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ABSTRACT 
 
Neuronal ceroid lipofuscinoses (NCL) are a group of common progressive 
recessively inherited neurodegenerative disorders of childhood. All types of NCL 
diseases cause progressive visual and mental decline, motor disturbances, 
epilepsy and behavioral changes, and lead to premature death. Prior to this study 
the first NCL gene was recently identified using the positional cloning approach. 
Mutations in the palmitoyl protein thioesterase (PPT1) were shown to result in the 
infantile form of NCL (INCL). At the same time, the positional cloning of the 
vLINCL disease gene (CLN5) was in progress. The position of the CLN5 gene 
was assigned by linkage analysis to chromosomal region 13q21.1-q32 and 
physical mapping of the region was ongoing. Both of these diseases are especially 
enriched in the Finnish population. 
 
In this thesis, fluorescent in situ hybridization on DNA fibers (fiber-FISH) was 
utilized in the physical mapping project of the critical CLN5 region. This visual 
mapping approach was essential in our efforts to produce a genomic clone contig 
over the CLN5 region. The fiber-FISH method not only enabled rapid 
confirmation of the order of genomic clones, but it also allowed the detection of 
overlaps between various clones. Thus, high-density mapping was possible 
without the tedious methods traditionally used in physical mapping approaches. In 
addition, a novel ultra-sensitive tyramide-based amplification system was used 
successfully to visualize short probes representing transcribed sequences in the 
critical region. 
 
The physical map of the critical region facilitated the identification of the CLN5 
gene, and its expression was analyzed as a part of this thesis. The biosynthesis, 
post-translational processing and intracellular localization of the CLN5 protein 
was investigated in transiently transfected BHK-21 cells. Confocal 
immunofluorescence microscopy and immunoprecipitation analysis showed that 
wild type CLN5 is a lysosomally targeted 60-kDa glycoprotein, which is partially 
secreted into the culture medium. Secretion of the polypeptide into the culture 
medium would imply that CLN5 is a soluble lysosomal glycoprotein, not an 
integral transmembrane protein as predicted earlier. The most common naturally 
occurring CLN5 disease mutation represents a premature stop codon that leaves 
the 16 C-terminal amino acids of the protein untranslated. These polypeptides 
were not targeted to lysosomes, which would imply that the pathogenesis of 
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vLINCL might be associated with the defective lysosomal trafficking of the 
corresponding polypeptide. 
 
In order to better understand the destruction of neurons in the central nervous 
system in the childhood forms of NCL-disorders, we characterized expression of 
the PPT1 gene in developing mouse brain and embryo. Northern blot analysis, in 
situ hybridization and immunohistochemistry revealed gradual increase in 
expression of PPT1 mRNA and protein during mouse development. A notable 
increase in PPT1 mRNA expression was monitored during a developmental stage 
of the mouse brain when new synaptic contacts are extensively formed. In 
addition to that, a relatively high prevalence of PPT protein was observed in the 
neuronal extensions. Based on these findings, it was suggested that PPT1 might 
have a role for survival of neural networks, possibly associated with the 
development and maintenance of the synaptic machinery. 
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REVIEW OF THE LITERATURE 
 
 
1. Neuronal ceroid lipofuscinoses 
 
1.1 Introduction 
 

1.1.1 Classification of neuronal ceroid lipofuscinoses 
 
Neuronal ceroid lipofuscinoses (NCLs) are a group of neurodegenerative 
disorders that are linked by common clinical and pathological features (Goebel, 
1995; Santavuori, 1988). The term NCL derives from the accumulation of ceroid- 
and lipofuscin-like storage cytosomes in various tissues (Zeman & Dyken, 1969). 
These diseases are characterized by progressive visual and mental decline, motor 
disturbances, epilepsy and behavioral changes, and ultimately they all lead to 
premature death. Traditionally, NCLs have been divided into four main types: 
infantile NCL (INCL; locus definition CLN1), classical late infantile NCL 
(LINCL; CLN2), juvenile NCL (JNCL; CLN3) and adult NCL (ANCL, CLN4). 
In addition to these four main types, several variant NCL subtypes have been 
defined (Table 1). 
 
Table 1. Classification of NCL diseases 
Locus Clinical type Chromosomal 

location 
Gene product 

CLN1 Infantile 1p32 Palmitoyl protein thioesterase 

CLN2 Late infantile 
Classical 

11p15 Pepstatin insensitive protease 

CLN3 Juvenile 16p12 Membrane protein 
CLN4 Adult, Kufs or Parrys disease Not known ? 
CLN5 Late infantile, 

Finnish variant 
13q22 Lysosomal protein (III) 

CLN6 Late infantile, 
Variant 

15q21-q23 Membrane protein 

CLN7 Late infantile, 
Turkish variant 

8p32 ? 

CLN8 Northern epilepsy 8p32 Membrane protein 
? Congenital ? ? 

(See chapter 1.1.2 for references) 
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In examinations with the electron microscope each classical NCL type has a 
characteristic ultrastructural appearance of storage material. The storage material 
forms granular osmiophilic deposits (GRODs) in the INCL, curvilinear pattern 
(CVP) in the LINCL and fingerprint profile (FPP) in JNCL (Santavuori, 1988). 
The ultrastructure of storage material in ANCL is mixed; being either a 
combination of FPP and CVP or GRODs (Berkovic et al., 1988b; Martin et al., 
1987). Biochemical analyses have shown that the GROD bodies mostly consist of 
sphingolipid activator proteins A and D (Tyynelä et al., 1993). In CVP and FPP 
inclusions the major accumulated material is mitochondrial ATP-synthase subunit 
c (Hall et al., 1991). 
 

1.1.2 Genetic and cell biological studies of NCL-disorders 
 
To date, six NCLs with different gene locations have been recognized by linkage 
analysis: 1p32 for CLN1 (Järvelä et al., 1991), 11p15 for CLN2 (Sharp et al., 
1997), 16q22 for CLN3 (Gardiner et al., 1990), 13q22 for CLN5 (Savukoski et 
al., 1994), 15q21-q23 for CLN6 (Sharp et al., 1997) and 8p32 for CLN8 
(Tahvanainen et al., 1994). In 1999, a Turkish variant, LINCL (CLN7) was 
excluded from all known NCL loci, suggesting that it represents a novel genetic 
locus for LINCL (Wheeler et al., 1999). Later on CLN7 was mapped onto the 
8p32chromosomal region (Mitchell et al., 2001), which is known to contain the 
CLN8 gene responsible for the Finnish disease Northern epilepsy (EPMR) (Ranta 
et al., 1999; Tahvanainen et al., 1994). Thus, it is probable that CLN7 is allelic to 
CLN8. To date no locus has been identified for ANCL (Berkovic et al., 1988a; 
Boehme et al., 1971) or congenital NCL (Norman & Wood, 1941). 
 
The defective genes behind the six human NCL diseases are known. Two of them 
encode soluble lysosomal enzymes. Palmitoyl protein thioesterase 1 (PPT1) is 
defective in CLN1 (Hellsten et al., 1996; Verkruyse & Hofmann, 1996; Vesa et 
al., 1995) and tripeptidyl peptidase (TPP1) in CLN2 (Sleat et al., 1997). PPT1 
removes palmitate groups from proteins in vitro (Camp & Hofmann, 1993; Camp 
et al., 1994) and TPP1 cleaves tripeptides from the N-terminus of small peptides 
(Vines & Warburton, 1999). The CLN3 gene was identified in 1995 (The 
International Batten Disease Consortium, 1995). This protein is an integral 
transmembrane protein, which may have a role in the regulation of the vacuolar 
pH (Pearce et al., 1999). In addition to lysosomes (Järvelä et al., 1998), several 
other intracellular localizations have been proposed for CLN3 (Katz et al., 1997; 
Kremmidiotis et al., 1999; Margraf et al., 1999). In neurons the protein has been 
shown to be transported along the neuronal extensions and to be targeted to 
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neuronal synapses (Järvelä et al., 1999; Luiro et al., 2001). The CLN8 gene 
encodes a membrane protein of unknown function (Ranta et al., 1999). It has been 
shown to be transported between the ER and ER-Golgi intermediate compartment 
(Lonka et al., 2000). The CLN6 gene was very recently cloned, and it is predicted 
to encode a novel transmembrane protein with unknown function (Gao et al., 
2002; Wheeler et al., 2002). The sixth known NCL gene is CLN5. The predicted 
amino acid sequence of CLN5 shows no homology to previously reported 
proteins and its function remains to be determined (Savukoski et al., 1998). 
 
Currently there is no unifying hypothesis, which would explain the molecular and 
cellular basis of the NCLs. It is unclear, how mutations in different genes result in 
similar diseases. Based on the acid phosphatase activity and electron microscopic 
studies, the storage material in NCLs is associated with lysosomes (Rapola, 
1993). The identification of mutations in lysosomal proteins (CLN1, CLN2, 
CLN3) also indicates that pathogenesis of the NCL disorders is somehow related 
to lysosomes. 
 
NCL disorders have been comprehensively reviewed in several recent articles 
(Mitchison & Mole, 2001; Mole, 1998; Peltonen et al., 2000; Weimer et al., 
2002) and special journal issues and books have been also published (The 
Neuronal Ceroid Lipofuscinosis, 1999; Proceedings of the 8th international 
congress on the neuronal ceroid lipofuscinoses, 2000). This thesis deals with 
CLN5 and CLN1 and they are described in more detail in the following sections. 
 
 
1.2 Finnish variant late infantile neuronal ceroid lipofuscinosis (CLN5) 
 

1.2.1 Clinical features 
 
Finnish variant late infantile neuronal ceroid lipofuscinosis (vLINCL; MIM 
256731) has its clinical onset at 2-7 years of age. The first symptom is motor 
clumsiness, followed by progressive visual failure, mental and motor deterioration 
and later by myoclonus and seizures. The ultrastructure of the storage material 
consists of curvilinear and fingerprint profiles. Subunit c of the mitochondrial 
ATP synthase is the major protein in vLINCL brain storage cytosomes. These 
cytosomes also contain minor amounts of sphingolipid activator proteins (SAPs) 
(Tyynelä et al., 1997). The age at death varies from 14 to 36 years (Holmberg et 
al., 2000; Santavuori et al., 1991; Santavuori et al., 1982). Cerebellar atrophy is 
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the most striking abnormality in brain imaging studies (Autti et al., 1992) and in 
autopsy specimens (Tyynelä et al., 1997). 
 

1.2.2 CLN5 gene and mutations 
 
The CLN5 gene was identified in 1998 using the positional cloning approach 
(Klockars et al., 1996; Savukoski et al., 1994; Savukoski et al., 1998). The gene 
has four exons and it has an open reading frame (ORF) of 1380 bp. The predicted 
amino acid sequence of CLN5 shows no homology to previously reported 
proteins. Very little is known about the expression of the gene and the function of 
the protein is not known. Based on the results of Northern and dot blot 
hybridizations the gene is expressed in a wide variety of tissues (Savukoski et al., 
1998). In situ hybridization and immunohistochemical studies have demonstrated 
that CLN5 is expressed at varying stages of corticogenesis in humans beginning at 
the early developmental stage and the expression level of CLN5 increases during 
brain development (Heinonen et al., 2000b). 
 
To date, four disease mutations have been described, of which three result in 
premature termination of the polypeptide chain (Holmberg et al., 2000; Savukoski 
et al., 1998). The most common mutation among Finnish CLN5 patients is a two 
base pair deletion, del(AT)2467-2468 resulting in Tyr392Stop. Another disease 
mutation found among Finnish patients is G1517A leading to a very truncated 
polypeptide (Trp75Stop). The SWE mutation, ins(C)1961, was found in one 
Swedish and one Finnish CLN5 patient, both being compound heterozygotes for 
the mutation. The fourth CLN5 mutation, G2127A, was found in a Dutch family 
and results in an amino acid substitution of Asp279Asn. All the mutations seem to 
result in a similar clinical phenotype (Holmberg et al., 2000). 
 
 
1.3 Infantile neuronal ceroid lipofuscinosis (CLN1) 
 

1.3.1 Clinical features 
 
The most severe form of the NCLs is INCL. Early development of children with 
INCL is normal until the age of 8–14 months, when retardation of psychomotor 
development is first observed. All patients enter a terminal stage before the age of 
3 and usually die between 6–15 years of age. The disorder leads to an 
extraordinary degree of brain atrophy. The cerebral cortex is almost completely 
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destroyed and the cerebellum is also extremely atrophic (Haltia et al., 1973; 
Rapola, 1993; Santavuori et al., 1974). 
 

1.3.2 PPT1 gene and mutations 
 
The defective gene, PPT1, underlying INCL was isolated using a positional 
cloning strategy (Hellsten et al., 1993; Järvelä et al., 1991; Vesa et al., 1995). The 
gene is composed of nine exons and it spans a 25 kb region in genomic DNA 
(Schriner et al., 1996). To date, 39 disease causing mutations have been identified 
in PPT1 gene. All known mutations in the PPT1 gene (and in other NCL-genes) 
are contained in the NCL mutation database (http://www.ucl.ac.uk/ncl/) (Mole et 
al., 2001). Most of the PPT1 mutations cause severe an early onset INCL 
phenotype. However, certain mutations in PPT1 gene have been reported to 
produce phenotypes which are clinically indistinguishable from later onset NCLs; 
LINCL, JNCL and ANCL (Hofmann et al., 1999; Mitchison et al., 1998; Van 
Diggelen et al., 2001). 
 

1.3.3 PPT1 protein 
 
PPT1 enzyme was originally purified from bovine brain cytosol (Camp & 
Hofmann, 1993). The function of PPT1 is to remove long-chain fatty acids 
(usually palmitate) from lipid-modified cysteine residues in fatty acylated 
proteins. Initially, lysosomal localization of PPT1 was considered unlikely, 
because of the neutral pH optimum of this enzyme (Camp et al., 1994). In 1996, it 
was shown that PPT1 is one of the most abundant mannose-6-phosphorylated 
glycoproteins in the rat brain (Sleat et al., 1996). As the mannose 6-phosphate 
modification is a hallmark of lysosomal enzyme trafficking (Kornfeld, 1990), 
PPT1 was suggested to be a lysosomal hydrolase (Sleat et al., 1996). Later on, it 
was confirmed that PPT1 is targeted to lysosomes through the mannose 6-
phosphate receptor pathway in transiently transfected COS-1 cells (Hellsten et al., 
1996; Verkruyse & Hofmann, 1996). Moreover, the lysosomal nature of the site 
of PPT1 function in the lymphoblastoid cells is clearly demonstrated - PPT1 has a 
role in the degradation of fatty-acylated proteins in the lysosomes (Lu et al., 1996; 
Lu et al., 2002). However, recent studies have suggested that in neurons PPT1 is 
localized in synaptosomes and synaptic vesicles rather than in the lysosomal 
compartment (Heinonen et al., 2000a; Lehtovirta et al., 2001). Neurons and their 
synapses are enriched in palmitoylated proteins, and due to its reversible nature, 
protein palmitoylation appears to have a crucial role in the functioning of the 
nervous system (Bizzozero et al., 1994). Thus, it is speculated that in addition to 

http://www.ucl.ac.uk/ncl/
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lysosomal protein degradation, PPT1 might also have a biological role outside 
lysosomes (Heinonen et al., 2000a; Lehtovirta et al., 2001; Suopanki et al., 2002). 
Moreover, it has been shown that different substrates show different pH optima 
for PPT1, which further indicates a potential extralysosomal function for PPT1 
(Cho et al., 2000). However, the palmitate groups that modify proteins are 
normally found on the cytoplasmic face of the plasma membrane and based on 
our current knowledge, PPT1 is located on the luminal side of vesicles. Thus, it 
needs to be explained how PPT1 could act on cytoplasmic substrates. 
 
The crystal structure of bovine PPT1 has been resolved (Bellizzi et al., 2000). The 
model contains amino acids 28-306, which corresponds to the entire mature PPT1 
polypeptide after cleavage of the 27-residue signal peptide. PPT1 has an �/�-
hydrolase fold which is a characteristic structure of two previously determined 
thioesterases. The catalytic triad of PPT1 consists of serine 115, aspartic acid 233 
and histidine 289. Most of the PPT1 mutations, which cause INCL and LINCL 
phenotypes are located close to the active site and palmitate binding pocket, or 
they disrupt the folding of the PPT1 protein. The mutations associated with later 
onset phenotype (JNCL) are located away from active site and are predicted to 
cause less dramatic changes to the structure of the PPT1. Some of the late onset 
mutations have been shown to retain some residual PPT activity, which further 
explains the milder phenotype of these patients (Das et al., 2001; Hofmann et al., 
1999). The effects of different PPT1 mutations have also been studied in transient 
cell expression systems. While the wild type PPT1 is transported to lysosomes in 
nonneuronal cell lines, all the studied mutants are trapped in the ER and they do 
not show any detectable enzyme activity (Hellsten et al., 1996; Salonen et al., 
2001; Vesa et al., 1995). However, in infected mouse primary neuron cultures 
PPT1 polypeptides with severe mutations reside in the ER, whereas polypeptides 
with mild mutations migrate further in neurons (Salonen et al., 2001).  
 
Despite intense investigation of the PPT1 protein, its in vivo substrate is not 
known and pathogenesis of the INCL disorder remains to be resolved. Recently 
developed PPT1 knockout mouse model produce a characteristic NCL-like 
phenotype (Gupta et al., 2001). Neurological abnormality is evident in 100% of 
PPT1-deficient mice by their eighth month and mice were deat before they were 
ten months old. Autofluorescent storage material, typical for INCL patients, was 
observed throughout the brains of PPT1 knockout mice. Thus, this mouse model 
provides a valuable tool to clarify the pathogenesis of the INCL disorder. 
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2. Targeting of lysosomal proteins 
 
2.1 Soluble proteins 
 
Lysosomes are acidic organelles in which endogenous and internalized 
macromolecules are degraded by lumenal hydrolases (Kornfeld & Mellman, 
1989). The targeting of most of the soluble lysosomal hydrolases is dependent on 
the addition of mannose 6-phophate residues (Man-6-P) to their carbohydrates 
and recognition of this signal by receptors, which mediate the delivery of the 
proteins to lysosomes (Figure 1) (Kornfeld, 1990; Kornfeld & Mellman, 1989). 
The specificity of this Man-6-P pathway is determined by the Golgi-resident 
enzyme UDP-N-acetylglucosamine 1-phosphotransferase (phosphotransferase), 
which transfers N-acetylglucosamine-1-phosphate from UDP-N-
acetylglycosamine to mannose residues of the high mannose-type oligosaccharide 
side chains of lysosomal enzymes. Phosphotransferase recognizes its substrates 
on the basis of a specific arrangement of lysine residues on the surface of 
lysosomal proteins (Cuozzo et al., 1998; Tikkanen et al., 1997). In a second 
reaction the N-acetylglucosamine is removed by another intra-Golgi enzyme (N-
acetylglucosamine 1-phosphodiester α-N-acetylglucosaminidase) generating 
Man-6-P residue on the oligosaccharide side chains. In the late Golgi 
compartments, lysosomal enzymes bind to mannose 6-phophate receptors 
(MPRs). Two MPRs with overlapping functions have been identified to date. The 
first is a large (300 kDa) type I membrane glycoprotein that also binds insulin-like 
growth factor II. The second, a cation dependent MPR is a smaller type I 
transmembrane glycoprotein (45 kDa) (Le Borgne & Hoflack, 1998; Ludwig et 
al., 1995). The receptor bound enzymes are packed into clathrin-coated transport 
vesicles that are targeted into the endosomal compartment. Collection of MPRs 
into clathrin-coated vesicles is directed by tyrosine- and dileucine-based motifs in 
their cytoplasmic domains. These motifs are recognized by the GGA (Golgi 
localized, gamma-adaptin ear homologous, ADP-ribosylation factor binding 
proteins) proteins (Doray et al., 2002). The GGAs functions in the trans Golgi 
network (TGN) as adaptor proteins selecting cargo molecules for incorporation 
into AP-1 containing clathrin coated vesicles. In endosomes, the hydrolases 
dissociate from their receptors and subsequently reach lysosomes. The endosomal 
MPRs are recognized by a 47 kDa protein (TIP47), which facilitates collection of 
MPRs into transport vesicles destined to go back to the Golgi complex (Diaz & 
Pfeffer, 1998). 
 



Although Man-6-P -dependent targeting is the most common pathway for the 
transport of soluble lysosomal enzymes, some of them are transported to 
lysosomes independently of the Man-6-P sorting signal (Glickman & Kornfeld, 
1993). One of these targeting mechanisms involves membrane associatio, as is 
demonstrated for prosaposin, cathepsin D and �-glucosylceramidase (Rijnboutt et 
al., 1991). 
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Figure 1. Targeting of lysosomal proteins (Modified from Rouille et al 2000).  Soluble 
lysosomal enzymes are sorted into lysosomes at the trans-Golgi network (TGN) by the mannose 6-
phosphate receptors (MPRs). Lysosomal hydrolases can also be secreted outside of the cell, and 
endocytosed back to the cell from the plasmamembrane. Also lysosomal transmembrane proteins 
are sorted to the lysosomes in the TGN. Membrane traffic requires the formation of clathrin coated 
transport intermediates. Different kinds of adaptor proteins (APs and GGAs) have important 
functions in the cargo inclusion into the transport vesicles. Recycling of the MPRs to the TGN 
from late endosomes requires TIP47 protein. 
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2.2 Membrane proteins 
 
Lysosomal transmembrane proteins are also sorted to lysosomes in the TGN. 
Targeting of numerous lysosomal transmembrane proteins from the TGN (or from 
the cell surface) is mediated by tyrosine-based and/or dileucine-based sorting 
signals present in their cytoplasmic domains (Hunziker & Geuze, 1996; 
Kirchhausen, 1999). Most tyrosine-based signals conform to the consensus motifs 
YXXØ (Y is tyrosine, X is any amino acid, and Ø is an amino acid with a bulky 
hydrophobic side chain) or NPXY (N is asparagine and P is proline) 
(Kirchhausen, 1999; Marks et al., 1997). While MPR traffic relies on the AP-1 
adaptor complex, the proper targeting of many lysosomal membrane proteins 
requires AP-3 (Le Borgne et al., 1998). 
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3. Fluorescence in situ hybridization in positional cloning 
 
3.1 Positional cloning 
 
Today, it is possible to isolate a disease-related gene simply on the basis of its 
position in the genome. No knowledge is needed about the biochemical 
background of the disease or how the gene functions. This technique is commonly 
referred to as positional cloning (Collins, 1992; Collins, 1995) (Figure 2). The 
first step towards isolation of a disease gene is collecting families where the trait 
of interest is segregating. Specific chromosomal localization of the disease gene is 
determined with linkage analysis (Ott & Bhat, 1999). Linkage analysis is based 
on polymorphic markers, which are used to detect variations between individuals. 
This allows separation of maternal and paternal chromosomes. Due to the 
recombination events in meioses only the markers that are close to the disease 
gene co-segregate with the disease phenotype. Usually it is possible to restrict the 
disease gene to a 5 Mbp region by linkage analysis (Collins, 1995). However, in 
isolated populations, like in Finland, critical chromosomal region can be 
narrowed down to less than 0.1 kb with linkage disequilibrium mapping and 
haplotype analysis (Hästbacka et al., 1992; Hästbacka et al., 1994; Peltonen et al., 
1995). 
 
After the disease gene region is established, it is possible to utilize the fruits of the 
Human Genome Project (http://www.ornl.gov/hgmis/) (Lander et al., 2001) and 
move to use genome browsers (http://genome.ucsc.edu/ (Kent et al., 2002) or 
http://www.ensembl.org/ (Hubbard et al., 2002)) to search for candidate disease 
genes from the restricted DNA region, and finally to identify specific disease 
causing mutations. However, before the first draft of the human genomic 
sequence was released, gene hunters were forced to construct physical maps over 
the critical disease gene regions for detailed sequence analyses of regional genes. 
Physical mapping means isolating and ordering of genomic clones along the 
disease gene region. An overlapping clone contig is necessary for a large scale 
sequencing in the critical chromosomal region. Physical mapping is still necessary 
on certain chromosomal regions, because of sequence annotation problems and 
still existing gaps in the sequence of the human genome. In the first draft of the 
human genome, around 90% of the gene-rich (euchromatin) portion of the 
genome was considered to be completed. This means that only 25 % of the whole 
genome was in its finished stage (Bailey et al., 2001; Bork & Copley, 2001). 
Updated information about the progress of the sequencing project can be obtained 
from http://www.ornl.gov/hgmis/project/progress.html. 

http://www.ornl.gov/hgmis/
http://genome.ucsc.edu/cgi-bin/hgGateway
http://www.ensembl.org/
http://www.ornl.gov/hgmis/project/progress.html
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Figure 2. Schematic presentation of different stages of the positional cloning strategy. 
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3.2 Principle of FISH technique 
 
Fluorescence in situ hybridization (FISH) is a technique that allows visualization 
of specific DNA targets on microscopic slides. The principle of the method is that 
labeled nucleotide sequences (probes) are hybridized directly to pieces of DNA or 
RNA with the complementary sequences in metaphase chromosomes, nuclei, 
tissues or in free chromatin (Figure 3) (Heng & Tsui, 1998; Trask, 1991). The 
technique involves labeling of the probe with a reporter molecule (e.g. biotin or 
digoxigenin), followed by hybridization of the labeled probe and target DNA and 
detection of hybridization with immunofluorescent reagents (directed directly or 
indirectly against the labeled probe). Finally, the hybridization signal is observed 
with a fluorescence microscope. The in situ hybridization technique was 
developed in 1969 (John et al., 1969; Pardue & Gall, 1969), at the time when 
radioisotopes were the only available labels for nuclei acid probes. Tagging of the 
probes with different fluorescent colors (Pinkel et al., 1986), in conjunction with 
improvements in fluorescence microscopy and computer based image analysis, 
has made the technique safe, fast, reliable and sensitive. This has allowed FISH to 
be applied to a broad spectrum of biological and clinical problems (Heng et al., 
1997; Lichter & Ward, 1990; Luke & Shepelsky, 1998). Some examples of them 
are listed in Table 2. 
 
 
Table 2. Applications for FISH 
 
Research Clinical 
Gene mapping Clinical cytogenetics 
Nuclear architecture Prenatal diagnosis 
Chromatin packaging Cancer diagnostics 
DNA replication Infectious disease diagnostics 
RNA processing  
Gene amplification  
Gene integration  
Chromatin elimination  
Tumour biology  
 
(For references see Lichter et al. 1990; Luke et al. 1998; Heng et al. 1997) 
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Figure 3. Principle of the FISH technique. A double stranded DNA probe is labeled with 
reporter molecule (A and B). The probe and target DNA are denatured and allowed to hybridize 
with each other (B and C). The reporter molecule is detected with fluorescently labeled antibodies 
(D). Observation of the hybridized sequences is done with fluorescence microscope. Different 
kinds of signals are seen at the site of the probe hybridization depending on which kind of target 
DNA is used in the hybridization reaction (E). 
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3.3 Different resolution FISH applications can be utilized in different stages 
of physical mapping 
 
Visual mapping by FISH represents the most direct approach for the ordering and 
orientation of genomic clones. It can be utilized in different stages of a mapping 
project to speed up ordering of genomic clones (Heiskanen et al., 1996b). 
Genomic clones for physical mapping can be obtained from genomic DNA 
libraries in which genomic DNA fragments are cloned into vector DNAs and 
maintained in yeast or bacterial hosts. Different kinds of vectors allow the 
incorporation of DNA inserts of various sizes: yeast artificial chromosomes 
(YACs) up to 2000 kilobase pairs (Burke et al., 1987), bacterial artificial 
chromosomes (BACs) up to 300 kb (Shizuya et al., 1992), P1 and P1 derived 
artificial chromosomes (PACs) 80 – 300 kb (Ioannou et al., 1994; Sternberg, 
1990) and cosmids 30 – 45 kb (Collins & Hohn, 1978). Ordering of the genomic 
clones can be initiated by searching for overlapping sequence tagged sites (STS) 
from the clones. STSs are unique DNA sequences that can be easily amplified 
with PCR and they can function as landmarks that define the position on the 
physical map (Olson et al., 1989). Other commonly used methods in physical 
mapping are pulsed-field gel electrophoresis (PFGE) (Schwartz & Cantor, 1984) 
and radiation hybrid mapping (Cox et al., 1990). All of these physical mapping 
techniques are very labour and time consuming. Moreover, they do not provide 
any information on the size of the overlap or gap between two clones.  
 
Resolution of the FISH mapping depends on the condensation level of the target 
chromatin (Figure 4). In metaphase chromosomes, differentially labelled probes 
can be distinguished if they are separated by approximately 1 – 3 megabases (Mb) 
(Hopman et al., 1986; Lichter et al., 1990). Prometaphase chromosomes have 
been used for the ordering of DNA sequences in the 50 kb – 1 Mb range (Inazawa 
et al., 1994; Lebo et al., 1992), mechanically stretched chromosomes in the 0.1 
Mb (Haaf & Ward, 1994b; Laan et al., 1995) and interphase nuclei between 50 kb 
– 1 Mb range (Lawrence et al., 1990; Trask et al., 1993). The highest level of 
resolution (1 –500 kb) is reached when free chromatin fibers are used as a target 
for hybridization. Different kinds of techniques have been developed to release 
chromatin fibers from cells for the assembly of high-resolution physical maps 
(Heng & Tsui, 1998; Weier, 2001). First fiber-FISH protocols were introduced in 
1992. Heng et al. described a chromatin releasing method, which was based on 
different drug and alkaline treatments (Heng et al., 1992). In parallel with Heng, 
Wiegant et al. developed a method, which was based on highly extended DNA 
loops (halo-like structures) arranged around the nuclear matrix (Wiegant et al., 



1992). Subsequently, several other fiber-FISH techniques have been described, 
e.g. a direct visual DNA map (DIRVISH) (Parra & Windle, 1993; Windle et al., 
1995), extended chromatin fibers (ECF) (Haaf & Ward, 1994a), free DNA 
(Fidlerova et al., 1994; Senger et al., 1994), fiber-FISH (Heiskanen et al., 1995; 
Heiskanen et al., 1996a; Heiskanen et al., 1994; Heiskanen et al., 1996b) and 
quantitative DNA fiber mapping (Bensimon et al., 1994; Weier et al., 1995). 
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Figure 4. The resolution of FISH depends on the degree of packing of the target DNA. Signals 
of two probes located 500 kb apart from each other can not be resolved as two separate signals on 
metaphase chromosomes (A). Mechanical stretching of chromosomes by cytocentrifugation 
improves the resolution of metaphase FISH and orientation of the probes can be determined (B). 
In the interphase nucleus the level of chromatin condensation is low. The probes are seen as 
closely paired signals within the interphase nucleus (C). Free chromatin, which is released from 
the interphase nucleus, provides the highest resolution for FISH (D). 
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4. Computational characterization of identified disease genes 
 
4.1 Introduction 
 
The progress in sequencing projects of the human and other species has made 
computational sequence analysis of the gene a critical step that can provide clues 
to the molecular basis of pathogenesis and invaluable insights for further 
experimental analysis (Sreekumar et al., 2001). There are many biological 
databases and computational sequence analysis tools available on the Internet. 
Links to different kind of tools and databases can be easily accessed through 
several molecular biology servers (Table 3). The Molecular Biology Database 
Collection (Baxevanis, 2002) is a good initial point to start to find useful tools and 
databases. It provides searchable summaries and updates for each of the databases 
and is freely available to everyone through the Nucleic Acid Research web site at 
http://nar.oupjournals.org. 
 
 
Table 3. Links to some major molecular biology servers. 
 
National Center for Biotechnological Information (NCBI) http://www.ncbi.nlm.nih.gov/ 
European Bioinformatics Institute (EMBL-EBI) http://www.ebi.ac.uk/services/ 
DNA Database of Japan http://www.ddbj.nig.ac.jp/ 
UCSC Genome Bioinformatics http://genome.ucsc.edu/ 
Expert Protein Analysis system (ExPASy) http://www.expasy.ch/ 
GenomeNet http://www.genome.ad.jp/ 
 
 
Although biologists are increasingly turning to web-based bioinformatics 
programs to analyse their molecules of interest, there are also certain limits to 
computational sequence analysis of which users should be aware. There are often 
plenty of options available even in simple programs and using default setting may 
end up with suboptimal results. Potentially interesting biological facts can be 
overlooked or on the contrary, computationally produced artefacts are easily 
approved when they seem to point to some really exciting biology. Thus, it is 
crucial to read the documentation associated with any bioinformatics program or 
database used, because it often includes useful tips as well as some of the 
avoidable pitfalls. (Bork, 2000; Claverie, 2000; Fuchs, 2000; Peri et al., 2001; 
Wolfsberg et al., 2002). 
 

http://nar.oupjournals.org/
http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/services/
http://www.ddbj.nig.ac.jp/
http://genome.ucsc.edu/
http://www.expasy.ch/
http://www.genome.ad.jp/


4.2 Nucleotide sequences 
 

4.2.1 Structure of the gene 
 
In order to understand the function of the identified disease gene properly, it is 
important to define the structure of the gene in detail. Characterization of the gene 
should include a description of the promoter region, determining of transcription 
and translation initiation sites, finding of open reading frame, defining of 
exon/intron boundaries and analysing the structure of the untranslated 3’ end 
region as well. Alternatively spliced forms of the gene should also be identified, 
as it is suggested that alternative splicing is one of the most significant 
components of the functional complexity of the human genome (Modrek & Lee, 
2002). Thus, the formation of mRNA is only the first step in a long sequence of 
events resulting in the synthesis of a protein (Figure 5) (Graves & Haystead, 
2002). 
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Figure 5. Mechanism by which a single gene can give rise to multiple gene products. Modified 
from Graves and Haystead (2002). 
 
 

4.2.1.1 Elucidation of complete gene structures 
 
A good way to initiate characterization of the gene structure is to use The Human 
Genome Browser (http://genome.ucsc.edu/; Kent et al., 2002) or The Ensembl 
Genome Browser (http://www.ensembl.org/; Hubbard et al., 2002). They are 
automatically annotated web tools, which can be used to display graphically any 
requested portion of the genome. These tools combine information collected from 
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a wide range of methods and sources (e.g. known genes, gene prediction 
programs, EST clusters). Nature Genetics has recently published a User's Guide to 
the Human Genome, which is a handbook for using these browsers (Wolfsberg et 
al., 2002). The AceView system at the NCBI’s web site is also worth visiting 
(http://www.ncbi.nih.gov/IEB/Research/Acembly/index.html; unpublished). It 
contains information on human genes, based upon the analysis of all the human 
mRNAs and ESTs available in Genbank. All of these three tools provide pre-
computed analysis of sequences that a user can browse but not alter. However, if 
a more extensive characterization is needed (e.g. promoter predictions, searching 
for alternative polyadenylation sites or splice sites beyond known EST 
sequences), there are also tools for which users can choose their own sequences 
for analysis (Fortna & Gardiner, 2001). Web-based tools like NIX 
(http://www.hgmp.mrc.ac.uk/) or RUMMAGE (http://gen100.imb-
jena.de/rummage/; Taudien et al., 2000) are useful if a limited length of sequence 
need to be analyzed. Programs that users run on their own computers are 
advantageous, if large sequence patterns have to be analyzed (e.g. Genotator, 
http://www.fruitfly.org/~nomi/genotator/; Harris, 1997). 
 

4.2.1.2 Promoter analysis 
 
Understanding the regulation of the gene expression is an important aspect of 
understanding the gene function. The promoter is a primary component that 
controls gene expression. It can be defined as a region of DNA surrounding the 
transcription start site (TSS) that is able to direct transcription from the correct 
TSS (Fickett & Wasserman, 2000). The Eukaryotic Promoter Database (EPD, 
http://www.epd.isb-sib.ch/) is a collection of experimentally defined promoters, 
but unfortunately promoters have not been defined for most human genes (Praz et 
al., 2002). Thus, reliable computational methods for recognition and 
characterization of promoters are needed. However, there are no clear signals for 
motifs that could be uniformly related to the control of transcription, and 
performance of many promoter prediction systems has been reported to be very 
poor (Fickett & Hatzigeorgiou, 1997; Reese et al., 2000). One of the most current 
methods for the predicting of promoter regions is CONPRO 
(http://stl.bioinformatics.med.umich.edu/conpro/), which combines several 
previously developed methods for promoter identification. As a new feature, it 
utilizes information of EST and mRNA sequences to place potential promoter 
regions in a genomic sequence. In a test set of 120 promoters, the program 
detected promoters correctly for about 71% of the human genes with known 
mRNAs (Liu & States, 2002).  

http://www.nature.com/cgi-taf/DynaPage.taf?file=/ng/journal/v32/n1s/index.html
http://www.nature.com/cgi-taf/DynaPage.taf?file=/ng/journal/v32/n1s/index.html
http://www.ncbi.nih.gov/IEB/Research/Acembly/
http://www.hgmp.mrc.ac.uk/
http://gen100.imb-jena.de/rummage/
http://gen100.imb-jena.de/rummage/
http://www.fruitfly.org/~nomi/genotator/
http://www.epd.isb-sib.ch/
http://stl.bioinformatics.med.umich.edu/conpro/
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4.2.1.3 Initiation of translation 

 
The identification of correct translation initiation codons is an important aspect of 
interpreting actual open reading frames of novel mRNA sequences. It has been 
traditionally suggested that eukaryotic ribosomes initiate translation almost 
exclusively at the 5' proximal AUG codon (Kozak, 1987; Kozak, 1995), although 
some exceptions to this rule have been reported (Kozak, 1996). However, in a 
recent study, it was reported that initiation of translation from upstream AUGs is 
quite common. This study suggested that leaky scanning and, reinitiation or 
internal initiation of translation have a much greater role than previously believed 
(Peri & Pandey, 2001). The program ATG_EVALUATOR can be used for 
computational prediction of start codons (http://www.itba.mi.cnr.it/webgene/; 
Rogozin et al., 2001). 
 
 

4.2.1.4 Utilization of EST sequences 
 
The database of expressed sequence tags (dbEST, 
http://www.ncbi.nlm.nih.gov/dbEST/; Boguski et al., 1993) is a division of 
GenBank (Benson et al., 2002) that contains information on partial cDNA 
sequences from number of different organisms. New data are submitted to dbEST 
continuously, and in September 2002 there were almost five million human ESTs 
in this database. Although the stated purpose of most large-scale EST sequencing 
programs has been gene discovery, it has turned out that these sequence resources 
are invaluable both for gene prediction and for confirming models of gene 
structure (Lewis et al., 2000). Besides that EST sequences are very useful for 
detecting of exon/intron boundaries, they are also extremely convenient for 
identifying alternate polyadenylation sites (Beaudoing et al., 2000; Beaudoing & 
Gautheret, 2001; Gautheret et al., 1998) and detecting alternatively spliced forms 
of the gene (Brett et al., 2000; Brett et al., 2002; Mironov et al., 1999; Modrek & 
Lee, 2002; Modrek et al., 2001; Xu et al., 2002). Several gene prediction 
programs (Claverie, 1997) take advantage of EST sequence information, but there 
are also specialized databases and tools that can be utilized in structural analysis 
of the gene. For example, SpliceNest (http://splicenest.molgen.mpg.de/) is a web-
based graphical tool to explore gene structure, which is based on clustered EST 
sequences (Krause et al., 2002). 
 
 

http://www.itba.mi.cnr.it/webgene/
http://www.ncbi.nlm.nih.gov/dbEST/
http://splicenest.molgen.mpg.de/
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4.2.2 Similarity searches 
 
Database searching with methods like BLAST (Altschul et al., 1990) or FASTA 
(Pearson & Lipman, 1988) is probably the most familiar stage of sequence 
analysis for many scientists who have analysed a gene of interest. Database 
searches may provide information about the function of the gene, if the query 
sequence appears to be homologous to experimentally annotated gene(s) 
(Andrade et al., 1999). Different kinds of BLAST programs and comprehensive 
information how to use them can be accessed through NCBIs web pages 
(http://www.ncbi.nlm.nih.gov/BLAST/). Similarly, FASTA programs and 
information how to use them can be found from EMBLs web pages 
(http://www.ebi.ac.uk/fasta33/). 

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ebi.ac.uk/fasta33/


 30

4.3 Protein sequences 
 

4.3.1 Function 
 
The discovery of protein function directly from sequence has become a 
fundamental question as thousands of unknown proteins and increasing numbers 
of complete genomes are made available daily in the public domain (Rigoutsos et 
al., 2002). In the human genome, it is estimated that there are approximately 30 
000 – 40 000 genes in total and the number of annotated genes with unknown 
function is approximately 40 – 60% (Lander et al., 2001; Venter et al., 2001). 
Probably the most common way to learn more about the functions of protein 
molecules is to search for similarities between a query protein and proteins with 
known annotations in databases. It is possible by using similarity search 
algorithms like BLAST (Altschul et al., 1990), available for example at 
http://www.ncbi.nlm.nih.gov/BLAST/, or FASTA (Pearson & Lipman, 1988), 
available for example at http://www.ebi.ac.uk/fasta33/. Ideally, a search output 
will show unequivocal similarity to a well-characterized protein over the full 
length of the query. However, the usual result is a list of partial matches to 
various unrelated protein families. Thus, identification of functions of 
multidomain proteins is often problematic. The solution to this problem is to use 
pattern databases (Table 4), which can be used to assign an unknown query 
sequence to a known protein family (Attwood, 2000). 
 
 
Table 4. Some of the major pattern databases 
PROSITE http://www.expasy.ch/prosite/  
Pfam http://www.sanger.ac.uk/Software/Pfam/  
SMART http://smart.embl-heidelberg.de/  
PRINTS http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/ 
BLOCKS http://www.blocks.fhcrc.org/  
TIGRFAMs http://www.tigr.org/TIGRFAMs/  
 
 
The functional assignments by homology usually involve identification of some 
specific molecular function of the protein, like enzymatic activity. However, a full 
description of “protein function” requires a broad range of attributes and features. 
It is essential to define the function of the protein in the cellular context, e.g., in 
which metabolic pathway a protein is working on and to define its interacting 
partners. Finally, we must understand how the protein functions in physiological 

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ebi.ac.uk/fasta33/
http://www.expasy.ch/prosite/
http://www.sanger.ac.uk/Software/Pfam/
http://smart.embl-heidelberg.de/
http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/
http://www.blocks.fhcrc.org/
http://www.tigr.org/TIGRFAMs/
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subsystems and together with environmental stimuli defines the phenotypic 
properties of the organism (Bork et al., 1998; Eisenberg et al., 2000). 
 
New computational methods have been developed to place the proteins in their 
context of cellular function (Eisenberg et al., 2000). These methods utilize 
information from the fully sequenced genomes of numerous organisms. The 
method of phylogenetic profiles is based on the assumption that functionally 
linked proteins evolve in a correlated fashion, and, therefore, they have homologs 
in the same subset of organisms (Pellegrini et al., 1999). The domain fusion or 
Rosetta stone method looks for groups of proteins that are distinct in a given 
organism but appear as a single product in another organism. It is based on the 
assumption that if a composite protein is uniquely similar to two component 
proteins in another species, the component proteins are most likely to interact 
(Enright et al., 1999). The gene neighbour method assumes that it is possible to 
predict functional coupling genes based on conservation of gene clusters between 
genomes. This method is most robust for prokaryotic genomes, where gene 
clusters are typically composed of functionally related genes (Overbeek et al., 
1999). 
 
As the need for automated approaches for the functional assignment of proteins 
increases, new methods are published regularly. One of them is the dictionary-
driven protein annotation approach (http://cbcsrv.watson.ibm.com/Tpa.html) 
(Rigoutsos et al., 2002). It is based on similarity searches in the Bio-Dictionary, 
which is a collection of small amino acid sequences derived from public 
databases using the TEIRESIAS algorithm. This algorithm is designed for 
discovery of rigid patterns in biological sequences (Rigoutsos & Floratos, 1998). 
Another recent protein function prediction method is the ProtFun 
(http://www.cbs.dtu.dk/services/ProtFun/). This approach utilizes functional 
attributes, which are predictable from amino acid sequence – like post-
translational modifications and protein sorting signals (Jensen et al., 2002). 
 
 

4.3.2 Structure of the protein – soluble or membranous? 
 
There are several tools on the Internet, which allow computational analysis of 
virtually all aspects of protein structure – primary, secondary and even tertiary 
structure of the protein can be analyzed. The ExPASy server provides a variety of 
tools to perform these analyses (http://us.expasy.org/tools/). For example, 
secondary structure prediction of protein can be done quite accurately by using 

http://cbcsrv.watson.ibm.com/Tpa.html
http://www.cbs.dtu.dk/services/ProtFun/
http://us.expasy.org/tools/
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the PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/) server. It incorporates three 
recently developed methods for predicting structural information about a protein 
from its amino acid sequence alone (McGuffin et al., 2000). The prediction of the 
tertiary structure of a protein is much more difficult. Although there have been a 
number of promising advances in predicting the structure from amino acid 
sequence alone, homology based modeling is still the most accurate method to 
make these predictions (Baker & Sali, 2001). One of the latest programs for 
modeling of the three-dimensional structures is ESyPred3D 
(http://www.fundp.ac.be/urbm/bioinfo/esypred/; Lambert et al., 2002). 
 
An important structural issue in analysis of novel protein sequences is to classify 
them into either soluble or membrane proteins. Several computational methods 
using different algorithms have been developed for prediction of transmembrane 
helices directly from amino acid sequences (Moller et al., 2001). Many 
approaches rely on two basic rules: (I) transmembrane helices are short amino 
acid stretches with a high overall hydrophobicity, and (II) positively charged 
residues (arginine and lysine) are mainly found in the non-transmembrane parts of 
the protein on the cytoplasmic side determining the orientation of the protein in 
the membrane (von Heijne, 1996). Thus, identification of transmembrane 
segments is often based on hydrophobicity blots (Kyte & Doolittle, 1982) and on 
“the positive-inside rule” (von Heijne, 1992). However, these basic rules are 
easily blurred and correct prediction of the location and orientation of all 
transmembrane segments has proved to be a difficult problem. Thus, several 
methods have been developed to improve the accuracy of predictions 
(Sonnhammer et al., 1998). In the recent evaluation of the performance of the 
currently best known and most widely used methods for the prediction of 
transmembrane regions, the best performing program was a hidden Markov model 
based on TMHMM, available at http://www.cbs.dtu.dk/services/TMHMM/ 
(Krogh et al., 2001). Apart from its performed best in determining transmembrane 
regions, it was also especially good at reliably distinguishing between soluble and 
transmembrane proteins (Moller et al., 2001). One of the common problems of 
transmembrane prediction programs is their tendency to interpret the hydrophobic 
parts of signal sequences and transit peptides as membrane spanning regions. 
Therefore, all predictions should be performed with the consultation of signal 
sequence prediction methods like SignalP 2.0 (Nielsen et al., 1997). 
 
 
 
 

http://bioinf.cs.ucl.ac.uk/psipred/
http://www.fundp.ac.be/urbm/bioinfo/esypred/
http://www.cbs.dtu.dk/services/TMHMM/
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4.3.3 Intracellular localization 
 
The functional description of a protein very often indicates the cellular 
compartment where the protein is located. Thus, subcellular localization of a 
newly identified protein is a key attribute to define its function (Eisenhaber & 
Bork, 1998; Mott et al., 2002). Currently, there are three conceptually different 
computational methods to predict the subcellular localization of the protein from 
its amino acid sequence (Emanuelsson & von Heijne, 2001; Mott et al., 2002). 
The first category utilizes sorting signals, like signal peptides, membrane 
spanning segments, lipid anchors, nuclear import signals and different organelle 
targeting motifs. The second category of approaches is based on the observation 
that proteins from different compartments tend to differ in subtle ways in their 
overall amino acid composition. Thirdly, a phylogenetic profile can be used to 
assign query proteins to subcellular locations. This method is based on the finding 
that the phylogenetic profiles of proteins with the same cellular location are often 
similar (Marcotte et al., 2000). 
 
In the Internet, there are some programs available for the prediction of 
intracellular localization. PSORT 
(http://bioweb.pasteur.fr/seqanal/interfaces/psort2.html) program requests a full-
length amino acid sequence, then it calculates values for various sorting features, 
e.g. different signal sequences and motifs, and displays some of the most probable 
localization for the protein (Nakai & Horton, 1999). TargetP 
(http://www.cbs.dtu.dk/services/TargetP/) is a neural network-based tool for 
location prediction. It utilizes N-terminal sequence information only, and 
discriminates between proteins destined for the mitochondrion, the chloroplast, 
the secretory pathway, and other localizations (Emanuelsson et al., 2000). 
 
An important analysis for a new protein sequence is to characterize the presence 
or absence of the N-terminal signal peptide (Nielsen et al., 1997). Targeting of the 
protein to the secretory pathway, to mitochondria and to chloroplasts normally 
depends on an N-terminal presequence that can be recognized by receptors on the 
surface of the appropriate organelle. Currently, the most widely used method to 
predict secretory signal peptides is the neural network based SignalP predictor 
(http://www.cbs.dtu.dk/services/SignalP-2.0/) (Nielsen et al., 1997). The method 
incorporates a prediction of cleavage sites and a signal peptide/non-signal peptide 
prediction based on a combination of several artificial neural networks and hidden 
Markov models. For the prediction of mitochondrial targeting peptides MitoProt 

http://bioweb.pasteur.fr/seqanal/interfaces/psort2.html
http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/SignalP-2.0/
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(http://www.mips.biochem.mpg.de/cgi-bin/proj/medgen/mitofilter) can be utilized 
(Claros & Vincens, 1996). 
 

4.3.4 Post-translational modifications 
 
After synthesis proteins can be further processed to enhance their capabilities. 
Most proteins are cleaved or trimmed protelytically following translation. The 
initiation methionine is usually removed after protein synthesis and a cleavage of 
the N-terminal signal sequence is also a common proteolytical modification. In 
addition, a variety of different kinds of protein modifications are known. Some of 
them, like glycosylation, phosphorylation and lipidation, can play very important 
physiological roles and thus it is of special interest to predict these events directly 
from amino acid sequences (Nakai, 2001). 
 
 

4.3.4.1 Glycosylation 
 
Asparagine-linked (N-linked) glycosylation is often found to occur in secretory 
and membrane proteins. In the early secretory pathway, the N-linked glycans play 
a pivotal role in protein folding, oligomerization, quality control, sorting and 
transport. In the Golgi complex, the glycans acquire more complex structures and 
a new set of functions. It is known that the consensus sequence Asn-X-Ser/Thr is 
necessary, but not sufficient for N-glycosylation (Helenius & Aebi, 2001; Parodi, 
2000). In O-glycosylation the glycan moiety is covalently linked to the hydroxyl 
group of serine or threonine residue. It influences a number of properties of 
proteins including proteolytic resistance, solubility, immunological properties and 
ligand binding. Certain rules and acceptor motifs have been proposed for O-
glycosylation, but there are no definite rules, which distinguish O-glycosylated 
amino acids from non-glycosylated residues (Gupta et al., 1999). Thus, neither N-
linked nor O-linked glycosylation can be predicted solely on the consensus 
sequences. The NetNGlyc 1.0 server (http://www.cbs.dtu.dk/services/NetNGlyc/) 
can be used for predicting of N-glycosylation sites (Gupta et al. 2002, in 
preparation, see the web page), and NetOGlyc 2.0 for predicting of O-
glycosylation sites (Hansen et al., 1998). They are both based on an artificial 
neural network method. 

http://www.mips.biochem.mpg.de/cgi-bin/proj/medgen/mitofilter
http://www.cbs.dtu.dk/services/NetNGlyc/
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AIMS OF THE PRESENT STUDY 
 
 
Prior to this study, the PPT1 gene responsible for the INCL (CLN1) disorder had 
been recently identified (Vesa et al., 1995), and physical mapping of the critical 
chromosomal region of the vLINCL (CLN5) gene was initiated. This study was 
undertaken to further understand the pathogenesis of these disorders, which are 
enriched especially in the Finnish population. 
 
The specific aims of this study were: 
 
1. To utilize the fiber-FISH technique in the positional cloning of the CLN5 gene 

(I, II). 
 
2. To characterize intracellular processing and localization of the wild-type and 

mutant CLN5 protein in transiently transfected cell lines (III) 
 
3. To characterize the expression of PPT1 in developing mouse brain (IV). 
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MATERIALS AND METHODS 
 
The materials and methods are described in more detail in the original 
publications (I – IV).  
 
1. Visual mapping by fiber-FISH (I, II) 
 
The order and orientation of the PAC and cosmid clones of the CLN5 region 
(isolation of clones is described by Klockars et al. 1996) were verified by FISH 
on extended DNA fibers as previously described in detail (Heiskanen et al., 
1996a; Heiskanen et al., 1994). Briefly, clones were labeled by standard nick-
translation protocol with either biotin-11-dUTP (Sigma Chemical, St. Louis, MO, 
U.S.A.) or digoxigenin-11-dUTP (Boehringer Mannheim, Germany). Target 
DNA fibers were prepared from lymphocytes embedded in agarose blocks 
containing about 5 µg human genomic DNA. A piece of agarose block was placed 
on a microscopic slide precoated with 0.15% gelatin and 0.2% Poly-L-Lysine. An 
agarose block was melted with 20 µl of deionized water in a microwave oven and 
the DNA was extended mechanically on a slide. Hybridization and detection of 
probes was performed using standard FISH protocols (Pinkel et al., 1986). 
Biotinylated probes were detected using TRITC-conjugated avidin D and the 
signal was amplified by biotinylated goat anti-avidin D and another layer of 
avidin-TRITC (Vector, Burligname, CA). For digoxigenin labeled probes, mouse 
anti-digoxigenin antibodies (Boehringer Mannheim) and fluorescein conjugated 
sheep anti-mouse and donkey anti-sheep antibodies (Sigma Chemicals) were 
used. To prevent fading slides were mounted in antifade solution (Vectashield, 
Vector). 
 
For positioning of the genes on the CLN5 region the high-sensitive tyramide-
based detection was performed using the Tyramide Signal Amplification (TSA) 
kit (NEN-DuPont, Boston, MA, USA) by modifying the manufacturer’s 
instructions and the protocol published by Raap et al. (Raap et al., 1995). Briefly, 
the probes for the RNA Helicase A pseudogene and for the HUMBTFB were 
labeled by nick-translation with biotin-11-dUTP (Sigma Chemical, St. Louis, 
MO) and genomic PAC clone 76N15 with digoxigenin-11-dUTP (Boehringer 
Mannheim, Germany). The biotinylated probes were visualized with the TSA kit 
and Streptavidin-Texas Red (Vector, Burlingame, CA) antibodies. To visualize 
the digoxigenin-labeled probes simultaneously, the slides were co-incubated with 
mouse anti-digoxigenin and FITC-conjugated sheep anti-mouse antibodies 
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(Sigma Chemicals). The signal of digoxigenin labeled probe was amplified with 
an additional layer of FITC-conjugated donkey anti-sheep antibody (Sigma). For 
the detailed protocol see the original article (II). 
 
Hybridization signals were analyzed using a digital multicolor image analysis 
system, based on a CCD (charge-coupled device) camera (Photometrics PXL, 
Photometrics Inc., Waterloo, Ontario, Canada) attached to a Power Mac 7100/Av 
workstation. The image acquisition, the distance measurements and the positions 
of the gene specific probes within the genomic clone probe were performed on a 
Macintosh system using the IP Lab software options. The distance measurements 
were based on the known sizes of the probes. 
 
2. Transient cDNA expression (III) 
 
2.1 The expression constructs 
 
For the transient cell expression analyses the coding region of CLN5 was 
amplified by RT-PCR from human fibroblast RNA and cloned into the 
mammalian expression vector pCMV5 (Andersson et al., 1989). For in vitro 
translation analysis cDNA was subcloned into a pGEM3-vector (Promega, 
Madison, WI, U.S.A.). The FINM mutant cDNA construct was generated by the 
QuickChange site-directed in vitro mutagenesis kit with the WT CLN5 cDNA in 
pCMV5 as a template. 
 
2.2 Cell culture and transfection 
 
For the transfection of the CLN5 cDNA constructs, BHK-21 cells (Syrian golden 
hamster kidney cells, CCL-10; ATCC, Manassas, VA, U.S.A.) were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf 
serum (FCS, Gibco BRL, NY, U.S.A) and antibiotics (penicillin and 
streptomycin, Sigma Chemical, St. Louis, MO, U.S.A.). One day before 
transfection, the cells were seeded on 9.6 cm2 plates at a density of 1.5 x 105 cells 
per well. Transfection was performed with the FuGENE 6 transfection reagent 
(Roche Diagnostics, Indianapolis, IN) following the guidelines supplied by the 
manufacturer. Experiments were performed 48 h after transfection. 
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2.3 Antibodies 
 
To obtain specific antibody against the CLN5 protein (5289), a keyhole limpet 
hemocyanin coupled synthetic peptide (CYETWNVKASPEKGAET) 
corresponding to amino acids 258 273 was purchased from Genosys 
Biotechnologies Ltd (Europe, London) and used to immunize rabbits. The 
resulting antiserum was IgG-purified using Protein A Sepharose CL-4B 
(Amersham Pharmacia Biotech). The medial Golgi-specific antibody CTR433 
and the lysosome/late endosome-specific antibody lgp120 were kind gifts from 
Dr. Michel Bornens (Institute CURIE, Paris, France) and Dr. Jean Gruenberg 
(Department of Biochemistry, Geneva, Switzerland), respectively. Secondary 
antibodies, FITC- (excitation/emission maxima: 494/518 nm) or TRITC- 
(554/576 nm) conjugated anti-rabbit or anti-mouse antibodies, were purchased 
from Jackson’s Immunoresearch Laboratories (Bar Harbor, ME). 
 
2.4 Immunoprecipitation 
 
To investigate biosynthesis and processing of the CLN5 protein, transfected 
BHK-21 cells were metabolically labeled by starving them in methionine- and 
cysteine-free medium (Lifetechnologies, Rockville, MD, U.S.A.) for 1 hour and 
thereafter labeling with 50 µCi/ml of both [35S]methionine and [35S]cysteine 
(Amersham, Buckinghamshire, UK) for 2 hours. After the pulse labeling, cells 
were harvested and lysed with RIPA-buffer (50 mM Tris pH 8.0, 150 mM NaCl, 
1% IGEPAL, 0.5% deoxycholic acid, 0.1% SDS) supplemented with protease 
inhibitors (CompleteTM, Roche Diagnostics, Indianapolis, IN). Lysed cells and 
culture media samples were immunoprecipitated with the 5289 anti-CLN5 
antibody and Pansorbin® cells (Calbiochem). Immunocomplexes were separated 
on 12% SDS-PAGE and visualized by fluorography (Amplify, Amersham, 
Buckinghamshire, England). EndoH and PNGase F digestions of 
immunocomplexes were performed as recommended by the manufacturer (New 
England BioLabs Inc., Beverly, MA, U.S.A.). 
 
2.5 Immunofluorescent cell staining and confocal microscopy 
 
To investigate intracellular localization of the CLN5 protein, transfected BHK-21 
cells were grown on coverslips and fixed 48 h after transfection with 4% 
paraformaldehyde (PFA) for 20 min, permeabilized for 2 min with -20ºC 
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methanol and blocked with 0.5% bovine serum albumin (BSA) prior adding 
primary antibodies. Cells were washed with 0.5% BSA and incubated with 
secondary antibodies. After washing with phosphate buffered saline (PBS) and 
water, the cells were mounted in GelMount (Biomeda, Foster City, CA) and 
analyzed using Leica DMR confocal immunofluorescence microscopy equipped 
with the argon laser and TCS NT software. 
 
2.6 In vitro translation 
 
In vitro translation of WT CLN5 in pGEM3Z plasmid was performed using the 
TNT® T7 Quick Coupled Transcription/Translation System (Promega, Madison, 
WI). Aliquots of 0.5 µg of plasmid DNA and 10 µCi of Redivue L-[35S] 
methionine (Amersham Pharmacia Biotech) were incubated for 90 min at 30ºC in 
a final volume of 25 µl. Control reactions were performed without plasmid DNA. 
Fixed (50% methanol, 10% acetic acid, 40% water, 30 min) and dried gels were 
exposed directly to Kodak BioMax MR film for visualization. 
 
3. mRNA and protein expression in mouse tissues (IV) 
 
3.1 Tissue specimens 
 
The mouse strains used in the study were Hsd-NIHS (produced at the National 
Public Health Institute in Kuopio, Finland) and CD-1 (Institute of Child Health, 
London, UK). The samples were either immersion fixed in 4% PFA in 0.1% M 
phosphate buffer over night (for immunohistochemistry) or frozen in dry ice (for 
in situ hybridizations and northern blot). Embryos for whole-mount in situ 
hybridization were explanted from the uterus, rinsed in diethylpyrocarbonate 
(DEPC)-treated PBS and fixed in 4% PFA overnight. Animal care and handling 
were at all times consistent with the guidelines set out in the National Research 
Council’s guide for laboratory animal care and use. The experiments were 
approved by the Laboratory Animal Committee of the National Public Health 
Institute. 
 
3.2 Northern blot 
 
For Northern blot analysis, mRNA was extracted from mouse brain at different 
developmental stages. Eight micrograms of mRNA was loaded per lane on 0.8% 
agarose formaldehyde gels and the separated mRNA was blotted onto nylon 
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membranes (Hybond N, Amersham, UK) according to standard protocols. A 32P-
labeled PCR fragment of the mouse PPT cDNA (nucleotides 232 – 1002) was 
used as a probe. The filter was stripped and rehybridized with a ß-actin cDNA 
probe (Clontech). The values of the relative mRNA expression levels were 
obtained by densitometric scanning of autoradiograms using Bio Image 
densitometry (Millipore, Ann Arbor, MI, U.S.A.). The PPT signals were 
normalized against the ß-actin signal of each mRNA sample. 
 
3.3 In situ hybridization 
 
For expression analysis of the PPT mRNA, two fragments of the mouse PPT 
cDNA (nucleotides 232-1002 for the brain samples and 123-496 for the embryos) 
were cloned into a pBluescript II vector (Stratagene, CA, U.S.A.). Digoxigenin 
labeled sense and anti-sense probes were generated using a DIG RNA labeling kit 
in accordance with the manufacturer’s instructions (Boehringer Mannheim). Non-
radioactive in situ hybridization for brain samples (cryosections) were performed 
as described previously (Nolo et al., 1996). For more details see the original 
publication (IV). Embryos for whole-mount in situ hybridization were processed 
as described previously (Wilkinson, 1992). Nicholas D. E. Green performed 
whole-mount in situ hybridizations in London. 
 
3.4 Antibodies 
 
Rabbit antiserum against PPT glutathione S-transferase (GST) fusion protein 
(Hellsten et al., 1996) was used for immunohistochemistry. In addition, rabbit 
antiserum against a synthetic peptide corresponding to amino acids 103 – 119 
(CPKLQQGYNAMGFSQGGQ) of human PPT protein was raised (code 336). 
The commercially available primary antibodies used in the study were 
monoclonal anti-myelin basic protein (Boehringer Mannheim, Germany), 
polyclonal anti-cow glial fibrillar acidic protein (DAKO, Glostrup, Denmark) and 
monoclonal anti-synapthophysin (DAKO). 
 
3.5 Immunohistochemistry 
 
Endogenous expression of PPT1 protein in mouse tissues was analyzed with 
immunohistochemical stainings. Tissue slides were deparafinized and nonspecific 
staining was reduced by incubating the sections in 5% H2O2 for 5 min followed 
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by incubation with normal goat serum (Vector). Immunostaining of the sections 
was performed as described in the original article (IV). 
 
3.6 Microscopy 
 
Bright-field images of in situ and immunohistochemical analyses were digitized 
using an Olympus AX70 Provis microscope (Olympus Optical, Tokyo, Japan) 
equipped with a photometrix SenSys CCD camera and Image ProPlus 3.0 
software (Media Cybernetics, Silver Spring, MD, USA). For whole-mount in situ 
hybridization, photomicrographs were first taken using a Zeiss SV11 microscope 
(Zeiss, Jena, Germany) and then scanned using a UMAX Astra 1200S color 
scanner (UMAX Technologies, USA). 
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RESULTS AND DISCUSSION 
 
1. Utilization of FISH in characterization of the CLN5 region (I and II) 
 
1.1 Construction of the visual physical map over the CLN5 region (I) 
 
The CLN5 locus was originally positioned by linkage analysis to the 
chromosomal region 13q21.1-q32 between markers D13S162 and D13S160 
(Savukoski et al., 1994). Based on the Genethon human genetic linkage map 
(Gyapay et al., 1994), the genetic distance between these markers was estimated 
to be about 4 cM (corresponding roughly to 4 Mb physical distance) (Varilo et al., 
1996). Construction of the physical map over this region was initiated by isolating 
YAC-clones positive to either of these markers (Klockars et al., 1996). As it is 
known that chimerism and other rearrangements limit the usefulness of YAC-
clones in physical mapping (Green et al., 1991), metaphase FISH analysis was 
utilized to confirm nonchimeric character of isolated YAC-clones. This analysis 
also refined the chromosomal region of the CLN5 to be 13q22. Also mechanically 
stretched chromosomes (Laan et al., 1995) and interphase nuclei were used as 
hybridization targets in FISH analysis to confirm orders and relative distances of 
individual YAC clones on the region. 
 
Finding of the two polymorphic markers, COLAC1 and AC224, allowed 
narrowing of the CLN5 region down to a single YAC clone (Klockars et al., 
1996). However, YAC clones are not suitable for large scale sequencing projects. 
They are often too large in size for shotgun sequencing and moreover, metaphase 
FISH analysis cannot completely exclude chimerism of these clones. Thus, 
construction of a physical map with shorter insert genomic clones was necessary. 
Screening of the PAC library with polymorphic markers and STSs (sequenced 
from the end of identified clones) resulted in isolating of several PAC clones. 
Overlaps between many of these clones were established with STS content 
mapping, but there were still gaps in the contig. Visual mapping with fiber-FISH 
(Heiskanen et al., 1995; Heiskanen et al., 1996a; Heiskanen et al., 1994) 
improved essentially analysis of the PAC contig. It not only enabled rapid 
confirmation of clone orders obtained from STS-based mapping, but also made it 
possible to directly visualize overlaps and gap distances between various PAC 
clones. For example, detection of the overlap between PACs 76n15 and 186a15 
was solely based on the fiber-FISH analysis (Figure 6). To estimate the physical 
distance of the critical CLN5 region, fiber-FISH was carried out using the cosmid 
clones positive with restricting markers COLAC1 and AC224, and the PAC 



76n15. Based on the determined sizes of genomic clones (Klockars et al., 1996), 
critical CLN5 region was estimated to be approximately 200 kb. 
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Figure 6. Schematic presentation of a complete physical map covering the CLN5 region. 
Positions of markers AC224 and COLAC1 restricting the critical CLN5 region are shown. Three 
PACs sequenced as a part of the Human Genome Project at the Whitehead Institute (Cambridge, 
MA, USA) are indicated in black. Klockars et al. (1996) and I  
 
 
The continuous contig of genomic clones over the critical CLN5 region was 
composed with several overlapping PAC and cosmid clones (Figure 6). The fiber-
FISH mapping replaced many traditional time-consuming mapping methods. This 
very same fiber-mapping method has been successfully utilized in several other 
positional cloning projects as well (Aaltonen et al., 1997; Leppanen et al., 1996; 
Nikali et al., 1997; Paavola et al., 1999). As the Human Genome Project has 
progressed rapidly, physical mapping is no more needed for most of the 
euchromatic regions of the human genome. However, physical map assembly in 
heterochromatic regions by conventional methods (e.g. by STS content mapping) 
has proved to be difficult, and different kinds of fiber-mapping techniques can be 
useful on these regions (Weier, 2001). Moreover, genome geography has been 
shown to be more complex than previously recognized. Especially, segmental 
duplicated regions, which may underlie a great amount of human phenotypic 
variation and disease, are marginalized within both private and public genome 
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assemblies (Bailey et al., 2002; Bailey et al., 2001; Eichler, 2001). Published 
results have demonstrated the power of the FISH methodology to clarify genomic 
structures on regions where duplications, deletions or inversions have occurred 
(Gervasini et al., 2002; Giglio et al., 2001). 
 
1.2 Positioning of coding regions by high-sensitive tyramide-based detection 
method (II) 
 
After the critical CLN5 region was covered by three PAC clones (see Figure 6), 
partial shotgun sequencing of these clones was performed in order to identify 
coding regions and to create new STSs. This search resulted in the identification 
of the BTF3 protein homologue gene (BTFBL1, accession No. NM_001208) 
from PAC 224a14, and a previously unknown pseudogene for RNA helicase A 
(Accession No. L13848) from PAC 264j2 (see Figure 6). We utilized the fiber-
FISH method to precisely assign these genes on the physical clones. A PCR 
positive cosmid 50c4 was used as a probe for BTF3L1 and two 2 kb genomic 
PCR products as a probe for the RNA helicase pseudogene. Since the visualizing 
of short probes (few kb) may be difficult, we utilized the highly sensitive 
tyramide-based signal amplification method (Raap et al., 1995) in combination 
with the conventional labeling technique (Pinkel et al., 1986). In conventional 
FISH hybridization the signal is detected by immunoassays using fluoroschrome-
conjugated antibodies. The sensitivity of tyramide detection is based on a 
precipitation reaction of the biotinylated tyramide by a horse-radish peroxidase 
enzyme over a biotin labeled probe. In the original report (Raap et al., 1995), 
tyramide-based detection was used for a single-color FISH. In this study, this 
method was combined with the conventional labeling technique, which allowed 
us to use the tyramide-detection method in a two-color FISH analysis. As a result, 
the 4 kb PCR fragment was detected as a short and bright (red) hybridization 
signal inside the PAC 76n15 signal (green). The signal of the cosmid 50c4 was 
observed in a short distance from the end of the PAC 76n15. Based on the known 
size of cosmid 50c4 (32 kb), the distance between these two genes was 
determined to be 35 kb. 
 
Later on, this same method was used successfully for detection of short DNA-
fiber targets ranging from 0.3 to 1 kb (Horelli-Kuitunen et al., 1999). Moreover, 
development of different tyramide conjugates has enabled the detection of 
multiple targets in different colours in the same hybridization reaction (Speel et 
al., 1997; van Gijlswijk et al., 1997). Although it is quite clear, that tyramide-
detection increases sensitivity of the FISH, it is suggested that the limit of the 



FISH sensitivity is determined by hybridization efficiency – not by the ability to 
generate sufficient signal from small probes (van de Rijke et al., 2000). 
 
 
2. Characterization of the CLN5 protein (III) 
 
2.1 Cloning of the CLN5 cDNA 
 
The CLN5 gene was identified by screening a fetal brain cDNA library with one 
of the PAC clones (76n15, see Figure 6) covering the critical CLN5 region 
(Savukoski et al., 1998). This search resulted in identification of several cDNA 
clones (Klockars et al., 1999) and one of them turned out to be the CLN5 gene. At 
the same time with cDNA library screenings the PAC clones were sequenced as a 
part of the Human Genome Project at the Whitehead Institute. The genomic 
sequence of the PAC 76n15 (accession number AC001226) and numerous 
overlapping EST sequences greatly facilitated assembling the structure of the 
CLN5 gene (Figure 7) (Savukoski et al., 1998). 
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Figure 7. Structure of the CLN5 cDNA. An open reading frame (nucleotides 1293 – 2514) is 
shown in grey. The positions of the four in frame ATG codons are indicated (ATG 1 at 1293, 
ATG 2 at 1380, ATG 3 at 1440, ATG 4 at 1476). The most 5’ end EST clones of the CLN5 gene 
are shown. (Modified from Savukoski et al. 1998). 
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In order to characterize intracellular processing and localization of CLN5 protein 
in transiently transfected cell lines, we amplified the open reading frame region of 
CLN5 (gray region in Figure 7) by RT-PCR from human fibroblast RNA and 
cloned it into a mammalian expression vector pCMV5. Although we were able to 
amplify CLN5 cDNA by RT-PCR, it was a very difficult task. Difficulties in RT-
PCR may have been related to the high content of C and G nucleotides (CpG 
island) at the 5’ end of the gene. However, an interesting feature of the CLN5 is 
that it has an exceptionally long 5’ end UTR region and there are four in frame 
initiation methionines in the 5’ end of the gene. Later on, our expression analyses 
indicated that translation of CLN5 is not necessarily initiated from the first in 
frame initiation codon, but potentially upstream AUGs are used (see 2.2.2 and 
2.2.3). This may indicate that the originally reported CLN5 cDNA may include 
the retained 5’ end intron. It is suggested that frequent cloning of introns 
containing cDNAs is not accidental. Slow removal of the 5’ end intron in 
particular might be a way to regulate the expression of mammalian genes (Kozak, 
1996). The suggestion that the CLN5 gene retains the 5’ end intron is further 
supported by the fact that none of the EST sequences overlap with the first in 
frame AUG codon (see Figure 7). Thus, it is possible that also we have cloned a 
pre-mRNA form of CLN5, where the most 5’ end intron is still intact. For 
expression analyses we used this “full-length” cDNA, which contains all of the 
four initiation methionines. 
 
 
2.2 Expression analysis of the wild-type and mutant CLN5 proteins 
 

2.2.1 Intracellular localization of WT and FINM CLN5 proteins 
 

The subcellular localization of the CLN5 protein was studied in transiently 
transfected BHK-21 cells using the 5289 peptide antibody, organelle-specific 
antibodies and confocal microscopy. Wild-type CLN5 was seen in vesicular 
structures, which overlapped almost completely with the lysosomal/endosomal 
marker lgp120 (Figure 8A). The targeting of the most common vLINCL mutant 
(FINM), lacking the 16 carboxy-terminal amino acids, was evidently different 
from that of the wild type protein. FINM proteins showed co-localization with the 
medial Golgi marker CTR433 (Figure 8B). This indicates that the mutant CLN5 
polypeptides are initially sufficiently correctly folded to pass the quality control 
of the ER but are not recognized as lysosomal proteins by the intracellular sorting 
system in the Golgi. 
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Figure 8. Subcellular localization of WT and mutant CLN5 proteins in transiently transfected 
BHK-21 cells. WT CLN5 proteins are transported to lysosomes and FINM polypeptides are seen 
within a Golgi region. The predicted consequence of FINM mutation on the CLN5 polypeptide and 
position of the 5289-peptide antibody recognition site are shown in the box above 
immunofluorescence figures. 
 

Immunoprecipitation and computational sequence analyses of the CLN5 
polypeptide implied that it is probably a soluble protein (see chapter 2.2.2). This 
raises the possibility that CLN5 could represent a soluble lysosomal enzyme 
targeted to lysosomes via the Man-6-P receptor –mediated pathway. However, 
further studies are needed to determine whether the high mannose-type 
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oligosaccharides (see 2.2.2) of the CLN5 protein are phosphorylated and what is 
the exact lysosomal targeting mechanism and the function of CLN5. Interestingly, 
FINM polypeptides were targeted to lysosomes in COS-1 cells (Vesa et al., 2002). 
This would suggest that the lysosomal transport machinery of the CLN5 protein 
might vary between different cell types. As it is known that a deficiency of CLN5 
affects mainly cells in the central nervous system, the intracellular localization of 
CLN5 should also be determined in neurons in order to determine the localization 
of both WT and mutated polypeptides in a more relevant cellular background. 

 
2.2.2 Biosynthesis of WT and FINM CLN5 proteins 

 
Immunoprecipitation analysis was used to monitor the biosynthesis and 
intracellular processing of the WT and FINM CLN5 proteins in transiently 
transfected BHK-21 cells. This analysis revealed that WT CLN5 is a 60 kDa and 
FINM a 52-kDa glycoprotein. After deglycosylation with PNGase F WT protein 
was collapsed to a single 38 kDa polypeptide and FINM protein to a single 35 kDa 
band. Interestingly, the theoretical molecular weight of the WT protein translated 
from the first initiation methionine is substantially more: 46.3 kDa. Based on this 
finding, it seemed possible that CLN5 protein is not translated from the first 
methionine, but probably one of the upstream methionines is used. This 
suggestion is further supported by the fact that in the corresponding mouse gene 
there is only one initiation methionine and its position is comparable to the 
position of the fourth AUG codon in the human CLN5 gene. Moreover, if the 
fourth initiation methionine is used, a SignalP program (Nielsen et al., 1997) 
predicts that the CLN5 polypeptide undergoes proteolysis of the N-terminal signal 
peptide. The theoretical molecular weight of such a protein would be 36.6 kDa. It 
corresponds quite well with the observed 38-kDa molecular weight of the 
deglycosylated form of WT CLN5. 
 
Interestingly, both WT and FINM CLN5 polypeptides were also secreted into the 
culture medium. This would imply that CLN5 is a soluble lysosomal 
glycoprotein, not an integral transmembrane protein as predicted earlier 
(Savukoski et al., 1998). This prediction was based on the results of the Tmpred 
transmembrane prediction program and a Kyte-Doolittle hydrophobicity blot. 
However, these programs are very poor in their ability to distinguish between 
soluble and membranous proteins (Moller et al., 2001). The best performing 
programs have been reported to be TMHMM (Krogh et al., 2001) and SOSUI 
(Hirokawa et al., 1998). Neither of them predicts any transmembrane regions for 
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CLN5. In conclusion, our results indicate that CLN5 is a soluble lysosomal 
protein. Two other previously characterized NCL gene products; CLN1 and 
CLN2 have been shown to be lysosomal enzymes. This should encourage further 
analyses of potential enzymatic functions of CLN5. 
 
 

2.2.3 Utilization of alternative in frame translation initiation codons 
 
Immunoprecipitation analysis with the 5289-peptide antibody indicated that the 
CLN5 polypeptide is not translated from the first AUG codon in BHK-21 cells. 
The structure of the mouse Cln5 gene further supported this idea and emphasized 
the biological significance of the fourth initiation methionine in the human CLN5 
gene (see chapter 2.2.2). To further analyze the possibility that alternative AUGs 
are used, we cloned WT CLN5 into pGEM3 vector and performed in vitro 
translation analysis in the absence of microsomal membranes. The theoretical 
molecular weights of polypeptides translated from these alternative start codons 
are 46.3, 43.4, 41.5 and 40.3 kDa. An in vitro translation assay produced protein 
bands of 47, 44, 42 and 40 kDa, which indicates that upstream AUGs can 
potentially be used for the translation initiation of the CLN5 gene. Later on, in 
another study, it was shown that alternative AUG codons of CLN5 are used for 
translation initiation in transiently transfected COS-1 cells (Vesa et al., 2002). In 
this study, expression of CLN5 was monitored using an antibody, which 
recognizes the N-terminal part of the protein (Figure 9). 
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Figure 9. Schematic presentation of CLN5 proteins translated from the first (A) and fourth (B) 
initiation methionines. Recognition sites of two different antibodies and predicted signal peptide 
cleavage site are shown. N-terminal antibody is used in Vesa et al. (2002) and the 5289 antibody 
in III. 

 
Interestingly, the N-terminal antibody produced rather different results than the 
5289 peptide antibody, which was used in our original study (III). The N-terminal 
antibody recognized a 47 kDa form of CLN5, which was bound to membranes. 
Moreover, a great majority of this protein was shown to lack any N-linked 
glycans. Thus, it is possible that different forms of CLN5 polypeptides might 
exist in some cells or tissues. At least different forms of CLN5 are expressed in 
vitro, in transient cDNA expression systems. It would be of value to uncover what 
explains the different results obtained with the two different antibodies, even 
though the very same expression construct was used in both studies. It is quite 
clear that the N-terminal antibody is not able to detect CLN5 protein translated 
from the fourth initiation methionine, if the N-terminal signal sequence is cleaved 
off as predicted (Figure 9B). It is more difficult to understand, why the 5289 
antibody is not able to recognize the 47 kDa polypeptide (Figure 9A). One likely 
explanation is that the 60 kDa protein is the major cellular form of CLN5 and 
only low levels of the 47 kDa form are expressed. Consequently, the 5289 
antibody can identify the 60 kDa protein, but is not sensitive enough to detect 47 
kDa polypeptides. 
 
The most interesting finding obtained with the N-terminal antibody was the 
interaction of the unglycosylated form of CLN5 with two other NCL proteins, 
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CLN2 and CLN3 (Vesa et al., 2002). This interaction was demonstrated by an in 
vitro binding assay and coimmunoprecipitation analysis. Previous studies with the 
yeast two-hybrid system had failed to observe any interactions between NCL 
proteins (Cottone et al., 2001; Leung et al., 2001; Zhong et al., 2000). It would be 
interesting to monitor in which tissues and physiological conditions the 
interacting form of CLN5 is expressed. 



3. Expression of PPT1 in developing mouse tissues (IV) 
 
The amino acid sequence of the mouse PPT1 enzyme is highly conserved with the 
human and rat PPT1 (84.3 and 94.1% identity at the amino acid level) (Salonen et 
al., 1998). The mouse gene was cloned in 1998 and its expression pattern in 
transiently transfected COS-1 cells was shown to be highly identical with the 
human PPT1 (Hellsten et al., 1996; Salonen et al., 1998). Thus, it is expected that 
mouse would be a good model organism to study INCL disease. Here the 
expression pattern of PPT1 is analyzed in the developing and adult mouse by 
Northern blot, in situ hybridization and immunohistochemistry. Also Western blot 
analysis was performed, but our antibodies were not able to detect any specific 
PPT1 bands in these experiments (data not shown). 
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Figure 10. PPT mRNA expression during mouse brain development. (A) Northern Blot 
analysis. (B) Densitometric analysis of autoradiograph shown in A. E = embryonic day; P = 
postnatal day. (For more details, see IV). 
 
 
3.1 Expression of PPT mRNA 
 
To monitor the developmental expression of PPT1 mRNA, Northern analysis of 
the mouse brain was carried out from embryonal day 13 (E13) to postnatal day 60 
(P60). Previously, mouse PPT1 has been shown to be expressed as a major 2.65 
kb and a smaller 1.85 kb transcript in the brain (Salonen et al., 1998). In addition 
to these transcripts, an additional hybridization signal of 4.7 kb was detected in 
the present Northern analysis (Figure 10). The most prominent of the three was 
the 2.65 transcript. Its level of expression was considerably increased between 
P10 and P30. The increase in the 1.85 transcript paralleled that of the 2.65, but its 
level was consistently lower. The weak additional 4.7 kb transcript was expressed 
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at a constant level throughout development. Upregulation of PPT mRNA 
expression in developing brain has been demonstrated in other studies as well 
(Suopanki et al., 1999; Zhang et al., 1999). 
 
A progressive increase in the level of PPT1 mRNA expression was further 
observed using in situ hybridization. The whole-mount in situ hybridization 
analysis revealed that PPT1 is already expressed at E8, when it was most apparent 
throughout the neuroepithelium in regions of both the closed neural tube and the 
open neural folds. From E9 onward, PPT1 expression is widespread throughout 
all tissues of the embryo. However, by E11 some regionalization of the signal 
became apparent in the prospective mid- and hindbrain. This may reflect the more 
specific expression pattern detected at later developmental stages using in situ 
hybridization on brain sections. The most intense signal in the brain was detected 
in the neurons of the cerebral cortex in layer II and IV – V, hippocampal CA1 – 
CA3 pyramidal cells, granule cells of the dentate gyrus, and the hypothalamus 
(Figure 11). Regionalization of PPT1 expression in the brain has also been 
reported in other studies. Especially, high expression of PPT1 is observed in the 
hippocampus using brain region specific Northern blot (Zhang et al., 1999) and 
immunohistochemistry (Suopanki et al., 2002). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

hippocampus cortex 

 
Figure 11. Expression of PPT1 mRNA in mouse brain revealed by In situ hybridization 
analysis. Expression of PPT1 is seen in cerebral cortex and hippocampal pyramidal cells. 
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3.2 Expression of PPT1 protein 
 
Immunohistochemical analysis of mouse brain sections with PPT1 specific 
antibodies revealed that the expression of PPT1 protein was spatiotemporally 
comparable to that of PPT1 transcripts. A remarkable increase in 
immunoreactivity was detected between P5 and P10. PPT1 protein was detected 
in the cerebral cortex, cerebellum, and in the hippocampus. At P60, PPT1 
immunostaining was especially strong in the hippocampus and subiculum. 
Immunopositive granules were distributed throughout the cell soma and neuronal 
extensions (Figure 12). These findings are in agreement with the in vitro finding 
from primary neuron cultures that PPT1 is targeted from the cell soma to the 
neuritis and nerve terminals (Heinonen et al., 2000a). 
 

 
Figure 12. Expression of PPT1 protein in mouse brain revealed by immunohistochemistry. 
Strong immunoreactivity is evident in neuronal extensions in subiculum. 
 
 
Expression of PPT1 protein and mRNA was shown to gradually increase with 
period, when new synaptic contacts are extensively formed in mouse brain (White 
et al., 1997). Additionally, in embryos a notable increase in PPT1 mRNA 
expression was monitored just before the early synaptogenic period (E11 – E14) 
(Vaughn, 1989). This is well in line with recent data from primary neuron cultures 
showing that expression of PPT is under developmental control and precedes 
expression of synaptic markers (Ahtiainen et al., 2003). Also, in a study of human 
embryonic brains, the expression of PPT1 was shown to increase during brain 
development (Heinonen et al., 2000b). Based on these findings, it was suggested 
that PPT1 might have a role for the survival of neural networks, possibly 
associated with the development and maintenance of the synaptic machinery. In a 
recent cell fractionation studies PPT1 has been associated with synapses, which 
further supports this hypothesis (Lehtovirta et al., 2001; Suopanki et al., 2002). 
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CONCLUDING REMARKS 
 
The neuronal ceroid lipofuscinoses (NCL) are a group of inherited 
neurodegenerative disorders, frequent in childhood but also present in adulthood. 
In recent years, modern molecular genetic methods have allowed identification of 
genes responsible for these disorders. Currently, the defective genes behind the 
six human NCL diseases are known. They are either lysosomal enzymes or 
membrane proteins. Identification of mutations has allowed rapid prenatal and 
carrier diagnostics. However, the pathogenesis of these disorders is still very 
poorly understood. Biochemical analyses have shown that accumulating material 
in INCL mostly consists of sphingolipid activator proteins (SAPs) A and D. In 
other NCL types, subunit c of the mitochondrial ATP synthase complex is the 
major storage component. However, storage material accumulates in many cell 
types and it is not understood why neuronal cells of NCL patients are most 
affected. It remains elusive, whether different NCL proteins are working on the 
same metabolic cascade or possibly interacting among themselves. There are two 
naturally occurring mouse models for NCLs (CLN6 and CLN8), and knockout 
models have been published for CLN1 and CLN3. These animal models provide a 
valuable tool for further analysis of these disorders. Understanding of the 
molecular mechanism behind NCL disorders would greatly benefit our 
understanding of the general biology of the human central nervous system as well. 
 
This study was undertaken to promote the understanding of the pathogenesis of 
vLINCL (CLN5) and INCL (CLN1) disorders, which are enriched especially in 
the Finnish population. During the positional cloning of the CLN5, we were able 
to show that the FISH strategy can replace many laborious traditional physical 
mapping methods. Visual mapping provided direct information on the location of 
genomic clones and the distances between them. The produced physical map 
allowed identification of the CLN5 gene. In transient cell expression analysis we 
showed that CLN5 is a lysosomal protein. Further, our results indicated that 
CLN5 is a soluble protein, not an integral transmembrane protein as predicted 
previously. Defective intracellular transport of the mutant CLN5 suggested that 
defective lysosomal trafficking could be responsible for the molecular basis of 
vLINCL.  
 
In order to understand the molecular pathogenesis of NCL disorders, a knowledge 
of spatiotemporal expression pattern of NCL proteins during development is of 
great importance. As the most drastic destruction of central nervous system is 
observed in INCL disorder, we analyzed expression pattern of PPT1 in 
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developing mouse tissues. We were able to demonstrate a gradual increase in 
PPT1 expression in developing mouse brain and embryo during a time when new 
synaptic contacts are being extensively formed. Moreover, the relatively high 
prevalence of PPT was seen in the neuritic shafts and nerve terminals. These 
findings indicate that PPT1 might have extra-lysosomal functions, possibly 
associated with the maintenance of the synaptic machinery. 
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