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ABSTRACT 

Human height is determined by a combination of genetic and environmental effects 
and in modern Western societies > 80% of the observed variation in height is 
determined by genetic factors. Height is a fundamental human trait that is associated 
with many socioeconomic and psychosocial factors and health measures, however 
little is known of the identity of the specific genes that influence height variation in 
the general population. 

This study aims to identify the genetic variants that influence height in the general 
population by genome-wide linkage analysis in large collections of family samples 
from Australia, Europe and the United States. For this purpose, we carried out three 
genome-wide scans for adult height in 1) 1,417 individuals from 277 Finnish 
families, 2) 8,450 individuals from 3,817 families from Australia and Europe and 3) 
9,306 individuals from 3,302 families from the United States. 

In the Finnish families we found significant evidence for male-specific linkage to 
1p21 (LOD = 4.25) as well as several suggestive linkages (LOD � 2.0) implicating 
putative quantitative trait loci (QTL) for height on 4q35, 9p24, 13q12, 18q21 and 
22q13. We followed up the 1p21 locus linkage finding with additional genotyping of 
single nucleotide polymorphism (SNP) markers in positional candidate genes and  
found an association to a functional variant on collagen 11 alpha 1 (COL11A1) in 
family-based association analyses (p=0.003) which we also replicated (p=0.03) in an 
independent Finnish population cohort (n=6,542) representative of the general 
population. From this population sample, we estimated that homozygosity for the 
minor allele of this SNP increased height by 1.1 cm in males and 0.6 cm in females 
and in total this SNP accounted for 0.1% of the population variance in height. 

The Australian and European (Finnish, Danish, Dutch, Swedish and UK) families 
were ascertained for dizygotic twin (DZ) pairs and they were derived from the 
GenomEUtwin (www.genomeutwin.org) consortium twin cohorts. DZ twins provide 
special advantages for genetic studies of height because they share most of the 
environmental influences in critical periods of growth thus reducing within-pair 
environmental variance. In addition to the DZ twin pairs (n=6,602) for most families 
we also had data on additional family members increasing the total sample to 8,450 



 

 

individuals. In these families we found significant evidence for linkage to stature on 
8q21 (LOD=3.28) as well as several suggestive linkages (LOD � 2.0) on 7p22, 
20p13, 21q21 and Xq25. Also, at many of the loci restricting the analyses to DZ 
twins increased the evidence for linkage thus demonstrating the benefit of utilizing 
twin pairs for reducing environmental variance in genetic analyses. We also 
performed an independent genome-wide association (GWA) study with 317,000 
SNP markers in 1,552 monozygotic twins where the most significant finding was 
also on 8q21-q24 further supporting the presence of height QTL at this locus. 

The families from the United States (n=3,032) consisted of both African-American 
(n=1,628) and European-American families (n=1,404), therefore in addition to 
analyzing all families jointly we also stratified this sample according to self-reported 
ethnicity in order to reduce heterogeneity due to genetic and environmental sources. 
In these samples the strongest evidence for linkage was observed on 15q25 
(LOD=3.0) and several other regions showed suggestive evidence for linkage (LOD 
� 2.0) to stature on 11q23, 12q12, 15q26, 18q23 and 19q13. Of the suggestive 
linkage regions 12q12 is of particular interest since it overlaps with the high-
mobility group at-hook 2 (HMGA2) gene which was recently reported for 
association with adult and childhood height in a large GWA study involving 
multiple populations. Also the linkage evidence on 18q23 overlaps well with the 
linkage observed in the Finnish families in this study and implicating this genomic 
region as potentially harbouring QTL that influence height across diverse 
populations. 

In this study we identified one gene variant that influences human height, although 
this variant alone explains only 0.1% of height variation in the Finnish populations. 
We also showed converging evidence for the involvement of chromosome 8q21-q24 
in the determination of adult height from two independent studies with 
complimentary genome-wide designs: family-based linkage and association using 
unrelated individuals. This study demonstrates that special stratification strategies 
such as performing sex-limited analyses, focusing on DZ twin pairs, analyzing 
ethnic groups within a population separately and utilizing homogenous populations 
such as the Finns can improve the statistical power of finding QTL significantly. 
Also, we conclude from the results of this study that even though genetic effects 
explain a great proportion of height variance, it is likely that there are tens or even 
hundreds of genes with small individual effects underlying the genetic architecture 
of height. 

 

Keywords: height, stature, growth, genetic linkage, quantitative trait locus, 
COL11A1, dizygotic twins, genome-wide association 
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TIIVISTELMÄ 

Ihmisen kasvu ja aikuisiän pituus ovat tyypillisiä monitekijäisiä ominaisuuksia, 
joihin vaikuttavat sekä geneettiset tekijät että ympäristötekijät. Geneettisten 
tekijöiden merkitys pituuden määräytymisessä on huomattava ja on arvioitu, että 
kehittyneissä maissa nämä selittävät yli 80 % ihmisten välisistä pituuseroista. 
Vaikka pituus on epidemiologisissa tutkimuksissa assosioitu lukuisiin sairauksiin 
sekä sosioekonomisiin, psykososiaalisiin ja terveydentilaa kuvaaviin muuttujiin, 
tiedämme varsin vähän pituuden geenitaustasta. 

Tässä tutkimuksessa pyrittiin paikantamaan pituuteen vaikuttavia kromosomialueita 
genominlaajuisen kytkentäanalyysin avulla sekä tunnistamaan assosiaatioanalyysin 
avulla näillä alueilla sijaitsevia geenimuotoja, jotka vaikuttavat ihmisten välisiin 
pituuseroihin. 

Ensimmäisessä osatyössä tutkittiin suomalaisesta 277 perheestä koostuvaa 
perheaineistoa (1417 tutkimushenkilöä) ja merkittävin kytkentälöydös havaittiin 
kromosomialueella 1p21 (LOD=4,25). Lisäksi havaittiin useita kromosomialueita, 
(4q35, 9p24, 13q12, 18q21 ja 22q13) jotka saattavat sisältää pituuteen vaikuttavia 
geenejä (LOD�2,0). Kromosomialueen 1p21 jatkotutkimukset osoittivat alueella 
sijaitsevan COL11A1-geenin tietyn geenimuodon assosioituvan pituuteen. 
(p=0,003). Tämä assosiaatio toistettiin laajassa, 6542 yksilön suomalaisessa 
väestöaineistossa, jossa tämän geenimuodon suhteen samanperintäiset miehet olivat 
1,1 cm ja naiset 0,6 cm pidempiä verrokkeihin nähden. Tämän väestöaineiston 
avulla arvioitiin, että tunnistettu geenimuoto selittää 0,1 % pituuden vaihtelusta 
suomalaisväestössä.  

Toisessa osatyössä tutkittiin 3817 GenomEUtwin-konsortion 
(www.genomeutwin.org) Australiasta ja Euroopasta keräämää kaksosperhettä. 
Koska erimunaiset kaksoset jakavat lähes kaikki kasvuun vaikuttavat 
ympäristötekijät, tämä asetelma vähentää perheen sisäistä ympäristötekijöistä 
johtuvaa vaihtelua, joka puolestaan lisää kytkentäanalyysin tilastollista voimaa 
paikantaa pituuteen vaikuttavia kromosomialueita. Tässä aineistossa merkittävin 
kytkentälöydös havaittiin kromosomialueella 8q21 (LOD=3,28), jonka lisäksi 
paikansimme useita kromosomialueita (7p22, 20p13, 21q21 ja Xq25), jotka saattavat 



 

 

sisältää pituuteen vaikuttavia geenejä (LOD � 2.0). Kromosomialueen 8q21-q24 
merkitys pituuden määräytymisessä osoitettiin (p=9x10-8) myös toisessa, 1,552 
samanmunaisen kaksosparin genominlaajuisessa assosiaatiokartoituksessa, jossa 
genotyypitettiin kultakin yksilöltä 317,000 yhden nukleotidin polymorfiaa. 

Kolmannessa osatyössä tutkittiin 3032 afro- ja eurooppalais-amerikkalaista perhettä. 
Tässä aineistossa havaitsimme useita pituuteen kytkeytyneitä geenialueita (11q23, 
12q12, 15q25, 15q26, 18q23 ja 19q13), joista merkittävin löydös oli 
kromosomialueella 15q25 (LOD = 3,0). Kromosomialueen 12q12 kytkentälöydös on 
myös erityisen mielenkiintoinen, sillä tällä alueella sijaitseva HMGA2-geeni on 
hiljattain osoitettu assosioituvan pituuteen useissa väestöaineistoissa. Myös 
kromosomialueen 18q23 kytkentälöydös on varsin kiinnostava, sillä tämä löydös 
tukee ensimmäisessä osatyössä havaittua kytkentälöydöstä. 

Tässä tutkimuksessa paikansimme ja tunnistimme yhden pituuteen vaikuttavan 
geenimuodon COL11A1-geenissä, joka selittää 0,1 % pituuden vaihtelusta 
suomalaisväestössä. Myös kromosomialueen 8q21-q24 merkitys pituuden 
määräytymisessä osoitettiin kahdessa toisistaan riippumattomassa osatutkimuksessa, 
joista ensimmäinen perustui genominlaajuiseen kytkentäanalyysiin ja toinen 
genominlaajuiseen assosiaatioanalyysiin. Lisäksi tutkimuksessa osoitettiin, että 
erityiset aineiston valikointitavat kuten sukupuolten, kaksosparien ja etnisten 
ryhmien erillisanalyysit voivat lisätä kytkentäanalyysin voimaa merkittävästi. 
Tutkimuksen merkittävin geenilöydös COL11A1-geenissä antaa myös viitteitä siitä, 
että vaikka suurin osa pituuden vaihtelusta on geneettisten tekijöiden määräämää, on 
todennäköistä, että tällaisia tekijöitä on hyvin suuri määrä ja kunkin yksittäinen 
geenimuodon vaikutus yksilön pituuteen on erittäin pieni. 

 

Avansanat: pituus, kasvu, geneettinen kytkentä, COL11A1, erimunaiset kaksoset, 
genominlaajuinen assosiaatio 
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ANCOVA  Analysis of covariance 

ANOVA  Analysis of variance 

bp  Base pair 

CVD  Cardiovascular disease 

cM  Centimorgan 

DNA  Deoxyribonucleic acid 

DZ  Dizygotic 

H2  Heritability (broad sense) 

h2  Heritability (narrow sense) 

HWE  Hardy-Weinberg equilibrium 

IBD  Identity-by-descent 

IBS  Identity-by-state 

LOD  Logarithm of odds 

Mbp  Mega base pair 

ML  Maximum likelihood 

mRNA  Messenger RNA 

MZ  Monozygotic 

QTL  Quantitative trait locus 

QTN  Quantitative trait nucleotide 

rA  Coefficient of relatedness 

RNA  Ribonucleic acid 

SNP  Single nucleotide polymorphism 

STR  Short tandem repeat 

VA  Additive genetic variance 

VC  Variance components 
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VD  Dominance genetic variance 

VE  Environmental variance 

VG  Genetic variance 
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1 INTRODUCTION 

The heritable nature of human height has been recognized for more than one 
hundred years. It was also through the study of height that the theory for quantitative 
genetic variation was spawned which provided important advancements in the field 
of general statistics and gave rise to the mathematical framework for quantitative 
genetics. 

Human height is considered a classical polygenic trait that is determined by the joint 
action of several genes each with a small individual effect as well as multiple 
environmental influences. Height is a fundamental human trait which is perturbed in 
many rare genetic diseases delineating the relevance of growth as an elementary 
biological mechanism. Human height has been the target of extensive research 
across many fields of science due to its importance to the individual to and its 
usefulness as a societal surrogate. 

Height can be used as an indicator of early experiences of an individual such as fetal 
and childhood living conditions and disturbances in normal growth patterns of a 
child are amongst the most common reasons of referral to paediatric clinics. Growth 
in infancy is also a well-established measure of the socioeconomic state of a 
population comparable with gross national product and child mortality. An 
individual’s height is also significantly associated with several health measures, 
reproductive success, educational attainment and social position. Yet, despite the 
importance of height as a fundamental human characteristic, little is known about the 
genetic architechture of height and the specific genes that control growth and 
attainment of adult height. 

Now, with the advent of vast numbers of molecular markers and rapid affordable 
technologies enabling their genome-wide genotyping as well as the development of 
powerful computers allows the statistical analysis of large numbers of individuals. 
Together these advancements should enable us to decipher the specific genetic 
variants that contribute to the heritable genetic component and quantitative variation 
observable in the height of human populations. This study aims to integrate the 
theoretical models developed almost a hundred years ago and state-of-the-art 
technological achievements with the unltimate goal of elucidating the genetic 
architecture of human height. 
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2 REVIEW OF THE LITERATURE 

2.1 Height as a quantitative trait 

2.1.1 Biological basis of human growth 

Adult human height is the endpoint of the longitudinal growth process that occurs 
during fetal life, childhood and adolescence. The majority of growth in height results 
from lengthening of the long bones that occurs via cartilage growth at the epiphyseal 
plate (Figure 1). This cartilage gradually ossifies to form hard bone resulting in 
lengthening of the bone. Human growth occurs in spurts and can be divided into 
infancy, childhood and pubertal growth. The growth velocity differs greatly between 
these periods being greatest in infancy and very rapid in puberty (Figure 2). Growth 
ceases in late puberty when all cartilage at the growth plates is replaced by bone. 
This epiphyseal closure is mainly controlled by sex hormones such as testosterone 
and estrogen1. 

 

Figure 1. Main components of the long bone. Long bones consist of a long shaft 
(diaphysis) and two articular (joint) surfaces (epiphyses). Growth of the long 
bones occurs by endochordal ossification at the epiphyseal plate (growth 
plate). (Source: Wikimedia commons/SEER anatomy and physiology) 
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Figure 2. Schematic representation of human growth velocity. Stress such as 
strenuous physical exercise, manual lobor, sleep deprivation, malnutrition or 
infections at certain life periods may hinder the attainment of full growth 
potential (Figure courtesy of Dr. Richard Steckel, Ohio State University) 

Growth is mainly controlled by hormones secreted by the endocrine system2 (Figure 
3). Key hormones are estradiol, testosterone, thyroid hormones, growth hormone 
(somatotropin), insulin-like growth factor-1 (IGF1) and insulin. This hormonal 
network is complex with several interactions, feedback mechanisms and temporal 
cues3. Sex steroids estradiol and testosterone promote growth in height in childhood 
and early puberty and accelerate skeletal maturation and epiphyseal closure in late 
puberty. Both estradiol and testosterone act in association with growth hormone and 
IGF-1. Thyroid hormones are necessary for normal growth in early infancy and they 
stimulate osteoblast maturation and accelerate ossification by increasing the levels of 
growth hormone and IGF-1. Growth hormone is perhaps the single most critical 
determinant of linear growth and it mainly acts by increasing the proliferation of 
chondrocytes directly and in concert with IGF-1. The release of growth hormone 
from the anterior pituitary gland is regulated by growth hormone releasing hormone 
(GHRH) and somatotropin release-inhibiting hormone (SRIH) but also by the brain 
neurotransmitters acetylcholine, serotonin and dopamine as well as circulating levels 
of glucose, IGF-1, estrogens and testosterone4. 
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Growth hormone increases the production of insulin, IGF-1 and sex steroids which 
in turn reduce growth hormone release by a negative feedback system. IGF-1 has 
similar metabolic effects as insulin but has a more pronounced role in proliferation 
and maturation of many cell types including chodroblasts and osteoblasts. The effect 
of insulin on growth is mediated by its main function of ensuring that tissues receive 
the metabolic fuel needed for growth but also via stimulation of growth hormone and 
IGF-1 action. 

 

Figure 3. Human endocrine system. The endocrine glands secrete hormones that 
control growth, development, physiological and psychological functions. 
Most growth-related hormones are secreted by the pituitary gland and 
gonads with the important expection of IGF-1 which is secreted by the liver.  
(Source: Wikimedia Commons/SEER anatomy and physiology) 
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2.1.2 Genetic background 

The study of height has a long standing tradition in genetics that dates back to the 
work of Sir Francis Galton (1822-1911), a half-cousin of Charles Darwin, who was 
the first to publish data on the relationship between parent and offspring height 5,6 
(Figure 4). This interest in height was probably due to the easy observation even by 
laymen that in general tall parents usually have tall children and short parent have 
short children. Also, height has been easy and unambiguous to measure ever since 
the introduction of standardized measurement scales such as the metric and imperial 
systems. 

Many lines of evidence such as twin, adoption and family studies have established 
the role of genetic components in the determination of height and subsequently adult 
height is considered as one of the most heritable quantitative traits known in man8,9. 
It is fair to assume that human growth is a polygenic process where many genes and 
environmental factors are involved probably also interacting with each other. 
However, though much is known regarding the biological basis (e.g. hormonal 
regulation) of human growth, the specific underlying genes that produce the 
observed variation in human height remain elusive despite extensive efforts to 
uncover them. 

 

Figure 4. The data of Sir Francis Galton5 showing the relationship between offspring 
height (928 individuals) as a function of mean parent height (205 sets of 
parents). The size of the solid circles indicates the number of observations in 
each category, the broken line perfect correlation and the solid line the 
linear regression of the observed data.  Heritability of height in this sample 
is equal to the slope of the regression line, 0.57. (After Arnold7 Source: 
Wikipedia) 
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2.1.3 Environmental influences 

G r o w t h  p o t e n t i a l  a n d  e n v i r o n m e n t  

Environmental factors play a crucial role in growth and attainment of final adult 
height. Stunting growth is a universal mechanism of adaptation to poor 
environmental conditions. The role of environmental factors in the determination of 
human height is evidenced by 1) analysis of historical height and living condition 
data and 2) intervention studies of developing countries where living conditions can 
be improved by supplementary food, nutrients and medicines. 

Accumulating data from multiple lines of evidence suggest that suitable 
environmental conditions allow an individual to reach his or her full genetic growth 
potential - simplistically speaking, genes set the upper limit to height but whether an 
individual reaches that height is determined by life conditions. It is clear from 
longitudinal analyses of body height within populations that increases in the standard 
of living increases average height - this is called the secular trend (or change) in 
height. The secular trend has been most obvious in European countries in the last 
100 years (Figure 5), where children have gradually matured earlier and reached 
greater heights on average (reviewed extensively by Cole10). This increase in height 
cannot be attributed to a single factor but is likely due to factors such as improved 
nutrition, reduction in infectious disease due to better vaccination programs and 
sanitation as well as the widespread availability of quality health care. 

 

Figure 5. Secular trend in mean height of men and women by year of birth in 
representative sets in Finland and Sweden and in Finnish MZ and DZ twins. 
Reproduced from Silventoinen 200011 with permission.  
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N u t r i t i o n  

Nutrition is a crucial determinant in growth since cell division requires sufficient 
nutrition to produce necessary proteins and other macromolecules. The growth 
period in infancy seems most sensitive to nutritional state; this is supported by the 
observations that most of the differences in growth velocity and absolute height 
difference between developing and developed countries occurs during the period 
from 6 months to 24 months of age12,13 (reviewed also extensively by Cole 14 and 
Karlberg et al.15). 

Protein is probably the most important nutrient affecting growth since humans 
require some amino acids (called essential amino acids) from food that they are 
unable to produce themselves. Protein deficiency is probably the most important 
reason for stunted growth in developing countries16,17. 

Minerals and vitamins play an important role in growth as well. Studies have 
implicated most mineral and vitamin deficiencies as detrimental to normal growth 
but it is likely that calcium18, iron19, vitamin D20 and vitamin A21 are the most 
crucial. Their importance refects their biological role in growth; Vitamin D is 
essential for calcium absorption which in turn is necessary for bone mineralization, 
while vitamin A and iron probably influence growth via growth hormone and stress 
responses 22-25. 

F e t a l  c o n d i t i o n s  

During pregnancy, growth velocity is very rapid and birth size may also affect adult 
height26. The developing fetus is highly sensitive to environmental factors such as 
nutrition and toxins such as maternal smoking and alcohol or narcotic use. There are 
contradicting reports regarding the association of undernutrition during pregnancy and 
the final height of children, maybe due to catch-up growth in childhood or 
adolescence26-28. There is clear evidence however, that maternal smoking, alcohol and 
narcotics use reduces both birth weight and the subsequent growth of the child29-31. 

I n f e c t i o u s  a n d  c h r o n i c  d i s e a s e  

Several infectious diseases have been associated with disruption of growth; however 
most of them are likely to affect growth via reduction of nutrient intake and 
absorption, loss of nutrients or adverse metabolic processes32. Diarrhea caused by 
food- and water-borne pathogens is by far the most prevalent group of infectious 
disease stunting growth33 but also chronic inflammatory diseases such as asthma and 
type I diabetes have been associated with poor growth34,35. 
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S e x u a l  d i m o r p h i s m  

Height is a classical example of a sexually dimorphic trait where males are taller 
than females in all human populations studied36 as is evident from Table 1. The 
average male-to-female ratio in height is 1.07 although there is considerable 
variation between populations37,38. This difference in height is mostly explained by 
men’s longer legs, given that the torso heights are not greatly different39. The origin 
of the height difference between males and females is most commonly hypothesized 
to result from the sexual dimorphism in 1) hormonal environment and 2) sex 
chromosome composition. 

Sex steroids such as estradiol and testosterone are highly relevant for growth in 
closure of growth plates in the long bones and they also affect the secretion of other 
growth-related hormones such as growth hormone and insulin-like growth factor 140. 
Therefore it is reasonable to hypothesize that the differential sex steroid patterns 
may produce at least some part of the sex difference in height. 

The influences of sex chromosomes are suggested by aneuploidies of the sex 
chromosomes such as Turner’s, Klinefelter’s and XYY syndromes but the 
mechanisms of action are not fully understood. Females with Turner’s syndrome 
lack one copy of the X-chromosome (45, X0) and are characterized by short stature 
and ovarian failure, while males with Klinefelter’s syndrome carry an extra copy 
(47, XXY) and manifest mild mental retardation and are slightly taller on average 
compared to males with the normal karyotype. XYY males (47, XYY) males are 
taller than average but are devoid of other clear characteristic phenotypic 
manifestations although some reports show evidence for increased learning 
disabilities and possibly slightly impaired intelligence. Taken together, the stature 
manifestations in these aneuploidies suggest that sex chromosomes may influence 
height via dosage effect of pseudoautosomal and Y-specific growth genes although 
the specific genes have yet to be identified41-44. 

2.1.4 Associations with health 

Height has been to shown to positively correlate with several health indicators and 
overall mortality45,46 and on average short people have poorer health than tall people. 
However, most of these associations may result from the association of growth and 
final adult height to childhood living conditions which in turn also associate with 
health measures and outcomes47-49 i.e the confounding role of childhood living 
conditions (Figure 6). 
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The inverse correlation of height and incidence of cardiovascular diseases (CVD) 
such as myocardial infarction, coronary heart disease and stroke is perhaps the most 
well studied association between height and health50-53. Although most investigators 
attribute these associations to childhood living conditions some have proposed 
shared etiology, such as the positive correlation of height and blood vessel 
diameter54. 

Numerous associations have also been reported between tall height and cancers such 
as breast and prostate cancer55-57. Many investigators have attributed these positive 
associations between height and cancer as suggestive that high childhood calorie 
intake which promotes growth in stature may also increase cancer risk58,59. 

 

Figure 6. Confounding model for association between height and health measures. 
Childhood living conditions (confounder) which affect adult height and 
health measures and outcomes causes spurious associations between the 
two. 

2.1.5 Socioeconomic and psychosocial relevance 

Height is a fundamental human characterististic that has several social and 
psychological associations. Height correlates with education level and 
socioeconomic status in most human societies; tall people are usually more educated 
and have better socioeconomic status than short people60-62. These correlations can 
be attributed to two factors 1) parents of higher socioeconomic status are able to 
provide better childhood living conditions for their children, which in turn promotes 
the full attainment of growth potential and 2) the education level and socioeconomic 
status of parents predicts the education level of their children well. Therefore, this 
correlation may be due to confounding of a favorable childhood environment and 
transmission of socioeconomic status62. However, height is also correlated with 
social mobility (shift in socioeconomic position between child- and adulthood)63-65. 
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It has been shown in psychological studies that humans hold an unconscious 
association of status, power and height; we tend to picture people of authority as 
physically big66,67. For this reason it may be easier for tall persons to excel in social 
hierarchies since they possess inherent status due to their physical appearance. 

Height is also positively correlated with reproductive success in contemporary 
societies especially in men mainly because taller than average men are found to be 
more attractive to women68-70. Taller men enjoy more socioeconomic success than 
shorter men, which may also attract partners, however height has also been shown to 
be an independent factor for reproductive success69,71. Interestingly there is some 
data indicating that women that are shorter than average enjoy greater reproductive 
success also suggesting that the favoring of tall men by short women maintained the 
sexual dimorphism observed in stature72. However, also the height of an individual 
is an important factor in mate choice and positive assortative mating for height is 
well established and the height of spouses correlates well73,74. Assortative mating 
refers to the phenomenon where individuals choose their mate based on some 
specific phenotypic trait that they are similar (positive assortative mating) or 
dissimilar (negative assortative mating) for.  

2.1.6 Population differences in height distribution 

Contemporary human populations vary tremendously in height: for example in the 
Netherlands the average height of males is 183.1 cm and females is 170.0.cm75 while 
the Ituri (Pygmy) males are on average 144.4 cm and females 136 cm tall76. 
However, in Western Europe and the United States there is much less variation in 
average heights probably because the general environment is very similar in respect 
to height (Table 1) 

Table 1. Average height in selected countries by sex. Note, that mean height in 
Cavalaars 2000 is age standardized to eliminate cohorts and shrinkage effects so these data 
are not fully comparable to the data from Australia and the US. 

Country Age Group Males Females Reference 
Australia 24-44 176.3 162.9 Australian Bureau of Statistics 1995: 77 
Denmark 20-74 177.1 165.2 Cavelaars 200060 
Finland 20-74 176.6 163.5 Cavelaars 200060 
France 20-74 173.1 161.8 Cavelaars 200060 
Germany 20-74 175.4 162.8 Cavelaars 200060 
Italy 20-74 172.2 162.1 Cavelaars 200060 
Netherlands 20-74 178.7 167.1 Cavelaars 200060 
Norway 20-74 178.9 165.8 Cavelaars 200060 
Spain 20-74 170.0 160.3 Cavelaars 200060 
Sweden 20-74 177.9 164.6 Cavelaars 200060 
Switzerland 20-74 175.4 164.0 Cavelaars 200060 
US blacks 30-39 177.1 163.3 Godoy 200578 
US whites 30-39 176.8 163.3 Godoy 200578 
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Historically, most of the population differences in height and body shape are likely to 
be evolutionary adaptations to local climate (temperature and humidity) and terrain 
(forest, plain or mountainous). These adaptations have occurred over hundreds of 
generations since the genes that govern anthropometric traits change slowly. 

Nutrition and living conditions are important sources of height variation especially 
in contemporary human populations. Migration studies have shown rapid increases 
in average height in only a few generations79-81. Clearly genes can change very little 
in this time frame and the increase in height must be due to improved diet and 
reduced environmental stress factors. 

2.2 Human genetic variation and the human genome 

2.2.1 Organization of the human genome 

The haploid human genome consists of roughly 3.2 billion base pairs of double 
stranded deoxyribonucleic acid (DNA) and is organized in 24 distinct chromosomes 
(22 autosomes, X- and Y-chromosome) (Figures 7 and 8). Each individual receives 
one chromosome of each type from each parent so that an individual’s genome 
consists of 22 autosomal chrosome pairs and a sex chromosome pair which may be 
either XX (female) or XY (male). 

The human genome contains roughly 20,000-30,000 genes which are defined as 
nucleotide sequences that code for ribonucleic acid (RNA) -molecules that have some 
specific function(s) in the cell (protein-coding, structural or regulatory). Genes take up 
less than 2% of the total DNA content in the genome while the rest of the DNA 
remains still largely uncharacterized although an increasing number of regulatory and 
other functional domains are being identified in intergenic regions. The human 
genome contains large amounts (>50%) of repetitive sequence elements that may be 
either in tandem (satellite DNA) or interspersed (e.g. LINE, SINE) repeats that may 
also be transposable82. The function of these repeated sequence elements are unknown 
but it has been suggested that they are involved in genome evolution by rearranging 
the genome (reviewed extensively by Kazazian83). Human genes are consisted of 
exons that determine the amino acid sequence of the nascent proteins and introns 
(intervening sequences) that are located between successive exons.  
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The genomic lengths of genes, exons and introns vary greatly. The genomic length 
of the average gene is 27 kb although there is tremendous variation, for example 
between the insulin (1.4 kb) and dystrophin (2,400 kb) genes. The average number 
of exons in human genes is 9 but there is tremendous variation e.g. beta-1-adenergic 
receptor (1) and titin (363). Interestingly, introns are on average (3,365 bp) larger 
than exons (122 bp), but the lengths of both vary greatly. 

 

Figure 7. Human male karyotype. Karyotype shows each autosomal chromosome pair 
(1-22) at the sex chromosomes X and Y. Source: National Human Genome 
Research Institute Talking Glossary of Genetic Terms 
(www.genome.gov/glossary.cfm) 
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Figure 8. DNA and chromosomes. Double stranded DNA is wrapped around histone 
proteins which are further packed tightly to form the chromosomal structure 
which are contained in the nucleus of the cell  
(www.genome.gov/glossary.cfm) 
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2.2.2 Emergence of genetic variation 

Most of the genetic variation in humans arises from 1) mutation that produces novel 
variation in the population, 2) genetic recombination that rearranges that variation 
between homologous chromosomes and 3) random assortment that shuffles these 
chromosomes into gametes. 

Mutation is the most important force that produces novel variation. Mutation rates in 
humans are extremely low, approximately 2.5 x 10-8 mutations per nucleotide site or 
175 mutations per diploid genome per generation84, due to the highly efficient DNA 
repair mechanisms that identify and correct mutated sequences introduced by DNA 
replication errors or mutating agents. Mutations affecting only one or few 
nucleotides may be either 1) substitutions that replace nucleotides with other types 
of nucleotides, 2) insertions that add nucleotides to a sequence or 3) deletions that 
remove nucleotides from a sequence (Figure 9). 

 

Figure 9. Point mutations. (A) Substitution, where one nucleotide is changed to 
another. (B) Deletion, where a nucleotide is lost from the sequence (C) 
Insertion, a nucleotide is gained by the sequence. 

Mutations may also involve large portions of chromosomes; these can be divided 
into 1) deletion, 2) duplication, 3) inversion or 4) insertion of a given chromosomal 
region or 5) translocation where chromosomal regions are interchanged between 
nonhomologous chromosomal regions (Figure 10). 
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Figure 10. Chromosomal rearrangements.Mutations may also involve large segments of 
chromosomes and these rearrangements can be divided into deletions, 
duplication, inversions, insertions and translocations (Source: 
www.genome.gov/glossary.cfm). 



 

30 

Genetic recombination is a phenomenon where homologous chromosomes (i.e. 
maternally and paternally inherited copies of a given chromosome pair) interchange a 
certain segment (Figure 11). Recombination occurs in meiosis, which is the process in 
which gametes are produced from germline cells, and results in recombinant 
chromosomes that contain different combinations of alleles (haplotypes) than the 
parent chromosomes. Recombination is a common phenomenon and the average rate 
of genetic recombination in humans is 1.13 per 100 Mbp85, so on average there are 36 
recombination events per meiosis per genome. 

 

Figure 11. Schematic representation of genetic recombination in meiosis between 
homologous chromosomes. (A) Parental chromosomes of an individual that 
is heterozygous for three loci and has haplotypes ABC and abc.The open 
rectangle is the maternal and the solid rectangle is the paternal copy of the 
chromosome pair. (B) Chromosome duplication. (C) Formation of chismata 
and crossing over where maternal and paternal chromosomes exchange 
genetic material (D) forming two recombinant chromosomes that carry novel 
haplotypes ABc and abC. Figure courtesy of Tero Hiekkalinna. 

Independent assortment in meiosis was already described by Gregor Mendel and it 
refers to the combinations maternal and paternal chromosomes that may be sampled 
to a single gamete in meiosis. For each chromosome pair either the maternal or the 
paternal chromosome may be sampled to a haploid gamete; therefore since the 
assortment of chromosomes is independent of each other between nonhomologous 
chromosomes and there are two copies of each homologous chromosome there are 
223 � 8.4 million possible combinations of maternal and paternal chromosomes that 
the gamete may carry (Figure 12). 
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Figure 12. Independent assortment in meiosis. (A) Chromosomes of a given individual, 
maternally inherited choromosomes with open and paternally inherited 
chromosomes with solid squares, (B) Four possible combinations of 
maternal and paternal gametes out of the 223 � 8.4 million possible 
combinations. This diagram ignores genetic recombination which adds a 
further level of diversity by the mixing of maternal and paternal genetic 
material within homologous chromosomes. 

2.2.3 Genetic variants used in genetic mapping 

Approximately 0.1% of the human genome is variable at an appreciable level (e.g. 
polymorphism where at least 1% of the population possesses a less common variant) 
and this genetic variation can be divided into two main categories: 1) sequence 
polymorphisms where a single or few nucleotides differ between some individuals or 
2) length polymorphisms where there is variation between the lengths of the 
genomes of individuals due to insertion, deletion or copy number variation of certain 
sequence elements. In the context of genetic mapping there are two types of genetic 
variants that are most relevant: 1) single nucleotide polymorphisms (SNP) and 2) 
short tandem repeats (STR) that are also commonly referred to as microsatellites 
(Figure 13). 
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Figure 13. Genetic variants commonly utilized in genetic mapping. (A) Single 
nucleotide polymorphism. At this location there is variation in the nucleotide 
content of individuals; some have a cytocine C nucleotide such as individual 
A does, while others, like individual B, have a guanine (G) residue at this 
position. (B) Microsatellite sequence. At certain positions there are tandemly 
repeated sequences where individuals may differ in the number of copies of 
the repeat sequence. For example for a CA-dinucleotide repeat, some 
individuals may have seven copies of that repeat as individual A does and 
some may have nine copies, like individual B. 

SNPs are historical point mutations that have persisted over the course of evolution 
either because they have had some beneficial effect in some environment at some 
point in time and have been a target for natural selection or because they have been 
selectively neutral and have persisted simply due to stochastic factors (chance). 
SNPs have accumulated in the genome over the course of evolution and are very 
frequent, current estimates are that there are more than 10 million SNPs in the 
human genome that have a minor allele frequency of 1% in the studied populations 
(dbSNP86 build 126). Most SNPs are bi-allelic due to the low probability of mutation 
occurring at the exact same nucleotide position - also even if mutation were to occur 
at the same location it is unlikely that it would be evolutionarily preserved and 
observable today. 

Microsatellites (STRs) are loci that consist of tandemly repeating units of 1-4 base 
pairs (bp) in length. Sequence repeats are highly prone to DNA replication errors 
due to a phenomenon called replication slippage and tend to be duplicated in 
tandem. This is the reason why the mutation rates of microsatellite loci are 
substantially higher compared to other loci and they are highly polymorphic with up 
to 10 alleles per locus. There are over 300,000 known microsatellites in the human 
genome (NCBI Build 36.1). 
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Another class of human genome variation that has received attention recently are 
copy number variants (CNVs). CNVs are large genomic regions ranging from a few 
kb to several Mb that vary in copy number between individuals (average 250 kb). 
CNVs are common in the genome and it has been estimated that 12% of the human 
genome consists of CNV sites87.  Although CNVs are rarely used in genetic mapping 
many investigators have suggested that they may be important sources of human 
phenotypic variation because they result in gene dosage differences between 
individuals88. CNVs may also be important structural elements in the genome by 
providing a structural basis for genetic recombination and chromosomal 
rearrangements89. To date, there are over 8000 known copy number variable regions 
in the Database of Genomic Variants (http://projects.tcag.ca/variation/) 

2.2.4 Human population genetics 

Population genetics focuses on the nature and sources of genetic variation and 
predicting changes in the relative frequencies of different genotypes in a population. 
A population in the genetic sense is defined as a group of interbreeding individuals 
that are able to produce viable offspring. In addition to biological compatibility 
interbreeding also requires geographical proximity and absence of other potential 
limitations for breeding such as social or cultural barriers. Since especially in 
humans many of these limitations are present (perhaps even more so in the past), 
there is great phenotypic diversity observable between contemporary human 
populations. 

Evolution is in its basic form driven by production of genetic diversity (via mutation, 
random assortment, genetic recombination and sexual mating) and natural selection 
of genotypes that are favorable in the population’s current environment. However, 
stochastic factors such as genetic drift, the founder effect and population bottlenecks 
are important as well. Genetic drift refers to random change in allele frequencies, 
which results from the random sampling of gametes from one generation to another 
(Figure 14). The founder effect is another form of genetic drift that refers to the 
establishment of a new population by a small number of individuals that may carry 
only a fraction of genetic variation of the original source population. Due to 
extensive migration in human evolutionary history founder effects are rather 
common. Population bottlenecks are also a form of genetic drift; they are 
evolutionary events where a significant portion of the population dies or is otherwise 
prevented from reproducing and these are also fairly common in human history due 
to famines, wars and disease epidemics. 
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Figure 14. Genetic drift. In the first generation both alleles (open and solid circles) of a 
bi-allelic locus are equally frequent in a small population. However, due to 
random sampling of gametes in sexual mating the solid allele is slightly 
over-represented in the gamete pool and thus allele frequencies are not 
equal in generation two. After another round of gamete sampling, the solid 
alleles are not sampled to the gamete pool at all and it is lost completely from 
the population in generation three where only open alleles are present. 

2.3 Quantitative genetics and genetic mapping 

2.3.1 Quantitative variation of human traits 

In human genetics emphasis has gradually been shifting in recent years from 
analysis of discrete, usually dichotomous (yes/no) phenotypes to continuous or 
quantitative phenotypes which can attain any value within a certain range (or in 
some cases specific values such as positive integers). This emphasis is largely due to 
the realization that even though often the phenotype of medical interest is based on 
clinical criteria (such as the manifestation of certain disease), the risk factors for that 
disease may be quantitative in nature (hormone, enzyme or macromolecule levels, 
blood pressure or mRNA levels). Unless there is specific justification for 
dichotomizing a continous variable (e.g. bimodal distribution) utilizing the full 
quantitative information results in better statistical power to detect underlying 
genes90,91.  

Quantitative genetics is by no means a new field; it has a well-established track 
record in plant and animal breeding but human geneticists are often unfamiliar with 
the history and current state of quantitative genetics. This is somewhat surprising 
since the field of quantitative genetics was born out of studies of human height by 
Francis Galton, Karl Pearson and Ronald Fisher in the late 19th and early 20th 
centuries. The work of these scholars also provided tremendous leaps for general 
statistics methodology introducing techniques such as multiple regression, multiple 
correlation and variance-components partitioning which is the basis on analysis of 
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variance (ANOVA). For example correlation was introduced by Galton to describe 
the relationship between parental and offspring height in his data6,92. Galton’s and 
Pearson’s work on general inheritance of quantitative characteristics in turn led them 
to introduce the concepts of multiple correlation and multiple regression93,94. 

2.3.2 Genetic basis of quantitative variation 

In the late 19th and early 20th scholars in the field of genetics were divided into two 
schools of thought: the Mendelian and Galtonian schools. Proponents of Mendel’s 
laws of inheritance believed that phenotypic traits were transmitted in discrete units 
(genes) while the Galtonian school assumed that phenotypic traits were transmitted 
directly from parent to offspring (instead of transmitted by genes). In a landmark 
paper by Fisher in 191895 he was able to resolve the dispute and unite these schools 
of thought by postulating that quantitative variation and the phenotypic correlation 
between relatives could be explained by a large number of loci segregating 
according to Mendel’s laws each contributing to the phenotype in minute 
proportions (polygenes) as well as environmental influences producing continuous 
variation. 

Let us consider a simple example illustrating Fisher’s model of the polygenic nature 
of quantitative traits by comparing the phenotypic distributions when the trait value 
is completely determined by one, two or three bi-allelic genes. In this example we 
assume that the phenotype of the heterozygotes is exactly intermediate in respect to 
the two homozygotes (additivity), each gene has an equal effect on the phenotype 
and that alleles at each locus are equally frequent and genotypes are in Hardy-
Weinberg equilibrium. As can be clearly seen in Figure 15, as the number of loci 
contributing to the trait increases the number of trait value classes increases 
gradually approaching a normally distributed continuous trait. Also, it is noteworthy 
that when there are more than one gene controlling the trait the phenotype to 
genotype relationship becomes less clear; for example if there are two genes 
controlling the trait genotypes A1A1B1B2 and A1A2B1B1 produce identical 
phenotypes (trait values). 
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Figure 15. The phenotypic values when (a) one, (b) two or (c) three genes determine the 
trait value. It is assumed that all alleles are equally frequent, the genotypes 
are in Hardy-Weinberg equilibrium and that there is no dominance at the 
loci. The genotypes that result in a certain phenotypic value are shown for 
one and two genes. 
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In addition to their polygenic background, quantitative traits are usually also 
influenced by environmental factors that may act separately or in concert with genes 
(gene-environment interaction). The varying environments of individuals carrying 
certain genotypes at a QTL also contribute to the continuous nature of many 
phenotypes as is shown in Figure 16. 

 

Figure 16. The effect of environment on quantitative variation. The solid lines indicate 
the phenotype value distribution for each genotype of a bi-allelic QTL and 
the broken line the combined phenotypic distribution of all three genotypes.  
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Polygenic inheritance may also relate to dichotomous traits, such as disease states 
(affected/unaffected). Such traits may partially be determined by an underlying 
genetic liability that has a continuous distribution and the disease is manifested when 
this liability exceeds a certain threshold (Figure 17). Relating this to the previous 
example, the disease may be manifested when a sufficient number of risk alleles 
(e.g. A2 and B2) produce a large enough genetic liability. This theory of the 
polygenic backroung underlying discrete trait is called the liability-threshold model 
and was introduced by Pearson and Lee in 190196. 

 

Figure 17. The liability-threshold model for dicrete traits. The underlying genetic 
liability for manifesting a discrete trait such as a disease is continuous in the 
population and individuals whose liability exceeds a certain threshold (dark 
shading) manifest that trait. 
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2.3.3 Quantitative genetics models 

Quantitative genetic models are based on the decomposition of the phenotypic value 
(P) of an individual to genetic (G) and environmental (E) components. In the 
simplest model we consider genetic and environmental effects as independent 
aggregate effects, so that the phenotype can be described as 

EGP +=  

Since we are interested in phenotypic and genotypic variability, it is useful to 
examine quantitative traits and their components in terms of variances so that 

GEEGP COVVVV 2++=  

where VP, VG, VE and COVGE are phenotypic, genetic and environmental variance 
and COVGE genotype-environment covariance, respectively. The genotype-
environment covariance term refers to the direction of the genotype and environment 
effects (positive when genotypes with higher trait value are also in better 
environments and genotypes with lower values are in worse environments), not to 
gene-environment interaction (the dependence of gene action from the environment). 
However, in many instances (e.g. planned experiments) the covariance term can be 
ignored because it is close to zero. Then this model is simplified to  

EGP VVV +=  

2.3.4 Heritability 

D e f i n i t i o n  o f  h e r i t a b i l i t y  

Heritability is defined as the proportion of phenotypic variance that is explained by 
genetic factors. The concept of heritability was introduced by Fisher in his seminal 
1918 paper95. Most commonly in the human genetics literature, heritability refers to 
the broad sense heritability, H2, which reflects the proportion of all genetic effects 
(additive, dominant and epistatic) influencing phenotypic variation. 

P

G

V
V

H =2  
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In many instances (e.g. QTL mapping, rate and response to directional selection) we 
wish to decompose the aggregate genetic effects (VG) further to their additive (VA), 
dominant (VD) and epistatic components (VI)97. 

EIDAP VVVVV +++=  

The proportion of phenotypic variance attributable to additive genetic effects is 
termed the narrow sense heritability, h2. 

P

A

V
V

h =2  

P r o p e r t i e s  o f  h e r i t a b i l i t y  e s t i m a t e s  

Although the definition of heritability is very clear, there are many common 
misperceptions in its interpretation. Heritability is always specific to the sample 
where it is estimated, in other words no trait possesses inherent heritability. It is 
incorrect to state that a trait is highly heritable on the basis of a high heritability 
estimate, because heritability is not an attribute of a trait. For example, changing the 
environment is likely to change the heritability estimate even when genetic variation 
and all other factors are fixed. Therefore, also the exact comparison of heritability 
estimates across samples is not feasible since environmental factors are very difficult 
to standardize at least in non-experimental populations. 

It should also be noted that a specific heritability value gives absolutely no 
indication to mode of inheritance, number of loci nor the extent to which the 
phenotype is “controlled” by genes (since the environment may influence the 
heritability greatly). 

Heritability estimates always relate to a specific sample in a specific environment 
and are therefore not applicable to any given individual. For example, if the 
heritability of a given disease is 0.60 in some sample this does not mean that for a 
given individual from that sample 60% of the risk of developing that disease is due 
to that individual’s genetic makeup. One must remember that heritability is a 
proportion of variances, and since variance is meaningless for a single data point 
(such as a single individual) also heritability is meaningless for a single individual. 
In essence heritability is analogous to the arithmetic mean, which is also a property 
of a given sample not a property of a given trait or a single data point (e.g. an 
individual). 
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E s t i m a t i o n  o f  H e r i t a b i l i t y  

The estimation of heritability is based on the correlations of phenotypic values 
between different relative pair classes that have varying coefficients of relatedness 
(Table 2). If a trait is controlled by genes we would assume that close relatives 
resemble each other phenotypically more than distant relatives since they share more 
of their genes on average. Heritability can be estimated from phenotype data of 
relative pairs by using correlation and regression methods or analysis of variance 
(ANOVA). 

Table 2. Coefficient of relatedness rA for selected relative pairs. rA describes the 
average proportion of shared genes between individuals. 

Relationship Coefficient of relatedness rA 

Monozygotic twins 1 
Dizygotic twins 1/2 
Parent-offspring 1/2 
Full siblings 1/2 
Grandparent-grandchild 1/4 
Half siblings 1/4 
Avuncular 1/4 
First cousins 1/8 
 
The classical method of heritability estimation is the twin method in which one 
compares the intraclass correlations of monozygotic (MZ) twins who are genetically 
identical and dizygotic twins (DZ) who share half their genes on average. The basic 
idea is that if there are genetic components, there should be less variation among MZ 
pairs than among DZ pairs. In the classical twin method it is assumed that both types 
of twins share environmental effects similarly (although this has been criticized) and 
the heritability is approximately twice the difference in correlation between MZ and 
DZ twin pairs98,99. 

)]()([22 DZcorrMZcorrh −=  

For other types of relatives such as parent-offspring, full sibling and half-sibling 
pairs heritability can be estimated using regression methods, ANOVA or maximum 
likelihood (ML) methods based on variance components. In general, heritability can 
be estimated as the proportion of the regression coefficient b and the coefficient of 
relationship rA. 

Ar
bh =2  
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2.3.5 Genetic covariance between relatives 

The genetic covariance among relatives is usually described in terms of identical-by-
descent (IBD) sharing of alleles. By definition, individuals share an allele at a given 
locus IBD if they have inherited that allele from a common ancestor. In some cases 
it is also useful to determine another measure for allele sharing between individuals, 
called identity-by-state (IBS). Two individuals share an allele IBS if they have an 
identical copy of a certain allele at a given locus. IBS does not consider the ancestral 
origin of alleles but simply the identity of specific alleles. The difference between 
these two measures is exemplified in Figure 18. 

 

Figure 18. IBS and IBD sharing between sib pairs. (A) The sibs do not have any alleles 
in common, therefore IBS=0. Further, since one sib has inherited allele 1 
from her father and 2 from her mother and the other has inherited allele 3 
from her father and 4 from the mother, also their IBD=0. (B) Sibs have both 
alleles in common (i.e. both have allele 1 and allele 2), therefore they share 2 
alleles IBS. In this case the parental origin of alleles can not be determined 
since both sibs may have inherited allele 1 from their father and allele 2 
from their mother, or vice versa. If both sibs have inherited allele 1 (and 
allele 2)  from the same parent IBD=2 but if they have inherited allele 1 (and 
allele 2) from different parents IBD=0. (C). Sibs have both alleles in 
common (i.e. both have allele 1 and allele 2), therefore they share 2 alleles 
IBS. Both sibs must have inherited allele 1 from their father and allele 2 
from their mother, therefore also IBD=2. 
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At autosomal loci two diploid individuals may share either 0, 1 or 2 alleles IBD (or 
IBS) and we can derive probabilities for each IBD state and the expected proportion 
of IBD sharing across all loci over the genome by applying Mendel’s laws and 
simple probability calculus. Consider a fully informative situation where both 
parents are different heterozygote types: the mother has genotype 1/2 and the father 
genotype 3/4. According to Mendel’s laws of segregation and independent 
assortment each parent produces both types of gametes in equal proportions and the 
probability of two specific gametes joining to form a gamete is simply a product of 
their frequencies. Therefore, the probability of each offspring genotype (1/3, 1/4, 2/3 
or 2/4) is 0.25 (Table 3). 

Table 3. Possible offspring genotype for when parental genotypes are 1/2 and 3/4. 
Parents produce both gamete types in equal proportions and because the joining of 
gametes is random in fertilization each possible offspring genotype is equally likely.  

  Paternal gametes 
  3 4 

1 13 14 Maternal gametes 
2 23 24 

 

Because the genotypes of the offspring are independent of each other, the probability 
of siblings having a specific genotype pair (e.g. sib A 1/3 and sib B 2/4) is simply 
the product of the respective genotype frequencies. If we work out all possible 
genotype pairs, their probabilities and the IBD states we can derive the expected 
IBD distribution for sib pairs (Table 4). Since we know that all genotype pairs for 
the siblings are equally likely (the probability for each pair is 0.252 = 0.0625) we can 
ignore this term and simply calculate the occurrence of each IBD state; therefore the 
probability that sibs share zero alleles IBD is 4/16 (=0.25), one allele 8/16 (=0.5) and 
two alleles IBD is 4/16 (=0.25).  

Table 4. Genotype combinations and IBD states for a sib pair when parental 
genotypes are 1/2 and 3/4. The genotypes of sibs are independent of each other, therefore 
each genotype pair is equally likely. 

  Sib B 
  1/3 1/4 2/3 2/4 

1/3 2 1 1 0 
1/4 1 2 0 1 
2/3 1 0 2 1 

Sib A 

2/4 0 1 1 2 
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The theoretical IBD distribution for any type of relative pair can be derived in the 
same manner; however this becomes rather tedious for more distant relative pairs. The 
expected IBD is also called as coefficient of relationship rA and can also be thought of 
as the probability that an allele drawn at random from one individual is IBD to one of 
the alleles of the other individual. The coefficient of relationship is also the average 
IBD across all loci over the genome and is defined mathematically as 

212
1 pprA +=  

where p1 and p2 are probabilities of sharing one and two alleles IBD, respectively. 
Table 5 also shows also the theoretical IBD distribution and the coefficient of 
relationship for selected relative pairs. 

Table 5. Probabilities of sharing zero (p0), one (p1) or two alleles (p2) IBD at 
autosomal loci and coefficient of relationship rA for selected relationships which is also the 
average IBD over the genome. 

Relationship p0 p1 p2 rA 
Monozygotic twins 0 0 1 1 
Dizygotic twins 1/4 1/2 1/4 1/2 
Parent-offspring 0 1 0 1/2 
Full siblings 1/4 1/2 1/4 1/2 
Grandparent-grandchild 1/2 1/2 0 1/4 
Half siblings 1/2 1/2 0 1/4 
Avuncular 1/2 1/2 0 1/4 
First cousins 3/4 1/4 0 1/8 

2.3.6 Mapping quantitative trait loci (QTL) 

Quantitative trait locus (QTL) mapping refers to the statistical methods that are used 
to locate and identify loci that influence quantitative traits (QTL). The basic logic 
underlying QTL mapping is very intuitive, however, the algebra and numerical 
methods involved are often highly complex and computationally intensive. All 
methods are based on the underlying principle that family members who have 
similar trait values should have a higher than expected levels of sharing of genetic 
material near the QTL (due to linkage) that influence these traits. Conversely, at loci 
that are not linked to QTL influencing the trait, the degree of genetic sharing should 
be determined by the degree of relatedness (genetic covariance) and should not 
correlate with the trait covariance between those individuals (Figure 19). 
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In human QTL mapping Haseman-Elston regression and variance-components 
methods are the most popular and are discussed here in detail, but other methods 
such as score tests and Bayesian methods have also been developed (see Amos100 
and Feingold101 for reviews). Score tests were initially developed102,103 to circumvent 
the normality assumption in Haseman-Elston regression and variance components 
methods but are less powerful when the trait distribution is close to a normal 
distribution104. The Bayesian methods105-107 have not been used widely yet because 
their properties are relatively uninvestigated in human QTL mapping and they are 
very computationally intensive. However Baesian methods have great advantages 
over frequentistic methods since they may be used to simultaneously estimate the 
number and locations of QTL influencing the trait instead of focusing on each 
putative QTL individually. 

 

Figure 19. Phenotypic covariance and IBD sharing between siblings. In each 
scatterplot the phenotypic values of the sibs are on the x- and y-axes. (A) The 
phenotypic covariance (resemblance) is greater in sibs that share more 
alleles IBD compared to those sibs that share less alleles IBD at this locus. 
This is the expected scenario if the locus examined is linked to a QTL that 
influences the trait of interest. (B) There is no marked difference in 
phenotypic covariance of sibs that share 0, 1 or 2 alleles at the locus 
examined. Therefore this locus is not considered to be linked to the trait of 
interest. 
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H a s e m a n - E l s t o n  R e g r e s s i o n  

Haseman and Elston were the first to introduce a method for QTL mapping in 
humans108. Their original method was intended for analysis of sib pairs and their 
approach was based on calculating the squared difference for the sib pair trait values 
and regressing this upon the estimated proportion of alleles shared IBD (�i) by the 
sib pair at the locus being tested (putative QTL). Under the null hypothesis of no 
linkage, the slope of this regression slope is zero. Under the alternative hypothesis of 
linkage, the regression slope is negative because similar trait values (that produce 
small squared differences) should be associated with higher than expected IBD 
sharing. The original Haseman-Elston regression method is robust in maintaining 
correct type I error and is computationally simple but has two important limitations 
1) it is applicable only to sib pairs and 2) it assumes that the trait is normally 
distributed in the population. Several extensions have later been proposed to increase 
statistical power and allow the use of larger families109-111. 

V a r i a n c e  C o m p o n e n t s  M e t h o d  

The variance components (VC) method is based on modeling the phenotypic 
covariance between relative pairs as a function of independent additive variance 
components which are based on the expected genetic covariance and estimated IBD 
sharing at the locus being tested (putative QTL) and are estimated by maximum 
likelihood112-116. In the basic VC model the phenotypic variance �P

2 is modeled as a 
function of the additive genetic effect �q

2 of the marker location (putative QTL), the 
aggregate additive genetic effect �g

2 of all other QTL in the genome (polygenes) and 
the aggregate environmental effects �e

2. Using this model we can test for linkage 
with a likelihood-ratio test where in the null hypothesis of no linkage �g

2 is 
constrained to zero and in the alternative hypothesis �q

2 is a free parameter. 
Statistical evidence for linkage is then evaluated with a likehood-ratio test which is 
typically represented as a logarithm-of-odds (LOD) score Z 
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where L denotes the likehood of the observed genotype and phenotype data under 
the alternative (�q

2 > 0) and null hypotheses (�q
2 = 0). The VC framework is 

applicable to pedigrees of any size and structure and allows for modeling of 
covariates, household effects, parent-of-origin effects, and multiple QTLs117,118.  
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The VC method is more powerful than Haseman-Elston regression100,101,104 but is 
computationally very intensive due to extensive use of maximum likelihood methods 
and is less robust when the trait distribution does not follow a normal distribution 
producing elevated type I error rates119. However, several extensions have been 
proposed to allow non-normal distibutions in the VC framework that are based on 
robust estimators120 and multivariate t-distributions121 or gamma distributions122. 

2.3.7 Statistical Testing 

Gene mapping in non-experimental organisms such as humans is based almost 
exclusively on statistical inference since controlled experiments are impractical and 
unethical to conduct - therefore it is necessary for a human geneticist to bear in mind 
certain fundamental statistical aspects which are discussed in this section. Statistical 
inference (testing) allows us to objectively evaluate the probability of a given 
hypothesis; instead of subjectively stating that two samples are different in some 
aspect we are interested in, statistical testing allows us to assign a level of 
confidence that the samples are indeed different. All frequentistic statistical testing 
(in contrast to Bayesian analysis) follows the same basic scheme: 1) formulation of 
null and alternative hypotheses (H0 and HA), 2) calculation of the expected 
distribution under the null hypothesis, 3) comparing the observed and expected 
distributions using appropriate test statistics and 4) determining the statistical 
significance of the difference between the observed and expected distribution by 
using the known distribution of the test statistic (Figure 20). In the context of genetic 
mapping usually the hypotheses being tested are: 

H0: “Genetic marker is not linked (or associated) to the trait phenotype.” 

HA: “Genetic marker is linked (or associated) to the trait phenotype.”  

We choose H0 and HA in this manner, because we need to be able to calculate the 
expected distribution under the null hypothesis in a simple manner. If our null 
hypothesis would be “Genetic marker is linked (or associated) to the trait 
phenotype.” we would require additional parameters to calculate the expected 
distribution (e.g. recombination fraction, allele frequencies, or magnitude to linkage 
disequilibrium). 
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Figure 20. The �2-probability density function with three degrees of freedom. Like all 
test statistics, the �2-test statistics follows a known distribution under the 
null hypothesis and therefore we can evaluate the probability of obtaining 
the observed test statistic under the null hypothesis. This allows us to 
evaluate the fit of the observed data to our null hypothesis. For example, 
with three degrees of freedom, obtaining a �2 � 7.82 corresponds to p � 0.05 
which is equal to the shaded surface area. 

S t a t i s t i c a l  s i g n i f i c a n c e  

Statistical significance is a measure of the level of confidence associated to the 
conclusion of a given statistical test. Statistical significance is usually measured with 
a p-value, which is defined as the probability that chance alone produced the 
obtained or more extreme test statistic in a given test. Formally p-value is defined as 
the probability of rejecting the null hypothesis when the null hypothesis is true. 

true) H|rejected P(Hp 00=  

The p-value is therefore the probability of obtaining a false posititive result i.e. 
rejecting the null hypothesis inappropriately (type I error, �). There is an inverse 
relationship between the p-value and the confidence of our conclusion based on the 
statistical test; small p-values increase our confidence that our conclusion to reject 
the null hypothesis is correct and not a product of chance (and vice versa).  
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S t a t i s t i c a l  p o w e r  

Statistical power is the probability of obtaining a level of confidence (p-value) that 
we wish to acquire in our study setting and statistical methods with the sample at 
hand. Formally statistical power is defined as the probability of rejecting the null 
hypothesis when the null hypothesis is false (i.e. making the correct conclusion). 

false) H|rejected P(HF 00=  

Statistical power relates directly to the chance of a false negative finding (type II 
error �, note that F = 1-�). Basically we want to assure that we are able to obtain a 
sufficiently low p-value (e.g. p < 0.05) with a sufficiently high probability (e.g. 
80%) with our study setting. Determining statistical power can be performed 
analytically in simple study settings (e.g. case-control studies) and via simulations 
for complex study settings (e.g. linkage studies with varying family structures). 

M u l t i p l e  C o m p a r i s o n s  P r o b l e m  

Usually the researcher has a subjective pre-set threshold for declaring statistical 
signicance. In other words this is the probability of an erroneous conclusion (false 
positive) that the researcher is willing to accept. For example, a researcher may state 
that he is willing to reject his null hypothesis if the statistical test produces a p-value 
p � 0.05. However, we must remember that the p-value is a probability that chance 
alone produced our test statistic. This translates to the fact that when we use a 
threshold of p = 0.05, one out of every twenty (5%) such tests will produce a false 
positive result due to chance alone (this is how we define p-value!). Thus, if our 
experiment involves performing 100 tests, we expect 5 to be declared as significant 
with a p = 0.05 by chance alone. This is known as the problem of multiple 
comparisons. As the number of tests increases, so does the probability that one of 
the tests will produce a significant result due to chance alone (false positive). 

One method of adjusting for multiple comparisons is the Bonferroni-method which 
is a commonly used method for obtaining the experiment-wide false positive rate p´. 
If our pre-set threshold for significance level is p then the probability that a test does 
not produce a significant result is 1- p. If we perform n independent tests the joint 
probability that none of them will produce a significant results is (1 – p)n. Therefore 
the probability that at least one test will produce a significant result is given by 

np)-(1-1p' =  
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This is the p-value that one should consider significant over the whole range of n 
tests given a pre-set value of p. If we wish for an experiment-wide false positive rate 
of p´ (that is, the probability of one, or more, false positives over the entire set of 
tests is p´), solving for the p-value required for a single test is 

n
1

p´)-(1-1p =  

For the actual obtained p-value, this is the true signicance level that ensures an 
experiment-wide false positive rate of p´ and is known as the Dunn-Sidak method. 

In gene mapping studies there are many sources of multiple comparisons such as 
performing the statistical test for 1) multiple genetic markers, 2) multiple alleles of a 
genetic marker, 3) multiple phenotypes and/or 4) using multiple genetic models. The 
proper adjustment for multiple comparisons depends solely on the data set, for 
example the Dunn-Sidak method is appropriate only if the statistical tests are 
independent of each other (which is untrue for genetically linked loci). If there is 
dependence between the statistical tests performed one must use different 
approaches such as permutation, resampling or simulation techniques for multiple 
comparison adjustment. The detailed description of the variety of these methods is 
however beyond the scope of this thesis and can be found elsewhere123,124.  

2.4 Genetics of height 

2.4.1 Heritability of height 

The earliest heritability estimate for height was 0.57 by Sir Francis Galton which he 
published in 18895 demonstrating a genetic component underlying human height. 
Since Galton’s work, evidence for the influence of genes in height determination has 
accumulated from hundreds of twin, family and adoption studies.  

As noted before, heritability estimates can be obtained by comparing the phenotypic 
values of relative pairs such as twins or other types of relatives. From twin studies 
perhaps the most reliable heritability estimates are from analysis of 30.111 
Australian and European twin pairs75 which range between in 0.70-0.94 men and 
0.68-93 in women. Large family studies consisting of thousands of families have 
also estimated the heritability of height is between 0.79-0.98125,126 in different US 
populations.Adoption studies are another design that allows the estimation of genetic 
and environmental influences since siblings (or twins) reared apart share genes but 
their environment correlate much less compared to siblings reared together. 
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Also adoption studies show that correlations in height between biological relatives 
are always higher than with adopted relatives127-129. Unfortunately the sample sizes 
in these studies prevent accurate heritability estimation. 

2.4.2 Genome-wide scans for height QTL 

Genome-wide screens represent a hypothesis-free approach for localizing genomic 
regions that influence the trait of interest. Instead of specifying a priori some 
specific candidate genes that may influence the trait we may simply explore the 
entire genome for statistical evidence for genes influencing the trait. Classical 
genome-wide screens utilize 400-1000 evenly spaced highly polymorphic genetic 
markers, typically microsatellites, that serve as genomic landmarks and allow the 
detection of linkage between the trait phenotype and marker (parametric linkage) or 
identification of shared genomic segments between relative pairs that resemble each 
other phenotypically (nonparametric linkage). These linkage screens may implicate 
positional candidate regions in the genome (i.e. generate hypotheses) which may 
harbor candidate genes influencing the trait of interest and warrant further 
investigation by fine-mapping and/or association analysis. Another approach that has 
become amenable through discovery of enormous amounts of tightly linked SNP 
markers and inexpensive technologies to genotype them rapidly is genome-wide 
association analysis (GWA). GWA is also a hypothesis-free design that attempts to 
directly identify the genetic variants (or variants in very close physical proximity) 
influencing the trait by utilizing 300,000-500,000 SNP markers across the genome.  

To date there have been reports of 17 genome-wide linkage screens and one 
genome-wide association screen that have focused on adult height (Table 6). As is 
the story with other multifactorial traits results have been inconsistent and difficult 
to replicate across different studies. The only genomic regions that have shown 
overlapping findings (LOD�2.0) in more than two independent linkage studies are 
6q25, 7q35-36, and 9q21-22 while other findings are scattered across the genome. 

Only one genome-wide association (GWA) for height has been published to date130. 
The investigators reported convincing association across multiple populations in 
samples consisting of more than 30,000 unrelated individuals for the HMGA2 gene 
residing in 12q14. The role of HMGA2 in height determination is also supported by 
defects in this gene which have been shown to cause gigantism in mice and 
humans131,132 and dwarfism133 in mice. Weedon and colleagues estimated that this 
gene accounts for 0.3% of height variation in the general population implying that 
most height genes may be of even smaller effect since the association to HMGA2 
was their most significant finding. 
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2.4.3 Gene associations for height 

There are hundreds of Mendelian traits which are characterized by growth 
disturbances (Online Mendelian Inheritance in Man, 2007). However, most of these 
traits are serious disorders which affect fundamental biological processes and 
seriously perturb normal development. Thus it is reasonable to assume that the 
disturbance in growth is a by-product of a severe systemic effect and the genes 
underlying these traits are unlikely to underlie height variation in the general 
population. There are however, some Mendelian traits where short stature is a 
hallmark feature; the defective genes causing these traits may therefore give clues 
also to the biological mechanisms underlying normal growth and height variation. 
These traits can be roughly categorized to according to the function of the defective 
genes to aberrations of the 1) hypothalamic-pituitary-GH-IGF-I axis, 2) sex steroid 
metabolism and 3) structural components and other factors influencing bone 
morphogenesis.  

Classical growth hormone (GH) deficiency can be caused by mutation of GH 
releasing hormone receptor (GHRHR), mutations in transcription factors essential 
for the pituitary GH producing cells (e.g. PIT1 and POU1F1) or mutation or deletion 
the growth hormone gene (GH1)146-148. Missense mutations producing biologically 
inactive GH, loss-of-funtion of growth hormone receptor (GHR)149 or defects in the 
GH signalling cascade (e.g. JAK2, STAT5B or ERK) on the other hand produce GH 
insensitivity149-151. Most of the growth promoting effects of GH are mediated by 
insulin-like growth factor-1 IGF-1152 which forms a complex with IGF binding 
proteins (especially IGFBP3153) and the acid labile subunit (ALS)154 or the IGF-1 
receptor gene155 and thus mutations in these genes may cause GH secondary GH 
insensitivity (also reviewed by Walenkamp et al.156 Mullis148). To date the only 
analysis of the association of common variation in genes in the GH-IGF-1 axis and 
height in the general population157 reported negative findings and therefore it is still 
unknown whether variation in these genes contributes to height variation in the 
general population or not. One gene associated to height that probably acts via the 
GH-IGF-1 pathway, is one of the receptors (DRD2) of the neurotransmitter 
dopamine which in turn has multiple roles in regulating appetite and growth 
hormone secretion. The role of DRD2 was initially discovered from observations of 
children that are chronically exposed pre- and postnatally to dopamine receptor D2-
blockers who tend to increase in height158.  Variations in DRD2 have also been 
associated with height in the general Japanese population159. 
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Sex steroids play a pivotal role especially in pubertal growth and although single 
gene mutations are quite rare there are two noteworthy examples of defects in sex 
steroid metabolism in respect to growth. Mutations in the estradiol receptor ESR1 
causing estrogen resistance lead to tall stature because this reduces the response of 
bones to estradiol which is the key accelerator of bone maturation and epiphyseal 
closure. Due to this lowered estradiol response the patients continue growing until 
their late twenties or even later160 resulting in increased stature. Another gene 
implicated in abnormal stature functions via sex steroid pathways is CYP19 which 
codes for aromatase that is responsible for converting androgens to estrogens. 
Certain loss-of-function mutations in aromatase result in estrogen deficiency and tall 
stature especially in males161,162. On the other hand, gain-of-function mutations in 
CYP19 causes excess estrogen which in boys causes gynecomastia, a premature 
growth spurt, early fusion of epiphyses, and decreased adult height163. 
Polymorphisms in CYP19 have also been associated to variation in height in the 
general population41. 

Bone morphogenesis is a highly complex process where there are tens of known 
genes that when defected cause skeletal dysplasias and dysosotoses (reviewed 
extensively by Superti-Furga et al. 164 and Kant et al.165). Interestingly over half of 
all known mutations underlying abnormal bone formation are located within FGFR3 
and COL2A1165. These skeletal dysplasias and dysostoses produce dramatic 
phenotypes and currently it is unknown how they relate to height in the general 
population. To date, only one gene involving bone metabolism, the vitamin D 
receptor has been associated to height in the general population. The vitamin D 
receptor is a nuclear hormone receptor which mediates the action of vitamin D3 
(calcitriol) by inducing the synthesis of osteocalcin, the most abundant 
noncollagenous protein in bone. Polymorphisms in VDR have been shown to 
associate with adult height in Japanese and European-Americans166-168 and many 
bone phenotypes across multiple populations169-172.  

One of the most convincing single gene findings underlying idiopathic short stature 
(short stature of unknown cause) that does not fit into the rough categories stated 
above are mutations within the SHOX gene located in the pseudoautosomal region 
of the sex chromosomes173,174. SHOX encodes for a transcription factor belonging to 
the homeobox gene family of developmental regulators. SHOX haploinsufficiency 
has been suggested as the cause of the short stature phenotype in Turner syndrome 
patients44. 
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Table 7. Selected genes that have influence on height 

Gene name Gene Symbol Locus Function 
Growth hormone 
receptor 

GHR 5p12 Mutations in GHR have been associated with 
Laron syndrome, also known as the growth 
hormone insensitivity syndrome (GHIS), a 
disorder characterized by short stature. 

Estrogen receptor 1 ESR1 6q25 Nuclear hormone receptor. Loss-of-function of 
ESR1 leads to estrogen resistance and tall stature 
due to incomplete epiphyseal closure. 

Growth hormone 
releasing hormone 
receptor 

GHRHR 7p15 Mutations in this gene have been associated with 
isolated growth hormone deficiency (IGHD), also 
known as Dwarfism of Sindh, which is 
characterized by short stature. 

Insulin-like growth 
factor binding protein 3 

IGFBP3 7p13 Mutations may cause biologically inactive IGF-1 
resulting in short stature. 

Janus kinase 2 JAK2 9p24 Involved in growth hormone signalling.  
Dopamine D2 receptor 
gene  

DRD2 11q23 Receptor of dopamine which plays a major role 
in the regulation of appetite and growth hormone. 

Insulin-like growth 
factor 

IGF1 12q23 Mediates many of the growth-promoting effects 
of growth hormone. IGF1 deficiency is an 
autosomal recessive disorder characterized by 
growth retardation, sensorineural deafness and 
mental retardation 

Vitamin D3 receptor VDR 12q13 Nuclear hormone receptor that mediates the 
action of vitamin D3 by controlling the 
expression of hormone sensitive genes 

Cytochrome P450, 
family 19 

CYP19A1 15q21 Involved in estrogen biosynthesis. CYP19A1 
mutations have been associated with height via 
estrogen dosage. 

Insulin-like growth 
factor 1 receptor 

IGF1R 15q26 Loss-of-function mutations lead to IGF-1 
insensitivity and pre- and postnatal growth 
retardation. 

Acid-labile subunit IGFALS 16p13 Mutations may cause biologically inactive IGF-1 
resulting in short stature. 

Signal transducer and 
activator of transcription 
5B 

STAT5b 17q21 Involved in growth hormone signalling. Defects 
in STAT5B are the cause of Laron type dwarfism 
II (LTD2) which is characterized by growth 
hormone insensitivity. 

Short stature homeobox-
containing gene 

SHOX Xp22/Yp11 Involved in idiopathic growth retardation and in 
the short stature phenotype of Turner syndrome 
patients 

. 
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3 AIMS OF THE STUDY 

The aim of this study was to localize and identify genetic variants that influence the 
determination of adult height in the general population by addressing the following 
specific aims: 

1) To develop methods and protocols for the efficient use of samples originally 
ascertained for different traits by various investigators in combined genome-wide 
linkage analysis (I, II, III). 

2) To perform combined data analyses of genome-wide linkage screens performed in 
Finnish family samples and investigate the potential of sex-limited analysis in order 
to locate sex-specific genetic effects (I). 

3)  To perform combined data analysis of genome-wide linkage screens performed 
in Australian, Danish, Finnish, Dutch, Swedish and United Kingdom families and 
investigate also the usefulness of reducing environmental variation in genome-wide 
analyses by restricting analyses to dizygotic twin pairs (II). 

4)  To carry out combined data analysis of genome-wide linkage screens performed 
in families from the United States and investigate the role of within country 
population variation by performing joint and individual analyses on families of 
African-American and European-American origin across the cohorts (III). 

5) To study the potential sex-specific genetic architecture of height (I, II, III). 
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4 MATERIALS AND METHODS 

4.1 Study subjects 

The reader is referred to the original publications (I-III) and the references therein 
for a more detailed description of the studies. 

4.1.1 The Finnish family sample 

In Study I all genome-screened families originated from Finland and they were 
ascertained for type 2 diabetes, familial low-HDL cholesterol or familial combined 
hyperlipidemia (FCHL). The total study sample contained 1,417 individuals from 
277 families with genome-wide genotype data and phenotype information. Details of 
the sample used in Study I are shown in Table 8. 

Table 8. Demographic characteristics of the sample used in Study I.  

  _________________Stature (cm)_______________ _______Age_______ 
 n Mean SD Range Mean 
Botnia      
Males 211 174.7 5.9 157.0-193.0 58.7 
Females 205 161.2 5.9 143.0-181.0 58.2 
Helsinki      
Males 288 174.4 6.7 153.7-197.0 56.6 
Females 380 160 6.3 136.0-184.0 60.1 
FCHL      
Males 63 175.7 5.9 164.0-191.0 47 
Females 76 161.5 6.2 147.0-176.0 51.4 
Low-HDL      
Males 97 176.7 6.2 162.0-190.0 49.3 
Females 97 164.2 6.2 149.5-170.0 50 
Combined      
Males 659 174.7 6.4 153.7-197.0 55.4 
Females 758 161 6.3 136.0-184.0 57.6 

4.1.2 Families from Australia and Europe 

The family samples analyzed in study II were derived from twin cohorts  provided 
by the GenomEUtwin consortium (http://www.genomeutwin.org) which consists of 
eight twin cohorts (Australian, Danish, Dutch, Finnish, Italian, Norwegian, Swedish, 
and the United Kingdom) with the total resource of hundreds of thousands of twin 
pairs. The total number of individuals with genome-wide genotype data and 
phenotype information was 8,450 individuals from 3,817 families.  
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Details of the sample used in Study II after diagnostic analyses of phenotype data 
were performed are shown in Table 9. 

Table 9. Demographic characteristics of the sample used in Study II.  

  _________________Stature (cm)_______________ _____Age____ 
 n Mean SD Range Mean 
Australia      
Males 1005 177.2 6.5 152-203 40.9 
Females 1604 163.4 6.6 144-186 42.2 
Denmark      
Males 248 176.8 7.9 152-199 53.7 
Females 380 164.1 7.0 144-183 61.1 
Finland      
Males 509 175.6 6.1 157.5-194 52.6 
Females 342 160.8 6.4 147-176 61.2 
Netherlands      
Males 481 179.3 6.7 162-203 40.2 
Females 605 168.7 6.3 147-189 37.9 
Sweden      
Males 531 175.4 5.9 156-193 74.6 
Females 533 162.6 6.0 137-163 75.0 
United Kingdom      
Males - - - - - 
Females 2212 162.5 6.4 141-191 47.3 
Combined      
Males 2774 177.5 6.8 152-203 50.2 
Females 5676 163.4 6.6 137-191 49.1 

4.1.3 Families from the United States 

In Study III we analyzed African-American and European-American families 
ascertained for type 2 diabetes, blood pressure-related traits, obstructive sleep apnea 
and systemic lupus erythematosus. The combined sample consisted of 9,306 
individuals from 3,032 families with genome-wide genotype and phenotype 
information. Descriptive statistics of this sample are shown in Table 10. 

Table 10. Demographic characteristics of the sample used in Study III.  

  _________________Stature (cm)_______________ ____Age____ 
 n Mean SD Range Mean 
African-
American 

     

Males 1617 177 6.6 158-196 50.4 
Females 3161 163.6 6.3 144.8-182 51.4 
European-
American 

     

Males 2183 176.4 6.5 158-195.6 54.1 
Females 2884 162.4 6.2 144-180.3 53.7 
Combined      
Males 3550 176.7 6.6 158-196 52.5 
Females 5756 163.1 6.3 144-182 52.5 
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4.2 Methods and statistical analyses 

4.2.1 Combining the genome-wide screens 

M a r k e r  m a p  c o n s t r u c t i o n  

The advent of commercial multi-allelic marker sets (Weber sets, ABI sets) in the 
mid-1990s was essential for efficient genome-wide linkage screening. However, 
each genome-wide screen is essentially performed using a unique set of genetic 
markers (marker map) because for example some markers in a commercially 
available marker set may not be sufficiently polymorphic in some study samples, or 
genotyping success rate is low. Also many investigators follow-up on interesting 
genomic regions with additional genetic markers or add markers simply to ensure 
sufficient coverage of a given region. 

Building a common genetic marker map is essential for combining data across 
multiple genome-wide screens so that marker genotypes can be assigned to their 
correct positions. Also, since the correct genetic map is crucial for power and 
accuracy of multipoint linkage analysis175-177 we applied the most current data and 
strict criteria in genetic map building. 

Combining marker maps however, is not trivial due to many factors. First there is no 
standard nomenclature for multi-allelic markers and they may have up to ten aliases; 
for example the marker ATA29D04 present in one screen may be named D1S1631 
or RH27948 in other screens. Second, published reference genetic maps such as the 
Marshfield178 and the deCODE map85 disagree about some locations; for example 
they place markers D1S2783 and D1S195 in different orders along the chromosome. 
Third, genetic maps also differ in map resolution (number of meioses used to build 
the map), marker density and choice of markers. 

We used the genome sequence (physical map) to assign the marker order, because it 
is based on physical experiments rather than statistical inference (which is the basis 
of marker positioning in genetic maps). However, since recombination frequency is 
not constant over the genome we also needed to rely on a reference genetic map to 
obtain genetic locations. We chose the deCODE map because out of the published 
genetic maps it is statistically most reliable and has the highest resolution because it 
is based on the largest number of informative meioses (1,257 versus 188 in the 
Marshfield map). 
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Our strategy for building the common genetic map is illustrated in Figure 21 and is 
as follows: 1) obtain a unique reference name and physical location (bp) for each 
marker from the University of California Santa Cruz (UCSC) database 
(http://genome.ucsc.edu) and order the markers based on their physical locations, 2) 
obtain the genetic location (cM) for each marker from the deCODE genetic map and 
3) for those markers which were not included in the deCODE marker map or were in 
disagreement with the sequence information, use linear interpolation for genetic 
location estimation using the physical and genetic locations of the immediately 
neighboring deCODE markers. For this purpose we developed publicly available 
software Cartographer (https://apps.bioinfo.helsinki.fi/software/cartographer.aspx). 

 

Figure 21. Schematic representation of combining marker maps across multiple 
genome-wide screens. The genetic map of genome-wide screen X includes 
genetic markers A, B, C, and D while genetic map of genome-screen Y 
includes markers A, F, G, and D. Querying the UCSC database identifies 
markers B and G as the same marker, although it is genotyped under 
different names in the two genetic maps. The physical locations of the 
markers are also retrieved from the UCSC database and the markers are 
ordered accordingly. Last, the genetic locations are retrieved from the 
deCODE genetic map and interpolated using their physical locations if the 
markers are not included in the deCODE map.   
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C o m b i n i n g  g e n o t y p e  d a t a  

Once a common marker map is established combining the genotype data is a trivial 
yet tedious task of assigning genotypes to proper locations along the map. For this 
purpose we wrote custom software Mergescan (Sammalisto and Hiekkalinna, 
unpublished). However, because the genome-wide screens were performed at 
different genotyping centers and different batches we could not treat markers from 
different genome-wide screens as identical even if they have been genotyped under 
the same name since they may differ in allele coding. It is common practice to code 
alleles 1, 2, 3… n based on their frequencies in the sample; therefore allele 1 for a 
given marker in study A may correspond to allele 2 for that marker in study B. One 
could try to resolve this by recoding alleles in each sample according to their 
frequency before combining; this however would assume that the proportions of 
allele frequencies are the same in each study sample which is clearly an unsafe 
assumption. The allele coding problem can be resolved either by 1) assigning unique 
allele numbers for a marker in each sample or by 2) treating markers from different 
samples as different markers by setting some small arbitrary genetic distance 
between them (e.g. 0.0001 cM). The former is more suitable for two-point analysis 
while the latter is more suitable for multipoint analysis. Because in this study we 
were primarily focused on the multipoint analysis we chose the latter strategy. 

4.2.2 Statistical analysis 

The methods described here were used throughout the study (I-III), therefore there 
are no indications of which methods were used in which part of the study. 

F a m i l i a l  r e l a t i o n s h i p  v e r i f i c a t i o n  

The genotype quality control methods and linkage analysis methods assume that 
family relationships are correctly specified. In some cases such as non-paternity, 
also violations to Mendelian transmission of alleles at multiple loci may uncover 
incorrectly specified familial relationships. However, for more distant relationships 
simply focusing on Mendelian transmission is unlikely to uncover all relationship 
errors. In the context of genetic mapping knowledge on the true relationships is 
essential since all genetic analyses are performed conditional on the family structure. 
For example, the expected genetic covariances utilized in the variance components 
linkage analysis are derived from the declared familial relationships. 

In this study Graphical Representation of Relationships, GRR179 was used to 
perform the familial relationship testing. GRR implements a simple general method 
that plots the mean and standard deviation of genome-wide IBS sharing between all 
pairs of individuals in a given sample resulting in distinct clustering of specific types 
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of relatives and unrelated pairs. The approach implemented in GRR has two clear 
advantages over many other approaches 1) it does not require specification of 
parameters (such as allele frequencies) and 2) since no inferential statistics are used 
there is no need to set significance levels or be wary of multiple comparisons. GRR 
is designed for genome-wide studies using multi-allelic markers and it can be 
considered as accurate when individuals are genotyped for at least 50 loci. Figure 22 
GRR shows how potential errors can be detected from the GRR output. If suspicious 
relationships were detected the original investigators of the corresponding genome-
wide screen were contacted. If they were unable to provide information that would 
allow us to resolve the suspected error either the pair in question or the whole family 
was discarded prior to genetic analyses. 

 

Figure 22. GRR output for a simulated data set. Different declared relationships, sib-
pairs, half-sibs, parent-offspring and unrelated pairs are shown in different 
colours and form distinct clusters when relationships are correct. The results 
show many types of likely relationship errors: a) sibs who are really half-
sibs, b) half-sibs and unrelateds which are really sibs, c) unrelateds which 
are parent-offspring pairs, d) unrelateds that may be either genotyping 
duplicates or MZ twins  and  e) a sib-pair which is really a MZ pair. 
Simulated data is provided by GRR authors 
(www.sph.umich.edu/csg/abecasis/GRR/) 
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G e n o t y p e  q u a l i t y  c o n t r o l s  

Since all the genotypes were already produced prior to this study, genotype quality 
could only be assessed by statistical methods. Elimination of all Mendelian 
inconsistencies is essential prior to genetic analyses. In this study we applied 
Pecheck 1.1180 for singlepoint analysis of Mendelian inconsistencies in the data. If 
inconsistencies were detected we removed the genotypes for that marker in all 
family members using the automatic routines (option “-z”) implemented in 
Pedcheck. Figure 23 shows an example of a Mendelian inconsistency due to a 
common type of genotyping error called “allele dropout”. 

 

Figure 23. (A) A family with father, mother and a child who are genotyped for a genetic 
marker. The genotypes however, are Mendelian inconsistent since the 
homozygous child must have inherited allele 1 from both parents but the 
mother does not carry any copies of allele 1. (B) Electrophoresis diagram 
from the genotyping procedure used to genotype this family. The true 
genotype of the child is 1/3 but for some reason allele 3 is below the 
detection threshold and thus the child is erroneously declared as 1/1 
homozygote. This phenomenon is called allele dropout (the presence of 
allele 3 is not detected) and is a common type of genotyping error. 

Multipoint linkage analysis is highly sensitive to genotyping error and it has been 
shown that error rates as low as 1% can decrease the power to detect loci 
significantly181,182. Singlepoint analysis may not be able to uncover all 
inconsistencies in the genotype data for example due to missing parental genotypes 
or uninformative markers (e.g. single SNPs). Multipoint genotyping error detection 
methods examine multiple linked markers simultaneously and are able to detect 
genotyping errors by detecting excessive recombination (Figure 24). Multipoint 
error detection has been shown to greatly improve the power of linkage analysis182 
and it is especially relevant for small families where the majority of genotyping 
errors are Mendelian consistent183,184 i.e. not detectable using singlepoint methods. 
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We applied the multipoint method for genotyping error detection implemented in 
Merlin 1.0.1185 and removed all genotypes flagged by Merlin as unlikely using the 
Pedwipe utility program distributed with the Merlin package. 

 

Figure 24. Concept of multipoint error detection. Sibs that are genotyped for nine 
closely linked bi-allelic genetic markers. (A) It is likely that sibs have 
inherited identical haplotypes from each parent since they have identical 
genotypes at all loci. (B) If the genotype at one of the marker is different 
(circled) the genotype at this locus contradicts the inheritance pattern from 
all other linked markers since it would imply one of the parents carried two 
nearly identical copies of the chromosome or two recombination events 
occurred. MERLIN can compute the likelihood of each scenario and 
evaluate their likelihoods allowing the detection of genotyping errors. Figure 
reproduced from the Merlin web tutorial 
(www.sph.umich.edu/csg/abecasis/Merlin) 

Most genetic analysis methods assume that genotypes at genetic markers are in 
Hardy-Weinberg equilibrium (HWE) and therefore the validity of this assumption 
should also be verified. Since it has been shown empirically that HWE holds for 
most human populations, deviations from the expected HWE proportions may 
suggest problems with genotyping or undetected population structure (stratification) 
or in samples ascertained for manifestation of a certain disease, an association 
between the marker and disease susceptibility. In linkage analysis the HWE 
assumption is used to assign the probability of compatible founder genotypes when 
they are missing. In this study we used Pedstats186 to test for HWE equilibrium using 
the “checkunrelated”-sampling scheme that performs the test by sampling 
individuals from the families whose genotypes are independent of each other. If a 
marker showed deviation from HWE at a statistically significant level (experiment-
wide p � 0.05) we ignored this marker in subsequent genetic analyses. 
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S t a t i s t i c a l  d i a g n o s t i c s  o f  t h e  p h e n o t y p e  d a t a  

Parametric statistical methods such as Pearson’s correlation, linear regression and 
analysis of variance (ANOVA) assume certain characteristics of the variables 
analyzed and may produce highly biased estimates, false positives and/or false 
negatives if these assumptions are violated (see Figures  25 and 26 for examples). 
Since the variance components method used for the linkage analyses in this study is 
essentially an extension of multiple regression analysis it assumes that the trait 
analyzed follows a normal distribution, therefore the validity of this assumption and 
the presence of outliers (extreme trait values) must be checked with statistical 
diagnostics methods. It has been shown that violation of the normality assumption 
and/or relatively few outliers even in large data sets may elevate the false positive 
rate of the variance components linkage analyses substantially119,187,188. We 
performed basic diagnostics using SPSS 11.0 to ensure that height was normally 
distributed in our sample and excluded outliers that deviated more than three 
standard deviations from the sex-specific mean in that sample. Also, the phenotypes 
of all individuals less than 23 years old were excluded because these individuals 
may still be growing. 

 

Figure 25. Effect of outliers on distribution measures. Histograms A and B are based 
on 100 data points but in A there is a single outlier in the data. Removing 
this outlier reduces the mean from 0.10 to 0.05 (50% reduction) and the 
variance from 0.95 to 0.80 (19% reduction) even though only 1% of the data 
is altered. 
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Figure 26. The effect of outliers to regression. Scatterplots A and B are based on 500 
data points but in A there is a single outlier in the data. Removing this 
outlier increases the regression coefficient from 0.23 to 0.35 (52% increase) 
even though only 0.2% of the data has changed. 

H e i g h t  m e a s u r e m e n t  

For most samples body height was measured at health care centers without shoes, 
however for some samples only self-reported height was available. Although there is 
upward bias in self-reported height it has been shown in Finnish twins that the 
correlation between measured and self-reported height is very strong 0.98 for men 
and 0.96 for women62. Secondly since this bias is systematic, i.e. virtually everyone 
overestimates their height, it has little effect on height variance which is the primary 
focus of interest in variance components linkage analyses. In some of the US 
genome-wide screens height was measured in inches which were converted to 
centimeters using 1 inch = 2.54 cm. 

V a r i a n c e  c o m p o n e n t s  l i n k a g e  a n a l y s i s  

For the the linkage analyses we used the variance components method implemented 
in Merlin 1.0.1.185. Merlin uses the Lander-Green algorithm189 for the IBD 
estimation and standard variance components framework for heritability analysis 
and linkage analysis (see 2.6.3 for mathematical description) assuming no 
dominance or epistatic variance. Due to its use of the Lander-Green algorithm 
Merlin is designed to provide exact likelihood calculations for small families (�20) 
that are genotyped for large numbers of linked markers. Merlin utilizes fast 
algorithms based on sparse gene flow trees for IBD estimation which improves 
analysis efficiency considerably in terms of computation speed and memory 
consumption compared to similar programs such as Genehunter190 or Allegro191.  
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The VC method implemented in Merlin allows the incorporation of covariates in the 
variance components model. Covariate adjustment is used to improve the power to 
detect QTL by reducing the phenotypic variance that is not attributable to genetic 
effects192. If the covariate does not correlate with the QTL influencing the trait of 
interest, covariate adjustment of the trait value increases the power to detect that 
QTL. Conversely, if the covariate and the QTL do correlate (or in the extreme case 
there is a causal relationship), then the power to detect the QTL is decreased192. If 
we wish to find genes for height, we want to eliminate all sources of variation in 
height that are not due to genes. For example, we know that sex is an important 
source of “environmental” variation in height so when we want to analyze height in 
a sample consisting of males and females we eliminate the effect of sex by 
performing sex-adjustment. Basically covariate adjustment in the VC framework is 
performed by using multiple regression analysis to eliminate the effect of that 
covariate to the phenotype of interest. 

In our analyses we used sex, age and cohort as covariates in the VC model. Since 
height is a sexually dimorphic trait (the mean heights of males and females is 
significantly different), sex is an obvious covariate. Furthermore as the age range of 
our samples is wide we also incorporated age as a covariate to control for the secular 
trend. Because there were slight differences in the distribution of height between 
samples we combined we also included a cohort identifier as a covariate in our 
analyses. This was most evident in Study II where we combined several distinct 
populations (Table 9). 

It has been shown that inclusion of ungenotyped and unphenotyped individuals that 
are not required for specification of pedigree structure introduces noise in the 
variance-components analyses193 because the IBD estimates for ungenotyped  
individuals will be based on theoretical expected genetic covariance (see the section  
“Genetic covariance between relatives”) instead of genotype data and may therefore 
be inaccurate. For this reason, we used Merlin’s “trim” option to automatically 
remove these individuals prior to genetic analysis. Also, all variance components 
analyses were automated using AUTOGSCAN194. 
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S t r a t i f i c a t i o n  s t r a t e g i e s  

Sex can be considered as an environmental factor that can modify the penetrance or 
expressivity of a trait8,195,196. In addition to using sex as a covariate to correct for the 
difference in average height between males and females we also stratified our 
sample according to sex (i.e.  analyzed males and females separately). This was done 
because as noted before, covariate adjustment reduces the power to detect linkage if 
the covariate and the QTL examined correlate192. Therefore if there are QTL that are 
influenced by sex or are sex-specific there may be more power to detect them in sex-
specific analyses. These sex-specific analyses were performed by ignoring the 
phenotype data of one sex while retaining all available genotypes in order to 
maximize IBD information in the sample. 

In study II where all families were ascertained on the basis of monozygotic or 
dizygotic twin pairs we also aimed to reduce within-pair environmental variation by 
only including the phenotypes of the dizygotic twin pairs. Utilizing dizygotic twins 
instead of siblings reduces environmental variation due to many factors: 1) they are 
of the same age, 2) they share fetal conditions and 3) they are likely to share 
childhood environment more closely than siblings of different ages197. These 
analyses were also performed by retaining all available genotypes for maximum IBD 
information. 

We also performed linkage analyses for each study sample separately in each study 
I, II and III for two reasons: 1) combining samples may increase genetic and 
environmental heterogeneity and thus reduce the power to detect QTL and 2) 
comparison of the subset and the combined analyses allowed us to evaluate the gain 
in statitistical power due to combined analysis of the subsets. 

E m p i r i c a l  s i g n i f i c a n c e  d e t e r m i n a t i o n  

The significance of an obtained test statistic is assessed by comparison to the known 
theoretical distribution of that type of test statistic. However, in the case of LOD 
score analysis the distribution under the null hypothesis (no linkage) depends on 
many factors (marker density and informativeness, family structure, patterns of 
missing data etc.) so the theoretical distribution may not hold for all genome-wide 
screens. Therefore in order to assess the findings of a specific genome-wide screen 
ideally one should derive the empirical distribution of the test statistic in that 
specific screen via simulation. In this study we used the gene-dropping simulation 
method implemented in Merlin 1.0.1 to randomly generate genotypes (under the null 
hypothesis of no linkage) conditional on the genetic map and allele frequencies 
while retaining the family structures, phenotypes and covariates of the individuals as 
well as missing genotype data patterns.  
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The gene-dropping approach is considered as the gold standard for determining 
genome-wide significance, but due to its heavy computational burden many 
alternative approaches have also been developed198-200. Since these simulated data 
sets are comparable to the original data in all other aspects except that any linkage is 
due to chance, we are able to evaluate the probability that a given finding in the 
original data is due to chance alone (false positive). The logic of evaluating the 
empirical significance is simple and is shown in Figure 27: 1) analyze the original 
(real) data, 2) record the reference (e.g. highest) LOD-score obtained for the original 
data, 3) use gene-dropping to simulate a replicate data set, 4) analyze the replicate 
data set exactly like the original data, 5) examine if reference LOD-score or higher 
was observed in the replicate, 6) repeat steps 2-4 e.g. 100 replicates or more, 
depending on computational resources and 7) determine the empirical significance 
of the reference LOD score by dividing the number of replicates where the reference 
LOD-score or higher was observed by the total number of replicates. For example, if 
one simulates 100 replicate data sets and in 4 of them the reference LOD score (e.g. 
LOD=3.00) is reached or exceeded, then the empirical p-value for the refrerence 
LOD score is p = 4/100 = 0.04.  

 

Figure 27. Schematic representation of determining empirical signicance of a LOD 
score by gene-dropping simulations. Note that the retainment of the missing 
data patterns: in the real data the mother in the top generation and one of 
the sibs in the bottom generation are not genotyped therefore these missing 
data patters are retained in all replicates. Calculation of the empirical 
significance is not shown in this diagram.  
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5 RESULTS 

5.1 Combined genome-wide screen in Finnish families 

5.1.1 Stratification of families 

The Finnish families used in this study were originally ascertained for type 2 
diabetes, familial combined hyperlipidemia or familial low-HDL levels and in total 
comprised of 1,417 individuals from 277 families with genome-wide genotype and 
phenotype data. Most families were extended pedigrees ranging from two to five 
generations (average 2.8) and consisted between 2 to 15 informative members 
(average 4.9). 

5.1.2 Heritability estimates 

The covariate-adjusted (age, sex and cohort) narrow sense heritability of stature was 
0.84 in the combined sample. In the sex-stratified analyses age and cohort were used 
as covariates and the heritabily estimates for stature were 0.95 for males and 0.99 for 
females. 

5.1.3 Genome-wide linkage results 

Genome-wide multipoint linkage results are shown in Figure 28. Six chromosomal 
regions were linked to stature with multipoint LOD scores � 2.0 (Table 11). Only the 
male-specific locus on 1p21 was statistically significantly linked to stature according 
to 100 simulated genome scans with an empirical p-value of p < 0.01 (Wilson’s 95% 
confidence interval201 0-0.037).  
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Figure 28. Multipoint LOD scores for the Finnish families. The results for the joint 
analysis of males and females, females and males are shown from top to 
bottom, respectively. 
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Table 11. Multipoint LOD scores � 2.0 observed in the Finnish families. Asterisks 
denote interpolated genetic distances. 

   Multipoint LOD Score 
Locus Peak Marker deCODE cM Males Females Combined 
1p21 D1S1631 125.75 4.25 0.00 0.34 
4q35 D4S426 202.69 0.17 1.06 2.18 
9p24 D9S2169 12.55* 2.57 0.00 0.15 
13q12 D13S221 16.26 0.00 2.66 0.47 
18q21 D18S60 86.76* 2.39 0.00 0.57 
22q13 D22S282 50.81 0.23 0.47 2.85 

5.2 Combined genome-wide screen in Australian and European 
twin families 

5.2.1 Stratification of families 

The Australian, Danish, Finnish, Dutch, and UK families derived from the twin 
cohorts of the GenomEUtwin consortium provided genome-wide genotype and 
phenotype data also for non-twin family members in addition to the twin pair (MZ or 
DZ) for which they were ascertained on. Since sample size is a critical determinant 
of statistical power in genetic mapping studies we performed the variance 
components analysis also using all available data even though the initial premise of 
the study design was minimizing envirionmental variation by utilizing DZ twins. 
From the available 3,817 families we had data for 8,450 individuals in the former 
and 6,602 in the latter sample. 

5.2.2 Heritability estimates 

When all available data was analyzed, the covariate-adjusted (age, sex and cohort) 
heritability estimates for stature were 0.82 in the combined analyses, 0.98 in the 
females- and 0.93 for males-only analyses. When only the DZ twin pairs were 
analyzed, the heritability estimates were 0.99 in the combined analyses, 1.0 in the 
females- and 1.0 for males-only analyses. Only age and cohort identifier were used 
as covariates in the sex-stratified analyses.  

5.2.3 Genome-wide linkage results 

Genome-wide multipoint linkage results are shown in Figure 29. In this sample six 
chromosomal regions showed evidence for linkage to stature, with LOD scores � 2.0 
(Table 12). However, none of the loci retained empirical significance according to 
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our simulation; the empirical p-value for the strongest linkage on 8p21 (multipoint 
LOD = 3.28) was p = 0.08 (Wilson’s 95% CI 0.04-0.15). 

 

Figure 29. Multipoint LOD scores for Australian and European families. The left panel 
displays the results using all available individuals and the right for DZ twins 
only. The results for males and females jointly as well as, females and males 
separately are shown from top to bottom, respectively. 
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Table 12. Multipoint LOD scores � 2.0 observed in the Australian and European families 

  Multipoint LOD Score 
  All individuals DZ twins only 
Locus deCODE 

cM 
Males Females Combined Males Females Combined 

7p22 1 0.78 0.00 2.03 0.52 0.05 0.00 
8q21 97 1.07 1.58 3.28 0.51 0.57 1.25 
20p13 15 1.70 1.12 1.4´0 1.35 0.55 2.90 
20p13 21 2.70 1.14 1.69 1.32 0.53 2.32 
21q21 23 1.40 0.28 0.56 2.25 0.46 1.36 
Xq25 131 1.48 0.00 2.03 1.12 1.00 2.69 

5.3 Combined analysis of families from the United States 

5.3.1 Stratification of families 

Families were collected from completed genotyping projects performed at the 
National Heart Lung and Blood Institute’s Mammalian Genotyping Service 
(Marshfield, WI, USA) and originally ascertained for type 2 diabetes, elevated blood 
pressure phenotypes, systemic lupus erythematosus and obstructive sleep apnea. In 
total we had genome-wide genotype and phenotype information for 9,371 
individuals from 3,032 families available to us. In addition to combining all 
available data in order to maximize the sample size we also analyzed the African-
American and European-American families separately in order to reduce possible 
heterogeneity due to genetic and environmental variation. The relative contributions 
of African-Americans and European-Americans were 4,466 and 4,905 individuals 
from 1,628 and 1,404 families, respectively. 

5.3.2 Heritability estimates 

The covariate-adjusted (sex, age and cohort identifier) heritability estimates for 
stature were 0.87 in the African-American and 0.83 in the European-American 
cohorts. The heritability estimates by cohort and sex are displayed in Table 13. In 
the combined analysis of the African-American and European-American families we 
also added a covariate distinguishing the two cohorts. 

Table 13. Heritability estimates for stature from the US families. 

 Males Females Combined 
African-American 0.94 0.97 0.87 
European-American 0.81 0.92 0.83 
All 0.87 0.95 0.85 
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5.3.3 Genome-wide linkage results 

The genome-wide linkage results by cohort and sex are shown in Figure 30. In 
summary, we found evidence for linkage to stature in previously reported loci on 
11q23, 12q12, 15q25 and 18q23 as well as 15q26 and 19q13 which have not been 
linked to stature previously. The LOD scores for each locus are shown in Table 14 
by cohort and sex. 

Most of the linkage evidence emerged from the European-American cohort where 
multipoint LOD scores � 2.0 were found at loci 11q23, 12q12, 15q25 and 15q26. 
When African-Americans were included in the analyses linkage evidence at these 
loci decreased suggesting some locus heterogeneity between these samples. The 
African-American sample did not yield any LOD scores � 2.0 when analyzed 
separately, however their inclusion in the joint analyses increased evidence for 
linkage substantially at 18q23 and 19q13 suggesting common loci influending 
stature between the African-American and European-American cohorts.
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6 DISCUSSION 

6.1 Heritability estimates for height 

The heritability estimates show remarkable consistency across the populations in this 
study as is shown in Table 15. These results further establish that the heritability of 
adult height in modern Western societies is well over 0.80 (Reviewed by 
Silventoinen 2003202). However, as already discussed earlier (see sections 2.3.4 and 
2.4.1) this may only reflect the fact that the populations included in this study are 
highly similar in respect to environmental influences affecting growth. Also since 
the samples sizes from each population are large, sampling variation is negligible 
and the heritability estimates are robust. 

The sex-specific heritability estimates are substantially higher than the estimates 
from the joint analyses which may suggest the presence of sex-specific genetic 
elements i.e. that sex is not merely an environmental influence but also interacts 
with genes that influence height; therefore sex is a confounder. The heritability 
estimates for females are also consistently larger than those for males suggesting that 
environmental influences may be less relevant for females. This may suggest that 
females are better buffered against environmental influences on growth which has 
been reported previously203-205 although not all studies agree 206.  

Table 15. Heritability estimates from this study by sex and population 

 _________Males________ _________Females_______ ________Combined_______ 
 h2 N h2 N h2 N 
Finland 0.95 659 0.99 758 0.84 1,417 
Europe 0.93 2,774 0.98 5,676 0.82 8,450 
United States 0.87 3,550 0.95 5,756 0.85 9,306 

6.2 Stature loci identified in the Finnish families 

6.2.1 Locus 1p21 

Epidemiologists have a long tradition of stratifying samples according to sex, but 
this approach has been relatively uninvestigated in genetic mapping studies until 
recent years8,193,196,207,208. Since sex-specific hormonal environments may influence 
the expressivity of genes that influence height we decided to analyze males and 
females separately in order to increase the statistical power to detect these genes and 
consequently we were able to show strong evidence for male-specific linkage to 
1p21. This locus is the single strongest finding in this study (I-III). 
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Evidence for linkage to this locus was also reported previously in a sample of 
African-Americans126, although the investigators did not perform sex-limited 
analyses for height. The 1-LOD drop support region (the genomic region 
surrounding the linkage peak where the difference in LOD score is less than 1 unit) 
surrounding this linkage peak harbours three genes that we considered as interesting 
functional candidate genes for height: EXTL2, COL11A1 and CHI3L2. 

EXTL2 is an enzyme that is involved in the biosynthesis of heparin/heparin-sulfate 
and belongs to the hereditary multiple exostoses (HME) family of tumor 
suppressors. Mutations in two other members of this gene family, EXT1 and EXT2 
have been shown to cause HME types I or II where approximately 50% of patients 
exhibit short stature. Interestingly there is also a significant excess of male patients 
(104:76) and male probands (28:15) in HME implying sex-specific genetic effects 
for this gene family. 

COL11A1 encodes for one of the two alpha chains of a minor fibrillar collagen, type 
II collagen and is mostly expressed in cartilage tissue. Mutations in COL11A1 have 
been shown to cause type II Stickler syndrome209 and Marshall Syndrome210 that 
both include skeletal manifestations. The link between COL11A1 and stature is 
especially pronounced in Marshall Syndrome where patients are short in stature 
relative to unaffected family members and have a stocky build. The role of 
COL11A1 in growth and stature is further strengthened by the phenotype of 
COL11A1 null mice211. The null mutation produces an autosomal recessive lethal 
phenotype with long bones that are half the normal length and wider at the 
metaphyses (portion of the long bones between the epiphyses and the diaphyses). 

CHI3L2 is a chondrocyte protein that is highly expressed in articular cartilage 
chondrocytes and has been shown as a marker of chodrocyte expansion212 relating 
this protein with growth of long bones. However, this gene is relatively poorly 
characterized to date. 

6.2.2 Family based association analysis of 1p21 in Finnish families and 
replication in a Finnish population cohort 

We further examined the locus on 1p21 by genotyping 42 SNP markers within the 
positional candidate genes on 1p21 in a subsample of individuals (54 families) 
where samples were readily available for genotyping. These families were also 
extended with additional family members. In addition we included 263 individuals 
from 38 independent families which were not included in study I. Figure 32 gives a 
schematic representation of the sample used. In total this sample consisted of 874 
(431 males and 443 females) individuals from 92 families with genotype data and 
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phenotype information. The family-based association analyses were performed using 
MENDEL213. The association analyses in the population sample were conducted 
with SPSS using analysis of covariance (ANCOVA). 

 

Figure 31. Samples used in the finemapping of the locus on 1p21. In total 54 families 
from the sample used in study I were included and also extended with 
additional family members (dotted individuals). In addition we included 38 
independent families which were not included in Study I. 

Using this sample we found evidence for male-specific association (p=0.02) in a 
nonsynomous SNP Pro1535Ser within COL11A1. Stratifying our sample to only 
families that were linked to this locus (n=45) increased the association (p=0.003). 
We also genotyped this SNP in a representative Finnish population cohort Health 
2000 (http://www.ktl.fi/health2000) consisting of 6,542 unrelated individuals (3,023 
males and 3,499 females) and replicated this association (p=0.03). In the Health 
2000-cohort the effect was more pronounced in males where Ser/Ser-males were on 
average 1.1 cm taller compared to Pro/Ser and Pro/Pro-males, while in females they 
were only 0.6 cm taller (Kettunen et al., unpublished).  The proportion of variance 
explained by this variant was estimated to be 0.1% in males, a value which is 
comparable to the effect of the recently reported HMGA2 variants in the GWA study 
by Weedon et al.130. 
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6.2.3 Other loci identified in Finnish families 

The locus on 4q35 has not been previously linked to stature in independent studies. 
Hirschhorn et al.134 reported linkage at marker D4S1540 (LOD=1.73) in their 
Finnish cohort and at markers D4S3051-D4S426 (LOD=1.89) in their Botnia cohort. 
However, this report contained overlapping samples with Study I (both Botnia and 
the Finnish cohort were included in Study I) and can not therefore be considered as 
independent. In Study I we were able to further increase confidence for linkage at 
the latter locus (LOD= 2.18). The linkage region is close to the telomeric region of 
the long arm of chromosome four and does not harbor any obvious candidate genes 
for height. 

The male-specific linkage observed on 9p24 is also unique to this study and is quite 
close to the telomeric regions which are typically quite gene-poor. Interestingly 
though, Mukhopadhyay et al.193 who performed sex-limited analyses in a 
comparable manner to ours reported a male-specific locus (LOD=1.65 near marker 
D9S319) � 40 cM from our linkage peak, however, due to the inherent variation in 
location estimates from genome-wide screens214 it is difficult to establish whether 
these findings indicate the same or different loci. An interesting candidate gene, 
natriuretic peptide receptor B precursor NPR2 is located � 5 Mb downstream of the 
peak marker reported by Mukhopadhyay et al.193. Loss-of-function mutations in 
NPR2 are the cause of acromesomelic dysplasia Maroteaux type (AMDM), where 
skeletal growth falls off sharply after birth and results in adult heights that are >5 
SDs below the mean215. Also heterozygous individuals, though unaffected for 
AMDM, have been shown to be shorter than matched controls and consequently it 
has been suggested that 1 in 30 cases of idiopathic short stature may be explained by 
AMDM mutations216. 

13q12 showed linkage (LOD=2.66 at D13S221) in the females-only analyses and 
has been previously reported for modest linkage (LOD=1.01 at markers D13S221–
GGAA29H03) by Hirschhorn et al. in a Finnish cohort134 which was also included in 
this study. However, Hirschhorn et al. analyzed only 388 females compared to 758 
females analyzed in this study and also did not perform sex-limited analyses which 
may explain why in this study the evidence for linkage was significantly stronger. In 
the close proximity of this locus there are two genes which when disrupted cause 
severe disorders where growth in stature is also affected: beta 3-glycosyltransferase-
like B3GALTL and spartin SPG20. Mutations in B3GALTL are the cause of Peters-
plus syndrome which is characterized by anterior eye-chamber abnormalities, 
disproportionate short stature, developmental delay, characteristic craniofacial 
features, cleft lip and/or palate217. Loss-of-function mutations in SPG20 on the other 
hand causes Troyer syndrome that is a form of spastic paraplegia with distal muscle 
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wasting that usually debilitates patients in early childhood. Short stature is also a 
prominent feature of Peters-plus patients218. 

The male-specific locus on 18q21 (LOD=2.39 at marker D18S60) overlaps well with 
the locus reported by Mukhopadhyay143 (LOD=2.26 at marker D18S364) with only 
5 cM separating the peak markers between these studies. However, they observed 
this linkage in the joint analysis of males and females and did not perform sex-
limited analyses. The immediate proximity of this locus does not seem to harbor any 
obvious candidate genes for height. 

The locus on 22q13 (LOD=2.85 at marker D22S285) has been implicated by another 
genome-wide screen by Ellis135 who reported linkage at approximately 10 cM from 
our finding at 38 cM (LOD=2.02). One plausible candidate gene for stature in this 
region is adenylosuccinate lyase (ADSL) since it has been reported that some 
children with ADSL deficiency exhibit growth retardation219. However, ADSL 
deficiency causes severe phenotypic manifestations such as autistic features, 
epilepsy and mental retardation and it is unclear how this deficiency relates to 
normal growth in stature.  

6.3 Stature loci identified in Australian and European families 

6.3.1 Locus 8q21 

The strongest evidence for linkage to stature in Study II was observed on 8q21 
(LOD=3.28 at 97 cM) using all available individuals. Chromosome 8 has been 
implicated as harbouring stature QTL previously by Hirschhorn134, although their 
linkage peak (LOD=2.52 at marker D8S1100) is located � 50 cM downstream on 
8q24. The 8q21-q24 region contains three interesting candidate genes for stature: 
nibrin NBN, a zinc finger transcription factor TRPS1 and exostosin EXT1. 
Mutations in NBN cause Nijmegen breakage syndrome which is characterized by 
microcephaly, growth retardation, immunodeficiency, and cancer predisposition220. 
Different mutations in TRPS1 cause both tricho-rhino-phalangeal syndrome types I 
and III that are both characterized by craniofacial and skeletal abnormalities 
including growth retardation and resulting short stature221. As already mentioned 
EXT1 belongs to the hereditary multiple exostoses (HME) family of tumor 
suppressors and when mutated causes hereditary multiple exostoses type 1 which is 
characterized by formation of numerous cartilage-capped, benign bone tumors 
(osteocartilaginous exostoses or osteochondromas) that are often accompanied by 
skeletal deformities and short stature222. 
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6.3.2 Converging evidence for 8q21-q24 from an independent genome-
wide association analysis  

We also performed a genome-wide association scan using � 317,000 SNP markers in 
1,552 monozygotic female twin pairs derived from the GenomEUtwin consortium 
cohorts (Kettunen et al., unpublished). The twin pairs were from Australia (n=480), 
Finland (n=141), Denmark (n=172), Sweden (n=302) and the United Kingdom 
(n=457) and did not overlap with the families that were used in the genome-wide 
linkage screens in dizygotic twins (Study II). For each twin pair, we computed the 
mean height and corrected it for age and cohort effects and performed regression-
based association analyses using PLINK223. The genome-wide association results are 
shown in Figure 33. Interestingly, two of the associated SNPs were on 8q24, 
rs1464241 (p=4.1x10-5, rank 11.) and rs7830584 (p=9x10-8, rank 1.) overlapping the 
linkage peak on 8q21. Neither of these SNPs has known regulatory functions nor is 
located within known genes and therefore it is unclear if these SNPs have a role in 
the determination of stature or if they are in linkage disequilbrium with the actual 
QTN(s). However, these converging findings from independent genome-wide 
linkage and genome-wide association screens warrant closer examination of the 
involvement of the 8q21-q24 locus in growth and adult height. 

 

Figure 32. Overview of the results from the MZ GWA study for stature (Kettunen et al., 
unpublished). The best associated (1.) SNP rs7830584 and another top-
ranking (11.) SNP rs1464241 on 8q24 overlapping the linkage signal are 
indicated with red arrows. 
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6.3.3 Other loci identified in Australian and European families 

The telomeric end of the long arm of chromosome 7 is one of the best established 
putative loci containing stature QTL (see Figure 31). However, in Study II we found 
evidence for linkage in the telomeric end of the short arm on 7p22 (LOD=2.03 at 1 
cM). The linkage evidence at this locus is fairly modest and is seen only in all 
available individuals when males and females are analyzed jointly (Table 12). One 
of the prime candidate genes for stature, the growth hormone-releasing hormone 
receptor (GHRHR) is located near this linkage peak on 7p15. Loss-of-function 
mutations in GHRHR have been shown to cause isolated growth hormone deficiency 
also known as dwarfism of Sindh which is mainly characterized by extremely short 
proportionate stature and patients who are virtually devoid of other features typically 
associated with other types of dwarfism147. However, the association of common 
variation within this gene and short or tall stature was examined by Lettre et al. and 
they did not find significant evidence for any association157.  

The linkage region on 20p13 (LOD=2.90 at 15 cM and LOD=2.70 ant 21 cM) is 
very wide and poses some challenges when it comes to interpretation. The region 
could possibly contain multiple linked QTL or may contain very little recombination 
events in our sample due to stochastic factors. These loci map close to the linkage 
peak reported by Thompson et al. in Pima Indians (stature p=0.0001 and leg length 
p=0.001 at markers D20S66-D20S98) who also analyzed a positional candidate gene 
in this region, bone morphogenetic protein 2145, which is a member of the 
transforming growth factor-beta (TGFB) superfamily. However, Thompson et al. did 
not find evidence for association to stature or leg length and the potential role of 
BMP2 in growth is yet to be determined although it has been reported to be capable 
of inducing the formation of cartilage required for bone growth in vivo224. 

The seemingly male-specific locus linked to stature on 21q21 has not been reported 
to contain stature QTL previously and does not seem to contain potential stature 
genes. Unlike most published genome-wide linkage screens for stature (16 out of 17) 
in this study we had also genotypes for X-chromosomal markers and found evidence 
for linkage to Xq25 (LOD=2.69 at 131 cM). Interestingly, like at the male-specific 
locus on 21q21, linkage evidence was increased when we restricted our analyses to 
dizygotic twins in order to reduce environmental variance. Liu et al.125 showed 
evidence for linkage at 122 cM (two-point LOD=5.36 at marker GATA165B12P) 
which overlaps well with our finding. However, since they did not perform 
multipoint analyses, comparison between our findings is not straightforward. This 
region contains several genes that are associated to various syndromes characterized 
by short stature, including SLC6A8 mutations with X-linked creatine deficiency 
syndrome225, TAZ mutations with Barth syndrome226, CULB4 gene mutations with 
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MRXSC syndrome227, SOX3 mutations with MRGH228,229 and the MRSS syndrome 
locus230 where the defective gene is unknown. Another highly interesting gene in 
this region is glypican 3 GPC3 that when deleted, causes Simpson-Golabi-Behmel 
syndrome type 1 which includes severe pre- and postnatal overgrowth leading to 
gigantism along with many other symptoms such as coarse facial features and 
congenital heart defects231. 

6.4 Stature loci identified in families from the United States 

6.4.1 Locus 15q25 

The strongest evidence for linkage in the US families was observed on 15q25 which 
shows linkage only in European-American families and is contributed by both 
females and males. This locus has also been previously reported with linkage to 
stature in the Australian sample (LOD score of 3.43 at 79 cM) included in study II. 
However, a seemingly distinct male-specific linkage on 15q26 was also observed in 
the European-American cohort. The region of these linkages contains several genes 
that may be relevant for stature with aggrecan 1 (AGC1) and insulin-like growth 
factor I receptor (IGF1R) being the most noteworthy.  Aggrecan 1 has been shown 
to cause Kimberly type spondyloepimetaphyseal dysplasia232 which is characterized 
by proportionate short stature, stocky habitus and progressive osteoarthropathy of 
the weight-bearing joints. There is some evidence that mutations in the IGF1R gene, 
resulting in IGF1 resistance, may underlie some cases of prenatal and postnatal 
growth failure155. 

6.4.2 Locus 12q12 

Both African-American and European-American cohorts show evidence for linkage 
on chromosome 12 but the peak locations are slightly different. This linkage is also 
mostly contributed by females; however, inclusion of males adds linkage evidence 
suggesting a lack of sex-specific genetic effects. This locus has also been previously 
reported to contain a QTL for stature in a Finnish cohort134 and contains several 
interesting candidate genes for stature such as SRY-box 5 (SOX5), vitamin D 
receptor (VDR) and collagen type 2, alpha-1 gene (COL2A1).   

SOX5 has been shown to be an enhancer of chondroblast functions, controlling both 
the expression of extracellular matrix genes and cell proliferation233 and to 
participate in COL2A1 expression activation234. VDR is an obvious candidate gene 
for stature since the vitamin D endocrine system is of paramount importance in 
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normal skeletal growth. VDR has also been previously linked and associated with 
stature168,170. COL2A1 encodes for type II collagen (cartilage collagen) and 
disruptions of its normal functions cause several forms of chondroplasias and 
spondyloepiphyseal dysplasia syndromes which are characterized by shortening of 
the trunk and limbs. Also mice carrying a partially deleted human COL2A1 gene 
developed the phenotype of a chondrodysplasia with dwarfism, short and thick 
limbs, short snout, cranial bulge, cleft palate, and delayed mineralization of bone235. 

The linkage peak on 12q12 maps close to the HMGA2 gene on 12q14 which was 
associated to stature in a genome-wide association study by Weedon et al.130 thus 
providing converging evidence from two independent genome-wide studies utilizing 
complementary strategies (linkage and association). The importance of HMGA2 in 
growth and attainment of adult height is also supported by findings from defects in 
this gene that have been shown to cause gigantism in mice and humans131,132 and 
dwarfism133 in mice. 

6.4.3 Locus 18q23 

The locus on 18q23 is highly interesting because it showed evidence for male-
specific linkage in Finnish families (Study I), US families (Study III) and in another 
sample of US families reported by Mukhopadhyay et al.143. Although 
Mukhopadhyay et al. used phenotypes for both sexes in their study they did model 
imprinting effects as well as utilized sex-specific genetic maps.  In both Studies I 
and III the linkage observed on 18q23 is clearly sex-specific since inclusion of 
females dilutes evidence for linkage completely. In the US families this male-
specific linkage is contributed roughly equally by both African-American and 
European-American cohorts although the exact peak location is slightly different 
between the cohorts. 

The linkage peak on 18q23 lies within the region deleted in patients with 
chromosome 18q deletion syndrome. The phenotype of this syndrome is highly 
variable but commonly includes mental retardation, short stature, hypotonia, hearing 
impairment, and foot deformities. The likely cause of growth impairment in these 
patients is growth hormone insufficiency which has been associated to a deletion of  
an approximately 2 Mb region between markers AFM242yf2 and D18S462236. An 
excellent candidate gene for stature within this critical region is the galanin receptor 
(GALR1) because its substrate, galanin (GAL), is a potent stimulator of growth 
hormone secretion237. 
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6.4.4 Other loci identified in US families 

The linkage observed on 11q23 is mostly driven by European-American males 
which show clearly the most evidence for linkage. This locus however, may not be 
truly sex-specific since females also show some evidence for linkage and the total 
evidence for linkage is stronger when females and males are analyzed jointly. 
African-American families on the other hand exhibit virtually no evidence for 
linkage at this locus. Mukhopadhyay et al. also reported linkage peak overlapping 
our findings in this region131,132,193. This locus contains several interesting candidate 
genes for stature. One such gene set is a cluster of matrix metalloproteinase (MMP) 
genes such as MMP8, MMP10 and MMP13 which are involved in the breakdown of 
bone extracellular matrix by degrading proteoglycans and type I, II and III collagens. 
MMP13 is of particular interest since it is the likely cause of human Missouri type 
spondyloepimetaphyseal dysplasia238, a skeletal disorder characterized by defective 
growth and modelling of the long bones and the spine. 

Chromosome 19 has not been previously linked to stature in other genome-wide 
screens. The linked region on 19q is very large containing hundreds of known genes. 
The most prominent candidates are transforming growth factor-beta (TGFB1) and a 
cluster genes belonging to the insulin-like growth factor family of signaling 
molecules (IGFL1, IGFL2, IGFL3 and IGFL4). TGFB1 is highly expressed in 
developing cartilage, endochondral and membrane bone, and skin, suggesting a role 
in the growth and differentiation of these tissues and it also regulates the actions of 
many other growth factors. The physiologic functions of IGF-like proteins are not 
well defined but given the homology with IGF proteins that have central roles in 
growth and development (such as IGF1 and IGF2), it is likely that genes of the IGF-
like family act as growth modulators as well239. 
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6.5 Stature loci localized in this study compared to previous 
findings 

6.5.1 The stature gene map 

Including this study, there have been 17 genome-wide linkage screens and one 
genome-wide association screen that have reported linkage findings in every 
chromosome except chromosomes 10, 16, 19 and Y. However in Study III we report 
evidence for a QTL on chromosome 19 as well. To facilitate the accumulation of 
genetic evidence in stature gene mapping we have established an Internet knowledge 
resource The Stature Gene Map (www.genomeutwin.org/stature_gene_map.htm) 
that summarizes all published linkage findings for stature. 

The schematic diagram from the web site (Figure 33) visualizes the current 
knowledge on QTL underlying height. From this figure it is clear that most findings 
are from single reports, some loci are supported by two and only the loci on 6q25, 
7q35-36 and 9q21-22 by three studies. 

 

Figure 33. Overview of the results from published genome-wide QTL screens for stature 
where multipoint LOD scores over 2.0 have been reported. The numbers 
refer to the original publications that are accessible via hyperlinks at the 
Stature Gene Map web site. Study I is shown with number 14 and study II 
with 17. Study III is not shown here because it has not been published yet. 
http://www.genomeutwin.org/stature_gene_map.htm 
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6.5.2 Replication in genome-wide studies 

Naturally the most convincing loci are those reported by multiple studies; however, 
converging evidence from multiple linkage studies may be complicated because the 
support regions for linkage peaks are typically very large, spanning even tens of 
centimorgans and hundreds of genes and maximum likelihood estimates of QTL 
locations are subject to chance variation214. In QTL analysis it has also been shown that 
the precision of the location estimate is also positively correlated with the QTL effect240. 
The QTL effect on the other hand may vary between studies due to many factors; for 
example due to sampling variation or differences in genetic and environmental 
influences. Thus it is difficult to distinguish between overlapping and independent 
findings when they are located, for example, on adjacent chromosome bands. 

There is also considerable debate regarding the statistical criterion for declaring 
replication of a previously reported linkage signal although some have postulated 
thresholds for replication241-243. A common confusion when investigators claim 
replication is the lack of multiple testing corrections. For example, authors who find 
a LOD score in their genome-wide scan with a nominal p-value of 0.05 that overlaps 
with a previous genome-wide significant linkage report and claim replication thus 
ignoring the multiple testing they have performed in their genome-wide scan. 
Statististical significance is always a subjective decision and thresholds such as p � 
0.05 or LOD � 3.0 are completely arbitrary. It is clear that most test statistics are 
dependent on many features such as family structures and allele frequencies and 
therefore empirical significance might be a more useful method of comparing 
statistical findings from multiple independent studies.  

6.6 Conclusions from loci discovered in this study 

The loci discovered in this study well represent the findings from previous genome-
wide screening of stature QTL: most of the discovered loci are unique to a single 
study while some findings overlap between studies. However, some of the loci 
implicated in this study merit more focus than others. 

The male-specific locus on 1p21 identified in the Finnish families (Study I) seems 
particularly interesting since we were able to show that a specific variant 
Pro1535Ser in the positional candidate gene COL11A1 was associated with stature 
in Finnish families where the initial linkage was established and was also replicated 
in a large population cohort that is representative of the Finnish general population. 
Using this population cohort we estimated that this variant explains 0.1% of the 
population variance in height in males. To our knowledge, this variant is the first 
sex-specific quantitative trait nucleotide (QTN) discovered that is convincingly 
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associated with stature in the general population (Kettunen et al., unpublished). In 
addition, it is possible that this locus has an effect on stature in other populations as 
well, since it has been reported for linkage in US African-Americans as well126.  

The locus on 8p21 linked to stature in Australian and European families (Study II) is 
also of special interest since there is converging evidence from our genome-wide 
association screen in MZ twins that specific variants at this locus may influence 
stature. We found two variants that were highly associated with stature in an 
independent GWA screen (Kettunen et al. unpublished) and we are currently 
investigating this locus further. 

There is also a highly interesting overlap between the 12q21 locus linked to stature 
in our study (Study III) and the recently reported association of HMGA2 to stature 
from the first published genome-wide association study for stature130. Unfortunately 
our data does not allow us to further dissect whether this gene explains the observed 
linkage in our study or if there are other stature QTL at this locus.  

Furthermore, in this study we were able to show converging linkage evidence for the 
18q21-q23 region from the Finnish and the US families (Studies I and III) which 
was prior to this study an “orphan” stature locus where only one study had reported 
linkage to stature143. Now, this locus joins the group of prime candidate loci 6q25, 
7q35-q36 and 9q21-q22 that are reported for linkage to stature by three independent 
genome-wide linkage screens.  

Also, our results imply that many loci influencing height are sex-dependent - in this 
study 8 out of the 16 loci that showed evidence for linkage (LOD � 2.0) were either 
exclusive for one sex or the linkage was stronger in the sex-stratified analysis. The 
major finding of this study the Pro1535Ser variant in COL11A1 demonstrates 
clearly how the effect is different in males and females where Ser-homozygote 
males are on average 1.1 cm taller, while females are 0.6 cm taller than their 
counterparts with other genotypes. It is plausible that the larger effect in males 
compared to females was the critical factor that allowed the detection of linkage in 
the males-only analyses in study I since no linkage was observed at this locus in the 
combined analysis of males and females nor in the females-only analyses. Until 
recent years the potential sex-specific architecture of human traits has been 
underappreciated and relatively uninvestigated in gene mapping studies, where sex 
has usually been treated as a simple environmental covariate. Reports of sex-specific 
or sex-dependent genetic findings have now begun to surface 8,193,196,207,208 and 
probably will do so even more in the future. 
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6.7 The importance of studying stature 

Understanding the genetics of human height is important for several reasons. First, 
linear growth is one of the fundamental characteristics of childhood, and deviation 
from normal patterns of growth is a common cause of medical evaluation and 
referral to pediatric clinics. Also, because the height of an individual may have 
important socioeconomic and psychosocial implications there is special interest in 
the height of children of shorter than average parents.  

Secondly, epidemiological studies have shown many associations between height 
and general health indicators as well as between height and several specific diseases 
such as cancers and cardiovascular diseases. Although these associations may be 
examples of classical confounding, where two variables correlate due to a third 
shared causative factor, there may indeed be shared etiology as well and unraveling 
the genetics of height may give insight to these etiologies. 

Thirdly, even though there is extensive knowledge on hormonal regulation of growth 
we still lack a basic understanding of biological mechanisms of growth and the 
factors that produce observed variation in growth tempo and potential. The study of 
height may shed light on these basic biological mechanisms as well. 

Lastly, height may serve as a model phenotype of a polygenic trait study which may 
yield important lessons for methodology and study design of other polygenic 
phenotypes of interest.  

6.8 Lessons from genome-wide studies of stature 

6.8.1 Heritability and mappability  

By definition, heritability is an aggregate measure that includes the joint effect of all 
genes that influence the trait and it does not give any insight to the number genes 
affecting the trait or to the relative proportions of variance explained by each gene. In 
general, traits for which heritability is low are not amenable to QTL mapping244. 
However, this does not translate to the fact that traits with high heritabilities are 
amenable to successful QTL mapping either. QTL mapping is most likely to succeed 
for so called oligogenic quantitative traits that are controlled by only a few bi-allelic 
loci that are largely responsible for contributing genotypic variation to variation in the 
phenotype (major genes) and an indefinite number of loci with small effects245,246. For 
truly polygenic traits, which are controlled a large number of QTL with small and 
roughly equal effects (i.e. no major genes), locating those QTL with current mapping 
methods may be impossible247. Accumulating knowledge from this and other studies 
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suggest that stature may be indeed highly polygenic, since only a few loci have been 
consistently mapped and the identified variants explain only minute proportions of the 
observed variance despite the very large samples in some studies. 

Another concern is the accumulating evidence for the highly polygenic background 
of quantitative traits. For height, the identified variants on HMGA2 and COL11A1 
explain only 0.3% and 0.1% of the observed variation suggesting that there may be 
hundreds or even thoudands of QTL of similar or even smaller effects. Visscher et 
al.248 estimated by genome partitioning in a sample of 11,214 sibling pairs that all 
autosomes and the X chromosome contribute to the variation in height. They also 
described that in the “best-case” scenario the average QTL would explain 3.9% of 
the phenotypic variance (90% heritability equally divided into 23 chromosomes each 
harboring a single QTL) and that even in this case a linkage study of 57,830 sib pairs 
would be required for 80% power with an alpha level of 0.0001. Therefore even the 
largest studies such as this one would be likely to be underpowered. In the study of 
model organisms it is well established that the effects (QTL specific heritabilities) of 
identified QTL are distributed in an extreme L-shaped manner, where a few loci 
have relatively large effects, more loci have moderate and may have very small 
effects249-255. However, the effects are typically less than 5%256. It should be noted 
though that the observed L-shaped distribution may also arise from several statistical 
artefacts as well257.  

6.8.2 Maximizing sample size by combining data 

Common explanation for failure to identify loci in genetic mapping is a lack of 
statistical power due to small sample sizes258. One of the key aims of this study was 
to examine the usefulness of combining data across multiple primary sources. 
Although it was clear that combining data is also likely to increase heterogeneity due 
to genetic and environmental sources, our hypothesis was that major loci containing 
ancient variants that are shared across diverse populations may be detectable given 
large enough sample size. However, if stature is controlled only by QTL of small 
effects (e.g. < 5% of the observed phenotypic variance) even this study is likely to 
be underpowered. For most loci, we could definitely demonstrate the value of 
combining data since they were not detectable in individual subsamples. For other 
loci, however we noticed that reducing variation by stratification was essential for 
locus identification. Stratification may also produce false positives and false 
negatives due to sampling variation if sample size is small. Still if QTL effects are 
very small as some model organism data and recent data from human studies 
suggests even this study may have been underpowered to detect most QTL 
underlying height and one requires luck to discover true QTL. 
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6.8.3 Information content 

Another potential factor that may explain the limited success in genome-wide 
linkage studies is the relatively low information content due to missing founder 
genotypes and relatively sparse marker maps of traditional genome-wide screens. In 
a systematic analysis of 101 genome-wide linkage scans258 the average marker 
density was 11 cM which is far too sparse in order to extract all inheritance 
information259 especially if there are missing founder genotypes in the data. Since 
the expected LOD score and therefore the power of linkage analysis is proportional 
to the inheritance information extracted from the marker data260 it is likely that most 
genome-wide linkage studies have been seriously underpowered.  Many empirical 
261 and simulation studies have shown that regenotyping families that have already 
been collected with high-density SNP maps is highly beneficial. Since sample 
ascertainment and collection are very time-consuming and expensive stages in 
genetic studies this would very likely be worth the effort. 

6.8.4 Stratification strategies  

It has become increasingly evident from this and other studies that special 
ascertainment schemes may be essential for dissection of the genetic architecture of 
oligo- and polygenic traits. This study has demonstrated the usefulness of reducing 
environmental variation due to sexual dimorphism and unshared familial 
environment by analyzing males and females (who differ greatly in hormonal 
environment) separately and by sampling dizygotic twins who share fetal, childhood 
and adolescent influences on growth and attainment of adult height. Also, when 
there is population stratification, such as in the US families, in most cases analyzing 
ethnic groups separately results in greater statistical power even though sample size 
is reduced. 

Reducing genetic and environmental heterogeneity is clearly an efficient strategy in 
genetic mapping and may also be a more critical determinant than robust statistical 
power based on sample size. This is evident from the results from this study; the 
most convincing locus finding in our genome-wide studies was from the smallest 
and the most homogeneous Finnish study sample - a finding which was also recently 
replicated in an independent population cohort (Kettunen, unpublished). This should 
not be surprising since multiple successful gene identifications have been performed 
utilizing homogeneous isolated or relatively isolated populations (see Peltonen et al. 
262 and De La Chapelle263 for review). Also, systematic analyses have shown that the 
only two critical factors determining successful locus identification are sufficiently 
large sample size and genetically and environmentally homogeneous study 
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sample258. Results from this study suggest that given sufficient sample size the latter 
may be a more useful strategy. 

6.9 Future strategies for studying stature 

6.9.1 Sample population 

This study has demonstrated the importance of sample homogeneity over sample 
size and no matter which study designs are utilized sample choice is of paramount 
importance in any genetic study. Ideally the sample should be homogeneous in terms 
of environmental and genetic variation because 1) environmental influences add 
random noise to genetic analyses thus reducing statistical power and because 2) all 
genetic mapping methods are susceptible to false positive and false negative findings 
in the presence of locus and allelic heterogeneity (although association analyses are 
more susceptible in general247 whilst linkage may succeed264).  The recent 
availability of very dense genome-wide data enables the stratification of samples 
based on their actual genetic resemblance265,266 instead of relying on geographic 
location, genealogy or self-reported ancestry and will provide an excellent tool for 
detecting population stratification. One should also bear in mind the importance of 
environmental homogeneity and attempt to minize all sources of heterogeneity by 
clever study design and careful documentation of relevant exposures. 

6.9.2 Phenotype of choice 

Often the phenotype of interest may be the end result of a complex multibranched 
pathway. However, focusing on intermediate stages (endophenotypes or 
intermediate phenotypes) of those pathways may allow more successful dissection of 
the genetic architecture of the phenotype. The use of expression levels in linkage 
analysis has demonstrated that this is a powerful approach267-270. 

For example height is an aggregate trait that is composed mainly of lengths of the 
long bones, the spine and the cranium. It is not known whether these genes are 
controlled by separate or shared sets of genes or a mixture of both. If there are genes 
that influence the growth of specific components of height, performing genetic 
analyses for these components separately is bound to improve the power to detect 
underlying QTL. 

One should also bear in mind that growth is a longitudinal process that occurs in 
fetal life, childhood and adolescence. However, genetic studies of stature are cross-
sectional and focus only on adult height which is the endpoint of this growth 
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process. It is well known that growth rate in relative and absolute terms varies 
greatly between these developmental stages and they may also be under specific 
genetic control. Restricting analyses to these specific growth periods could permit 
the genetic dissection of the growth process in more detail. Also individuals vary 
greatly in growth velocity within specific stages which may also be genetic in origin; 
focusing on these stages might unravel these genetic differences as well. 

Another challenge is how to better integrate the knowledge accumulated by the 
scientific community in genetic analyses. For example there is extensive knowledge 
on environmental factors that influence growth and subsequent adult height yet this 
data is rarely collected and incorporated into the ascertainment schemes and genetic 
models. In addition molecular and statistical geneticists should collaborate more 
with auxologists, endocrinolgists and anthropologists especially in the design phase 
of the study to better take into account all relevant variables and other 
considerations. If these data could be included in an appropriate manner they could 
accelerate genetic discoveries immensly 

6.9.3 Study design and analysis 

There have been many genome-wide screens for stature QTL, but unfortunately 
these efforts have been characterized by lack of consistency between studies and 
surprisingly low statistical evidence for QTL despite large samples (such as the ones 
included in this study). Genome-wide association studies utilizing large numbers of 
unrelated individuals have recently been proposed as a method of choice for 
identifying genes underlying polygenic traits271,272. Unfortunately, for many 
investigators, the GWA approach seems so appealing that they may not bother with 
collecting family samples since it is more time-consuming than collecting unrelated 
individuals. The arguments for the recent frenzy for GWA studies are both practical 
as well as statistical; it is far less time consuming and expensive to collect unrelated 
individuals as opposed to families and given that correct markers (i.e. the 
quantitative trait nucleotides (QTN) affecting the trait or markers in strong linkage 
disequilibrium with them) are genotyped and the genetic mechanism is fairly simple 
(e.g. only a few common variants) association analysis is more powerful than 
linkage analysis264,273. 
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Table 16. Simplistic comparison between relevant differences in genome-wide linkage 
and genome-wide association designs. 

Linkage Association 
Requires family samples Can be performed with unrelated individuals or 

family samples 
Low resolution since it focuses on observed 
recombinations 

High resolution because it focuses on historical 
recombinations 

Immune to allelic heterogeneity Sensitive to allelic heterogeneity 
Immune to false positives due to population 
stratification 

Sensitive to false positives due to population 
stratification (in population samples) 

Optimal for rare alleles of moderate-to-large effect Optimal for common alleles and can detect modest 
effects 

 

One should remember that family-based linkage mapping and association mapping 
in unrelated individuals are optimal under very different genetic models (Table 16) 
and therefore it is unwise to invest solely in one or the other since we do not know a 
priori the genetic architechture of the trait we are interested in. In the case of rare 
monogenic disease, multiple rare variants at linked loci (allelic heterogeneity) seem 
to be the rule not the exception245,274. For common polygenic disease and 
quantitative traits this question is still unanswered - there are examples for both 
common275 and rare alleles276 and theoretical and empirical studies suggest a role for 
both rare and common variants277,278. The power of GWA studies relies heavily on 
linkage disequilibrium since they are unlikely to genotype the actual QTN264 but rely 
on LD between the typed variants and the actual QTN. Finally, also the extravagant 
multiple testing involved in GWA studies reduces statistical power drastically due to 
the requirement for stringent significance thresholds. 

One complementary approach of combining family-based linkage and GWA analysis 
was performed recently by Cheung et al.279 who utilized the Centre d’Etude 
Polymorphism (CEPH) families where they initially performed a family-based linkage 
study for 3554 gene expression phenotypes268. For the strongest linkages (N=27) they 
first performed regional association and later genome-wide association using the 
founders from the same families and they were able to show concordant results using 
these two approaches for many of the loci (n=15). Considering the inherent qualities of 
family-based linkage and association analysis in unrelated individuals and empirical 
studies it is clear that genome-wide linkage mapping in families and genome-wide 
association mapping in population cohorts should rather be considered as 
complementary, not alternative, strategies in mapping polygenic traits. 
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7 CONCLUDING REMARKS 

The foundation of this study has been an extensive national and international 
scientific collaboration that has resulted in the pooling of intellectual resources and 
study materials. Without such collaboration modern science would not excel at the 
pace we have seen in recent years. 

During this study the emphasis in genetic mapping has shifted from genome-wide 
linkage studies in families to genome-wide association studies utilizing unrelated 
individuals due to the availability of sufficient SNP marker via the HapMap-project 
and the advent of rapid and affordable genotyping technologies. 

If the majority of the genetic background of stature is explained by combinations of 
relatively common variants genome-wide association studies may provide novel 
insights into the genetics of growth and stature. However, if stature is largely 
determined by rare variants that have a large impact for individuals but very little 
impact on the population level, family-based linkage studies are better geared for 
identifying them. Therefore, although the genome-wide association approach holds 
great promise it should be considered as a complementary strategy to genome-wide 
linkage not as the sole method of choice in the genetic mapping of human complex 
traits. Also, with proper study design these two approaches need not be mutually 
exclusive but their power can be combined. 

It does seem that considering human stature as an “easy” model trait is a fallacy, 
although stature inarguably possesses desirable features for genetic mapping such as 
easy and reliable measument of the trait phenotype. Even though we have been able 
to identify a few genetic variants underlying stature variation it is likely that we will 
need deeper phenotyping, careful sample ascertainment, insightful study design, 
sophisticated statistical modeling and careful consideration in accumulating 
knowledge to fully understand the genetics and biology of growth and its endpoint, 
human stature. 



 

99 

8 ACKNOWLEDGEMENTS 

This study was carried out at the Department of Molecular Medicine of the National 
Public Health Institute, Helsinki. I wish to thank the former head of the institute, 
Professor Jussi Huttunen, the new director, Professor Pekka Puska and the head of 
the department of molecular medicine Adjunct professor Anu Jalanko for providing 
state-of-the-art research facilities that have made this work possible. 

This work was financially supported by the GenomEUtwin-project, Helsinki 
Biomedical Graduate School and the Orion-Farmos and Sigrid Juselius Foundations. 

First and foremost, I wish to express my deepest gratitude to my supervisors 
Academy Professor Leena Peltonen-Palotie and Adjuct Professor Markus Perola. I 
have been very fortunate to work with such insightful and knowledgeful scientists 
that possess a true passion for their work.  Leena’s broad expertise, immense 
scientific drive and achievements have been a true inspiration for me from day one. 
Markus, I thank you for giving me an opportunity to work in your supervision and 
providing such an inspiring, motivated and enjoyable work atmosphere as well as all 
the good times - I couldn’t have asked for more. 

This work has been a culmination of national and international scientific 
collaboration of gigantic proportions and there are just too many collaborators to 
thank by name. Your kindness, trust and collaborative spirit have been the 
foundation of this work. 

I want to sincerely thank the external members of my thesis committee Professor 
Kimmo Kontula and Dr. Vesa Ollikainen who have given me a share of their 
valuable time and have supported me throughout my career as a graduate student.  

I am deeply grateful to Adjuct Professors Päivi Onkamo and Pekka Uimari for 
reviewing my thesis - their comments were invaluable for improving the manuscript. 
I would also wish to thank Donald Smart for thorough language revision of the 
manuscript. My utmost gratitude goes to Dr. Harald Göring for accepting the role as 
Opponent in my thesis defense. 

I wish to express my gratitude to senior scientists who have helped along the way: 
Marjo Kestilä, Ismo “Iski” Ulmanen, Kaisa Silander, Teppo Varilo, Iiris Hovatta, 
Juha Saharinen, Vesa Olkkonen and Matti Jauhiainen. Very special thanks go to 
Marjo whose help during the preparation of this thesis and in unraveling all the red 
tape was invaluable. I am greatly indebted to you Iski, for initially hiring me to work 
at the Department as a mere first year biology student and for your career advice that 
led to work for Markus. Thank you.  



 

100 

I would also like to acknowledge our wonderful secretaries Sari Kivikko, Sari 
Mustala, Tuija Svahnbäck, Sanna Tossavainen and Mika Kivimäki for helping me 
with countless tasks with amazing efficiency and positive attitude.  Jari Raikko is 
also thanked for all the IT-support during the years. 

I am greatly indebted to Tero Hiekkalinna who has always been there for me when I 
have needed assistance with anything computer-related and for his overwhelmingly 
positive attitude and never-ending willingness to help. I also want to thank Tero for 
all the good times we have had outside work – its hammer time! The contribution of 
Johannes Kettunen has also been vital in this work and is greatly appreciated. I am 
deeply greatful to Heidi Lilja and Elina Suviolahti for all their help with the Finnish 
families used in this study. I also want to express my gratitude for all my other 
friends at the office Juri, Tomi, Petri, Hannu and Teemu for the relaxed and 
enjoyable atmosphere that made coming to work so much more fun. 

I could not think of a better lab to work in because of the terrific peers, many of you 
have become my friends during my years in the lab. Very special thanks go to the 
former and present members of our Quantitative Genetics group: Johannes, Kati, 
Mervi, Kirsi, Elina C, Katja, Annina, Henna, Juha K, Kaisu and Antti. I also want to 
specially thank Jussi, Nora, Outi, Henna, Tiina, Suvi, Mari, Tanja, Markus L, Anu, 
Suvi, Virpi, Anna-Maija, Heli H, Annika, Jonna, Heidi, PP, Krista, Elina M, Marika, 
Annina L, Pekka and Minttu for your company and all the great parties. All our 
wonderful lab technicians are thanked for all the smiling faces every morning. Also, 
I wish to thank my friends from the lab who have left over the years: Tony, Denis, 
Sarah, Heli K, Eeva, Suski, Jenny, Joni, Emma, Anna K, Marie, Kismat and Aimee. 

My friends mean the world to me and although there are too many to name there are 
some that need to be mentioned: Juha, Simon, Vesku, Sami, Mikko, Kimmo, Teppo, 
Pertti, Masa, Apina, Juti, Jope, Teme, Stefu, Holmi, Tede, Tommi, Samuli, Cabe, 
Tupla-W, Junde, Make, Andu, Danny, KT, Timo, Kivistö, Masa, Fille, Leo, Jari, 
Bobo, Tebian, Kimmo L, Samppa and Jaakko. Thank you for all the good times. 

My deepest appreciation and love goes to my family, my sister Suvi and her husband 
Jukka and my adorable niece Lotta and wonderful nephews Santeri and Valtteri. 
Mom and Dad, you will always be in my heart. 

 

Helsinki, December 6th, 2007 

 

Sampo Sammalisto 



 

101 

9 REFERENCES 

1. MacGillivray MH, Morishima A, Conte F, Grumbach M, Smith EP: Pediatric 
endocrinology update: an overview. The essential roles of estrogens in pubertal growth, 
epiphyseal fusion and bone turnover: lessons from mutations in the genes for aromatase 
and the estrogen receptor. Horm Res 1998; 49 Suppl 1: 2-8. 

 
2. Nilsson A, Ohlsson C, Isaksson OG, Lindahl A, Isgaard J: Hormonal regulation of 

longitudinal bone growth. European journal of clinical nutrition 1994; 48 Suppl 1: 
S150-158; discussion S158-160. 

 
3. Roche AF, Sun SS: Human Growth: Assessment and Interpretation: Cambridgre 

University Press, 2003. 
 
4. Rogol AD: Growth hormone: physiology, therapeutic use, and potential for abuse. 

Exercise and sport sciences reviews 1989; 17: 353-377. 
 
5. Galton F: Natural Inheritance: McMillan, 1889. 
 
6. Stigler SM: Francis Galton's Account of the Invention of Correlation. Statistical Science 

1989; 4: 73-79. 
 
7. Arnold SJ: Multivariate Inheritance and Evolution: A Review of Concepts; in: Boake 

CRB (ed): Quantitative Genetic Studies of Behavioral Evolution: University Of Chicago 
Press, 1994, 1. edition edn. 

 
8. Pan L, Ober C, Abney M: Heritability estimation of sex-specific effects on human 

quantitative traits. Genetic epidemiology 2007; 31: 338-347. 
 
9. Pilia G, Chen WM, Scuteri A et al: Heritability of cardiovascular and personality traits 

in 6,148 Sardinians. PLoS Genet 2006; 2: e132. 
 
10. Cole TJ: Secular trends in growth. The Proceedings of the Nutrition Society 2000; 59: 

317-324. 
 
11. Silventoinen K: Body height: determinants and associations with social position and 

adult health., Helsingin yliopisto, helsinki, 2000. 
 
12. Brush G, Harrison GA, Zumrawi FY: A path analysis of some determinants of infant 

growth in Khartoum. Annals of human biology 1993; 20: 381-387. 



 

102 

 
13. Vella V, Tomkins A, Borghesi A, Migliori GB, Oryem VY: Determinants of stunting 

and recovery from stunting in northwest Uganda. International journal of epidemiology 
1994; 23: 782-786. 

 
14. Cole TJ: The secular trend in human physical growth: a biological view. Economics and 

human biology 2003; 1: 161-168. 
 
15. Karlberg J, Jalil F, Lam B, Low L, Yeung CY: Linear growth retardation in relation to 

the three phases of growth. European journal of clinical nutrition 1994; 48 Suppl 1: 
S25-43; discussion S43-24. 

 
16. Allen LH: Nutritional influences on linear growth: a general review. European journal of 

clinical nutrition 1994; 48 Suppl 1: S75-89. 
 
17. Zerfas AJ: Epidemiology and nutrition; in: Falkner F, Tanner JM (eds): Human Growth. 

New York: Plenum Press, 1986, vol 3. 
 
18. Prentice A, Bates CJ: Adequacy of dietary mineral supply for human bone growth and 

mineralisation. European journal of clinical nutrition 1994; 48 Suppl 1: S161-176; 
discussion S177. 

 
19. Dallman PR: Iron deficiency in the weanling: a nutritional problem on the way to 

resolution. Acta paediatrica Scandinavica 1986; 323: 59-67. 
 
20. Johnson JA, Kumar R: Vitamin D and renal calcium transport. Current opinion in 

nephrology and hypertension 1994; 3: 424-429. 
 
21. Fawzi WW, Herrera MG, Willett WC, Nestel P, el Amin A, Mohamed KA: Dietary 

vitamin A intake in relation to child growth. Epidemiology (Cambridge, Mass 1997; 8: 
402-407. 

 
22. Evain-Brion D, Porquet D, Therond P et al: Vitamin A deficiency and nocturnal growth 

hormone secretion in short children. Lancet 1994; 343: 87-88. 
 
23. Raifen R, Altman Y, Zadik Z: Vitamin A levels and growth hormone axis. Horm Res 

1996; 46: 279-281. 
 
24. Allen LH: Biological mechanisms that might underlie iron's effects on fetal growth and 

preterm birth. The Journal of nutrition 2001; 131: 581S-589S. 
 



 

103 

25. Christian P, Khatry SK, Katz J et al: Effects of alternative maternal micronutrient 
supplements on low birth weight in rural Nepal: double blind randomised community 
trial. BMJ (Clinical research ed 2003; 326: 571. 

 
26. Eide MG, Oyen N, Skjaerven R, Nilsen ST, Bjerkedal T, Tell GS: Size at birth and 

gestational age as predictors of adult height and weight. Epidemiology (Cambridge, 
Mass 2005; 16: 175-181. 

 
27. Kusin JA, Kardjati S, Houtkooper JM, Renqvist UH: Energy supplementation during 

pregnancy and postnatal growth. Lancet 1992; 340: 623-626. 
 
28. Stanner SA, Bulmer K, Andres C et al: Does malnutrition in utero determine diabetes 

and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross 
sectional study. BMJ (Clinical research ed 1997; 315: 1342-1348. 

 
29. Cornelius MD, Goldschmidt L, Day NL, Larkby C: Alcohol, tobacco and marijuana use 

among pregnant teenagers: 6-year follow-up of offspring growth effects. 
Neurotoxicology and teratology 2002; 24: 703-710. 

 
30. Rona RJ, Chinn S, Florey CD: Exposure to cigarette smoking and children's growth. 

International journal of epidemiology 1985; 14: 402-409. 
 
31. Shu XO, Hatch MC, Mills J, Clemens J, Susser M: Maternal smoking, alcohol drinking, 

caffeine consumption, and fetal growth: results from a prospective study. Epidemiology 
(Cambridge, Mass 1995; 6: 115-120. 

 
32. Stephensen CB: Burden of infection on growth failure. The Journal of nutrition 1999; 

129: 534S-538S. 
 
33. Brown KH: Diarrhea and malnutrition. The Journal of nutrition 2003; 133: 328S-332S. 
 
34. Skerry TM: The effects of the inflammatory response on bone growth. European journal 

of clinical nutrition 1994; 48 Suppl 1: S190-197; discussion S198. 
 
35. Tattersall RB, Pyke DA: Growth in diabetic children. Studies in identical twins. Lancet 

1973; 2: 1105-1109. 
 
36. Eveleth PB: Differences between ethnic groups in sex dimorphism of adult height. 

Annals of human biology 1975; 2: 35-39. 
 



 

104 

37. Gaulin SJ, Boster JS: Human marriage systems and sexual dimorphism in stature. 
American journal of physical anthropology 1992; 89: 467-475. 

 
38. Gustafsson A, Lindenfors P: Human size evolution: no evolutionary allometric 

relationship between male and female stature. Journal of human evolution 2004; 47: 
253-266. 

 
39. Seeman E: The structural basis of bone fragility in men. Bone 1999; 25: 143-147. 
 
40. Gatford KL, Egan AR, Clarke IJ, Owens PC: Sexual dimorphism of the somatotrophic 

axis. The Journal of endocrinology 1998; 157: 373-389. 
 
41. Ellis JA, Stebbing M, Harrap SB: Significant population variation in adult male height 

associated with the Y chromosome and the aromatase gene. The Journal of clinical 
endocrinology and metabolism 2001; 86: 4147-4150. 

 
42. Ogata T, Goodfellow P, Petit C, Aya M, Matsuo N: Short stature in a girl with a terminal 

Xp deletion distal to DXYS15: localisation of a growth gene(s) in the pseudoautosomal 
region. Journal of medical genetics 1992; 29: 455-459. 

 
43. Ogata T, Matsuo N: Sex chromosome aberrations and stature: deduction of the principal 

factors involved in the determination of adult height. Hum Genet 1993; 91: 551-562. 
 
44. Rao E, Weiss B, Fukami M et al: Pseudoautosomal deletions encompassing a novel 

homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. 
Nature genetics 1997; 16: 54-63. 

 
45. Jousilahti P, Tuomilehto J, Vartiainen E, Eriksson J, Puska P: Relation of adult height to 

cause-specific and total mortality: a prospective follow-up study of 31,199 middle-aged 
men and women in Finland. American journal of epidemiology 2000; 151: 1112-1120. 

 
46. Peck AM, Vagero DH: Adult body height, self perceived health and mortality in the 

Swedish population. Journal of epidemiology and community health 1989; 43: 380-384. 
 
47. Forsen T, Eriksson JG, Tuomilehto J, Teramo K, Osmond C, Barker DJ: Mother's weight 

in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. 
BMJ (Clinical research ed 1997; 315: 837-840. 

 
48. Kaplan GA, Salonen JT: Socioeconomic conditions in childhood and ischaemic heart 

disease during middle age. BMJ (Clinical research ed 1990; 301: 1121-1123. 
 



 

105 

49. Rahkonen O, Lahelma E, Huuhka M: Past or present? Childhood living conditions and 
current socioeconomic status as determinants of adult health. Social science & medicine 
(1982) 1997; 44: 327-336. 

 
50. Davey Smith G, Hart C, Upton M et al: Height and risk of death among men and 

women: aetiological implications of associations with cardiorespiratory disease and 
cancer mortality. Journal of epidemiology and community health 2000; 54: 97-103. 

 
51. Gertler MM, White PD: Coronary heart disease in young adults: a multidisciplinary 

study, Cambridge, MA: Harvard University Press, 1954. 
 
52. McCarron P, Okasha M, McEwen J, Smith GD: Height in young adulthood and risk of 

death from cardiorespiratory disease: a prospective study of male former students of 
Glasgow University, Scotland. American journal of epidemiology 2002; 155: 683-687. 

 
53. Njolstad I, Arnesen E, Lund-Larsen PG: Body height, cardiovascular risk factors, and 

risk of stroke in middle-aged men and women. A 14-year follow-up of the Finnmark 
Study. Circulation 1996; 94: 2877-2882. 

 
54. Fisher LD, Kennedy JW, Davis KB et al: Association of sex, physical size, and operative 

mortality after coronary artery bypass in the Coronary Artery Surgery Study (CASS). 
The Journal of thoracic and cardiovascular surgery 1982; 84: 334-341. 

 
55. Albanes D, Jones DY, Schatzkin A, Micozzi MS, Taylor PR: Adult stature and risk of 

cancer. Cancer research 1988; 48: 1658-1662. 
 
56. Swanson CA, Jones DY, Schatzkin A, Brinton LA, Ziegler RG: Breast cancer risk 

assessed by anthropometry in the NHANES I epidemiological follow-up study. Cancer 
research 1988; 48: 5363-5367. 

 
57. van den Brandt PA, Dirx MJ, Ronckers CM, van den Hoogen P, Goldbohm RA: Height, 

weight weight change, and postmenopausal breast cancer risk: The Netherlands Cohort 
Study. Cancer Causes Control 1997; 8: 39-47. 

 
58. Albanes D: Height, early energy intake, and cancer. Evidence mounts for the relation of 

energy intake to adult malignancies. BMJ (Clinical research ed 1998; 317: 1331-1332. 
 
59. Frankel S, Gunnell DJ, Peters TJ, Maynard M, Davey Smith G: Childhood energy intake 

and adult mortality from cancer: the Boyd Orr Cohort Study. BMJ (Clinical research ed 
1998; 316: 499-504. 

 



 

106 

60. Cavelaars AE, Kunst AE, Geurts JJ et al: Persistent variations in average height between 
countries and between socio-economic groups: an overview of 10 European countries. 
Annals of human biology 2000; 27: 407-421. 

 
61. Power C, Manor O, Li L: Are inequalities in height underestimated by adult social 

position? Effects of changing social structure and height selection in a cohort study. BMJ 
(Clinical research ed 2002; 325: 131-134. 

 
62. Silventoinen K, Kaprio J, Lahelma E: Genetic and environmental contributions to the 

association between body height and educational attainment: a study of adult Finnish 
twins. Behavior genetics 2000; 30: 477-485. 

 
63. Bielicki T, Charzewski J: Body height and upward social mobility. Annals of human 

biology 1983; 10: 403-408. 
 
64. Cernerud L: Height and social mobility. A study of the height of 10 year olds in relation 

to socio-economic background and type of formal schooling. Scandinavian journal of 
social medicine 1995; 23: 28-31. 

 
65. Lasker GW, Mascie-Taylor CG: Effects of social class differences and social mobility on 

growth in height, weight and body mass index in a British cohort. Annals of human 
biology 1989; 16: 1-8. 

 
66. Dannenmaier WD, Thumin FJ: Authority Status as a Factor in Perceptual Distortion of 

Size. The Journal of social psychology 1964; 63: 361-365. 
 
67. Wilson PR: Perceptual distortion of height as a function of ascribed academic status. The 

Journal of social psychology 1968; 74: 97-102. 
 
68. Hensley WE: Height as a basis for interpersonal attraction. Adolescence 1994; 29: 469-474. 
 
69. Nettle D: Height and reproductive success in a cohort of british men. Hum Nature 2002; 

13: 473-491. 
 
70. Pawlowski B, Dunbar RI, Lipowicz A: Tall men have more reproductive success. Nature 

2000; 403: 156. 
 
71. Mueller U, Mazur A: Evidence of unconstrained directional selection for male tallness. 

Behav Ecol Sociobiol 2001 50: 302–311. 
 



 

107 

72. Nettle D: Women's height, reproductive success and the evolution of sexual dimorphism 
in modern humans. Proceedings 2002; 269: 1919-1923. 

 
73. Mascie-Taylor CG: Assortative mating in a contemporary British population. Annals of 

human biology 1987; 14: 59-68. 
 
74. Silventoinen K, Kaprio J, Lahelma E, Viken RJ, Rose RJ: Assortative mating by body 

height and BMI: Finnish twins and their spouses. Am J Human Biol 2003; 15: 620-627. 
 
75. Silventoinen K, Sammalisto S, Perola M et al: Heritability of adult body height: a 

comparative study of twin cohorts in eight countries. Twin Res 2003; 6: 399-408. 
 
76. Cavalli-Sforza LL: African Pygmies: Academic Press, 1986. 
 
77. Statistics ABo. How Australians Measure Up, 1995. 
 
78. Godoy R, Goodman E, Levins R, Leonard WR: Anthropometric variability in the USA: 

1971-2002. Annals of human biology 2005; 32: 469-486. 
 
79. Lasker GW: Migration and physical differentiation: A comparison of immigrant with 

American-born Chinese. American Journal of Physical Anthropology 1946; 4: 273-300. 
 
80. Smith PK, Bogin B, Varela-Silva MI, Loucky J: Economic and anthropological 

assessments of the health of children in Maya immigrant families in the US. Economics 
and human biology 2003; 1: 145-160. 

 
81. Suski PM: The Body Build of American-Born Japanese Children. Biometrika 1933; 25: 

323-352. 
 
82. McPherson JD, Marra M, Hillier L et al: A physical map of the human genome. Nature 

2001; 409: 934-941. 
 
83. Kazazian HH, Jr.: Mobile elements: drivers of genome evolution. Science 2004; 303: 

1626-1632. 
 
84. Nachman MW, Crowell SL: Estimate of the mutation rate per nucleotide in humans. 

Genetics 2000; 156: 297-304. 
 
85. Kong A, Gudbjartsson DF, Sainz J et al: A high-resolution recombination map of the 

human genome. Nature genetics 2002; 31: 241-247. 



 

108 

 
86. Sherry ST, Ward MH, Kholodov M et al: dbSNP: the NCBI database of genetic 

variation. Nucleic acids research 2001; 29: 308-311. 
 
87. Redon R, Ishikawa S, Fitch KR et al: Global variation in copy number in the human 

genome. Nature 2006; 444: 444-454. 
 
88. Inoue K, Lupski JR: Molecular mechanisms for genomic disorders. Annual review of 

genomics and human genetics 2002; 3: 199-242. 
 
89. Sharp AJ, Locke DP, McGrath SD et al: Segmental duplications and copy-number 

variation in the human genome. American journal of human genetics 2005; 77: 78-88. 
 
90. Bailey JN, Almasy L: A brute force dichotomization approach to quantitative trait 

linkage analysis. Genetic epidemiology 1995; 12: 719-722. 
 
91. Duggirala R, Williams JT, Williams-Blangero S, Blangero J: A variance component 

approach to dichotomous trait linkage analysis using a threshold model. Genetic 
epidemiology 1997; 14: 987-992. 

 
92. Galton F: Kinship and correlation. North American Review 1890; 150: 419-431. 
 
93. Galton F: The average contribution of each several ancestor to the total heritage of 

offspring. Proceedings of the Royal Society, London 1897; LXI: 401-413. 
 
94. Pearson K: The law of ancestral heredity. Biometrika 1903; 2: 211-236. 
 
95. Fisher RA: The correlation between relatives on the supposition of Mendelian 

inheritance. Transactions of the Royal Society of Edinburgh 1918; 52: 399-433. 
 
96. Pearson KL, A: On the correlations of characters not quantitatively measurable. 

Philosophical Transactions of the Royal Society of London, A 1901; 195: 1-47. 
 
97. Falconer DSM, T.F.C: Introduction to quantitative genetics, fourth edition edn: Harlow: 

Longman, 1996. 
 
98. Eaves LJ: Inferring the causes of human variation. Journal of the Royal Statistical 

Society, Series A 1977; 140: 324-355. 
 



 

109 

99. Jinks JL, Fulker DW: Comparison of the biometrical genetical, MAVA, and classical 
approaches to the analysis of human behavior. Psychological bulletin 1970; 73: 311-349. 

 
100. Amos CI, de Andrade M: Genetic linkage methods for quantitative traits. Statistical 

methods in medical research 2001; 10: 3-25. 
 
101. Feingold E: Methods for linkage analysis of quantitative trait loci in humans. Theor 

Popul Biol 2001; 60: 167-180. 
 
102. Lebrec J, Putter H, Houwelingen JC: Score test for detecting linkage to complex traits in 

selected samples. Genetic epidemiology 2004; 27: 97-108. 
 
103. Putter H, Sandkuijl LA, van Houwelingen JC: Score test for detecting linkage to 

quantitative traits. Genetic epidemiology 2002; 22: 345-355. 
 
104. Chen WM, Broman KW, Liang KY: Quantitative trait linkage analysis by generalized 

estimating equations: unification of variance components and Haseman-Elston 
regression. Genetic epidemiology 2004; 26: 265-272. 

 
105. Daw EW, Heath SC, Wijsman EM: Multipoint oligogenic analysis of age-at-onset data 

with applications to Alzheimer disease pedigrees. American journal of human genetics 
1999; 64: 839-851. 

 
106. Heath SC: Markov chain Monte Carlo segregation and linkage analysis for oligogenic 

models. American journal of human genetics 1997; 61: 748-760. 
 
107. Lee JK, Thomas DC: Performance of Markov chain-Monte Carlo approaches for 

mapping genes in oligogenic models with an unknown number of loci. American journal 
of human genetics 2000; 67: 1232-1250. 

 
108. Haseman JK, Elston RC: The investigation of linkage between a quantitative trait and a 

marker locus. Behavior genetics 1972; 2: 3-19. 
 
109. Elston RC, Buxbaum S, Jacobs KB, Olson JM: Haseman and Elston revisited. Genetic 

epidemiology 2000; 19: 1-17. 
 
110. Sham PC, Purcell S, Cherny SS, Abecasis GR: Powerful regression-based quantitative-

trait linkage analysis of general pedigrees. American journal of human genetics 2002; 
71: 238-253. 

 



 

110 

111. Wang T, Elston RC: A modified revisited Haseman-Elston method to further improve 
power. Human heredity 2004; 57: 109-116. 

 
112. Almasy L, Blangero J: Multipoint quantitative-trait linkage analysis in general pedigrees. 

American journal of human genetics 1998; 62: 1198-1211. 
 
113. Amos CI: Robust variance-components approach for assessing genetic linkage in 

pedigrees. American journal of human genetics 1994; 54: 535-543. 
 
114. Fulker DW, Cardon LR: A sib-pair approach to interval mapping of quantitative trait 

loci. American journal of human genetics 1994; 54: 1092-1103. 
 
115. Goldgar DE: Multipoint analysis of human quantitative genetic variation. American 

journal of human genetics 1990; 47: 957-967. 
 
116. Schork NJ: Extended multipoint identity-by-descent analysis of human quantitative 

traits: efficiency, power, and modeling considerations. American journal of human 
genetics 1993; 53: 1306-1319. 

 
117. Ekstrom CT, Dalgaard P: Linkage analysis of quantitative trait loci in the presence of 

heterogeneity. Human heredity 2003; 55: 16-26. 
 
118. Shete S, Zhou X, Amos CI: Genomic imprinting and linkage test for quantitative-trait 

Loci in extended pedigrees. American journal of human genetics 2003; 73: 933-938. 
 
119. Allison DB, Neale MC, Zannolli R, Schork NJ, Amos CI, Blangero J: Testing the 

robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-
mapping procedure. American journal of human genetics 1999; 65: 531-544. 

 
120. Blangero J, Williams JT, Almasy L: Robust LOD scores for variance component-based 

linkage analysis. Genetic epidemiology 2000; 19 Suppl 1: S8-14. 
 
121. Blangero J, Williams JT, Almasy L: Variance component methods for detecting complex 

trait loci. Adv Genet 2001; 42: 151-181. 
 
122. Barber MJ, Cordell HJ, MacGregor AJ, Andrew T: Gamma regression improves 

Haseman-Elston and variance components linkage analysis for sib-pairs. Genetic 
epidemiology 2004; 26: 97-107. 

 
123. Good PI: Permutation, Parametric, and Bootstrap Tests of Hypotheses, 3rd edn: 

Springer, 2004. 



 

111 

 
124. Westfall PHY, S.S.: Resampling-Based Multiple Testing: Examples and Methods for p-

Value Adjustment: John Wiley & Sons, 1993. 
 
125. Liu YZ, Xiao P, Guo YF et al: Genetic linkage of human height is confirmed to 9q22 

and Xq24. Hum Genet 2006; 119: 295-304. 
 
126. Wu X, Cooper RS, Boerwinkle E et al: Combined analysis of genomewide scans for 

adult height: results from the NHLBI Family Blood Pressure Program. Eur J Hum Genet 
2003; 11: 271-274. 

 
127. Garn SM, Bailey SM, Cole PE: Similarities between parents and their adopted children. 

American journal of physical anthropology 1976; 45: 539-543. 
 
128. Langinvainio H, Koskenvuo M, Kaprio J, Sistonen P: Finnish twins reared apart. II: 

Validation of zygosity, environmental dissimilarity and weight and height. Acta 
geneticae medicae et gemellologiae 1984; 33: 251-258. 

 
129. Pedersen NL, Friberg L, Floderus-Myrhed B, McClearn GE, Plomin R: Swedish early 

separated twins: identification and characterization. Acta geneticae medicae et 
gemellologiae 1984; 33: 243-250. 

 
130. Weedon MN, Lettre G, Freathy RM et al: A common variant of HMGA2 is associated 

with adult and childhood height in the general population. Nature genetics 2007; 39: 
1245-1250. 

 
131. Battista S, Fidanza V, Fedele M et al: The expression of a truncated HMGI-C gene 

induces gigantism associated with lipomatosis. Cancer research 1999; 59: 4793-4797. 
 
132. Ligon AH, Moore SD, Parisi MA et al: Constitutional rearrangement of the architectural 

factor HMGA2: a novel human phenotype including overgrowth and lipomas. American 
journal of human genetics 2005; 76: 340-348. 

 
133. Zhou X, Benson KF, Ashar HR, Chada K: Mutation responsible for the mouse pygmy 

phenotype in the developmentally regulated factor HMGI-C. Nature 1995; 376: 771-774. 
 
134. Hirschhorn JN, Lindgren CM, Daly MJ et al: Genomewide linkage analysis of stature in 

multiple populations reveals several regions with evidence of linkage to adult height. 
American journal of human genetics 2001; 69: 106-116. 

 



 

112 

135. Ellis JA, Scurrah KJ, Duncan AE, Lamantia A, Byrnes GB, Harrap SB: Comprehensive 
multi-stage linkage analyses identify a locus for adult height on chromosome 3p in a 
healthy Caucasian population. Hum Genet 2006. 

 
136. Wiltshire S, Frayling TM, Hattersley AT et al: Evidence for linkage of stature to 

chromosome 3p26 in a large U.K. Family data set ascertained for type 2 diabetes. 
American journal of human genetics 2002; 70: 543-546. 

 
137. Liu YZ, Xu FH, Shen H et al: Genetic dissection of human stature in a large sample of 

multiplex pedigrees. Annals of human genetics 2004; 68: 472-488. 
 
138. Willemsen G, Boomsma DI, Beem AL, Vink JM, Slagboom PE, Posthuma D: QTLs for 

height: results of a full genome scan in Dutch sibling pairs. Eur J Hum Genet 2004. 
 
139. Deng HW, Deng H, Liu YJ et al: A genomewide linkage scan for quantitative-trait loci 

for obesity phenotypes. American journal of human genetics 2002; 70: 1138-1151. 
 
140. Geller F, Dempfle A, Gorg T: Genome scan for body mass index and height in the 

Framingham Heart Study. BMC Genet 2003; 4 Suppl 1: S91. 
 
141. Perola M, Ohman M, Hiekkalinna T et al: Quantitative-trait-locus analysis of body-mass 

index and of stature, by combined analysis of genome scans of five Finnish study 
groups. American journal of human genetics 2001; 69: 117-123. 

 
142. Beck SR, Brown WM, Williams AH, Pierce J, Rich SS, Langefeld CD: Age-stratified QTL 

genome scan analyses for anthropometric measures. BMC Genet 2003; 4 Suppl 1: S31. 
 
143. Mukhopadhyay N, Weeks DE: Linkage analysis of adult height with parent-of-origin 

effects in the Framingham Heart Study. BMC Genet 2003; 4 Suppl 1: S76. 
 
144. Sale MM, Freedman BI, Hicks PJ et al: Loci contributing to adult height and body mass 

index in African American families ascertained for type 2 diabetes. Annals of human 
genetics 2005; 69: 517-527. 

 
145. Thompson DB, Ossowski V, Janssen RC, Knowler WC, Bogardus C: Linkage between 

stature and a region on chromosome 20 and analysis of a candidate gene, bone 
morphogenetic protein 2. American journal of medical genetics 1995; 59: 495-500. 

 
146. Hasegawa Y, Fujii K, Yamada M et al: Identification of novel human GH-1 gene 

polymorphisms that are associated with growth hormone secretion and height. The 
Journal of clinical endocrinology and metabolism 2000; 85: 1290-1295. 

 



 

113 

147. Maheshwari HG, Silverman BL, Dupuis J, Baumann G: Phenotype and genetic analysis 
of a syndrome caused by an inactivating mutation in the growth hormone-releasing 
hormone receptor: Dwarfism of Sindh. The Journal of clinical endocrinology and 
metabolism 1998; 83: 4065-4074. 

 
148. Mullis PE: Genetic control of growth. Eur J Endocrinol 2005; 152: 11-31. 
 
149. Amselem S, Duquesnoy P, Attree O et al: Laron dwarfism and mutations of the growth 

hormone-receptor gene. The New England journal of medicine 1989; 321: 989-995. 
 
150. Kofoed EM, Hwa V, Little B et al: Growth hormone insensitivity associated with a 

STAT5b mutation. The New England journal of medicine 2003; 349: 1139-1147. 
 
151. Takahashi Y, Kaji H, Okimura Y, Goji K, Abe H, Chihara K: Short stature caused by a 

mutant growth hormone with an antagonistic effect. Endocrine journal 1996; 43 Suppl: 
S27-32. 

 
152. Woods KA, Camacho-Hubner C, Savage MO, Clark AJ: Intrauterine growth retardation 

and postnatal growth failure associated with deletion of the insulin-like growth factor I 
gene. The New England journal of medicine 1996; 335: 1363-1367. 

 
153. Sposito M, Truffarelli F, Sabalich I et al: [IGFBP3 in the assessment of growth hormone 

defects]. Pediatr Med Chir 1993; 15: 67-71. 
 
154. Domene HM, Bengolea SV, Martinez AS et al: Deficiency of the circulating insulin-like 

growth factor system associated with inactivation of the acid-labile subunit gene. The 
New England journal of medicine 2004; 350: 570-577. 

 
155. Abuzzahab MJ, Schneider A, Goddard A et al: IGF-I receptor mutations resulting in 

intrauterine and postnatal growth retardation. The New England journal of medicine 
2003; 349: 2211-2222. 

 
156. Walenkamp MJ, Wit JM: Genetic disorders in the growth hormone - insulin-like growth 

factor-I axis. Horm Res 2006; 66: 221-230. 
 
157. Lettre G, Butler JL, Ardlie KG, Hirschhorn JN: Common genetic variation in eight genes 

of the GH/IGF1 axis does not contribute to adult height variation. Hum Genet 2007; 122: 
129-139. 

 
158. Platt JE, Friedhoff AJ, Broman SH, Bond RN, Laska E, Lin SP: Effects of prenatal 

exposure to neuroleptic drugs on children's growth. Neuropsychopharmacology 1988; 1: 
205-212. 



 

114 

 
159. Arinami T, Iijima Y, Yamakawa-Kobayashi K et al: Supportive evidence for 

contribution of the dopamine D2 receptor gene to heritability of stature: linkage and 
association studies. Annals of human genetics 1999; 63: 147-151. 

 
160. Smith EP, Boyd J, Frank GR et al: Estrogen resistance caused by a mutation in the 

estrogen-receptor gene in a man. The New England journal of medicine 1994; 331: 
1056-1061. 

 
161. Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K: Aromatase deficiency in 

male and female siblings caused by a novel mutation and the physiological role of 
estrogens. The Journal of clinical endocrinology and metabolism 1995; 80: 3689-3698. 

 
162. Simpson ER: Genetic mutations resulting in loss of aromatase activity in humans and 

mice. Journal of the Society for Gynecologic Investigation 2000; 7: S18-21. 
 
163. Tiulpakov A, Kalintchenko N, Semitcheva T et al: A potential rearrangement between 

CYP19 and TRPM7 genes on chromosome 15q21.2 as a cause of aromatase excess 
syndrome. The Journal of clinical endocrinology and metabolism 2005; 90: 4184-4190. 

 
164. Superti-Furga A, Bonafe L, Rimoin DL: Molecular-pathogenetic classification of genetic 

disorders of the skeleton. American journal of medical genetics 2001; 106: 282-293. 
 
165. Kant SG, Wit JM, Breuning MH: Genetic analysis of short stature. Horm Res 2003; 60: 

157-165. 
 
166. Dempfle A, Wudy SA, Saar K et al: Evidence for involvement of the vitamin D receptor 

gene in idiopathic short stature via a genome-wide linkage study and subsequent 
association studies. Human molecular genetics 2006; 15: 2772-2783. 

 
167. Minamitani K, Takahashi Y, Minagawa M, Yasuda T, Niimi H: Difference in height 

associated with a translation start site polymorphism in the vitamin D receptor gene. 
Pediatric research 1998; 44: 628-632. 

 
168. Xiong DH, Xu FH, Liu PY et al: Vitamin D receptor gene polymorphisms are linked to 

and associated with adult height. Journal of medical genetics 2005; 42: 228-234. 
 
169. Deng HW, Li J, Li JL et al: Change of bone mass in postmenopausal Caucasian women 

with and without hormone replacement therapy is associated with vitamin D receptor 
and estrogen receptor genotypes. Hum Genet 1998; 103: 576-585. 

 



 

115 

170. Fang Y, van Meurs JB, Rivadeneira F et al: Vitamin D receptor gene haplotype is 
associated with body height and bone size. The Journal of clinical endocrinology and 
metabolism 2007; 92: 1491-1501. 

 
171. Garnero P, Munoz F, Borel O, Sornay-Rendu E, Delmas PD: Vitamin D receptor gene 

polymorphisms are associated with the risk of fractures in postmenopausal women, 
independently of bone mineral density. The Journal of clinical endocrinology and 
metabolism 2005; 90: 4829-4835. 

 
172. Grundberg E, Brandstrom H, Ribom EL, Ljunggren O, Kindmark A, Mallmin H: A poly 

adenosine repeat in the human vitamin D receptor gene is associated with bone mineral 
density in young Swedish women. Calcified tissue international 2003; 73: 455-462. 

 
173. Binder G, Schwarze CP, Ranke MB: Identification of short stature caused by SHOX 

defects and therapeutic effect of recombinant human growth hormone. The Journal of 
clinical endocrinology and metabolism 2000; 85: 245-249. 

 
174. Rappold GA, Fukami M, Niesler B et al: Deletions of the homeobox gene SHOX (short 

stature homeobox) are an important cause of growth failure in children with short 
stature. The Journal of clinical endocrinology and metabolism 2002; 87: 1402-1406. 

 
175. Daw EW, Thompson EA, Wijsman EM: Bias in multipoint linkage analysis arising from 

map misspecification. Genetic epidemiology 2000; 19: 366-380. 
 
176. Goring HH, Terwilliger JD: Linkage analysis in the presence of errors III: marker loci 

and their map as nuisance parameters. American journal of human genetics 2000; 66: 
1298-1309. 

 
177. Halpern J, Whittemore AS: Multipoint linkage analysis. A cautionary note. Human 

heredity 1999; 49: 194-196. 
 
178. Broman KW, Murray JC, Sheffield VC, White RL, Weber JL: Comprehensive human 

genetic maps: individual and sex-specific variation in recombination. American journal 
of human genetics 1998; 63: 861-869. 

 
179. Abecasis GR, Cherny SS, Cookson WO, Cardon LR: GRR: graphical representation of 

relationship errors. Bioinformatics (Oxford, England) 2001; 17: 742-743. 
 
180. O'Connell JR, Weeks DE: PedCheck: a program for identification of genotype 

incompatibilities in linkage analysis. American journal of human genetics 1998; 63: 259-266. 
 



 

116 

181. Abecasis GR, Cherny SS, Cardon LR: The impact of genotyping error on family-based 
analysis of quantitative traits. Eur J Hum Genet 2001; 9: 130-134. 

 
182. Douglas JA, Boehnke M, Lange K: A multipoint method for detecting genotyping errors 

and mutations in sibling-pair linkage data. American journal of human genetics 2000; 
66: 1287-1297. 

 
183. Douglas JA, Skol AD, Boehnke M: Probability of detection of genotyping errors and 

mutations as inheritance inconsistencies in nuclear-family data. American journal of 
human genetics 2002; 70: 487-495. 

 
184. Gordon D, Leal SM, Heath SC, Ott J: An analytic solution to single nucleotide 

polymorphism error-detection rates in nuclear families: implications for study design. 
Pacific Symposium on Biocomputing 2000: 663-674. 

 
185. Abecasis GR, Cherny SS, Cookson WO, Cardon LR: Merlin--rapid analysis of dense 

genetic maps using sparse gene flow trees. Nature genetics 2002; 30: 97-101. 
 
186. Wigginton JE, Abecasis GR: PEDSTATS: descriptive statistics, graphics and quality 

assessment for gene mapping data. Bioinformatics (Oxford, England) 2005; 21: 3445-3447. 
 
187. Barnholtz JS, de Andrade M, Page GP, King TM, Peterson LE, Amos CI: Assessing 

linkage of monoamine oxidase B in a genome-wide scan using a univariate variance 
components approach. Genetic epidemiology 1999; 17 Suppl 1: S49-54. 

 
188. Sham PC, Zhao JH, Cherny SS, Hewitt JK: Variance-Components QTL linkage analysis 

of selected and non-normal samples: conditioning on trait values. Genetic epidemiology 
2000; 19 Suppl 1: S22-28. 

 
189. Lander ES, Green P: Construction of multilocus genetic linkage maps in humans. 

Proceedings of the National Academy of Sciences of the United States of America 1987; 
84: 2363-2367. 

 
190. Markianos K, Daly MJ, Kruglyak L: Efficient multipoint linkage analysis through 

reduction of inheritance space. American journal of human genetics 2001; 68: 963-977. 
 
191. Gudbjartsson DF, Jonasson K, Frigge ML, Kong A: Allegro, a new computer program 

for multipoint linkage analysis. Nature genetics 2000; 25: 12-13. 
 
192. Zeegers M, Rijsdijk F, Sham P: Adjusting for covariates in variance components QTL 

linkage analysis. Behavior genetics 2004; 34: 127-133. 
 



 

117 

193. Mukhopadhyay N, Finegold DN, Larson MG, Cupples LA, Myers RH, Weeks DE: A 
genome-wide scan for loci affecting normal adult height in the Framingham Heart Study. 
Human heredity 2003; 55: 191-201. 

 
194. Hiekkalinna T, Terwilliger JD, Sammalisto S, Peltonen L, Perola M: AUTOGSCAN: 

powerful tools for automated genome-wide linkage and linkage disequilibrium analysis. 
Twin Res Hum Genet 2005; 8: 16-21. 

 
195. Rinn JL, Snyder M: Sexual dimorphism in mammalian gene expression. Trends Genet 

2005; 21: 298-305. 
 
196. Weiss LA, Pan L, Abney M, Ober C: The sex-specific genetic architecture of 

quantitative traits in humans. Nature genetics 2006; 38: 218-222. 
 
197. Visscher PM, Hopper JL: Power of regression and maximum likelihood methods to map 

QTL from sib-pair and DZ twin data. Annals of human genetics 2001; 65: 583-601. 
 
198. Song KK, Weeks DE, Sobel E, Feingold E: Efficient simulation of P values for linkage 

analysis. Genetic epidemiology 2004; 26: 88-96. 
 
199. Wigginton JE, Abecasis GR: An evaluation of the replicate pool method: quick estimation of 

genome-wide linkage peak p-values. Genetic epidemiology 2006; 30: 320-332. 
 
200. Wiltshire S, Cardon LR, McCarthy MI: Evaluating the results of genomewide linkage 

scans of complex traits by locus counting. American journal of human genetics 2002; 
71: 1175-1182. 

 
201. Wilson EB: Probable inference, the law of succession, and statistical inference. J Am 

Statist Assoc 1927; 11: 241-247. 
 
202. Silventoinen K: Determinants of variation in adult body height. Journal of biosocial 

science 2003; 35: 263-285. 
 
203. Rudolf MC, Hochberg Z: Are boys more vulnerable to psychosocial growth retardation? 

Developmental medicine and child neurology 1990; 32: 1022-1025. 
 
204. Stini WA: Nutritional stress and growth: sex difference in adaptive response. American 

journal of physical anthropology 1969; 31: 417-426. 
 
205. Stinson S: Sex differences in environmental sensitivity during growth and development: 

Physical Anthropology Yearbook 28. New York: Alan R. Liss, 1985, vol 28, pp 123-147. 



 

118 

 
206. Silventoinen K, Kaprio J, Lahelma E, Viken RJ, Rose RJ: Sex differences in genetic and 

environmental factors contributing to body-height. Twin Res 2001; 4: 25-29. 
 
207. Avery CL, Freedman BI, Kraja AT et al: Genotype-by-sex interaction in the aetiology of 

type 2 diabetes mellitus: support for sex-specific quantitative trait loci in Hypertension 
Genetic Epidemiology Network participants. Diabetologia 2006; 49: 2329-2336. 

 
208. Ober C, Pan L, Phillips N, Parry R, Kurina LM: Sex-specific genetic architecture of 

asthma-associated quantitative trait loci in a founder population. Current allergy and 
asthma reports 2006; 6: 241-246. 

 
209. Richards AJ, Yates JR, Williams R et al: A family with Stickler syndrome type 2 has a 

mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in 
alpha 1 (XI) collagen. Human molecular genetics 1996; 5: 1339-1343. 

 
210. Griffith AJ, Sprunger LK, Sirko-Osadsa DA, Tiller GE, Meisler MH, Warman ML: 

Marshall syndrome associated with a splicing defect at the COL11A1 locus. American 
journal of human genetics 1998; 62: 816-823. 

 
211. Li Y, Lacerda DA, Warman ML et al: A fibrillar collagen gene, Col11a1, is essential for 

skeletal morphogenesis. Cell 1995; 80: 423-430. 
 
212. Benz K, Breit S, Lukoschek M, Mau H, Richter W: Molecular analysis of expansion, 

differentiation, and growth factor treatment of human chondrocytes identifies 
differentiation markers and growth-related genes. Biochem Biophys Res Commun 2002; 
293: 284-292. 

 
213. Lange K, Sinsheimer JS, Sobel E: Association testing with Mendel. Genetic 

epidemiology 2005; 29: 36-50. 
 
214. Roberts SB, MacLean CJ, Neale MC, Eaves LJ, Kendler KS: Replication of linkage 

studies of complex traits: an examination of variation in location estimates. American 
journal of human genetics 1999; 65: 876-884. 

 
215. Bartels CF, Bukulmez H, Padayatti P et al: Mutations in the transmembrane natriuretic 

peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type 
Maroteaux. American journal of human genetics 2004; 75: 27-34. 

 
216. Olney RC, Bukulmez H, Bartels CF et al: Heterozygous mutations in natriuretic peptide 

receptor-B (NPR2) are associated with short stature. The Journal of clinical 
endocrinology and metabolism 2006; 91: 1229-1232. 



 

119 

 
217. Lesnik Oberstein SA, Kriek M, White SJ et al: Peters Plus syndrome is caused by 

mutations in B3GALTL, a putative glycosyltransferase. American journal of human 
genetics 2006; 79: 562-566. 

 
218. Patel H, Cross H, Proukakis C et al: SPG20 is mutated in Troyer syndrome, an 

hereditary spastic paraplegia. Nature genetics 2002; 31: 347-348. 
 
219. Jaeken J, Wadman SK, Duran M et al: Adenylosuccinase deficiency: an inborn error of 

purine nucleotide synthesis. European journal of pediatrics 1988; 148: 126-131. 
 
220. Varon R, Vissinga C, Platzer M et al: Nibrin, a novel DNA double-strand break repair 

protein, is mutated in Nijmegen breakage syndrome. Cell 1998; 93: 467-476. 
 
221. Ludecke HJ, Schaper J, Meinecke P et al: Genotypic and phenotypic spectrum in tricho-

rhino-phalangeal syndrome types I and III. American journal of human genetics 2001; 
68: 81-91. 

 
222. Wuyts W, Van Hul W: Molecular basis of multiple exostoses: mutations in the EXT1 

and EXT2 genes. Human mutation 2000; 15: 220-227. 
 
223. Purcell S, Neale B, Todd-Brown K et al: PLINK: a tool set for whole-genome 

association and population-based linkage analyses. American journal of human genetics 
2007; 81: 559-575. 

 
224. Wozney JM, Rosen V, Celeste AJ et al: Novel regulators of bone formation: molecular 

clones and activities. Science 1988; 242: 1528-1534. 
 
225. Salomons GS, van Dooren SJ, Verhoeven NM et al: X-linked creatine-transporter gene 

(SLC6A8) defect: a new creatine-deficiency syndrome. American journal of human 
genetics 2001; 68: 1497-1500. 

 
226. Marziliano N, Mannarino S, Nespoli L et al: Barth syndrome associated with compound 

hemizygosity and heterozygosity of the TAZ and LDB3 genes. Am J Med Genet A 2007; 
143: 907-915. 

 
227. Cabezas DA, Slaugh R, Abidi F et al: A new X linked mental retardation (XLMR) 

syndrome with short stature, small testes, muscle wasting, and tremor localises to Xq24-
q25. Journal of medical genetics 2000; 37: 663-668. 

 



 

120 

228. Hamel BC, Kremer H, Wesby-van Swaay E et al: A gene for nonspecific X-linked 
mental retardation (MRX41) is located in the distal segment of Xq28. American journal 
of medical genetics 1996; 64: 131-133. 

 
229. Raynaud M, Ronce N, Ayrault AD, Francannet C, Malpuech G, Moraine C: X-linked 

mental retardation with isolated growth hormone deficiency is mapped to Xq22-Xq27.2 
in one family. American journal of medical genetics 1998; 76: 255-261. 

 
230. Vitale E, Specchia C, Devoto M et al: Novel X-linked mental retardation syndrome with 

short stature maps to Xq24. American journal of medical genetics 2001; 103: 1-8. 
 
231. Hughes-Benzie RM, Pilia G, Xuan JY et al: Simpson-Golabi-Behmel syndrome: 

genotype/phenotype analysis of 18 affected males from 7 unrelated families. American 
journal of medical genetics 1996; 66: 227-234. 

 
232. Gleghorn L, Ramesar R, Beighton P, Wallis G: A mutation in the variable repeat region 

of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated 
with severe, premature osteoarthritis. American journal of human genetics 2005; 77: 
484-490. 

 
233. Smits P, Li P, Mandel J et al: The transcription factors L-Sox5 and Sox6 are essential for 

cartilage formation. Developmental cell 2001; 1: 277-290. 
 
234. Lefebvre V, Li P, de Crombrugghe B: A new long form of Sox5 (L-Sox5), Sox6 and 

Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen 
gene. The EMBO journal 1998; 17: 5718-5733. 

 
235. Vandenberg P, Khillan JS, Prockop DJ, Helminen H, Kontusaari S, Ala-Kokko L: 

Expression of a partially deleted gene of human type II procollagen (COL2A1) in 
transgenic mice produces a chondrodysplasia. Proceedings of the National Academy of 
Sciences of the United States of America 1991; 88: 7640-7644. 

 
236. Cody JD, Hale DE, Brkanac Z, Kaye CI, Leach RJ: Growth hormone insufficiency 

associated with haploinsufficiency at 18q23. American journal of medical genetics 1997; 
71: 420-425. 

 
237. Bauer FE, Ginsberg L, Venetikou M, MacKay DJ, Burrin JM, Bloom SR: Growth 

hormone release in man induced by galanin, a new hypothalamic peptide. Lancet 1986; 
2: 192-195. 

 
238. Kennedy AM, Inada M, Krane SM et al: MMP13 mutation causes 

spondyloepimetaphyseal dysplasia, Missouri type (SEMD(MO). The Journal of clinical 
investigation 2005; 115: 2832-2842. 



 

121 

 
239. Emtage P, Vatta P, Arterburn M et al: IGFL: A secreted family with conserved cysteine 

residues and similarities to the IGF superfamily. Genomics 2006; 88: 513-520. 
 
240. Hsueh WC, Goring HH, Blangero J, Mitchell BD: Replication of linkage to quantitative 

trait loci: variation in location and magnitude of the lod score. Genetic epidemiology 
2001; 21 Suppl 1: S473-478. 

 
241. Curtis D: Genetic dissection of complex traits. Nature genetics 1996; 12: 356-358. 
 
242. Witte JS, Elston RC, Schork NJ: Genetic dissection of complex traits. Nature genetics 

1996; 12: 355-356; author reply 357-358. 
 
243. Lander E, Kruglyak L: Genetic dissection of complex traits: guidelines for interpreting 

and reporting linkage results. Nature genetics 1995; 11: 241-247. 
 
244. Risch NJ: Searching for genetic determinants in the new millennium. Nature 2000; 405: 

847-856. 
 
245. Pritchard JK, Cox NJ: The allelic architecture of human disease genes: common disease-

common variant...or not? Human molecular genetics 2002; 11: 2417-2423. 
 
246. Rogers J, Mahaney MC, Almasy L, Comuzzie AG, Blangero J: Quantitative trait linkage 

mapping in anthropology. American journal of physical anthropology 1999; Suppl 29: 
127-151. 

 
247. Weiss KM, Terwilliger JD: How many diseases does it take to map a gene with SNPs? 

Nature genetics 2000; 26: 151-157. 
 
248. Visscher PM, Macgregor S, Benyamin B et al: Genome partitioning of genetic variation 

for height from 11,214 sibling pairs. American journal of human genetics 2007; 81: 
1104-1110. 

 
249. Edwards MD, Stuber CW, Wendel JF: Molecular-marker-facilitated investigations of 

quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene 
action. Genetics 1987; 116: 113-125. 

 
250. Mackay TF: The nature of quantitative genetic variation revisited: lessons from 

Drosophila bristles. Bioessays 1996; 18: 113-121. 
 



 

122 

251. Paterson AH, Damon S, Hewitt JD et al: Mendelian factors underlying quantitative traits 
in tomato: comparison across species, generations, and environments. Genetics 1991; 
127: 181-197. 

 
252. Shrimpton AE, Robertson A: The Isolation of Polygenic Factors Controlling Bristle 

Score in Drosophila Melanogaster. II. Distribution of Third Chromosome Bristle Effects 
within Chromosome Sections. Genetics 1988; 118: 445-459. 

 
253. Sing CF, Boerwinkle EA: Genetic architecture of inter-individual variability in 

apolipoprotein, lipoprotein and lipid phenotypes. Ciba Foundation symposium 1987; 
130: 99-127. 

 
254. Kearsey MJ, Farquhar AG: QTL analysis in plants; where are we now? Heredity 1998; 

80 ( Pt 2): 137-142. 
 
255. Hayes B, Goddard ME: The distribution of the effects of genes affecting quantitative 

traits in livestock. Genet Sel Evol 2001; 33: 209-229. 
 
256. Grandillo S, Tanksley SD: QTL analysis of horticultural traits differentiating the 

cultivated tomato from the closely related species Lycopersicon pimpinellifolium. 
Theoretical and Applied Genetics 1996; 92: 935-951. 

 
257. Bost B, de Vienne D, Hospital F, Moreau L, Dillmann C: Genetic and nongenetic bases for 

the L-shaped distribution of quantitative trait loci effects. Genetics 2001; 157: 1773-1787. 
 
258. Altmuller J, Palmer LJ, Fischer G, Scherb H, Wjst M: Genomewide scans of complex 

human diseases: true linkage is hard to find. American journal of human genetics 2001; 
69: 936-950. 

 
259. Evans DM, Cardon LR: Guidelines for genotyping in genomewide linkage studies: 

single-nucleotide-polymorphism maps versus microsatellite maps. American journal of 
human genetics 2004; 75: 687-692. 

 
260. Kruglyak L: The use of a genetic map of biallelic markers in linkage studies. Nature 

genetics 1997; 17: 21-24. 
 
261. Sawcer SJ, Maranian M, Singlehurst S et al: Enhancing linkage analysis of complex 

disorders: an evaluation of high-density genotyping. Human molecular genetics 2004; 
13: 1943-1949. 

 
262. Peltonen L, Palotie A, Lange K: Use of population isolates for mapping complex traits. 

Nature reviews 2000; 1: 182-190. 



 

123 

 
263. de la Chapelle A: Disease gene mapping in isolated human populations: the example of 

Finland. Journal of medical genetics 1993; 30: 857-865. 
 
264. Blangero J: Localization and identification of human quantitative trait loci: king harvest 

has surely come. Current opinion in genetics & development 2004; 14: 233-240. 
 
265. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal 

components analysis corrects for stratification in genome-wide association studies. 
Nature genetics 2006; 38: 904-909. 

 
266. Pritchard JK, Stephens M, Donnelly P: Inference of population structure using 

multilocus genotype data. Genetics 2000; 155: 945-959. 
 
267. Goring HH, Curran JE, Johnson MP et al: Discovery of expression QTLs using large-scale 

transcriptional profiling in human lymphocytes. Nature genetics 2007; 39: 1208-1216. 
 
268. Morley M, Molony CM, Weber TM et al: Genetic analysis of genome-wide variation in 

human gene expression. Nature 2004; 430: 743-747. 
 
269. Dixon AL, Liang L, Moffatt MF et al: A genome-wide association study of global gene 

expression. Nature genetics 2007; 39: 1202-1207. 
 
270. Stranger BE, Forrest MS, Clark AG et al: Genome-wide associations of gene expression 

variation in humans. PLoS Genet 2005; 1: e78. 
 
271. Carlson CS, Eberle MA, Kruglyak L, Nickerson DA: Mapping complex disease loci in 

whole-genome association studies. Nature 2004; 429: 446-452. 
 
272. Hirschhorn JN, Daly MJ: Genome-wide association studies for common diseases and 

complex traits. Nature reviews 2005; 6: 95-108. 
 
273. Risch N, Merikangas K: The future of genetic studies of complex human diseases. 

Science 1996; 273: 1516-1517. 
 
274. Pritchard JK: Are rare variants responsible for susceptibility to complex diseases? 

American journal of human genetics 2001; 69: 124-137. 
 
275. Maller J, George S, Purcell S et al: Common variation in three genes, including a 

noncoding variant in CFH, strongly influences risk of age-related macular degeneration. 
Nature genetics 2006; 38: 1055-1059. 



 

124 

 
276. Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH: Multiple rare 

alleles contribute to low plasma levels of HDL cholesterol. Science 2004; 305: 869-872. 
 
277. Di Rienzo A: Population genetics models of common diseases. Current opinion in 

genetics & development 2006; 16: 630-636. 
 
278. Reich DE, Lander ES: On the allelic spectrum of human disease. Trends Genet 2001; 17: 

502-510. 
 
279. Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT: Mapping 

determinants of human gene expression by regional and genome-wide association. 
Nature 2005; 437: 1365-1369. 

 
 

 


	ABSTRACT
	TIIVISTELMÄ
	CONTENTS
	ABBREVIATIONS
	LIST OF ORIGINAL PUBLICATIONS
	1 INTRODUCTION
	2 REVIEW OF THE LITERATURE
	2.1 Height as a quantitative trait
	2.1.1 Biological basis of human growth
	2.1.2 Genetic background
	2.1.3 Environmental influences
	2.1.4 Associations with health
	2.1.5 Socioeconomic and psychosocial relevance
	2.1.6 Population differences in height distribution

	2.2 Human genetic variation and the human genome
	2.2.1 Organization of the human genome
	2.2.2 Emergence of genetic variation
	2.2.3 Genetic variants used in genetic mapping
	2.2.4 Human population genetics

	2.3 Quantitative genetics and genetic mapping
	2.3.1 Quantitative variation of human traits
	2.3.2 Genetic basis of quantitative variation
	2.3.3 Quantitative genetics models
	2.3.5 Genetic covariance between relatives
	2.3.6 Mapping quantitative trait loci (QTL)
	2.3.7 Statistical Testing

	2.4 Genetics of height
	2.4.1 Heritability of height
	2.4.2 Genome-wide scans for height QTL
	2.4.3 Gene associations for height


	3 AIMS OF THE STUDY
	4 MATERIALS AND METHODS
	4.1 Study subjects
	4.1.1 The Finnish family sample
	4.1.2 Families from Australia and Europe
	4.1.3 Families from the United States

	4.2 Methods and statistical analyses
	4.2.1 Combining the genome-wide screens
	4.2.2 Statistical analysis


	5 RESULTS
	5.1 Combined genome-wide screen in Finnish families
	5.1.1 Stratification of families
	5.1.2 Heritability estimates
	5.1.3 Genome-wide linkage results

	5.2 Combined genome-wide screen in Australian and European 
twin families
	5.2.1 Stratification of families
	5.2.2 Heritability estimates
	5.2.3 Genome-wide linkage results

	5.3 Combined analysis of families from the United States
	5.3.1 Stratification of families
	5.3.2 Heritability estimates
	5.3.3 Genome-wide linkage results


	6 DISCUSSION
	6.1 Heritability estimates for height
	6.2 Stature loci identified in the Finnish families
	6.2.1 Locus 1p21
	6.2.2 Family based association analysis of 1p21 in Finnish families and replication in a Finnish population cohort
	6.2.3 Other loci identified in Finnish families

	6.3 Stature loci identified in Australian and European families
	6.3.1 Locus 8q21
	6.3.2 Converging evidence for 8q21-q24 from an independent genomewide association analysis
	6.3.3 Other loci identified in Australian and European families

	6.4 Stature loci identified in families from the United States
	6.4.1 Locus 15q25
	6.4.2 Locus 12q12
	6.4.3 Locus 18q23
	6.4.4 Other loci identified in US families

	6.5 Stature loci localized in this study compared to previous findings
	6.5.1 The stature gene map
	6.5.2 Replication in genome-wide studies

	6.6 Conclusions from loci discovered in this study
	6.7 The importance of studying stature
	6.8 Lessons from genome-wide studies of stature
	6.8.1 Heritability and mappability
	6.8.2 Maximizing sample size by combining data
	6.8.3 Information content
	6.8.4 Stratification strategies

	6.9 Future strategies for studying stature
	6.9.1 Sample population
	6.9.2 Phenotype of choice
	6.9.3 Study design and analysis


	7 CONCLUDING REMARKS
	8 ACKNOWLEDGEMENTS
	9 REFERENCES



