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ABSTRACT 

Restenosis after percutaneous transluminal coronary angioplasty (PTCA) and allograft 

arteriosclerosis after organ transplantation limit the long-term survival of operated patients. 

The diseases are characterized by accumulation of smooth muscle cell (SMC)-like cells to the 

luminal side of the affected artery, their proliferation, migration, and extracellular matrix 

formation, which leads to the development of neointimal hyperplasia and constrictive vascular 

remodelling. Recent studies indicate that the proliferating neointimal SMCs derive from 

multipotent somatic stem cells (vascular progenitors), which are able to differentiate into 

vascular cells.  

The vasculoprotective properties of estrogens have been demonstrated in epidemiological and 

experimental studies, although some recent studies show contradictory evidence. Estrogen 

therapy is associated with increased risk for endometrial cancer, and may promote the growth 

of breast cancer, which limits its use in vasculoprotection. In addition to the classical estrogen 

receptor (ER) α, a novel ER, ERβ, was discovered in 1996, which greatly improved our 

understanding of estrogen’s signalling in different tissues during health and disease. The roles 

of the two receptors in the vascular wall are not completely understood. 

The aim of this study was to clarify the expression and regulation of the two ERs in different 

vasculoproliferative disorders, and to identify potential mechanisms behind estrogen’s 

vasculoprotective action, using rat denudation injury and cardiac transplantation models. The 

study shows substantial upregulation of ERβ in the vascular wall after mechanical and 

alloimmune injury, whereas ERα remains expressed at a low level only. ERβ is localized in 

the neointimal and medial SMCs of the arteries as well as in the veins, myocardium, and 

inflammatory cells of cardiac allografts, which suggests that these cells are targets for 

estrogen. Moreover, estrogen’s vasculoprotective properties in the injured vascular wall can be 

differentiated from its uterotrophic action with a ligand that shows higher binding affinity for 

ERβ. Thus, preferential targeting to ERβ might be useful when aiming to develop 

vasculoselective estrogens. Selective estrogen receptor modulators (SERM), which act as 

estrogen agonists in some tissues and are anti-estrogenic in others, preserve estrogen’s 

inhibitory effect on denudation injury-induced neointimal thickening by inhibiting vascular 

SMC-like cell proliferation and migration, in vivo and in vitro, and by enhancing 

reendothelialization. The impact of different SERMs on neointima formation varies depending 

on the timing of the treatment, where early timing appears to be particularly important.  

Finally, estradiol treatment after denudation injury downregulates the expression of insulin-

like growth factor 1, platelet-derived growth factor, and platelet-derived growth factor 

receptor α mRNA and protein, which is probably one of the mechanisms behind estrogen’s 

vasculoprotective actions. 



12   

INTRODUCTION 

Cardiovascular disease, caused by atherosclerosis, is the major cause of death in the Western 

world. Percutaneous transluminal coronary angioplasty (PTCA) is commonly used to relieve 

the symptoms of atherosclerosis. It is, however, complicated by restenosis in 30% to 50% of 

the patients (Holmes et al. 1984, Gruentzig et al. 1987, Nobuyoshi et al. 1988). Allograft 

arteriosclerosis is a major limitation to the long-term success rate in transplantation, and 

furthermore, about 50% of kidney grafts are lost to death with function - mainly for 

cardiovascular reasons (Lindholm et al. 1995). The pathogenesis of these vasculoproliferative 

disorders is still incompletely known and there are no effective therapies for their prevention.  

The development of atherosclerosis, restenosis, and allograft arteriosclerosis has been defined 

as a response to immunological, mechanical, or infectious injury to the arterial wall (Hayry et 

al. 1993, Ross 1993). Peculiar to the disorders is an inflammatory response followed by an 

influx of smooth muscle cell (SMC)-like cells to the luminal side of the affected artery; their 

proliferation, migration, and extracellular matrix formation, which leads to the development of 

neointimal hyperplasia and vascular remodelling. Recent studies suggest that the proliferating 

neointimal SMCs derive from multipotent somatic stem cells (vascular progenitors), which are 

able to differentiate into vascular cells (Hillebrands et al. 2000, Saiura et al. 2001). Peptide 

growth factors have been recognized as important regulators of SMC kinetics in the vascular 

wall (Cercek et al. 1991). 

The vasculoprotective properties of estrogens have been widely demonstrated in 

epidemiological and experimental studies (Farhat et al. 1996b, Mendelsohn and Karas 1999), 

although some recent prospective studies show conflicting data (Hulley et al. 1998, Rossouw 

et al. 2002). It was difficult to understand how estrogen therapy can - at the same time - induce 

proliferation in the endometrium and breast while being anti-proliferative in the cardiovascular 

system. A new era in the understanding of estrogen action began in 1996 with the discovery of 

a novel estrogen receptor (ER), ERβ, in addition to the classical ERα (Kuiper et al. 1996, 

Mosselman et al. 1996). Each of these receptors has distinct tissue distribution and regulation, 

which enables the development of tissue-selective estrogens. Although knock-out mouse 

studies suggest that either of the two ERs may mediate estrogen’s protective effects on the 

vascular wall (Iafrati et al. 1997, Karas et al. 1999, Karas et al. 2001), their contribution to the 

inhibition of neointimal thickening is still incompletely understood.    



13   

The purpose of this study was to investigate the expression and regulation of the two ERs in 

the mechanical or immunological injury-induced development of neointimal hyperplasia, to 

try to differentiate estrogen’s beneficial vasculoprotective properties from its gender-related 

side-effects with ER subtype-selective estrogen, and to try to elucidate the mechanisms behind 

estrogen’s vasculoprotective action. 
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REVIEW OF THE LITERATURE 

1. Vasculoproliferative disorders 

1.1. Atherosclerosis 

Atherosclerosis is defined as a chronic inflammatory fibroproliferative disorder which causes 

narrowing of the affected arteries and produces ischemia of tissues perfused through these 

arteries (Ross 1986, Ross 1993, Ross 1999). It is the major cause of cerebral and myocardial 

infarction, ischemia of the intestines and lower extremities, and accounts for more than half of 

deaths in the Western world.  

The early lesions in atherosclerosis consist of cholesterol-filled macrophages, ‘foam cells’, in 

the subendothelium of the arterial wall (Ross 1993, Ross 1999). These fatty streaks may be 

found in the aorta already during the first decade of life, and they are precursors to the more 

advanced lesions, called ‘fibrous lesions’. Characteristic to such lesions is a ‘fibrous cap’ 

consisting of SMC and extracellular matrix (ECM), and a lipid-rich necrotic core. Advanced 

lesions may also become calcified and ulcerated, or complicated with hemorrhage. The most 

important clinical complication in an atherosclerotic artery is acute occlusion due to the 

formation of a thrombus, usually caused by a rupture of the plaque, resulting in myocardial 

infarction or stroke. 

Atherosclerosis is a multifactorial disease. Well-recognized risk factors associated with the 

disease include age, male sex, familial predisposition, hyperlipidemia, hypertension, diabetes, 

smoking, and lack of exercise. More recently, other possible risk factors have been identified, 

such as elevated levels of C-reactive protein (CRP), homocysteine, fibrinogen, plasminogen 

activator inhibitor (PAI) I, and apolipoprotein(a) (Grainger et al. 1994, Thompson et al. 1995, 

Graham et al. 1997, Nygard et al. 1997). Also, several studies indicate that infectious agents 

like Chlamydia pneumoniae (Saikku et al. 1988, Kuo et al. 1993) and cytomegalovirus (CMV) 

(Sorlie et al. 1994, Nieto et al. 1996) are associated with an increased risk for atherosclerosis.   

Changes in lifestyle are essential for the prevention of atherosclerosis. Moreover, clinical trials 

have demonstrated the benefits of lipid-lowering therapies (Shepherd et al. 1995, Sacks et al. 

1996, Downs et al. 1998) and blood pressure reduction (Hansson et al. 1998) in primary and 
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secondary prevention of cardiovascular disease. Although several pilot studies have shown 

positive effects of antibiotic treatment against chlamydia pneumoniae in the secondary 

prevention of cardiovascular events (Gupta et al. 1997, Gurfinkel et al. 1997), no large 

randomized trials have so far confirmed those findings (Cercek et al. 2003, O'Connor et al. 

2003). 

1.2. Restenosis  

Percutaneous transluminal coronary angioplasty (PTCA), first performed in 1977 (Gruntzig et 

al. 1979), has become a well-established technique for myocardial revascularization to relieve 

symptoms of coronary heart disease (CHD). However, restenosis, defined as reocclusion of 

the operated artery, remains a remarkable problem after the operation. Restenosis occurs in 

about 30%-50% of the patients within 3 to 6 months after successful intervention (Holmes et 

al. 1984, Gruentzig et al. 1987, Nobuyoshi et al. 1988), and often leads to reoperation.  

Characteristic to restenosis is the accumulation of vascular SMC to the luminal side of the 

artery, their proliferation and migration, and extracellular matrix formation, which results in 

neointimal hyperplasia (Libby et al. 1992, Haudenschild 1993, Casscells et al. 1994). Negative 

remodelling, or constriction of the artery, also plays a crucial role in the process (Lafont et al. 

1995, Mintz et al. 1996). Reconstitution of the endothelium limits the growth of the neointima 

with time (Fishman et al. 1975, Clowes et al. 1978, Haudenschild and Schwartz 1979). 

It is difficult to predict reocclusion of the artery from clinical variables and current data on the 

related risk factors are inconsistent. Certain patient-related risk factors, such as age, diabetes, 

hypertension, severe angina, genetic predisposition, and elevated fibrinogen and homocysteine 

levels, have, however, been associated with restenosis (Rensing et al. 1993, Weintraub et al. 

1993, Montalescot et al. 1995, van Bockxmeer et al. 1995, Schnyder et al. 2002). The most 

important predictive lesion characteristics are small vessel diameter, long lesion length, and 

very small lumen diameter before and after the operation (Rensing et al. 1993, Foley et al. 

1994) 

There is currently no effective treatment for restenosis. Several pharmacological approaches, 

e.g., with angiotensin converting enzyme (ACE) inhibitors, β-blockers, and 

methylprednisolone, have been attempted but none of them has been effective in preventing 
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the disease (Pepine et al. 1990, Faxon 1995, Serruys et al. 2000). By the year 2002, of the 37 

compounds tested, only 4 demonstrated efficacy in randomized placebo-controlled studies 

(Table 1). Metal intracoronary stents, which are placed at the point of the atherosclerotic 

occlusion during PTCA, were introduced during the 1990’s (Serruys et al. 1991, Fischman et 

al. 1994). The stent maintains the vessel lumen diameter, and thus prevents elastic recoil and 

negative remodelling; however, excessive neointimal hyperplasia, or in-stent restenosis 

(Virmani and Farb 1999), remains a significant problem affecting 10%-30% of patients with 

stent. Drug-eluting stents, which deliver the medication directly to the site of injury, have so 

far proven efficacious with minimal in-stent restenosis during a 6 to 12 month follow-up 

(Sousa et al. 2001a, Sousa et al. 2001b, Morice et al. 2002, Grube et al. 2003). Their long-term 

efficacy and safety are still to be investigated.  

Table 1. Clinical experience in the prevention of restenosis 

Compound Target Efficacy References 
    
Linsidomine (PTCA) NO donor 45% vs. 38% (p=0.03)* Lablanche et al. 1997 
Trapidil (PTCA) PDGF antagonist 40% vs. 21% (p=0.01)* Okamoto et al. 1992, 

Maresta et al. 1994 
Angiopeptin (PTCA) Somatostatin receptors 2, 3, 5 40% vs. 12% (p=0.003)* Eriksen et al. 1995 
Rapamycin (stent) mTOR 27% vs. 0% (p=0.001)* Morice et al. 2002 
    
* 6-month or ** 3-month endoscopic follow-up 

1.3. Transplant arteriosclerosis and accelerated recipient atherosclerosis 

Although the development of new immunosuppressive drugs has dramatically improved the 

short-term success rate in transplantation, long-term survival (after one post-operative year) 

has not improved as much, and chronic allograft rejection remains the leading cause of late 

graft failure. Furthermore, in renal transplantation, about half of the late failures are due to 

recipient death with a functioning graft, mainly because of cardiovascular reasons (accelerated 

atherosclerosis) (Lindholm et al. 1995, Kasiske et al. 1996).  

Chronic rejection is histologically characterized as persistent perivascular inflammation, 

fibrosis, and arteriosclerosis of all intra-graft arteries to the level of arterioli. Unlike in 

common atherosclerosis, the vascular lesions in transplant arteriosclerosis are often diffuse 

and concentric; not focal and eccentric. They are composed mainly of α-actin expressing SMC 

and extracellular matrix; calcifications are usually not seen (Johnson et al. 1991). These 

common histological changes in all transplants are accompanied with organ-specific 
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alterations, such as basement membrane thickening, glomerular sclerosis, and tubular atrophy 

in the kidney (Isoniemi et al. 1992). 

The etiology of chronic rejection is multifactorial. Several factors have been shown to 

influence the long-term outcome of the graft, and they are usually divided into alloantigen-

related, alloantigen-unrelated, and infectious factors. Alloantigen-related factors include 

histoincompatibility, insufficient immunosuppression, presence of anti-HLA antibodies (‘pre-

sensitisation’), and acute rejection (Suciu-Foca et al. 1991, Opelz 1992, Almond et al. 1993, 

Basadonna et al. 1993, Yilmaz and Hayry 1993). Alloantigen-unrelated factors include very 

young or very old donor age, ischemia-reperfusion injury, hyperlipidemia, hypertension, 

diabetes, and donor-recipient size-incompatibility (Cheigh et al. 1989, Cho et al. 1989, Lim 

and Terasaki 1991, Yuge and Cecka 1991, Heemann et al. 1994, Isoniemi et al. 1994, Dimeny 

et al. 1995). Finally, infectious factors, such as CMV infection, have been associated with the 

development of graft failure, allograft arteriosclerosis, and death after transplantation  

(O'Grady et al. 1988, Grattan et al. 1989, McDonald et al. 1989). 

At the moment, there is no specific therapy for chronic rejection. Only preventive measures 

are available and their aim is to intervene with the potential risk factors in the disease process. 

As mentioned above, the development of immunosuppressive drugs, especially the 

introduction of cyclosporine in the late 70’s (Calne et al. 1978), dramatically decreased the 

incidence of acute rejection and improved the early survival after transplantation. In the 

1990’s, new drugs have been developed, including mycophenolate mofetil, tacrolimus, 

sirolimus, and everolimus. Their long-term effects in humans are still under investigation. 

However, everolimus has been shown to significantly reduce transplant arteriosclerosis in 

cardiac allograft recipients (Eisen et al. 2003). Ganciclovir prophylaxis has been shown to 

inhibit allograft arteriosclerosis in CMV-infected rats (Lemstrom et al. 1994) as does the 

combination of ganciclovir and CMV hyperimmune globulin in seronegative recipients of a 

CMV seropositive heart transplant (Valantine et al. 2001). Statin-therapy also reduced the 

incidence of rejection episodes and the progression of cardiac allograft vasculopathy 

(Kobashigawa et al. 1995). Anti-hypertensive treatment with calcium channel blockers and 

ACE inhibitors had beneficial effects on allograft vasculopathy in the rat (Atkinson et al. 

1993, Kobayashi et al. 1993, Paul et al. 1994). Similar results were achieved also in a small 

clinical study (Mehra et al. 1995). 
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Figure 1. Histological cross sections of a coronary artery with significant luminal obstruction caused by (A) 
atherosclerosis; (B) in-stent-restenosis after PTCA and stent implantation; and (C) cardiac allograft 
vasculopathy. The arrow indicates the hole where the stent wire has been removed. (A, B), Braunwald Medical 
Library, with permission of Current medicine, Philadelphia, PA; (C) Libby and Pober. Immunity 2001;14:387-
397, with permission of  Elsevier Inc., New York, NY.  

Finally, patient death with a functioning graft is the major cause of late graft failure after 

kidney transplantation, and accelerated atherosclerosis in the recipient accounts for about half 

of these deaths (Lindholm et al. 1995, Kasiske et al. 1996). Certain known risk factors of 

common atherosclerosis, such as age, sex, diabetes, smoking, and hypertension, are also 

associated with accelerated atherosclerosis in the recipient (Kasiske 1988). In addition, it 

seems that the inflammatory response evoked in the recipient may contribute to the 

development of atherosclerotic lesions. This is similar to several autoimmune diseases, 

including systemic lupus erythematosus and rheumatoid arthritis, in which chronic 

inflammation and immune dysregulation are linked to accelerated coronary artery disease at 

young age (Manzi et al. 1997, Esdaile et al. 2001).  

2. Pathogenesis of the vasculoproliferative disorders  

2.1. The response-to-injury theory 

Vascular response to injury is a common denominator in all the vasculoproliferative disorders 

described above. The response-to-injury theory, originally formulated and later modified by 

Russel Ross (Ross and Glomset 1973, Ross 1986, Ross 1993), suggests that the development 

of the lesion is a protective inflammatory-fibroproliferative response to different forms of 

injury to the arterial wall. Although originally established for atherosclerosis, it can also be 

applied to chronic rejection (Hayry et al. 1993, Libby and Pober 2001) and restenosis (Libby 

et al. 1992, Casscells et al. 1994), since the pathophysiological mechanisms following vascular 

injury are presumed not to be too distant. 
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2.2. Inflammation 

Whether the vascular injury is mechanical, immunological, or infectious in origin, it initially 

leads to an inflammatory response. The injured endothelium is triggered to express numerous 

pro-inflammatory molecules, which mediate the entry of the inflammatory cells, mainly 

macrophages and lymphocytes, to the vessel wall. Selectins mediate the rolling of leukocytes 

along the endothelium by binding to carbohydrate ligands on the cells (Frenette and Wagner 

1996, Frenette and Wagner 1997, Dong et al. 1998), and they are upregulated in endothelial 

cells overlying human atheromas (O'Brien et al. 1993), in restenosis (Serrano et al. 1997, 

Yasukawa et al. 1997), as well as in allograft arteriosclerosis (Koskinen and Lemstrom 1997). 

Further adhesion of leukocytes to the endothelium is mediated by vascular cell adhesion 

molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Blocking the action 

of selectins, VCAM-1, and ICAM-1 has been shown to protect against the development of 

atherosclerosis, restenosis, or allograft arteriosclerosis (Sligh et al. 1993, Barron et al. 1997, 

Suzuki et al. 1997, Yasukawa et al. 1997, Collins et al. 2000).  

Once leukocytes are adherent to the endothelium, they migrate into the vascular wall in 

response to the influence of different chemoattractant proteins, such as monocyte chemotactic 

protein-1 (MCP-1) (Gu et al. 1998). The activated inflammatory cells replicate and secrete 

cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α), which, in turn, 

stimulate endothelial cells (EC) and vascular SMCs (Hancock et al. 1994). These cytokines 

are also produced by the ECs and SMCs (Moyer et al. 1991, Galea et al. 1996). Recent studies 

also support a role for interactions between CD40, expressed on lymphocytes, macrophages, 

ECs, and SMCs, and its ligand (CD40L) in the development of advanced atherosclerotic 

lesions, as the binding of CD40 to CD40L results in the production of cytokines, matrix-

degrading proteases, and adhesion molecules (Schonbeck et al. 2000). Cytokine induction 

leads to increased expression of pro-inflammatory molecules, increased leukocyte 

extravasation, and increased inflammation - generating a vicious circle.  

Finally, SMC migration and proliferation within the arterial intima is induced by growth 

factors and vasoactive peptides released by the activated leukocytes. SMCs express receptors 

for these ligands, and also synthesize them, which results in persistent paracrine and autocrine 

proliferation (Raines et al. 1989, Battegay et al. 1990) Finally, these inflammatory-
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fibroproliferative cascades culminate in the advanced fibrous lesions in atherosclerosis, 

thickened neointima in restenosis, or vascular lesions in transplant arteriosclerosis.  

2.3. Peptide growth factors 

Peptide growth factors have an important role in the development of fibroproliferative 

vascular lesions (Cercek et al. 1991). Arterial SMC have been shown to synthesize numerous 

growth factors in vitro (Nilsson et al. 1985, Crowley et al. 1995). Several growth factors, such 

as insulin-like growth factor 1 (IGF-1) (Cercek et al. 1990), epidermal growth factor (EGF) 

(Miano et al. 1993), platelet-derived growth factor (PDGF) A and B (Majesky et al. 1990, 

Miano et al. 1993), and transforming growth factor β1 (TGF- β1) (Majesky et al. 1991) are 

upregulated in the vascular wall after endothelial injury in vivo. Furthermore, inhibition of 

PDGF (Ferns et al. 1991b, Myllarniemi et al. 1997, Sihvola et al. 1999, Noiseux et al. 2000), 

IGF (Hayry et al. 1995), and basic fibroblast growth factor (bFGF) (Lindner and Reidy 1991) 

signalling with antibodies, peptidomimetics, antisense treatment, or tyrosine kinase inhibitors 

have been shown to prevent injury-induced neointimal hyperplasia and allograft 

arteriosclerosis - further emphasizing their role in these disease processes. In this thesis, I have 

focused mainly on the regulation of PDGF and IGF-1 in the vascular response-to-injury. 

2.4. Platelet-derived growth factor (PDGF) 

PDGF is known as the most potent SMC chemoattractant and mitogen. It is also important in 

embryonic vascular development (Leveen et al. 1994, Soriano 1994) and has angiogenic 

properties (Battegay et al. 1994). Although originally discovered as a product of platelets 

(Antoniades et al. 1979), PDGF has thereafter been shown to originate from several other cell 

types, including vascular ECs and SMCs  (DiCorleto and Bowen-Pope 1983, Nilsson et al. 

1985). Four PDGF genes have been identified; the classical PDGF-A and PDGF-B, and the 

novel PDGF-C and PDGF-D. PDGF ligands consist of disulfide-linked polypeptide dimers. 

PDGF-A and PDGF-B form both homo- and heterodimers (PDGF-AA, -BB, or -AB) (Ross et 

al. 1986), while the novel PDGFs exist only as homodimers (PDGF-CC and PDGF-DD) (Li et 

al. 2000, Bergsten et al. 2001). PDGF ligands act via PDGF-receptors (PDGF-Rα and -Rβ) 

(Heldin and Westermark 1999). PDGF-Rα binds PDGF-A, PDGF-B, and PDGF-C, whereas 

PDGF-Rβ binds only PDGF-B and PDGF-D (Hart et al. 1988, Claesson-Welsh et al. 1989, Li 

et al. 2000, Bergsten et al. 2001). PDGF-receptors are protein tyrosine kinase receptors. Upon 
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ligand binding, the receptors dimerize, which results in autophosphorylation of the tyrosine 

residues between the two receptors and a biological response.  

PDGF and its receptors are detected in normal human arteries (Barrett and Benditt 1988) and 

they are upregulated in human atherosclerotic arteries (Barrett and Benditt 1988, Libby et al. 

1988, Wilcox et al. 1988), coronary arteries after PTCA (Tanizawa et al. 1996, Ueda et al. 

1996), and transplant vasculopathy (Zhao et al. 1995), as well as in several experimental 

models of vascular injury (Majesky et al. 1990, Uchida et al. 1996, Lemstrom and Koskinen 

1997). In vitro, PDGF-A mainly acts as a mitogen for vascular cells, and PDGF-Rα, when 

activated by ligand binding, stimulates proliferation, but not migration, of vascular SMC 

(Koyama et al. 1994). PDGF-B, on the other hand, is considered as the most potent SMC 

mitogen and chemoattractant (Grotendorst et al. 1982, Ross et al. 1986). Infusion of PDGF-

BB into rats after denudation injury (Jawien et al. 1992) or transfer of the recombinant PDGF-

B gene into porcrine arteries (Nabel et al. 1993) induced intimal hyperplasia in vivo. On the 

contrary, neointimal thickening was inhibited by a neutralizing PDGF antibody (Ferns et al. 

1991b) as well as by antisense treatment against PDGF-Rβ (Noiseux et al. 2000). 

The roles of PDGF-C and PDGF-D in the vasculature are being explored. So far, both ligands 

have been demonstrated to stimulate human coronary artery SMC proliferation in vitro (Uutela 

et al. 2001). 

2.5. Insulin-like growth factor-1 (IGF-1) 

IGF-1 has numerous physiological actions from embryonic development (Baker et al. 1993) to 

metabolic functions (Jacob et al. 1989), and as a mediator of the effects of growth hormone. It 

is also an important regulator of proliferation and migration of vascular cells, including 

fibroblasts and SMC (Cercek et al. 1990, Ferns et al. 1991a, Bornfeldt et al. 1994). The actions 

of IGF-1 are mediated via a specific membrane tyrosine kinase receptor, IGF-1R (LeRoith et 

al. 1995), which has been detected on SMC (Pfeifle and Ditschuneit 1983), inflammatory cells 

(Hochberg et al. 1992), and ECs (Bar and Boes 1984). The bioactivity of IGF-1 is, 

furthermore, regulated by six different IGF binding proteins (IGFBP) (Shimasaki and Ling 

1991).  
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IGF-1 is expressed in normal SMCs of rat aorta, localizing predominantly to medial SMC 

(Delafontaine et al. 1991, Khorsandi et al. 1992), and it is upregulated markedly after vascular 

injury in rat (Cercek et al. 1990) and in human coronary atherectomy specimens (Grant et al. 

1996). IGF-1 is also synthesized by macrophages (Nagaoka et al. 1990) and ECs 

(Delafontaine 1995). IGF-1 alone appears to be a poor mitogen for vascular SMC (Ferns et al. 

1991a). However, IGF-1 is considered as an important progression factor for PDGF, in other 

words, autocrine or paracrine production of IGF-1 and a functional IGF-1R are suggested to 

be necessary for PDGF to induce its full mitogenic effects on SMCs and fibroblasts 

(Clemmons and Van Wyk 1985, Sara and Hall 1990, Miura et al. 1994, DeAngelis et al. 

1995).  

2.6. Vascular precursor cells 

Traditionally, vascular SMCs were believed to exist in two different phenotypic states, the 

contractile and the secretory state (Campbell and Campbell 1990, Thyberg et al. 1990). SMCs 

within a normal artery were described as contractile, as they were filled with myofilaments but 

contained a poorly developed Golgi apparatus and rough endoplasmic reticulum. In response 

to the action of different cytokines and growth factors in the injured artery, these ‘normal’ 

SMC were thought to undergo a phenotypic change into a secretory or synthetic phenotype. 

This phenotype had histologically an abundant rough endoplasmic reticulum and Golgi 

apparatus, but few or no myofilaments. The secretory SMCs were capable of producing a 

number of ECM proteins and matrix metalloproteinases, that enabled their migration into the 

intima (Bendeck et al. 1994, Galis et al. 1995, Bendeck et al. 1996), as well as growth factors.  

Until recently, it was also considered that the SMCs accumulating in the intima migrated there 

only from the medial layer. Recent data, however, suggest that the proliferating neointimal 

SMC in transplant vasculopathy, in experimental atherosclerosis, and after mechanical arterial 

injury derive mainly from circulating somatic stem cells (vascular progenitors), partly of bone 

marrow origin, that at least in vitro are capable of differentiating into endothelial and smooth 

muscle cells (Hillebrands et al. 2000, Hillebrands et al. 2001, Saiura et al. 2001, Shimizu et al. 

2001, Hillebrands et al. 2002, Hu et al. 2002, Sata et al. 2002). The route of vascular 

progenitors to the vessel wall is not clear. Some studies suggest that adventitial activation 

contributes significantly to neointima formation (Shi et al. 1996a, Shi et al. 1996b, Frosen et 

al. 2001) while others support a luminal route to the vascular wall (Matsumoto et al. 2003). 
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3. Estrogens  

3.1. Introduction to natural estrogens 

Estrogens are steroid hormones that regulate the growth, differentiation, and function of 

several tissues in the human body. The female reproductive system, including mammary 

gland, uterus, placenta, and vagina, is considered as a traditional estrogen target tissue. In 

addition, estrogens play an important role in the male reproductive system and many non-

reproductive tissues, such as the cardiovascular system, bone, and the central nervous system.  

In premenopausal women, 95% of the estrogens are synthesized in the granulosa cells of the 

ovary (Richards and Hedin 1988). The most important natural estrogen in premenopausal 

women is 17β-estradiol (E2) (Fig. 2). The level of E2 production depends on the time of the 

menstrual cycle, and serum concentrations of E2 are approximately 40-360 pmol/l in the 

follicular phase, 630-2800 in the midcycle, and 700-1200 pmol/l in the luteal phase of the 

menstrual cycle, and up to 70,000 pmol/L during pregnancy (O'Malley and Strott 1999). In the 

plasma, E2 is bound predominantly to albumin and sex hormone-binding globulin (SHBG) 

(Dunn et al. 1981) and the remaining free fraction is available for uptake by estrogen target 

tissues. Estradiol is mainly excreted in the urine, and the principal metabolites are estriol (E3) 

and catechol estrogens (2- and 4-hydroxy-estrone), which also have numerous biological 

actions (Dubey et al. 2004).   

During the menopause, the ovaries cease to secrete E2, and thereafter, estrogens are mainly 

derived from androgens, such as testosterone, androstenedione, and dehydroepiandrosterone, 

through peripheral aromatization in mesenchymal cells of the adipose tissue, the osteoblasts 

and chondrocytes of bone, the vascular endothelium and SMCs as well as the brain (Grodin et 

al. 1973, Simpson 2003). In postmenopausal women estrone (E1), which has a biologic 

potency of approximately one third that of estradiol, is the predominant estrogen. In males, 

estrogens are produced by the testes, adrenals, and adipose tissue, and the levels of E2 are 

similar to those of postmenopausal women (30-200 pmol/L) (O'Malley and Strott 1999). 
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Figure 2. Molecular structure of 17β-estradiol 

3.2. The nuclear receptor superfamily 

Most of the effects of estrogen are mediated by estrogen receptors (ER). ERs belong to the 

nuclear receptor (NR) gene superfamily, which also includes receptors for other steroid 

hormones, thyroid hormones, vitamin A and D, retinoids, as well as several ‘orphan 

receptors’, which are receptors interacting with unknown compounds (Evans 1988, Laudet et 

al. 1992, Mangelsdorf et al. 1995).  

The NR superfamily has an evolutionarily and functionally conserved structure (Kumar et al. 

1987, Laudet et al. 1992). The receptors consist of six functional domains: an N-terminal 

domain (A/B domain), a DNA-binding domain (DBD; C domain), a hinge region (D domain), 

and a ligand-binding domain (LBD; E/F domain). The A/B domain, which usually has the 

lowest degree of sequence similarity among the NR family members, contains a ligand-

independent transactivation function (AF-1) domain that contributes to transcriptional activity 

interacting with other transcription factors and coregulatory proteins, and it acts in a promoter- 

and cell-specific fashion (Tora et al. 1989, Kraus et al. 1995, McInerney and 

Katzenellenbogen 1996, McInerney et al. 1996). The DBD is the most conserved region 

among the NR superfamily. It contains two zinc finger motifs, and it is involved in DNA 

binding, receptor dimerization, and transactivation of genes (Freedman 1992, Glass 1994). 

The D domain serves as a hinge between DBD and LBD, and its actions are less well 

characterized. LBD is critical in the binding of NR agonists and antagonists as well as 

dimerization, cofactor binding, ligand-dependent transactivation, and nuclear localization, and 

it is relatively well conserved among nuclear receptors (Kumar et al. 1987, Carson-Jurica et al. 

1990). A second activation function (AF-2) domain is located in the LBD and it interacts with 

coregulatory proteins (Kumar et al. 1987, Webster et al. 1988, Tora et al. 1989). 
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3.3. Nuclear receptor activation and signal transduction 

Nuclear receptors act as ligand-activated transcription factors. In short, their activation 

involves diffusion of the ligand to the target cell (Rao 1981) and binding of the ligand to the 

receptor in the cytoplasm or the nucleus. Ligand binding detaches the receptor from inhibitory 

heat shock proteins (hsp) and induces a conformational change in the structure of the receptor, 

which facilitates receptor dimerization, nuclear translocation, and the binding of the ligand-

receptor complex to specific DNA elements in the target genes (Tsai and O'Malley 1994). This 

results in the regulation of the gene transcription through interaction with coregulatory 

proteins (coactivators or corepressors) and the transcription machinery (Fig. 3). Receptor 

activation is also influenced by phosphorylation (Kuiper and Brinkmann 1994). 

Furthermore, nuclear receptors have been shown to regulate the transcription of some genes 

that do not contain their classical response elements. For example, estrogen stimulates several 

genes through interactions with other transcription factors, such as AP-1 or Sp1, that bind to 

their cognate DNA binding sites (Webb et al. 1995, Saville et al. 2000). Estradiol can also 

inhibit the expression of target genes through negative regulation of transcription factors, 

including nuclear factor-κB (Ray et al. 1994, Galien and Garcia 1997). 

On the other hand, nuclear receptors can also be activated in a ligand-independent fashion, by 

signals originating from the cell surface. Estrogen receptors are activated in the absence of 

ligand by activators of protein kinase A, protein kinase C, dopamine, and growth factors, such 

as EGF and IGF-1 (Power et al. 1991, Aronica and Katzenellenbogen 1993, Smith et al. 1993, 

Kato et al. 1995, Bunone et al. 1996, Weigel 1996, Lahooti et al. 1998).  
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Figure 3. The classical pathway of estrogen receptor action in the cell. Estradiol (E2) diffuses into the cell and 
binds to the estrogen receptor (ER) in the cytoplasm or the nucleus. ER undergoes a conformational change and 
dissociates from heat shock proteins (hsp), such as hsp90. The ligand-receptor complex dimerizes and interacts 
with specific DNA elements in the nucleus, such as estrogen response element (ERE), located in the promotor 
region of the target genes, as well as with coregulatory proteins. This results in the up- or downregulation of the 
gene transcription and an estrogenic response in the cell. 

3.4. Estrogen receptors 

The existence of the estrogen receptor was recognized about 40 years ago by the observation 

that uterus and vagina specifically bound estradiol (Jensen and Jacobson 1962). The receptor 

was cloned 25 years later (Green et al. 1986, Greene et al. 1986), and thereafter, the ER was 

believed to be the only mediator of estrogen’s action in its target tissues. Surprisingly, 

however, ER knock-out mice (ERKO) appeared healthy, except for problems in their fertility 

(Lubahn et al. 1993, Korach et al. 1996), and furthermore, mutation of the estrogen receptor 

gene in man was not lethal (Smith et al. 1994). Then, in 1996 a novel ER was cloned in the rat 

(Kuiper et al. 1996), man (Mosselman et al. 1996), and mouse (Tremblay et al. 1997), and it 

was named ERβ to distinguish it from the classical receptor, which was renamed ERα. In 

many respects, the finding of this new ER opened fresh vistas for the understanding of 

estrogen receptor signalling.  

Both ERα and ERβ bind E2 with high affinity (Kuiper et al. 1997) and they bind to the 

classical estrogen response elements (ERE) with similar affinities (Kuiper et al. 1996, Kuiper 

et al. 1997). They share about 96% structural homology in their DBD and 53% homology in 

their LBD (Kuiper et al. 1996), which suggests that the receptors bind similar DNA elements 
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but may have a distinct spectrum of ligands. Indeed, the receptors differ in their affinities for 

several natural and synthetic compounds (Barkhem et al. 1998, Kuiper et al. 1998). The ERβ 

protein is smaller than that of ERα and the receptors differ markedly in their N-terminal AF-1 

domain and the C-terminal AF-2 domain (Fig. 4). This suggests that the transcriptional 

activation of different estrogen-responsive genes may be different due to promoter and cell-

specific factors and by different interactions of the N- and C-terminal domains with proteins in 

the transcription complexes; for example, ERα and ERβ have opposite functions at the AP-1 

site (Paech et al. 1997). The human ERβ gene shows approximately 89% identity to that of rat, 

88% to mouse, and 47% to human ERα (Enmark et al. 1997). 

Several splicing variants for both ERs have been identified (Fuqua et al. 1993, Friend et al. 

1995, Zhang et al. 1996, Chu and Fuller 1997, Leygue et al. 1998, Moore et al. 1998, Petersen 

et al. 1998, Hanstein et al. 1999, Hodges et al. 1999, Li et al. 2003). The biological and 

physiological roles of most ERα splice variants have not been clarified. Some ERβ splice 

variants, such as ERβ-503 and ERβcx, do not bind E2 and they have also been reported to 

have a dominant negative effect on ERα and ERβ-mediated activation of target genes 

(Maruyama et al. 1998, Ogawa et al. 1998). ERβcx has been of particular interest due to its 

expression in human cancers (Ogawa et al. 1998).  

α

β

 
 
Figure 4. Comparison between rat ERα and ERβ protein. The bars represent rat ER molecules divided into their 
structural domains. Amino acid positions are indicated at region boundaries. The percentage of amino acid 
identity in the A/B (AF-1, N-terminal), C (DNA binding), D (hinge), E (ligand binding), and F (AF-2, C-
terminal) domains is demonstrated. Similar homologies are present in the respective domains of human and 
mouse ER subtypes. Modified from Kuiper and Gustafsson FEBS Lett. 1997;410:87-90, with permission of 
Elsevier Inc., New York, NY. 
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3.5. Estrogen receptor expression  

Estrogen receptors have been demonstrated in numerous rat, mouse, and human tissues both at 

the mRNA (Kuiper et al. 1996, Mosselman et al. 1996, Couse et al. 1997, Enmark et al. 1997, 

Kuiper et al. 1997, Tremblay et al. 1997) and at the protein (Saunders et al. 1997, Taylor and 

Al-Azzawi 2000) level. The receptors have clearly different tissue distribution, and when co-

expressed in the same tissue, they usually have a distinct cell-specific localization. ERα is 

predominantly expressed in the uterus, placenta, testis, kidney, and liver. ERβ, on the other 

hand, predominates in many non-classical target tissues including the ovary, prostate 

epithelium, bladder, lung, the gastrointestinal (GI) tract, spleen, thymus, lymph nodes, and 

bone marrow. Both receptors are found in the kidney, mammary gland, different regions of 

brain, bone, adrenal gland, the cardiovascular system, and epididymis. There may, however, 

be some species-specific variance in the expression pattern (Kuiper et al. 1996, Enmark et al. 

1997).  

The co-expression of ERα and ERβ in some tissues suggests that the receptors may interact 

with each other. It has been demonstrated that, in addition to binding DNA as homodimers, the 

ERs also form heterodimers, which may increase their functional capability to regulate gene 

expression (Cowley et al. 1997, Pettersson et al. 1997). For example, although the uterus 

predominantly expresses ERα, it is not free of ERβ, and it appears that ERβ modulates the 

uterotrophic responses of ERα in the uterus (Weihua et al. 2000, Lecce et al. 2001). 

In the vasculature, estrogen receptors have been detected in the arteries and veins of several 

species (Malinow et al. 1963, McGill and Sheridan 1981, Horwitz and Horwitz 1982, Lin and 

Shain 1985, Perrot-Applanat et al. 1988, Orimo et al. 1993). They are present in vascular 

endothelial (Colburn and Buonassisi 1978, Kim-Schulze et al. 1996, Venkov et al. 1996) and 

smooth muscle cells (Nakao et al. 1981, Karas et al. 1994, Losordo et al. 1994, Bayard et al. 

1995, Register and Adams 1998, Hodges et al. 2000, Taylor and Al-Azzawi 2000) as well as 

in cardiac myocytes (Grohe et al. 1997, Saunders et al. 1997, Grohe et al. 1998) and 

fibroblasts (Grohe et al. 1997). Vascular cells also express variant forms of the ERs (Karas et 

al. 1995, Inoue et al. 1996, Chu and Fuller 1997, Hodges et al. 1999, Li et al. 2003).  

In addition to the classical nuclear receptors, plasma membrane estradiol binding sites have 

been identified in vascular and other tissues (Razandi et al. 1999), and these mediate rapid 
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intracellular signalling cascades (Chambliss et al. 2000, Russell et al. 2000, Chambliss et al. 

2002, Li et al. 2003). Finally, changes in plasma estrogen concentration regulate the levels of 

ERs in the tissues. ER levels in the cytosol of human artery were highest in the late follicular 

phase of the menstrual cycle (Lantta et al. 1983, Leiberman et al. 1990). Moreover, estrogen 

treatment caused a redistribution of the ER from the cytoplasmic to nuclear compartment in 

the rabbit aorta (Lin and Shain 1985). 

3.6. The role of gender and estrogens in different vasculoproliferative disorders 

Coronary heart disease is a major cause of morbidity and mortality in both men and women. 

The incidence of CHD and the related cardiovascular complications is rare in premenopausal 

women (Barrett-Connor and Bush 1991, Isles et al. 1992). However, the risk increases 

markedly after the menopause (Kannel et al. 1976, Colditz et al. 1987, van der Schouw et al. 

1996, Jacobsen et al. 1997, Joakimsen et al. 2000), and compared to men, there is a 5- to 10-

year delay in the onset of the disease in women (Wenger 1997, Maxwell 1998) (Fig. 5).  

 

Figure 5. A. Annual rate of coronary heart disease in men (solid line) and women (dashed line) from the 
Framinghman Heart Study. Modified from Castelli WP. Am. J. Obstet. Gynecol. 1988;158(6 Pt 2):1553-60, with 
permission of Elsevier Inc., New York, NY. B. Leading causes of death of women in Finland in 1999. Finnish 
Heart Association, Helsinki, Finland, with permission. CVD, cardiovascular disease; CA, cancer; DEM, 
dementia; ALZ, Alzheimer’s disease; RESP, respiratory disease. 
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These observations are most likely due to the protective effect of endogenous female sex 

hormones, and particularly of estrogens. This hypothesis has been supported by population 

studies, which suggest that in primary prevention, women using postmenopausal hormone 

replacement therapy (HRT) have approximately a 35% to 50% lower rate of CHD (Stampfer 

et al. 1985, Stampfer et al. 1991, Grady et al. 1992, Grodstein et al. 1996, Grodstein et al. 

2000). However, in the secondary prevention of cardiovascular disease, HRT does not seem to 

offer any overall benefit (Hulley et al. 1998, Herrington et al. 2000).  

Male gender has been associated with increased risk for post-angioplasty restenosis (Holmes 

et al. 1984). On the other hand, the short-term results of PTCA in women have been 

considered less satisfactory with lower initial success rate and higher mortality rate than in 

men. Many of the differences may be explained by worse baseline characteristics in women, 

such as older age, unstable angina, congestive heart failure, diabetes, hypertension, and 

hypercholesterolemia, as well as smaller vessel diameter, and more coronary tortuosity. The 

long-term results after PTCA are comparable or better in women, with similar symptomatic 

improvement, lower rates of restenosis, and improved survival compared to men (Cowley et 

al. 1985, Bell et al. 1993, Kelsey et al. 1993, Arnold et al. 1994, Weintraub et al. 1994, Bell et 

al. 1995, Ruygrok et al. 1996). Also with coronary stents, long-term survival is better or equal 

in women than in men (Alfonso et al. 2000, Antoniucci et al. 2001, Mehilli et al. 2003). There 

are few data on the effects of HRT on the outcome after PTCA and the results are inconsistent 

(O'Keefe et al. 1997, Abu-Halawa et al. 1998, Khan et al. 2000, Khan et al. 2003). Recently, 

estrogen-releasing stents have been introduced, and preliminary results are promising (New et 

al. 2002, Joung et al. 2003, Abizaid et al. 2004) 

Gender also influences the outcome in experimental and clinical transplantation. In general, 

male recipients of a female transplant are at increased risk for rejection, allograft 

vasculopathy, and graft loss (Keogh et al. 1991, Mehra et al. 1994, Marino et al. 1995, Brooks 

et al. 1996, Vereerstraeten et al. 1999, Zeier et al. 2002) (Fig. 6). Allografts from male donor 

have a better 1-year survival rate, since acute rejection episodes are more common in females 

(Cecka 1986, Esmore et al. 1991, Fabbri et al. 1992, Neugarten and Silbiger 1994, Brooks et 

al. 1996, Meier-Kriesche et al. 2001). However, evidence exists that long-term allograft 

outcome is improved in female recipients (Neugarten and Silbiger 1994, Meier-Kriesche et al. 

2001).  
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Figure 6. Donor gender-related differences in the survival of first cadaveric kidney transplants performed 
between 1985 and 2000. Kidney transplants from female donors had a significantly lower survival rate, 
particularly in male recipients. Zeier et al. J Am Soc Nephrol 2002;13:2570-2576, with permission of the 
authors and Lippincott Williams & Wilkins, Baltimore, MD. 

Reasons for the gender-related differences are largely unknown. Some studies suggest that 

nephron underdosing, i.e. a smaller kidney size in females versus males, may play a role 

(Brenner et al. 1992, Mackenzie et al. 1995). Antigenicity and immunological factors are 

probably also important. HLA mismatching reduces the survival of female donor grafts more 

than that of male grafts (Cecka 1986). Broadly sensitized recipients have a lower 1-year 

survival rate when they receive a female kidney (Zhou and Cecka 1989). Females, especially 

those who have been pregnant, are also more frequently sensitized than males (Suciu-Foca et 

al. 1983, Koka and Cecka 1989, Regan et al. 1991, van Kampen et al. 2001). However, 

gender-related differences in graft survival are seen even in HLA-identical siblings, possibly 

pointing to an additional role of non-HLA factors (Zeier et al. 2002). An alternative view is 

that, sex hormones, not the sex of the donor, are responsible for the recipient gender-related 

differences. In ovariectomized female rats, progression of chronic allograft nephropathy is 

more rapid in allografts of female donor than of male donor (Muller et al. 1999). However, 

estrogen supplementation prevents the functional decline of female donor grafts whereas 

testosterone increases rejection in kidneys of male origin (Muller et al. 1999). Moreover, 

testosterone impairs long-term allograft outcome in male animals, while estrogen improves 

allograft survival in female animals, irrespective of the donor gender (Antus et al. 2002). 
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The role of estrogen in vasculoprotection has been intensely studied in experimental models. 

Endogenous estrogens protect female rats against neointimal thickening and gonadectomy 

abolishes the effect (Chen et al. 1996). Estrogen treatment inhibits fatty streak and lesion 

formation in ApoE deficient mice (Bourassa et al. 1996, Elhage et al. 1997). Moreover, it 

inhibits neointima formation after carotid balloon injury in rabbits (Foegh et al. 1994), rats 

(Chen et al. 1996), and mice (Sullivan et al. 1995); immunologically-induced vascular 

fibroproliferative dysplasia in rabbit aorta (Cheng et al. 1991) and cardiac allografts (Foegh et 

al. 1987); as well as diet-induced coronary artery atherosclerosis in monkeys (Adams et al. 

1987, Adams et al. 1990). 

3.7. Mechanisms behind estrogen’s vasculoprotective effect 

Despite years of intense study, the mechanisms behind estrogen’s vasculoprotective effects are 

still incompletely understood. Estrogens have beneficial effects on serum lipid concentrations 

(Stevenson et al. 1993, The Writing Group for the PEPI Trial 1995); however, evidence exists 

that estrogen-induced alterations in the lipids can account for only approximately one third of 

the observed vasculoprotective effects (Bush et al. 1987, Grady et al. 1992, Mendelsohn and 

Karas 1999). Thus, the direct estrogenic effects on the vascular wall most probably make up a 

major part of its vasculoprotective properties. Estrogen is believed to exert its effects both 

directly via a rapid non-genomic pathway, such as the rapid vasodilatory effect (Farhat et al. 

1996a) (Table 2), and via a genomic pathway through nuclear ERs, which regulate the 

transcription of target genes (Table 3). The non-genomic effects occur within minutes while 

the genomic effects take place over hours. 
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Table 2. Potential non-genomic mechanisms behind estrogen’s vasculoprotective actions 

Physiologic or 
pathophysiologic    
effect of E2  

Potential mechanism References 

   
Vasodilation 

   

Changes in membrane ionic 
permeability, particularly Ca2+ and K+ 
ion channel functions 

Upregulation of cAMP and cGMP 

Increased production and release of 
NO from ECs, possibly through 
activation of eNOS by ERα located in 
the plasma membrane 

Farhat et al. 1996a, Mendelsohn and Karas 
1999, Dubey and Jackson 2001  

                                                                
Farhat et al. 1996a, Dubey and Jackson 2001 

Mendelsohn and Karas 1999,                
Dubey and Jackson 2001 

  
   
 

The development of ERα, ERβ, and ER(α,β) double knock out-mice has increased our 

understanding of the ER-mediated effects in the vasculature. Vascular SMCs isolated from 

ERβ-deficient mice have abnormalities in ion channel function, and they develop sustained 

systolic and diastolic hypertension with age (Zhu et al. 2002). Estrogen’s vasculoprotective 

effects on the vascular injury response were preserved in mice lacking either ERα or ERβ, but 

not in mice lacking both ERs (Iafrati et al. 1997, Karas et al. 1999, Karas et al. 2001), which 

suggested that they are mediated by the ERs, and that either of the known ERs is sufficient to 

protect against vascular injury. However, the mice developed no neointima, and the analysis 

was based only on changes in the medial layer. This differs markedly from the case in other 

animals and man, which makes it difficult to evaluate the relative roles of the two receptors in 

vasculoprotection. 
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Table 3. Potential genomic mechanisms behind estrogen’s vasculoprotective actions 

Physiologic or 
pathophysiologic 
effect of E2  

Potential mechanism References 

   
Vasodilation Upregulation of prostacyclin synthase    

and eNOS 

Downregulation of renin, ACE, ET-1,   
and AT 1 receptor  

Farhat et al. 1996b,                        
Mendelsohn and Karas 1999,                
Dubey and Jackson 2001 

   
Cell adhesion  Downregulation of VCAM, ICAM,         

E-, and P-selectin  
Caulin-Glaser et al. 1998, Cushman et al. 
1999, Mendelsohn and Karas 1999,      
Zanger et al. 2000, Dubey and Jackson 2001, 
Oger et al. 2001 

   
Endothelial recovery 
(reendothelialization) 

Upregulation of bone marrow-derived 
endothelial progenitor cell production 

Stimulation of EC replication, possibly  
via upregulation of VEGF and bFGF 

Inhibition of EC apoptosis 

Farhat et al. 1996b, Mendelsohn and Karas 
1999, Dubey and Jackson 2001,            
Iwakura et al. 2003, Strehlow et al. 2003b 

   
SMC function 

   

Inhibition of MAP kinase activity and the 
subsequent SMC proliferation and 
migration  

Downregulation of IGF-1, IGF-1R, c-fos, 
c-myc, and cell cycle proteins  

Suzuki et al. 1996, Dubey and Jackson 2001, 
Takahashi et al. 2003 

   
Extracellular matrix 
synthesis 

Downregulation of collagen and elastin 
synthesis 

Upregulation of matrix metalloproteinases  

Farhat et al. 1996b,                            
Mendelsohn and Karas 1999,               
Zanger et al. 2000, Dubey and Jackson 2001 

   
Lipid metabolism        
           LDL↓ , HDL↑  

triglycerides↑

Upregulation of apolipoproteins A and E, 
LDL receptor, and lipoprotein lipase  

Downregulation of apolipoprotein B and 
lipoprotein(a) 

Mendelsohn and Karas 1999,                  
Dubey and Jackson 2001 

   
Inflammation Downregulation of IL-1, IL-6, MCP-1, 

MHC II, and TNF-α 
Saito et al. 1997, Mendelsohn and Karas 
1999, Srivastava et al. 1999,                  
Dubey and Jackson 2001, Koh et al. 2001 

   
Coagulation, 
thrombosis,          
and fibrinolysis 

Downregulation of fibrinogen, 
antithrombin III, protein S, PAI-1  

Upregulation of TPA  

Mendelsohn and Karas 1999,                
Dubey and Jackson 2001 

   
Antioxidant effect Downregulation of free radical production, 

inhibition of LDL oxidation 

Upregulation of superoxide dismutase 

Dubey and Jackson 2001, Laufs et al. 2003, 
Strehlow et al. 2003a 
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3.8. Estrogen receptors as targets for vasculoprotective drug therapies 

Although the vasculoprotective properties of E2 have been widely demonstrated both in 

epidemiological and experimental studies, its effects have been difficult to understand and 

exploit due to harmful side-effects in the reproductive system: while being antiproliferative in 

the vasculature, estrogen-treatment increases the risk for endometrial and breast cancer (Key 

and Pike 1988, Barrett-Connor 1992, Colditz et al. 1995).   

However, the discovery of ERβ and the distinct tissue distribution and transcriptional 

regulation of the two ERs prompted us to generate a hypothesis that perhaps estrogen’s 

different effects in different tissues could be separated with receptor subtype-selective, i.e. 

tissue-selective compounds - and the hypothesis was subsequently proven to be correct 

(Makela et al. 1999). An ideal compound should have estrogenic effects in the cardiovascular 

system and bone, while being neutral in breast and uterus. 

3.9. Selective estrogen receptor modulators (SERM) 

SERMs are compounds that act as ER agonists in some tissues while being antagonists in 

others (MacGregor and Jordan 1998, Morello et al. 2002). SERMs act on their target cells by 

diffusing into the cell and binding to the two ERs with variable affinities. According to current 

knowledge, the action of a SERM in a given tissue is dependable on several factors, such as 

the ER subtype-selectivity of the compound, the predominant ER expressed in the tissue, and 

the nature of the target gene promoter (Webb et al. 1995, Paech et al. 1997, Jones et al. 1999). 

The conformational change that takes place upon binding of the SERM to either of the ERs, 

and particularly, the position of helix 12 in the LBD, depends on the SERM involved, and it 

plays a critical role in the agonist or antagonist configuration of the ER that determines the 

ability of the ER-ligand complex to interact with coregulatory proteins and exert either the 

estrogen agonist or antagonist response in the tissue (Martin et al. 1988, McDonnell et al. 

1995, Brzozowski et al. 1997, Shiau et al. 1998, Paige et al. 1999, Pike et al. 1999). Also, the 

expression of coregulatory proteins has been shown to vary in different cells and tissues 

(Voegel et al. 1996, Kalkhoven et al. 1998, Kurebayashi et al. 2000) 

The SERMs currently in clinical use, namely tamoxifen, raloxifene, and toremifene, are used 

for the prevention and treatment of breast cancer and postmenopausal osteoporosis (Fig. 7). In 
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addition, several promising compounds have been described, including idoxifene and 

ospemifene (Pace et al. 1997, Nuttall et al. 1998, DeGregorio et al. 2000, Qu et al. 2000, Taras 

et al. 2001) (Fig. 7). In general, SERMs have minimal effects on uterine endometrium. 

Tamoxifen, however, is associated with a 2-6 fold increased risk for endometrial cancer, 

which has limited its use outside chemotheraphy (Bernstein et al. 1999, Bergman et al. 2000). 

The data presently available on the role of SERMs in vasculoprotection are promising. 

Tamoxifen and raloxifene have been reported to have beneficial effects on lipids (Walsh et al. 

1998, Wenger and Grady 1999, De Leo et al. 2001), to reduce markers of cardiovascular risk 

(Love et al. 1994, Walsh et al. 1998), and to be associated with lower rates of cardiovascular 

events in humans (McDonald et al. 1995, Barrett-Connor et al. 2002). Both are also favourable 

in lipid-induced experimental atherosclerosis (Bjarnason et al. 1997, Reckless et al. 1997, 

Williams et al. 1997), although contradictory results also exist (Clarkson et al. 1998, Castelo-

Branco et al. 2004). Although ospemifene has a cholesterol-lowering effect in the rat (Qu et al. 

2000), it showed a neutral effect on vascular markers in a recent clinical study (Ylikorkala et 

al. 2003). Only some data are available on the effects of SERMs on restenosis: raloxifene and 

idoxifene inhibited neointima formation in the rat (Kauffman et al. 2000, Yue et al. 2000).  
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Figure 7. Molecular structures of tamoxifen (left), raloxifene (middle), and ospemifene (right). 

3.10. Phytoestrogens 

Phytoestrogens are a large family of plant-derived molecules possessing various degrees of 

estrogenic activity. They are present in many food products, such as soy and rye, as well as in 

many food supplements. Phytoestrogens are traditionally divided into three main groups, 

namely isoflavones, lignans, and cumestans, of which isoflavones comprise the most common 

group (Albertazzi and Purdie 2002). The two major isoflavones are genistein and daizein, and 
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their major natural sources are soy and red clover (Eldridge and Kwolek 1983). 

Epidemiological studies suggest that phytoestrogen-rich diet is associated with reduced 

incidence of breast and prostate cancer, cardiovascular disease, osteoporosis, and climacteric 

symptoms (Setchell et al. 1984, Adlercreutz et al. 1991, Somekawa et al. 2001). 

Phytoestrogens’ cardiovascular benefits have been shown in several studies, where they have 

improved plasma lipid levels (Anderson et al. 1995, Anthony et al. 1996, Baum et al. 1998), 

vascular reactivity, and arterial compliance (Honore et al. 1997, Nestel et al. 1997, Figtree et 

al. 2000), and had antioxidant effects (Tikkanen et al. 1998, Deodato et al. 1999, Jenkins et al. 

2000), as well as reduced experimental atherosclerosis (Yamakoshi et al. 2000, Alexandersen 

et al. 2001, Clarkson et al. 2001).   

Phytoestrogens bind to the ERs, and as with SERMs, the conformational change of the 

receptor, and especially the position of helix 12 of the LBD, differs depending on the type of 

ligand that binds to the receptor (Pike et al. 1999). Thus, these compounds could also be called 

‘phytoSERMs’. Genistein (Fig. 8) has approximately 20 times higher binding affinity for ERβ 

than ERα (Kuiper et al. 1997). In micromolar concentrations, genistein also inhibits several 

enzymes, such as tyrosine kinase, which may contribute to its effects, particularly its 

antiproliferative actions, in high doses (Akiyama et al. 1987). 

 

Figure 8. Molecular structure of genistein. 
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AIMS OF THE STUDY 

This study was based on the observation that there are two estrogen receptors that differ in 

their tissue distribution and regulation of gene transcription, which might explain why 

estrogen can, at the same time, induce proliferation in the reproductive system while being 

antiproliferative in the cardiovascular system. Data on the expression and regulation of the two 

ERs in different vasculopathies, and the identification of potential mechanisms behind 

estrogen’s vasculoprotective action, could enable the development of tissue-selective 

estrogens for the prevention of restenosis and allograft arteriosclerosis.  

The specific aims were: 

1. To investigate the expression and regulation of ERα and ERβ in response to vascular injury 

using rat carotid denudation and cardiac transplantation models. 

2. To try to differentiate between estrogen’s beneficial vasculoprotective properties and its 

harmful side-effects with selective targeting of ERβ. 

3. To compare and correlate the vasculoprotective properties of four different SERMs with 

natural estrogen in vitro and in vivo, concentrating particularly on SMC biology. 

4. To investigate the interactions between natural estrogen and peptide growth factors in 

estrogen's 
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METHODS 

1. Rat models for restenosis and allograft arteriosclerosis 

Experimental animals. Female or male Wistar rats and specific pathogen-free inbred male 

DA (AG-B4, RT1a) and WF (AG-B2, RT1u) rats, purchased from the Laboratory Animal 

Center, University of Helsinki, Helsinki, Finland (I, II, IV) or from Harlan, Holland (III) were 

used for denudation and transplantation studies, respectively. All animals received humane 

care in compliance with the Guide for the Care and Use of Laboratory Animals published by 

the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). The 

investigation was approved by the Haartman Institute Ethical Committee for Animal Studies, 

and the permission to perform the experiments was granted by the Government of the County 

of Southern Finland. The rats that received estrogenic drugs were placed on a soy-free diet 

(Special Diet Services, Essex, UK) seven days before operation (I, III, IV); in experiment II, 

the rats received the basic diet (Altromin, Standard Diet, Chr. Petersen A/S, Ringsted, 

Denmark). Tap water was given ad libitum. The rats were anesthesized with chloralhydrate, 

240 mg/kg i.p., and 0.25 mg/kg s.c. buprenorphine (Temgesic, Reckitt & Colman, Hull, UK) 

was used for peri- and post-operative pain relief. 

Rat carotid and aortic denudation. Female rats were ovariectomized through abdominal 

incision seven days before denudation to restrain physiological estradiol production. The left 

common carotid artery (I) or the thoracic aorta (III, IV) was denuded of endothelium by an 

intraluminal passage of a 2 French (2F) Fogarty arterial embolectomy catheter (Baxter 

Healthcare Corporation, Santa Ana, CA), which was introduced through the external carotid 

artery or the left iliac artery, respectively. The balloon was inflated with 0.2 ml of air and 

passed three times in the carotid artery or five times in the thoracic aorta. Thereafter, the 

external carotid artery, or iliac artery, was ligated and the wound was closed. At sacrifice, the 

artery was removed, a middle section was processed for histology, and the rest was snap-

frozen in liquid nitrogen and stored at -70°C until used. In female rats, the uterus was also 

removed, weighed, and processed for histology. 

Rat cardiac transplantation. Intra-abdominal heterotopic rat cardiac allografts were 

transplanted using a microsurgical technigue modified from Ono and Lindsey (Ono and 

Lindsey 1969). Syngeneic transplantations were performed from DA to DA rats and 
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allogeneic transplants from DA to WF rats. Ice-cold heparin-PBS was perfused through the 

vena cava inferior of the donor, and thereafter, caval vessels and pulmonary veins were 

ligated, and aorta and pulmonary artery were cut 3-5 mm above their origin. Donor heart was 

preserved in ice-cold PBS for 15 min. Then, donor heart aorta and pulmonary vein were 

anastomosed to recipient abdominal aorta and inferior vena cava between renal vessels and 

aorta bifurcation using 9-0 nylon suture. Total ischemic time was 45±15 min, during which the 

donor heart was cooled with cold PBS gauze. The grafts started beating vigorously after 

circulation into the graft was established. The function of the graft was evaluated by 

abdominal palpation and all the grafts were beating at removal.  

2. Drug regimens 

Cyclosporine A (CsA) was used for base immunosuppression of allogeneic transplants. Fifty 

mg/ml of CsA infusion substance (Sandimmun; Sandoz Pharma AG, Basel, Switzerland) was 

dissolved in 200 mg/ml Intralipid (KabiVitrum, Stockholm, Sweden) to a final concentration 

of 1.0 mg/ml. Cyclosporine was administered daily s.c., 2 mg/kg/d for the first seven days and 

then 1 mg/kg/d. Whole blood CsA 24-hour trough levels were measured weekly with 

radioimmunoassay (Sandimmun-Kit; Novartis, Basel, Switzerland). 

17β-estradiol (E2; Sigma, St Louis, MO) was dissolved in dimethyl sulphoxide (DMSO; 

Sigma) and 0.9% NaCl (Baxter, Vantaa, Finland), and administered s.c. using the following 

doses: 0.0025, 0.025, 0.25, and 2.5 mg/kg/d, in one injection per day. For long-term follow-up, 

a dose of 2.5 mg/kg/d was chosen, based on the dose responses. The treatment was initiated at 

the time of operation. Thereafter, the animals were weighed daily, and the dose was adjusted 

according to weight changes. Control animals received an equal volume of vehicle (DMSO, 

0.9% NaCl, 1:1). Serum 17β-estradiol levels were measured with competitive 

radioimmunoassay (RIA) at the Laboratory of the Department of Obstetrics and Gynecology, 

Helsinki University Central Hospital, Helsinki, Finland. For in vitro studies, a 50 mM stock 

solution was prepared in DMSO and this stock solution was diluted in cell culture medium and 

used for the experiments at concentrations of 0.0006-50 M. The concentration of DMSO in 

all in vitro experiments remained below 0.1%. 

Genistein was generously provided by Dr. William Helferich (Michigan State University, 

East Lansing, MI) or purchased from Plantech (York, UK). It was dissolved in DMSO and 
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0.9% NaCl, and administered s.c. using the same doses as with E2. Genistein was also used 

for in vitro experiments and the solutions were prepared similar to E2. 

SERMs. Tamoxifen (Sigma), raloxifene (Evista; Eli Lilly, Houten, The Netherlands), 

ospemifene (Hormos Medical Corporation, Turku, Finland), and fispemifene (Hormos 

Medical) were all dissolved in DMSO and 0.9% NaCl. The drugs were administered s.c. as a 

single daily injection with the following doses: 0.0025, 0.025, 0.25, 2.5, and 25 mg/kg/d. For 

long-term follow-up a dose of 2.5 mg/kg/d was used. The treatment was initiated at the time of 

operation. The animals were weighed daily, and the dose was adjusted according to changes in 

weight. Control animals received an equal volume of vehicle (DMSO, 0.9% NaCl, 1:1). 

Solutions for in vitro experiments were prepared as with E2.  

ICI 182,780 (Faslodex; kindly provided by Tuula Ikonen, Zeneca Pharmaceuticals, Helsinki, 

Finland), a pure anti-estrogen, was dissolved in DMSO and 0.9% NaCl and administered s.c. 

as a single daily injection with the following doses: 0.0025, 0.025, 0.25, and 2.5 mg/kg/d. For 

long-term follow-up a dose of 2.5 mg/kg/d was used. Solutions for in vitro experiments were 

prepared as described above. The relative binding affinities (RBA) of all the compounds used 

in the study are given in Table 4. 

Table 4. Relative binding affinities (RBA) of the different compounds to ERα and ERβ β  

Drug RBA References 
 ERα ERβ  
    
17β-estradiol 100 100 Kuiper et al. 1998 
Genistein 4 87 Kuiper et al. 1998 
Raloxifene 69 16 Kuiper et al. 1998 
Tamoxifen 4 3 Kuiper et al. 1998 
Fispemifene 1.1 0.55 Lauri Kangas, personal communication 
Ospemifene 0.82 0.59 Qu et al. 2000 
ICI 182,780 89 166 Wakeling et al. 1991, Kuiper et al. 1997 
    
 

3. Quantitative RT-PCR 

Total RNA isolation. Total RNA was isolated from snap-frozen E2- or vehicle-treated aorta 

specimens by the guanidium isothiocyanate method (Chomczynski and Sacchi 1987). After 

isolation and purification, RNA concentrations were measured by a spectrophotometer and the 

quality of RNA was confirmed by electrophoresis through 1% agarose gel. 
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Quantitative RT-PCR. Total RNA was isolated as described above. Six serial dilutions were 

made with an appropriate amount of total RNA from each group, mixed with either 106 or 107 

molecules of synthetic template RNA containing a 46-nucleotide insert and reverse transcribed 

to cDNA in a mixture containing 1x RT buffer (Promega, Madison, WI), 300 mM dNTP 

(GeneAmp; Perkin Elmer, Foster City, CA), 10 pmol of antisense primer (IGF-1, 

TCTGTAGGTCTTGTTTCCTGCA; IGF-1R, GACGGACTACTACCGGAAAGG; PDGF-A, 

ATGTCACACGCCACGTACAT; PDGF-Rα, CACACTGAAGGTTCCGTTGAAG; PDGF-

B, CACTACTGTCTCACACTTGCAGG; PDGF-Rβ, TCATAGGGTACATGTAGGGGG 

AT), 20 U RNasin (RNasin Ribonuclease Inhibitor; Promega), and 100 U of reverse 

transcriptase (M-MLV-RTase Reverese Transcriptase, RNase H Minus; Promega) at +37°C 

for 90 minutes. Two ml of cDNA mixture was supplemented with 10x PCR buffer (GeneAmp, 

Perkin Elmer), radioactive tracer, 10 pmol of antisense primer, 10 pmol of sense primer (IGF-

1, GGAAAATCAGCAGTCTTCCAAC; IGF-1R, TTCCGATGATCTCCAGGAAG; PDGF-

A, GACAAACCTGAGAGCCCATG; PDGF-Rα, GAGAAGATTGTGCCGCTGAGT; 

PDGF-B, CTGAGCTGGACTTGAACATGAC; PDGF-Rβ, TCGTCCTCAACATTT 

CGAGC), and 2.5 U of Taq polymerase. The samples were heated to +95°C for 5 minutes and 

cycled 40 times (+94°C for 30 seconds, +60°C for 30 seconds, and +72°C for 1 minute). The 

samples were electrophoresed through 2% agarose gel and incorporated radioactivity was 

quantitated. Accession numbers are given in the original publication (IV). 

4. In situ hybridization 

Probe Preparation. The complementary RNA probes were synthesized according to the 

Manufacturer’s (Promega) directions in the presence of 35S-UTP (Amersham Pharmacia) by 

using the following cDNA fragments as templates. A 400-bp fragment (from the 5’ 

untranslated region, starting nucleotide sequence GAATTC, ending nucleotide sequence 

CTACGT) of rat ERβ cDNA and a 200-bp fragment (from the 3’ untranslated region, F-

domain region, starting nucleotide sequence ATGGGA, ending nucleotide sequence 

TAGCAG) of the rat ERα cDNA were subcloned to pBluescript II KS (+) (Stratagene, La 

Jolla, CA) vector and used for the production of corresponding antisense and sense cRNA 

probes. RNA probes transcribed from opposite strands of the same plasmid template were 

adjusted to the same specific radioactivity.  
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In situ hybridisation. Rat carotid arteries and heart grafts were removed at different time 

points post operation, fixed in 3% paraformaldehyde solution for 4 hours, transferred to saline, 

and processed for paraffin embedding. Human heart allograft endomyocardial biopsies came 

from the pathology files of the Transplantation Laboratory, and the permit to use the biopsies 

in this study was granted by the Helsinki University Central Hospital Ethical Committee. 

Uterus and bladder specimens were chosen for control tissues, as uterus is known to express 

predominantly ERα and bladder ERβ (Kuiper et al. 1997).  

Serial sections of the different specimens were made under RNase free conditions. To ensure 

that the different specimens were comparable, sections from each group and the control tissues 

were placed on the same silanized microscopy slide and hybridized in identical conditions, 

either for ERα or ERβ. After deparaffinization and rehydration, the sections were denatured in 

0.2 M HCl, heat-denatured in 2x standard saline citrate (SSC) at +70°C, and treated with 

proteinase K (1 g/ml). The sections were then post-fixed with 4% paraformaldehyde, 

acetylated with 0.25% acetic anhydride in 0.1 M triethanolamine, and dehydrated and air-

dried. The slides were hybridised with antisense and sense RNA probes at +60°C overnight, 

washed in 4x SSC, treated with RNase A (20 g/ml), and washed sequentially in SSC 

solutions with 1 mM DTT. Finally, the slides were rinsed in 0.1x SSC with 1 mM DTT, 

dehydrated in graded ethanols, and air-dried. Then, the slides were dipped into 

autoradiography emulsion (NBT-3; Eastman Kodak, Rochester, NY), exposed for 7-14 days, 

and developed, counterstained, dehydrated, and mounted with Permount. The number of 

grains was calculated from three randomly-selected areas per slide using 100x objective and 

oil immersion technique. 

5. Western blotting 

Snap-frozen aortas were crushed and homogenized with Ultra-Turrax (Janke & Kunkel, 

Staufen, Germany) in 1 ml of buffer (50 mmol/L Tris-HCl pH 7.5, 150 mmol/L NaCl, 1 

mmol/L EDTA, 50 mmol/L NaF). The homogenate was supplemented with 1% Triton X-100, 

2 mmol/L PMSF, 100 units of aprotinin, and 10 mmol/L benzamidine, and after incubation at 

+4°C for 1 hour, the lysate was clarified by centrifugation. The supernatant was split and 

incubated with 10 µl of appropriate rabbit polyclonal antibodies for IGF-1, IGF-1R, PDGF-

AA, PDGF-Rα, PDGF-BB, and PDGF-Rβ, and further with 50 µl of Protein A sepharose 

suspension in lysis buffer (+4°C, 1 hr). Captured immunocomplexes were washed and 
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separated using standard SDS-PAGE (15% polyacrylamide for receptors and 5% for ligands). 

The gel was transferred to a nitrocellulose membrane and blocked with 20 mmol/L NaH2PO4, 

80 mmol/L Na2HPO4, 100 mmol/L NaCl, 0.1% Tween-20, and 5% skimmed milk powder 

(+4°C, overnight). Then, the membrane was incubated with corresponding antibodies (Santa 

Cruz Biotechnology) in blocking buffer (RT, 1 hr). After washing in blocking buffer (without 

5% skimmed milk powder; RT, 30 min), the membrane was incubated with secondary 

antibodies (RT, 1 hr), washed again and treated with ECL (Amersham International Plc., Little 

Chalfont, England). The signal was visualized by exposure to Kodak X-OMAT-AR film. 

Signal intensity was measured with Macintosh NIH image software (National Technical 

Information Service, Springfield, VI). Details for the antibodies are given in the original 

publication (IV). 

6. Histological and immunohistological evaluation 

Morphometry. For evaluation of vascular morphological changes, carotid and aortic 

specimens were fixed in 3% paraformaldehyde (pH 7.4) solution for 4 hours, transferred to 

saline, and processed for paraffin embedding. Two m thick cross sections were made and 

stained with Mayer’s hematoxylin and eosin. The absolute number of cells in the intimal, 

medial, and adventitial layers was calculated from paraffin cross sections using 400x 

magnification. Intimal (inside lamina elastica interna) and medial areas (between lamina 

elastica interna and lamina elastica externa) and vessel lumen were quantitated with 

Macintosh NIH image software and the intimal/medial area ratio was calculated from these 

values. For uterus histology, the specimens were processed as above, and specimens from 

vehicle-treated rats were compared blind to specimens from rats that were treated with the 

different drugs for 7 or 28 days. 

Quantitation of cell proliferation in vivo. Proliferating cells were labeled with intravenous 

injection of 300 l of 5-bromo-2'-deoxyuridine (BrdU; Pharmacy of Helsinki University 

Central Hospital, Helsinki, Finland), 3 hours before sacrifice. Incorporation of the labeling 

reagent was visualized by immunohistochemical staining of paraffin cross sections, using a 

commercial immunoperoxidase method (Vectastain Elite ABC kit; Vector Laboratories, 

Burlingame, CA) as described below. Finally, the absolute number of positively-stained nuclei 

was counted microscopically using 400x magnification. 
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Immunohistochemistry. Serial frozen sections or cultured rat SMC were air-dried on silane 

coated slides, fixed in acetone at -20°C for 20 min, and stored at -20°C until used. Before 

immunostaining, the slides were refixed with chloroform and air-dried. Sections from 

paraformaldehyde-fixed paraffin-embedded specimens were deparaffinized before staining. In 

case of polyclonal primary antibodies, the sections were sequentially incubated with 1.5% 

normal goat serum (Vector Laboratories), primary antibody (+4°C, overnight), biotinylated 

goat anti-rabbit antibody, avidin-peroxidase complex (Vectastain Elite ABC Kit; Vector 

Laboratories), 0.1% hydrogen peroxide, and 3-amino-9-ethylcarbazole (AEC; Sigma), with 

intervening washes with Tris-buffered saline. Finally, the slides were counterstained with 

hematoxylin and coverslips were mounted. With monoclonal primary antibodies, the slides 

were incubated with 1.5% normal horse serum (Vector Laboratories) and a mouse monoclonal 

primary antibody (+4°C, overnight). The subsequent steps were performed as above, except 

that biotinylated horse anti-mouse secondary antibody was used. With IGF-1 and IGF-1R 

antibodies, the sections were first incubated with 5% normal horse serum (Vector 

Laboratories) and thereafter with a primary antibody (+4°C, overnight), secondary antibody, 

avidin-alkaline phosphatase complex (Vectastain ABC-AP Kit; Vector Laboratories), and 

alkaline phosphatase substrate (Vector Red Alkaline Phosphatase Substrate Kit I; Vector 

Laboratories). The antibodies used are presented in Table 5.  

To establish the specificity of the ER antibodies to rat and human ER subtypes, their reactivity 

to rat and human uterus and bladder were investigated. Additional controls for polyclonal 

primary antibody staining were performed using 10- to 20-fold molar excess of neutralizing 

synthetic peptides to the corresponding antibodies, and by omitting the primary antibody.  

Monoclonal primary antibody stainings were controlled by replacing the primary antibody 

with irrelevant antibody (clone DAK-GO1; DAKO). None of the control stainings showed any 

immunoreactivity. 
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Table 5. Antibodies used for immunohistochemistry 

Species Specificity Clone/code Antigen Source Dilution 
      

BrdU M 0744 Bromodeoxyuridine conjugated 
to bovine serum albumin 

DAKO, Glostrup, 
Denmark 

1:20 

ERα M 7047 Recombinant human ER protein     DAKO 1:50 

Mouse,
mono-
clonal 

 NCL-ER-6F11 Recombinant full-length human 
ERα protein 

Novocastra, Newcastle 
upon Tyne, UK 

1:40 

Rabbit, 
poly-
clonal 

ERβ PAI-310 A synthetic peptide corresponding 
to the C-terminal amino acid 
residues 467-486 of rat ERβ 

Affinity Bioreagents, 
Golden, CO 

1:200 

  PAI-311 A synthetic peptide corresponding 
to the N-terminal amino acid 
residues 55-70 of rat/mouse ERβ 

Affinity Bioreagents 1:600 

 IGF-1 AFP4892898 Human IGF-1 protein National Institute of 
Digestive and Kidney 
Diseases, Bethesda, MD 

1:2000 

 IGF-1R sc-712 A synthetic peptide corresponding 
to the N-terminal amino acid 
residues 31-50 of human IGF-1R 

Santa Cruz 
Biotechnology,       
Santa Cruz, CA 

1:200 

 PDGF-AA ZP-214 Purified recombinant human 
PDGF-AA protein 

Genzyme,      
Cambridge, MA 

1:100 

 PDGF-Rα sc-338 A synthetic peptide corresponding 
to the C-terminal amino acid 
residues of human PDGF-Rα 

Santa Cruz 
Biotechnology 

1:100 

 PDGF-BB ZP-215 Purified recombinant human 
PDGF-BB protein 

Genzyme 1:100 

 PDGF-Rβ sc-339 A synthetic peptide corresponding 
to the C-terminal amino acid 
residues of human PDGF-Rβ 

Santa Cruz 
Biotechnology 

1:100 

 Factor VIII A0082 Von Willebrand Factor isolated 
from human plasma 

DAKO 1:200 

      
 

ERα and ERβ stainings were evaluated semiquantitatively by two different methods; 

separately from the intimal, medial, and adventitial layers of the vessels, or from the arteries, 

veins, myocardium, and inflammatory cells of the cardiac allografts. The intensity of staining 

was graded as follows: 0/- = no visible staining; + = weak staining; ++ = moderate staining; 

+++ = intense staining. The frequency of positive cells was expressed as the fraction of 

positively stained cells out of total: 0 = 0-10%; 1 = 15-35%; 2 = 40-60%; 3  65%. Growth 

factor immunostaining was graded separately from intimal, medial, and adventitial layers of 

the aorta as follows: - = no visible staining; (+) = few cells with very faint staining; + = some 

cells with weak staining; ++ = moderate staining with multifocal expression; +++ = intense 

staining throughout the vessel compartment. With BrdU and factor VIII, the results were 

expressed as positive cells per cross section. All gradings were made blinded of the type of 

specimens. 
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7. Cell culture studies 

Rat primary smooth muscle cell cultures. Primary vascular SMC were isolated from 9 to 

11-day old DA (AG-B4, RT1a) rat aortas using a method modified from Thyberg et al. 

(Thyberg et al. 1983). The aortas were opened longitudinally and the endothelial layer was 

scraped off. Then, the adventitia and media were separated, and the medial layer was digested 

with 0.1% collagenase and DNAse in PBS at +37ºC for 30 minutes. The cells were 

centrifuged, suspended in culture medium, and thereafter, allowed to attach to plastic flasks. 

Primary cells were used at passages 10-15 for the experiments. For identification, the cells 

were grown until 70% confluency on glass slides, serum-starved for 24 hours and then 

stimulated with 10% FCS or left unstimulated for another 24 hours. All cells expressed SMC 

α-actin, and furthermore, 80% of the serum-starved and FCS-stimulated SMC expressed ERβ 

while only 1% of the serum-starved and none of the FCS-stimulated SMC expressed ERα.  

The cells were subcultured in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco, Paisley, 

Scotland) supplemented with 10% fetal calf serum (FCS), 2 mM glutamine, 100 IU/ml 

penicillin, and 100 µg/ml streptomycin. The medium for experiments with estrogenic 

compounds consisted of DMEM without phenol red (BioWhittaker, Cambrex Bioproducts, 

Verviers, Belgium) and 5% Dextran charcoal-treated Fetal Bovine Serum (DCC-FBS; 

HyClone, Logan, UT), to exclude the estrogenic effects of phenol red in the medium or 

endogenous estrogens in the serum. In vitro studies were done in triplicate and repeated three 

times. 

3H-TdR-incorporation. The cells were seeded on 96-well plates (5,000 cells/well) in DMEM 

supplemented with 5% FCS. The next day the growth medium was changed to serum-free and 

phenol red-free medium containing 0.5% bovine serum albumin (BSA). Following 48-hour 

serum starvation, proliferation was induced with either with PDGF-B (20 ng/ml, Upstate 

Biotechnology, Lake Placid, NY) or 5% DCC-FBS, and simultaneously, the serially-diluted 

drugs and 3H-TdR (Amersham Pharmacia, Amersham, UK) were added to the wells, and 

incubation was continued for 24 or 48 hours. The amount of incorporated, radioactively 

labeled thymidine to the DNA, which corresponds to the amount of DNA synthesis in each 

well, was measured using 10% trichloroacetic (TCA) precipitation and counted separately 

from each well using a liquid scintillation counter (RackBeta; Wallac, Turku, Finland). 
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Smooth muscle cell migration. SMC migration was quantitated using Transwell culture 

chambers (Costar, Cambridge, MA) where the upper and lower culture chambers are separated 

by a polycarbonate filter with 8-m pores. The chambers were first coated with collagen (20 

g/ml; Rat Tail Collagen, Type 1; Upstate Biotechnology, Lake Placid, NY) at +4ºC for 24 

hours. Primary rat aortic SMC (50,000 cells/chamber) were seeded in the upper chamber in 

phenol red-free DMEM containing 0.5 % BSA, and PDGF (60 ng/ml) was added to the lower 

chamber, and the cells were allowed to adhere to the filter for 60 minutes. The serially-diluted 

drugs were added to the upper chamber, and after 24-hour incubation at +37ºC, the filters were 

removed, fixed with methanol, and stained with hematoxylin. The cells that had migrated on 

the lower side of the filter were quantitated by counting specific cross-sectional fields with a 

light microscope using 400x magnification.  

8. Tissue culture studies 

Aortic explant culture. Aortic explants were prepared from ovariectomized female Wistar 

rats that were denuded of endothelium on day –2. The rats were treated with the compounds at 

the dose of 2.5 mg/kg/d s.c. prior to sacrifice.  Experiment media consisted of phenol red-free 

DMEM supplemented with 10 % DCC-FBS. At sacrifice, a small proximal part of each aorta 

was prepared for histology and vessel morphology was determined as described above. The 

rest of the aortas, including all layers of the vessel, were opened longitudinally and explants 

measuring 1x1 mm were prepared using a McIlwain tissue chopper (Mickle Laboratory 

Engineering, Surrey, England). The explants were placed individually into the wells of a flat-

bottomed 96-well plate (Nunc, Roskilde, Denmark) with 20 µl basal medium to keep the 

explants damp. Thereafter, they were allowed to adhere to the tissue culture plates in a +37˚C 

incubator for 2 hours. Two hundred µl of experiment medium with serially-diluted drugs was 

then added to each well. 

Quantitation of explant outgrowth. Each well was observed after 24 and 48 hours of culture 

and counted as positive for "sprouting" if one or more cells had grown out of the explants. The 

distance that the leading edge of migrating cells in each well had travelled from the explant 

was measured using a calibrated graticule (Olympus, Tokyo, Japan). To quantitate 

proliferating cells, the explants were pulsed with 3H-TdR on day 0. On day 2 the outgrowing 

cells were detached from the wells with trypsin and the explants were digested with pepsin 

(Merck, Darmstadt, Germany) at +37˚C for 50 minutes. Then, the content of each well was 
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harvested with a Dynatech Harvester (Dynatech Labs, Sussex, UK) and mixed with OptiScint 

Hisafe (LKB-Wallac, Turku, Finland). Radioactivity was measured with a Rackbeta liquid 

scintillation counter. 

9. Statistical analysis 

All data are given as mean ± SEM. Significance of the observed differences between different 

groups was tested either with one-way ANOVA followed by Fisher’s PLSD test, or in the case 

of unequal variances or only two groups, with Student’s unpaired t test. Prior to these tests, 

normal distribution of the data was tested. In addition, linear regression analysis, preceded by 

logarithmic transformation, was used for dose-response analyses. All analyses were performed 

using Statview 4.1 software (Abacus Concepts, Berkeley, CA). Values of p<0.05 were 

regarded as statistically significant. 



50   

RESULTS 

1. Estrogenic effects in the rat carotid and aorta denudation injury models (I, III-IV) 

Mechanical injury was inflicted to rat carotid artery or aorta with a balloon catheter, which 

resulted in complete loss of the luminal endothelium.  The first cells appeared in the intima 

after day 3. Proliferation peaked in the media at 3 days and in the intima at 7 days, and this 

was followed by a rapid increase in the number of intimal nuclei and intimal area within 7 to 

14 days post-operation. Thereafter, intimal growth subsided and further increase was small. 

The number of medial nuclei remained unaltered throughout the time interval investigated.  

Although estrogen’s vasculoprotective properties on the injury response have been previously 

demonstrated in the rodents (Foegh et al. 1994, Sullivan et al. 1995, Chen et al. 1996), no 

comprehensive dose-response studies exist, which is why those were performed first. Effective 

therapeutic doses for long-term follow-up were chosen based on the dose-responses. On day 7, 

estradiol treatment dose-dependently reduced the number of intimal nuclei in both the carotid 

artery (r=0.864) and aorta (r=0.693). With the highest dose (2.5 mg/kg/d, s.c.) the intimal 

nuclei number remained at the level of normal artery.  

Figure 9. Effects of 17β-estradiol (E2) treatment (2.5 
mg/kg/d) on the ovariectomized female rat aorta at 0, 7, 
14, and 28 days after denudation injury are presented in 
the upper figure. Mean number of nuclei in the vessel 
intima in the vehicle (closed circle) and E2 (open circle) 
groups, and mean number of proliferating (BrdU-
positive) nuclei in the vehicle (closed triangle) and E2 
(open triangle) groups are shown, n=6-10. The grey 
rectangle represents the number of nuclei (endothelial 
cells) in a normal female rat aorta. 

Representative microphotographs of vehicle (left) and 
E2-treated (right) female rat aorta at 28 days after 
denudation injury are presented in the lower figure. The 
arrows indicate lamina elastica internae. Lumen facing 
up, x400.      
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Long-term treatment up to 28 days (2.5 mg/kg/d) resulted in approximately 30%-50% 

reduction in the number of intimal nuclei (Fig. 9) and intimal area of the aorta, and 50%-70% 

reduction in the number of proliferating (BrdU-incorporating) nuclei (Fig. 9). Concomitantly, 

a 4-fold increase in reendothelialization was observed. Serum estradiol levels with the highest 

dose (2.5 mg/kg/d) were approximately 10 times higher than the levels in a normal woman and 

100 times higher than in a normal female rat. 

Treatment of male rats with 0.25 mg/kg/d of E2, s.c., resulted in significant inhibition in the 

number of intimal nuclei, intimal area, and proliferating nuclei on day 7, and the changes were 

comparable to those observed in female rats. 

2. Estrogen receptor expression in the rat vascular wall after endothelial injury (I) 

The expression and localization of ERα and ERβ mRNA in male rat carotid artery at different 

time points after endothelial denudation injury were investigated by in situ hybridisation (Fig. 

10). Both ERα and ERβ transcripts were expressed at low levels in the normal carotid artery. 

ERβ was upregulated markedly in the media, and especially in the neointima, within 3 to 28 

days post-injury, peaking on day 7, while expression of ERα remained unchanged.  

 

Figure 10. Expression of ERα (open circle) and ERβ (closed circle) mRNA in male rat carotid artery at different 
time points after denudation injury determined by in situ hybridisation. Data are given as mean±SEM, n=3 and 
three countings per section.   
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In situ hybridisation and immunohistochemistry demonstrated that ERβ mRNA and protein 

were colocalized with the SMCs in the media and neointima, over 90% of which were positive 

for α-actin. 

3. Estrogen receptor expression in rat and human cardiac allografts (II) 

The localization and intensity of the expression of ERα and ERβ mRNA and protein were 

investigated by in situ hybridisation and immunohistochemistry in rat male-to-male cardiac 

allografts and human male-to-male heart allograft endomyocardial biopsies with various 

degrees of acute or chronic rejection.  

 
Almost no ER mRNA was seen in the normal (non-transplanted) DA rat heart arteries, veins, 

heart muscle, or inflammatory cells; however, ERβ protein was present. ERβ mRNA and 

protein were prominently expressed in the rat allogeneic (under rejection) and syngeneic graft 

(subject to reperfusion injury) vessels and stroma, whereas ERα mRNA and protein were 

present in small amounts only. The vessels, stroma, and inflammatory cells in human 

endomyocardial biopsies stained positively for ERβ protein, whereas some ERα was seen only 

in the myocardium and inflammatory cells. When correlated to the expression levels of ERs in 

uterus and bladder, the former of which expresses mainly ERα and the latter ERβ (Kuiper et 

al. 1997), it was observed that the expression of ERβ in the grafts was close to its expression 

levels in bladder epithelium, whereas the expression of ERα was – even at its highest - only 

30%-50% of the levels in uterine endometrium. Interestingly, the expression of ERβ in the 

grafts showed only a weak correlation with the intensity of rejection. 

4. Differentiation between estrogen’s vasculoprotective and uterotrophic effects (Ι)(Ι) 

To investigate if estrogen’s vasculoprotective properties could be differentiated from its 

gender-related effects, we compared the effects of 17β-estradiol (which binds both ERs with 

high affinity) and the phytoestrogen genistein (which binds ERβ 20 times stronger than ERα) 

on neointimal thickening and uterine growth following carotid artery denudation injury in 

ovariectomized female Wistar rats. To exclude the effect of food-derived (phyto)estrogens, the 

rats were placed on soy-free diet at the time of ovariectomy.  
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Both E2 (r2=0.746) and genistein (r2=0.946, p=0.5 as compared to E2) had a dose-dependent 

inhibitory effect on the number of intimal nuclei within the dose range from 0.0025 to 2.5 

mg/kg/d. Moreover, both compounds similarly reduced the number of replicating (BrdU-

incorporating) nuclei in the neointima. In vitro, in the supraphysiological dose range, both 

compounds equally inhibited the PDGF-induced 3H-TdR-incorporation (DNA synthesis) and 

migration of cultured rat vascular SMC.  

However, only E2 (r2=0.954) dose-dependently increased the weight of the uterus and induced 

typical estrogen-related morphological changes, such as hyperplastic endometrium, stromal 

thickening, and mild stromal inflammation, while genistein had no effect (r2=0.096, p=0.0003 

as compared to E2).  

5. SERMs’ vasculoprotective properties in the injured rat vascular wall (III) 

All SERMs studied, as well as the pure anti-estrogen ICI 182,780, dose-dependently (from 

0.0025 to 25 mg/kg/d s.c.) inhibited the number of intimal nuclei at 7 days after aorta 

denudation injury in ovariectomized female rats. Tamoxifen, raloxifene, and ICI 182,780 also 

reduced SMC proliferation (the number of BrdU-incorporating nuclei) in the intimal layer, 

similarly to E2. When treated with the most effective dose (2.5. mg/kg/d) for 28 days, only 

tamoxifen and ospemifene reduced the number of intimal nuclei and intimal area, and the 

effect was comparable to E2. Tamoxifen (p=0.0002), raloxifene (p=0.03), ospemifene 

(p=0.04), and fispemifene (p=0.0006) (2 to 3-fold), but not ICI 182,780, significantly 

enhanced reendothelialization at 28 days post-injury. 

In order to study the reversibility of the vasculoprotective effect, additional groups of rats 

were treated with the compounds for 14 days, whereafter the compounds were replaced with 

vehicle for another 14 days. No rebound effect was observed with E2, tamoxifen, or 

ospemifene, and furthermore, a smaller neointima size than with continuous treatment was 

achieved with raloxifene, fispemifene, and ICI 182,780. Interestingly, with RA the number of 

factor VIII-expressing (endothelial) cells in the luminal side of the artery doubled after 

discontinuation of the treatment. 
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Finally, only E2 dose-dependently increased the weight of the uterus and induced typical 

estrogen-related morphological changes, while only weak (tamoxifen, ospemifene, 

fispemifene) or no (raloxifene, ICI 182,780) such effect was observed with the SERMs. 

6. Estrogenic effects in the rat vascular SMC and aortic explant cultures (I, III) 

Estradiol inhibited DNA synthesis (3H-TdR incorporation) of cultured rat primary SMC. The 

inhibitory effect was weak or neutral in the physiological dose range and became significant 

only at micromolar concentrations. Estradiol also had a dose-dependent inhibitory effect on 

the PDGF-induced migration of SMC at concentrations above 10-8 M. All SERMs had 

estrogenic effects on SMC DNA synthesis and, overall, their antimitogenic effects were 

superior to estrogen. All compounds, excluding fispemifene, inhibited SMC migration as well. 

In the aortic explants, estradiol reduced 3H-TdR incorporation and migration of SMC already 

at nanomolar concentrations. All SERMs were anti-mitogenic, and all but fispemifene were 

also anti-migratory. Interestingly, the pure antiestrogen ICI had opposite effects in the SMC 

and explant cultures: it was antimitogenic to SMC but had neutral effects on the explant 

cultures. 

7. Regulation of growth factor expression in the rat vascular wall by estrogen (IV) 

Growth factor mRNA and protein expression and localization in the denuded male rat aorta 

were investigated at 15 min, 3, and 7 days post-injury. Quantitative RT-PCR and Western 

blotting showed significant upregulation of IGF-1, PDGF-Rα, and PDGF-B mRNA and 

protein after injury, concomitantly with the increase in proliferative SMC in the developing 

neointima. Administration of estradiol completely abolished IGF-1 mRNA and protein 

expression whereas it had no effect on IGF-1R. It also downregulated PDGF-Rα, and PDGF-

B, but had no effect on PDGF-Rβ. Estrogen therapy reduced immunoreactivity for IGF-1, 

PDGF-A, PDGF- Rα, and PDGF-B, while no changes were seen with respect to IGF-1 or 

PDGF- Rβ. 
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DISCUSSION 

Estrogen is a pleiotropic steroid hormone with varied effects on cell proliferation, 

differentiation, and growth in different parts of the body. Previously, it was difficult to 

understand how estrogen may have growth-promoting effects in some tissues, such as the 

uterus and breast, and growth-inhibitory effect in other tissues, including the cardiovascular 

system. The paradigm, however, was potentially unravelled by the discovery of a second ER, 

ERβ, in 1996, and currently, many of the contrasting effects of estrogen may be explained by 

the tissue- and/or cell type-specific expression and regulation of ERα and ERβ. The 

mechanisms behind estrogen’s vasculoprotective properties are still incompletely understood.  

1. Experimental models for studying restenosis and allograft arteriosclerosis 

Preclinical experimental studies on the development of restenosis or allograft arteriosclerosis 

and their intervention in man can only be carried out in an in vitro environment with human 

cell lines or tissues. Therefore, experimental models in animals are needed for the in vivo 

studies. Nonhuman primates, such as baboon, have the closest resemblance to human, but they 

are expensive, difficult to handle and maintain in the laboratory, and not readily available. 

Rat carotid artery and aorta denudation injury models have been widely used to study the 

development of restenosis and the coexistent SMC proliferation and migration in the vascular 

wall (Clowes et al. 1983a, Clowes et al. 1983b, Reidy et al. 1983, Myllarniemi et al. 1997). 

The models differ from the human setting in some respects. Rat artery has a much thinner 

endothelium and no natural intima (Sims 1989), and the injury in the rat is induced in a 

healthy artery whereas the human vessel is already diseased. Also, the rat model does not take 

into account several risk factors, such as hypertension or genetic susceptibility. Moreover, 

human but not rat angioplasty requires antiplatelet/anticoagulant therapy. Compared to 

baboon, the injury response is stronger and reendothelialization slower in rat carotid artery 

(Du Toit et al. 2001). However, the rat model enables us to study the events in the vascular 

wall in an in vivo environment, which makes it superior to all in vitro experiments. With 

respect to this study, the beneficial vascular properties of estrogen have been shown both in 

rodents and in humans (Stampfer et al. 1985, Grady et al. 1992, Foegh et al. 1994, Chen et al. 

1996). Moreover, human ERβ gene shows approximately 89% identity to rat ERβ (Enmark et 

al. 1997).  
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It has recently become apparent that most of the cells contributing to neointimal hyperplasia in 

restenosis as well as in allograft arteriosclerosis derive possibly from recipient-derived 

multipotent somatic stem cells and not from the vascular media (Hillebrands et al. 2000, 

Saiura et al. 2001, Shimizu et al. 2001, Hu et al. 2002, Sata et al. 2002, Tanaka et al. 2003). 

Therefore, the use of cultured medial SMC or SMC lines alone may not give a correct picture 

of the events in the injured vascular wall. Previous experiments have shown that intimal injury 

in vivo activates aortic explant outgrowth (sprouting) in vitro (Grunwald and Haudenschild 

1984, Aavik et al. 2002), and that remarkable upregulation of sprouting occurs within 2-14 

days post-denudation. Our unpublished data show that the majority (>75%) of the outgrowing 

cells express SMC α-actin, and numerous cells show features of undifferentiated endothelial- 

and myofibroblast-like cells. Due to the complexity of the vascular tissue, the aortic explant 

model shows more variability than the cell culture models, and thus, demonstration of 

statistical significance may be more difficult. However, the comparability of the specimens 

was ensured by morphological analysis of histological specimens extracted from each vessel. 

Although further identification of the outgrowing cells needs to be done, we may conclude 

that the aortic explant model allows us to evaluate the in vivo injury-induced changes in the 

vessel wall in an ex vivo setting, and it enables us to separately quantitate the proliferative and 

migratory responses without excluding the influx of precursor cells. This study (III) further 

demonstrates that the aortic explant model more reliably resembles the situation in the in vivo 

vessel: E2 inhibited clearly, and at lower concentrations, explant outgrowth, migration and 

proliferation in the explant model compared to cultured SMC. Also, ICI had contrasting 

effects in the explants vs. SMC: it was inhibitory on SMC proliferation in vitro, but not in the 

aortic explants ex vivo, which is similar to the in vivo setting.   

2. Contribution of the two estrogen receptors on estrogen’s vasculoprotective properties 

Estrogen’s effects in the body are mediated via both a rapid nongenomic pathway and a 

genomic pathway that requires the transcriptional regulation of target genes. Most of its 

vasculoprotective properties, excluding vasomotor effects, are thought to occur via the 

genomic pathway. Both ERs have been detected in cultured vascular SMC of cynomolgus 

monkeys (Register and Adams 1998) and in rat and human arteries (Lindner et al. 1998, 

Hodges et al. 2000). However, the relative contribution of the two ERs in mediating estrogen’s 

actions in the vasculature remains unclear. 
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Knock-out mice, where either or both of the ERs have been deleted, have brought some 

insight in this issue. The finding that estrogen’s vasculoprotective properties were preserved in 

ERα-/- mice (Iafrati et al. 1997) suggested that estrogens vascular effects are mediated via 

ERβ rather than ERα. This encouraged us to further study the role of ERβ in the injured 

vascular wall. ERβ clearly predominated over ERα in the rat carotid artery after denudation 

injury, colocalizing with the SMC in the media, and particularly in the neointima (I). ERβ was 

also predominantly expressed in rat and human cardiac allograft arteries, veins, myocardium, 

and inflammatory cells, whereas ERα remained at low level only (II). Furthermore, estrogen’s 

vasculoprotective effect could be differentiated from its uterotrophic effect with specific 

targeting to ERβ (I). Predominant expression of ERβ in the normal and injured vascular tissue 

has, thereafter, been supported by studies in baboon and man (Hodges et al. 2000, Aavik et al. 

2001). Contrary to these findings, ERα was shown to be upregulated in rabbit cardiac-aortic 

allografts (Lou et al. 1998a). However, ERα mRNA was increased only 3-fold, which is 

remarkably less than the nearly 40-fold increase in ERβ mRNA in the injured rat artery (I). 

Moreover, the expression of ERβ was not determined in that study. Finally, estrogen’s 

vasculoprotective properties were preserved in ERβ knock-out mice (Karas et al. 1999), but 

not in double knock-out mice (Karas et al. 2001), which suggests that, unless additional ERs 

exist, either of the two ERs is sufficient to protect against vascular injury. However, the mice 

in these studies did not develop any neointima and the analysis was based on modest changes 

seen in the media only, which differs markedly from the case in other rodents, primates, or 

humans. Furthermore, in one study, there was practically no injury-response at all (Pare et al. 

2002). Thus, we cannot draw a conclusion on the relative roles of the two ERs in 

vasculoprotection based solely on the knock-out mouse data. 

An alternative, or complementary, way to approach the contribution of the two ERs in 

estrogen’s vasculoprotection would be ER subtype-selective ligands. Until recently, genistein 

was the most ERβ-selective compound available with approximately 20-fold affinity 

difference for ERβ vs. ERα (Kuiper et al. 1998). Treatment of ovariectomized rats with 

genistein, inhibited neointima formation and the proliferation and migration of vascular SMC 

equally to E2, while only E2 had a dose-dependent uterotrophic effect (I). Thus for the first 

time, estrogen’s vasculoprotective effect was differentiated from its uterotrophic effect with 

special targeting to ERβ. Genistein can also exert antimitogenic effects through inhibition of 

tyrosine kinases (Akiyama et al. 1987, Epstein et al. 1997, Nelson et al. 1997, Schonherr et al. 
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1997, Takahashi et al. 1997). However, this was not the case in this study since genistein’s 

tyrosine kinase inhibition has been reported to require relatively high (>10 M) concentrations 

of genistein, whereas nanomolar concentrations are sufficient to exert significant ER-mediated 

effects (Makela et al. 1994, Kuiper et al. 1998). In our study, the inhibitory effects on vascular 

SMC proliferation in vitro occurred already at concentrations of 1 M and on SMC migration 

at 0.1 M. Furthermore, the in vivo doses were estimated to result in nanomolar serum 

concentrations (Santell et al. 1997).  

Despite the relatively good ER-subtype selectivity of genistein, it still has ERα agonist 

activity (Kuiper et al. 1998). Only recently, highly ER subtype-selective compounds with no 

cross-reactivity have been described (Meyers et al. 2001, Harris et al. 2002, Sun et al. 2002, 

Harrington et al. 2003, Harris et al. 2003). Current understanding, gained from the knock-out 

mouse and ER subtype-selective estrogen studies, is that ERα is crucial to the uterotrophic, 

anorectic, lipid-lowering, and bone-sparing actions of estrogen (Harris et al. 2002), whereas 

ERβ seems to have immunomodulatory or anti-inflammatory, but not uterotrophic or 

mammotrophic activity (Harris et al. 2003). However, as the knock-out data on the vascular 

injury response may not be reliable and no data, besides with genistein (I), have yet been 

published on ER subtype-selective ligands, the concept in the vasculature remains unclear. 

Interestingly, recent in vitro studies suggest that estrogen’s inhibitory effect on SMC 

proliferation and the concomitant mitogen-activated protein kinase inhibition is mediated via 

ERβ (Geraldes et al. 2003, Watanabe et al. 2003). This clearly supports our hypothesis.  

It could also be questioned, if the estrogenic compounds’ effects on neointima formation and 

SMC kinetics are mediated via ERs or via some alternative pathways. Both promoting and 

contradictory data exist.  Bakir and coworkers have demonstrated that estrogen’s 

vasoprotective effect in the injured rat carotid is blocked with a pure anti-estrogen ICI 182,780 

(Bakir et al. 2000), which suggests that the effects are receptor mediated. ICI also blocked the 

inhibitory effect of E2 on human vascular SMC (Dubey et al. 2000) and, furthermore, vascular 

injury response was totally abolished in the ER double knock out mice (Karas et al. 2001). On 

the other hand, ICI, which is defined as a pure antiestrogen with no agonist activity, may also 

have anti-mitogenic activity on vascular SMC in vitro and in vivo (III; Bakir et al. 2000). ICI 

has been shown to decrease DNA synthesis in neonatal rat cardiac myocytes via an ER-

independent pathway by regulating cell cycle proteins and extracellular signal-regulated 

kinase (Mercier et al. 2003). Furthermore, in an ER-negative ovarian cancer cell line, ICI 
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dose-dependently inhibited cell proliferation and induced apoptosis (Ercoli et al. 1998). 

Potential ER-independent mediators of estrogen action in the vasculature might include 

estrogen-related receptors (ERR) (Sladek et al. 1997, Susens et al. 2000, Sumi and Ignarro 

2003) and plasma membrane estrogen binding sites (Chambliss et al. 2000, Russell et al. 2000, 

Chambliss et al. 2002, Li et al. 2003). Also, estradiol metabolites, such as 2-hydroxyestradiol 

and 2-methoxyestradiol, which have minimal affinity for the ERs, have been demonstrated to 

inhibit SMC and cardiac fibroblast growth via an ER-independent pathway in vitro, and even 

more potently than estradiol alone (Nishigaki et al. 1995, Dubey et al. 1998, Dubey et al. 

1999). Thus, ER-independent mechanisms may also play some role in, and add to, the 

vasculoprotective effects of estrogen and related compounds.  

3. Estrogen’s interactions with growth factor signalling 

Peptide growth factors are important in the development of vascular neointimal hyperplasia as 

they are upregulated in the vessel wall and induce the proliferation and migration of vascular 

SMC (Majesky et al. 1990, Cercek et al. 1991, Miano et al. 1993), and as blocking of their 

action inhibits neointimal thickening (Ferns et al. 1991b, Hayry et al. 1995, Myllarniemi et al. 

1997).  

The interplay of estrogen with different growth factors is complex and varies in different 

tissues. First, estrogen-induced proliferation in the uterus is accompanied by increased 

expression of polypeptide growth factors or their receptors, such as IGF-1, EGF, and TGF-β 

(Murphy et al. 1987, Huet-Hudson et al. 1990, Nelson et al. 1992, Das et al. 1994). Second, 

these same growth factors can activate estrogen receptors in a ligand-independent manner 

(Ignar-Trowbridge et al. 1992, Aronica and Katzenellenbogen 1993). Mitogen-activated 

protein kinase (MAPK), activated by growth factors such as IGF-1, PDGF, and EGF through 

their cell surface receptors, is capable of phosphorylating the AF-1 domain of ERα and ERβ, 

which results in potentiation of transactivation of the ER (Kato et al. 1995, Bunone et al. 1996, 

Tremblay et al. 1999). In contrast, estrogen has been shown to downregulate MAPK activation 

in vascular SMC (Morey et al. 1997). Furthermore, in rabbit cardiac allografts and aortic 

SMC, estradiol-treatment inhibits IGF-1 mRNA and protein expression (Lou et al. 1997, Lou 

et al. 1998b). Estrogens also downregulate PDGF-A mRNA in monocytes and vascular SMC 

in vitro (Shanker et al. 1995, Kikuchi et al. 2000). 
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There has been incomplete information on at which level estrogen intervenes in the growth 

factor – MAPK cascade. In this study, estradiol-treatment downregulated the injury-induced 

expression of IGF-1, PDGF-Rα, and PDGF-B mRNA and protein in the male rat aorta, and 

with immunohistochemistry, an inhibitory effect on PDGF-A protein expression was observed 

as well (IV). Decreased amounts of growth factors, or their receptors, are likely to result in 

decreased activation of downstream proteins, such as MAPK, c-myc, and c-fos (Morey et al. 

1997), and decreased proliferation and migration of SMC in the vessel wall.  

The most prominent changes were seen in the expression of IGF-1, which is a rather weak 

mitogen alone (Ferns et al. 1991a). However, IGF-1 is an important progression factor for 

PDGF-stimulated proliferation (Banskota et al. 1989, DeAngelis et al. 1995), and furthermore, 

changes in IGF-1/IGF-1R interactions modulate the effects of VEGF in the vasculature (Smith 

et al. 1999, Hellstrom et al. 2001). The understanding of these interactions adds special 

significance to the regulation of IGF-1 expression by estrogen.  

PDGF-A has been thought to exert mainly mitogenic effects (Majesky et al. 1990, Rekhter and 

Gordon 1994). Increased expression of PDGF-A, and -Rα have also been reported in rat 

cardiac allograft arteriosclerosis and obliterative bronchiolitis (Kallio et al. 1999, Sihvola et al. 

1999), and shown to correlate with increased allograft arteriosclerosis (Sihvola et al. 1999). 

This suggests that the inhibition of the PDGF/PDGF–Rα axis by estrogen may inhibit the 

mitogenic responces in the developing neointima, and furthermore, the development of, not 

only restenosis, but also of allograft arteriosclerosis.  

The variability in the PDGF-A and PDGF-B expression in Western blotting and 

immunohistochemistry was likely due to the growth factors’ predominant localization in 

vascular neointima. Neointima comprised of only a minor part of the vessel, whereas most of 

the protein for Western blotting originated from the media and adventitia. Changes in media 

and adventitia, as quantitated by immunohistochemistry, were small or non-existent, and this 

was probably reflected in Western blotting as rather small changes in growth factor protein 

expression. 

Finally, it seems logical that the predominant receptor in the cell/tissue determines the 

estrogenic response to growth factors. In the uterus, where ERα predominates, estrogen-

treament results in cell proliferation, as a concequence of increased production of growth 
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factors, which in turn may strengthen the ERα-mediated transactivation. Also in vascular ECs, 

estrogen induces proliferation through ERα, which results in increased reendothelialization 

after vascular injury (Krasinski et al. 1997, Somjen et al. 1998, Brouchet et al. 2001). In 

contrast, in the vascular SMC, where ERβ is the dominant subtype (I, II), estrogen-treatment is 

accompanied by decreased growth factor production (IV), resulting in downregulation of cell 

proliferation and cell migration. Indeed, it could be speculated that ERα and ERβ have a kind 

of “ying-yang” relationship in the body, with ERα inducing cell growth and ERβ repressing it. 

In addition, ERβ may act as a dominant negative regulator of ERα-mediated signalling 

(Pettersson et al. 2000, Lindberg et al. 2003). In the uterus, ERβ has been reported to modulate 

the uterotrophic responses induced by ERα, by reducing IGF-1 synthesis and the resulting cell 

proliferation (Weihua et al. 2000).  

4. Is there a role for estrogen in regulating the influx of precursor cells? 

Although both replication and migration contribute to neointimal thickening, it has been 

suggested that migration may be more important in the process (Clowes and Schwartz 1985, 

Du Toit et al. 2001). Furthermore, as mentioned, most of the cells contributing to the 

thickened neointima seem to originate either from circulating or bone marrow-derived 

vascular precursors, or both (Hillebrands et al. 2000, Saiura et al. 2001, Shimizu et al. 2001, 

Hu et al. 2002, Sata et al. 2002, Tanaka et al. 2003). Their route to the vessel wall is not clear, 

although some studies suggest that adventitia has an important role in neointima formation 

since adventitial activation precedes neointima formation (Shi et al. 1996a, Shi et al. 1996b, 

Frosen et al. 2001). Also, growth factors, such as PDGF and VEGF, have been proposed to be 

important regulators of the differentiation of vascular precursor cells, either to SMCs or ECs, 

respectively (Yamashita et al. 2000). Estrogen has been shown to attenuate adventitial 

fibroblast migration in vitro (Li et al. 1999) as well as adventitial activation after rat carotid 

balloon injury in vivo (Oparil et al. 1999). Furthermore, estrogen significantly enhanced 

endothelial progenitor cell production, mobilization, and incorporation in the recovering artery 

in response to vascular injury. As estrogen significantly inhibited the outgrowth, proliferation, 

and migration of cells from aortic explants (III), and better than the proliferation of cultured 

vascular SMC, it would be interesting to hypothesize that estrogen inhibits the proliferation of 

neointimal (precursor) cells at extravascular sites, such as bone marrow, which results in 

reduced influx of precursor cells into the vascular wall. This needs further investigation.    
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5. Current controversies on postmenopausal hormone replacement therapy  

In recent years, the pros and cons of hormone replacement therapy have come under intense 

scrutiny. Large randomised prospective trials, such as the Heart and Estrogen/Progestin 

Replacement Study (HERS) and Women’s Health Initiative (WHI), reported that treatment of 

postmenopausal women with oral conjugated equine estrogen (CEE) plus 

medroxyprogesterone acetate (MPA) did not have any overall benefits on cardiovascular 

disease, and furthermore, might increase the risk for breast cancer (Hulley et al. 1998, 

Rossouw et al. 2002). The women participating in the HERS had pre-existing coronary heart 

disease, and although the WHI was described as a primary prevention trial, a remarkable 

portion of the participants had risk factors for CHD (smoking, obesity, diabetes, 

hypercholesterolemia), and/or received antihypertensive medication, statins, or aspirin, and 

some even had a history of cardiovascular events and/or interventions. Also, only one third of 

the women started the therapy close to their menopause – the average patient age was 63 

years. Thus, current data indicate that estrogens are not beneficial in the secondary prevention 

of CHD, whereas the data on their efficacy in primary prevention is strong (Stampfer et al. 

1985, Stampfer et al. 1991, Grady et al. 1992, Grodstein et al. 1996, Grodstein et al. 2000). 

Observational studies, such as the Nurses’ Health study, on the other hand, have been 

critisized on the grounds that their results might reflect the “healthy woman effect”, i.e. 

women who take estrogens tend to be more educated, have more favourable lifestyles, fewer 

risk factors, and are more compliant with treatment than women, who do not take the 

estrogens. However, it is obvious that randomized double-blind primary prevention studies in 

perimenopausal women (with menopausal symptoms) are extremely difficult, if not 

impossible, because the relieve of menopausal symptoms would clearly unmask the treatment 

and control groups. 

Supporting evidence on estrogen’s benefits in primary, but not secondary, prevention of CHD 

comes from studies in monkeys: primary prevention resulted in 70% decrease in coronary 

artery atherosclerosis, whereas HRT initiated at 2 years after the menopause was ineffective 

(Williams et al. 1995, Adams et al. 1997, Clarkson et al. 1998, Clarkson et al. 2001). The 

failure to show any cardiovascular benefits in the randomized clinical trials has also been 

claimed to be due to several other factors besides the timing of the treatment, such as the type 

of estrogen used (CEE vs. estradiol), the route of administration (oral vs. transdermal), or the 

impact of progestin. In vitro, estrone, estriol and estrone sulfate, which constitute a major part 
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of CEE, have little or no inhibitory effects on vascular SMC proliferation, migration, and 

MAP kinase activity, whereas estradiol is effective (Dubey et al. 2000). It has also been 

reported that transdermal estrogen may reduce serum triglycerides and leave CRP levels 

unchanged, contrary to oral treatment (Crook et al. 1992, Strandberg et al. 2003). The data on 

whether progestins, and particularly MPA, interfere with estrogen’s vascular effects are 

controversial: some claim that progesterone is detrimental whereas others find no effect 

(Adams et al. 1990, Williams et al. 1994, Grodstein et al. 1996, Levine et al. 1996, Adams et 

al. 1997, Miyagawa et al. 1997, Gerhard et al. 1998, Grodstein et al. 2000, Kawano et al. 

2001). It has been suggested that other progestins, such as norethisterone, are more favourable 

than MPA on estrogen’s vasculoprotective functions and may even enhance them 

(Alexandersen et al. 1998, Ylikorkala et al. 2000). 

This thesis supports the clinical evidence on estrogen’s benefits in the primary prevention of 

vasculoproliferative disorders. Estradiol treatment right after surgical menopause significantly 

inhibited neointimal thickening in the rat. Moreover, the vasculoprotective effects of estrogen, 

or SERMs, were sustained when the treatment was discontinued on day 14, i.e. no rebound 

effect was observed. This suggests that the critical time interval in the development of intimal 

hyperplasia is before day 14, and supports the benefit of early treatment (III). Indeed, in the 

injured rat vessel, the protective responses occur rather early after injury: proliferation peaks at 

3 days in the media, at 4 days in the adventitia, and at 7 days in the neointima; and the 

responses gradually subside to a low level after 14 days post-injury (Du Toit et al. 2001, 

Frosen et al. 2001). Also, our more recent preliminary findings suggest that the vascular 

precursor cell influx peaks at 2-4 days post-injury and falls to a low level after 14 days (Luoto 

NM et al., unpublished results). Although the impact of delayed treatment on neointimal 

hyperplasia was not studied here, our findings may explain why the studies on the role of 

estrogen in the secondary prevention of cardiovascular disease failed; the treatment was 

initiated too late. 

6. Estrogen receptors as targets for vasculoselective drug therapy 

Attempts to target single genes in order to prevent vasculoproliferative disorders are usually 

not sufficient because other pathways remain active. Estrogens are tempting candidates for 

vasculoselective drug therapy as they are capable of regulating multiple genes at the same 

time. As the risks and advantages of HRT are debated, the development of tissue-selective 
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estrogens has become of interest. The potential alternatives today are SERMs, ERα/ERβ-

selective ligands, and phytoestrogens. An ideal compound would have beneficial effects on 

menopausal symptoms, cardiovascular system, bone, and brain, while being neutral in its 

effects on uterus and the breast, and carrying no risk for venous thromboembolism (Table 5). 

The absence of gender-related side-effects might make it applicable to men. Unfortunately, no 

such compounds are known today.  

Tamoxifen and raloxifene have favourable effects on plasma lipids, breast and bone but they 

do not alleviate menopausal symptoms. Ospemifene has no adverse effects on post-

menopausal symptoms, is neutral in its effects on hot flashes, and furthermore, has an 

estrogenic effect on vagina (Voipio et al. 2002, Rutanen et al. 2003). Previous studies have 

mainly concentrated on the effects of SERMs on lipid-induced changes in the arteries. This 

study shows the potential of the clinically used (tamoxifen and raloxifene) and two novel 

(ospemifene and fispemifene) SERMs to preserve estrogenic effects on the vascular injury 

response in the rat, i.e. the inhibition of SMC proliferation and migration as well as the 

enhancement of reendothelialization (III). It was notable that at least in the rat, the 

vasculoprotective doses were higher than the clinically used ones, which suggests that the 

current clinical dosing is incapable of achieving maximal vasculoprotection. Also the in vitro 

doses were over the physiological estradiol serum levels – however, serum estradiol 

concentrations may not be equal to tissue concentrations, since local estrogen synthesis may 

play a role also in the vasculature (Murakami et al. 2001). 

ERβ-selective compounds have now become available (Meyers et al. 2001, Harris et al. 2003). 

Their effects on the vascular wall are not yet known. Current data strongly suggest that ERβ is 

an important regulator of SMC biology after vascular injury and does not induce uterine 

growth (I, II), which makes ERβ-selective ligands potential candidates for vasculo-selective 

drug design. Furthermore, the predominant expression of ERβ in the inflammatory cells of the 

cardiac allografts (II), and the anti-inflammatory action of ERβ-selective ligands (Harris et al. 

2003), as well as the finding that ERβ-/- mice develop a myeloproliferative disease resembling 

human chronic myeloid leukemia with lymphoid blast crisis (Shim et al. 2003), suggest that 

ERβ-selective ligands might also have a potential therapeutic role in the prevention of immune 

activation after transplantation, and the subsequent development of transplant arteriosclerosis, 
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i.e. both as immunoregulatory and as vasculoprotective therapy. This merits further 

investigation.   

Table 5. Comparison between the effects of HRT, SERMs, and ER-selective ligands in different tissues 

 Vascular  Lipids Bone Breast  Uterus Vagina Hot  References 
 SMC EC   (ca)   flushes  
          
HRT - + - + + + + - MacGregor and Jordan 1998, 

Morello et al. 2002 
Tamoxifen - + - + - + - + MacGregor and Jordan 1998, 

Morello et al. 2002; III 
Raloxifene - + - + - 0 - + MacGregor and Jordan 1998, 

Morello et al. 2002; III 
Ospemifene - + - + - 0 + 0 Morello et al. 2002; III 
Fispemifene - + - + - 0 ? ? Lauri Kangas, personal 

communication; III 
ERα-agonist 0? +? - +* +* +* ? -* *Harris et al. 2002 
ERβ- agonist -? 0? ? 0* 0* 0* ? ? *Harris et al. 2003 
Ideal SERM - + - + - 0 + -  
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CONCLUSIONS AND SUMMARY 

The development of a hyperplastic neointima in restenosis and in allograft arteriosclerosis is a 

protective response to mechanical, immunological, or infectious injury to the vascular wall. 

The pathogenesis of these disorders resembles, in many respects, those of common 

atherosclerosis, including inflammation, influx of proliferating SMC to the injury site, 

extracellular matrix synthesis, and finally, vessel remodelling (Fig. 11). Furthermore, the 

current data suggest that neointimal SMC-like cells derive mainly, not from the vascular 

media, but from circulating precursor cells. Estrogen’s beneficial effects in the primary 

prevention of cardiovascular disease are well-established. However, estrogen therapy alone 

has some important side-effects, such as the growth-promoting effects in the uterus and breast. 

The data in this thesis support estrogen’s role in vasculoprotection; particularly in preventing 

the proliferation and migration of SMC to the injured artery, and the subsequent neointima 

formation. Estrogen receptor β is the predominant receptor in the vascular wall after 

mechanical and immunological injury, colocalizing with the vascular SMC in the media and 

neointima, while ERα remains at a low level only (Fig. 11). ERβ also predominates in the 

arteries, veins, myocardium, and inflammatory cells of cardiac allografts, but shows no 

correlation to the intensity of rejection. Furthermore, this study shows for the first time, that 

the vasculoprotective effects of estrogen can be differentiated from its uterotrophic effects 

with specific targeting to ERβ. The findings make ERβ a potential candidate for estrogen-

based vasculoselective drug design. SERMs bind both ERs with variable affinities, and have a 

mixed estrogen agonist/antagonist profile in different tissues. This study shows that some 

SERMs have beneficial estrogen agonist effects on the developing neointima after balloon 

injury, while being neutral or weakly estrogenic in the uterus. In addition, the study supports 

the hypothesis that early intervention of the injury-response is of paramount importance, and 

in some cases even sufficient to repress the response. Finally, estrogen interacts with growth 

factor signalling cascades, also in the vascular wall. It simultaneously inhibits the expression 

of IGF-1, PDGF, and PDGF-Rα mRNA and protein, and the concomitant proliferation and 

migration of vascular SMC, which is possibly one mechanism behind estrogen’s 

vasculoprotective properties (Fig. 11).  
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Figure 11. Potential targets of estrogen action in the development of vascular intimal hyperplasia. Whether the 
endothelial injury is mechanical, infectious, or alloimmune in origin, it initially leads to an inflammatory 
response. The injured endothelium expresses numerous proinflammatory molecules and adhesion molecules, 
which mediate the entry of the inflammatory cells to the vessel wall. The activated inflammatory cells replicate 
and secrete cytokines, which, in turn, stimulate endothelial cells (EC) and vascular smooth muscle cells (SMC). 
SMC migration and proliferation within the arterial intima is induced by growth factors and vasoactive peptides 
released from the activated leukocytes, and SMC themselves, which leads to persistent paracrine and autocrine 
proliferation. Vascular precursor cells are thought to contribute significantly to the development of neointimal 
hyperplasia. Estrogen therapy downregulates adhesion molecules, several proinflammatory cytokines, major 
histocompatibility (MHC) antigens, growth factors, and extracellular matrix (ECM) synthesis in the vascular 
wall. In addition, it increases the activity of nitric oxide synthase (NOS) and prostacyclin synthase, which results 
in vasodilation. Finally, estrogen receptors interact with growth factor signalling cascades. Estrogen receptor 
(ER) β is the predominant estrogen receptor in vascular SMC, and thus may primarily mediate the 
vasculoprotective actions of estrogen. ET-1; endothelin. 
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YHTEENVETO (FINNISH SUMMARY) 

Valtimon sisimmän kerroksen, intiman, paksuuntuminen ja siitä johtuva suonen 

umpeutuminen on tyypillinen muutos valtimonkovettumataudissa (ateroskleroosi) sekä 

sepelvaltimoiden pallolaajennuksen jälkeisessä uudelleenahtautumisessa (restenoosi). 

Immunosuppressiivisen lääkityksen kehittyminen on parantanut elinsiirtojen 

lyhytaikaisennustetta. Krooninen rejektio, jonka keskeinen manifestaatio on siirteen 

valtimoiden arterioskleroosi, on kuitenkin edelleen tärkein syy elinsiirteiden menetykseen. 

Lisäksi noin puolet siirteistä menetetään toimivina, pääasiassa kardiovaskulaaritapahtumien 

vuoksi.  

Edellä mainittujen tautien patofysiologialle on ominaista verisuonen sisäpintaa suojaavan 

endoteelikerroksen vaurio, joka johtaa verisuonen seinämän tulehdusreaktioon, 

sileälihassolujen kerääntymiseen vauriokohtaan sekä niiden jakautumiseen (proliferaatio) ja 

vaeltamiseen (migraatio) suonen seinämässä, valtimon seinämän paksuuntumiseen ja 

uudelleenmuotoutumiseen. Tärkeässä asemassa ovat erilaiset kasvutekijät ja sytokiinit, joita 

mm. verisuonen endoteelisolut, sileälihassolut ja tulehdussolut erittävät. Viimeaikaiset 

tutkimukset viittaavat lisäksi siihen, että paksuuntuneen neointiman muodostavat 

sileälihassolun kaltaiset solut ovat peräisin verenkierron kantasoluista, eivät verisuonen 

keskikerroksesta, mediasta, kuten aikaisemmin uskottiin.    

Estrogeeni on steroidihormoni, joka säätelee solujen jakautumista ja erilaistumista elimistön 

eri osissa. Estrogeenin verisuonia suojeleva vaikutus on osoitettu laajalti sepelvaltimotaudin 

ehkäisyssä ja tutkimukset eri eläinmalleissa ja soluviljelmissä tukevat vahvasti tätä havaintoa, 

vaikka viimeaikaisten seurantatutkimusten tulokset ovatkin olleet päinvastaisia. Huomattava 

estrogeenin sivuvaikutus on kuitenkin sen vaikutus kohtuun: estrogeenihoito lisää kohdun 

limakalvon syöpäriskiä ja voi nopeuttaa rintasyövän etenemistä. Aikaisemmin oli vaikea 

ymmärtää, miten estrogeenihoito voi samanaikaisesti stimuloida solujen jakautumista 

joissakin kudoksissa ja estää sitä toisaalla. Toisen estrogeenireseptorin (ER), ERβ:n, 

löytyminen ’klassisen’ ERα:n rinnalle lisäsikin merkittävästi ymmärrystämme estrogeenin 

vaikutusmekanismeista eri kudoksissa. 

Tämän väitöskirjatyön tavoitteena oli tutkia eri estrogeenireseptoreiden ilmenemistä 

pallolaajennuksen tai siirteen hyljintäreaktion aiheuttamassa verisuonen umpeutumisessa sekä 
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selvittää mahdollisia mekanismeja estrogeenin verisuonivaikutusten taustalla, keskittyen 

erityisesti verisuonen sileälihassolujen säätelyyn. Tavoitteena oli myös estää valtimon 

seinämän paksuuntumista estrogeenireseptoreihin eri tavoin sitoutuvilla aineilla. Työssä 

käytettiin rotan kaulavaltimon ja aortan pallolaajennusmalleja sekä rotan ja ihmisen 

sydänsiirtonäytteitä. Sileälihassolu- ja kudosviljelmissä tutkittiin estrogeenien vaikutusta 

solujen migraatioon ja proliferaatioon.  

Tämän tutkimuksen tulokset tukevat teoriaa, jonka mukaan estrogeenilla on merkittäviä 

verisuonia suojaavia ominaisuuksia: estrogeeni estää annosriippuvaisesti verisuonen 

sileälihassolujen proliferaatiota ja migraatiota sekä paksuuntuneen intiman muodostumista (I, 

III, IV). Tutkimus osoittaa, että ERβ on vallitseva reseptori valtimon seinämän 

sileälihassoluissa verisuonivaurion jälkeen, kun taas ERα ilmenee ainoastaan matalalla tasolla 

(I). ERβ ilmenee voimakkaasti myös sydänsiirteen valtimoissa, laskimoissa, sydänlihaksessa 

ja tulehdussoluissa (II). Estrogeenin hyödylliset verisuonivaikutukset voidaan lisäksi erottaa 

sen haitallisista kohtua kasvattavista vaikutuksista aineilla, jotka sitoutuvat voimakkaasti 

ERβ:aan (I). Nämä havainnot tekevät ERβ:sta potentiaalisen verisuoniselektiivisen 

lääkesuunnittelun kohteen. 

Selektiiviset estrogeenireseptorin säätelijät (SERM) sitoutuvat molempiin 

estrogeenireseptoreihin eri voimakkuuksilla ja vaikuttavat estrogeenin tavoin tietyissä 

kudoksissa ja antiestrogeenin tavoin toisissa kudoksissa. Tämä työ osoittaa, että osa SERM:sta 

estää pallolaajennuksen jälkeistä restenoosia estrogeenin tavoin stimuloimatta kohdun kasvua 

(III). Verisuonivaurion aiheuttamien vasteiden esto välittömästi vaurion jälkeen on erityisen 

tärkeää, kun taas pitkään jatkuvalla hoidolla on vähemmän merkitystä. 

Väitöskirja osoittaa lisäksi, että estrogeenihoito vähentää eri kasvutekijöiden ilmenemistä 

verisuonen seinämässä mekaanisen vaurion (pallolaajennus) jälkeen (IV). Se estää insuliinin 

kaltaisen kasvutekijän (IGF-1), verihiutaleperäisen kasvutekijän (PDGF) sekä PDGF-reseptori 

α:n muodostumista verisuonessa, mikä on mahdollisesti yksi tärkeä mekanismi estrogeenin 

hyödyllisten verisuonivaikutusten taustalla.   
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SAMMANDRAG (SWEDISH SUMMARY) 

Förtjockning av artärens innersta lager, intiman, och därav förorsakad förträngning av 

blodkärlet är en typisk förändring vid blodkärlsförkalkning (ateroskleros) och återförträngning 

av kransarterärna efter ballong-dilatation (restenos). Framsteg i utvecklingen av 

immunosuppressiv medicinering har förbättrat transplantationers korttidsprognos. Kronisk 

rejektion, vars centrala manifestation är arterioskleros i det transplanterade organets artärer, är 

dock fortfarande den viktigaste orsaken till att transplantat trots allt förloras. Kring hälften av 

transplantaten förloras därtill funktionsdugliga, främst på grund av kardiovaskulära händelser. 

Typiskt för ovan nämnda sjukdomars patofysiologi är en skada på endotellagret som skyddar 

blodkärlens insida. Skadan orsakar en inflammationsreaktion i blodkärlsväggen samt en 

ansamling av glatta muskelceller vid skadan och deras proliferation och migration inom 

blodkärlsväggen, och slutligen, en förtjockning och omformning av artärväggen. Olika 

tillväxtfaktorer och cytokiner, vilka utsöndras av bland annat blodkärlens endotelceller, glatta 

muskelceller och inflammationsceller, spelar en viktig roll i processen. Därtill har nyligen 

publicerade undersökningar påvisat, att de glatta muskelcellsliknande celler som bygger upp 

den förtjockade neointiman kunde härstamma från stamceller i blodcirkulationen och inte från 

blodkärlets mellanlager, median, så som man tidigare trott. 

Estrogenet är ett steroidhormon som reglerar celldelning och -differentiering i olika delar av 

kroppen. Estrogenets blodkärlsskyddande effect har påvisats vitt i primarprevention av 

ateroskleros, och undersökningar i olika djurmodeller och cellexperiment stöder fynden, trots 

att det på senaste tid publicerats rapporter med motsatta resultat. Estrogenets betydande 

bieffekt är dess effekt på livmodern: estrogenterapin ökar risken för cancer i 

livmoderslemhinnan och kan försnabba progressionen av bröstcancer. Tidigare var det svårt 

att förstå hur estrogenterapi samtidigt kan stimulera celldelning i vissa vävnader och samtidigt 

hindra den på andra håll. Dock ökade upptäckten av den andra estrogenreceptorn (ER)β, vid 

sidan om den ’klassiska’ ERα, avsevärt vår insikt i estrogenets verkningsmekanismer i olika 

vävnader.  

Målet med detta avhandlingsarbete var att undersöka förekomsten av olika estrogenreceptorer 

i blodkärlsförtjockning efter ballongdilatation eller transplantationsrejektion, samt att utreda 

möjliga mekanismer bakom estrogenets blodkärlsverkan, med betoning på regleringen av 
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blodkärlens glatta muskelceller. Målet var också att hindra artärväggens förtjockning med 

ämnen som binder sig olika till de två estrogenreceptorerna. I arbetet användes 

ballongdilatationsmodeller på råttors halsartär och aorta, samt prover från råttors och 

människors hjärttransplantat. Estrogenernas verkan på cellmigration och -proliferation 

undersöktes med cell- och vävnadsodlingar.  

Undersökningsresultaten i denna avhandling stöder teorin enligt vilken estrogenet har 

betydande blodkärlsskyddande egenskaper: estrogenet hämmar dosrelaterat proliferation och 

migration av blodkärlens glatta muskelceller, samt en förtjockning av intiman. (I, III, IV). 

Undersökningarna påvisar även att ERβ är den dominerande receptorn i artärväggens glatta 

muskelceller efter blodkärlsskada, medan ERα endast förekommer i låga nivåer (I). 

Förekomsten av ERβ är stor även i artärer, vener, hjärtmuskel och inflammationsceller i 

hjärttransplantat (II). Estrogenets nyttiga blodkärlseffekter kan dessutom åtskiljas från dess 

skadliga effekter på livmodern med ämnen som binder kraftigt vid ERβ (I). Dessa fynd gör 

ERβ till ett potientiellt mål för blodkärlsselektiv läkemedelsdesign.  

Selektiva estrogenreceptormodulatorer (SERM) binder till båda estrogenreceptorer med olika 

affinitet och verkar estrogenlikt i vissa vävnader och antiestrogenlikt i andra vävnader. Det här 

arbete påvisar, att en del av SERM hämmar restenos efter ballongdilatation liksom estrogen, 

utan att stimulera tillväxten av livmodern (III). Viktigt är att kunna hämma blodkärlsskadans 

effekter omedelbart efter skadan, långtidsterapihar en mindre betydelse. 

Avhandlingen påvisar även att estrogenbehandling minskar förekomsten av olika 

tillväxtfaktorer i blodkärlsväggen efter mekanisk skada vid ballongdilatation (IV). 

Estrogenbehandlingen hindrar bildandet av insulinlik tillväxtfaktor 1 (IGF-1), 

trombocytderiverad tillväxtfaktor (PDGF) och PDGF-reseptor α i blodkärlen, vilket kan vara 

en viktig mekanism bakom estrogenets  blodkärlsskyddande effekt.  
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