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SUMMARY

This study was focused on determining the genetic background of Megaloblastic Anemia 1

(MGA1), also known as the Gräsbeck-Imerslund disease. MGA1 is an autosomal recessive

disorder that belongs to the Finnish disease heritage. The disease is characterized by juvenile

megaloblastic anemia, failure to thrive and neurological symptoms due to selective intestinal

malabsorption of vitamin B12. The disease was originally described by Ralph Gräsbeck and

collaborators in Finland and Olga Imerslund in Norway about 40 years ago and the majority

of the Finnish and the Norwegian patients were identified during the following years. Since

the early 1980’s almost no new cases occurred in the two populations, leading to doubts

concerning a Mendelian inheritance for the condition. The disease has generally been thought

to be due to an error in the intrinsic factor receptor (IF-R) in the distal small intestine. For the

present study patients with megaloblastic anemia due to cobalamin deficiency that fulfilled

the diagnostic criteria were collected from both Finland and Norway. The patients from

Finland were identified by perusing the hospital records.

Using six multiplex Finnish families the locus for MGA1 was mapped with linkage analysis

to a 6-cM region on the short arm of chromosome 10. The linkage was confirmed with three

Norwegian multiplex families and 11 additional Finnish families. Use of linkage

disequilibrium (LD) and haplotype analysis in the Finnish families further narrowed the

critical region to ~2 cM. A YAC contig was constructed over a distance of approximately 4

cM to positionally clone the MGA1 gene. Simultaneously, the obvious candidate gene for

MGA1, the receptor for the intrinsic factor (IF)-B12 complex was identified by a functional

approach by a Danish-French research team. The protein was named cubilin and the gene

designated CUBN. CUBN was mapped to the same chromosomal region, by fluorescence in

situ hybridization (FISH), radiation hybrid (RH) mapping and screening of YAC clones, as

previously identified by linkage analysis in the Finnish and Norwegian MGA1 families.

Screening of our YAC contig with CUBN intragenic markers further confirmed the gene as a

functional positional candidate gene for MGA1.

The cubilin gene CUBN was screened for mutations in Finnish and Norwegian MGA1

families. Two mutations were identified in the Finnish population. The first Finnish mutation

(FM1), found in the majority of the Finnish patients, was a 3916C->T missense mutation in

CUB domain 8 changing proline to leucine (P1297L). The second mutation (FM2), seen in
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only one affected, was a point mutation activating a cryptic splice site that results in the in

frame insertion of multiple stop codons in the CUB domain 6 intron. No mutations have been

identified in the Norwegian patients.

The genomic structure of the 36-domain cubilin protein was determined by LR-PCR and

direct sequencing of our BAC contig covering the entire ~170 kb gene. A total of 67 exons

and 66 introns were identified in addition to the putative promoter region.

The IF-R is expressed in the ileum and the kidney tubules and is found in urine. The urinary

activity of the IF-R was measured in some of the Finnish MGA1 patients by using radioactive

vitamin B12 (57Co) cyanocobalamin (CNCbl) bound to intrinsic factor (IF) as a ligand. A

markedly decreased and nearly undetectable binding activity of the IF-vitamin B12 complex

was observed in the patients compared with their healthy relatives and the controls. The assay

can therefore be used for initial diagnostic purposes. The characterization of the cubilin gene

and the mutations responsible for MGA1 will in the future facilitate more exact diagnosis of

new suspected cases at an earlier stage of the disease, which is important for an appropriate

treatment.
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1. INTRODUCTION

Megaloblastic anemias in children are mainly due to folate or vitamin B12 (cobalamin)

deficiency (Chanarin 1987). Cobalamin (Cbl) deficiency is the most common cause of

megaloblastic anemia in the Nordic countries while megaloblastic anemia due to folate

deficiency is relatively rare (Gräsbeck 1984, Gräsbeck & Weber 1997). Megaloblastic anemia

with neurological disturbances, recurrent infections, developmental delays and failure to

thrive are characteristic symptoms of vitamin B12 deficiency in infancy (Visakorpi &

Furuhjelm 1967, Campbell et al. 1981, Wulffraat et al. 1994). Megaloblastic anemia is a

severe clinical condition that can be fatal if untreated.

All presently known inherited disorders in human cobalamin metabolism are single gene

defects, inherited as autosomal recessive traits that can give rise to mental retardation and

other severe neurological consequences (Linnell & Bhatt 1995). They affect either the

absorption of cobalamin from the intestine, their transport in the blood or their intracellular

metabolism. There are several different defects, including impaired function or expression of

intrinsic factor (IF), the intrinsic factor receptor (IF-R), transcobalamin II (TC II) or the

various reductases and synthases required for synthesis of adenosylcobalamin (AdoCbl) and

methylcobalamin (MeCbl) (Linnell & Bhatt 1995).

Hereditary forms of vitamin B12 deficiency resulting in megaloblastic anemia are known to

relate to low or absent secretion of intrinsic factor (IF) (Pernicious anemia, MIM 261000)

(McNichol & Egan 1968, Katz et al. 1972), to decreased or absent synthesis of functional

transcobalamin II (TC II deficiency, MIM 275350) (Hakami et al. 1971, Hitzig et al. 1974,

Burman et al. 1979) or to a defect in the intestinal epithelium leading to decreased uptake of

the IF-vitamin B12 complex and therefore to vitamin B12 deficiency (Gräsbeck-Imerslund

disease, Megaloblastic anemia 1 (MGA1, MIM 261100) (Gräsbeck et al. 1960, Imerslund

1959, 1960).

At the time when this study was initiated, more than thirty years had elapsed since MGA1 was

first independently described by Ralph Gräsbeck and co-workers in Finland (Gräsbeck et al.

1960) and Olga Imerslund in Norway (Imerslund 1959, 1960).

The goal of this study was to prove the existence of MGA1, its autosomal recessive mode of

inheritance and define the gene responsible for MGA1.
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2. REVIEW OF THE LITERATURE

2.1. Megaloblastic anemia

Megaloblastic anemia is a hematologic disorder characterized by the production in the bone

marrow and increase in the peripheral blood of abnormally large nucleated cells, including

immature erythrocytes, superlobulated polymorphic leukocytes and large platelets. There is

usually a reduction in the total white cell and the red cell counts, and sometimes very low

values are seen. Examination of the bone marrow is of great diagnostic importance, since in

cobalamin deficiency megaloblasts are found, hence the name megaloblastic anemia. The

condition is usually due to a deficiency of folate or vitamin B12. In these conditions, cells of

other tissues, especially rapidly replicating, e.g. epithelial cells are also affected and the

corresponding histology altered (Gräsbeck & Salonen 1976, Chanarin 1979). The best know

condition is pernicious anemia caused by vitamin B12 deficiency resulting from lack of

secretion of gastric intrinsic factor (IF). This, in turn, is usually due to atrophy of the gastric

mucosa caused by an autoimmune process (Chanarin 1979).

Although the clinical symptoms for the different types of congenital megaloblastic anemia are

similar, there is a major clinical difference in the age of onset. While neither one of the two

congenital Cbl transport protein deficiencies, the more frequently occurring pernicious anemia

or MGA1, manifests itself before the age of one year, most TC II deficient patients develop

severe megaloblastic anemia as early as 1 to 3 months after birth (Gräsbeck & Salonen 1976,

Burman et al. 1979, Hall 1992). In infants with congenital vitamin B12 malabsorption,

megaloblastic anemia generally develops later between 12-18 months by which time the

stored cobalamin received from the mother during the pregnancy is exhausted (Furuhjelm &

Nevanlinna 1973, Linnell & Bhatt 1995).

Absorption tests using radioactive labeled vitamin B12, are useful techniques to determine

vitamin B12 malabsorption even when there are no signs of vitamin B12 deficiency

(Gräsbeck et al. 1956). The usual technique, Schilling’s urinary excretion test, measures how

much of the orally ingested radioactively labeled vitamin B12 is excreted in the urine

following a flushing dose of intramuscular injected non-radioactive vitamin B12. It has been

shown to be a useful measure of intestinal cobalamin absorption (Schilling 1953).
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Another rare cause of megaloblastic anemia, previously more common in the eastern parts of

Finland, where also MGA1 occurred more frequently, was fish tapeworm Diphyllobothrium

latum infection (Nyberg et al. 1958, Gräsbeck et al. 1962). It was shown that D. latum impairs

vitamin B12 absorption in its host and therefore frequently causes hematologic changes from

mild macrocytosis to megaloblastic anemia. Tapeworm anemia very much resembles

megaloblastic anemia caused by congenital selective vitamin B12 malabsorption (MGA1). It

also occurred among very young children. Therefore it was of great importance to exclude the

existence of D. latum in patients suffering from megaloblastic anemia (Nyberg et al. 1958,

Gräsbeck et al. 1962, von Bonsdorff 1977). Today tapeworm anemia is very rare in Finland

primarily as a result of changes in dietary habits, food preparation and population hygiene

(Gräsbeck & Weber 1997).

2.1.1.   Megaloblastic anemia 1 (MGA1)

Megaloblastic anemia 1, originally named Gräsbeck-Imerslund disease or Imerslund-

Gräsbeck disease or syndrome, is a specific vitamin B12 malabsorption defect that is

relatively easy to recognize on the basis of the frequent association of megaloblastic anemia

and a benign proteinuria (Gräsbeck et al. 1960, Imerslund 1959, 1960). In the Gräsbeck-

Imerslund disease the clinical signs are similar to those in juvenile pernicious anemia (lack of

IF secretion), but the cause is defective uptake of the intrinsic factor-vitamin B12 (IF-B12)

complex in the terminal ileum instead of impaired IF secretion (Gräsbeck 1972). The presence

of proteinuria may indicate that the receptor facilitating IF-B12 uptake in the intestine is also

important for kidney function (Gräsbeck 1997, Moestrup et al. 1998).

A recessively inherited form of megaloblastic anemia has also been detected in a family of

giant schnauzer dogs. These dogs also have megaloblastic anemia as a result of selective

vitamin B12 malabsorption and their phenotype greatly resembles MGA1 (Fyfe et al. 1989,

1991a).

The disease may escape attention since the first symptoms tend to be very unspecific, such as

recurrent infections and failure to thrive (Gräsbeck & Kvist 1967). The disease is however

usually diagnosed during the first 2-5 years of life. The diagnosis is based on clinical findings

such as hematological tests revealing typical anemia, developmental delay and neurological

lesions. The therapy is lifelong and consists of intramuscular injections of vitamin B12. When

properly treated the disease is a fairly innocuous condition.
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In megaloblastic anemia, hemoglobin decrease is usually less marked because of the increased

size of the red cells leading to increased total hemoglobin content per cell. This results in a

poor correlation between the cobalamin and the hemoglobin concentrations, making a

hemoglobin determination alone an unreliable method in the diagnosis and therapy of

cobalamin deficiency states. Since poor absorption of vitamin B12 is the usual cause of

megaloblastic anemia, the serum cobalamin (Cbl) concentration is determined and Schilling

absorption tests I (with Cbl only) and II (with IF-Cbl) are performed (Gräsbeck et al. 1960,

Gräsbeck et al. 1962, Gräsbeck & Salonen 1976, Nexø et al. 1994, Linnell & Bhatt 1995).

2.1.2.   The IF-receptor, a candidate gene for MGA1

Since the molecular background of the Gräsbeck-Imerslund disease has not been known there

have been different hypotheses and speculations about the biochemical defect(s) underlying

the disease. The most widely accepted theory, already suggested by Gräsbeck and co-workers

(Gräsbeck et al. 1960), has been an abnormality or lack of the receptor for IF-B12 complex in

the ileum. Lack of IF-receptor binding activity in the ileum has been demonstrated in the

patients (Seetharam et al. 1981, Burman et al. 1985). A defective brush-border expression of

the IF-receptor in the ileum has also been observed in the giant schnauzer dogs with the

inherited intestinal malabsorption of vitamin B12 (Fyfe et al. 1991b). However, in other

reported cases there seem to be no defect in the ileal receptors for the IF-B12 complex.

Instead the defect may be in another of the links in the chain of reactions transferring

cobalamin from the receptors in the ileum to transcobalamin II (TCII), which transports

vitamin B12 in the blood (MacKenzie et al. 1972).

2.1.3. Vitamin B12

Vitamin B12 was first isolated as cyanocobalamin (CNCbl) in 1948 (Rickes et al. 1948, Smith

& Parker 1948). It belongs to the corrin compounds, which are characterized by a corrin ring

containing a central cobalt (Co) atom and various axial ligands (Gräsbeck & Salonen 1976).

Cobalamin, vitamin B12, is synthesized by bacteria and other microorganisms growing in soil

and water and in the rumen or intestine of e.g. sheep and cattle (Allen 1975, Gräsbeck &

Salonen 1976). Cobalamins are essential vitamins, which end up in higher animals via food

chains. In man the cobalamins are obligatory nutrients. Rich dietary sources of cobalamin are

liver, kidney, meat, seafood and dairy products (Faquharson & Adams 1976, Gräsbeck &

Salonen 1976, Sandberg et al. 1981). The cobalamins play an important role in several
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intracellular reactions in mammals, such as in the metabolism of e.g. protein, fats and

carbohydrates, in blood formation and in neural functions (Gräsbeck & Nyberg 1957, Hansen

& Nexø 1987). Vitamin B12 is needed for the synthesis of DNA, i.e. for supplying the methyl

group to thymine. In vitamin B12 deficiency RNA and protein synthesis are not affected but

DNA replication is, which results in large cells that do not divide (Gräsbeck & Salonen 1976).

Figure 1.
The chemical structure of cobalamin. (From Fenton & Rosenberg 1978)

The intestinal absorption of vitamin B12 depends on its binding to specific transport proteins

(Neale 1990). Cobalamin liberated by digestion is first bound to R-protein or haptocorrin

(HC) (also called cobalophilin) contained in saliva, other secretions and leukocytes.

Pancreatic enzymes break the complex and the vitamin is bound to intrinsic factor (IF), a

protein secreted by the gastric mucosa. The IF-B12 complex is transported to the distal small

intestine, where it attaches to the receptors on the enterocyte. For the attachment calcium ions

and neutral pH are needed. Following the absorption of the IF-B12 complex to the ileal
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receptor, according to the current view, the whole complex is internalized after which IF-B12

is segregated from the receptor and directed to the lysosomes for degradation of IF and the

receptor is recycled to the membrane. TC II (also called transcobalamin: TC), present in the

blood circulation and in various tissue fluids, is responsible for the essential delivery of

cobalamin to most tissues (Allen 1975, Neale 1990, Linnell & Bhatt 1995). After oral intake

there is a delay of several hours before the vitamin appears in the blood (Doscherholmen et al.

1957, Birn et al. 1997).

When there is an acute requirement for various metabolic functions in man there are large

cobalamin stores available in liver and smaller ones in kidney, gut, lung endocrine glands and

skeletal muscle. In cobalamin disorders all dividing cells in the body are affected although

tissues with rapid cell formation such as bone marrow, blood and epithelia show the strongest

signs (Gräsbeck & Salonen 1976, Linnell & Bhatt 1995).

2.2. The Finnish disease heritage

The concept of a “Finnish disease heritage” was introduced by Norio, Nevanlinna and

Perheentupa in 1973 and consisted initially of 10 inherited diseases that were much more

prevalent in Finland than in other populations (Norio et al. 1973). Today that concept includes

some 30 diseases with a wide diversity of clinical phenotypes (de la Chapelle & Wright 1998,

Peltonen et al. 1999) (see Table 1). The majority of the diseases are autosomal recessive with

the exception of two autosomal dominant and two X-chromosomal recessive disorders. On the

other hand, several recessive diseases that are common elsewhere are rare in the Finnish

population, e.g. cystic fibrosis (Norio et al. 1973, Kere et al. 1989, de la Chapelle 1993, de la

Chapelle & Wright 1998). Most disorders of the Finnish disease heritage are rare in the other

Nordic countries. Nevertheless, progressive myoclonus epilepsy (EPM1) or Unverricht-

Lundborg disease is an example of another disease in addition to MGA1 that also has been

found in other Scandinavian countries (Norio 1981). Today the loci for the majority of the

Finnish diseases have been assigned to a specific chromosome and in several cases the

defective gene has been cloned and identified.
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The Finns are a classic example of a genetically isolated population that is thought to descend

mostly from a small number of original founders that existed about 2000 years ago. Due to

linguistic, geographic and religious reasons the Finns have remained highly isolated from

their Nordic and Slavic neighbors. The small isolated founder population that rapidly

increased but with frequent “bottlenecks”, due to wars and severe epidemics and famines,

allowed the founder effect and genetic drift to form the Finnish gene pool (Nevanlinna 1972).
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2.3. Identification of disease genes

There are different strategies for identifying human disease genes depending on how much is

known about the pathogenesis of the disease and availability of already mapped and cloned

putative candidate genes. The identification of disease causing genes can be accomplished

either by functional or positional cloning (Collins 1992, Ballabio 1993). A functional cloning

approach can be applied when the basic biochemical defect of the disease is known (Collins

1992). Both the hemophilia A gene (Gitschier et al. 1984) and the gene for phenylketonuria

(Robson et al. 1982) were identified using this strategy. Another cloning strategy based on a

similar but not that precise functional approach is the position-independent candidate gene

approach. Using this procedure still some functional information about the disease gene is

needed. There has to be a general idea of the molecular pathogenesis of closely related human

or animal disease phenotypes (Collins 1995).

However, for the majority of inherited diseases the knowledge about the molecular

background underlying the disease is usually limited and generally possible candidate genes

have not yet been cloned and characterized. In such cases, mapping the disease gene to a

specific subchromosomal localization by genetic linkage analysis followed by positional

cloning makes cloning of novel genes possible. Pure positional cloning is, however, usually

very time consuming without any factors limiting the critical candidate region, such as a

strong linkage disequilibrium (for example the diastrophic dysplasia (DTD) gene, Hästbacka

et al. 1994), usually only seen in genetically homogenous populations (Jorde 1995, Peltonen

2000), or disease associated visible cytogenetic rearrangements as in the dystrophin gene

(Lindenbaum et al. 1979). Therefore the positional candidate gene approach, combining the

knowledge of map position with the increasingly dense human transcript map, is today the

most appealing and predominant method for cloning human disease genes (Boguski &

Schuler 1995, Collins 1995).



20

Figure 2. Schematic presentation of steps involved in identification of disease genes by positional
cloning that starts with linkage analysis and ends up in identification of disease causing mutation(s).

2.3.1.   Linkage and linkage disequilibrium analyses

Linkage analysis is often the first step towards localization and characterization of disease

genes. Furthermore, since most inheritable diseases are known only by their phenotype and no

obvious candidate gene generally exists, linkage analysis is the ultimate way to map novel

disease genes. In order to perform linkage analysis, a sufficient number of multiplex families,

with two or more affected children, have to be included in the study in order to confirm or

exclude linkage. The mode of inheritance for the disease studied should be known. Mapping

genes for hereditary diseases is based on the use of polymorphic markers spanning the

genome, where cosegregation of alleles at the marker loci and a genetic trait in families are

studied.

Linkage is observed when two loci located on the same chromosome are inherited together at

a rate corresponding to the distance between them. The recombination fraction (θ) is used as a

measure of the distance between two loci. Theoretically it ranges from (θ)=0, for loci close to

each other, to (θ)=0.5 for loci far apart. Two loci are considered genetically linked when

(θ)<0.5, i.e. recombination is observed in less than 50% of the meiosis. The likelihood of

genetic linkage between loci is given in logarithm of odds, lod score (Z). At the maximum
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total lod score (Zmax) of +3 or greater, linkage is considered proven while –2 or less is often

evidence against linkage. The genetic distances between markers on a genetic map are given

in centimorgan (cM), where two loci showing 1% recombination are 1 cM apart (Ott 1991,

Terwilliger & Ott 1994).

On the other hand, to be able to identify and clone a specific gene, giving rise to the disorder,

a more precise localization is necessary. Linkage disequilibrium is consequently a powerful

statistical method that allows fine-scale mapping and identification of disease genes

(Terwilliger 1995, Xiong & Guo 1997). Linkage disequilibrium or allelic association is a

nonrandom association of alleles at linked loci and reflects the lack of historical

recombinations between the marker and the disease locus. For disease gene mutations,

disequilibrium can therefore be expected only if the majority of the patients have the same

inherited mutation from a shared ancestor. The older the founder mutation is, the closer the

marker has to be to indicate linkage disequilibrium.

In an isolated population, that originates from a small founder population and where the

expansion of the population has occurred by growth rather than by immigration, the

advantage of linkage disequilibrium in high-resolution mapping of disease genes can be

utilized (de la Chapelle 1993, Peltonen 1997, de la Chapelle & Wright 1998, Peltonen et al.

1999). Identification of the genes for diastrophic dysplasia (Hästbacka et al. 1994), congenital

chloride diarrhea (Höglund et al. 1996) and mulibrey nanism (Avela et al. in press) are good

examples where highly informative linkage disequilibrium data facilitated the identification of

the disease locus (Hästbacka et al. 1992, Höglund et al. 1995, Avela et al. 1997). Construction

of chromosomal maps of genetically linked DNA markers has made almost the entire genome

accessible to linkage studies in families where genetic traits are segregating (White et al.

1989).

2.3.2.   DNA polymorphisms as markers

The initial construction of a genetic linkage map in human was based on the idea of using

polymorphic restriction fragment length polymorphisms (RFLP) as markers (Botstein et al.

1980). The first comprehensive human genetic map was assembled by a combination of

linkage analysis and physical localization of selected clones. Polymorphic loci were arranged

into linkage groups estimated to be able to detect linkage to at least 95% of the human

genome (Donis-Keller et al. 1987). Since the information obtained using RFLP is very
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limited, the new genetic hypervariable minisatellite markers, a variable number of tandem

repeats of short DNA sequence (VNTR), greatly improved linkage studies (Nakamura et al.

1987). The source of polymorphic markers has however increased. The standard tool in

linkage analysis is nowadays the use of microsatellite markers, which are simple short

tandem-repeats (STR). One of the most commonly used microsatellite markers have been the

PCR-typeable (AC)n repeats (Weber & May 1989). The (AC)n dinucleotide repeats are highly

tandemly repeated (~15-30 times) abundant DNA elements that have been found in

eukaryotic genomes examined from yeast to human, indicating a high evolutionary

conservation (Hamada et al. 1982, Weber & May 1989). Genetic linkage maps of the human

genome have been constructed primarily based on these polymorphic (AC)n repeats

(Weissenbach et al. 1992, Gyapay et al. 1994, Dib et al. 1996). A collection of tri- and tetra

nucleotide short tandem repeat polymorphisms (STRP) are an example of other tandemly

repeated polymorphic markers that are similarly used in constructing genome wide human

linkage maps (Sheffield et al. 1995). However, the most common variations in the human

genome are the frequently occurring, widely distributed single base pair differences, called

single nucleotide polymorphisms (SNPs) (Collins et al. 1997, Wang et al. 1998). Although the

SNPs are less informative, with only two alleles, than the other highly informative (AC)n and

STRP markers, they are more abundant in the human genome and have a greater potential for

future automated mapping (Wang et al. 1998). The maps with an ever-increasing number of

genetic markers can be used to map any Mendelian trait, particularly monogenic human

diseases (Gyapay et al. 1994).

2.3.3.   Radiation hybrids

Radiation hybrid (RH) mapping is a very useful tool in refining the genetic localization of

disease genes by physical mapping of linked DNA markers. Human RH maps are generated

by a lethal irradiation of diploid human donor cells that are fused to a non-irradiated recipient

rodent somatic cell line (Cox et al. 1990, Walter et al. 1994). In RH mapping the frequency of

X-ray breakage between two markers is used as a statistical measure of the distance between

markers and their order on the chromosome. Unordered DNA markers can be determined with

a very high resolution. The resolution of RH maps depends on the dose of X-rays used to

generate the hybrids. Hybrids generated with high doses, 8000-10,000 rad of X-rays, are very

useful for ordering nearby DNA markers at a 500-kb level of resolution. The distances

between markers are given in centiRays (cR), which are analogous to cM, where 1 cR

corresponds to 1% breakage between two markers and is dependent on the radiation dose
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(Cox et al. 1990). Hybrid panels with lower resolution have also been generated, which are

more useful in ordering markers further apart (Walter et al. 1994). Since RH mapping is based

on statistical likelihood, the RH map does not necessarily always represent the actual physical

order or distances between markers on the chromosomes (Cox et al. 1990, Jones 1997).

A panel of RHs of the human genome is available and can be used to map polymorphic and

non-polymorphic markers and for integrating already existing genetic and physical maps

(Hudson et al. 1995, Gyapay et al. 1996, Stewart et al. 1997). Using the RH approach any

human DNA sequence, that can be distinguished from rodent DNA background, can be

mapped (Cox 1995). RH maps covering the whole genome are also available for mouse

(McCarthy et al. 1997) and rat (Watanabe et al. 1999), allowing comparison and integration of

maps from different species.

2.3.4.   Physical mapping

The ability to physically localize and identify disease genes is greatly enhanced by integrating

already existing genetic and physical maps. Unidentified Sequence Tagged Sites (STSs) and

Expressed Sequence Tags (ESTs) can be mapped by PCR screening using either RH panels

(Gyapay et al. 1996) or yeast artificial chromosome (YAC) or bacterial artificial chromosome

(BAC) libraries (Hudson et al. 1995, Kim et al. 1996, Cai et al. 1998). A new updated

physical map consisting of more than 40,000 STSs representing about 30,000 unique human

genes was published in 1998 (Deloukas et al. 1998). This new gene map may consist of up to

half of the estimated total number of 60,000-100,000 human genes (Antequera & Bird 1993,

Fields et al. 1994), and is therefore of great help and a powerful tool in positional cloning of

single and also more complex disease genes. The initial step in hunting for and identification

of disease genes is the construction of a contig consisting of a set of physically overlapping

cloned DNA fragments spanning the putative region of interest.

The first-generation physical map of the human genome was constructed by screening the

YAC library from CEPH with more than 2,000 polymorphic STS markers distributed over

90% of the genome (Cohen et al. 1993). The physical map was far from complete with poor

coverage for some of the chromosomes. A new updated YAC library was published a few

years later covering about 75% of the human genome in 225 contigs (Chumakov et al. 1995).

Because of their capability to contain large clones up to a megabase or more in size, YACs

have provided a powerful tool for physical mapping and analysis of complex genomes
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(Schlessinger 1990, Dausset et al. 1992). The YACs also played an important role in cloning

of the Huntington disease gene (Zuo et al. 1992, The Huntington’s Disease Collaborative

Research Group 1993). Major disadvantages with using YAC libraries are, however, the

remarkably high frequency of YACs that contain two or more unrelated pieces of DNA

(chimeric YACs) and the instability of some regions (Green et al. 1991). Nevertheless, the

development of the YAC cloning technology has directly enhanced the relationship among

genetic, physical and functional mapping of genomes facilitating the identification of genes

(Larin et al. 1997).

Therefore, for higher resolution physical mapping, overlapping BAC clones have proven to be

more convenient to use than the YACs, mainly due to their smaller clone inserts (in average

around 130-150 kb), clone stability and lower frequency of chimerism. BAC libraries serve to

integrate genetic, STS and cytogenetic map information thus offering an enormous potential

for identification of chromosomal rearrangement, mapping, genomic sequencing and

functional studies (Ashworth et al. 1995, Kim et al. 1996, Cai et al. 1998, Korenberg et al.

1999).

2.3.5. Identification of candidate genes

There are a great variety of different methods for finding and isolating genes in cloned DNA.

A well assembled genomic contig, with no gaps or unrelated sequences, provides a good

starting point for both the search of novel coding sequences and fine mapping of previously

identified candidate genes. Some of the commonly used methods for identifying coding

sequences in cloned DNA are hybridization of the genomic candidate DNA clone against

RNA or mRNA blots (Northern blotting) (Alwine et al. 1977), cDNA libraries (Bonaldo et al.

1994, Lovett 1994) or zoo-blots (Claudio et al. 1994) or the identification and cloning of CpG

islands often associated with the 5’ end of vertebrate genes (Bird 1987, Larsen et al. 1992,

Cross & Bird 1995). Positional transcript mapping using these methods is both difficult and

time consuming. A turning point for disease gene identification has been the Human Genome

Project large-scale sequencing and physical mapping of an ever-increasing number of ESTs,

providing candidate genes for many human genetic diseases (Berry et al. 1995, Schuler et al.

1996, Deloukas et al. 1998).
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The Human Genome Project (HGP) is an international project with the major goal to produce

whole-genome genetic maps, physical maps and a complete ~3,000 megabases (Mb) sequence

map covering all the human chromosomes (Lander 1996, Collins et al. 1998). In the end of

1999 chromosome 22 was the first chromosome to be completely sequenced (Dunham et al.

1999). As early as in the spring of year 2000 at least 90% of the human DNA sequence might

already be ready in a “working draft” form and it is projected that by 2003 the entire human

genome sequence project will be completed (Human Genome Project:

www.ornl.gov/hgmis/hg5yp/). This will tremendously influence the fields of genetics and will

lead to a new understanding of genetic contributions to human diseases (Collins 1999, van

Ommen et al. 1999, Wadman 1999).

2.3.6.   Demonstration of mutations

The ultimate proof that a candidate gene indeed is the disease-causing gene is a demonstration

of mutations in affected individuals. The search for mutations in genes can be very tedious

and expensive (Dean 1995, Forrest et al. 1995). Once a candidate mutation has been observed,

it also must be identified in other patients with the same phenotype. Furthermore, the

mutation should segregate in the affected families according to the mode of inheritance. By

screening a set of healthy unrelated controls from the same population, a sequence change due

to a possible neutral polymorphism may be excluded.

Mutations can be detected e.g. by direct sequencing of the DNA segment (Forrest et al. 1995),

by a gain or loss of a diagnostic restriction site visualized in an agarose gel (Prosser 1993), by

altered banding patterns of single stranded DNA through non-denaturing gels (single strand

conformation polymorphism, SSCP) (Sheffield et al. 1993) or by resolution of heteroduplex

molecules by their instability in denaturing gradient gel electrophoresis (DGGE) (Cariello &

Skopek 1993). After identifying the mutation(s) the question often still remains if the

mutation actually causes the disease. Functional assays may be performed to prove the

connection between the disease phenotype and the mutation(s), provided that the function of

the protein is known (Aittomäki et al. 1995, Forrest et al. 1995).
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2.3.7.   Determination of the gene structure

Gene prediction and the recognition of the exon-intron structure of the coding region, in

addition to the putative corresponding promoter region, has been improved by the

contribution of available computer-assisted nucleotide sequence analysis. The primary

computational approach to eukaryotic promoter recognition was by combining modules

recognizing different individual binding sites in the sequence, and by using some kind of an

overall description of how these sites should be spatially arranged. Because of the large

number of putative transcription binding sites, it has been difficult to identify promoters

correctly based only on the sequence information (Fickett & Hatzigeorgiou 1997, Knudsen

1999, Pedersen et al. 1999, Werner 1999). Since the knowledge of all the mechanisms

involved in transcription, translation and alternative splicing are still far from complete, both

exons and promoter sequences may in spite of all the available new software tools still be

wrongly predicted and partitioned (Pedersen et al. 1999). However, a combinatorial approach

of general promoter prediction with exon-intron predictions may markedly improve the

accuracy of promoter recognition (Werner 1999). Successful and reliable computational

analyzing programs for promoter recognition would also be useful in analyzing the sequence

results from the Human Genome Project (Knudsen 1999).
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3. AIMS OF THE STUDY

The principal purpose of this study was to:

1) To identify and collect patients from Finland and Norway, perform genealogical studies of

the Finnish patients and to map the MGA1 gene with linkage analysis

2) To refine the localization of the gene by fine genetic mapping and physical mapping

3) To characterize the mutations in the MGA1 patients

4) To determine the genomic structure of the cubilin gene

5) To use an urinary radioisotope-binding assay to diagnose MGA1 patients
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4. PATIENTS AND METHODS

4.1. Identification of patients

The majority of the Finnish MGA1 patients were diagnosed in the 1960’s and are not

currently under regular care by a physician. Because of the lack of a main responsible

physician, the primary screening for patients included in this study was based on the study of

hospital records from the 1940’s to today. Nearly all children with severe megaloblastic

anemia in Finland have customarily been referred to the Children’s Hospital of the Helsinki

University Central Hospital. Due to this almost all the MGA1 patients were found in the

records of this hospital. Only sporadic new cases were identified via the National Social

Insurance Institution (KELA-FPA). In Finland all individuals receiving vitamin B12 treatment

orally or as parenteral injections are listed in the records of the Social Insurance Institution

since the cost of the treatment is partly supported by them. The search for potential MGA1

patients was limited to the initiation of vitamin B12 treatment before the age of 15.

All the Norwegian patients participating in this study were originally diagnosed by Dr. Olga

Imerslund in the 1950’s (Imerslund, 1959, 1960), and the blood samples for this study were

collected by Dr. Harald Broch. The clinical pictures of different types of megaloblastic

anemia are very similar and it is consequently difficult to distinguish them from each other.

Therefore the following selection criteria were used to identify possible MGA1 patients from

other patients suffering from megaloblastic anemia (Gräsbeck et al. 1960, Imerslund &

Bjørnstad 1963, Anttila & Salmi 1967, Broch et al. 1984):

1. Appearance of megaloblastic anemia within the first 5 years of life

2. Low serum vitamin B12 levels with good hematologic response to parenteral injections

of vitamin B12

3. Serum folate not decreased

4. Schilling tests I and II showing malabsorption of labeled vitamin B12 even after the

addition of exogenous intrinsic factor (IF)

5. Unhampered absorption of other nutrients when vitamin B12 stores are replenished

(vitamin B12 deficiency causes secondary malabsorption)

6. Exclusion of severe malnutrition or a general malabsorption syndrome
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7. Exclusion of fish tapeworm Diphyllobothrium latum infection

Professor Ralph Gräsbeck kindly scrutinized the patient data and in uncertain cases decided

whether the diagnosis was acceptable or not. A total of 24 Finnish MGA1 patients in 17

families were chosen for this study. Altogether 33 potential Finnish MGA1 patients, in 24

families, were identified of which 27 patients in 19 families fulfilled the study criteria above.

One of the patients lived abroad and was therefore not taking part in this study, while two

other patients had recently died. Following a signed informed consent from the patients,

parents and healthy siblings, venous blood and urine samples were collected from

participating individuals. The study was approved by the Ethical Review Committee of the

Department of Medical Genetics, University of Helsinki and the Finnish National Research

and Development Centre for Welfare and Health, Ministry of Social Affairs and Health

(STAKES).

4.2. MGA1 families and control individuals

A total of nine multiplex MGA1 families, six from Finland and three from Norway, with more

than one affected child were included in the initial linkage study. After linkage was found the

panel of individuals studied was expanded to include the rest of the Finnish MGA1 families.

The Finnish and Norwegian pedigrees are shown in Figure 3.

DNA samples from 158 unrelated healthy Finnish individuals were used as controls and 138

of them originated from eastern and south-central Finland, where the disease is more

prevalent. The remaining 20 samples were obtained from the Finnish Red Cross.
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Figure 3. The pedigrees of the 17 Finnish and the three Norwegian (bottom) families used in linkage
and haplotypes analyses.

4.3. Genealogical studies

A genealogical study was performed for the Finnish MGA1 patients identified for this study

by examining the well established church parish record system. The church records include

detailed information on birthplaces, deaths, marriages and movements for the majority of the

population. The birthplaces for all the Finnish MGA1 patients’ parents and grandparents and

in some cases their great-grandparents could therefore be determined. Based on the

information from these church registers the pedigrees of the Finnish MGA1 families were
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drawn and the geographic distribution of birthplaces for the patients’ grandparents was

shown.

4.4. Molecular genetic studies

4.4.1.   Genotyping

10-30 ml samples of venous blood were collected in EDTA or heparin from each consenting

individual. DNA was extracted directly from blood leukocytes by standard methods. Most of

the markers used in the initial random screening were highly polymorphic (AC)n-repeats from

the Généthon or Mansfield collections (Dib et al. 1996). A combination of two to six markers

located ~ 20 cM apart were co-amplified in each PCR reaction using published protocols

(Weber & May 1989). The α32P dCTP radiolabelled co-amplified PCR fragments were

separeted on 6% polyacrylamide gels and exposed to X-ray films for 1-7 days.

4.4.2.   Linkage and linkage disequilibrium analyses

Linkage analyses were performed by computer programs from the LINKAGE package

(Lathrop et al. 1984). The simulation program SLINK (Ott 1989, Weeks et al. 1990) was used

to define a minimum number of individuals to be studied in the initial screening. Multipoint

analysis was carried out using the program LINKMAP. All results were obtained under the

assumption of autosomal recessive mode of inheritance, complete penetrance, with sex-

average recombination fractions and allele frequencies obtained through the Genome

Database (GDB) (http://www.gdb.org/) (Pearson 1991, Pearson et al. 1992, Cuticchia et al.

1993).

The haplotypes were constructed manually, assuming the least number of possible

recombinations in each family. Allelic excess, the excess of an allele at a marker locus among

the MGA1 chromosomes (Paffected) versus non-MGA1 chromosomes (Pnormal) of parents or

healthy siblings, was calculated according to the following formula:

Pexcess = (Paffected-Pnormal)/(1-Pnormal), where P denotes the allele frequency.

The Pexcess values serve as a measure of the observed linkage disequilibrium.
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4.4.3.   Radiation hybrid analysis

The RH mapping panels Stanford G3 (Cox 1995) and Genebridge 4 (Gyapay et al. 1996) were

used to determine the order of the microsatellite markers closest to the MGA1 locus. The

PCR-amplified DNA was separated using electrophoresis in either a 1.5% agarose gel or in a

6% polyacrylamide gel. DNA was visualized with ethidium bromide or silver staining

(Bassam et al. 1991).

4.4.4.   Yeast artificial chromosomes

Prescreened YACs were obtained from the UK Human Genome Mapping Program Resource

Center (http://hgmp.mrc.ac.uk/). Altogether 15 YACs containing any of the polymorphic

markers D10S1653, D10S1763, D10S1661, D10S1477, D10S1476, D10S504, AFM234zf10,

D10S1714 or D10S548 were initially identified. Total YAC DNA was prepared from colony

purified YACs according to standard procedures (Hoffman & Winston 1987). The YAC

contig, consisting of nine overlapping YACs between markers D10S1653 and D10S548, was

used to determine the order of new STSs, ESTs and the CUBN intragenic markers.

4.4.5.   Bacterial artificial chromosomes

Using the entire CUBN cDNA as a probe, 25 BAC clones were identified by screening the

Roswell Park Cancer Institute (RPCI) human BAC library (http://bacpac.med.buffalo.edu).

The colony purified BAC clones were grown in Luria Bertani (LB) media supplemented with

chloramphenicol. BAC DNA was extracted using a modified version of the Plasmid Midiprep

kit (Qiagen, Germany) protocol. A contig of 16 overlapping BACs spanning the region

between the intragenic markers in the 5’ and 3’ region of the CUBN gene was assembled. The

sizes of six BAC inserts used in direct sequencing were determined by the field inversion gel

electrophoresis (FIGE) mapper system. BAC DNA was digested with the restriction enzymes

NotI and SacII, the fragments were separeted in a 1% pulse field certified agarose gel, stained

with ethidium bromide and visualized by UV fluorescence.

4.4.6.   RNA extraction and cDNA synthesis

Total RNA was isolated from both fresh white blood cells and lymphoblastoid cell lines using

the RNeasy RNA extraction kit or RNA Stat-60 (Chomczynski & Sacchi 1987). First strand

cDNA was reverse transcribed from total cellular RNA using both random hexamer and oligo

(dT) priming.
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4.4.7.   Sequencing and mutation analyses of the CUBN gene

For sequencing the 10.9 kb CUBN cDNA, multiple PCR primers were designed to cover the

entire region in overlapping fragments. Both the 5’ and 3’ primers were tailed with M13-

forward and M13-reverse tails, respectively, enabling sequencing in both directions.

Sequencing was done using the BigDye-Terminator AmpliTaq FS Cycle sequencing kit (PE

Applied Biosystems). The Sequence Navigator software (PE Applied Biosystems) was used

to confirm heterozygous position and to align both directions of the respective ladders (Phelps

et al. 1995). Sequence alterations were examined for restriction-site polymorphisms using the

DNAStar software.

The Finnish mutation FM1 was initially identified by the sequencing of a RT-PCR amplified

cDNA fragment. The screening of the FM1 mutation, C->T, in the rest of the MGA1 families

and the control individuals was performed by direct sequencing of PCR amplified genomic

DNA. Similarly, the second Finnish mutation FM2, a C->G transversion resulting in a splice-

site mutation, was first identified from RT-PCR amplified cDNA fragments. The mutation

was visualized in ethidium bromide stained agarose gels as two abnormal bands. The

fragments were purified before sequencing. Screening of the FM2 mutation in the intra-CUB

domain 6 intron was based on the loss of one of the two identified recognition sites for

restriction enzyme Dde1 visualized in an agarose gel.

4.4.8.   Determining the exon-intron structure and a putative promoter region

Identification of the exon-intron structure of the CUBN gene was initiated by long-range (LR)

PCR. LR-PCR was carried out using human DNA as template and Platinum Taq DNA

Polymerase High Fidelity enzyme (Life Technologies, USA). Direct sequencing of the inserts

of the BACs b7/b661M9, b11/b724P11, b12/b755F22, b15/b785G10, b16/b804N3 and

b17/b830K8, was also performed to identify exon-intron boundaries.

A putative promoter region was identified by direct sequencing of the inserts of two BACs,

b7/b661M9 and b11/b724P11. The sequence was analyzed for putative transcription factor

elements using the following databases at World Wide Web: Genomatix (MatInspector

professional: http://www.genomatix.gsf.de/cgi-bin/matinspector_prof/mat_fam.pl), GBF

Bio informat ics  (Mat Inspec tor  V2.2 :  h t tp : / /www.cb i l .upenn .edu/cg i -

bin/tess/Tess?_if=1&RQ=WECOME) (Quandt et al. 1995), TESS (BCM Search Launcher:

Gene Feature Searches: http://dot.imgen.bcm.tmc.edu:9331/seq-search/gene-search.html)
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and  BioInformat ics  and  Molecula r  Analys i s  Sec t ion  (BIMAS)

(http://bimas.dcrt.nih.gov/molbio/signal). Genome-wide repeats in some of the introns and in

the promoter region were identified using the National Center for Biotechnology Information

Basic Local Alignment Search Tool (NCBI BLAST: http://www.ncbi.nlm.nih.gov/BLAST/)

(Altschul et al. 1997).

4.5. Functional studies

4.5.1.   Western-blot analysis

To analyze the expression of cubilin protein, urine samples from Finnish MGA1 patients and

healthy controls were collected and immediately frozen. The urine was dialyzed against

water, lyophilized and resuspended in PBS. Concentrated urine samples were loaded on a

non-reducing 4-16% SDS-gel and electroblotted onto Immobilon PVDF membrane. As

primary and secondary antibodies a monoclonal mouse anti-human cubilin antibody (Sahali et

al. 1992) and an alkaline phosphatase labeled anti mouse IgG were used, respectively.

4.5.2.   Radioisotope binding assay

Urine specimens from 10 Finnish MGA1 patients from eight families, their healthy parents

and siblings and 13 healthy controls were collected in the morning and kept at 4°C only for a

few hours until analysis. The IF-receptor activity was measured by a radioisotope-binding

assay. In the assay, free IF-B12 complexes were separated from the IF-B12 complexes bound

to the receptor, by hydrophobic absorption of the receptor-IF-B12 complex to phenyl-

Sepharose (Guéant at al. 1995). The urine samples were incubated with CN (57Co) Cbl labeled

IF before a suspension of phenyl-Sepharose was added. The amount of measured radioactivity

corresponded to the urinary receptor activity for the labeled IF-B12 complex.
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5. RESULTS AND DISCUSSION

5.1. Genetic assignment of the MGA1 locus

5.1.1.   Linkage studies map the MGA1 locus to chromosome 10p (study I)

The 24 Finnish patients in 17 families that were accepted by Professor Ralph Gräsbeck as

MGA1 patients, in addition to the three Norwegian families, were chosen for this study.

The linkage study was initially performed with six multiplex Finnish MGA1 families. After

typing less than one hundred markers, a significant lod score value was first detected with

marker D10S191 on chromosome 10p. At this point, also the three Norwegian multiplex

families were included in the study. Additional markers were studied to confirm linkage and

the highest lod scores were obtained with two markers centromeric to D10S191, D10S1476

and D10S1477. In addition a multi-point linkage analysis between the MGA1 locus and the

seven closest marker loci localized the MGA1 gene closest to marker D10S1477 with a

maximum lod score of 5.36. The use of multi-point linkage analysis did not provide any

additional information suggesting that the marker D10S1477 and the MGA1 loci were not in

strong linkage disequilibrium, which was also demonstrated by a low Pexcess value (Pexcess

0.53). Nonetheless, as a result from one of the Norwegian families, where the younger

affected twin displayed a recombination, the gene was at this point placed more telomeric to

marker D10S466. As the following step, the additional eleven Finnish MGA1 families with a

single affected child were analyzed confirming linkage to chromosome 10p.

5.1.2.   Linkage disequilibrium and haplotype analyses (studies I, II)

After analyzing an additional number of new polymorphic markers in the region, two of them

AFM234zf10 and D10S504, showed a highly significant allelic association with MGA1 in the

Finnish families. This result further refined the region to about 4 cM and once more switched

the localization of the MGA1 gene centromeric to D10S1477. The area of strong linkage

disequilibrium was very limited implying a quite old mutation for MGA1. As a result the

younger Norwegian twin was considered not affected and her vitamin B12 treatment was

discontinued under supervision of her physician. The most likely order and distance between

the markers in the region according to the Whitehead institute/MIT Center for Genome

Research (http://www-genome.wi.mit.edu/) and our haplotype and RH data are shown in

Figure 4.
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Figure 4. The genetic map of chromosome 10p is showing the relative position of the marker loci in
the MGA1 region. Pexcess values are also indicated for some of the markers closest to the MGA1 locus.

Initially, extended haplotypes over the MGA1 region were constructed with nine markers

spanning ~14 cM between the markers D10S570 and D10S586 in the Finnish and Norwegian

multiplex families. Later more markers were studied and added to the haplotypes. By genetic

and linkage disequilibrium mapping, the critical region was limited to an interval less than 2

cM between markers D10S1476 and D10S548. The use of linkage disequilibrium has shown

to be a powerful tool for high-resolution mapping of genes in isolated populations. The

method has successfully been applied as guidance for the mapping and cloning of several

autosomal recessively inherited disease genes in the Finnish population (de la Chapelle 1993,

Hästbacka et al. 1994, Vesa et al. 1995, Höglund et al. 1996, de la Chapelle & Wright 1998,

Peltonen 2000). Later a candidate gene encoding the intrinsic factor receptor (IF-R) precursor,

cubilin was cloned by a functional approach and mapped to the same region by a Danish-

French group (Kozyraki et al. 1998). After the gene for MGA1 was identified, five novel

intragenic markers, four SNPs and a (AC)n repeat, were found when sequencing the gene and

added to the haplotypes. The region with strong allelic association associated with FM1 was
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very limited based on historical recombinations, implicating a very old Finnish mutation. This

interpretation is consistent with our haplotype data, which suggested that most of the Finnish

disease chromosomes carry the same ancestral mutation.

Table 2. Finnish haplotypes associated with the MGA1 gene.
The intragenic markers are FM2, FM1, CUB15P, CUB15IP and CUB27I(AC)n. CUB15P and
CUB15IP are SNPs in CUB domain 15 and in intra CUB15 intron. Exonic nucleotides are indicated in
capital letters and intronic nucleotides in small letters. CUB27I(AC)n is a highly polymorphic (AC)n
repeat in the last intron of the cubilin gene.
(R: observed recombination events, NA: not applicable; ND: not determined)

Table 2a
TEL Markers CEN

Mutation D10S1476 D10S504 AFM234zf10 D10S1714 D10S548

pexcess N 0.68 0.92 0.91 0.49 0.25
FM1 6 1 8 3 6 3
FM1 1 1 ND 3 6 3
FM1 1 1 8 3 R 3
FM1 5 1 8 3 6 1
FM1 3 1 8 3 8 4
FM1 3 1 8 3 14 1
FM1 3 2 8 3 6 1
FM1 1 1 8 3 3 3
FM1 1 5 8 3 3 3
FM1 1 5 8 3 7 1
FM1 1 2 8 3 8 2
FM1 1 2 8 3 8 4
FM1 1 1 9 3 5 1
FM1 1 1 4 6 6 4
FM1 1 5 8 6 2 2
FM1 1 2 ND 3 1 2
Total 31

FM2 2 2 9 3 7 2

FM3 1 3 7 6 12 1
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Table 2b
Mutation D10S504 AFM234zf10 FM2

(CUB6)
FM1

(CUB8)
CUB15P CUB15IP CUB27I(AC)n D10S1714

pexcess N 0.92 0.91 NA NA ND ND 0.79 0.49
FM1 12 8 3 c T G a 7 6
FM1 1 ND 3 c T G a 7 6
FM1 4 8 3 c T G a 7 8
FM1 2 8 3 c T G a 7 14
FM1 1 8 3 c T G a 7 7
FM1 2 8 3 c T G a 7 3
FM1 1 9 3 c T G a 7 5
FM1 1 4 6 c T G a 7 6
FM1 1 8 6 c T G a 2 2
FM1 1 8 3 c T G c 7 14
FM1 1 8 3 c T G c 8 6
FM1 1 8 3 c T G c 8 8
FM1 1 8 3 c T C c 7 6
FM1 1 8 3 c T C c 8 6
FM1 1 ND 3 c T C c 8 1
Total 31

FM2 2 9 3 g C C c 4 7

FM3 1 7 6 c C C c 2 12

Table 3. Norwegian haplotypes associated with the MGA1 gene.
The intragenic markers are FM2, FM1, CUB15P, CUB15IP and CUB27I(AC)n. CUB15P and
CUB15IP are SNPs in CUB domain 15 and in intra CUB15 intron. Exonic nucleotides are indicated in
capital letters and intronic nucleotides in small letters. CUB27I(AC)n is a highly polymorphic (AC)n
repeat in the last intron of the cubilin gene.
(R: observed recombination events, ND: not determined)

Table 3a
Norway D10S1476 D10S504 AFM234zf10 D10S1714 D10S548

FamA 2 ND 3 7 1
FamA 2 ND 3 12 2
FamD 5 ND 6 3 R
FamC 5 ND 6 6 4
FamC 2 ND 6 8 3
FamD 5 ND 13 7 1

Table 3b
Norway D10S504 AFM234zf10 FM2 FM1 CUB15P CUB15IP CUB27I(AC)n D10S1714

FamD ND 3 c C C c 7 7
FamA ND 3 c C G c 7 12
FamC ND 6 c C C c 4 3
FamC ND 6 c C C c 4 6
FamA ND 6 c C G c 4 8
FamD ND 13 c C G c 4 7
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Differences in the disease haplotypes between the Finnish and Norwegian suggested more

than one common mutation. Our haplotype data suggested that most of the Finnish disease

chromosomes carried the same ancestral mutation, while at least two Norwegian mutations

were predicted based on their haplotypes.

5.2. Physical mapping

5.2.1.   Yeast artificial chromosome contig (study II)

Since the region displaying linkage was quite large, the use of YAC clones was the only

option to assemble a physical map for positional cloning. A YAC contig of nine YACs was

constructed over an approximately 4-cM region between the flanking markers D10S1653 and

D10S548. The adjacent and partially overlapping YACs were ordered by STS and EST

content mapping. The STS content mapping identified four overlapping segments for the

markers AFM234zf10 and D10S504 showing the highest allelic association with the MGA1

locus. The Mega YACs from CEPH ranged from 270 kb to 1780 kb in size and were all

reported to be quite chimeric except for one (YAC-12). Because of the high degree of

chimerism, the YAC contig was only used for refined mapping of new ESTs in the absence of

any obvious candidate genes in the region.

5.2.2.   Bacterial artificial chromosome contig (studies II, III)

In order to determine the genomic structure of the CUBN gene, a BAC contig was established

covering the entire gene. The BACs are usually more stable than the YACs, due e.g. to

smaller inserts, and are also very useful since they can be used for direct sequencing. The

human BAC library was initially screened using 9.4 kb of the 10.9 kb CUBN cDNA as probe.

Altogether 16 overlapping BAC clones were identified that were positive for the five

intragenic markers in the CUBN gene. The BAC contig was then screened with the closest

STS markers in the region. However, none of the BACs were positive for the STS markers

flanking the gene, indicating that the distance between the markers and the gene was quite

large.
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5.3. A candidate gene

5.3.1.   Cubilin - a functional and positional candidate gene for MGA1 (study II)

A functional candidate gene, CUBN, for MGA1 was identified by a functional approach and

mapped to the same 6-cM chromosomal region by a Danish-French research group (Kozyraki

et al. 1998) as we earlier identified by recombinant-based linkage analysis. The CUBN gene

was encoding the receptor, cubilin (previously called gp280), present in the epithelium of

intestine and kidney and the yolk sac (Moestrup et al. 1998). Previous studies had already

indicated that the 460-kDa gp280 protein may act as a receptor for the IF-B12 complex and

that gp280 and the IF- receptor in fact are identical proteins (Birn et al. 1997, Seetharam et al.

1997). The unique structure of cubilin showed a stretch of about 110 amino acids followed by

a cluster of eight epidermal growth factor repeats (EGF) and a large cluster of 27 CUB

domains (an abbreviation of Complement subcomponents Clr/Cls, Uegf and Bone

morphogenic protein-1, Bork & Beckmann 1993) and lack of a typical N-terminal

transmembrane segment. Due to the high amount of CUB domains the receptor was named

cubilin (Moestrup et al. 1998). The assembling of cubilin has been studied in the bovine

homologue, and it has been proposed that the receptor is organized into a trimer of identical

subunits (Lindblom et al. 1999).

The CUB domain structure contains two layers of five-stranded antiparallel β-sheets

connected with β-turns (Bork & Beckmann 1993, Romero et al. 1997). CUB domains are

mainly seen in a few copies in developmental proteins, such as spermadhesins, talloid protein

and bone morphogenetic protein-1 that comprise of multiple EGF and CUB binding domains

(Bork & Beckmann 1993). The cubilin structure is although unique due to the very high

number of 27 CUB domains.

Since cubilin has no classical transmembrane segment it might require a coreceptor. The

colocalizing 600-kDa transmembrane transcobalamin-vitamin B12 receptor megalin (gp330)

is suggested to carry out that function (Moestrup et al. 1996, Birn et al. 1997, Christensen et

al. 1998, Moestrup et al. 1998). No binding of the IF-B12 complex direct to megalin has been

shown (Birn et al. 1997). Megalin and cubilin are both expressed in the endocytic vesicles of

the absorptive epithelia in the intestine, kidney and yolk sac (Birn et al. 1997, Moestrup et al.

1998).
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Figure 5. Epithelial receptors important for vitamin B12 uptake into the cell.
(Picture provided by Søren K. Moestrup)

The existence of 27 CUB domains in cubilin indicates a high number of putative sites for

various protein interactions. Cubilin binds, as megalin does, the receptor-associated protein

(RAP) (Birn et al. 1997, Kristiansen et al. 1999, Birn et al. 2000) and cubilin is suggested to

play a role in the endocytosis and trafficking of immunoglobulin light chains in renal

proximal tubule cells (Batuman et al. 1998). Additional studies have shown that cubilin also

acts as a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density

lipoproteins (HDL) in the kidney (Hammad et al. 1999, Kozyraki et al. 1999).

Megalin Cubilin

cytoplasm

TC-B12

IF-B12

membrane



42

Cubilin as many other CUB domain proteins also seems to play a role in embryonic

development. Previous experimental studies performed in rats have shown that antibodies

raised against cubilin induced fetal malformations including central nervous system defects

(Sahali et al. 1992). Disruption of the gene for megalin in mice also causes severe central

nervous system malformations that are associated with a decreased lipoprotein uptake in the

early neuroectoderm and visceral yolk sac (Willnow et al. 1996). Other studies support a

functionally significant association between cholesterol metabolism and the embryonic

development of the central nervous system (Herz et al. 1997).

The CUBN gene was PCR screened with an intragenic marker against the established YAC

contig and showed to be positive for the same YAC clones as the two markers, AFM234zf10

(Pexcess 0.91) and D10S504 (Pexcess 0.92), showing the strongest allelic association with

MGA1. Consequently, the putative functional candidate gene also turned out to be a strong

positional candidate gene for MGA1.

5.4. Mutation analyses

5.4.1.   Mutational analyses of the CUBN gene (study II)

To test the assumption that mutations in CUBN, encoding the IF-receptor, cause hereditary

megaloblastic anemia 1 (MGA1), RT-PCR and direct sequencing were performed with two

MGA1 patients (one Finnish and one Norwegian), one of their children (heterozygous for

MGA1) and one unrelated healthy control from both the Finnish and Norwegian population.

Additionally, a Southern-blot analysis was carried out in the Finnish and Norwegian MGA1

families to exclude a possible chromosomal misalignment of the gene due to its highly

repetitive nature.

Two different mutations in the CUBN gene were identified in the Finnish MGA1 families.

The first Finnish mutation (FM1) identified was a point mutation, a C->T transition at

nucleotide 3916 in CUB domain 8. This missense mutation causes an amino acid change from

proline to leucine (P1297L), which causes an impaired recognition of the IF-B12 complex by

cubilin (Kristiansen et al. in press). Patients from the majority of the Finnish families, 15 out

of 17, were homozygous for this mutation, whereas one family was compound heterozygous

and another was homozygous normal for FM1. In 316 control chromosomes, one FM1
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heterozygote was identified indicating a 0.003 carrier frequency, which is in accordance with

earlier estimations (Furuhjelm & Nevanlinna 1973). The proline residue is highly conserved

in multiple CUB domains in the cubilin protein both in human and rat, indicating that it is

functionally important (Bork & Beckmann 1993, Moestrup et al. 1998, Kozyraki et al. 1998).

The cubilin receptor is otherwise also quite conserved among the two species showing a 69%

identity (Kozyraki et al. 1998).

The second Finnish mutation, FM2, was a C->G transversion that resulted in a complex splice

mutation by activating a cryptic splice donor site which results in an in-frame insertion of

multiple stop codons in the intra CUB domain 6 intron. In contrast to the patients

homozygous for FM1, no cubilin protein was detected with Western blot analysis in the urine

sample from the patient homozygous for FM2. This suggested that FM2 might alter the

stability of the mutant FM2 cubilin transcript. Additional studies have also shown that the

FM2 patient had a high urinary apoA-I excretion level and an elevated fasting HDL-

cholesterol concentration. In opposite, no apoA-I was detected in the urine of the two FM1

patients studied, indicating that these patients take up apoA-I in the kidney (Kozyraki et al.

1999). The FM2 mutation was identified in only one Finnish MGA1 family where the

patient’s parents were first cousins both paternally and maternally. No carriers were observed

in either the Finnish control samples or the three Norwegian MGA1 families. Thus, it was

concluded that FM2 constitutes a private mutation that most likely is unique and occurred

relatively recently. Since one of the Finnish MGA1 was compound heterozygote for FM1, this

indicates that there has to be a third Finnish mutation, FM3. Clinically, the FM1, FM2 and

FM1/FM3 patients are not distinguishable.

Recognition of the binding site for IF-B12 to the CUB domains 5-8 in cubilin relates to the

identification of the two mutations, FM1 and FM2. The two Finnish mutations are in the same

critical region in cubilin that binds the IF-B12 complex (Kristiansen et al. 1999).

FM1 accounts for 31 of 34 (91%) disease chromosomes and constitutes the major Finnish

MGA1 mutation. For many Finnish diseases for which the molecular defect has been

identified, over 90% of disease alleles have shown to carry the same causative mutation (de la

Chapelle & Wright 1998, Peltonen et al. 1999). In spite of sequencing the entire 10.9 kb

CUBN coding region, as well as substantial portions of the intervening intronic sequence, in
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three patients and one carrier from the Norwegian multiplex MGA1 families, no mutation has

been found.

The genetic basis of selective vitamin B12 malabsorption with proteinuria has also been

studied in a canine model (giant schnauzer dogs) closely resembling the human MGA1

phenotype (Fyfe et al. 1989, Fyfe et al. 1991a). The canine CUBN gene was shown to be

highly identical with the human (83% identity) and the rat (70% identity) cubilin genes.

Linkage to the canine CUBN gene was however rejected in the canine family indicating that

the disorder resembling MGA1 is caused by a gene defect in a distinct gene product other

than cubilin (Xu et al. 1999).
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5.5. The genomic structure of the human cubilin gene (study III)

The complete genomic structure of CUBN was determined by both LR-PCR and by direct

sequencing of BAC clones that were positive for CUBN intragenic markers. The cubilin gene

consists of 67 exons and 66 introns spanning about 170 kb. The leader (L) region is

interrupted by three introns while the fourth intron is located in the junction between the

leader region and the first EGF domain. The following EGF domains are all divided by

introns except for EGF8. The next intron after the EGF repeats is located in the junction

between EGF8 and the first CUB domain. The exon-intron pattern seems to be the same in

almost every one of the following 27 CUB domains. All CUB domains are preceded by an

intron and interrupted by an internal intron, except for CUB domain 11 that is interrupted by

two internal introns (Figure 7). The size of the introns varied from 159 bp to about 11.3 kb.

Figure 7. The genomic structure of the cubilin gene showing the distribution of the 66 introns
(arrows), 3 introns in the leader (L) region, 1 intron before the first EGF repeat, 7 introns in the 8 EGF
domains, 1 intron between the last EGF domain and the first CUB domain and 54 introns in the 27
CUB domains. (Picture provided by Søren K. Moestrup and modified)

No obvious TATA box was detected in the putative promoter sequence. Instead several other

potential transcription-regulation sites, such as Sp1 binding sites, were identified. Moreover,

binding sites for other common and more tissue specific were found. In addition to a possible

CCAAT box and a CCAAT/enhancer binding protein site, the following transcription factor

elements that are both tissue restricted and tissue specific were identified: different GATA

factors, Lmo2/Tal-1/E2A complex and hepatocyte nuclear factors HNF-1 and HNF-4. The

COOH

8 EGF repeats                                            27 CUB domains     
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human megalin/LRP-2 promoter has also recently been characterized (Knutson et al. 1998).

Although cubilin and megalin are expressed in the same tissues, and presumably belong to the

same family of receptors, their promoters only partly resemble each other. Both promoters

have Sp1 binding sites, however the cubilin promoter lacks the atypical TATA element that

seems to be essential for LRP-2 promoter activity (Knutson et al. 1998).

5.6. Urinary assay of the IF-receptor (study IV)

Previous studies have identified several different cobalamin-binding proteins in urine. These

proteins include IF, haptocorrin (HC) and the IF-receptor (Gräsbeck et al. 1982, Wahlstedt &

Gräsbeck 1985, Guéant et al. 1995). The IF-receptor activity in urine is measurable and

correlates well with the receptor activity in ileal biopsies (Guéant et al. 1995, Safi et al. 1995),

where similarly decreased or absent receptor activity has been observed in MGA1 patients

(Burman et al. 1985).

In this study the receptor activity was measured in 10 Finnish MGA1 patients, 11 of their

first-degree relatives and 13 healthy control individuals. The study was performed with the

same patients used in the linkage analysis but before the cubilin gene had been cloned and the

mutations identified. The receptor activity in the urine of the MGA1 patients was extremely

low or almost undetectable compared with the healthy relatives and the controls. Similar

results have also been observed by a French research team (Guéant et al. 1995, 1999). No

distinction in receptor activity was observed between the FM2 and the FM1 patients.

Differences in receptor activity were not observed among the heterozygote carriers and the

healthy controls studied. Therefore this method might be reliable for diagnostic purposes but

it is not able to detect possible carriers for the disease.

Further studies with the same Finnish MGA1 patients showed that they excrete significantly

higher amounts of IF in the urine than the control individuals. The elevated values of IF in the

urine may be caused by the absence of a functional IF-receptor in the kidney (Dugué et al.

1999). Patients from Kuwait have also been tested for receptor activity in urine but did not, in

contrast to the Finnish patients, show any decrease of receptor activity and actually in one

family there was increased excretion (Gräsbeck 1997, Dugué et al. 1999). Increased amounts
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of an unstable IF-receptor detected in ileal biopsy specimens, has also been reported (Eaton et

al. 1998).

5.7. Genealogical studies (unpublished data)

The MGA1 disease gene is predominantly clustered in the south-central and eastern parts of

Finland. The distributions of the birthplaces for the grandparents of the MGA1 patients’

participating in this study are shown in Figure 8. These two regions were settled in two

expansions during the early settlement (old Finland) in which the population began to expand

some 2,000-2,500 years ago and late settlement (new Finland) in which population expansion

started mainly approximately 500 years ago in the 1500’s (Norio et al. 1973). The presence of

the MGA1 gene in both the old and new Finland indicates that the mutation is of a relatively

old origin. In cases of autosomal recessive disorders where the mutations are geographically

widespread, the founding has occurred a long time ago (de la Chapelle 1993). The major

Finnish mutation FM1, most likely carried by the original settlers, is mainly seen in the parts

of Finland that were inhabited later (new Finland) as a result of internal migration. In contrast

to FM1, the two minor Finnish mutations FM2 and FM3 are observed in the old part of

Finland along the coastline. These mutations may either have arisen from private mutations or

arrived with new immigrants.

The church records have served as a population register for the majority of the population for

about the last 10 generations (Norio et al. 1973) and made it possible to investigate for

consanguinity between the MGA1 families. In an earlier genealogic study performed by

Furuhjelm and Nevanlinna, 24% remotely consanguineous marriages between parents of

MGA1 patients were identified (Furuhjelm & Nevanlinna 1973).
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Figure 8. Geographic distribution of birthplaces for the MGA1 patients’ grandparents.
Filled circles and squares indicate FM1 and FM2 grandparents, respectively. The grandparents
for the postulated third mutation (FM3) are also indicated (open circles).

FM1
FM2
FM3
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6. CONCLUDING REMARKS

At the beginning of this study the molecular background of MGA1 was not known, although

evidence had been presented for the existence of an abnormal or a total lack of the intestinal

receptor for the intrinsic factor-vitamin B12 complex. More than 30 years had passed since

the disease was first described and the lack of new patients had even lead to speculations that

the disease does not exist at all or that it does not show Mendelian inheritance. This study

describes the identification of the Finnish MGA1 patients, genetic and physical mapping of

the MGA1 gene and identification of the mutations causing MGA1.

The MGA1 locus was mapped by genetic linkage analysis to chromosome 10p in Finnish and

Norwegian MGA1 families. A very strong candidate gene for MGA1, the one encoding the

IF- receptor, cubilin, was cloned by a Danish-French research team and mapped to the MGA1

region. Two mutations were identified in the MGA1 gene in the Finnish population. The

mutations include one missense mutation (FM1: P1297L) and one complex splice mutation

(FM2). One of the MGA1 patients was compound heterozygote for FM1 suggesting a third

Finnish mutation (FM3). However, no mutations were identified in the cubilin gene in the

Norwegian MGA1 patients. Based on the mutation analysis of the cubilin gene in the Finnish

and Norwegian patients it seems very possible that the same phenotype may result from one

of several genetic errors. The Norwegian patients may have mutations in the promoter region

which has not yet been analyzed, in some of the introns or in an another gene encoding a

protein that is involved in the intracellular transport of vitamin B12 and is located in the near

vicinity of the MGA1 gene. The presence of different haplotypes in the three Norwegian

MGA1 families supports the hypothesis that another gene might be involved, although the

Norwegian patients show linkage to the MGA1 locus and there is no evidence of an additional

gene. Because of the complicated multistep nature of vitamin B12 absorption from the lumen

of the intestine to the blood, genetic diversity in the disease pattern may very likely occur. All

the steps involved in the transference of vitamin B12 across the enterocytes in the ileum are

not completely understood and it is therefore very possible that more than one gene defect

may cause MGA1.

The disease has also been frequently diagnosed in Turkey and several Arabian countries

(Yetgin et al. 1983, Abdelaal & Ahmed 1991, Altay et al. 1995, Ismail et al. 1997). Those

who studied the Saudi Arabian and Kuwaiti cases suggested an X-linked mode of inheritance
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because of the abundance of affected males (Abdelaal & Ahmed 1991, Ismail et al. 1997).

Considering the multistep nature of vitamin B12 absorption, heterogeneity in the genetic basis

of the disease with a possible presence of an X-linked form would not be unexpected in the

Arabian families (Ismail et al. 1997). A difference in penetrance between the Scandinavians

and the Arabians may be another explanation why only males are affected, since in both

materials the birth rate seems to be equal in males and females. Genetic heterogeneity may in

part explain this syndrome. The differences in the expression levels of the IF-receptor in

different populations support this assumption. While a decreased IF-receptor activity was

observed in the urine from the Finnish MGA1 patients, no decrease and even a significant

increase (in one family) of the urinary receptor activity was detected in the patients from

Kuwait (Dugué et al. 1999). Overexpression of an unstable IF-receptor has also been detected

in ileal biopsy specimens from two sisters suffering from MGA1 (Eaton et al. 1998).

Although the Finnish MGA1 mutations have been identified, the question still remains why

almost no new patients have been diagnosed since the 1970’s and 1980's in Finland and

Norway. In contrast to the Arabian patients, where differences in the penetrance may occur,

no evidence of nonpenetrance was observed among the Finnish and Norwegian families

studied. In the Finnish MGA1 families none of the parents or the healthy siblings were

homozygous for either the FM1 or the FM2 mutation thereby excluding nonpenetrance in

these families. In the Norwegian families, on the other hand, where no mutation has been

identified, nonpenetrance was excluded based on the haplotype analysis alone where none of

the healthy relatives studied were homozygous for the affected haplotypes.

One explanation why the disease has “disappeared” may be a drop in the gene frequency due

to migration to the bigger cities from isolated subpopulations, where most of the MGA1

patients originate. In the cities the gene frequencies would be lower due to a dilution of genes

and homozygosity becomes very rare. In the rural high-incidence MGA1 areas in the

northeastern parts of Finland the number of births has significantly dropped since the 1950’s

to present. In the eastern parts of Finland the numbers have dropped considerably from 19,610

to 8,754 births per year (~55%) between 1950 and 1970, while the decline of births in the

whole country during that time was ~66% (from 98,065 to 64,559 births per year). Today

little more than 6,000 children are born per year in eastern Finland and about 57,000 in the

whole country. In the northeastern part of Finland, Kainuu-Kajanaland, which is a sparsely

populated high-incidence MGA1 region, the number of births has decreased as well. While
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the drop of births in the whole Finland was about 42% between 1950 and 1998, the number of

births in Kainuu-Kajanaland dropped from 2,043 births per year to 873 births per year, (a 57%

decline), during the same time period. During the corresponding time from the 1950s to today

the number of births in southern Finland have, on the other hand, increased about 25% from

12,503 to 15,551 births per year (Official Statistics of Finland 1997, 1999). A decrease in the

number of births in the rural high-incidence MGA1 areas could partly explain a decline in the

number of new patients but not the present absence of patients. Another explanation would be

that possible new patients suffering from megaloblastic anemia are treated with vitamin B12

without further examinations, which seems unlikely. As a result of the identification of the

Finnish mutations, patients suffering from megaloblastic anemia can now relatively easily be

tested for MGA1.

Drastic changes in environmental factors like the dietary habits among Finns and Norwegians

during the last fifty years might have influenced the penetrance of the gene. This hypothesis

could principally be very easily tested by population studies where healthy homozygotes for a

MGA1 mutation should be found. However, a population study can be quite difficult to

accomplish in practice since the amount of individuals studied has to be quite large due to the

low frequency of the gene in both the Finnish and the Norwegian populations.
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