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SUMMARY

To prevent accumulation of genetic lesions, cells subjected to genotoxic stress have

two equally important ways to respond. Most commonly, DNA damage elicits a

replicative arrest at various cell cycle checkpoints in order to give the cell time to

accomplish DNA repair. Alternatively, in the case of intolerable or unrepairable DNA

lesions upon excessive insult, apoptosis remains the only possibility to remove

genetically damaged material, which may otherwise predispose the cell to genomic

instability and cancer.

The ability of p53 tumor suppressor to inhibit malignant transformation and cancer

formation has been addressed as far as its capability to control cell cycle progression

and induction of apoptosis. A role of p53 as a mediator of growth arrest and apoptosis

has been suggested, since it is well established that after γ-irradiation, and many other

DNA damaging stimuli, p53 is needed for normal cellular response. At the beginning of

our study, little was known about the activation pattern and requirement of p53 after UV

radiation, which causes DNA damage very different from those generated by ionizing

radiation.

 To study the action of p53 in UV-damaged cells, a fruitful approach turned out to be

UV treatment of mouse fibroblasts synchronized to a particular cell cycle phase. This

method allowed us to explore in detail the UV-induced cell cycle responses and cell

cycle phase specific activation of p53 as well as other regulators of proliferation.

Contrary to expectations, p53 accumulation failed to occur in UV-treated, G1-phase

arrested cells, but accumulation was observed when the cells recovered from the G1

arrest and entered the S phase or, alternatively, when the cells were irradiated and

subsequently arrested in S. Rather than being dependent on the cell cycle phase as such,

p53 accumulation in G1/S and S phases appeared to be dependent on replication of

damaged DNA. Furthermore, pRB hypophosphorylation, which was shown to occur

independently of functional p53, correlated with the kinetics of both general UV-

triggered growth arrest and specific G1-phase arrest. Further studies indicated, however,

that despite absent p53 accumulation p53 had a transactivation function in all cell cycle

phases. Thus, in contrast to replication-dependent accumulation of p53 its UVC-

mediated transactivation seemed independent of cell cycle phase and protein

stabilization.

 In contrast to the majority of cancers, p53 mutations are seldom detected in human

melanomas. Of seven melanoma cell lines studied, three carried a mutation, and cell

lines harboring normal p53 expressed high levels of wild-type p53, another special

feature of p53 in melanomas. Although all p53 target genes (p21, GADD45, and mdm2)

were induced upon UV in cells expressing wild-type p53 – and most of them also in cell
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lines with mutant p53 cell lines – their induction was dissociated from p53 function.

Interestingly, GADD45 induction, but not p53, correlated with growth arrest and

induction of apoptosis. In addition to abnormal stabilization of wild-type p53, many

aspects of the p53 pathway showed abnormalities, and UV responses did not

significantly differ among cells carrying mutant or normal p53 suggesting functional

inactivation of wild-type p53 in melanoma cell lines.

Since previous studies were highly suggestive of p53-independent regulation of p21

cyclin-kinase inhibitor, UVC responses and p21 activation were examined in p53-/-

mouse fibroblasts. UVC radiation induced rapidly and efficiently both protein and

mRNA levels of p21 also in the absence of p53. In contrast to p53+/+ MEFs, however,

high UVC doses abrogated p21 protein induction in p53-deficient cells, and secondly,

p53-/- cells were more prone to apoptosis, suggesting a requirement of p53 function in

these responses. p21 promoter assays confirmed transcriptional activation of p21, and

UV-inducibility was mapped to two regions in the p21 promoter, both lacking p53-

binding sites.

These studies have particularly shed light on the cell cycle phase-specific regulation

of p53 accumulation and transactivation in UVC-damaged cells. In addition, by using

several different approaches, p21 induction upon UV treatment was confirmed to occur

at the transcriptional level also independently of p53. Finally, despite a wild-type

coding sequence of p53 several p53 regulatory steps were proved to be disturbed in

melanoma cell lines suggesting that defective function of p53 may, after all, play a role

also in this cancer type.
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INTRODUCTION

 Cancer is a disease characterized by a loss of normal control of cell growth.

Uncontrolled growth of malignant cells results from their disability to respond to

extracellular cues leading either to growth arrest, differentiation, or apoptosis. After

transformation the malignant cell proliferates independently ignoring the signals from

the environment. Several different alterations in multiple pathways can cause genomic

instability, and according to a multistep theory one harmful genetic change predisposes

the cell to another, parallel mutation. Even if loss of one cell growth regulator could be

succesfully compensated, two or more changes may permanently disturb the growth

control and give rise to clinical cancer. Activation of proto-oncogenes, inactivation of

tumor suppressors and defective DNA repair processes are all mechanisms that disrupt

the control of cell division and potentially lead to accelerated, inappropriate cell

proliferation.

Compared to oncogenes, the study of tumor suppressors has proved to be quite

difficult.  While one mutated allele of an oncogene is usually sufficient for altering the

phenotype, the recessive nature of most tumor suppressors requires the inactivation of

both alleles. Moreover, by the definition, growth suppressors inhibit growth making

their identification even more difficult. At present a dozen tumor suppressor genes have

been identified; the retinoblastoma gene product (pRB), p53, and more recently, some

cyclin kinase inhibitors, are most extensively studied.

pRB, which is at the interphase of the cell cycle machinery and transcriptional

control mechanisms, represents a classic recessive tumor suppressor, while mutation in

one allele of p53 gene may suffice for cancer formation. p53 mutations, often in

conjunction with other cellular changes, are detected in about 60% of all human

cancers. As a transcription factor p53 has the potential to affect diverse cellular

processes via target gene activation, and its role in DNA-damage induced growth arrest,

induction of apoptosis, and DNA repair processes is well established. Because p53 is

involved in cell cycle checkpoint control, its activation by different DNA damaging and

growth arresting conditions is of special interest.

p53 protein accumulates in response to diverse genotoxic insults. p53-mediated

apoptosis and growth arrest due to cytotoxic drugs and ionizing radiation have

represented the main streams for exploring p53 function. At the beginning of our studies

the need and requirement of p53 function for UV-radiation caused growth arrest and

apoptosis were undefined, but it was generally assumed that UV, although causing

DNA lesions totally different from those upon γ-irradiation, elicites a similar response

to damage. Similarly, despite the evident participation of p53 in the regulation of cell

cycle progression, little was known about the cell cycle phase-dependent activation of
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p53. In earlier studies p53 target genes appeared to be under strict control of intact p53,

but later these proteins, all involved in cell cycle control, apoptosis, or DNA repair,

were found to be regulated by multiple pathways.

Rather than studying the p53 conformation and downstream events the focus in p53

research has now been turned to exploring specific regulation of p53, the events that

earlier practically nothing was known about. Due to its apparent clinical importance,

p53 has been one of the most vigorously studied molecules in the field of cancer

molecular biology, and even now, after twenty years of research, the interest still shows

no signs of subsiding.
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REVIEW OF THE LITERATURE

CELL CYCLE CONTROL AND CANCER

Unlimited growth, the most characteristic feature of tumors, represents the sum of

unfavourable events. First, a genetic change, due to intrinsic or extrinsic signals, has

taken place and secondly, recognition of DNA damage or its repair process has failed.

Once genomic instability has arisen, additional changes accumulate more easily. Later,

selection favours malignant cells with increasingly aggressive growth properties and

allows rapid expansion of the tumor. Although a cell has diverse cautionary

measurements to prevent loss of growth control, some of them may fail. Most

commonly, cancer results from tumorigenic abberrations of cell cycle regulators, in

particular, those governing the G1 progression and G1/S-transition.

Cell cycle regulators

Cells, tumor or normal cells, follow the steps of cell cycle consisting of G1, the

actual growth phase during which they prepare to synthesize DNA; S, DNA replication;

G2, a second shorter growth phase; and M, mitosis. Cells that have transiently or

permanently exited the cell cycle, for example because of serum starvation, terminal

differentiation, or senescence, remain in the G0 phase. Cells are constantly a target for

mitogenic and antimitogenic signals that affect them only during the G1 phase. Growth

factors are required for progression through G1 to a specific point called the restriction

point (R-point), after which the cell is committed to complete the division cycle even in

the absence of growth factors thereafter (Pardee, 1989) (Fig. 1).

The role of cyclins and cyclin-dependent kinases (Cdks) in the precise control of cell

cycle is well established. Mitogenic signals cause the assembly of different kinase

holoenzymes, that are composed of a cyclin regulatory subunit and a Cdk catalytic

subunit. These complexes are formed and activated at specific phases of the cell cycle,

and their coordinated function is required for progression through the S and M phases.

Contrary to cell cycle phase-specific expression of cyclins, Cdks are expressed

constitutively, but are not active until complexing with suitable Cdk. Additionally, the

kinase activity of certain Cdks can be regulated by phosphorylation of critical residues,

or kinase activity inhibited by various Cdk-inhibitors (CKI), some of which have been

shown to possess tumor suppressive properties. p21, p27 and p57 are universal Cdk-

inhibitors with broad specificity for Cdks, whereas the INK4 (inhibitor of Cdk4/6)
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family members p15, p16, p18, and p19 selectively inhibit only the kinase activity of

Cdk4 and Cdk6 in the G1 phase (Kamb, 1995).

           

G1

G2

S

M

R

DNA damage
  checkpoint

DNA damage
  checkpoint

  Spindle
checkpoint

Mitogenic and
antimitogenic
   signals

p53

p53

p53

pRB

pRB

pRB

P

P

P

pRB

P

Fig. 1. Cell cycle phases. p53 functions at all checkpoints, while pRB activity
varies in a cell cycle phase dependent manner. R= Restriction point,

= activation, = inhibition. Modified from Grana and Reddy, 1995.

The tumor suppressor gene p53 and the retinoblastoma susceptibility gene (RB) are

both involved in the regulation of the cell cycle and are closely linked to cyclin-Cdk

pathway. While retinoblastoma protein (pRB) is required in the control of normal

progression of the cycle, p53 is called into action in the case of genetic insult. pRB is

phosphorylated in a cell cycle dependent manner and is in the hypophosphorylated,

active form in the early G1 and binds transcription factor E2F-1. Phosphorylation of

pRB by cyclin D-Cdk4/6 in the late G1 results in the release of E2F-1, which activates

genes required for the progression to the S phase (Fig. 1.). At present, pRB is the only

known target of cyclin-Cdk activity in G1.

The antitumorigenic potential of p53 correlates with its ability to check the integrity

of the genome and cease the progression of the cell cycle when DNA damage is

encountered. Upon genetic insult, p53 transactivates, among other target genes, the

expression of p21 Cdk-inhibitor and thus participates in the growth arrest of cells (Fig.

3). p53, often called the guardian of the genome, is the most often mutated gene in

human cancers, stressing the importance of p53 and cell cycle control in tumorigenesis.

Whatever the mechanism, increased activity of cyclins and Cdks as well as decreased

function of CKIs, pRB, and p53, highly predispose cells to transformation.



UV response of  mammalian p53 tumor suppressor gene
_____________________________________________________________________________

11

Cellular response to DNA damage

Cells are constantly exposed to both extrinsic and intrinsic DNA damage signals.

Extrinsic sources of damage include irradiation and chemical mutagens, while intrinsic

damage is generated by the cell itself. Despite the high spontaneous chemical reactivity

of DNA, only one error is made during replication of the 3x109 bases of human

genome. Proliferating cells have a great capacity to tolerate genomic errors, as cells can

repair about 100 spontaneous alterations per hour (reviewed by Lehmann and Carr,

1994).

DNA damage types can be grouped into two main categories: damage modifying

nitrogenous bases, and damage alterating the phosphodiester backbone. Chemical

agents can be covalently attached to bases making intrastrand or interstrand cross-links

or cause depurination or depyrimidination of DNA (reviewed by Friedberg, 1995).

Ultraviolet (UV) radiation causes special kinds of changes: cyclobutane pyrimidine

dimers and (6-4) photoproducts. These lesions are repaired by photoreactivation of

DNA and by nucleotide excision repair (NER). Most DNA lesions produced by free

oxygen radicals are corrected by base excision repair which is distinct from NER. In

this repair system the damaged base is cleaved from its deoxyribose moiety and the

apurinic or apyrimidic (AP) sites are excised followed by DNA repair synthesis and

ligation. AP sites can also result from spontaneous depurination or depyrimidination of

DNA. Mismatch repair, on the other hand, refers to correction of mispaired bases,

which are frequently produced during replication and recombination. It can occur by

several biochemical pathways including base excision (reviewed by Friedberg, 1995).

Broken phosphodiester bonds, on the other hand, cause double-stranded breaks which

are repaired by nonhomologous end-joining or by the addition of new telomeres (Wilkie

et al., 1990).

Cells have a number of systems to interrupt cell cycle progression when damage to

the genome is detected or when cells have failed to complete the preceding cell cycle

phase. The DNA damage checkpoint can be regarded as a signaling system, where

information flows from factors detecting DNA lesion to cell cycle targets. Signals

activating the checkpoints can be produced from recognition of DNA damage itself,

during repair, or during replication of damaged sites (Lehmann and Carr, 1994). DNA

damage checkpoints act at the G1/S border, during S, and at the G2/M boundary.

Although arrest points are scattered throughout the cell cycle, the same or similar

proteins are often involved in all of them. In addition, many of these proteins function

not only in checkpoint control but also in DNA repair, apoptosis, and transcriptional

induction (Paulovich et al., 1997). p53, for example, has a role in each DNA damage

checkpoint, in spindle checkpoint, and in apoptosis.
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The desired outcome of DNA damage checkpoint control is either a successful repair

of DNA after growth arrest, or, in the case of permanent damage, induction of

apoptosis. In both these situations DNA errors are not mediated onwards, whereas

replication of damaged DNA leads to accumulation of mutations or genomic instability.

In addition to the intrinsic error rate, the checkpoint control system may fail because of

adaptation or selective pressure. In adaptation, the cell cycle continues after an interval

of arrest even if the damage remains unrepaired (Sandell et. al., 1993). In some

pathological conditions, like cancer, selection favours cells with defective checkpoints,

since genomic instability gives rise to multiple genetic changes needed both for the

primary transformation and for increased invasiveness (reviewed by Paulovich, 1997).

UV RADIATION

UV radiation can be divided into three main classes according to its wavelength;

UVA (320-400 nm), UVB (290-320 nm), and UVC (100-290 nm). Because the

atmospheric ozone layer efficiently absorbs the shortest waves of UV radiation, solar

light consists only of UVA and UVB. Even if human skin never meets UVC light, the

same DNA lesions, although at a lower efficiency, are produced after longer

wavelengths of UV. Besides typical UV-induced lesions, UVA/B also causes

considerable oxidative damage. Being usually easily available and measurable, UV

radiation, especially UVC, has been quite extensively used in studies of DNA damage

and repair. When DNA damage studies are evaluated, the nature of genetic insult is of

great importance, as the damage response differs between DNA damage types.

DNA lesions induced by UV radiation

UV radiation causes the formation of a specific type of DNA lesions, the "UV

footprints". When DNA is exposed to UV, adjacent pyrimidines become covalently

linked by the formation of four-membered ring structures, referred to as cyclobutane

pyrimidines or pyrimidine dimers. These lesions distort the helical structure of DNA,

and some isomeric forms, but not all, are able to obstruct DNA replication and

transcription (Taylor et al., 1990). Formation of pyrimidine dimers is a reversible

process, and with high UV doses an equilibrim between the formation and dissociation

of dimers by photoreversal can be reached. The dimer formation seems not to take place

randomly between pyrimidines, but thymine containing dimers are preferred over

cytosine containing ones. With UVC of 254 nm the ratio of T-T to C-T to T-C to C-C

was found to equal 68:13:16:3 (Tornaletti et al., 1993; Mitchell et al., 1992).
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Another typical UV-induced DNA lesion is the formation of pyrimidine-pyrimidone

(6-4) photoproducts, most often of the TC and CC types, which considerably distort the

DNA helix (Taylor et al., 1988). Generally the incidence of photoproducts after UV

radiation is several times lower than that of pyrimidine dimers, although at occasional

sites in DNA (6-4) lesions may occur as frequently as dimers (Bourre et al., 1987) .

However, the frequency of UV-induced nonsense mutations correlates better with the

frequency of photoproducts than of pyrimidine dimers, suggesting that (6-4) lesions

may have a stronger contribution to the mutagenicity of UV radiation (Mitchell et al.,

1989).

Although UV and γ-radiation seem to cause quite similar cellular responses, growth

arrest and apoptosis, the nature of DNA damage is quite different. The most striking

lesions made by ionizing radiation are direct single and double strand breaks, which are

almost never caused directly by UVC. However, DNA-protein cross-links and DNA

strand breaks are sometimes detected at longer wavelengths of UV (Tyrrell, 1991).

Nucleotide excision repair

Nucleotide excision repair is the most extensively studied, universal, and highly

conserved DNA repair mechanism, which is used in all cell types. Many types of DNA

damage, particularly those produced after UV radiation or exposure to chemical agents,

are repaired by NER. As in base excision repair the damaged base or nucleotide is

excised and replaced with a newly synthesized DNA strand by using a complementary

strand as a template. An enzyme system hydrolyzes two phosphodiester bonds, one at

either side of the damage, to generate an oligonucleotide carrying the lesion. After

removing the oligonucleotide, the gap is filled by repair synthesis and ligated to the

existing strand (reviewed by Frieberg, 1995). Upon UV radiation, DNA strand breaks

are formed only in the context of repair, not directly by UV. Rationally enough, NER

occurs more efficiently in the leading strand of DNA and in actively transcribed genes

(Mellon et al., 1987) . Moreover, some components of TFIIH, a factor essential for

transcription initiation, are also required for NER suggesting that repair and

transcription are not fully separate processes but are linked to each other and share, at

least partly, the same components (Bootsma and Hoeijmakres, 1993). For example, in

NER several DNA unwinding enzymes called helicases are needed for damage

recognition and removal of a damaged segment, and some of these helicases, ERCC2

and ERCC3, are also components of TFIIH complex thus acting both in nucleotide

excision repair and in transcription initiation (Bootsma and Hoeijmakres, 1993).

Three distinct hereditary diseases are associated with defects in nucleotide excision

repair: xeroderma pigmentosum (XP), Cockayne´s syndrome (CS), and



Tarja Mälkönen
____________________________________________________________________________

14

trichothiodystrophy (TTD). Although in all syndromes gene(s) involved in NER is/are

mutated, the clinical pictures are quite diverse. Contrary to expectations, only XP

patients are prone to cancers. They exhibit many sun light-induced diseases, including

skin cancer, and some neurological defects (Bootsma, 1993). In fact, discovery of

defective NER in XP patients led to subsequent cloning of nuclear excision repair

genes, which were named XP genes or ERCCs (excision repair cross complementing).

XP patients have been assigned to seven different groups (XP-A through XP-G), each

carrying a mutation in a different gene. In Cockayne´s syndrome, the CSB (=ERCC6)

and XP-D (=ERCC2) genes are mutated, resulting in a unique repair defect; a lack of

the coupling of transcription for repair (van Hoffen et al., 1993). TTD is caused by

mutations of at least XP-B (=ERCC3), XP-D (=ERCC2), and XP-G (=ERCC5) genes

(Stefanini et al., 1993). Although XP patients have a high incidence of UV-induced

malignacies, there is no other evidence of malfunction of NER in cancers, besides this

rare syndrome.

RETINOBLASTOMA GENE PRODUCT

Children with familial retinoblastoma carry a germline mutation on one allele of the

retinoblastoma gene (RB1), and mutation of the other allele later gives rise to clinical

cancer at very young age (Cavenee et al., 1988). It was soon discovered that RB was

mutated in several other cancer types as well, and the identification and characterization

of the RB gene made it the first tumor suppressor cloned.

RB pathway in cell growth control

Rather than a tumor suppressor only, pRB should be considered as a core element of

an essential pathway governing cell cycle progression, differentiation, cell death, and

tumorigenesis. This "RB pathway" consists of D-type cyclins and Cdk4 and 6, which

are largely responsible for the cell cycle phase-specific phosphorylation and inactivation

of pRB, p16 CKI inhibiting the activity of those kinase complexes, pRB itself, and the

family of E2F transcription factors regulated by pRB (Fig 2.). The intactness of this

pathway seems to be of utmost importance in tumor suppression, since one or more of

these cell cycle regulators appear to be aberrant in nearly every tumor (reviewed by

Sherr, 1996). Activation of components with oncogenic potential (cyclin-Ds, Cdk4/6,

cyclin E, E2Fs), or inactivation of tumor suppressors (CKIs, pRB) may lead to

uncontrolled cell proliferation. Depending on cancer type, a variety of different



UV response of  mammalian p53 tumor suppressor gene
_____________________________________________________________________________

15

molecular mechanisms are detected in deregulation of different components of this

pathway.

          

pRB pRB

E2F

P
Cyclin D

Cdk4/6

p16

Entry to
S phase

p21

Fig. 2. RB pathway. Cell cycle phase dependent phosphorylation
of pRB by cyclins D and Cdk4/6 releases E2F function. p16 and
p21Cdk inhibitors are able to inhibit cell cycle progression.

E2F

Phosphorylation of pRB

The main task of pRB is to control the progression of the cell cycle through late G1

and the commitment to enter S. pRB is periodically phosphorylated on its serine and

threonine residues; at least a dozen phosphorylation sites have been identified (Knudsen

and Wang, 1996). Unphosphorylated pRB has to exert its functions during the first two

thirds of the G1 phase, during which the cell is sensitive to mitogenic signals. Around

and after this restriction point pRB becomes phosphorylated, and is in this form unable

to influence the course of the cycle until it is dephosphorylated again after M phase

(Ludlow et al., 1990)(Fig.1.). Cyclin D1, 2, and 3 together with Cdk4 and Cdk6 are

most prominently involved in the phosphorylation of pRB, but overexpression of cyclin

E and A also enhances the phosphorylation of pRB in vitro (Hinds et al., 1992).

Probably cyclin Ds are responsible for pRB phosphorylation during G1-phase

progression, while kinases associated with cyclin E/A take over the phosphorylation of

newly synthesized pRB at the G1/S transition and thereafter (Weinberg, 1995; Bartek et

al., 1996). Cyclin D1 overexpression often seen in squamous cell carcinomas is mainly

due to gene amplification, whereas in mantle cell B lymphomas an increased level of

cyclin D1 is caused by cromosomal translocation t(11;14) (Bartek et al., 1997).

The activity of pRB is modulated in response to both positive and negative growth

signals: mitogens favoring cell proliferation raise the level of cyclins leading to

phosphorylation of pRB, whereas growth inhibitory signals, such as transforming

growth factor β (TGF-β) and contact inhibition, modulate the activity of Cdks by CKIs

resulting in inhibition of pRB phosphorylation (Reynisdottir et al., 1995). Thus, neither

signal types affect pRB directly, but through modulating the function of cyclin-Cdk

complexes.
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Complex of pRB with E2Fs

pRB exerts its effects by interacting cell cycle phase-dependently with a range of

factors regulating proliferation and differentiation. The growth-inhibitory function of

hypophosphorylated pRB was thought to be based on its ability to bind and sequester

E2F transcription factors (Chellappan et al., 1991)(Fig. 2.). Later, the pRB-E2F

complex was found to actively reppress gene transcription (Hamel et al., 1992;

Weintraub et al., 1992), and a recent piece of evidence indicates that the active

repression by E2F-pRB complex, not the inactivation of E2F, is the prerequisite for

pRB-mediated G1 arrest (Zhang et al., 1999). pRB is a member of the "pocket-protein"

family, as a large A/B "pocket" consisting of A and B protein-binding domains is

responsible for binding E2Fs and many other factors. The E2F family comprises six

transcription factors (E2F1-5 and dE2F), which heterodimerize with members of DP

family and control the expression of a number of S-phase genes containing E2F-

responsive elements in their promoters (reviewed by Dyson, 1998). The growth

inhibitory function of pRB is not limited to E2F repression-mediated inhibition of RNA

polymerase (pol) II, but pRB can also inhibit the activity of pol I (Cavanaugh et al.,

1995)  and pol III (White et al., 1996). Moreover, pRB is able to repress the

transcription of Myc (Cziepluch et al., 1993) and Fos via retinoblastoma controlling

element and to enhance the transcription of insulin-like growth factor II (IGFII).

Excess RB has been reported to protect cells from apoptosis, probably by inhibiting

E2F-mediated apoptosis (Haas-Kogan et al., 1995; Haupt et al., 1995; Berry et al.,

1996). E2F-1 overexpression drives cells inappropriately into the S phase (Johnson et

al., 1993) and causes apoptosis, supposedly in a p53 dependent manner (Qin et al.,

1994; Shan and Lee, 1994; Wu and Levine, 1994). Interestingly, expression of p19ARF,

an activator of p53, is induced by E2F-1 providing a link between the pRB and p53

pathways (DeGregori et al., 1997). E2F-1 seems to be a protein of dual nature. On one

hand, it behaves like a classic oncogene in transformation assays (Johnson et al., 1994)

and its overexpression promotes tumorigenesis in transgenic mice (Pierce et al., 1998).

On the other hand, E2F-1 knock-out mice suffer from numerous tumors (Yamasaki et

al., 1996). These opposite effects seem to be dependent on the concentration of E2F in a

specific manner: high levels promote apoptosis, medium levels allow cell cycle

progression, and low levels cause growth arrest. It is particularly the capacity of E2F-1

to induce apoptosis that seems to be relevant for its conditional tumor suppression

function (Macleod, 1999).

The inhibition of E2F has turned out to be too simplistic an explanation for the tumor

suppressing properties of pRB. In contrast, it has been shown that E2F binding is not

sufficient for growth suppression by pRB (Qian et al., 1992). Moreover, amplification
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of E2F in cancer cells is extremely rare and has been found only once (Saito et al.,

1995). However, tumors in RB +/- mice are smaller and are formed later in the absence

of E2F (Yamasaki et al., 1998). To date, pRB has been found to bind to at least 50

different proteins, and clearly some of these interactions may have a significant role in

RB-mediated tumor suppression. For example, the C-terminal domain of pRB binds

mdm2 (Xiao et al., 1995) and c-Abl tyrosine kinase (Welch and Wang, 1995), both

involved in regulation of tumorigenesis. By binding multiple effectors pRB can

simultaneously modulate the signals from diverse growth controlling pathways.

The balance between RB and p16

The inverse correlation between pRB and Cdk-inhibitor p16 expression that is

observed in many cancer types indicates that they are connected to each other by a

negative feedback loop. As a G1 phase specific Cdk-inhibitor, p16 is mainly involved in

the suppression of pRB phosphorylation by cyclin D-Cdk4/6 complexes.

  One of the first observations indicated that p16 was overexpressed in tumor cells

harboring oncoprotein-inactivated pRB (Serrano et al., 1993). Subsequently, the loss of

RB function was associated with high levels of p16 in many tumor types, particularly in

gliomas and bladder carcinomas. The introduction of wild-type p16 arrests normal cells

in late G1, a mechanism requiring functional pRB (Lukas et al., 1995; Serrano et al.,

1995). The ability of pRB to negatively regulate p16 promoter explains the high levels

of p16 in the absence of functional RB (Li et al., 1994). Conversely, p16 has been

shown to induce transcriptional downregulation of RB, completing the feed-back loop

(Fang et al., 1998).

Point mutations and small deletions of p16 are common in pancreatic

adenocarcinomas, esophageal carcinomas, and biliary tract cancers, and germline

mutations of p16 are found in hereditary melanomas and pancreatic cancers (reviewed

by Pollock et al., 1996). Other possible inactivating mechanisms include homozygous

deletions and methylation of the p16 locus. p16 Cdk-inhibitor is also the most often lost

cell cycle regulator in established cell lines; 70% of immortalized cell lines contain no

functional p16.

Inactivation of RB

In addition to disturbing RB function by abnormal regulation of its phosphorylation,

pRB activity can be prevented by point mutation or deletion of RB gene, or by binding

of pRB with viral oncoproteins. The protein products of transforming DNA viruses,

such as simian virus 40 (SV40) T antigen (DeCaprio et al., 1988), human

papillomavirus (HPV) E7 protein (Dyson et al., 1989), and adenovirus E1A protein
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(Whyte et al., 1988) are able to bind to the hypophosphorylated form of pRB and

prevent its association with E2F. Elimination of pRB activity is necessary but not

sufficient for virus induced transformation, and explains why the same viruses, though

through different proteins, also target p53.

Besides being defective in all retinoblastomas, inactive RB alleles are encountered in

approximately 90% of small cell lung carcinomas (Harbour et al., 1988; Yokota et al.,

1988; Horowitz et al., 1990), in 20-30 % of non-small cell lung cancers (Reismann et

al., 1993), and frequently in bladder, pancreatic (Ruggeri et al., 1992), prostate, breast

(Lee et al., 1988; T´Ang et al., 1988; Bookstein et al., 1989), and mesenchymal cancers

(Friend et al., 1986; Weichselbaum et al., 1988). Patients with familial retinoblastoma

are also prone to soft tissue sarcomas and osteosarcomas (DerKinderen et al., 1988).

While major deletions are responsible for defective RB in retinoblastomas, inactivating

point mutations in the pRB pocket are more common in other cancers. Interestingly,

high levels of pRB in bladder cancer has been associated with as poor a prognosis as is

loss of pRB, and overexpression of pRB was found to correlate with loss of p16 further

confirming the importance of the intactness of the whole RB pathway  (Benedict et al.,

1999).

RB appears to be indispensable for development, because RB-/- mouse embryos die

at midgestation due to defective erythropoiesis and uncoordinated proliferation and cell

death in the liver, lens and nervous system (Clarke et al., 1992; Jacks et al., 1992; Lee et

al., 1992). Although RB is clearly important in cellular differentiation, RB knockout

mice develop normally until the 13th gestational day, and RB-/- mouse embryo

fibroblasts (MEFs) derived from RB-/- mice before this stage are able to proliferate but

have a somewhat shorter G1 phase than normal MEFs (Herrera et al., 1996). Other RB

family members, p107 and p130, may partly take over the functions of pRB and explain

the normal growth at very early stages of development. RB heterozygous mice are

viable and develop pituitary and thyroid tumors, but contrary to expectations, exhibit no

retinoblastomas (Hu et al., 1994; Nikitin and Lee, 1996). However, RB+/- p107 -/- mice

show retinal dysplasia (Lee et al., 1996) or retinoblastoma (Robanus-Maandag et al.,

1998) depending on the mouse strain, suggesting that due to overlapping functions

inactivation of both pRB and p107 is needed for retinal phenotype. Simultaneous

inactivation of pRB and p53 also predisposes to retinal tumors; p53 function would

otherwise commit the cells to apoptosis (Howes et al., 1994).
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p53 TUMOR SUPPRESSOR PROTEIN

Loss of p53 function in tumor formation

Originally, p53 protein was found to complex with SV40 large T antigen (Lane and

Crawford, 1979; Linzer and Levine, 1979), and its overexpression appeared to cause

oncogenic transformation of cells. These findings misled the first investigators to regard

p53 as a tumor antigen or an oncogene. Later, when the wild-type conformation of p53

was found, the true nature of p53 was revealed. Wild-type p53 was often found

inactivated in human tumor cells (Wolf and Rotter, 1985; Baker et al., 1989; Kelman et

al., 1989; Nigro et al., 1989) and, when introduced into cells, was growth suppressive

rather than oncogenic (Finlay et al., 1989; Baker et al., 1990; Michalowitz et al., 1990).

p53 mutations

p53 function is lost in over 50% of human cancers evidencing the role of p53 in

tumorigenesis (Hollstein et al., 1991). A recent database contains over 7500 p53

mutations in all human tumors (Beroud and Soussi, 1998). The mutation frequency

varies from one cancer type to another; the average mutation frequencies in most

common malignancies are 70% in lung carcinoma, 65% in colon cancer, 45% in

stomach cancer, and 30% in breast and prostate cancers (Beroud and Soussi, 1998).

Tumor types that rarely contain p53 mutations may still harbor some other changes

inactivating p53 pathway. Nevertheless, some cancer types, such as teratocarsinomas,

seem to be highly resistant for selecting p53 mutations (Lutzker and Levine, 1996).

Most commonly the genetic change comprises a missense mutation in one allele,

producing a faulty protein with an increased half life. The vast majority of these p53

mutations are clustered in the DNA-binding domain of the protein, particularly within

the four evolutionary conserved regions, the so-called hot spots (Hollstein et al., 1994)

(Fig.3). Point mutations can be divided into two classes according to the way they

change the DNA-binding ability: "contact" mutants decrease p53 DNA-binding by

interfering with those amino acid residues making contact between p53 protein and

DNA, whereas "conformational" mutants, making up only 7% of  p53 mutations,

disrupt the structural elements of the protein. Instead of a specific, common mutant

conformation of p53, mutant p53 is more likely a defectively folded form of the protein

(Cho et al., 1994).

The mutants of p53 may achieve tumorigenic properties also with a mechanism other

than losing the wild-type functions. Some p53 mutants can oligomerize with wild-type

p53 and hinder the DNA-binding and transactivation functions of p53 through their

dominant-negative effect. For example, p53 wild-type mice with a dominant-negative
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transgene developed tumors in which selection has favored mutant p53 over wild-type

p53. Moreover, mutant p53 transgene was able to cause tumors in mice harboring one

or two alleles of wild-type p53, but not in mice lacking p53, demonstrating the

difference between dominant-negative effect and gain-of-function properties (Harvey et

al., 1995). Although generally inactive, some mutant forms are still capable of binding

DNA and transactivating p53 target genes, at least to a certain degree or in certain

circumstances.

While some p53 mutants may mimic the actions of wild-type p53, some wild-type

p53 proteins can be functionally inactive. The cytoplasmic location of wild-type p53

sometimes seen in certain rare forms of breast cancer, neuroblastoma (Moll et al.,

1995), and melanoma (Weiss et al., 1995) renders p53 incapable of transactivating

genes in the nucleus. High levels of mdm2, due to gene amplification or other

modifications, may also inactivate wild-type p53 by inhibiting the transactivation

capability of p53 and by targeting p53 protein for degradation.

Although inactivation of p53 may be unnecessary or insufficient for tumor initiation,

in many cancers it contributes to malignant progression, metastatic potential, and

invasiveness (Hsiao et al., 1994). Tumor development requires adequate and

continuously growing blood supply, and the involvement of p53 in angiogenesis

explains its participation in later stages of tumor progression . Expression of wild-type

p53 has been shown to stimulate inhibitors of angiogenesis (Dameron et al., 1994; Van

Meir et al., 1994), and a mutant p53 can participate in the stimulation of the angiogenic

vascular endothelial growth factor (VEGF) gene (Kieser et al., 1994). In addition,

hypoxia, the usual condition in the center of a tumor, induces p53-dependent apoptosis

of cells containing wild-type p53, whereas cells harboring mutant p53 survive allowing

tumor expansion (Graeber et al., 1996).

p53 mutations in Li-Fraumeni syndrome

Li-Fraumeni syndrome (LFS) provides a human model of nonfunctional p53. The

patients have inherited germ-line p53 mutations, which highly predispose them to

multiple primary cancers at an early age (Malkin, 1993). The characteristic neoplasms

in this dominantly inherited disorder include breast cancer, sarcoma, and glioma, as well

as several more rare tumors arising in childhood (Birch et al., 1994). Families with a

germline missense mutation in the DNA-binding domain of p53 possess higher cancer

rates at earlier age than the families with other type of p53 mutations (Birch et al.,

1998). However, heterozygous germ-line p53 mutations have been found in only 71%

of LFS families, and many tumors in these patients show no loss of heterozygosity

(Sedlacek et al., 1998), questioning the role of p53 as the sole cause of cancer

development (Varley et al., 1997).
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p53-/- mice and MEFs

p53-/- mice, contrary to RB deficient mice, are viable but are highly prone to both

spontaneous and induced tumors, especially lymphomas (approximately 60 % of

tumors) and soft tissue sarcomas (20% of tumors) appearing within first 6 months

(Donehower et al., 1992; Harvey et al., 1993a). The tumor incidence in heterozygous

p53+/- mice is intermediate compared to normal and homozygous p53 -/- mice, and

tumor cells of these mice have often lost the remaining wild-type allele. Interestingly,

the tumor spectrum in these animals consists predominantly of osteal and soft tissue

sarcomas instead of lymphomas (Harvey et al., 1993b). The difference in tumor spectra

between heterozygotes and homozygotes may depend on how easily a particular tissue

type loses the wild-type allele or how low levels of p53 can still maintain normal p53

functions. The predisposition of p53-/- mice to lymphomas is also of interest, because

the loss of p53 is rarely encountered in lymphomas.

p53-/- MEFs derived from p53-deficient mice show several cellular abnormalities:

the cells have shortened halflife, they fail to senescence at high passages, and are able to

grow at low density (Harvey et al., 1993c) . In addition, chromosomal abnormalities and

aneuploidy appear at early passage giving rise to genomic instability. Cells lacking p53

are also highly tolerant to different genotoxic impulses leading to accumulated,

unrepaired DNA lesions (Lowe et al., 1993a).

Loss of p53 may sometimes be sufficient for immortalization of cells, but more often

a lack of p53 allows other genetic changes favoring tumor formation, for example

oncogene activation, to occur. Thus, depending on the original genetic backround as

well as on accumulating of other mutations, a considerably different tumor pattern and

incidence may arise.

The structure of the p53 protein

p53 is a nuclear transcription factor, which activates the transcription of several

target genes involved in the regulation of cell growth and apoptosis. Human p53 protein

consists of 393 amino acid residues, which can be roughly divided into four structurally

and functionally different domains (Fig. 3.). The acidic amino-terminal domain

consisting of the first 42 aa is responsible for the transactivating properties of the

protein, without which the induction of target genes cannot occur. Amino acids ranging

from 102 to 292 form the central sequence-specific DNA-binding domain (Bargonetti et

al., 1993; Pavletich et al., 1993), the most common location of p53 mutations. Between

these two domains a novel proline-rich domain localized between aminoacids 64 and 92

has been identified (Walker and Levine, 1996). The carboxy-terminal domain displays
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many functions, and can be further divided into the oligomerization domain (amino

acids 324-355) and the basic C-terminus with the last 30 amino acids.
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Fig. 3. Structure of human p53 protein. In the upper panel main functional
domains and in vivo phosphorylation sites of p53 are shown. In contrast to other
modification sites, Ser376 should be dephosphorylated and Lys382 acetylated
for increased activity of p53. In the lower panel five conserved regions as well
as the three most often mutated amino acids are indicated.
       = serine,        = threonine,        = lysine.

64

Amino-terminal domain

The N-terminal as well as the C-terminal domain of p53 binds to numerous proteins

involved in DNA replication and repair. A list of factors binding to and affecting the

transactivation domain includes many general transcription factors, such as TATA box-

binding protein (TBP) (Horikoshi et al., 1995) and TBP-associated factors (TAFs)

TAF70 and TAF31 (Lu and Levine, 1995; Thut et al., 1995), all of which are subunits

of the general transcription factor TFIID. By binding to TBP, wild-type p53 can repress

genes lacking a p53-binding site. p62, a component of the dual transcription /repair

factor TFIIH, and RP-A, a single stranded DNA-binding protein, also interact with

amino-terminus of p53. p53 can thus induce growth arrest not only by activating growth

suppressive target genes but also by the repression of transcription by sequestering and

binding to TBP, RPA and other proteins involved in replication (Seto et al., 1992; Mack

et al., 1993). C-Abl is activated after DNA damage and binds to the N-terminal domain

of p53 enhancing its transactivation function (Goga et al., 1995), whereas adenovirus

E1B 55 kD protein inhibits p53-mediated apoptosis. Most importantly, the negative

regulator of p53, mdm2, binds to the N-terminus of p53, sharing the same amino acids

22 and 23 of p53 with E1B 55 kD protein (Lin et al., 1994). In addition, both N- and C-
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terminus are subject to diverse phosphorylation modifications that are involved in the

regulation of p53; these changes are discussed in the context of p53 regulation.

The proline-rich domain

This domain contains five repeats of the PXXP motif, where P represents proline and

X any amino acid (Walker and Levine, 1996). Removal of proline-rich domain does not

affect cell cycle arrest but results in an impaired capability of p53 to suppress growth of

tumor cells (Walker and Levine, 1996), and impaired apoptotic activity (Venot et al.,

1998; Zhu et al., 1999). Interestingly, p53 mutants lacking the proline-rich domain can

selectively transactivate certain target genes; natural p21, mdm2, and bax promoters are

stimulated while the transactivation of PIG3 is inhibited (Venot et al., 1998).

Additionally, this domain seems to be important for transcriptional repression (Venot et

al., 1998), which together with selective transactivation is involved in apoptosis

mediated by the proline-rich region.

DNA-binding domain

The central sequence-specific DNA-binding domain is an independently folded,

Zn2+ ion requiring domain. The four conserved regions within the core domain make

contact with the major and minor grooves of p53-binding sites, while the less conserved

regions serve as a structural element, the ß-sandwich, which helps positioning the

residues that interact with DNA (Cho et al., 1994). Proteins defective in DNA binding

are incapable of transactivating target genes and transmitting most of the effects of p53.

The importance of DNA binding for p53 function is underscored by the fact that p53

residues most often mutated in human cancer, among them Arg248, Arg273, and

Arg175, are involved in DNA binding and located in conserved regions (Fig. 3). SV 40

T antigen binds to and blocks the DNA-binding domain, whereas the p53 binding

proteins 53BP1 and 53BP2 enhance p53-mediated transcriptional activity (Iwabuchi et

al., 1998). Although the tumor suppression function of p53 is highly linked to the core

domain, other domains may also be needed for the full suppression of transformation.

The three-dimensional co-crystal structure of the DNA-binding domain (Cho et al.,

1994) confirmed the tetrameric nature of p53 molecule. In solution and in wild-type

conformation p53 is found as a stable dimer of a dimer, a conformation characteristic

but not unique to p53 protein. Four DNA-binding domains together are more effective

than one in reaching multiple and sometimes distant p53-binding sites in a target gene

promoter (for example in p21 and cyclin G genes) (Zauberman et al., 1995). Tetrameric

p53 protein binds to two repeats of a consensus DNA sequence 5´-

PuPuPuC(A/T)(T/A)GPyPyPy-3´ (El-Deiry et al., 1992).
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The C-terminal domain

A flexible linker connects the DNA-binding domain to tetramerization or

oligomerization domain. The structure of this domain has been elucidated by three-

dimensional nuclear magnetic resonance spectroscopy (Lee et al., 1994; Clore et al.,

1995a; Clore et al., 1995b) revealing a certain homodimerizable motif (ß-sheet-turn-α-

helix). Only a small fraction of point mutations in p53 are located in this domain, and

some evidence suggests that tumor cells select for an intact oligomerization domain,

because tetramerization may be needed for complexing with wild-type p53 and exerting

dominant-negative phenotype. Although the role of the oligomerization domain in

transformation may be negligible, it is, as well as the activation domain, needed for

growth suppression.

The extreme C-terminus is an important and autonomous domain regulating the

activation of the whole p53 molecule. It can bind nonspecifically to different forms of

DNA-strands (Bakalkin et al., 1994; Lee et al., 1995) and reanneal complementary

single strands of DNA and RNA (Brain and Jenkins, 1994; Wu et al., 1995). Normally,

the carboxy-terminus acts as an autoinhibitory region, but several factors are able to

abolish this negative-regulatory function. p53 function can be activated by C-terminal

deletion (Hupp et al., 1992), antibody binding (Hupp et al., 1993; Halazonetis et al.,

1993), phosphorylation or other posttranslational modifications (Shaw et al., 1996), or

by binding of small C-terminal peptides (Hupp et al., 1995). Monoclonal antibody

PAb421 recognising amino acids 370-378 is a well known activator of p53 sequence-

specific DNA binding. Besides activating wild-type p53, some of these modifications

can reactivate most naturally occurring mutant p53 proteins (reviewed by Selivanova et

al., 1998). For example, C-terminal synthetic peptide corresponding to residues 361-382

has been shown to restore the apoptotic and growth suppression functions of at least two

common p53 mutations (R248Q and R273H) in human tumor cells (Selivanova et al.,

1997). According to the allosteric model, the interaction between the C-terminal

regulatory domain and its binding site in p53, probably in the core domain, results in a

conformation that is unable to bind DNA. C-terminal modifications are postulated to

change the conformation of p53 so that the DNA-binding domain is exposed and

sequence-specific binding is allowed. Recently it was demonstrated that the peptide

derived from the C-terminal domain of p53 binds to the core domain of mutant p53

(Selivanova et al., 1999). The binding of C-terminal peptide may relieve the inhibition

by disrupting the interaction between C-terminus and its binding site by competitive

inhibition, and moreover, the peptide may stabilize the DNA-binding domain or

establish new DNA contacts (Selivanova et al. 1998).

Short (20-39 nucleotides) single strands of DNA interact with the C-terminus and

effectively activate DNA binding of p53, whereas longer and double stranded DNA
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inhibit this function (Bakalkin et al., 1994; Jayamaran and Prives, 1995). Thus, the role

of the C-terminus in damage recognition and DNA repair is significantly based on its

ability to 1) bind single stranded DNA, generated for example during replication errors

and excision repair processes, 2) catalyze the reassociation of single stranded DNA into

the double stranded form, and 3) interact with DNA helicases. Interestingly, antibody

pAb421 that activates the DNA-binding function of p53, can at the same time inhibit the

nonspecific binding and reannealing activities (Jayamaran and Prives, 1995; Wu et al.,

1995). It has been postulated that two different active conformations of p53 may exist,

one being activated by an antibody or phosphorylation and leading to enhanced specific

but decreased nonspecific DNA binding, and the other being incapable of DNA binding

but remaining active for other functions. Thus, many kinds of modulations in the C- and

N-terminus can regulate the p53 molecule between inactive and active, perhaps more

than one, conformations.

p53 homologues

Quite recently two p53 homologues, p63 and p73, have been identified, sharing

considerable homology with the activation, DNA binding, and oligomerization domains

of p53 (Kaghad et al., 1997; Yang et al., 1998). However, p73 is not induced by DNA

damage, but its overexpression causes growth arrest and apoptosis (Jost et al., 1997).

Both p63 and p73 are able to transcriptionally activate p53 target genes depending on

which of the multiple isoforms they exist in (Jost et al., 1997; Yang et al, 1998). A

tumor suppressor function has been suggested at least for p73, since neuroblastomas

often lacking p53 mutations exhibit deletion of the genomic region containing the p73

gene.

Induction of p53 by physiological and genotoxic stress

Several different cellular and environmental conditions, usually harmful to the cell or

organism, cause the accumulation and activation of p53, resulting in growth arrest or

apoptosis. Although high p53 levels are detected during development at specific tissues

including the central nervous system, p53 protein is otherwise present at a very low

level in normal cells. Although the protein is being constantly translated, it is actively

and efficiently degraded until needed. The half-life of normal, unactivated p53 protein

is less than 30 minutes, whereas posttranslational stabilization increases the time to

several hours (Kastan et al., 1991). Additionally, p53 can itself regulate its activity at

the translational level. In normal cells translation of p53 mRNA is constitutively

inhibited by its 3´ untranslated end. Furthermore, p53 protein can bind to its own

mRNA repressing its translation, but upon DNA damage the repression is suppressed
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(Mosner et al., 1995). The presence of p53 at extremely low levels in normal conditions

and its activation upon damaging or otherwise harmful situations suggest that p53 is not

needed during the normal cell cycle, but is called into action when problems arise. This

mode of function differs from the action of other tumor suppressors, for example RB,

which is constantly working throughout the cycle.

Genotoxic stress, for example UV and γ-irradiation, and cytotoxic drugs, is a strong

inducer of p53 (Fig. 4.). Although the extent and kinetics of p53 accumulation and

activation differ somewhat among these stimuli, the common denominator is the

presence of DNA strand breaks (Nelson and Kastan, 1994). Besides DNA double-strand

breaks, which are directly formed by γ-irradiation and indirectly by DNA repair

processes after UV radiation and cancer therapy drugs, single strand breaks can also

induce p53 (Di Leonardo et al., 1994). Introduction of restriction enzyme nucleases into

the nucleus results in an increase in the level of p53 demonstrating that strand breaks are

sufficient  for activation of p53 (Siegel et al., 1995).

Furthermore, more general stress situations arising from suboptimal growth

conditions, such as hypoxia (Graeber et al., 1994), alterations in redox balance (Hainaut

and Milner, 1993), heat, starvation, and nucleotide depletion (Linke et al., 1996) induce

p53 (Fig. 4.). Since oxidation inhibits and reduction induces DNA binding of p53

(Hainaut and Milner, 1993; Hupp et al., 1993), inactivation of p53 provides a

mechanism by which oxygen radicals can promote tumor formation.
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Fig. 4. Inducers of p53 activity. Growth arrest and apoptotic functions
of p53 are induced by diverse physiological and genotoxic signals.

In all the above mentioned situations, as a physiological response, p53 is

accumulated and activated at the same time, but in other contexts p53 may be

accumulated without activation. p53 may complex with viral oncoproteins, for example
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SV40 T antigen, leading to an increase in the amount of p53 protein but not in activity.

On the other hand, E1A and E7 proteins, which complex with pRB instead of p53,

cause p53 stabilization and p53-dependent apoptosis (Lowe and Ruley, 1993; Demers et

al., 1994). In addition, p53 mutations couple increased p53 protein level with decreased

or absent function. In conclusion, all conditions where p53 is accumulated carry an

increased risk for transformation, regardless of the mechanism or reason for

accumulation (DNA-damage, infection with tumor viruses or mutation of p53).

Activation mechanisms of p53

Mdm2-mediated degradation of p53

Tight regulation of growth suppressive and apoptotic properties of p53 is essential.

Although p53 needs to be rapidly and efficiently activated, it is equally important that

p53 response is later adequatly attenuated. It was discovered quite early  that p53 was a

target of common ubiquitin-dependent proteolysis (Chowdary et al., 1994), and that

HPV E6 protein inactivated p53 by targeting it for degradation by the proteasome

(Scheffner et al., 1993). Later proteasome inhibitors alone were shown to be able to

stabilize and activate p53 (Maki et al., 1996).

Mdm2, itself a target gene of p53 and induced by it, negatively regulates p53 in two

ways: by physically interacting with p53 it represses the transcriptional activity of p53

(Oliner et al., 1993; Wu et al., 1993) and mediates its degradation (Haupt et al., 1997;

Kubbutat and Vousden, 1997). Mdm2 interacts with p53 N-terminal residues 17-27

(Picksley et al., 1994), which are located in the transactivation domain of p53 and are

also subject to a variety of phosphorylation changes. Moreover, this region is one of the

highly conserved segments of p53 further highlighting the significance of mdm2 as a

regulator of p53. Mdm2 is able to shuttle p53 from the nucleus to cytoplasm (Roth et

al., 1998), where the degradation takes place. Additionally, mdm2 may function as an

E3 ubiquitin ligase (Honda et al., 1997), whereas others have hypothesised that binding

of mdm2 to p300 transcriptional activator/ histone acetylase might be a precondition for

degradation (Grossman et al., 1998). Involvement of mdm2 in the degradation of p53

also helps explain why mutant p53 is stable. Mutated, inactive p53 is not able to induce

mdm2 and thus degradation via this pathway is blocked leading to increased amounts of

defective p53 protein.

Until recently the upstream pathways of p53 between the initiating signals and

activation of p53 at the molecular level have been largely speculative, and several

different mechanisms for p53 activation have been suggested. At present, the best

known activating mechanisms merge into the the same end result: inhibition of mdm2-
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mediated suppression of p53. Thus, p53 seems to be activated by releasing it from

inhibition.

Phosphorylation of p53 by DNA damage

Posttranslational modification of p53 by phosphorylation of both N- and C-terminal

residues has proven to be one of the most important mechanisms for regulating the

activity of p53. Phosphorylation of multiple alternative phosphorylation sites in the N-

terminus impairs the interaction between p53 and mdm2 and leads to accumulation of

p53 (Shieh et al., 1997) (Fig. 5.). Although several kinase and phosphorylation site

candidates have been presented, their physiological role still requires clarification.

While casein kinase I (CKI), DNA-dependent protein kinase (DNA-PK), mitogen

activated protein kinase (MAP), and Jun amino-terminal kinase (JNK) are able to

phosphorylate many N-terminal amino acids in vitro (reviewed by Steegenga et al.,

1996), phosphatidylinositol 3 (PIK-3) like kinases ATM, ATR and DNA-PK have more

recently awaken interest as kinases phosphorylating several N-terminal serines in vivo.

 Kinase mutated in ataxia telangiectasia (ATM) has been demonstrated to possess a

central role in the posttranslational activation of p53 after ionizing radiation (Banin et

al., 1998; Canman et al., 1998). AT patients suffer from increased cancer risk and show

hypersensitivity to ionizing radiation (Savitsky et al., 1995). γ-radiated AT cells with

defective ATM show only a minimal increase in the amount and activity of p53,

indicating that ATM functions upstream of the p53 signaling pathway (Kastan et al.,

1992). ATM, which has a substantial similarity to other proteins in the PI3-K family,

has been shown to phosphorylate serine 15 of p53 after γ-irradiation (Banin et al., 1998;

Canman et al., 1998). Interestingly, ATM kinase activity is increased only after ionizing

radiation, because cells lacking ATM show normal p53-dependent responses (Khanna

and Lavin, 1993) and Ser15 phosphorylation (Siliciano et al., 1997) after UV radiation.

Ionizing radiation may induce co-factors that differ from those activated after UV-

radiation or, alternatively, direct double strand breaks are needed for enhanced ATM

kinase activity. Ser15 is probably phosphorylated after UV radiation by ATR, an ATM

related kinase (Tibbets et al., 1999).

DNA-PK, an other member of the same kinase family, is known to phosphorylate

p53 on Ser15 and Ser37 leading to stabilization and inhibition of p53 degradation by

mdm2 (Shieh et al., 1997). Mice with severe immunodeficiency (SCID), which were

believed to have no DNA-PK activity, were found, however, to respond to DNA

damage normally in a p53-dependent manner (Gurley and Kemp, 1996; Araki et al.,

1997). Later it was specified that cells from these animals have retained some DNA-PK

activity explaining the normal p53 functions. When true DNA-PK deficient mice were

developed, DNA damage was found to accumulate but not activate p53, supporting the
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role of DNA-PK in p53 responses (Woo et al., 1998). Although DNA-PK activity is

needed for p53 activation upon ionizing irradiation, it is not sufficient alone (Woo et al.,

1998). Since Ser15 is phosphorylated by, at least, two different kinases, DNA-damage

induced phosphorylation of this residue has been sugggested to be essential for p53

function. Ser15 lies at the N-terminal border of the mdm2-binding site in p53 and

phosphorylation of it weakens both the association of p53 with mdm2 and the

repression of p53 by mdm2 (Shieh et al., 1997). In addition to phosphorylation of

Ser15, Ser33 and Ser37 are also phosphorylated by both UV and ionizing irradiation

(Shieh et al., 1997; Siliciano et al., 1997; Sakaguchi et al., 1998). At present, a constant

flow of novel N-terminal phosphorylation sites are emerging, exemplified by Ser20

(Shieh et al., 1999; Unger et al., 1999), Ser46, Thr81, and Ser91; all these sites are

phosphorylated by DNA damage.

The C-terminus of p53 is also modified by cellular stress (Fig. 3.). An expanding list

of protein kinases have been shown, notably in vitro, to phosphorylate p53 at different

C-terminal residues: protein kinase C (PKC) at Ser378 (Takenaka et al., 1995), CKII at

Ser392 (Herrmann et al., 1991), and Cdk2 at Ser315 (Addison et al., 1990; Bischoff et

al., 1990) (Fig.3.). UV but not γ-irradiation induces phosphorylation of human Ser392

representing the only UV specific effect on p53 in vivo (Kapoor and Lozano, 1998; Lu

et al., 1998). Dephosphorylation of some residues, for example Ser376 after ionizing

radiation, appears to be as important for the activation of p53 as is phosphorylation of

other residues (Waterman et al., 1998). Moreover, DNA damage has been reported to

induce acetylation of C-terminal lysine 382, which has been suggested to reveal the

autoinhibition by the C-terminus together with phosphorylation of PK-C and CKII sites

(Gu and Roeder, 1997; Sakaguchi et al., 1998). However important phosphorylation of

p53 may seem, two recent reports have demonstrated that phosphorylation may not be

absolutely required for p53 activity or accumulation after DNA damage (Blattner et al.,

1999; Ashcroft et al., 1999). Although nearly all known phosphorylation sites in the N-

and C-terminus were mutated, p53 stabilization by UV, gamma irradiation and

actinomycin D was not impaired (Blattner et al., 1999), and the mutant p53 proteins

retained normal stabilization and transactivation functions upon UV treatment (Ashcroft

et al., 1999).

Activation of p53 by p14ARF

A different p53 activation model has been presented in the form of p14ARF,  ARF

standing for   a  lternative   r  eading   f  rame. A single genetic locus, INK4a/ARF, encodes two

different proteins, p16INK4a Cdk-inhibitor and p14ARF (Quelle et al., 1995a). p16INK4a

protein is encoded by three exons, 1α , 2, and 3, of which exons 2 and 3 are shared by

p14ARF but read in a different reading frame. In addition, exon 1α  of p16 is replaced by
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exon 1ß in p14ARF, resulting in two totally different proteins with no amino acid

similarities (Mao et al., 1995; Quelle et al., 1995a; Stone et al., 1995). The ARF protein,

of size 19 kD in mouse and 14 kD in human, induces G1- and G2-phase growth arrest

when introduced into a variety of different cells. However, this activity depends on

intact p53 (Quelle et al., 1995b; Stott et al., 1998). Ectopic ARF expression leads to

stabilization of p53 and induction of its target gene transcription (Kamijo et al., 1997).

The dependency of ARF on p53 was evidenced by experiments where transfection of

p53-positive but ARF-negative NIH3T3 cells with ARF led to p53-dependent induction

of p21(Kamijo et al., 1998). However, ARF -/- cells overexpressing p53 were not able

to induce p21, indicating that an increase in the level of p53 alone in this setting was not

sufficient for p21 induction, and demonstrating that ARF acts upstream of p53 (Kamijo

et al., 1998). Additionally, in ARF-/- cells p53 activation was normal after DNA

damage (Kamijo et al., 1997). Thus, while ARF function is dependent on functional

p53, p53 action can be activated without ARF, suggesting that different p53 activating

signals utilize independent signaling pathways.

 Different proliferative signals, such as c-myc (Zindy et al., 1998), E1A (de

Stanchina et al., 1998) and E2F (Bates et al., 1998) lead in normal fibroblasts to ARF

activation and p53-dependent apoptosis. These proteins can activate p53 also ARF-

independently, but much higher concentrations of oncoproteins are required in the

absence of ARF. The underlying mechanism of p53 activation by ARF involves

inhibition of mdm2 function. The N-terminus of ARF interacts with the C-terminus of

mdm2, leading to repression of the mdm2-dependent suppression of p53 (Pomerantz et

al., 1998; Zhang et al., 1998). ARF, which is localized in nucleoli (Quelle et al., 1995a;

Pomerantz et al., 1998), inhibits the nucleo-cytoplasmic shuttling of the mdm2-p53

complex and prevents the degradation of both p53 and mdm2 (Roth et al., 1998; Zhang

and Xiong, 1999 (Fig.5.). Moreover, ARF may inhibit ubiquitin ligase function of

mdm2 (Honda and Yasuda, 1999). The human p14ARF appears not to interact directly

with p53 (Pomerantz et al., 1998; Stott et al., 1998; Zhang et al., 1998), but in mouse

some evidence has been obtained about the physical interaction between p53 and

p19ARF without mdm2  (Kamijo et al., 1998).

After developing ARF knockout mice, it was soon discovered that ARF-/- MEFs

were immortalized (Kamijo et al., 1997). Furthermore, like many established cell lines,

the ARF-/- cells were easily transformed and immortalized by oncogenic ras, in contrast

to normal MEFs in which overexpression of ras leads to a growth arrest (Kamijo et al.,

1997). p16 knockout mice lacking exons 2 and 3 were created before ARF was

discovered, and numerous tumors in these animals and the aberrant growth of the MEFs

derived therein were thought to result from the absence of p16 (Serrano et al., 1996).

Surprisingly, when true p19ARF knockout mice, lacking only exon 1ß were developed,
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the tumor spectrum and incidence were identical to that of "p16-/-" mice, and tumor

cells were shown to express normal p16 (Kamijo et al., 1997). These observations

support the role of ARF as a tumor suppressor and may question the role of p16 in

tumorigenesis until a knockout mice with loss of only p16 expression are developed.

According to the knowledge gained so far, p53 seems to be crucial in its own

regulation. p53 upregulates its inhibitor mdm2, and downregulates its activator ARF

(Stott et al., 1998) to keep the inhibitory and stimulatory signals in balance and the p53

level low. As if the activation models are separated and independent they seem

ultimately to inhibit or weaken the mdm2-p53 interaction and mdm2-dependent

degradation of p53: DNA damage-associated phosphorylation of p53 (ATM/DNA-PK

activation pathway) attenuates the interaction between p53 and mdm2, while oncogene

activated ARF binds to mdm2 and inhibits destruction of p53, both leading to

stabilization and activation of p53 (Fig. 5.).

DNA damage
   (IR, UV)

Oncogenes (E2F, E1A)
Mitogenic signals (Myc)

   Kinase activity
(ATM, ATR, DNA-PK)

p14ARF

Phosphorylation
     of p53

    Inhibition of
 nucleo-cytoplasmic
 shuttling of mdm2

mdm2-mediated degradation
  and suppression of p53

p53

Fig. 5. Regulation of p53 by pathways involving kinase and
p14ARF activity. Despite having different activating signals
both pathways result in inhibition of mdm2-mediated repression
of p53 leading to stabilization and activation of p53.
      = activation,      = inhibition.

Multiple effects of p53

The p53 tumor suppressor protein limits cell proliferation and inhibits tumor

formation by two main mechanisms: by inducing growth arrest and/or apoptosis (Fig.

4.). The organism is protected from accumulating genetical changes by halting the

propagation of harmful mutations to daughter cells. This is achieved by either arresting

the cell cycle and allowing time for DNA repair, or by committing suicide by
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programmed cell death. In addition to growth and tumor suppression functions, p53 is

involved in development and differentiation processes.

Growth  arrest

The best characterized antiproliferative function of p53 is its role in G1-phase

growth arrest. γ-irradiation of cells rapidly and efficiently leads to p53-dependent G1-

phase arrest (Kastan et al., 1992; Kuerbitz et al., 1992). Activation of p53 induces the

expression of several target genes, especially p21 Cdk-inhibitor gene (El-Deiry et al.,

1993). Upregulation of p21, a potent inhibitor of all Cdks, blocks the catalytic activity

of the cyclin-Cdk complex preventing the phosphorylation of many regulatory proteins

and leading to inhibition of cell cycle progression (Dulic et al., 1994; El-Deiry et al.,

1994). Among the best known consequences is the maintenance of pRB in the

underphosphorylated form binding transcription factor E2F-1 (Demers et al., 1994;

Slebos et al., 1994). The pRB-E2F complex represses the gene transcription inhibiting

the expression of numerous proteins needed in the progression of the S phase. Partly

contradictory data have been presented concerning the need of pRB-E2F pathway in

p53-mediated growth arrest. In experiments where pRB functions were blocked by viral

oncoproteins like the E1A protein of adenovirus, the T antigen of SV40 or E7 of human

papillomavirus, p53-dependent growth arrest was inhibited (Demers et al., 1994; Slebos

et al., 1994). On the other hand, cells from RB null mice were shown to be capable of

undergoing full G1 arrest after γ-irradiation. Several aspects should be taken into

account here: first, oncoproteins effect many other cell cycle proteins besides pRB, and

secondly, RB null cells have intact RB family members p107 and p130 which may

partly overtake the functions of pRB. However, in the absence of clear evidence of

competing mechanisms, G1-growth arrest is generally concluded to be exerted via the

p21-pRB-E2F pathway.

The role of p21 in p53-mediated G1 growth arrest is evidenced by the observation

that overexpression of p21 itself leads to arrested growth (Harper et al., 1995).

However, p21-/- cells are only partially defective in γ-radiation induced growth arrest

(Brugarolas et al., 1995; Deng et al., 1995) whereas p53 deficiency totally abolishes it,

suggesting that other p53 activated factors, for example GADD45, may be also

involved. Besides well characterised G1 growth arrest, p53 has a definite role in

mediating G2 growth arrest as well (Agarwal et al., 1995; Stewart et al., 1995).

Even in the absence of damaging stimulus p53 functions as a cell cycle checkpoint

controller, since p53-/- MEFs exhibit disturbed cell cycle phase distributions compared

to wild-type p53 cells (Harvey et al., 1993). Furthermore, the same cells treated with

mitotic spindle inhibitors failed to be arrested in the G2 phase, but continued DNA

synthesis inappropriately resulting in aneuploidy (Cross et al., 1995). This suggests that
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p53 functions as a mitotic spindle checkpoint factor ensuring that replication is not

initiated without completion of proper chromosome segregation. Studies with gas1 gene

have suggested participation of p53 even in the G0 checkpoint. Gas1 gene, expressing a

protein needed to keep cells in G0 state, is not a target gene of p53, but is dependent on

wild-type p53 for its function. p53 mutants incapable of transactivation are still able to

assist gas1 to arrest cells in G0, giving an example of a p53 checkpoint function devoid

of any transactivation property (Del Sal et al., 1995).

Apoptosis

Apoptosis, or programmed cell death, is an efficient means of getting rid of harmful

cellular material. Convincing number of experiments have demonstrated a role for p53

in triggering apoptosis in a variety of different conditions. DNA damaging agents, such

as ionizing and UV radiation and cytotoxic drugs, c-myc (Wagner et al., 1994) and

adenovirus EIA expression (Lowe and Ruley, 1993), and withdrawal of growth factors

(Johnson et al., 1993), may result in p53-dependent apoptosis. γ-irradiation of mouse

thymocytes provides a classic example of p53-induced cell death (Lowe et al., 1993b).

Radiated thymocytes from p53 -/- mice do not undergo apoptosis as do their p53

positive counterparts (Lowe et al., 1993b). Since p53-mediated apoptosis can be

blocked by treating myeloid cells with interleukin-6 (Levy et al., 1993) or erythroid

cells with erythropoietin, p53 may in these circumstances function as sensor of

environmental conditions and growth factor supply. Cancer threapy is also taking

advatage of apoptotic pathway, since cytotoxic drugs and irradiation therapy are largely

based on the wild-type p53-induced apoptosis. It should be remembered, however, that

p53-independent apoptosis, such as cell death after glucocorticoid treatment (Clarke et

al., 1993), probably occurs as often as p53-dependent cell death.

p53 participates in the induction of apoptosis directly by inducing the target genes

bax, insulin-like growth factor-binding protein 3 (IGF-BP3) (Buckbinder et al., 1995),

fas/APO1 (Owen-Schaub et al., 1995), and Killer/DR5 (Wu et al., 1997). Bax, an

apoptosis promoter, can form a complex with Bcl-2, a protector against apoptosis, and

the balance between these two, among other factors, determines whether apoptosis is

induced (Miyashita and Reed, 1995). The IGF-BP3 gene is upregulated by p53 in

response to genetic insult (Buckbinder et al., 1995). By binding to IGF it inhibits both

survival and mitogenic signals representing an antimitogenic function of p53.

In contrast to the growth suppressive function of p53 that seems to be dependent on

the transcriptional activity, apoptotic activity has been difficult to uniformly attribute to

any certain domain of the protein. Although p53 induces several genes promoting

apoptosis, p53-dependent apoptosis after DNA damage has been detected both in the

presence of the translational inhibitor cycloheximide (Wagner et al., 1994) and the
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transcriptional inhibitor actinomycin D (Caelles et al., 1994) suggesting that the

apoptotic pathway may be independent of the transcriptional activity of p53. The same

conclusion was obtained in HeLa cells transfected with mutant p53gln22, ser23. This

mutation which abrogates the transcriptional activity of p53 was still able to cause p53-

dependent apoptosis (Haupt et al., 1995; Yonish-Rouach et al., 1995). Accordingly,

neither Bax nor fas/APO1 expression were required for p53-dependent apoptosis in vivo

(Knudson et al., 1995; Fuchs et al., 1997). In contrast, BRK cells stably expressing E1A

and temperature-sensitive p53val135 underwent apoptosis when p53 was in its wild-type

conformation, but not when the mutant status was applied (Sabbatini et al., 1995a).

These controversial findings suggest the existence of two separate apoptotic functions

of p53, one depending on the activation of p53 target genes, and the other using direct

protein signaling, depending on the cell type or experimental situation. Repression of

certain genes may offer one mechanism for transcription-independent apoptosis, since

bcl-2 and adenovirus E1B 19 kD protein blocking the p53-dependent apoptosis do not

interfere with transcriptional activity but suppress the repression function (Shen and

Shenk, 1994; Sabbatini et al., 1995b). This is supported by observation that lack of

proline-rich domain of p53 that results in defective apoptosis also impairs the repression

function of p53 (Venot et al., 1998). Finally, the large number of proteins interacting

with and binding to p53 give rise to numerous possible mechanisms by which p53 may

induce apoptosis independent of transactivation.

Growth arrest or apoptosis?

DNA-damaging stimuli and stressful environmental conditions lead to either growth

arrest of cells or apoptosis. Several factors determine which way the cells follow. One

of the most important factors is the cell type: in mortal primary fibroblasts DNA-

damage often leads to transient growth arrest, whereas immortal and hematopoietic cells

often react by programmed cell death (Midgley et al., 1995; Haupt et al., 1996).

In addition to DNA-damaging situation, limited availability of growth factors or

activation of cellular or viral oncogenes favor the induction of apoptosis rather than

growth arrest, in order to eliminate cells with unstable genomes. Different viral proteins

have diverse and partially controversial effects on p53 and cell survival. Expression of

adenovirus E1A protein in murine fibroblasts stabilize and activate p53 resulting in

apoptosis (Debbas and White, 1993). On the other hand, 55 kD E1B protein binds to the

N-terminus of p53 and inhibits its transcriptional activity, whereas 19 kD E1B protein

acts like bcl-2 blocking the apoptosis downstream of p53 activation (Debbas and White,

1993). Human papillomavirus E7 protein induces p53-dependent apoptosis, but E6

binds to p53 and targets it for proteosome degradation (White et al., 1994). Both

apoptosis promoting oncoproteins E1A and E7 share the ability to bind to and inactivate
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pRB, not p53, leading to unregulated functions and increasing amounts of E2F-1. Thus,

in the presence of intact p53 but in the absence of functional pRB, the apoptotic

pathway rather than growth arrest is triggered by these viral oncoproteins.

p53 in DNA repair

As the role of p53 in growth arrest and apoptosis is widely accepted, the involvement

of p53 in DNA repair is far from clear. Studies for and against a role of p53 in DNA

replication and repair exist. Interaction with many replication and repair proteins, for

example RP-A (Dutta et al., 1993), and components of the dual transcription-repair

factor TFIIH, including DNA helicases ERCC2 and ERCC3 (Wang et al., 1995;

Leveillard et al., 1996), has been the first line of evidence for p53 in these functions.

The binding of p53 inhibits the helicase activity of these proteins, as has been shown

also with other cellular and viral helicases (Wang et al., 1996). Indirectly, upon

stimulation of p21, which complexes with proliferating cell nuclear antigen (PCNA),

p53 is involved in the inhibition of DNA replication after DNA damage without

interfering with the repair processes (Shivji et al., 1994; Li et al., 1996).

Although in some studies a correlation has been found between p53 deficiency and

reduced repair, in others this has not been the case. UV-radiated Li-Fraumeni cells

carrying homozygous deletion of p53 exhibited disturbed removal of pyrimidine dimers

and photoproducts but normal transcription-coupled repair (Ford and Hanawalt, 1995;

Ford and Hanawalt, 1997). However, point mutations accumulated equally (Nishino et

al., 1995; Sands et al., 1995), and the rate of NER was identical in both normal and p53-

/- mouse cells (Ishizaki et al., 1994) giving evidence against direct p53 functioning in

DNA repair. Nevertheless, the loss of p53 reduced the rate and efficiency of nucleotide

excision repair in human cells in several experimental conditions (Smith et al., 1995;

Wang et al., 1995). One can not either ignore the fact that p53 binds efficiently to

damaged DNA, both mismatched and irradiated DNA (Lee et al., 1995; Reed et al.,

1995), and that 3´-5´ exonuclease activity of p53 may be used in DNA recombination,

replication or repair processes (Mummenbrauer et al., 1996).

Development

Although p53 -/- mice first appeared to develop normally (Donehower et al., 1992),

more careful examination of the phenotype revealed developmental disturbances,

particularly defects in neural tube closure. For example, at the age of 13.5 days 16% of

p53 -/- embryos, all female, showed markable anencephaly (Armstrong et al., 1995; Sah

et al., 1995). Additionally, a small fraction of p53 knockout embryos died prematurely,

and the embryos of p53-/- pregnant mice were more vulnerable to diverse teratogenes

compared to normal mice (Nicol et al., 1995). Mdm2 -/- mice are embryonically lethal,
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but the absence of p53 in double knockout mice is able to rescue the embryos (Jones et

al., 1995; Montes de Oca Luna et al., 1995). This suggests that in the presence of p53

mdm2 is needed during embryogenesis to negatively regulate p53. Thus, contrary to

what was originally believed, p53, in co-operation with mdm2, is not dispensable in

early development. p53 is also involved in certain differentiation processes, like B-cell

maturation (Aloni-Grinstein et al., 1993) and spermatogenesis (Schwartz et al., 1995).

Transcriptional target genes of p53

The main function of p53 is the transcriptional activation of its target genes.

Numerous genes have been presented as candidates for effector genes of p53, but not all

of them are able to fulfill the criteria. Even if a p53 binding site is found on a gene or

promoter, it should be recognized by wild-type but not mutant p53, and basal

transcription of a gene should be increased p53-dependently. Besides containing a p53

response element, a gene should be induced upon cellular stress in a p53 dependent

manner. Over the years, some candidates have consolidated their positions as p53-

response genes and have shown particular importance in the physiological functions of

p53.

p21WAF1/Cip1

Besides being the first p53 target gene discovered, p21 is among the most important

effector genes. As a universal Cdk-inhibitor, p21 has a central role in p53-induced

growth arrest. p21 functions are discussed thoroughly in a separate chapter.

mdm2

Originally mdm2 (    m    urine   d  ouble     m    inute gene    2   ) was described as one of the genes

amplified in the double minute chromosomes in spontaneously transformed 3T3 cells

(Cahilly-Snyder et al., 1987), and later it was found to possess oncogenic potential

(Fakharzadeh et al., 1991). Mouse mdm2 gene contains two promoters and numerous

exons spread over a large area. One promoter is located upstream of the gene and used

for constitutive expression, while the other is present in the first intron and regulated by

p53 through two p53 binding sites (Juven et al., 1993; Wu et al., 1993; Barak et al.,

1994; Zauberman et al., 1995). Basal expression of mdm2 from its constitutive

promoter P1 is thought to be responsible for maintaining low levels of p53, while p53-

inducible mdm2 promoter P2 is not activated after DNA damage until interaction

between mdm2 and p53 has been disrupted and activation of the target genes has

occured. In order to give p53 time to act before it is attenuated by mdm2, transcriptional
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activation of mdm2 should occur later than activation of other target genes, or,

alternatively, the complex formation between p53 and mdm2 can be retarded.

Mdm2 oncogene encodes several proteins, and the largest 90 kD protein binds to and

inactivates p53 (Momand et al., 1992; Haupt et al., 1997; Kubbutat et al., 1997).

Multiple other mdm2 proteins have also been detected, and these proteins arise through

alternative splicing, proteolytic processing, or posttranslational modifications (Olson et

al., 1993). p76, which is unable to bind p53 but binds ARF, is expressed and induced by

UV radiation p53 independently (Saucedo et al., 1999). UV radiation has been shown to

induce mdm2 in a p53 and UV-dose dependent manner: low UV doses induce the gene

rapidly, while at high doses a delay is observed between mdm2 induction and p53

stabilization (Perry et al., 1993).

The mdm2 gene is amplified in about 20% of soft tissue sarcomas (Oliner et al.,

1992; Leach et al., 1993) and quite frequently in esophageal tumors, astrocytomas and

osteosarcomas (reviewed by Momand and Zambetti, 1997). In addition to gene

amplification high levels of mdm2 may result from enhanced translation or other

modifications (Landers et al., 1994). Although p53 is mutated in half of human cancers,

p53 mutation is rarely found together with mdm2 amplification (Florenes et al., 1994a).

Instead of p53 mutation, exceptionally high levels of wild-type p53 are observed in

some cancers. Transformed epithelial cells expressing high basal level of wild-type p53

were found to overexpress mdm2 without gene amplification, and with no increase in

transcription of other p53 effectors (Blaydes et al., 1997). Additionally, only a small

proportion of p53 was found in a complex with mdm2, so that the amount of functional

p53 was not totally abolished but was lowered to a reasonable, more physiological level

(Blaydes et al., 1997). This suggests that overexpression of mdm2 provides a

mechanism by which high wild-type p53 levels can be tolerated without growth arrest

or the apoptosis of cells.

The main contribution of mdm2 overexpression to cancer formation is believed to be

through elimination of the tumor suppressor function of p53. However, the N-terminal

domain of mdm2 is able to activate E2F-1 transcription factor (Martin et al., 1995), and

to bind to and inactivate pRB (Xiao et al., 1995). These functions may explain how

mdm2 promotes transformation also in cells lacking p53 (Lundgren et al., 1997).

GADD45

GADD45 is the best characterized member of the   g  rowth  a rrest and     D    NA    d   amage

inducible gene (GADD) family. These genes are induced by DNA-damaging agents and

some growth arrest conditions, for example nutrient depletion or hypoxia (Fornace et

al., 1989). GADD45 is a nuclear protein, the levels of which oscillate slightly during the

cell cycle being highest in G1 and lowest during the S phase (Kearsey et al., 1995).
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GADD45 can be transcriptionally activated by p53 via p53 consensus binding site at its

third intron (Hollander et al., 1993). Although induction of GADD45 upon γ-irradiation

is strictly dependent on p53 (Kastan et al., 1992), p53 independent induction of

GADD45 is often seen after base-damaging agents, such as UV radiation (Kearsey et

al., 1995). Even if p53 may not be necessarily required for the induction of GADD45,

disruption of p53 function may reduce the extent of induction (Zhan et al., 1996). An

increased level of GADD45, either due to DNA damage or overexpression of the

protein, leads to G1 growth arrest of cells (Zhan et al., 1994). A role for GADD45 in

DNA repair and inhibition of apoptosis has been suggested by experiments where

antisense GADD45 expression decreased DNA repair and sensitized cells to UV- and

cisplatin-induced apoptosis, the latter function being opposite to that of p53 (Smith et

al., 1996). Moreover, in some experiments GADD45 has been shown to interact with

PCNA, and, like p21, inhibit PCNA-dependent replication and thus facilitate nucleotide

excision repair (Smith et al., 1994; Hall et al., 1995). However, other studies have not

been able to demonstrate the effect of GADD45 on NER (Kearsey et al., 1995).

bax

Bax is a target gene of p53 involved in apoptotic function of p53. Bax forms

heterodimeric complexes with bcl-2 and by dominant-negative effect antagonizes its

ability to block apoptosis. Interestingly enough, also Bcl-2 seems to be under the control

of p53, because p53 can downregulate bcl-2 by repressing its transcription (Haldar et

al., 1994; Miyashita et al., 1994).

Others

 Cyclin G encodes a cyclin of unknown function (Okamoto and Beach, 1994), which

is induced in a p53 dependent manner after DNA damage (Miyashita and Reed, 1995);

no Cdk has been yet found to associate with it. The regulation of PCNA by p53 has

been questioned, but it seems that transactivation of PCNA is restricted to low

concentrations of p53 (Shivakumar et al., 1995; Morris et al., 1996). Additionally,

numerous other p53 response genes have been suggested, but the real in vivo

importance of these target gene candidates needs to be clarified.

Transcriptional repression by p53

Besides being a transcriptional activator, p53 may function as a transcriptional

repressor as well, providing yet another mechanism to influence cellular functions.

Genes lacking p53-binding site but containing the TATA box can be subject to

inhibition by p53 (Mack et al., 1993). c-fos, c-jun, RB, bcl-2, IL-6 and heat shock

protein (hsp) 70 are examples of genes repressed by p53. The repressor function of p53
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is believed to be especially important in suppression of tumorigenesis and induction of

apoptosis.

p21 CDK-INHIBITOR

The p21WAF1/CIP1 cyclin kinase inhibitor cDNA was cloned independently by four

different groups and thus was given several different names characterizing its functions.

Using a yeast-two hybrid system, p21 was reported to bind to Cdk and was named CIP1

(Cdk inhibiting protein 1) (Harper et al., 1993), and, at the same time, it was identified

as a gene product activated by p53, called WAF1 (wild-type p53-activated factor 1) (El-

Deiry et al., 1993). Later, when DNA synthesis inhibitors were looked for from

senescent cells, p21 was cloned as SDI1 (senescent cell-derived inhibitor 1) (Noda et

al., 1994). Finally, p21 was identified as MDA-6, melanoma differentiation associated

protein, because of its increased expression in melanoma cells after induced

differentiation (Jiang et al., 1994).

Cellular effects of p21

Growth arrest

The main effect of p21 seems to be the inhibition of cell proliferation. As a common

cyclin-kinase inhibitor, p21 effectively inhibits the kinase activity of Cdk2, Cdk3, Cdk4

and Cdk6, less so Cdk5 and not at all Cdk7 or Cdc2 (Harper et al., 1995). As a result,

many regulatory proteins needed for progression of the cell cycle remain

unphosphorylated and the cell cycle stops. Originally, p21 was assumed to induce

growth arrest only at the G1/S-phase transition, but recently it has been shown to

mediate G2 arrest as well (Dulic et al., 1998; Niculescu et al., 1998). p21 may induce

growth arrest by at least two different mechanisms: by inhibiting the kinase activity of

Cdks and by preventing the actions of PCNA. Two different domains of p21 are

responsible for these inhibitory functions (Chen et al., 1995; Luo et al., 1995). The N-

terminal part of p21 is required for the Cdk inhibition, while the carboxy-terminal

domain interacts with PCNA and prevents the interaction of PCNA with other

components of the polymerase assembly. The association with PCNA is a unique

feature of p21 that distinguishes it from other CKIs. As an auxillary factor for DNA

polymerases ε and δ, PCNA is essential for both DNA replication and DNA repair.

Although inhibiting the PCNA-dependent replication and mismatch repair in vitro

(Flores-Rozas et al., 1994; Li et al., 1994; Waga et al., 1994), p21 appears not to inhibit

the function of PCNA in nucleotide excision repair (Shivji et al., 1994; Li et al., 1996).
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In normal human fibroblasts, p21 is found in quaternary complexes with cyclin, Cdk

and PCNA (reviewed by Kelman, 1997). Cdk in this complex may be inactive or active

depending on the amount and stoichiometry of p21 protein. At low or intermediate

concentrations p21 seems to function as an assembly factor enforcing the assembly of

cyclin D and Cdk4 even by 35-fold and targeting the cyclin/Cdk complex to the

nucleus, whereas at high concentrations p21 works as an inhibitor of kinase activity

(LaBaer et al., 1997). In a recent study, the antiproliferative functions of p21, inhibition

of cyclin/Cdk complexes and inhibition of PCNA, were shown to be independent of

each other, the latter function alone being sufficient to block cell cycle progression at

the G1/S and G2/M transitions (Cayrol et al., 1998). Interaction of p21 with GADD45

damage response protein is probably also involved in DNA damage checkpoints

(Kearsey et al., 1995).

The role of p21 in DNA damage checkpoints has been studied with mice and human

cells with homozygous deletion of p21 gene. Gamma-irradiated p21-/- MEFs were

partially defective in G1 checkpoint control and in response to double-stranded DNA

lesions (Brugarolas et al., 1995; Deng et al., 1995). However, in human colon

carcinoma cells HCT116, p21 was absolutely required for p53-mediated G1 growth

arrest by ionizing irradiation (Waldman et al., 1995).

Quite opposite to growth arrest, mitogenic stimuli have ben observed to induce p21

(Macleod et al., 1995). Enhanced expression of antiproliferative p21 may be perhaps

seen as a compensatory mechanism to prevent the overshoots of mitogenic activation.

Terminal differentiation and senescence

p21 is often induced in the process of terminal differentiation during which cells

need to exit from the cell cycle. For example, skeletal muscle cell differentiation

correlates with MyoD-induced p21 expression (Halevy et al., 1995). Ectopic expression

of p21 has been shown to promote differentiation of hematopoietic cells, such as

megakaryoblastic leukemia cells CMK (Matsumura et al., 1997) and myelomonocytic

cell line U937 by vitamin D3 (Liu et al., 1996). Accordingly, several growth factors are

able to induce p21 expression; specific examples of the regulation of p21 by some of

these are mentioned below.

In addition to being discovered to be an inhibitor of DNA synthesis in senescent

cells, disruption of p21 function in normal fibroblasts has been observed to lead to a

bypass of senescence and an extended life span of cells (Brown et al., 1997).

Apoptosis and tumorigenesis

Although p21 has been considered inert in apoptosis, a continuous line of evidence

suggests that p21 may protect cells from apoptosis (Polyak et al., 1996; Gorospe et al.,
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1997; Bissonnette and Hunting, 1998), while in some studies p21 has been shown to

promote it (Duttaroy et al., 1997). In contrast to tumor suppressive Cdk-inhibitor p16

and p14ARF, p21 appears not to have any role in tumorigenesis. Firstly, p21 mutations

are almost never found in human cancers and secondly, p21 knockout mice are not

prone to tumors (Deng et al., 1995).

p53-dependent and -independent regulation of p21

Regulation of p21 protein involves both transcriptional and posttranscriptional

mechanisms. Regulation at the transcriptional level may be either p53-dependent or -

independent.

p53-dependent induction of p21 transcription

As an effector gene of p53, p21 promoter contains two p53-responsive elements,

whose sequences are highly conserved among mouse, rat and human (El-Deiry et al.,

1995); one of these sites may suffice for p53 induction (Poluha et al., 1997; Wu and

Schonthal, 1997). Several different conditions and factors are able to induce the

transcription of p21 in a p53 dependent manner, but DNA-damaging agents, γ-

irradiation in particular, often induce p21 p53-dependently (Macleod et al., 1995).

Accordinly, spindle disrupter nocodazole, differentiation factor Neu, and ribonucleotide

synthesis inhibitor PALA, to list just a few, induce p21 by activating or stabilizing p53

(reviewed by Gartel and Tyner, 1999). Quite controversial findings have been reported

about the dependency of p53 on the activation of p21 by UV radiation. Some groups

have found p53-independent p21 induction after UV-treatment (Loignon et al., 1997),

while others have shown a lack of p21 expression in the absence of p53 (Gorospe et al.,

1998).

 Oncogenic Ras causes growth arrest in primary fibroblasts and leads to

accumulation of p53, p21 and p16 (Serrano et al., 1997), but p21 induction by Ras may

occur also in a p53 independent manner (Kivinen et al., 1999). Induction of p21 by Raf,

a downstream effector of Ras, has been shown to occur both p53-dependently (Lloyd et

al., 1997) and independently (Sewing et al., 1997; Woods et al., 1997).

p53-independent regulation of p21 expression

Differentiation promoting agents often induce p21 by p53-independent mechanisms

by inducing the binding of different transcription factors to specific elements in p21

promoter. Human p21 promoter contains six Sp1-binding sites located within 120 bp

upstream of transcription initiation site, and many p21 activating agents, for example

tumor suppressor BRCA-1 (Somasundaram et al., 1997), utilize these binding sites.
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Accordingly, p21 activation by TGF-ß is mediated by interaction of Sp1 with Smad

proteins (Li et al., 1998; Moustakas and Kardassis, 1998). On the other hand, growth

arrest and upregulation of p21 induced by EGF and IL-γ occur by STAT1 via several

STAT-binding sites (Chin et al., 1996). In addition, specific binding sites for

transcription factors E2Fs and AP2 exist in p21 promoter (Gartel and Tyner, 1999).

Although p21 regulation occurs mainly at the transcriptional level,

posttranscriptional mechanisms are also possible. Both p21 mRNA (Gorospe et al.,

1998) and protein (Timchenko et al., 1996) can be stabilized without an increase in its

transcription. Posttranscriptional events have been suggested to possess a significant

role in p21 regulation particularly after genotoxic stress (Butz et al., 1998).

CELL CYCLE REGULATORS IN MELANOMA

Malignant melanoma is one of the most common tumor types in western countries;

only cancers of breast, prostate, colon, and lung occur more frequently than melanoma.

Although epidemiological studies have strongly demonstrated that exposure to sunlight

is the major environmental cause of melanoma, the exact molecular targets of UV

radiation remain to be identified. The genetic loci 6q and 9p21 are often lost in

cutaneous melanomas – the melanoma susceptibility locus at 9p21, including for

example p16 gene locus, is absent in over half of malignant melanomas.

p53 changes in melanoma

Infrequent p53 mutations

In contrast to the majority of cancers, including other skin cancers, p53 mutations in

melanoma are rare. p53 mutation frequency seems to correlate with the aggressiveness

of the tumor, because p53 mutations are detected in less than 1% of primary melanomas

(Hartmann et al., 1996), in 5% of metastatic melanomas (Florenes et al., 1994b; Akslen

et al., 1998), and in approximately 20% of melanoma cell lines (Albino et al., 1994; Bae

et al., 1996). This suggests that p53 mutation may not be the major underlaying cause in

the development of melanoma, but instead have a role in the progression and

invasiveness of this cancer type. Nevertheless, Li-Fraumeni patients with germline

mutation of p53 are prone to several cancers, including melanomas (Platz et al., 1998) .

In non-melanoma skin cancers, squamous and basal cell carcinomas, p53 mutations are

frequent and appear early in the development of a tumor (Ziegler et al., 1994). In both

tumor types, however, the observed p53 mutations are typically found at dipyrimidine

sites and harbor the hallmarks of UV mutagenesis suggesting UV radiation as a
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causative agent of transformed growth (Ziegler et al., 1993; Nakazava et al., 1994;

Hartmann et al., 1996; Zerp et al., 1999). Moreover, in the case of melanoma

metastases, p53 mutations were significantly more common in skin metastases than in

those of internal organs, providing further evidence of UV-radiation induced

mutagenesis of p53 (Zerp et al., 1999).

Overexpression of wild-type p53

Another characteristic feature of p53 in melanomas is the overexpression of wild-

type p53. In the early days of p53 research high levels of normal p53 in melanoma

samples were considered as a mutant protein, since p53 mutation screening was largely

based on the detection of accumulated p53 protein. Direct DNA sequencing later

revealed the wild-type nature of stabilized p53 and the low frequency of p53 mutations.

Overexpression of wild-type p53 in melanomas approximates 60%, and has a tendency,

like p53 mutations, to occur more commonly in metastatic than in primary melanoma

cells (Lassam et al., 1993; McGregor et al., 1993; Florenes et al., 1995; Zerp et al.,

1999). Interestingly, melanoma patients with overexpressed p53 had better prognosis

than patients with normal p53 levels (Essner et al., 1998; Healy et al., 1998). Some

studies, however, have failed to confirm this correlation (Korabiowska et al., 1997).

In individual melanoma cases overexpressed p53 has been found in the wrong

cellular compartment (Weiss et al., 1995), but most often the localization is normal

(Lassam et al., 1993). Melanomas are not unique in expressing high levels of normal

p53, since it has been also detected in some chorioncarcinoma (Landers et al., 1994),

bladder (Lianes et al., 1994) and sarcoma cells (Cordon-Cardo et al., 1994). In these

tumors high levels of mdm2, but not other target genes, accompanied overexpressed

p53, supposedly trying to suppress the effects of elevated levels of p53. Mdm2

overexpression in a variety of tumor cells has been shown to result from enhanced

expression of mdm2 mRNA, in particular initiated from the internal p53-responsive

promoter (Landers et al., 1997). Despite a normal sequence of stabilized p53, its

functions, target gene induction and DNA binding ability, may be reduced (Bae et al.,

1996).

p16 mutations

 During the last years p16 cyclin kinase inhibitor has established its role as a tumor

suppressor in familial melanoma as well as in many other cancers. The pedigrees of

familial melanoma with several affected individuals in several generations are rare, but

over 50% of these families carry a germline p16 mutation (Hussussian et al., 1994).

Family members with hereditary susceptibility to melanoma, comprising 5-10% of all
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melanoma patients, also have a positive family history with at least one affected

relative. Germline p16 mutations are observed in about 20% of these patients

(FitzGerald et al., 1996). Germline mutations are typically point mutations or small

deletions that are located in the exon 1α  thus affecting only p16 without interfering with

p19ARF (Gruis et al., 1995; Holland et al., 1995; Walker et al., 1995).

Other

Two familial melanoma kindreds have been found to carry Cdk4 point mutations that

make Cdk4 insensitive to the inhibitory actions of p16 (Zuo et al., 1996). Additionally,

92% of sporadic melanoma cell lines have been found to harbor inactivated p16 or

Cdk4 proteins, stressing the importance of p16 inactivation in the development of

melanoma (Castellano et al., 1997).

The role of p21 in melanomas is theoretically interesting for two reasons: p21 is

located in the same area of chromosome 6 which often contains changes in melanoma,

and p21 was originally cloned also as a melanoma differentiation associated gene (mda-

6). Despite these connections, p21 mutations are practically never found in melanomas.

In contrast to p53, p21 expression often decreases with tumor progression (Maelandsmo

et al., 1996).
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AIMS OF THE PRESENT STUDY

The DNA damage response of γ-irradiated cells has been thoroughly studied during

the last few years, and the requirement of wild-type p53 in growth arrest upon ionizing

radiation cannot be questioned. UV radiation, causing DNA lesions specific to UV light,

results in a damage response that differs from that caused by ionizing irradiation both in

kinetics and in the need for cell cycle regulators. Despite the established role of p53 as a

gatekeeper in cell cycle checkpoints, its necessity in UV-induced growth arrest and its

functions in specific cell cycle phases have not been elucidated.

The present study was undertaken to:

1) study the effects of UV radiation on growth arrest, p53 stabilization, and pRB

phosphorylation

2) examine the dependency of UV-induced p53 accumulation and transactivation on

cell cycle phase

3) explore the frequency of p53 mutations in melanoma cell lines and to determine

the UV response in melanoma cell lines overexpressing wild-type p53

4) clarify the p53-independent mechanisms of p21 regulation after UV treatment
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MATERIALS AND METHODS

Cell lines

The cell lines used are described in Table 1.

Table 1.  p53 status and origin of cell lines used in the presented study.

Cell line Description p53 status  Source Used in
___________________________________________________________________________________

NIH3T3 mouse fibroblast wt ATCC CRL 1658 I, II

CCl-137 human embryo lung wt ATCC I

fibroblast

WI-38 human embryo lung wt ATCC CC175 I

fibroblast

T-24 bladder adenocarcinoma wt I

transformed by

Val12-Gly ras

SW480 human colon carcinoma mut I

3T3RB4.6 NIH3T3 transfected with wt Pitkänen et al., 1993 I

human RB cDNA (driven

by SV40 promoter)

3T3RB4.6p NIH3T3 transfected with wt Pitkänen et al., 1993 I

VU-0 human RB and large T-

antigen (driven by SV40

promoter)

A-375 human malignant melanoma wt ATCC CRL 1619 IV

Malme-3M human metastatic melanoma wt ATCC HTB 64 IV

WM239 human malignant melanoma wt ATCC IV

G361 human malignant melanoma wt ATCC CRL 1424 IV

RPMI-7951 human metastatic melanoma mut ATCC HTB 66 IV

(166S/stop)

SK-MEL-2 human metastatic melanoma mut ATCC HTB 68 IV

(245G/S)

SK-MEL-28 human malignant melanoma mut ATCC HTB 72 IV

(145L/R)

p53+/+ MEF mouse embryonic fibroblast wt Dr. L. Donehower III

p53-/- MEF p53-deficient MEF wt Dr. L. Donehower III

and Dr. K. Wiman

Melanocytes primary human melanocytes wt Dr. O. Saksela IV
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Cell culture and cell synchronization

The cells were grown at 37°C in the presence of 5% CO2 atmosphere and maintained

in DMEM (Life Technologies Inc.) supplemented with either 10% newborn calf serum

(NBCS; Gibco) (NIH3T3 and its derivatives) or in 10% fetal calf serum (FCS; Life

Technologies Inc.) (CCL-137, WI-38, T-24, A-375, Malme-3M, G361, WM239, SK-

MEL-28, p53-/- and +/+ MEFs).  SW480 cells were cultured in RPMI 1640 medium in

the presence of 10% FCS, and RPMI-7951 and SK-MEL-2 cells in MEM supplemented

with 10% FSC and non-essential amino acids. Primary MEFs were used between

passages 3 to 8, and human skin derived melanocytes below passage 10.

NIH3T3 cells were synchronized to G0/G1 by contact inhibition and serum

starvation for 8 h in the presence of 0.2% NBCS and released to cycle by replating cells

in culture medium containing 10% NBCS. Synchronization to G1/S was performed by

initial serum starvation as above, followed by addition of fresh medium in the presence

of 0.25 mM hydroxyurea (HU) (Sigma) and incubation for 16 h. After removal of HU-

block the cells entered synchoronously into S.  HU alone had no effect on p53 levels

nor p53 DNA-binding activity.

UV treatment of cells

For UV treatment, medium was removed and the cells were exposed to UVC (254

nm) at a dose of 10 - 200 J/m2 with UV-Stratalinker 1800 (I, II) or 2400 (III, IV)

(Stratagene). Fresh medium was added, also to unradiated control cells, and cells were

incubated for the indicated periods of time before analysis.

Immunoblotting

For semiquantitative analysis of protein by immunoblotting the cells were washed

with cold 25 mM Tris-HCl (pH 8.0), containing 150 mM NaCl (Tris buffered saline,

TBS), and lysed with 25 mM Tris-HCl (pH 8.0), containing 120 mM NaCl, 0.5%

Nonidet P-40 (NP-40), 4 mM NaF, 100 µM Na3VO4, 100 KIU/ml aprotinin, 1 mM

PMSF, and 10 µg/ml leupeptin at 4°C for 25 min. Cell lysates were clarified by

microcentrifugation, and protein concentrations were determined by Bradford analysis.

Lysates (200 - 500 µg) were analysed by 7.5% or 12.5% SDS-polyacrylamide gel

electrophoresis (SDS-PAGE) under reducing conditions followed by transfer of

proteins to Immobilon-PTM membranes (Millipore). The membranes were probed either

with monoclonal antibody PMG3-245 (PharMingen) against pRB,  monoclonal DO-1

(Santa Cruz Biotechnology) or monoclonal PAb240 (PharMingen) against human and

mouse p53, respectively, monoclonal 6B6 (PharMingen) against human p21, or either
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polyclonal M-19 (Santa Cruz Biotechnology) or polyclonal 13436E (PharMingen)

against mouse p21. PAb240 recognizes only mutant p53 under non-denaturing

conditions, but both mutant and wild-type p53 under denaturing conditions. DO-1

antibody recognizes both forms of human p53. The antibodies were detected with

peroxidase-conjugated secondary antibodies followed by enhanced chemiluminescence

(ECL; Amersham). When indicated, densitometric scans of the immunoblots were

analysed using NIH Image 1.47 program. Even loading of samples to polyacrylamide

gel was verified by staining parts of the gel with Coomassie Brilliant Blue and of

membranes by Ponceau S.

Immunofluorescence and 5-BrdUrd incorporation

Cells were grown on glass coverslips, fixed with methanol (MeOH) and acetone

(1:1) for 5 min and stained for 1 h with primary antibody PMG3-245 to detect pRB,

PAb 246 (PharMingen) or DO-1 to detect mouse and human p53, respectively.

Subsequently, the coverslips were incubated with rhodamine-conjugated rabbit anti-

mouse antibody (Dako), and nuclei were counterstained with 2 µg/ml Hoechst 33258.

The stainings were visualised with 100 x magnification under UV illumination with an

Olympus BH-2 microscope.

DNA replication was determined by 5-bromo-2´-deoxyuridine (5-BrdUrd)

incorporation. Cells grown on coverslips were incubated with 50 µM 5-BrdU (Sigma)

for 1 or 2 h and fixed with ice cold MeOH for 5 min. After permeabilisation of cell

membranes with 1.5 N HCl for 20 min, cells were stained with monoclonal 5-BrdUrd

antibody (Amersham) and rhodamine-conjugated rabbit anti-mouse antibody (Dako),

both for 1 h. Nuclei were stained with 2 µg/ml Hoechst 33258 for 2 min and after

visualisation with a microscope, the proportion of 5-BrdUrd positive nuclei of all

Hoechst dye-stained nuclei was determined.

Northern (RNA) blotting

Poly(A)+ mRNA was isolated from cells by oligo(dT) cellulose, separated in 1%

agarose gels containing formaldehyde and transferred to Hybond-N membrane

(Amersham) in 20X SSC (3 M NaCl, 0.3 M sodium citrate, pH 7.0). mRNA was

detected by probing with p21 (El-Deiry et al., 1993),  GADD45 (Fornace et al., 1988),

or mdm2 cDNA inserts (kindly provided by Dr. B. Vogelstein, Dr. A. J. Fornace Jr.,

and Dr. A. Levine, respectively) labeled with α [32P]dCTP by random priming.

Quantitations of the autoradiograms were carried out with Fujifilm BAS-1500 image

analyser and the MacBAS 2.1 program. Fold inductions were calculated by normalizing

the mRNA levels to the level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

and comparing the signals of the UV-treated and control cells.
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Flow cytometry

 For analysis of cell cycle phase distribution by flow cytometry the cells were

trypsinized, centrifuged for 5 min at 1500 rpm, washed with phosphate-buffered saline

(PBS), fixed with ice cold MeOH and stored at -20°C. Subsequently, thawed cells were

centrifuged, washed with PBS, resuspended in 0.5 ml of PBS containing 50 µg/ml

RNase A (Sigma), and incubated for 30 min at 37°C. DNA was stained with 50 µg/ml

propidium iodide (Sigma) overnight, and flow cytometry analysis was performed by

FACScan (Becton-Dickinson). The data of cell cycle distribution was analyzed using

the CellFIT Cell Cycle Analysis program.

Assays for apoptosis

UV-treatment induced morphological changes of nuclei, apoptotic nuclear

condensation and fragmentation, were estimated from cells fixed on glass coverslips

and stained with DNA dye Hoechst 33258 (Sigma) at a concentration of 2 µg/ml for 2

min, and the extent of apoptotic changes was visualised with an Olympus BH-2

microscope under UV illumination. In addition, A0-cell population, representing

apoptotic cells with less than 2N DNA content, was determined by flow cytometry

analysis.

Electrophoretic gel mobility shift assay

Nuclear extracts were prepared as described previously (Andrews et al., 1991).

Oligonucleotides representing the consensus p53 binding sites either in the p21CIP-

1/WAF-1 gene promoter (El-Deiry et al., 1992), 5´-AATTCTCGAGGAACA-

TGTCCCAACATGTTGCTCGG-3´, or mutated binding site 5´-GAATTCTCGAGG-

AAAATTTCCCAAAATTTTGCTCGAG-3´ were synthesized, annealed into double-

stranded form and labeled with 32P using T4 polynucleotide kinase (New England

Biolabs). Oligonucleotide probes for wild-type (ATTCGGTCCCGCCTCCTTGAG-

AGC) or mutant (ATTCGGTCCCGGAATCCTTGAGAGC) Sp1-binding sites were

prepared similarly. Binding reactions contained 10 µg of nuclear extract, 10 µl of 2x

binding buffer [40 mM Hepes-KOH pH 7.9, 50 mM KCl, 0.2 mM EDTA, 20%

glycerol, 4 mM MgCl, 1 mM dithiothreitol, 0.05% NP-40, 4 mM spermidine (Sigma),

and 100 ng poly(deoxyinosinic-deoxycytidylic acid) (Pharmacia)], and, when indicated,

500 ng of specific antibody in a final volume of 20 µl. Binding reactions were

incubated at room temperature for 20 min, 0.2 ng of labeled oligonucleotide probe was

added and the incubation was continued for an additional 20 min at room temperature.

Reaction products were separated on a 4% nondenaturing polyacrylamide gel with
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0.25X Tris-borate-EDTA buffer supplemented with 5% glycerol at 4˚C. After drying,

the gel was exposed to X-ray film.

Cell transfections and chloramphenicol acetyltransferase (CAT) assay

NIH 3T3 cells were co-transfected with PG13-CAT or MG15-CAT constructs

(kindly provided by Dr. B. Vogelstein) (Kern et al., 1992) and with pcDneo neomycin

resistance gene (Chen et al., 1987) by the calcium phosphate precipitation method and

grown in the presence of 0.6 mg/ml G418 (Gibco) for two weeks. Stable cell colonies

from both transfections were trypsinized and pooled. For measurement of CAT-activity

the cells were pelleted, lysed and equal concentrations of protein were incubated with

acetyl coenzyme A (Pharmacia) and 0.4 µCi of [14C]chloramphenicol (Amersham).

The acetylated chloramphenicol was separated by thin-layer chromatography (Gorman

et al., 1982), and signals of the acetylated forms of [14C]chloramphenicol were

quantitated with a Fujifilm BAS-1500 image analyzer.

p53 sequencing

Reverse transcription-polymerase chain reaction (RT-PCR) was used to generate

cDNA, and all DNAs representing exons 1-11 of p53 gene were sequenced. For RT-

PCR, two sets of primers generating a terminal, 774-bp fragment (forward primer,

CTGCTGGGCTCCGGGGACACTTTG; reverse primer AGGCGGCTCATAGGG-

CACCACCAC) and a COOH-terminal 890 bp fragment (forward primer, TACTCC-

CCTGCCCTCAACAAGATG; reverse primer TTCAAAGACCCAAAACCCAAA-

ATG) were used. cDNA was sequenced from both strands using automated DNA

sequencing, and the sequences were compared against p53 cDNAs in the databases.

p21 promoter analyses

NIH3T3 and p53-/- MEFs were transiently transfected by the calcium phosphate

precipitation method with p21 promoter deletion constructs, which were a kind gift

from Dr. X.-F. Wang (Datto et al., 1995). Additionally, p21 promoter constructs

containing two or three mutated Sp1-binding sites (mut 2+4, TATCTAGAAC

TGAGGCGGGC ATCTAGACAT [-83 - -54]; and mut 2+3+4, TATCTAGAAC

CTCTAGAAAT ATCTAGACAT [-83- -54]) were generated using one mutated Sp1-

binding site containing construct (mut 2, mut 3, or mut 4) as the template in two

successive PCR reactions with appropriate primers. The identities of PCR products

were verified by sequencing and then cloned into 93-S vector (Kivinen et al., 1999).

The cells were treated with UV radiation 24 h after transfection and after additional 20

h incubation luciferase activity was determined by Dual-Luciferase reporter assay
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system (Promega). As an internal control of transfection efficiencies pRL-TK

expression plasmid coding for Renilla luciferase was included in each transfection.
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RESULTS AND DISCUSSION

Transient growth arrest induced by UV radiation (I, II, III, IV)

The effects of UV radiation on the growing ability and induction of apoptosis was

studied in diverse cellular contexts, in both human and mouse cell lines with normal,

defective or no p53. Regardless of the different genetic backgrounds, UVC radiation of

254 nm appeared to be an efficient inducer of transitory growth arrest in every cell line

studied.

G1- and S-phase arrests after UV

 The effect of 50 J/m 2 UVC radiation on DNA replication was first examined in

exponentially growing mouse NIH3T3 fibroblasts. As measured by 5-bromo-2´-

deoxyuridine (5-BrdUrd) nucleotide analog incorporation, cells underwent a transient

growth arrest between 6 h and 12 h after irradiation followed by a gradual increase in

replication from 12 h onwards (I). However, flow cytometry analyses from 6 h and 12 h

timepoints indicated that despite inhibition of DNA replication cell cycle phase

distribution was identical in radiated and unradiated cell populations, demonstrating that

instead of gathering into G1 the radiated cells arrested in the phase they were at the time

of  radiation (unpublished observation).

To examine the kinetics of UV-induced growth arrest – as well as activation of

tumor suppressors pRB and p53 – in specific cell cycle phases, NIH3T3 cells were

synchronized by contact inhibition and serum starvation to the G0/G1 phase, replated,

and stimulated with normal medium thus allowing cells to progress from G1 to S. Flow

cytometry analyses revealed that if the cells were radiated in G1 or the G1/S border,

they arrested in that phase for 10 to 12 h before entering back into the cell cycle.

However, if the cells were exposed to UV while in S or early G2/M, the arrest period

was considerably longer and cells failed to recover from the insult during follow-up

unlike G1-phase cells (I).

An even more detailed study of growth arrest kinetics was carried out with NIH3T3

cells that were synchronized to G0/G1 and replated in the presence of hydroxyurea

(HU) to inhibit the progression to S. Synchronized cells were treated with 50 J/m2 of

UV either at this artificial G1/S border or, after release from HU-block, in different S-

phase stages (II). Information combined from 5-BrdUrd  incorporation analyses and

flow cytometry profiles indicated that during the 6 h incubation time after radiation the

cells were able to minimally progress in the S phase. Accordingly, DNA replication did

not cease instantly but decreased gradually becoming negligible during the last

incubation hour. HU is an inhibitor of ribonucleotide reductase depleting the nucleotide
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pool available and thus inhibiting the DNA replication. When it was added to the

medium, cell cycle progression and DNA replication of all UV-radiated cells were

inhibited (II).

Diverse DNA damaging conditions including UV radiation lead to growth arrest of

cells in order to provide sufficient time for repair of the damaged DNA and

maintenance of genomic stability. As found by us and others, UV-induced inhibition of

growth is rapid, beginning almost immediately after the insult. Pyrimidine dimers and

photoproducts caused by UV radiation impair the replication by distorting the DNA

conformation Taylor et al., 1988; Taylor et al., 1990) and, at the same time, activate

regulatory pathways involving damage recognition and checkpoint control. Inhibition of

DNA replication upon high dose UV comprises inhibition of replicon initiation and

reduction in the rate of chain elongation, the former being inhibited by 50% within the

first hour after exposure to UV (reviewed by Frieberg, 1995).

Cell cycle phase synchronization is absolutely essential in order to separate the cell

cycle responses of exponentially growing cells representing all cycle phases. As

suggested by results obtained from exponentially growing cells (I), we demonstrated

that after UV exposure the cell cycle can be halted in either G1 or S phases depending

on the original stage of cells, and after insult the cells progressed in the cycle only little

if at all (I, II). Moreover, S phase arrest appeared longer than G1 arrest as if more time

was required for repair of S-phase lesions. Contrary to what might be expected, the

apoptosis rate was not significantly higher in S-arrested cells (unpublished observation).

It has been demonstrated years ago that mutations due to UV radiation are

considerably fewer if cells are prevented from entering the S phase, for example by HU

(Stone-Wolff and Rossman, 1982). Due to active replication in S, repair of UV lesions

may be less efficient in this phase leaving more mutations unrepaired. In addition to

impaired repair, mutations are also fixed to the genome during subsequent DNA

replication. Studies with synchronized normal fibroblasts have demostrated that the

longer the period between UV and entry into S, the less the mutations accumulate

(Konze-Thomas et al., 1982). The disappearance of premutagenic lesions before S is

probably based on nucleotide excision repair, since XP cells deficient in NER display

the same rate of mutations regardless of the length of G1 phase preceding S. Consistent

with our findings, final cell survival is not, however, affected by the time point of UV

radiation in either cell lines, suggesting that other repair mechanisms may in part

overtake the functions of NER (Konze-Thomas et al., 1982). When regarding

mutagenesis, a wave length of 254 nm has proven to be most efficient for cells in the S

phase or its vicinity (Kaufmann, 1989).
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Growth arrest and apoptosis in the absence of functional p53

The dependency of UV-induced growth arrrest on p53 functions was examined in

multiple cell lines with different p53 status. Besides normal human and mouse

fibroblasts, growth arrest upon UV treatment was observed also in cell lines with

mutant p53 (SW480) or with p53 inactivated by SV40 large T antigen (RB4.6pVU-0)

with at least 60% inhibition of DNA replication (I).

p53 coding exons of seven melanoma cell lines were sequenced, and three cell lines

were found to carry mutant p53, one of them expressing a truncated form of p53 protein

(IV). As determined by 5-BrdUrd incorporation, all melanoma cell lines underwent a

growth arrest after 50 J/m2 of UVC with at least 60% inhibition of DNA replication.

Consistent with findings in NIH3T3 cells, the arrest responses of melanoma cell lines

peaked at 6 to 16 h after irradiation, after which two alternative responses were found:

three cell lines (A-375, WM239, and SK-MEL-2) remained arrrested for 24 h of

incubation, while four lines (G361, Malme-3M, SK-MEL-28, and RPMI-7951) restored

the cellular growth, RPMI-7951 with truncated p53 protein did so only partially.

Melanoma cell lines permanently arrested and incapable of entering cell cycle also

harbored markers of apoptosis. Melanocytes, used as control cells and an example of

untransformed primary skin cells, took a course of their own; although lacking

detectable DNA replication at 24 h after radiation they were able to recover at 30 h

postirradiation and displayed only a few apoptotic cells. Most interestingly, neither

growth arrest kinetics nor apoptosis pattern were dependent on p53 status. It should be

remembered, however, that the UV response of wild-type p53 melanoma cell lines

cannot be necessarily regarded as normal, since their p53 pathway may be defective due

to accumulated wild-type p53. Nevertheless, UVC was shown to result in growth arrest

in melanoma cell lines irrespective of functional p53 (IV).

Inspired by our previous findings we explored the growth arrest of cells totally

lacking p53. Unsynchronized p53-/- MEFs from p53 knockout mice and p53 positive

normal MEFs were exposed to 25 and 50 J/m2 of UVC. Both cell lines were arrested

with similar kinetics, maximal inhibition of DNA replication occurring 6 h after insult

correlating with that seen in NIH3T3 cells. However, p53-/- cells were permanently

arrested, and a considerable fraction of cells (approximately 15% with 25 J/m2 and 35%

with 50 J/m2) underwent apoptosis, whereas p53+/+ cells reentered the cell cycle by 24

h after UV radiation with less than 3% of cells exibiting apoptotic features (III). These

findings involving both melanoma cells and p53-/- MEFs demonstrated that functional

p53 is not required for UVC-induced growth arrest.

In contrast to UV radiation, functional p53 is required for successful growth arrest

after γ-irradiation (Kastan et al., 1991; Kastan et al., 1992; Kuerbitz et al., 1992; Dulic

et al., 1994). However, several lines of evidence have demonstrated that it is not
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necessarily needed for apoptosis induced by γ-radiation or by other signals (Clarke et

al., 1993; Kelley et al., 1994). Although p53 has been suggested to be essential for

growth arrest after UV radiation as well, direct evidence of its requirement has been

missing. On the contrary, UVC has been shown to induce G1 growth arrest in p53

deficient Li-Fraumeni cells (Loignon et al., 1997) being in accordance with our results

for p53-/- MEFs (III). Recently it was reported that HaCaT cells lacking p53 ceased to

proliferate when exposed to UVC during G0/G1 but not during S or G2/M suggesting

that in the absence of p53 cells failed to undergo G2/M arrest but maintained the

capacity for G1 arrest (Merryman, 1999). Our findings do not support the role of p53 in

immediate, UV-triggered growth arrest, since growth inhibition was intact also in cells

with defective or absent p53 (I, III, IV). However, after immediate inhibition of DNA

replication, p53 -/- and +/+ cells followed different pathways. In contrast to normal

MEFs, radiated p53 -/- MEFs were unable to re-enter cell cycle and were prone to

apoptosis (III). Since apoptosis in -/- MEFs was more prominent with higher UV doses,

programmed cell death can be speculated to occur due to defective DNA repair and

accumulation of unrepaired DNA lesions in cells lacking p53. On the contrary,

however,  DeFrank et al. (1996) found no difference in survival between p53 null and

p53+/+ cells. Similarly, apoptosis in UV-exposed melanoma cell lines (IV) and

hepatocytes (Bellamy et al., 1997) displayed no correlation with p53 function.

Although p53 failed to be vital for successful growth arrest after UV radiation, some

other cell cycle regulators – though closely related to the p53 pathway – were found to

correlate with growth inhibition temporally; most of these are discussed in separate

sections and are only listed here. One of our first observations was that G1 growth arrest

was associated with pRB dephosphorylation and not with p53 accumulation (I). In

melanoma studies, GADD45 mRNA induction was simultaneous with growth arrest and

occurred in all melanoma cell lines regardless of p53 status. Moreover, high levels of

GADD45 mRNA was associated with prominent apoptosis (IV). Another target gene of

p53, p21, was induced in synchronized mouse fibroblasts during G1 growth arrest (II),

and p21 mRNA and protein were overexpressed in UV-radiated p53-/- MEFs (III)

suggesting a role for p21 in the transmission of growth arrest. However, in melanoma

cell lines growth arrest failed to parallel p21 induction (IV). Depending on cell type and

genetic backround, several pathways are undoubtedly involved in UV-induced growth

arrest.

Function of pRB in G1-phase growth arrest (I)

Since p53 was known to accumulate in response to γ- and UV radiation (Lu and

Lane, 1993; Zhan et al., 1993), we examined whether pRB, an other tumor suppressor
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and cell cycle regulator, has any role in immediate cell response to UVC. As expected,

p53 protein accumulated within 6 h after radiation with 50 to 100 J/m2 in exponentially

growing mouse (NIH3T3) and human fibroblasts (CCL-137, WI-38) (I). At the same

time, pRB in radiated cells was found exclusively in the dephosphorylated, active form

while unradiated control cells contained also hyperphosphorylated forms of pRB.

Besides fibroblasts, dose-dependent pRB hypophosporylation upon UV insult was

detected in all cell lines studied, including cells with mutant or inactive p53 (I).

Hypophosphorylation of pRB correlated temporally with growth arrest kinetics in

unsynchronized, UV-treated NIH3T3 cells. In addition, synchronized NIH3T3 cells

radiated in G1 exhibited only hypophosphorylated pRb, and, to our initial surprise, no

p53 accumulation occurred during the subsequent G1 proliferative arrest. Consistent

with general growth arrest in unsynchronized cells, specific G1 arrest and pRB

dephosphorylation attenuated with identical kinetics (I).

pRB hypophosphorylation is frequently detected in cells growth arrested by diverse

genotoxic or growth restricting agents, but our study was one of the first to report its

involvement in UV-induced growth arrest (I; Medrano et al., 1995). All DNA damage

types do not lead to pRB hypophosphorylation; γ-irradiation failed to dephosphorylate

pRB in p53-/- fibroblasts suggesting that the nature of the damage influences pRB

phosphorylation changes (Dulic et al., 1994). This approach with synchronized cells

allowed us to study pure G1 or S phase arrest and the functions of cell cycle regulators

pRB and p53 in those phases.

In theory, pRB dephosphorylation in radiated cells could have been a secondary

change caused by p53-mediated G1 growth arrest. However, two findings in our studies

favored the p53-independent role of pRB in growth inhibition: first, pRB

hypophosphorylation – and growth arrest – occurred also in cell lines harboring mutant

or inactivated p53, and secondly, the kinetics of growth arrest in unsynchronized

NIH3T3 cells correlated with that of pRB hypophosphorylation (I). Rephosphorylation

of pRB 12 h after UV treatment, when DNA replication was still dampened, preceded,

not followed, the entry of cells to the cycle. Moreover, in synchronized UV-treated

NIH3T3 cells G1-phase growth arrest endured as long as pRB remained

hypophosphorylated, but p53 accumulation was delayed until the cells recovered from

G1 arrest and entered S phase (I).

These results thus not only demonstrate the role of pRB in UV-induced growth arrest

in G1 but also question the participation of p53 in that particular phase (I). Our

observation of pRB as a central mediator of the G1/S checkpoint proved to be in

accordance with recent findings that exposure of RB-/- MEFs to various DNA

damaging stimuli including UV, ionizing radiation, and chemotherapeutic agents

resulted in defective cell cycle arrests (Harrington et al., 1998). It is particularly
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interesting that also γ-irradiation, which has been traditionally strongly coupled to p53

function, failed to cause G1/S arrest in the absence of pRB despite increased levels of

p53 and p21 (Harrington et al., 1998). On the other hand, polyamine analog treatment

has been shown to raise the level of hypophosphorylated pRB, correlating temporally

with G1 growth arrest as in our studies, but that the rise was preceded by p53

accumulation (Kramer et al., 1999). Thus, the nature of DNA damage caused by

numerous growth suppressive agents is one of the most important determinants when

cell cycle responses are interpreted.

NIH3T3 cells synchronized to and radiated in S phase remained arrested in S, and

contained both hypo- and hyperphosphorylated pRB, whereas pRB in S-phase control

cells consisted solely of hyperphosphorylated forms (I). Theoretically, it seems unlikely

that pRB could influence S-phase arrest in S-phase cells, because phosphorylation

events inactivating pRB have already taken place in late G1 or G1/S transition during

the previous cycle. However, the existence of both phosphorylation forms of pRB in

radiated S-phase cells as well as existence of only hypophosphorylated pRB in

exponentially growing cells including cells in S (I), raises the question of UV-induced

dephosphorylation of pRB during the S phase. Indeed, it was recently found that

underphosphorylated pRB was present also in cells growth arrested by sodium butyrate

in the S or G2/M phases (Yen and Sturgill, 1998), and in all cell cycle phases after

hypoxia treatment (Danielsen et al., 1998), suggesting that the growth controlling

capability of RB may not be limited to the G1 phase alone.

Dependency of p53 accumulation on cell cycle phase  (I, II)

p53 accumulation in cell lines with wild-type p53

In response to a UVC of 50 J/m2, accumulation of p53 in exponentially growing

NIH3T3 and CCL-137 fibroblasts was observed by immunoblotting and

immunofluoresence staining between 4 and 30 h after radiation, after which elevated

levels of p53 gradually decreased (I; data not shown). Similarly, p53 accumulation

occurred within 6 h after UV treatment in normal MEFs (III) and in melanoma cell lines

expressing wild-type p53 (IV). On the contrary, cells harboring mutant (IV) or

inactivated p53 (I) already expressing high levels of stabilized p53 failed to further

accumulate it in response to UV. In most experiments cells were exposed to a UVC of

50 J/m2, representing a sublethal dose with less than 5% of NIH3T3 cells undergoing

apoptosis after 36 h incubation (unpublished data). Doses as high as 200 J/m2 seriously

damaged cells resulting in enhanced apoptosis and lower accumulation of p53 (I).

Accumulation of p53 upon UV radiation was first detected by Maltzman and Czyzyk

as early as 1984 (Maltzman and Czyzyk, 1984). The kinetics of p53 accumulation in
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NIH3T3 was in agreement with findings of others (Lu and Lane, 1993; Zhan et al.,

1993), and differed from that seen after ionizing radiation. γ-irradiation causing direct

double-strand breaks is a more rapid and more efficient inducer of p53 accumulation

than UV radiation (Lu and Lane, 1993). In general, agents leading to DNA strand

breaks, such as topoisomerase I inhibitors, γ-irradiation, drugs intercalating to DNA,

and DNA nucleases are most potent inducers of p53 (Nelson and Kastan, 1994) . The C-

terminal domain of p53 is known to bind to single-stranded DNA ends (Bakalkin et al.,

1994) and DNA lesions (Lee et al., 1995) leading to an activation of transcriptional

activity of p53. Since UV radiation causes DNA strand breaks only during repair

processes, it is understandable that p53 response to UV radiation is kinetically slower

but longer lasting than to ionizing radiation. Compared to ionizing radiation, a more

extended accumulation of p53 after UV may correlate with the longer persistence of

DNA lesions and ongoing repair processes and may hence be dependent on UV dose.

p53 accumulation requires replication of damaged DNA

 Although G1-arrested cells lacked p53 stabilization, this was, however, detected in

exponentially growing fibroblasts (I), indicating that cells in cell cycle phases other than

G1 were responsible for elevated p53 levels. Indeed, in synchronized NIH3T3 cells p53

stabilization after UV radiation of 50 J/m2 was detected in two circumstances, both

involving the S phase. While absent during G1 arrest, p53 accumulation was detected

when G1-arrested cells recovered from UV insult and entered the S phase (I).

Alternatively, if cells were UV treated while in the G1/S-phase border or S, p53

stabilized without delay and correlated with S-phase arrest (I, II). These observations

are very suggestive that not the stage in the cell cycle when the insult is encountered but

the replication of damaged DNA could be a prerequisite for p53 stabilization.

Furthermore, regarding p53 accumulation, p53 seemed to play an essential part rather in

S and G2/M arrest than in G1 arrest.

To examine the temporal correlation between p53 stabilization and DNA replication

in more detail, a double block system was used to synchronize NIH3T3 cells either to

G1, the G1/S border, early- or mid-S phase (II). The 5-BrdUrd incorporation percentage

of cells UV treated in G1 or the G1/S border and incubated for 6 h correlated with

accumulation of p53 analyzed by both immunofluoresence staining and western

blotting; p53 level was low or undetectable when less than 5% of radiated cells

replicated DNA, and p53 level was high (50% of cells p53 immunopositive) when 70%

of cells were replicating at the time of UV insult (II). To further demonstrate that p53

accumulation was dependent on DNA replication rather than on the S phase itself, HU

was added to the medium after exposure to UV. HU treatment was able to abolish the

p53 accumulation in S-phase cells, but interestingly, it failed to decrease p53 levels in
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cells radiated at the G1/S border; on the contrary, even higher amount of p53 was

detected in the presence of HU in these cells (II).

Studies examining the cell cycle phase-dependent regulation of p53 accumulation by

UV treatment had not been carried out before. We demonstrated that p53 accumulation

after UV was cell cycle phase-dependent occurring only in cells radiated in S or G1/S

phases or entering S after G1 arrest, and that accumulation correlated with DNA

replication (I, II). Hypoxia, an other effective inducer of p53, has been later shown to

induce p53 accumulation more efficiently in the S than in G1 or G2/M phases

(Danielsen et al., 1998). The absence of stabilization of p53 during G1-phase growth

arrest was unexpected (I), because p53 has been considered to be a G1 checkpoint

controller. Assuming that p53 accumulation is dependent on recognition of DNA strand

breaks, UV-type DNA lesions in G1-arrested cells may not be properly recognized by

p53. In such a situation G1 arrest is perhaps maintained by other cell cycle regulators,

such as pRB.

Replication of damaged DNA either in cells UV radiated in S or entering it after G1

arrest seemed to be a precondition for p53 accumulation. The replication dependency of

p53 accumulation by UV is consistent with previous findings (Nelson and Kastan,

1994), but detailed analysis of p53 accumulation in different cell cycle stages had not

been reported previously. Besides UV radiation, topoisomerase I inhibitor camptothecin

requires DNA replication for p53 stabilization (Nelson and Kastan, 1994) suggesting

that if a DNA damaging agent does not directly cause DNA strand breaks, the lesions

should be at least exposed during replication. Damage signals evoked by UV in G1 may

be recognized by p53 only in replicating DNA when it is processed to single-stranded

DNA.

p53 accumulation in cells irradiated at the G1/S border was different from that seen

in G1- or S-phase cell populations. Irradiated G1/S phase cells displayed accumulated

p53, but in contrast to S-phase cells, p53 levels remained high in the presence of HU.

However, G1/S time point fails to represent a normal cell cycle stage, because G1 cells

that would otherwise continue to S are forced by HU to stop at the threshold of S. At the

time of radiation these cells have opened replication forks, but a lack of nucleotides

inhibits DNA replication but not NER. At this stage p53 stabilization independent of

replication may be based on interaction of p53 with other cellular proteins. In fact, it has

been later shown that p53 accumulation in G1/S, as well as in other phases, requires

protein synthesis, since treatment with cycloheximide, an inhibitor of protein synthesis,

totally prevented p53 accumulation in the presence and absence of HU (Pitkänen et al.,

1998). It should be pointed out that up to the present, these findings apply only to these

UVC-radiated mouse fibroblasts.
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Dissociation between transactivation and accumulation of p53 (II)

Regulation of p53 transactivation in UV-radiated cells in different cell cycle phases

turned out to be different from that of p53 accumulation. As in earlier studies, NIH3T3

mouse fibroblasts were exposed to 50J/m2 of UVC in diverse stages of the cell cycle,

and transactivation determinants, such as DNA binding activity, transcriptional activity

as determined by chloramphenicol acetyltransferase (CAT) assay, and induction of

target gene mRNAs, were compared to growth arrest kinetics and p53 accumulation.

First, however, protein levels of p21 CKI were determined in cells irradiated in the G0,

G1, G1/S, and S phases; G1/S represented the time point where G1 cells were inhibited

by HU from entering S. In contrast to p53 protein which lacked accumulation in the G0

and G1 phases, p21 protein was induced in these and in all other stages (II). After UV

radiation HU treatment abolished p21 protein induction in S but not at G1/S, a situation

identical to that of p53 accumulation (II).

  Since p21 protein was induced both in the presence and absence of accumulated

p53, mRNA levels of two p53 target genes, p21 and GADD45, were measured in

different cell cycle phases with and without HU. p21 and GADD45 mRNA levels were

induced by UV radiation in all cell cycle phases. Compared to non-irradiated cells

maximum induction of p21 mRNA ranged from 8-fold in G1 to 3-fold in S, GADD45

induction being 3-fold and 2-fold, respectively. Inhibition of replication by HU

abolished mRNA inductions of both p21 and GADD45, including G1/S-phase cells (II).

The capability of p53 to specifically bind to the p53-responsive element and induce

transcription was explored using p53-responsive reporter constructs. NIH3T3 cells were

stably transfected with the reporter plasmid construct PG13-CAT, and the effect of UV

on transcriptional activity of p53 was measured as an increase in CAT activity. It

reached on average a 6-fold increase in G0/G1 UV-treated cells and 3-fold increase in

G1/S- and S-phase cells without any inhibitory effect by HU. Transfection with MG15-

CAT, containing mutant p53-binding sites, resulted in negligible CAT activities (II).

Finally, the sequence specific DNA-binding activity of p53 was assayed by EMSA.

UV-activated p53 protein binds to a radiolabeled oligonucleotide containing consensus

p53-binding site from p21 promoter, and the number of complexes containing active

p53 was estimated after separation in polyacrylamide gel. EMSA results were consistent

with the findings in CAT-assay: specific DNA binding activity of p53 was increased by

UV in all cell cycle phases despite the presence of HU (II).

These results indicate that p53 transactivation is dissociated from p53 accumulation,

since transcriptional activition was observed by all three methods in the G0 and G1

phases in the absence of stabilized p53. Moreover, transactivation appeared to be clearly

independent of the cell cycle phase, and, according to CAT-assay and EMSA,
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independent of DNA replication, because HU treatment in the S phase had no effect on

DNA binding activity of p53. However, p21 and GADD45 mRNA as well as p21

protein were not induced in S in the presence of HU suggesting a role for accumulated

p53 in these processes. On the other hand, neither the absence of replication nor p53

accumulation impaired the increase in p21 and GADD45 mRNA levels in G1 phase

(II).

The three ways employed to analyze the transcativation function of p53 have their

limitations. Mobility shift assay displays only the amount of p53 protein bound to the

p53 consensus binding site. Although being highly specific for p53, it fails to measure

activation of transcription. Increase in CAT activity, on the other hand, has been

preceded by DNA binding and the activation of transcription by p53. Inductions of

target gene mRNA and protein are close to physiological signals, but they are subject to

diverse posttranscriptional and posttranslational modifications independent of p53.

Thus, EMSA and CAT-assay are highly specific for p53 but may be too simplistic,

whereas evaluation of target gene induction does not require artificial interventions such

as transfections, but may in turn be a too complicated method to explore p53 function

alone. Nevertheless, information combined from these assays provide indications of the

regulation of transcriptional activity of p53.

Traditionally, p53 accumulation has been considered to be a consequence of p53

activation due to inhibition of protein degradation, and accumulation and transactivation

have been regarded as simultaneous and interdependent events. However, coinciding

with our report, discordance has been found between transcriptional activity and

accumulation of p53 at low UV doses; 10 J/m2, but not higher doses, resulted in

enhanced transcriptional activity without an increase in p53 protein (Lu et al., 1996).

Although p53 accumulation after UV radiation seems to require replication of damaged

DNA, other signals must be involved for its transcriptional activation. Regulation of

p53 accumulation may depend on the ability of mdm2 to bind and target p53 for

destruction, whereas other events, particularly protein modification by phosphorylation,

may regulate the transcriptional activity of p53. In fact, mice lacking DNA-PK, a kinase

phosphorylating Ser15 and 37, showed normal p53 accumulation but no activation of

p53 by ionizing radiation (Woo et al., 1998). Discordance between accumulation and

transactivation suggests that p53 accumulation is involved in recognition of unrepaired

DNA lesions in the S phase. Supporting this hypothesis, NER-deficient cells

accumulated p53 at much lower UV doses and exhibited a more prolonged response

compared to normal cells or cells with restored NER activity, suggesting that p53

accumulation does not correlate with the NER process itself but with the presence of

unrepaired cyclobutane dimers (Dumaz et al., 1997; Dumaz et al., 1998). The finding

that p53 is transcriptionally active – although not accumulated – throughout the cycle,
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support its role as a checkpoint controller in all phases of the cycle including G1.

Whether p53 accumulation alone has a function independent of p53 transactivation still

lacks direct evidence and remains to be clarified.

p53-independent induction of p21 upon UV treatment (II, III, IV)

Regulation of p21 by UV radiation in synchronized NIH3T3 cells showed many

interesting aspects. Contrary to p53 accumulation, p21 protein was induced in all cell

cycle phases (II) suggesting its participation in both G1- and S-phase arrests via its Cdk-

inhibiting or PCNA-binding functions (Chen et al., 1995; Luo et al., 1995). Although

the DNA-binding activity of p53 was not dependent on DNA replication, p21 protein,

its mRNA and GADD45 mRNA were upregulated in the S phase only in replicating

cells (II). It seems that target gene induction requires more than binding of activated p53

to its responsive element and that these other events, whether posttranscriptional

modifications or stabilization of p53, are prevented by HU. Alternatively, UV radiation

can induce p21 and GADD45 independently of p53, but p53 may still augment this

effect. p53-independent transcriptional regulation of p21 gene is frequently observed,

although most commonly in conditions other than genotoxic stress (Chin et al., 1996;

Somasundaram et al., 1997; Li et al., 1998; Moustakas and Kardassis, 1998).

Additionally, cells radiated at the G1/S border showed peculiar features. HU treatment

prevented p21 mRNA induction but it had no effect on p21 protein induction (II). This

dissociation of p21 protein and mRNA induction has been also demonstrated in breast

epithelial cells after ionizing radiation (Gudas et al., 1995) and in growth arrested

fibroblasts after serum stimulation (Macleod et al., 1995), where high p21 protein levels

have been detected without an increase in p21 mRNA.

The observed discordance between the induction of p21 and activation or

accumulation of p53 (II) were suggestive of p53-independent regulation of p21 after

UVC radiation. Similarly, a melanoma cell line carrying mutant p53 was able to induce

p21 mRNA in response to UV (IV). Since mutant p53 proteins may have retained some

functions of wild-type p53, p21 regulation was studied in the total absence of p53 in

p53-/- MEFs (III).

As described in the context of growth arrest, UVC responses of low passage p53-/-

and p53+/+ MEFs were compared with respect to growth arrest and p21 induction.

UVC doses of 10 to 50 J/m2, that are known to be sufficient for induction of p53

transcriptional activity, resulted in rapid increase in p21 protein in both cell lines. p53

+/+ cells, expressing higher p21 basal level than -/- cells, retained high p21 protein

induction with 50 J/m2, whereas the same dose in -/- MEFs yielded an attenuated p21
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induction. The p53 accumulation pattern in p53+/+ MEFs followed the course observed

in NIH3T3 cells and paralleled p21 induction (I, III).

Because elevation of p21 protein levels can be caused by transcriptional activation or

by posttranslational modifications (Timchenko et al., 1996), mRNA levels in both cell

types were evaluated. p21 mRNA was induced during the first 6 h after UV also in the

absence of p53. When compared to unirradiated cells an over 5-fold induction was

obtained within 16 h in both cell lines (III).

The transcriptional activation of p21 by UV radiation was further examined by

studying the activation of p21 promoter. p53-/- cells were transiently transfected  with

p21 promoter deletion constructs containing luciferase gene as a reporter. Luciferase

activity was measured from radiated (25 J/m2) and control cells 24 h after UV.

Transfection with full length p21 2.4 kb promoter construct, as well as with three

shorter constructs lacking either one or two p53 binding sites, resulted on the average in

6-fold induction of luciferase activity by UVC confirming the p53-independent

transcriptional activation of p21 by UV radiation (III).

As p53-/- cells are incapable of activating p53 binding sites we examined whether

wild-type p53 in NIH3T3 cells was able to further increase the p21 promoter activity.

UVC treatment led to 4-fold increase in reporter gene activity with both full-length p21

promoter and with a construct devoid of major p53 consensus binding site. Moreover, a

construct with 400 bp 5´ deletion resulted in even greater induction of over 6-fold

suggesting a negative regulatory element in region between -2.25 kb and -2.0 kb relative

to the trancription initiation site. Deletion constructs containing DNA 500 to 110 bp

upstream of the transcription initiation site showed a somewhat decreased UV

inducibility, while only the shortest construct containing the last 61 bp totally abolished

the UV-induced luciferase activity (III).

UV-induced transcriptional activation of p21 appeared to be most strongly regulated

by a p21 promoter region between -110 bp and -61 bp relative to the transcription

initiation site. Since the -110 bp area comprises five Sp1-binding sites, Sp1-binding site

mutation constructs containing 93 bp were developed (Kivinen et al., 1999) and used to

explore the effect of these sites on p21 induction. Of five Sp1-binding sites mutation of

sites 2 and 4 decreased the UV inducibility, while the combined mutations of the two

sites resulted in a complete loss of UV response. EMSA studies confirmed the sequence

specific binding of Sp3 transcription factor to Sp1-binding site. In conclusion, UV-

induced transcriptional activity of p21 was linked to two Sp1-binding sites in the

vicinity of transcription initiation site, while a weaker regulation area was present

between -1300 and -500 bp relative to transcription start. (III)

Hence, these studies indicated that UVC radiation induces p21 protein and mRNA

expression and transcriptionally activates p21 promoter constructs also in the absence of
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p53. While examples of p53-independent induction of p21 are abundant (see Review of

the literature), only a few reports have connected it to UV radiation. p53 independency

of p21 promoter activity was demonstrated by two ways: firstly, p21 promoter activity

was found to be induced by UV in p53-/- cells, and secondly, deletion constructs devoid

of both p53 binding sites showed normal promoter activity in NIH3T3 cells carrying

normal p53 (III).

The induction of p21 by ionizing radiation, drugs, and other agents that cause

double-strand breaks depends on intact p53 (Dulic et al., 1994; El-Deiry et al., 1994;

Macleod et al., 1995). While UVB/A radiation has been shown to enhance p21

expression only in the presence of p53 (Liu and Pelling, 1995), UVC has been able to

induce p21 protein in Li-Fraumeni cells (Loignon et al., 1997), in melanoma cells

expressing mutant p53 (IV), and in p53-/- fibroblasts (III). Additionally, our study

extended the findings to the transcriptional level, and was the first to determine the p21

promoter elements involved in p21 regulation after UV treatment (III). However, in

contrast to our findings, UVC was recently found to be unable to induce p21 protein or

mRNA in p53-/- MEFs, and, additionally, p21 induction in normal cells occurred

through stabilization of p21 mRNA (Gorospe et al., 1998). Although Gorospe et al.

(1998) failed to observe elevation of p21 protein levels in p53-/- cells, p21 mRNA was

induced 3-4 fold, as compared to 25-fold increase in p53+/+ MEFs, the authors

disregarded this relatively low level of  induction in p53-/- cells. In our experiments

both cell types showed equally strong p21 mRNA induction (maximum fold 5.2 and 6.7

in +/+ and -/- cells, respectively). Moreover, using the same p21 promoter luciferase

construct, the authors observed only about 2-fold induction in luciferase activity while

in our study the induction was 5-fold, but, most importantly, the induction was the same

in -/- and +/+ cells (Gorospe et al., 1998). So, due to high p21 mRNA induction and low

p21 promoter activity in normal cells the authors concluded that p21 induction resulted

from stabilization of p21 mRNA rather than transcriptional activation (Gorospe et al.,

1998). The stabilization of p21 mRNA is not an unusual phenomenon (Akashi et al.,

1999), even if the regulation of the stability of mRNA is poorly understood. Of course,

it cannot be ruled out that mRNA stabilization may participate in p21 induction in our

cells as well, although p21 mRNA and promoter activity were equally induced (III);

studies determining the halflife of mRNA would illuminate this aspect.

The regulatory element in the p21 promoter that totally abolished the UV response

when absent was mapped between -110 bp and -61 bp proximal of the transcription start

and was linked to two Sp1 binding sites (sites 2 and 4) within the region (III). This area

seems to be of special importance in transcriptional activation of p21 promoter, since

numerous p21 inducers, including TGF-ß (Datto et al., 1995), progesterone (Owen et

al., 1998), okadaic and phorbol ester (Biggs et al., 1996) , nerve growth factor (Yan and
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Ziff, 1997) and ras (Kivinen et al., 1999) are regulated by these same or neighboring

Sp1-binding sites. A negative regulatory element -2.0 kb distal relative to transcription

initiation site was found in NIH3T3 but not in p53-/- cells suggesting also a p53-

mediated negative regulation of p21 promoter activity.

In this study UV-induced p21 expression paralleled growth arrest kinetics, its role as

proliferation controller being supported by a rapid response regulated at transcriptional

level both in the presence and absence of p53 (III). Accordingly, flavone-induced G1

growth arrest induced by flavone was shown to depend on p53-independent

transcriptional activation of p21 (Bai et al., 1998). It is possible that in the absence of

p53 p21 may in part compensate for the function otherwise accomplished by p53. On

the other hand, it has been assumed that despite p53 independent regulation, p21

induction may be enhanced by p53. For example, PMA was shown to induce p21

independent of p53 but the induction was increased manyfold in the presence of p53

(Akashi et al., 1999) . For these reasons it was surprising that p21 was not only induced

in the absence of p53, but that the level of protein and mRNA induction was completely

independent of p53. However, two events were affected by a lack of p53: firstly, p53-/-

cells were not able to reenter the cell cycle and many underwent apoptosis possibly

reflecting deficient repair, and secondly, high UVC doses (50 J/m2) caused attenuated

induction of p21 protein. These findings suggest that p53 may be needed for full p21

induction after massive DNA damage and that  p21 may function as a preventor of

apoptosis.

The main results of UV-radiation induced activities of p53, pRB, and p21 in mouse

fibroblasts, particularly their cell cycle phase and replication dependence, are

summarized in the following figure.

G1 G1/S S

p53 transactivation

pRB hypophosphorylation

p53 accumulation

p21 protein induction

p21 mRNA induction

UV
+ +

+

+++

+ +

+ + +

+ + +
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R

Fig. 6. Activity of pRB, p53, and p21 in different phases of the cell cycle induced by
UV radiation. R indicates that the activity is dependent on DNA replication. Induction
of p21 can occur directly by UV, but is probably augmented by p53 function.
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Aberrant p53 functions in UV-treated melanoma cell lines (IV)

The low frequency of p53 mutations (Hartmann et al., 1996) and high basal

expression of wild-type p53 often encountered in melanomas (Lassam et al., 1993;

Floerens et al., 1994; Floerens et al., 1995) aroused our interest in exploring the UVC

response of seven melanoma cell lines. Based on previous reports (Montano et al.,

1994; Bae et al., 1996) as well as on our analysis of all p53 coding exons by RT-PCR

and direct sequencing (IV), four melanoma cell lines (A-375, Malme-3M, WM239, and

G361) appeared to harbor wild-type p53 and three cell lines mutant p53, including a

nonsense mutation leading to a truncated p53 protein (RPMI-7951), and two mutations

in p53 DNA-binding domain (SK-MEL-2, SK-MEL-28). Compared to melanocytes

expressing low or negligible levels of p53 protein, all untreated melanoma cell lines,

regardless of the p53 status, expressed high levels of p53 protein with the exception of

RPMI-7951 which lacked detectable p53. Accumulation of both wild-type and mutant

p53 was detected by western blotting and immunostaining of fixed cells, the latter

revealing also the nuclear localization of p53 protein. p21 protein was expressed only in

melanoma cells with wild-type p53, but its level failed to correlate with that of p53.

Similarly, although mdm2 mRNA levels on the average were higher in cells expressing

wild-type than in cells expressing mutant p53, high mdm2 levels were not associated

with high p53 protein levels in individual melanoma cell lines (IV).

UVC treatment of 50 J/m2 resulted in further accumulation of p53 only in wild-type

cell lines. Although the kinetics of p53 stabilization in melanoma cell lines was

consistent with that in NIH3T3 cells being detectable within 6 h incubation, the

elevation in most wild-type cell lines was quite modest and less than in melanocytes. As

previously shown (I), mutant p53 was not subject to further stabilization (IV).

To demonstrate transcriptional activity of p53, UV-responsiveness of three p53

target genes was examined. Induction of p21 protein was observed only in melanoma

cell lines expressing normal p53, whereas induction of p21 mRNA occurred also in one

mutant cell line (SK-MEL-28) lacking an increase in p21 protein. Interestingly, p21

protein and mRNA levels were not elevated until 16 to 24 h after exposure to UV

reflecting a slower kinetics than seen in human and mouse fibroblasts (I, II). The

GADD45 response, on the other hand, was rapid and simultaneous with growth arrest.

GADD45 mRNA induction was detected in all UV-treated melanoma cells studied,

maximal fold induction ranging from 2.8 to 8.8 independent of p53 status and p21

induction pattern.  Moreover, high induction of GADD45 mRNA (4-fold or more)

correlated with prominent apoptosis, which, like growth arrest, occurred irrespective of

p53 status (IV). The UV response of mdm2 mRNA was consistent in all melanoma

cells, with the exception of RPMI-7951: an initial decrease in mdm2 levels 6 h after UV
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was followed by slight increase 24 h after UV treatment. In RPMI-7951 cells this

decrease was absent and maximal induction took place already 16 h after UV. The

inductions were small, and no significant difference was detected between cells

expressing wild-type or mutant p53. Thus, regulation of target gene inductions by UV –

though different from each other - appeared to be independent of p53 function (IV).

Since DNA damage can stimulate p53 effector genes also in a p53-independent

manner, EMSA analysis was undertaken to examine the UV-induced specific DNA-

binding activity of p53. Mutant cell lines were also studied in order to find out whether

mutant p53 could induce p21 mRNA expression detected in SK-MEL-28. The

specificity of binding of p53 to DNA was confirmed by using oligonucleotides

containing specific p53-binding sites from either p21 or GADD45 promoters and by

detecting supershifts of DNA-p53-antibody -complexes in the presence of p53

antibodies. As expected, UV-stimulated DNA binding activity of p53 to both p21 and

GADD45 probes was detected in A-375, Malme-3M, and WM239 cell lines expressing

wild-type p53 and was absent in SK-MEL-28, SK-MEL-2, and RPMI-7951 cells

carrying mutant p53 (IV; data not shown). Surprisingly, however, G361 cells exhibiting

high levels of wild-type p53 completely lacked UV-stimulated DNA-binding activity

with all probes even in the presence of the antibody PAb421 that is known to stimulate

the binding. This suggests that the UV response in G361 occurs independent of p53, or

at least independent of its transactivation property. It should be also noted that when

observed, DNA-binding activity was stimulated already 6 h after DNA damage thus

hardly contributing to p21 induction detected only after 16 h incubation (IV).

The expression of some other cell cycle regulators, that are known to be involved in

the pathogenesis of malignant melanoma, were also studied. pRB expression was

observed in all melanoma cell lines, whereas only cell lines carrying mutant p53

showed p16 protein and mRNA expression (unpublished observation); the lack of p16

expression in wild-type p53 cell lines is due to premature stop codon in A-375 (Ohta et

al., 1994), or deletion of exon α  in WM239 and G361 cell lines (Ohta et al., 1994). In

addition to the p53 mutation, SK-MEL-28 cell line harbors Cdk4 mutation (Tsao et al.,

1998). It can be speculated that in the absence of p53 mutation, inactivating mutations

of p16 or other targets of RB pathway have been selected.

Human melanoma represents one of the few malignancies that seldom select for p53

mutations (Hartmann et al., 1996). Although primary melanomas rarely contain p53

mutations, they are more frequently detected in melanoma cell lines (Albino et al.,

1994; Bae et al., 1996) corresponding to mutation frequency of 43% among our seven

randomly selected melanoma cell lines. On the other hand, all cell lines expressing

wild-type p53 showed abnormal stabilization of normal p53. Accumulation of wild-type

p53 was neither due to extranuclear localization nor due to overexpression of mdm2,
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since mdm2 levels failed to systematically accompany p53 accumulation although they

were generally higher in the wild-type than in mutant p53 cells (III, see also " Review

of the literature"). Similarly, although all untreated melanoma cell lines harboring

normal but stabilized p53 were expressing p21 protein, the levels of p53 and p21 did not

correlate (IV). This is in contrast to non-Hodgkin´s lymphomas where overexpression

of wild-type p53 was associated with accumulation of p21 (Maestro et al., 1997).

Teratocarcinomas, which never contain p53 mutations, also exhibit high levels of

nuclear wild-type p53. This protein is transcriptionally inactive until activated by DNA

damage or by agents inducing differentiation which leads to transcriptional induction of

target genes and p53-mediated apoptosis (Lutzker and Levine, 1996).

Our results indicate that despite the wild-type sequence of p53 its response to UVC

radiation differed in several aspects from that of normally functioning p53. Irrespective

of this, or due to it, the response patterns of mutant and wild-type p53 expressing

melanoma cell lines did not show any major differences. Although wild-type p53

accumulated in response to UV as expected, the p53 pathway downstream of

accumulation displayed several specific features: induction of p21 protein and mRNA

expressions by UV radiation were delayed, 2) inductions of the target genes p21,

GADD45, and mdm2 were dissociated from p53 regulation, 3) one wild-type p53

melanoma cell line had no UV-stimulated DNA-binding activity, and 4) of the cell

cycle regulators studied only GADD45 expression correlated with growth arrest and

apoptosis.

UVC-stimulated p21 protein and mRNA inductions appeared to be independent of

p53 function, as accumulation and DNA-binding of p53 took place considerably earlier

than p21 induction, and p21 mRNA elevation occurred with the same kinetics also in

SK-MEL-28 cell line harboring mutant p53. However, p53 may still play a role in the

full induction of p21, since p21 protein was not induced in SK-MEL-28 cells despite an

elevation in the level of mRNA encoding it. This finding is consistent with the fact that

p53-/- MEFs, but not p53+/+ MEFs, had an attenuated p21 protein response to high

UVC dose (III), providing evidence that p53 activity is required for some aspects of p21

regulation. The requirement of p53 for growth arrest and p21 induction is certainly

affected by the nature of DNA damage. Polyamine analogs usually cause G1 and G2/M

arrests in p53 proficient cells, but treatment of SK-MEL-28 cells carrying mutant p53

have been shown to abolish G1 arrest and p21 induction (Kramer et al., 1999).

In contrast to stimulation of p21 expression, GADD45 mRNA induction occurred

rapidly within 6 h after UV treatment in all melanoma cell lines irrespective of p53

status. p53-independent activation of GADD45 in response to UV has been detected

previously (Kearsey et al., 1995). Since activation of GADD45, and not of p53,

correlated with both growth arrest and apoptosis, GADD45 appeared to serve as a rapid
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UV response target (IV). Contrary to our results, however, GADD45 has been proposed

to protect cells from UV-induced apoptosis (Smith et al., 1996). Interestingly, GADD45

induction in γ-radiated melanoma cells expressing wild-type, accumulated p53 was very

different from that after UV radiation. Ionizing radiation resulted in strong G1 growth

arrest, prolonged p21 induction, and low or absent GADD45 induction (Bae et al.,

1996). Taken together this suggests that GADD45 activation would be vital in UV

response and regulated independent of p53, whereas it can be neglected after ionizing

radiation and is probably under the control of intact p53.

Of the p53 effector genes mdm2 has recently received most interest due to its role as

a negative regulator of p53, a function which is affected by several different p53

activating pathways. The regulation of mdm2 by UV radiation elicits some special

features. Compared to p53 accumulation, low UV doses lead to rapid mdm2 induction,

while with high UV doses mdm2 response is delayed, the decrease being p53-

independent and the increase p53-dependent (Perry et al., 1993; Wu and Levine, 1997).

The mdm2 response of melanoma cells studied here seemed to follow that pattern, but

the increase in mdm2 mRNA levels after an initial decrease was detected also in two

mutant p53 cell lines, one of them (RPMI-7951) displaying the highest mdm2 induction

of all. Thus, UV-stimulated induction of mdm2, as well as that of p21 and GADD45,

appeared to be independent of functional p53.

Although accumulation and DNA-binding activity of p53 were upregulated with

rapid kinetics in all melanoma cell lines expressing wild-type p53 except for G361,

none of the UV responses - growth arrest, apoptosis, or target gene inductions of p21,

GADD45, or mdm2 - appeared to be regulated by p53. Despite the DNA-binding

activity of p53 observed in the majority of cell lines, this suggests that abnormally

stabilized wild-type p53 in melanoma cell lines is functionally inactive or possesses

alternative functions not characterized here. The functional inactivity downstream of

sequence-specific DNA binding would explain tolerance to high p53 levels and why

mdm2 levels are not raised to downregulate p53. As in the case of p53 mutation, a cell

with inactive p53 is not able to sense the effects of p53 and responds by decreasing p53

degradation leading to accumulation of inactive, though wild-type, p53 protein.
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CONCLUSIONS

This study was undertaken to clarify how p53, presumably the best known cell cycle

regulator and tumor suppressor, is regulated in transient growth arrest triggered by UV

light. The overall cellular response to UV radiation was in many respects different from

that shown to ionizing radiation, but some of the findings that at first appeared

surprising have later been supported by others.

Unlike ionizing radiation, UV response studied in multiple cell lines was not

abrogated by the absence of p53. Even during G1-phase growth arrest, the area believed

to be governed by p53, pRB hypophosphorylation seemed to be at least equally

important as activation of p53. While UV-induced transactivation of p53 was rapid

taking place in all the cell cycle phases, accumulation of p53 seemed to correlate with

replication of damaged DNA and, supposedly, the existence of unrepaired DNA lesions.

Regardless of apparently normal p53 status no melanoma cell line displayed normal

p53 function. The identical growth arrest pattern in cell lines expressing mutant and

wild-type p53 suggests no role for p53 in melanomas, whereas the functional

inactivation of wild-type p53 indicates a loss of p53 function in melanomas. UV-

triggered p21 induction was found to be regulated at the transcriptional level also in the

absence of p53, but dissociation of p21 mRNA and protein expression was detected in

several situations, and in some of them a defective p21 response was clearly caused by

lack of functional p53.

Dissociation of stabilization and transcriptional activities renders p53 even more

interesting, since accumulation may be involved in tasks other than those requiring

transcriptional activity. Since these findings thus far apply only to mouse fibroblasts, it

would be of particular interest to study the cell cycle phase-specific activation and

phosphorylation of N-terminal residues of p53 in normal human fibroblasts.  It would

be also useful to explore whether induction of ARF, which represents a p53-activating

pathway that is not induced by DNA damage, would result in different p53 responses

than those detected after UV radiation.

UV radiation provides one model for damaging genetic material, and the knowledge

gathered from cells treated with both UV and γ-irradiation is indicative of how damaged

cells respond to and survive the DNA damage. Cell cycle phase studies like those

presented in this thesis may determine in which phases p53 is indispensable and in

which phases, and to what extent, its functions in damage response can be replaced by

other cell cycle regulators, for example pRB or CKIs.

Along with advances in basic cancer research, the underlying mechanisms of the

development or prevention of malignant transformation at the cellular level have

become better understood. Instead of today´s often unspecific cancer treatment, novel
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therapies can be developed in the future by taking advantage of the molecular level

differences between normal and transformed cells. For example, the knowledge gained

from the interplay between p53 and adenovirus proteins have yielded a clinical trial

where promising results have been obtained by infecting carcinoma patients with

mutant adenoviruses that cause cytopathic effect only in cells lacking functional p53.

These kinds of trials, demanding wide-ranging expertise of many fields, lie at the very

heart of medicine reaching from knowledge to action.
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