads to loss of 

arterial markers such as ephrinB2, and ectopic expression of EphB4, an ephrinB2 receptor 

that is prominently expressed in veins (Lawson et al., 2001). Conversely, ectopic activation 

of the Notch pathway represses expression of Efb4 (EphB4) and Flt4 (VEGFR-3) and thereby 

imposes a more artery-like gene expression profile on veins (Lawson et al., 2001), although 
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NICD was recently shown to bind to the VEGFR3 promoter and induce VEGFR-3 expression 

in mammals (Shawber et al., 2007).  

The formation of the tracheal system in Drosophila melanogaster embryos by growth 

factor-induced guided migration and self-limiting branching of the tracheal epithelial cells 

has served as a model for the formation of vascular networks in higher organisms (Zelzer and 

Shilo, 2000; Ghabrial and Krasnow, 2006). In Notch mutant Drosophila embryos, an excess 

of cells attempt to lead the tracheal branches and compete for the lead position, whereas 

expression of constitutively active Notch prevents outgrowth due to the lack of leading tip 

cells (Ikeya and Hayashi, 1999; Llimargas, 1999). The Dll–Notch signal also prevents the 

stalk epithelium from becoming terminal or fusion cells (Steneberg et al., 1999; Zelzer and 

Shilo, 2000).  

Notch signals play a strikingly similar role in the specification of endothelial tip cells, 

which express the Notch ligand Dll4, and stalk cells, in which Notch signaling becomes 

activated (Hellstrom et al., 2007; Roca and Adams, 2007). Dll4 gene-targeted mouse 

embryos die by E10.5 due to severe defects in arterial-venous remodeling of the embryonic 

vasculature, whereas the Dll4 heterozygous embryos have a similar, but attenuated 

phenotype, and a small proportion survive to adulthood (Duarte et al., 2004; Gale et al., 2004; 

Krebs et al., 2004). The Dll4 heterozygous mice and mice treated with Dll4-blocking 

antibodies or small-molecular #-secretase inhibitors exhibit excessive numbers of tip cells 

(Noguera-Troise et al., 2006; Ridgway et al., 2006; Hellstrom et al., 2007; Lobov et al., 2007; 

Siekmann and Lawson, 2007; Suchting et al., 2007). Furthermore, disruption of the Notch 

downstream signaling component Rbpsuh in zebrafish results in increased sprouting and high 

Flt4 expression (Siekmann and Lawson, 2007). These studies indicate that Dll4 is the key 

Notch ligand in the process, and Dll4/Notch appears to limit tip cell behavior in the stalk cells 

by suppressing VEGFR-2 and inducing VEGFR-1, rendering the stalk cells less responsive to 

VEGF than the tip cells, which express low levels of VEGFR-1 and high levels of VEGFR-2 

(Ridgway et al., 2006; Hellstrom et al., 2007; Lobov et al., 2007; Suchting et al., 2007). 

Befitting this role, VEGF has been shown to induce Dll4 in ECs (Liu et al., 2003).  
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The angiopoietin/Tie system 

 

The angiopoietin (Ang) family of growth factors includes Ang1 and Ang2, as well as 

Ang3 and Ang4, which are mouse and human orthologues, respectively (Suri et al., 1996; 

Maisonpierre et al., 1997; Valenzuela et al., 1999). The angiopoietins bind to the Tie2 

receptor tyrosine kinase, expressed almost exclusively in ECs, and regulate interactions 

between ECs and pericytes (reviewed in Thurston, 2003; Brindle et al., 2006; and in Shim et 

al., 2007). The Tie receptors (Tie1 and Tie2) are composed of an extracellular domain 

containing three immunoglobulin homology domains, three EGF-like repeats, three 

fibronectin-type III-like repeats, a transmembrane domain, and a split tyrosine kinase domain 

(Figure 4) (Partanen et al., 1992; Dumont et al., 1993; Ziegler et al., 1993). Ang1 and 

Ang3/Ang4 are obligate agonists of Tie2, whereas Ang2 can act either as an agonist or an 

antagonist, depending on the cell type and the surrounding microenvironment (Davis et al., 

1997; Maisonpierre et al., 1997; Teichert-Kuliszewska et al., 2001). Tie2 activation promotes 

EC survival and migration (reviewed in Thurston, 2003; Brindle et al., 2006; and in Shim et 

al., 2007). Ang1 and Ang4 were shown to stimulate the activation of Tie1, a Tie2 homologue 

with a highly similar expression pattern, although the presence of Tie2 is required for 

maximal Tie1 phosphorylation (Saharinen et al., 2005) . 

All angiopoietins share a similar overall structure with a short amino-terminal motif 

followed by a coiled-coil domain and carboxyterminal fibrinogen-like domain (Figure 4) 

(Suri et al., 1996; Maisonpierre et al., 1997; Valenzuela et al., 1999). Tie2 binding is 

mediated by the fibrinogen-like domain, while the short supercoiling domain (SCD) within 

the coiled-coil domain is responsible for the formation of angiopoietin homodimers and 

higher order homo-oligomers (Procopio et al., 1999; Barton et al., 2005; Barton et al., 2006). 

The linker peptide between the two major domains of Ang1 has been shown to associate 

Ang1 with the extracellular matrix, rendering Ang1 less soluble in tissues when compared to 

Ang2 (Thurston et al., 2000; Xu and Yu, 2001). 

Ang1 expression in the mouse embryo occurs first in the myocardium, and later in a 

more widespread manner around the developing vessels (Davis et al., 1997). Ang2 is 

expressed in the embryonic dorsal aorta and the major aortic branches, and in adults in tissues 

that are undergoing vascular remodeling (Maisonpierre et al., 1997; Gale et al., 2002). Gene 

targeting experiments have indicated that Ang1 is necessary for maintaining maximal 
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interactions between ECs and pericytes and the ECM (Suri et al., 1996). Loss of Tie2 

recapitulates the Angpt1 null phenotype, with embryonic lethality at E12.5 due to vessel 

rupture and lack of periendothelial support, whereas Tie1 gene-targeted mice succumb to 

similar defects by E14.5 (Puri et al., 1995; Sato et al., 1995; Partanen et al., 1996).  Ang1 

promotes the integrity of EC monolayers in culture (Wang et al., 2004; Gavard et al., 2008), 

and exogenously provided Ang1 prevents leakage of plasma components into the interstitium 

caused by potent vascular permeability agents, such as VEGF, in adult tissues (Thurston et 

al., 2000). A recent report has indicated that this activity occurs through the suppression of 

Src activation (Gavard et al., 2008). Conversely, release of Ang2 from Weibel-Palade bodies 

in ECs upon stimulation with proinflammatory cytokines leads to rapid destabilization of the 

endothelium and extravasation of plasma components (Fiedler et al., 2004; Fiedler et al., 

2006b).  

 

Figure 4. The angiopoietins and 

the Tie receptors. (a) The 
domain structure of angiopoietin-
1 (Ang1). Ang1 migrates at 70 
kDa. The N-terminal part of the 
coiled-coil domain contains the 
superclustering domain (SCD) 
responsible for formation of Ang 
homodimers and higher order 
oligomers. Ang1 must form at 
least tetramers in order to cluster 
and activate Tie receptors. The 
linker domain associates Ang1 
with the extracellular matrix. The    
C-terminal fibrinogen-like domain 
is required for the activation of 
Tie receptors. (b) Tie1 and Tie2 
are composed of two Ig-loops, 
followed by three EGF-like 
repeats, an Ig-loop, three 
fibronectin (FN) type III repeats, a 
single transmembrane domain and 
an intracellular tyrosine kinase 
domain (double rectangles) that is 
interrupted by a kinase-insert. 
Tie2 signals mediate endothelial 
cell survival and migration, as 
well as counteract vascular 
permeability responses.  
ECM: extracellular matrix. 
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Abundant evidence suggests that members of the angiopoietin and VEGF families 

collaborate during different stages of angiogenesis. Ang2 is expressed at sites of pericyte 

detachment and blood vessel remodeling in conjunction with VEGF, whereas in the absence 

of VEGF, Ang2 activity leads to EC apoptosis (Maisonpierre et al., 1997; Goede et al., 1998; 

Holash et al., 1999). In addition, factors that induce angiogenesis in vivo, such as hypoxia and 

VEGF, have been shown to upregulate Ang2 in ECs (Mandriota and Pepper, 1998).  

  The role of angiopoietins in lymphangiogenesis has remained unclear, although Tie2 

and Tie1 mRNA and protein have been detected at least in cultured LECs (Kriehuber et al., 

2001; Makinen et al., 2001b). Ang2 knockout mice have defects in regression of hyaloid 

blood vessels as well as lymphatic vessel maturation, suggesting that Ang2 may be needed 

for lymphatic vessel stabilization (Gale et al., 2002). Notably, replacement of the Ang2 gene 

with a cDNA encoding Ang1 was sufficient to rescue the lymphatic phenotype but not the 

blood vascular phenotype (Gale et al., 2002).  

 

Endothelial cell – pericyte interactions 

 

Stabilization of the endothelium requires pericyte recruitment, and the lack of 

pericytes leads to EC hyperplasia, formation of aberrant EC-EC junctions, vessel rupture and 

embryonic lethality (reviewed in Armulik et al., 2005; and in von Tell et al., 2006). The de 

novo induction of vascular SMCs around the first blood vessels is stimulated by transforming 

growth factor-ß (TGF-ß) and possibly other factors that remain to be characterized. Genetic 

inactivation of Tgfb1 in mice and genes encoding its receptors, activin-receptor-like kinase-1 

(Alk1), Alk5, TGF-ß receptor II (tßrII), and Eng (endoglin, a TGF-ß co-receptor), as well as 

its downstream effector Smad5 all lead to comparable cardiovascular defects and embryonic 

lethality (Dickson et al., 1995; Oshima et al., 1996; Li et al., 1999; Yang et al., 1999; Oh et 

al., 2000; Urness et al., 2000; Larsson et al., 2001). TGF-ß has context-dependent effects on 

ECs, as signaling through ALK1/Smad1/5 promotes EC proliferation, whereas 

ALK5/Smad2/3 stimulates differentiation (Goumans et al., 2002). TGF-ß signaling in ECs 

promotes TGF-ß expression, synthesis, and release by these cells, which, in turn, induces 

differentiation of SMCs from surrounding mesenchymal cells, but also auto-induces TGF-ß 

expression in the ECs themselves (Carvalho et al., 2004). The role of TGF-ß signaling in 
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lymphangiogenesis and lymphatic vessel maturation is not known, although it is conceivable 

that this pathway is involved in the differentiation of the SMCs surrounding the collecting 

vessels.   

Platelet-derived growth factor-B (PDGF-B) signaling via PDGF-receptor-ß   

(PDGFR-ß) plays a critical role in the recruitment of pericytes to newly formed vessels 

(reviewed in Hoch and Soriano, 2003; and in Betsholtz, 2004). During angiogenesis, 

sprouting ECs secrete PDGF-B, which signals through PDGFR-ß expressed by pericytes, 

resulting in proliferation and migration of pericytes during vessel maturation (reviewed in 

Armulik et al., 2005). Loss of Pdgfb or Pdgfrb leads to similar phenotypes and perinatal 

death caused by vascular dysfunction due to the lack of pericytes (Leveen et al., 1994; 

Lindahl et al., 1997; Crosby et al., 1998; Hellstrom et al., 1999). Gene-targeting studies have 

demonstrated that PDGF-B/PDGFR-ß signaling is not required for the induction of pericytes, 

but it is crucial for the expansion of the pericyte population (Hellstrom et al., 1999). The 

ectopic SMC coverage observed in lymphatic capillaries of Foxc2 null mice is presumably 

due to failure in suppression of Pdgfb transcription in LECs (Petrova et al., 2004). 

Sphingosine-1-phosphate (S1P) is a secreted sphingolipid synthesized by 

sphingosine-1-kinase (S1K) in ECs, and involved in cell-cell communication through five   

G-protein coupled receptors (S1P1-S1P5, also known as EDG1-EDG5) (Shu et al., 2002; 

Limaye et al., 2005). S1P1, S1P2 and S1P3 are expressed in SMCs/pericytes, and single or 

compound inactivation of these genes leads to embryonic lethality with severe defects in 

vascular pericyte investment (Liu et al., 2000b; Kono et al., 2004). S1P1 signaling through 

the small G-protein Rac promotes trafficking of N-cadherin to polarized plasma membrane 

domains in ECs, which enforces contacts with mural cells (Paik et al., 2004). N-cadherin-

based adherence junctions are located at peg–socket contacts between ECs and pericytes 

(Gerhardt et al., 2000; reviewed in Armulik et al., 2005; and in von Tell et al., 2006), and    

N-cadherin is functionally important for the maintenance of these junctions (Gerhardt et al., 

2000; Paik et al., 2004). Interestingly, Ang1 was recently shown to activate S1K and 

stimulate S1P production, suggesting that Ang1 produced by the pericytes can enhance     

EC-pericyte interactions via this pathway along with having direct effects on ECs (Li et al., 

2008). Furthermore, Ang1 has been reported to stimulate pericyte recruitment by inducing 

heparin-binding epidermal growth factor (HB-EGF) in ECs, although Hb-egf/Egfr gene-

targeted mice do not display pericyte defects (Iivanainen et al., 2003; Iwamoto et al., 2003). 
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The extracellular matrix 

 

ECs in quiescent blood vessels are insulated from the surrounding tissue environment 

by a basement membrane (BM), which is composed of type IV and XVIII collagens, laminin, 

fibronectin, nidogen (entactin), and heparan sulfate proteoglycans (HSPGs) (reviewed in 

Davis and Senger, 2005). The BM is required for the stability of blood vessels (Thyboll et al., 

2002), as well as for the polarization of ECs (Drake et al., 1995; reviewed in Davis and 

Senger, 2005). Interestingly, lymphatic capillary ECs express a truncated laminin-! chain 

that is unable to assemble into networks, which may explain the very sparse BM surrounding 

lymphatic capillaries (Vainionpää et al., 2007). 

At the onset of angiogenic sprouting, ECs utilize a number of proteases to invade 

through the BM (Pepper, 2001; Davis et al., 2002; Heissig et al., 2003), and become exposed 

to type I collagen, which stimulates tube formation and vessel morphogenesis (reviewed in 

Davis and Senger, 2005). The ECM acts as a reservoir for HSPG-binding growth factors, 

which can be released by proteolysis (reviewed in Lundkvist et al., 2007). PDGF-B produced 

by sprouting ECs is bound to HSPGs at the EC surface, which provides a high local growth 

factor concentration for optimal pericyte guidance (reviewed in Armulik et al., 2005; and in 

von Tell et al., 2006). In fact, loss of the HSPG retention motif in PDGF-B, or defective N-

sulfation of HSPGs leads to impaired pericyte recruitment, which highlights the importance 

of the ECM in generating growth factor gradients and limiting their effects to the local 

microenvironment (Lindblom et al., 2003; Nystrom et al., 2006; Abramsson et al., 2007; 

reviewed in Lundkvist et al., 2007).  

Three predominant VEGF isoforms of variable amino acid number, VEGF121, 

VEGF165, and VEGF189, are produced through alternative splicing (reviewed in Robinson 

and Stringer, 2001; and in Ferrara et al., 2003). After secretion, VEGF121 is freely diffusible 

in tissues, and does not bind to the neuropilins, while larger forms of VEGF retain the ability 

to bind NP-1 and NP-2, and are progressively less diffusible as their molecular weight 

increases (Soker et al., 1998; Gluzman-Poltorak et al., 2000). Except for VEGF121, all the 

larger forms of VEGF contain a heparin-binding domain (HBD) encoded by exon 6a and/or 

exon 7, and remain bound to the cell surface and the ECM (Gitay-Goren et al., 1996). The 

heparin-binding capacity in VEGF exon 7 is conveyed by a cationic polypeptide sequence 

(44 amino acids) (Poltorak et al., 1997), whereas other parts of the domain enable its binding 
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to NP-1 (Soker et al., 1996). VEGF165 contains the exon 7-encoded domain, and binds to 

cell surface HSPGs with intermediate affinity, while VEGF189 contains both exon 6a- and 

exon7-endcoded domains, remaining almost completely sequestered by HSPGs in the ECM 

(Figure 3a) (reviewed in Lundkvist et al., 2007). Other members of the VEGF family that 

contain a HBD include VEGF-B167 and PlGF-2 (Hauser and Weich, 1993; Maglione et al., 

1993; Mäkinen et al., 1999).  

Optimal three-dimensional distribution of VEGF isoforms is required for the guided 

migration of endothelial tip cells, which lead the outgrowth of blood vessel sprouts during 

angiogenesis (Ruhrberg et al., 2002; Gerhardt et al., 2003). Expression of a protease-resistant 

mutant form of VEGF in tissues was shown to result in excessive vascular sprouting, 

indicating that, besides mRNA splicing, post-translational modifications of VEGF in the 

extracellular environment are important for regulating its activity and bioavailability (Houck 

et al., 1992; Lee et al., 2005). Interestingly, HSPGs provided by pericytes in trans prolong 

VEGF-mediated activation of VEGFR-2, and suffice for normal VEGF signaling in ECs 

(Jakobsson et al., 2006). VEGF-C and VEGF-D do not bind heparan-sulfate (Joukov et al., 

1996; Achen et al., 1998). However, the C-terminal domains of these factors are homologous 

to silk proteins, and thus may aggregate into stabile fibrils in the extracellular environment 

(Figure 3a) (reviewed in Dicko et al., 2006). 

Integrins are dimeric membrane-bound adhesion molecules composed of ! and " 

subunits, which attach cells to the ECM via focal-adhesion complexes that are active in cell 

survival and motility signaling (reviewed in Schlaepfer and Mitra, 2004; Mitra and 

Schlaepfer, 2006; and in Romer et al., 2006). Interestingly, integrins physically interact with 

several growth factors and receptors that stimulate angiogenesis and lymphangiogenesis 

(reviewed in Davis and Senger, 2005; Brindle et al., 2006; and in Kärpänen and Alitalo, 

2007). In vitro studies show that VEGFR-2 may be involved in integrin-dependent migration 

of ECs, as it forms a complex with integrin "v$3 upon binding VEGF (Soldi et al., 1999; 

Hutchings et al., 2003). Furthermore, upon binding to matrix fibronectin, ß1 integrin interacts 

with VEGFR-3 and induces weak activation of its tyrosine kinase, whereas integrin "5ß1 

potentiates VEGFR-3 activation in the presence of VEGF-C (Wang et al., 2001; Zhang et al., 

2005a).  Integrin !9 binds VEGF-C and inactivation of Itga9 in mice results in accumulation 

of lymphatic fluid in the thoracic cavity (chylothorax), although the mechanism remains 

unresolved (Huang et al., 2000; Vlahakis et al., 2005). Furthermore, Kaposi sarcoma herpes 
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virus envelope glycoprotein gB can activate both VEGFR-3 and !3ß1 integrin, which results 

in increased EC proliferation and migration (Zhang et al., 2005b). In addition, Ang1 can bind 

several different integrins, including "2ß1, "5ß1, "vß3, and "vß5 (Carlson et al., 2001; 

Cascone et al., 2005; Dallabrida et al., 2005; Weber et al., 2005). The abundance of 

interactions between integrins and endothelial-specific tyrosine kinase receptors indicate that 

integrin function is required for EC migration and adhesion during ligand-activated 

angiogenesis.  
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3. Angiogenesis and lymphangiogenesis in human disease - the therapeutic horizon 

 

Insufficient or undesired angiogenesis is involved in a plethora of human diseases, 

and future pro- or anti-angiogenic therapies are estimated to benefit approximately 500 

million people worldwide (reviewed in Carmeliet, 2005). Awareness on the role of the 

lymphatic vascular system in human disease is growing, as connections between the 

lymphatics and tumor metastasis, edema formation, transplant rejection, fat metabolism, and 

wound healing continue to be made (Paavonen et al., 2000; Kerjaschki et al., 2004; Alitalo et 

al., 2005; Harvey et al., 2005; Saaristo et al., 2006). Angiogenesis and lymphangiogenesis are 

particularly important for tumor growth and metastasis, respectively. An overview of the 

strategies available for blocking the function of angiogenic/lymphangiogenic molecules is 

given in Figure 5. 

  

Tumor progression 

 

Tumor angiogenesis 

 

Growing tumors rely on sustained angiogenesis for the delivery of oxygen and 

nutrients (reviewed in Folkman, 1971; and in Hanahan and Weinberg, 2000). Neoplastic 

lesions are unable to grow beyond a small size without engaging a gene expression program 

that initiates angiogenesis, termed “the angiogenic switch” (Folkman et al., 1989; reviewed in 

Ferrara and Kerbel, 2005). Blood vessels in tumors lack hierarchial organization and are 

leaky, leading to sluggish blood flow and high interstitial fluid pressure within the tumor 

(reviewed in Jain, 2003; McDonald and Choyke, 2003; and in Jain, 2005). Hypoperfusion 

within the tumor perpetuates hypoxia and VEGF production, while high intratumoral fluid 

pressure hampers the delivery of therapeutic agents (reviewed in Jain, 2003; and in Jain, 

2005). As tumor growth is dependent on angiogenesis, and as vascular cells, unlike tumor 

cells, are less likely to become resistant to therapeutics, targeting the tumor vasculature is an 

attractive strategy to treat cancer patients (reviewed in Folkman, 1971; and in Hanahan and 

Weinberg, 2000). On the other hand, it is conceivable that anti-angiogenic therapies promote 

the dedifferentiation of tumor cells by increasing hypoxic stress (reviewed in Axelson et al., 

2005).  
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Figure 5. Strategies to inhibit VEGF/VEGFR signaling. (a) Ligand-activated VEGFR signaling. (b) VEGFR 
activation can be inhibited by monoclonal antibodies that prevent receptor dimerization and/or the ligand from 
binding the receptor. (c) VEGF ligands can be specifically neutralized using monoclonal antibodies or RNA 
aptamers. (d) Soluble decoy receptors containing the ligand-binding domain(s) of a given VEGFR, typically 
fused to the Fc domain of immunoglobulin G, trap ligands and may also interfere with receptor dimerization. (b) 
and (c) are the most specific means available, while (d) offers relatively specific blocking. All of these 
inhibitors must be administered parenterally, and are expensive to produce with current methods. (e) VEGFR 
tyrosine kinase activation can be blocked with small molecules that bind the intracellular kinase domain either at 
the ATP-binding site or at an allosteric site. (f) Small molecules can also be designed to block ligand-binding to 
the receptor ectodomain. Small molecule inhibitors are less specific, as they typically block multiple tyrosine 
kinases. However, these compounds may be administered orally and are inexpensive to synthesize.  
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Interestingly, many of the genes that are required for the development of the blood 

vascular system re-adopt their developmental function during tumor angiogenesis, which has 

led to the discovery of tumor-specific, and therefore potentially safe, vascular targets. 

Furthermore, tumor cell interactions with ECs promote the expression of surface proteins 

unique for the tumor endothelium, which may be utilized for specific therapeutic targeting 

(Arap et al., 1998; Joyce et al., 2003; reviewed in Ruoslahti and Rajotte, 2000).  

Reflecting its paramount role in developmental angiogenesis, the VEGF/VEGFR-2 

system appears to be the most important regulator of blood vessel growth in tumors 

(reviewed in Ferrara et al., 2007), and elevated levels of VEGF mRNA are found in most 

human tumors (reviewed in Dvorak, 2002). Besides hypoxia, a number of oncogenes are 

associated with VEGF production, including k-Ras, ErbB2, activated ErbB1, VHL, and Bcr-

Abl (Rak et al., 1995; reviewed in Kerbel and Folkman, 2002). Blocking VEGF/VEGFR-2 

signaling inhibits angiogenesis and growth of tumors, and even premalignant lesions, in 

experimental models without direct effects on tumor cells in vitro (Kim et al., 1993; Millauer 

et al., 1994; Prewett et al., 1999; Holash et al., 2002; Inoue et al., 2002; Korsisaari et al., 

2007). Long-term experiments have shown that adult mice are highly resistant to the adverse 

effects of VEGF/VEGFR-2 inhibitors, unlike neonatal or adolescent mice (Kitamoto et al., 

1997; Gerber et al., 1999; Eremina et al., 2003; Baffert et al., 2004). Nevertheless, the 

administration of VEGF axis inhibitors leads to apoptotic death of a small number of ECs, 

loss of EC fenestrations, resulting in subclinical hypothyroidism, and proteinuria even in 

adult mice (Baffert et al., 2004; Inai et al., 2004; Kamba et al., 2006; Lee et al., 2007; 

reviewed in Kamba and McDonald, 2007).  

In 2004 the monoclonal VEGF-neutralizing antibody bevacizumab became the first 

anti-angiogenic agent to be approved for use in patients (Kabbinavar et al., 2003; Hurwitz et 

al., 2004). Bevacizumab combined to the standard chemotherapy regimen has shown marked 

clinical benefit in the treatment of metastatic colorectal cancer, non-small cell lung cancer, 

and breast cancer (Hurwitz et al., 2004; Miller et al., 2005; Sandler et al., 2006; Miller et al., 

2007), and a positive result was obtained in a recent phase III trial in renal cell cancer 

(Escudier et al., 2007b). Further examples of specific VEGF axis inhibitors that are currently 

evaluated in phase II/III trials include the soluble VEGFR-1/VEGFR-2/immunoglobulin G 

fusion protein aflibercept (VEGF-Trap), and VEGFR-2 neutralizing antibodies (Lau et al., 

2005; Baka et al., 2006; Youssoufian et al., 2007). Two small-molecular tyrosine kinase 
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inhibitors, sunitinib and sorafenib, which potently block the activation of VEGFRs and other 

tyrosine kinases, have recently been shown to be effective in the treatment of renal cell 

cancer and other malignancies (Demetri et al., 2006; Escudier et al., 2007a; Llovet et al., 

2007; Motzer et al., 2007). Besides inhibiting angiogenesis and further tumor growth, 

VEGF/VEGFR-2 inhibitors are thought to improve tumor microcirculation by pruning excess 

vessels and reducing vascular leakage, facilitating the delivery of chemotherapeutics 

(reviewed in Jain, 2003; and in Jain, 2005). VEGF axis inhibitors are generally well tolerated 

in patients, although the combined use of chemotherapeutics often accentuates the adverse 

effects, which include hypertension, proteinuria, hemorrhage, gastrointestinal perforations, 

thromboembolism, and delayed wound healing (reviewed in Kamba and McDonald, 2007).   

The fact that VEGF/VEGFR-2 inhibitors are not effective in all tumor types has 

suggested the existence of overlapping signaling pathways that drive tumor angiogenesis. 

Antibodies that block PlGF inhibit tumor growth and neovascularization synergistically with 

VEGFR-2 antibodies by suppressing macrophage recruitment leading to a poorly developed 

tumor stroma (Fischer et al., 2007). Interestingly, VEGFR-3 neutralizing antibodies also 

reduce tumor angiogenesis and growth (Roberts et al., 2006; Laakkonen et al., 2007). NP-1 

function-blocking antibodies suppress the growth and angiogenesis of experimental tumors, 

and, interestingly, synergized with VEGF antibodies, which may indicate that other NP-1 

ligands are important for tumor angiogenesis (Liang et al., 2007; Pan et al., 2007). Other 

neural guidance ligand/receptor systems that have been implicated in the growth and 

angiogenesis of experimental tumors include Robo1/Slit-2, netrin-1/Unc5b, and 

ephrinB2/EphB4 (Wang et al., 2003; Lu et al., 2004; Martiny-Baron et al., 2004; Larrivee et 

al., 2007; reviewed in Carmeliet and Tessier-Lavigne, 2005; and Klagsbrun and Eichmann, 

2005).  

Interestingly, Dll4 inhibitors were recently shown to promote excessive but non-

productive tumor angiogenesis that impaired tumor perfusion and suppressed tumor growth, 

which has led to the emergence of a novel concept in anti-angiogenesis biology (Noguera-

Troise et al., 2006; Ridgway et al., 2006; reviewed in Thurston et al., 2007).  

In analogy with embryonic vascular development, blood vessels in tumors also recruit 

pericytes, which have been shown to protect tumor ECs from VEGF withdrawal (Liu et al., 

2000a; Bergers et al., 2003; reviewed in von Tell et al., 2006). Thereapeutic targeting of the 

PDGF-B/PDGFR-" signaling pathway results in a decreased number of pericytes and in 
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reduced tumor vascularity, whereas targeting both PDGFRs and VEGFRs with kinase 

inhibitors leads to synergistic anti-angiogenic and anti-tumor activity (Bergers et al., 2003; 

Pietras and Hanahan, 2005; Sennino et al., 2007; Pietras et al., 2008). Blocking Tie2 has also 

been shown to reduce the growth of tumor xenogafts, which may be due to endothelial 

destabilization (Lin et al., 1997; Lin et al., 1998; Popkov et al., 2005). On the other hand, 

specific neutralization of Ang2 reduces tumor vascularization and growth via a poorly 

understood mechanism (Oliner et al., 2004).  

 

 

Lymphatic metastasis 

 

Metastatic spread of tumor cells via blood or lymphatic vessels occurs in many forms 

of human cancer, and patients with lymph node metastases have a radically less favorable 

prognosis when compared to patients with local disease (reviewed in Stacker et al., 2002). 

The first regional lymph node to be colonized by metastatic tumor cells is denoted a sentinel 

lymph node, and further dissemination may occur to other nodes and distant organs from this 

location.  

Lymphangiogenesis has been observed in a variety of human tumors, as well as in 

experimental tumors (reviewed in Stacker et al., 2002). At least in animal models 

intratumoral lymphatic vessels may not be completely functional, because they collapse in 

conditions of high intratumoral pressure (Padera et al., 2002). Peritumoral lymphatics were 

recently shown to originate from the preexisting lymphatic vasculature without any 

detectable contribution from circulating lymphatic EPCs (He et al., 2004; He et al., 2005). 

The lymphatic vessels of tumors, and even premalignant lesions, express specific markers, 

which represent potential targets of anti-metastatic therapeutics (Laakkonen et al., 2002; 

Laakkonen et al., 2004; Fiedler et al., 2006a; Zhang et al., 2006). 

Interestingly, several clinical studies have shown a positive correlation between 

VEGF-C or VEGF-D expression and vascular invasion, lymphatic vessel and lymph node 

involvement, distant metastasis, and, in some instances, poor clinical outcomes (reviewed in 

Stacker et al., 2002). VEGF-C expression in tumor cells may be induced by oncogenes, 

growth factors or proinflammatory cytokines, whereas some of the VEGF-C may be derived 

from stromal inflammatory cells (reviewed in Alitalo et al., 2005). Forced expression of 
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VEGF-C or VEGF-D in tumor cells enhances lymphatic metastasis in various experimental 

models, which applies even to tumors that normally do not have this propensity (Skobe et al., 

2001a; Stacker et al., 2001; Kärpänen et al., 2001; Mandriota et al., 2001; He et al., 2002). 

Conversely, inhibition of lymphangiogenesis with a soluble form of VEGFR-3 or monoclonal 

antibodies that neutralize this receptor have been shown to inhibit lymphatic metastasis by 

50-70% in preclinical animal models (He et al., 2002; Lin et al., 2005; Roberts et al., 2006). 

Importantly, although the lymphatic vessels are dependent on VEGFR-3 signaling during the 

first two postnatal weeks, blocking VEGFR-3 has no effects on normal lymphatic vessels in 

adult mice (Lin et al., 2005; Kärpänen et al., 2006b).  

Interestingly, primary tumors were shown to elicit lymphangiogenesis in the sentinel 

lymph nodes already before the arrival of the first metastatic tumor cells (Hirakawa et al., 

2005). A similar response occurs following immunization, and this promotes trafficking of 

antigen-presenting dendritic cells, suggesting that tumor cells utilize similar mechanisms as 

the immune cells to reach the lymph nodes (Angeli et al., 2006). In both cases VEGF was 

implicated as the key growth factor, although further studies have shown that tumors that 

produce VEGF-C can also initiate lymph node lymphangiogenesis (Hirakawa et al., 2005; 

Angeli et al., 2006; Hirakawa et al., 2007). Fibroblast growth factor(FGF)-2, insulin-like 

growth factor(IGF)-1, IGF-2, hepatocyte growth factor (HGF), and PDGF-B also induce 

lymphangiogenesis, and at least PDGF-B promotes lymph node metastasis of experimental 

tumors, but most of these effects may be secondary to the induction of VEGF-C and    

VEGF-D in a variety of cell types (Kubo et al., 2002; Tang et al., 2003; Cao et al., 2004; 

Chang et al., 2004; Bjorndahl et al., 2005; Kajiya et al., 2005; Cao et al., 2006).  

 

 

Lymphedema 

 

Impairment of lymphatic transport capacity due to abnormal vessel development or 

obstruction or obliteration of the lymphatic vessels causes stagnation of proteins and 

associated water in the interstitium, resulting in lymphedema, usually a progressive and 

lifelong condition for which curative treatments are at present not available (Figure 1f). The 

protein-rich interstitial fluid initiates an inflammatory reaction, leading to fibrosis, impaired 
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immune responses, and accumulation of subcutaneous fat. Lymphedema is classified into 

primary (hereditary) lymphedema, and secondary (acquired) lymphedema, based on the 

mechanism of pathogenesis (reviewed in Rockson, 2001; and in Warren et al., 2007).  

Although primary lymphedema is a rare condition, identification of the underlying 

genetic causes has provided valuable insight into the molecular mechanisms regulating the 

development and function of the lymphatic vasculature.  Heterozygous tyrosine kinase-

inactivating point mutations of the VEGFR3 gene have been identified as a major cause of 

Milroy disease (OMIM #153100), a form of lymphedema due to hypoplasia of lymphatic 

capillaries, and typically present at birth (Irrthum et al., 2000; Kärkkäinen et al., 2000; 

Kärkkäinen et al., 2001). Mutations in the transcription factor FOXC2 have been linked to 

lymphedema-distichiasis (LD, OMIM #153400), characterized by late-onset lymphedema, a 

double row of eyelashes, and varicose veins (Fang et al., 2000; Bell et al., 2001; Finegold et 

al., 2001; Mellor et al., 2007). Analysis of Foxc2 mutant mice revealed that LD is due to 

ectopic SMC coverage of the lymphatic capillaries and loss of valves in the collecting 

vessels, and similar defects were also observed in samples obtained from LD patients 

(Petrova et al., 2004).  

Dominant-negative mutations of the homeobox transcription factor SOX18 have been 

linked with hypotrichosis-lymphedema-telangiectasia syndrome (HLTS, OMIM #607823) 

(Irrthum et al., 2003). Although the precise molecular mechanisms leading to the phenotype 

have not been discovered, a mouse model that recapitulates most hallmarks of the syndrome 

is available for the elucidation of the molecular pathogenesis (Pennisi et al., 2000; James et 

al., 2003). Lymphatic vessels express constitutively high levels of nuclear factor kappa-B 

(NF-$B), and mutations in the NF-$B regulatory protein NEMO associate with a rare and 

complex syndrome involving lymphedema (anhidrotic ectodermal dysplasia with 

immunodeficiency, osteopetrosis, and lymphedema, OL-EDA-ID, OMIM #300301) 

(Döffinger et al., 2001; Saban et al., 2004).  

Over 99% of lymphedema cases worldwide are secondary to acquired damage to the 

lymphatic vessels (reviewed in Rockson, 2001; and in Warren et al., 2007). Filariasis 

(elephantiasis) is an infection of the lymphatics by the parasitic worms Wuchereria bancrofti 

or Brugia malayi, which leads to obstruction and scarring of lymphatic vessels, and chronic 

lymphedema of the lower limbs or genital organs. Filariasis is the principal cause of 

lymphedema worldwide, affecting approximately 100 million people, whereas breast cancer 
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surgery is the leading cause for secondary lymphedema in industrialized countries (reviewed 

in Rockson, 2001; and in Alitalo et al., 2005). Metastatic tumor cells frequently spread to the 

lymph nodes, necessitating radical surgery and radiotherapy, which destroy the lymphatic 

vessel network and lead to impairment of afferent lymphatic flow (reviewed in Rockson, 

2001; and in Alitalo et al., 2005). For example, approximately 20-30% of patients that have 

undergone radical axillary lymph node dissection develop lymphedema of the upper limb 

later on (Mortimer et al., 1996; reviewed in Clark et al., 2005; and in Warren et al., 2007). 

Damage to the lymphatics may also result from bacterial infections of the skin (e.g. 

erysipelas) or the lymphatic vessels (lymphangitis) (reviewed in Rockson, 2001; and in 

Warren et al., 2007). 

Unlike primary lymphedema, secondary lymphedema is typically due to damage to 

the collecting lymphatic vessels. Spontaneous recanalization of collecting vessels may occur 

in minimal lesions, but formation of new lymphatic vessels is typically not observed in 

lymphedema patients, although pre-existing vessels dilate to accommodate the increased fluid 

(Ikomi et al., 2006; Tabibiazar et al., 2006). Hypoxia is a ubiquitous stimulus for the 

initiation of angiogenesis, but it is not known whether intrinsic edema-induced mechanisms 

for engaging lymphangiogenic gene expression programs exist. The treatment of 

lymphedema is currently based on physiotherapy, compression garments, liposuction, and 

occasionally surgery (reviewed in Rockson, 2001; Warren et al., 2007), but means to 

reconstitute the collecting lymphatic vessels and cure the condition are rarely successful 

(Baumeister et al., 1981; Olszewski, 1988; Becker et al., 2006). VEGF-C gene transfer via 

adenoviruses (Ad), adeno-associated viruses (AAV), or naked plasmids, as well as the 

application of recombinant VEGF-C protein have been shown to stimulate the formation of 

new lymphatic capillaries and alleviate edema in preclinical animal models of lymphedema 

(Kärkkäinen et al., 2001; Szuba et al., 2002; Yoon et al., 2003; Saaristo et al., 2004), pointing 

to a promising means to restore lymphatic vessels in lymphedema patients.  
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AIMS OF THE STUDY 

 

This study was undertaken to study the potential of Ang1, VEGF-C, VEGF-D, and chimeric 

heparin-binding forms of VEGF-C in inducing therapeutic lymphatic vessel growth, as well 

as to elucidate the function of VEGFR-3 in angiogenesis under normal and pathological 

conditions. 

 

The specific aims were to elucidate: 

 

I The role of angiopoietin-1 in lymphatic vessel sprouting and growth in adult tissues. 

 

II The potential of VEGF-C and VEGF-D to regenerate collecting lymphatic vessels and 

improve the outcome of lymph node transplantation in a mouse model of secondary 

lymphedema. 

 

III The analysis of the biological activity and vascular patterns induced by heparin-

binding chimeric VEGF/VEGF-C fusion proteins in vitro and in vivo. 

 

IV The function of VEGFR-3 in angiogenesis in developmental, physiological, and 

pathological settings. 
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MATERIALS AND METHODS 

 

The materials and methods are described in detail in the original publications. A list of the 

most relevant materials and methods used in the studies is provided below.  

 

1. Materials 

 

Mouse line  Description      Source or  Used in 

          reference       

 

Dll4
+/LacZ   The LacZ gene has been inserted into the   (Duarte et al., 2004)  IV 

Dll4 locus resulting in Dll4 inactivation     

DsRed   Expresses the Discosoma coral red    (Vintersten et al., 2004)   II 
fluorescent protein DsRed in all cells under 
the control of the chicken "-actin promoter  

K14-Ang1  Overexpresses Ang1 in basal     (Thurston et al., 1999) I 
   epidermal keratinocytes 

K14-VEGF-E  Overexpresses VEGF-E in basal     (Kiba et al., 2003) IV 
   epidermal keratinocytes 

K14-VEGF165   Overexpresses VEGF165 in basal    (Zheng et al., 2006) IV 
   epidermal keratinocytes 

K14-VEGFR-3-Ig Overexpresses the VEGFR-3-Ig fusion   (Makinen et al., 2001a) IV 
   protein in basal epidermal keratinocytes 

Nu/nu   Immunodeficient athymic nude mice    Taconic  I, II, III, IV 

Rip1Tag2   Expresses the oncogenic simian virus 40   (Hanahan, 1985) IV 
large T antigen in pancreatic "-cells under 
the control of the rat insulin promoter 

Vegfc
+/LacZ   The LacZ gene has been inserted into the   (Kärkkäinen et al., 2004) IV  

Vegfc locus resulting in Vegfc inactivation   

Vegfr3
LacZ/LacZ

,  The LacZ gene has been inserted into the   (Dumont et al., 1998) IV 
Vegfr3

+/LacZ  
Vegfr3 locus resulting in Vegfr3 

inactivation     
 

Recombinant  Description    Source or  Used in 

AAV        reference    
 
AAV-Ang1  Encodes human Ang1   I   I 

AAV-CA65  Encodes the chimeric VEGF-C%N%C- III   III 
VEGF(exons 7-8) fusion protein 

AAV-CA89  Encodes the chimeric VEGF-C%N%C- III   III 
VEGF(exons 6a-8) fusion protein 

AAV-EGFP  Encodes the green fluorescent protein  (Kärkkäinen et al., 2001) I, III 
from the jellyfish Aequorea victoria 

AAV-VEGF-B167 Encodes the human VEGF-B167 isoform III   III 

AAV-VEGF-C  Encodes human full-length VEGF-C (Kärkkäinen et al., 2001) I, III 

AAV- VEGF-C%N%C Encodes the mature form of   III   III 
human VEGF-C 
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Recombinant  Description    Source or    Used in 

adenovirus       reference    
 
AdAng1   Encodes human Ang1   I   I 

AdCA65  Encodes the chimeric VEGF-C%N%C- III   III 
VEGF(exons 7-8) fusion protein 

AdCA89  Encodes the chimeric VEGF-C%N%C- III   III 
VEGF(exons 6a-8) fusion protein 

AdLacZ   Encodes E. coli "-galactosidase  (Laitinen et al., 1997) I, II, III, IV 

AdmVEGF-D  Encodes mouse full-length VEGF-D IV   IV 

AdPDGF-B  Encodes human PDGF-B   From Dr P. Korpisalo and  II 
        Dr. S. Ylä-Herttuala 

AdVEGF165  Encodes the human VEGF165 isoform (Enholm et al., 2001) IV 

AdVEGF-B186  Encodes the human VEGF-B186 isoform II   II  

AdVEGF-C  Encodes human full-length VEGF-C (Enholm et al., 2001) I, II, III, IV 

AdVEGF-C%N%C- Encodes the mature form of   III   III 
5’UTR   human VEGF-C (contains the  

5’ untranslated region of VEGFC) 

AdVEGF-D%N%C Encodes the mature form of   (Rissanen et al., 2003) II 
human VEGF-D 

AdVEGF-E  Encodes the VEGF homologue VEGF-E (Wirzenius et al., 2007) IV 
   originating from the Orf-NZ7 virus 

AdVEGFR-3-Ig   Encodes the VEGFR-3-Ig fusion protein (Kärpänen et al., 2001) I, IV 
 

 

Cell line   Description    Source or    Used in 

          reference       

 

B16    Murine skin melanoma line derived from (Riley, 1963)  IV 
   the inbred C57/black/6 mouse strain 

G401   Human renal cancer cell line  Americn Type Culture   IV 
        Collection (ATCC) 
HDMEC  Primary human dermal microvascular Promo Cell  I, II 
   endothelial cells 

HEK-293T  Human embryonic kidney fibroblast ATCC   I, III, IV 
line expressing the simian virus 40    
large T antigen 

HeLa    Human cervical cancer line  ATCC   I, II, III, IV 

MKN45   Human gastric carcinoma cell line  (Sakai et al., 1987) IV 

NCI-H460-LNM35- Subline of NCI-H460-N15, a human  (Kozaki et al., 2000) II, IV 

Luciferase  large-cell lung carcinoma. Selected in vivo (He et al., 2005) 
for the propensity for lymph node 
metastasis. Tagged with Photinus pyralis  

(firefly) luciferase. 

LLC   Murine lung carcinoma, derived from the ATCC   IV 
   inbred C57/black/6 mouse strain 
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Recombinant protein  Description    Source or  Used in 

        reference       

 

Jag1   A 17mer peptide consisting of the   (Weijzen et al., 2002) IV 
receptor-activating motif  of the Notch- 
ligand Jagged1 

NP-1-Ig   Human NP-1 extracellular domain and (Kärkkäinen et al., 2001)   III 
immunoglobulin G1 fusion protein 

NP-2-Ig   Human NP-2 extracellular domain and (Kärkkäinen et al., 2001)   III 
immunoglobulin G1 fusion protein 

PDGFR-$-Ig   Human PDGFR-$- extracellular domain R&D Systems  II 
and immunoglobulin G1 fusion protein    

Tie2-Ig   Human Tie2- extracellular domain and R&D Systems  I 
immunoglobulin G1 fusion protein   

SC-Jag1   A scrambled 17mer peptide consisting of (Weijzen et al., 2002) IV 
   the same amino acids as Jag1 

VEGF165  Human VEGF165   R&D Systems  IV 

VEGF-C%N%C  Human VEGF-C consisting of amino acids (Kärpänen et al., 2006a) III, IV 
   103-215 and a H6 tag     

VEGFR-1-Ig  Consists of the first five Ig homology  (Makinen et al., 2001a) III 
domains of human VEGFR-1 fused to the  
Fc region of human IgG1      

VEGFR-2-Ig  Consists of the first three Ig homology  (Uutela et al., 2004) III 
domains of human VEGFR-2 fused to the  
Fc region of human IgG1 

VEGFR-3-Ig  Consists of the first three Ig homology  (Makinen et al., 2001a) III 
domains of human VEGFR-3 fused to the  
Fc region of human IgG1 

 
 
Antigen   Antibody    Source or  Used in 

        reference    
 
Ang1 C-terminus  Goat polyclonal    Santa Cruz Biotech. I  
(human)  

Ang1 N-terminus  Goat polyclonal    Santa Cruz Biotech.  I 
(human) 

Bromodeoxyuridine  Mouse monoclonal-Alexa 594   Molecular Probes/ IV 
        Invitrogen 

CD11b (mouse)  Rat monoclonal (clone M1/70)  BD Biosciences  IV 

Cytokeratin 7 (human) Rabbit polyclonal    AbCam   II 

Dll4 (mouse)  Goat polyclonal    R&D Systems  IV 

F4/80 (mouse)  Rat monoclonal (clone BM8)   Acris antibodies  III, IV 

FITC   Rabbit polyclonal    Zymed/Invitrogen IV 

GFAP (cow)  Rabbit polyclonal    DAKO   IV 

LYVE-1 (mouse)  Rabbit polyclonal    (Petrova et al., 2004) I, II, III, IV 

LYVE-1 (mouse)  Rat monoclonal (clone ALY7)  (Morisada et al., 2005) I 

MECA-32 (mouse  Rat monoclonal (clone MECA-32)  BD Biosciences  IV 
endothelial cell antigen) 
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Antigen   Antibody    Source or  Used in 

        reference    
 
N-cadherin (mouse) Rabbit polyclonal    From Dr. M. Takeichi  II 

and Dr. H. Semb 

NG2 (mouse)  Rabbit polyclonal    Chemicon/Millipore IV 

PCNA (human)  Mouse monoclonal-biotin   Zymed/Invitrogen I 

PDGFR-! (mouse) Goat polyclonal    R&D Systems  IV 

PDGFR-" (mouse) Rat monoclonal (clone APB5)  eBioscience  IV 

PECAM-1 (mouse) Hamster monoclonal (clone 2H8)  Chemicon/Millipore II, III, IV 

PECAM-1 (mouse)  Rat monoclonal (clone MEC 13.3)  BD Biosciences  II, III, IV 

Phosphohistone H3 Rabbit polyclonal    Upstate/Millipore  I, III 
(mouse) 

Pimonidazole  Mouse monoclonal-FITC   Chemicon/Millipore IV 
adducts 

Podoplanin (human) Rabbit polyclonal    (Kriehuber et al., 2001) II, IV 

Prox1 (mouse)  Rabbit polyclonal    (Kärkkäinen et al., 2004) II 

SMA (human)  Mouse monoclonal-Cy3 (clone 1A4) Sigma   II, IV 

Tie2 (mouse)  Rat monoclonal (clone TEK4)  eBioscience  I 

VE-cadherin (mouse) Rat monoclonal (clone 11D4.1)  BD Biosciences  II, IV 

VEGF-C (human) Rabbit polyclonal  (#6)   (Baluk et al., 2005) I, IV 

VEGF-C%N%C (human) Rabbit polyclonal  (#3 and #4)  III   III 

VEGFR-1 (mouse) Rat monoclonal (clone 5B12)  ImClone   IV 

VEGFR-2 (mouse) Goat polyclonal    R&D Systems  IV 

VEGFR-2 (mouse) Rat monoclonal (clone AVAS-12"1) BD Biosciences  IV 

VEGFR-2 (mouse)  Rat monoclonal (DC101)   (Prewett et al., 1999) IV 

VEGFR-3 (mouse) Goat polyclonal     R&D Systems  I, II, III, IV 

VEGFR-3 (mouse) Rat monoclonal (clone AFL4)  eBioscience  IV 

VEGFR-3 (mouse) Rat monoclonal (clone mF4-31C1)  (Pytowski et al., 2005)  IV 

VEGFR-3 (human) Mouse monoclonal (clone 9D9)  (Jussila et al., 1998) IV 

von Willebrand factor Rabbit polyclonal    DAKO   IV 
(human)    

ZO-1 (mouse)  Rat monoclonal    Chemicon/Millipore II 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 53 

2. Methods 

 

 

Method           Used in 

 
AAV transduction of cells or mice        I, III 

Adenoviral transduction of cells or mice       I, II, III, IV 

Bioassay for growth factor–mediated cell survival      III 

Bioluminescence imaging         II, IV 

Cell culture          I, II, III, IV 

Confocal microscopy         I, II, III, IV 

Dissection and transplantation of mouse lymph nodes      II 

DNA subcloning          I, II, III, IV 

Immunofluorescence         I, II, III, IV 

Immunohistochemistry         I, II, III, IV 

Immunoprecipitation         I, III, IV 

Implantation of tumors into mice        II, IV 

Mating and screening of genetically modified mice      II, IV 

Metabolic labeling         I, III, IV 

Microlymphangiography (tomato lectin, dextran, Evans blue)     II 

Northern blotting          I 

Polymerase chain reaction (PCR)        I, III, IV 

Preparation of human tissues        II, IV 

Preparation of mouse tissues        I, II, III, IV 

Quantitative analysis and vessel morphometry      I, II, III, IV 

RNA extraction          I, IV 

Real-time quantitative PCR         IV 

Superovulation of mice         IV 

Stimulation of mouse embryos with recombinant growth factors    IV 

Transduction of cells         I, III, IV 

Transfection of cells         III 

Transmission electron microscopy        IV 

Western blotting          IV 

X-gal staining of tissues         IV 
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RESULTS AND DISCUSSION 

 

1. Angiopoietin-1 induces lymphangiogenesis in adult tissues (I) 

 

Analysis of gene-targeted mice has shown that Ang2 is essential for the proper 

patterning of lymphatic vessels, while Ang1 is able to rescue the lymphatic phenotype in 

Ang2 gene-targeted mice, suggesting that either ligand acts as a receptor agonist in LECs 

(Gale et al., 2002). In order to expand the repertoire of available pro-lymphangiogenic 

growth factors, it was rational to study whether Ang1 could induce lymphangiogenesis in 

adult tissues. For this purpose, adenoviral and adeno-associated virus (AAV) vectors 

encoding human Ang1 were transduced into the skin of adult mice, as this tissue is rich in 

lymphatic vessels. Ang1 induced lymphatic endothelial proliferation, vessel enlargement and 

formation of long LEC filopodia that eventually fused, leading to new sprouts over a period 

of four days. At two weeks, new lymphatic vessels were observed. Lymphatic capillary 

hyperplasia was also detected in the skin of K14-Ang1 transgenic mice, which express 

human Ang1 in the basal epidermal keratinocytes under the control of the keratin-14 

promoter. Later studies have corroborated these findings, as Ang1, Ang2, and Ang3/Ang4 

have now been shown to promote lymphangiogenic sprouting, with Ang1 being the most 

potent lymphangiogenic factor (Kim et al., 2007). Furthermore, an engineered Ang1 with 

enhanced biological activity and solubility was shown to promote wound healing through 

enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model (Cho 

et al., 2006).  

The Ang1 receptor Tie2 is expressed in cultured LECs (Kriehuber et al., 2001; 

Makinen et al., 2001b; Morisada et al., 2005), and Tie2 expression was observed also in 

cutaneous lymphatic vessels in vivo. Interestingly, stimulation of LECs with Ang1 resulted in 

upregulation of VEGFR-3 in vivo and in vitro.  Furthermore, the lymphatic vascular effects 

of Ang1 were blocked by a soluble VEGFR-3-Ig fusion protein in vivo, suggesting that the 

Ang1/Tie2 and VEGF-C/VEGFR-3 pathways interact in the molecular regulation of 

lymphatic vessel growth and survival. It is possible that by upregulating VEGFR-3, Ang1 

sensitizes the lymphatic vessels to VEGF-C and VEGF-D signals emanating from e.g. 

vascular SMCs, which have been shown to express both VEGF-C and VEGF-D (Partanen et 

al., 2000; Achen et al., 2001). 
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 The upregulation of VEGFR-3 in response to Tie2 activation in the LECs could 

account for at least part of the observed increase in the rate of LEC proliferation, as VEGFR-

3 signals have been shown to be sufficient for lymphatic vessel growth in vivo (Veikkola et 

al., 2003; Wirzenius et al., 2007). Ang1 may also exert direct effects promoting LEC 

proliferation and sprouting, as it has been reported to promote the survival and migration of 

blood vascular ECs (Koblizek et al., 1998; Hayes et al., 1999; Papapetropoulos et al., 2000; 

Kim et al., 2000b; Cho et al., 2004). Furthermore, Ang1 may also play a role in early 

lymphatic vessel development, as it was shown to expand colonies of LECs isolated from 

developing mouse embryos (Morisada et al., 2005). However, biochemical evidence for the 

cooperation of the Tie2 and VEGFR-3 signaling systems in lymphangiogenesis is lacking. 

Interestingly, Ang1 has been reported to bind to integrin $1, even in the absence of Tie2, and 

to stimulate cell adhesion to fibronectin via ß1 integrin (Takakura et al., 1998; Carlson et al., 

2001).  On the other hand, VEGFR-3 has been shown to form a ligand-independent signaling 

complex with integrin $1 (Wang et al., 2001). It is thus possible that Ang1 complexes with 

integrin $1 - VEGFR-3 clusters, in addition to activating of Tie2, suggesting the possibility of 

a VEGF-C/VEGF-D-independent mechanism. Finally, Ang1 and Ang4 have also been shown 

to activate Tie1 in cultured LECs, which may be an additional explanation for the 

lymphangiogenic activity of Ang1 (Saharinen et al., 2005). 

 Ang1 is an important regulator of vascular permeability, being capable of preventing 

plasma leakage even after stimulation of blood vessels with highly potent permeabilizing 

agents, such as VEGF (Thurston et al., 2000; Thurston, 2002). These findings show that 

Ang1 can also be implicated as a lymphangiogenic factor, and further promote the utility of 

this factor in the management of tissue edema. Ang1 therapy could be applied in settings of 

edema, provoked by e.g. inflammation or allergens (Figure 1 d), in order to restore the 

integrity of EC monolayers in blood vessels, but also to promote the activation of 

lymphangiogenesis in response to VEGF-C and VEGF-D, which are produced by leukocytes 

in inflammatory infiltrates (Baluk et al., 2005). Ang1 therapy could also be applied in 

patients at a risk of secondary lymphedema in order to decrease the volume of extravasated 

fluid, thus reducing the drainage requirement of the lymphatic vessels that are still functional. 

Furthermore, Ang1 has been shown to protect ECs from radiation-induced injury, and it 

could also support LEC survival under stress (Cho et al., 2004b). Ang1 could be applied in 

patients suffering from reduced activity of the VEGFR-3 signaling pathway, such as Milroy 
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patients, although this would require evidence of VEGFR-3-independent lymphangiogenic 

activity of Ang1.  

The low solubility of native Ang1 allows for localized treatment in order to minimize 

adverse effects, and to generate growth factor gradients. However, Ang1 is constantly 

produced by pericytes, and it is thus unlikely that even intravascularly administered Ang1 

would lead to dramatic adverse effects. Systemic administration of Ang1 could be achieved 

with variants that have been engineered to form predominantly tetramers or pentamers 

instead of the highly insoluble aggregates formed by native Ang1 (Thurston et al., 2000; Cho 

et al., 2004a). Further solubility may be achieved by deletion of the linker peptide (Xu and 

Yu, 2001). Prolonged stimulation with such soluble forms of Ang1 has been reported to 

induce dilation of postcapillary venules, and to promote blood flow in these vessels, but other 

systemic effects have not been reported (Baffert et al., 2004; Cho et al., 2005).  

 

2. VEGF-C/VEGF-D therapy restores collecting lymphatic vessels and improves the 

outcome of lymph node transplantation (II) 

 

 Surgery or radiation therapy of metastatic cancer often damages lymph nodes, leading 

to secondary lymphedema, a highly prevalent and debilitating condition (Figure 1f). Previous 

studies have demonstrated that VEGF-C and VEGF-D stimulate lymphangiogenesis in adult 

tissues, but they have been limited to analysis of lymphatic capillaries identified by markers 

such as LYVE-1 and VEGFR-3, while a comprehensive molecular analysis of the lymphatic 

vessel phenotype and especially the collecting lymphatic vessels, most commonly damaged 

in secondary lymphedema, has been lacking. (Jeltsch et al., 1997; Enholm et al., 2001; 

Kärkkäinen et al., 2001; Veikkola et al., 2001; Saaristo et al., 2002b; Yoon et al., 2003; 

Rissanen et al., 2003; Saaristo et al., 2004; Kärpänen et al., 2006b).  

In order to study secondary lymphedema in a clinically relevant setting, a mouse 

model involving the dissection of all axillary lymph nodes and collecting vessels, frequently 

damaged in humans by breast cancer treatments, was established. This was followed by 

administration of adenoviral vectors into the surrounding tissues. Mice treated with control 

adenoviruses developed lymphedema of the paws, and demonstrated impaired return of 

lymph from the paw to the bloodstream. In contrast, mice treated with AdVEGF-C or 

AdVEGF-D%N%C displayed decreased edema and restoration of lymphatic drainage, which 
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continued to improve over time. Histological analysis of axillas treated with adenoviral 

VEGF-C or VEGF-D demonstrated robust growth of the lymphatic capillaries, which 

gradually underwent an intrinsic remodeling, differentiation, and maturation program into 

functional collecting lymphatic vessels. These vessels acquired all hallmarks of collecting 

vessels, including formation of uniform endothelial cell-cell junctions and intraluminal 

valves, although the vessels remained smaller in diameter than in normal non-operated axillas 

even at 6 months (Figure 6). Importantly, the vessels also acquired a coating of SMCs, which 

coincided with the formation of N-cadherin-mediated junctions and down-regulation of the 

lymphatic capillary marker LYVE-1. Conversely, the data indicated that the detachment of 

SMCs upon PDGF-B stimulation re-induced LYVE-1 in the collecting lymphatic vessels, 

indicating that SMC contact is required for maintenance of the collecting vessel phenotype. 

Besides N-cadherin, LEC-SMC signaling may be regulated by the ephrinB2/EphB4, Ang/Tie, 

S1P/S1P receptor, and TGF-"/TGF-"R pathways, as in blood vessels during development 

(Gale et al., 2002; Makinen et al., 2005; reviewed in Armulik et al., 2005).  

 

 

 

 

Figue 6. Maturation of the lymphatic vessels formed in response to VEGF-C/D therapy. (a) In a normal 
non-operated mouse axilla the lymph nodes (LN) take up fluorescent dextran (green), which is transported to the 
lymph node via the afferent lymphatic vessels (A) after injection to the footpad of the mouse. The efferent 
lymphatic vessel (E) transports the tracer onwards from the lymph node. SMCs are stained with smooth muscle 
"-actin (red). (b) In mice that underwent lymph node dissection only a few collecting lymphatic vessels remain 
(Control). Abundant leaky lymphatic vessels are observed at two weeks (2 w) following adenoviral gene 
transduction of VEGF-C or VEGF-D to the axillary tissues, while functional collecting lymphatics containing 
intraluminal valves (arrowheads) are seen at 6 months (6 m). (c) A magnified image of the lymphatic vascular 
plexus at 6 months. The vessel is in contact with SMCs (red), and contains an intraluminal valve (arrows). 
Lycopersicon esculentum lectin lymphangiography (green) was used to visualize lymphatic vessels in (b-c). 
Scalebars: 100 µm. 
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According to these results, the process of lymphatic vessel maturation is analogous to 

arteriogenesis, which can be induced by prolonged stimulation with VEGF or PlGF, and by 

shear stress due to increased flow in the vessels (Garcia-Cardena et al., 2001; Dor et al., 

2002; Pipp et al., 2003; reviewed in Schaper and Scholz, 2003). Interestingly, VEGF-C is a 

chemoattractant for monocytes/macrophages, which are important for arteriogenesis, and 

these cells may also play a role in lymphatic vessel maturation (Ito et al., 1997; Arras et al., 

1998; Skobe et al., 2001b; Pipp et al., 2003; Saaristo et al, 2006). Prolonged VEGF-C 

stimulation may also directly promote LEC differentiation. In fact, the lymphatic vessels 

formed in response to VEGF-C stimulation resemble the lymphatic vascular plexus that 

forms early on during development, and it is likely that the intrinsic developmental 

mechanisms governing lymphatic vessel maturation are reactivated in these vessels. The 

molecular players regulating this process are poorly known, but it is likely that flow of the 

lymph in the nascent vessels contributes to the remodeling (Ng et al., 2004). The transcription 

factor FoxC2 is likely to be involved in the maturation process, as it regulates the formation 

of lymphatic and venous valves, as well as other characteristics of collecting lymphatic 

vessels during development (Petrova et al., 2004; Mellor et al., 2007).  

In order to comprehensively restore the anatomy of the axilla following surgery, 

combined AdVEGF-C therapy with lymph node transplantation was applied. Such an 

approach has been previously undertaken without growth factor therapy, but in these 

experiments the autologously transplanted lymph nodes incorporated into existing lymphatic 

vasculature at a low frequency (Rabson et al., 1982; Becker et al., 2006).  The lymph nodes 

transduced with AdVEGF-C survived, formed connections with the pre-existing lymphatic 

vessel network, and could even trap metastatic tumor cells, whereas the majority of control-

treated nodes regressed, indicating that VEGF-C therapy can improve the success rate of 

lymph node transplantation (Figure 7a). These findings demonstrate for the first time that 

growth factor therapy can be used to generate functional and mature collecting lymphatic 

vessels. VEGF-C combined with lymph node transplantation allows for complete restoration 

of the lymphatic system in damaged tissues, and provides a model for future treatment of 

lymphedema in patients.  

These findings are based on a mouse model, which has several limitations when 

considering direct extrapolation to the human patient setting. Firstly, the hydrostatic 

conditions are dramatically different in mice, as humans are considerably larger. This also 
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means that the absolute area damaged by axillary lymph node dissection in humans is greater 

in size, and the regenerating lymphatic vessels must span a longer distance in order to form 

anastomoses with both the distal and the proximal ends of the lymphatic vascular tree. 

However, this gap could be bridged by the transplantation of chains of lymph nodes from 

another location in the patient, whereas VEGF-C could be used to form the microvascular 

anastomoses. On the other hand, maturation of the lymphatic vessel plexus induced by 

VEGF-C therapy could be more complete in humans due to a longer life span.  

VEGF-C has been shown to accelerate wound healing by promoting 

lymphangiogenesis, angiogenesis, and macrophage recruitment (Saaristo et al., 2004; Saaristo 

et al., 2006). Furthermore, VEGF-C could be used to augment immune responses by 

promoting antigen-presenting cell migration (Chen et al., 2004), as well as by increasing the 

number of lymphatic vessel routes available for these cells. On the other hand, VEGF-C has 

been shown to promote lymphatic metastasis of tumor cells (reviewed in Alitalo et al., 2005), 

to increase blood vascular permeability (Saaristo et al., 2002), as well as to stimulate 

extravasation of lymph from the lymphatic vessels (II). In light of these findings, patient 

safety is an important issue, which must be considered when identifying patients for future 

clinical trials.  
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3. Altered tissue distribution of VEGF-C by fusion to heparin-binding domains of 

VEGF produces distinct lymphatic vascular patterns 

 

VEGF-C and VEGF-D have an N-terminal propeptide, as well as a C-terminal 

domain homologous to certain silk proteins. VEGF-C does not contain heparin-binding 

motifs, and it is unknown how, if at all, VEGF-C associates with the ECM (Joukov et al., 

1996; Joukov et al., 1997). In order to study the effects of altered distribution of VEGF-C in 

tissues, a gain-of-function approach was adopted, comprising fusion of the exon 6a-8 or exon 

7-8 encoded domains from VEGF to the C-terminus of the fully processed VEGF-C#N#C, 

denoted CA89 and CA65, respectively (Figure 3b). The VEGF-C/VEGF-HBD chimeras were 

produced, and shown to activate VEGF-C receptors, as well as to bind to NP-1 and NP-2. 

Both CA65 and CA89 stimulated lymphangiogenesis in vivo when expressed in tissues via 

adenovirus or AAV vectors. However, both chimeras induced a distinctly different pattern of 

lymphatic vessels when compared with the wild type VEGF-C. The trophism of the AAV 

serotype 2 vectors towards skeletal muscle was utilized to target expression into this tissue. 

The vessels induced by VEGF-C were initially a thick network of small diameter vessels that 

reorganized and matured slowly, but the lymphatic vessels induced by the chimeric growth 

factors were wider, less complex, and tended to form directly along tissue borders, along 

basement membranes that are rich in heparan sulfate (Figure 7b).  

The altered biological activity of CA89 and CA65 in comparison to VEGF-C likely 

results from redistribution of the growth factors by binding of the HBD to pericellular matrix 

structures that are rich in HSPGs, which are typically present in basal laminae and on the 

surface of certain cells. Mice lacking the VEGF isoforms corresponding to VEGF165 and 

VEGF189 display disturbed vascular patterning, with a dramatic reduction in the number of 

vascular sprouts and branching points, highlighting the importance of the exon 6a- and 7-

encoded sequences for normal VEGF function (Carmeliet et al., 1999; Ruhrberg et al., 2002). 

Conversely, protease-resistant large molecular-weight forms of VEGF produce abnormal 

vascular patterns characterized by excessive sprouting and branching (Lee et al., 2005). 

Consistent with the capacity of VEGF-C#N#C to activate VEGFR-2, both chimeras and 

VEGF-C#N#C induced angiogenesis, although the effects on blood vessels were not 

pronounced. Importantly, changes in lymphatic vessels were not observed after gene transfer 

of VEGF-B167, which contains similar high-affinity heparin- and neuropilin-binding 
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domains as VEGF189 and CA89 (Mäkinen et al., 1999), indicating that heparin and 

neuropilin binding capacities alone are not sufficient to stimulate either angiogenesis or 

lymphangiogenesis unless the factor is able to activate VEGFR-2 or VEGFR-3, respectively. 

 An inverse chimeric protein was generated, consisting of the minimal receptor-

activating domain of VEGF flanked by the N- and C-terminal propeptides of VEGF-C. 

Interestingly, overexpression of this factor primarily stimulated the formation of very thin 

blood vessel capillaries, which was not observed by overexpressing VEGF165 or the minimal 

receptor-activating domain alone, suggesting a unique tissue distribution pattern for VEGF-C 

when compared to heparin-binding species of the VEGF family (Keskitalo et al., 2007).  

These findings indicate that the heparin-binding forms of VEGF-C can be 

immobilized in a given tissue, and therefore the danger of obtaining aberrant side effects at 

distant sites is minimized. The matrix-binding domain of VEGF can target VEGF-C activity 

to heparin-rich basement membrane structures, which may prove useful in guiding the growth 

of lymphatic vessels into desired locations, such as transplanted lymph nodes (II), as well as 

in accelerating the formation of lymphatic vessel anastomoses. (Figure 7c).  
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Figure 7. The therapeutic application of engineered heparin-binding and wild type forms of VEGF-C. (a) 
A schematic representation of lymph node transplantation combined to VEGF-C therapy. Lymph node 
transplants transduced with AdVEGF-C attract lymphatic vessels to form anastomoses with the lymph node (a 
summary of the findings reported in II). (b) Skeletal muscle transduced with AAV2 vectors encoding CA89, a 
chimera consisting of VEGF-C%N%C and exons 6a-8 of VEGF, in the mouse ear. Muscle fibers transduced with 
the vector are visualized by antibodies that recognize VEGF-C%N%C (green). Note that CA89 (green) is 
immobilized to the muscle fibers. Lymphatic vessels, visualized by LYVE-1 immunostaining (red) have formed 
longitudinally alongside the transduced muscle fibers. (c) Growth of the lymphatic vessels towards the 
transplanted lymph node could possibly be accelerated by heparin-containing filaments (light blue) coated with 
CA65 and/or CA89. Scalebar: 100 µm. 
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4. Blocking VEGF-3 suppresses angiogenic sprouting, vascular network formation and 

tumor growth (IV) 

 

Angiogenesis is a key process in several pathological conditions, including tumor 

growth and AMD (reviewed in Carmeliet, 2005). VEGF potently promotes angiogenesis and 

is indispensable for vascular development (Carmeliet et al., 1996; Ferrara et al., 1996), while 

VEGFR-2 is the primary receptor transmitting VEGF signals in ECs (Shalaby et al., 1995; 

Gille et al., 2001). VEGFR-3 is present in all endothelia during development, but in the adult 

it becomes restricted to the lymphatic endothelium (Kaipainen et al., 1995). However, 

VEGFR-3 is upregulated in the microvasculature of tumors and wounds (Valtola et al., 1999; 

Paavonen et al., 2000). The fact that Vegfr3/Flt4 gene-targeted mice and zebrafish exhibit 

severe blood vascular defects, and that VEGFR-3 function-blocking antibodies suppress 

tumor angiogenesis (Dumont et al., 1998; Covassin et al., 2006; Laakkonen et al., 2007), 

prompted an investigation into the mechanisms of how VEGFR-3 contributes to 

angiogenesis. 

During late embryogenesis and in the adult, blood vessels form primarily by 

angiogenesis, i.e. sprouting from pre-existing vessels. Angiogenic sprouting involves EC 

specification into leading tip cells, which respond to VEGF guidance cues, and stalk cells that 

follow the tip cells (Gerhardt et al., 2003). The findings presented here demonstrated that 

VEGFR-3 is highly expressed in the tip cells of angiogenic sprouts, and genetic deletion of 

VEGFR-3 or blocking VEGFR-3 signaling with monoclonal antibodies results in decreased 

sprouting, vascular density, vessel branching, and EC proliferation in vivo. On the other hand, 

stimulation of VEGFR-3 augmented VEGF-induced angiogenesis and sustained angiogenesis 

even in the presence of VEGFR-2 inhibitors, whereas antibodies against VEGFR-3 and 

VEGFR-2 in combination resulted in additive inhibition of angiogenesis and tumor growth.  

Expression of the VEGFR-3 ligand VEGF-C was detected in ECs of the developing 

intersomitic vessels and in retinal leukocytes. In addition, many tumors are known to produce 

VEGF-C, and this has been correlated with increased propensity for lymphatic metastasis 

(Stacker et al., 2002). The VEGF-C signal is therefore present for the activation of VEGFR-3 

in all angiogenic settings studied (Figure 8). However, VEGF-C was not expressed in a 

gradient, which is typically thought to be required for the guided migration of cells (reviewed 

in Lundkvist et al., 2007). It is therefore possible that VEGF-C/VEGFR-3 signaling regulates 
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other aspects of vascular network formation, such as sprout fusion, or provides autocrine 

survival signals to the ECs, as has been described for VEGF (Lee et al., 2007).  

Due to its silk-like domain, VEGF-C may aggregate into filaments with a long half-

life in tissues (reviewed in Dicko et al., 2006). On the other hand, the endothelial tip cells 

express a variety of proteases, such as membrane-type-1 matrix metalloproteinase (MT1-

MMP), to invade through the ECM (Yana et al., 2007). One possibility is that VEGF-C is a 

substrate of such proteases, leading to the release of mature VEGF-C, which potently 

activates both VEGFR-2 and VEGFR-3 homodimers, as well as VEGFR-2/VEGFR-3 

heterodimers in the tip cells (Figure 8). This would indicate that the tip cells are capable of 

generating VEGF-C gradients by proteolysis. In analogy, certain tumor cells have been 

shown to generate chemotactic gradients by autocrine release of cytokines, which direct cell 

migration along lines of interstitial fluid flow (Shields et al., 2007). 

However, the final explanation may not involve the canonical VEGFR-3 ligands at 

all: Vegfc-/-;Vegfd-/- double null embryos do not recapitulate the Vegfr3-/- null phenotype, 

and rather resemble Vegfc-/- single knock-outs, suggesting that alternative ligands for 

VEGFR-3 exist at least during early embryonic development (Haiko et al., 2008). It is 

possible that other VEGFs, such as VEGF, can promote endogenous activation of the 

VEGFR-3 signaling pathway in analogy to EGF-like growth factors that activate ErbB 

receptors by promoting receptor-mediated homodimerization or, alternatively, by the 

formation of heterodimers with the orphan receptor ErbB2 (reviewed in Olayioye et al., 

2000). Furthermore, VEGF is present at very high concentrations in hypoxic tissue 

microenvironments (reviewed in Lundkvist et al., 2007), which may provide a 

stoichiometrically favorable ratio for VEGF-VEGFR-3 interactions that may previously have 

been overlooked in vitro. 

Recent evidence indicates that VEGF induces Dll4 in the tip cells, which leads to 

suppression of excess sprouts in adjacent ECs (Noguera-Troise et al., 2006; Ridgway et al., 

2006; Hellstrom et al., 2007; Lobov et al., 2007; Siekmann and Lawson, 2007; Suchting et 

al., 2007; reviewed in Roca and Adams, 2007). The data presented here indicate that VEGF 

signaling via VEGFR-2 also induces VEGFR-3 in the blood vascular endothelium. 

Furthermore, VEGFR-2 signals have been shown to be required for the maintenance of 

VEGFR-3 expression in the fenestrated endothelium under normal conditions (Kamba et al., 

2006).  
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Figure 8. The role of VEGFR-3 in angiogenesis. (a) VEGFR-3 is not expressed in quiescent blood vascular 
endothelial cells. However, VEGFR-2 activation will induce VEGFR-3 in the blood vascular endothelium. 
Specific blocking of VEGFR-3 with monoclonal antibodies will attenuate angiogenic signaling in the 
endothelial cells, whereas blocking VEGFR-2 is more effective in blocking angiogenic signals. Blocking both 
VEGFR-2 and VEGFR-3 leads to additive inhibition of angiogenesis. (b) Angiogenesis in the mouse retina on 
postnatal day 5, and pathological angiogenesis in human tumor xenografts were studied (IV). Blood vessels 
were visualized by isolectin B4 staining and PECAM-1 immunostaining, respectively. (c) Arrows indicate co-
localization of VEGFR-3 (red) and VEGFR-2 (green) in filopodial extensions of intersomitic vessel sprouts at 
E11.5. Scalebars: 100 µm (b); 10 µm (c). 
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A further objective of this study was to determine whether Dll4/Notch regulates 

VEGFR-3 expression in the angiogenic ECs. The data indicated that genetic or 

pharmacological disruption of the Notch signaling pathway led to widespread endothelial 

VEGFR-3 expression and excessive sprouting, which was inhibited by blocking VEGFR-3 

signals. According to the results of this study, at the onset of angiogenesis VEGFR-3 

becomes upregulated in the tip cells (by VEGF) and suppressed in the stalk cells (by Notch), 

indicating that VEGFR-3 functions as a positive regulator of endothelial sprouting and tip 

cell guidance. Interestingly, VEGFR-2 appears to be regulated in much the same way during 

angiogenesis (Gerhardt et al., 2003; Ridgway et al., 2006; Suchting et al., 2007; Lobov et al., 

2007), suggesting that these two receptors collaborate, possibly via VEGFR-2/VEGFR-3 

heterodimer signaling, in the tip cells (Figure 8c). The Notch signal is known to be high in 

the arteries during development, and these results may help explain why VEGFR-3 first 

becomes downregulated in arterial ECs during embryonic development (Dumont et al., 1998; 

Shutter et al., 2000; Lawson et al., 2001; Mailhos et al., 2001; Leslie et al., 2007; Siekmann 

and Lawson, 2007). A previous study has reported that NICD is capable of inducing 

VEGFR3 transcription (Shawber et al., 2007), suggesting that Vegfr3 repression by Notch is 

not direct and rather occurs via downstream effectors, such as the Hes and Hey transcription 

factors. A further mechanism downregulating VEGFR-3 in the nascent vessels may involve 

EC-pericyte interactions (Veikkola et al., 2003). 

In addition to mature lymphatic vessels that do not require VEGFR-3 signals for 

survival (Makinen et al., 2001a), VEGFR-3 is only present in a few fenestrated endothelia 

and in angiogenic endothelium in adults (Kaipainen et al., 1995; Valtola et al., 1999; 

Paavonen et al., 2000; Partanen et al., 2000). As VEGF/VEGFR-2 pathway inhibitors have 

been shown to cause nephrosis and proteinuria in both humans and in animal models, the 

effects of VEGFR-3 blockers on kidney function and histology were thoroughly analyzed. 

Ultrastructural analysis of kidneys of all antibody-treated mice, as well as the                   

K14-VEGFR-3-Ig transgenic mice by transmission electron microscopy did not reveal any 

hallmarks of glomerular damage, when compared to several examples in the literature 

(Gerber et al., 1999; Cingel-Ristic et al., 2005; Elliot et al., 2007). Furthermore, nephrosis or 

pathological albuminuria was not observed in mice that were treated with VEGFR-3 or 

VEGFR-2 antibodies, or both in combination, indicating normal kidney function (Sugimoto 

et al., 2003). These findings suggest that VEGFR-3 could be safely targeted in patients. 
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Surprisingly, even VEGFR-2 function-blocking antibodies did not induce kidney damage in 

our experiments. These data are in line with the literature showing that adult mice are more 

resistant to the adverse effects of VEGF/VEGFR-2 inhibitors (Baffert et al., 2004), unlike 

neonatal or adolescent mice (Kitamoto et al., 1997; Gerber et al., 1999; Eremina et al., 2003). 

These results implicate VEGFR-3 as a novel regulator of angiogenic sprouting and 

vascular network formation, and suggest that VEGFR-3 can be safely targeted in adult 

patients to provide additional efficacy for anti-angiogenic therapies, especially towards 

vessels that are resistant to VEGF/VEGFR-2 inhibitors.  
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CONCLUSIONS 

 

The blood and lymphatic vascular systems are essential for life, but they may become 

harnessed for sinister purposes in pathological conditions. For example, tumors learn to grow 

a network of blood vessels, securing a source of oxygen and nutrients for sustained growth. 

On the other hand, damage to the lymph nodes and the collecting lymphatic vessels may lead 

to lymphedema. 

The Ang1/Tie2 pathway has previously been implicated in promoting endothelial 

stability and integrity of EC monolayers. The studies presented here elucidate a novel 

function for Ang1 as a lymphangiogenic factor. Ang1 is known to decrease the permeability 

of blood vessels, and could thus act as a more global antagonist of plasma leakage and tissue 

edema by promoting growth of lymphatic vessels and thereby facilitating removal of excess 

fluid and other plasma components from the interstitium. These findings reinforce the idea 

that Ang1 may have therapeutic value in conditions of tissue edema. 

VEGF-C and VEGF-D are potent lymphangiogenic factors, with direct and 

remarkably specific effects on the lymphatic endothelium in adult tissues. VEGF-C and 

VEGF-D therapy restored the collecting lymphatic vessels in a novel orthotopic mouse model 

of breast cancer-related lymphedema. These results introduce a novel approach to improve 

VEGF-C/VEGF-D therapy by using engineered heparin-binding forms of VEGF-C, which 

induced the rapid formation of organized lymphatic vessels. Importantly, VEGF-C therapy 

also greatly improved the survival and integration of lymph node transplants. The 

combination of lymph node transplantation and VEGF-C therapy provides a basis for future 

therapy of lymphedema.  

In adults, VEGFR-3 expression is restricted to the lymphatic endothelium and the 

fenestrated endothelia of certain endocrine organs. However, these results show that  

VEGFR-3 is induced in the leading endothelial tip cells at the onset of angiogenesis, 

providing a tumor-specific vascular target. VEGFR-3 acts downstream of VEGF/VEGFR-2 

signals, but, once induced, can sustain angiogenesis when VEGFR-2 signaling is inhibited. 

The data presented here implicate VEGFR-3 as a novel regulator of sprouting angiogenesis 

along with its role in regulating lymphatic vessel growth. Targeting VEGFR-3 may provide 

added efficacy to currently available anti-angiogenic therapies, which typically target the 

VEGF/VEGFR-2 pathway.  
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