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genetic component in the determination of body mass. In recent years several 
technological and scientific advance have been made in obesity research. For 
instance, novel replicated loci have been revealed by a number of genome wide 
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evidence for linkage was found for two loci. An observation was made that the 
heritability estimate increased substantially when additional family members 
were removed from the analyses. Metabonomic, transcriptomic and genomic 
variation was assessed in a Finnish population cohort. A set of highly correlated 
genes of an inflammatory pathway was shown to associate with serum 
metabolites. The expression of the network genes was found to be dependent 
on the circulatory metabolite concentrations.
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ABSTRACT 

Johannes Kettunen, Examination of Genetic Components Affecting Human Obesity-
Related Quantitative Traits. National Institute for Health and Welfare (THL), 
Research 38, 152 pages. Helsinki 2010.  
ISBN 978-951-245-317-4 (printed), ISBN 978-951-245-318-1 (pdf) 

 

Obesity increases the risk for several conditions, including type 2 diabetes mellitus, 
cardiovascular disease, hypertension, osteoarthirits and certain types of cancer. 
Twin- and family studies have shown that there is a major genetic component in the 
determination of body mass. In recent years several technological and scientific 
advance have been made in obesity research. For instance, novel replicated loci have 
been revealed by a number of genome wide association studies. 

This thesis aimed to investigate the association of genetic factors and obesity-related 
quantitative traits. The first study investigated the role of the lactase gene in 
anthropometric traits. We genetically defined lactose persistence by genotyping 
31 720 individuals of European descent. We found that lactase persistence was 
significantly correlated with weight and body mass index but not with height. 

In the second study we performed the largest whole genome linkage scan for body 
mass index to date. The sample consisted of 4401 twin families and 10 535 
individuals from six European countries. We found supporting evidence for two loci 
(3q29 and 7q36). We observed that the heritability estimate increased substantially 
when additional family members were removed from the analyses, which suggests 
reduced environmental variance in the twin sample. 

In the third study we assessed metabonomic, transcriptomic and genomic variation 
in a Finnish population cohort of 518 individuals. We formed gene expression 
networks to portray pathways and showed that a set of highly correlated genes of an 
inflammatory pathway associated with 80 serum metabolites (of 134 quantified 
measures). Strong association was found, for example, with several lipoprotein 
subclasses. We inferred causality by using genetic variation as anchors. The 
expression of the network genes was found to be dependent on the circulatory 
metabolite concentrations. 

Keywords: Obesity, Body mass index, lipoprotein, metabolome, transcriptome, 
inflammation 



 

 

 

TIIVISTELMÄ 

Johannes Kettunen, Examination of Genetic Components Affecting Human 
Obesity-Related Quantitative Traits [Ihmisen lihavuuteen liittyvien kvantita-
tiivisten ominaisuuksien geneettinen tutkimus]. Terveyden ja hyvinvoinnin laitos 
(THL), Tutkimus 38, 152 sivua. Helsinki 2010.  
ISBN 978-951-245-317-4 (painettu), ISBN 978-951-245-318-1 (pdf) 

 

Lihavuus on huomattava, lisääntyvä ongelma maailmassa. Lihavuus lisää riskiä sai-
rastua sydän- ja verisuonitautiin, tyypin 2 diabetekseen, nivelrikkoon ja tietyn tyyp-
pisiin syöpiin. Perhe- ja kaksostutkimukset ovat osoittaneet että suuri osa ruumiin-
painon vaihtelusta selittyy perinnöllisillä tekijöillä.  

Tämän työn tarkoituksena oli tutkia lihavuuteen liittyvien jatkuvien muuttujien ja 
perinnöllisten komponenttien vuorovaikutusta. Ensimmäisessä osatyössä tarkastel-
tiin laktaasigeenin vaikutusta ruumiin rakenteeseen. Määritimme geneettisesti lak-
toosi-intoleranssin 31 720 Eurooppalaisessa henkilössä. Havaitsimme, että laktoosi-
intolerantikoilla oli tilastollisesti merkittävästi pienempi ruumiinpaino, sekä paino-
indeksi kuin laktoosia sietävillä henkilöillä. Laktoosi-intoleranssin ei havaittu vai-
kuttavan loppupituuteen. 

Toisessa osatyössä tutkimme painoindeksiä toistaiseksi suurimmalla kaksosperheistä 
koostuvalla kytkentätutkimuksella. Tutkimusaineistona oli 10 535 eurooppalaista 
henkilöä 4 401 perheestä, kuudesta eri maasta. Havaitsimme kromosomeissa 3q29 ja 
7q36 aikaisempia tutkimuksia tukevia löydöksiä. Lisäksi havaitsimme että herita-
biliteetti kasvoi, kun jätimme analyyseistä pois muut perheenjäsenet, joka viittaisi 
ympäristöstä johtuvan vaihtelun pienenemiseen kaksosaineistossa. 

Kolmannessa osatyössä tutkimme aineenvaihdunta-, geeniekspressio- ja geenimerk-
kidataa suomalaisessa väestöotoksessa joka koostui 518 suomalaisesta henkilöstä. 
Muodostimme geeniverkkoja keskenään vahvasti korreloivista geeneistä ja havait-
simme että tulehdukseen liittyvä geeniverkko korreloi vahvasti 80 seerumin aineen-
vaihduntatekijän kanssa 134:stä mitatusta. Erittäin vahvoja korrelaatioita löytyi 
esimerkiksi lipoproteiinien alaluokista. Arvioimme myös syy-seuraussuhdetta käyt-
tämällä geenimerkkejä suuntaavina pisteinä verkkoanalyysissä. Geeniverkon ilmen-
tymisen eheyden todettiin olevan riippuvainen aineenvaihduntatekijöiden pitoisuu-
desta veressä. 

Avainsanat: lihavuus, painoindeksi, lipoproteiniinit, tulehdus, aineenvaihdunta, gee-
nin ilmentyminen 



 

 

CONTENTS 

Abbreviations ............................................................................................................... 12 

List of original publications ..................................................................................... 14 

1 Introduction .......................................................................................................... 15 

2 Review of the literature .................................................................................... 16 

2.1 GENOMICS ................................................................................................ 16 
2.1.1 Structure and variation of human genome ....................................... 16 
     2.1.1.1 Sequencing the human genome .......................................................... 21 

2.1.2 Mapping quantitative trait loci ........................................................ 21 
     2.1.2.1 Basic principles of quantitative trait mapping..................................... 23 

     2.1.2.2 Heritability .......................................................................................... 23 

     2.1.2.3 Linkage mapping ................................................................................ 24 

     2.1.2.4 Association analysis ............................................................................ 26 

2.1.3 Population genetics .......................................................................... 32 

2.2 BODY MASS INDEX, LIPIDS AND OBESITY ................................................. 34 
2.2.1 Obesity ............................................................................................. 34 
     2.2.1.1 Obesity as a risk factor ....................................................................... 35 

     2.2.1.2 Obesity and environment .................................................................... 35 

     2.2.1.3 Genes affecting body mass index ....................................................... 36 

2.2.2 Lipids and lipoprotein metabolism .................................................. 38 
2.2.3 Lipoproteins, obesity and insulin resistance .................................... 41 
2.2.4 Lipoproteins and cardiovascular disease ......................................... 41 

2.3 TRANSCRIPTOMICS ................................................................................... 42 
2.3.1 Transcription regulation .................................................................. 44 

2.4 METABOLOMICS ....................................................................................... 46 

3 Aims of the study ................................................................................................. 49 

4 Materials and methods ...................................................................................... 50 

4.1 STUDY SUBJECTS ...................................................................................... 50 
4.1.1 Population samples in the lactase study (I) ..................................... 50 
4.1.2 The GenomEUtwin sample (II) ....................................................... 51 
4.1.3 The Dietary, Lifestyle, and Genetic determinants of Obesity and 

Metabolic syndrome study (III) ....................................................... 52 
4.1.4 Laboratory measurements ................................................................ 53 



 

 

     4.1.4.1 Metabolome ........................................................................................ 53 

     4.1.4.2 Transcriptome ..................................................................................... 55 

     4.1.4.3 Genomic markers ................................................................................ 56 

4.2 STATISTICAL METHODS ............................................................................ 57 
4.2.1 Quality control ................................................................................. 57 
     4.2.1.1 Familial relationships .......................................................................... 57 

     4.2.1.2 Genotype quality controls ................................................................... 57 

     4.2.1.3 Phenotype quality control, transformations and corrections ............... 58 

     4.2.1.4 Quality control in expression arrays ................................................... 59 

     4.2.1.5 Association analysis with expression data (III)................................... 60 

4.2.2 Statistical analyses ........................................................................... 61 
     4.2.2.1 Linkage ............................................................................................... 61 

     4.2.2.2 Power calculation ............................................................................... 61 

     4.2.2.3 Association testing and dominance deviation ..................................... 62 

     4.2.2.4 Imputation ........................................................................................... 62 

     4.2.2.5 Principal components analysis ............................................................ 63 

     4.2.2.6 Meta-analysis, heterogeneity and interaction using summary 
statistics .............................................................................................. 65 

     4.2.2.7 Network analysis in gene expression .................................................. 65 

     4.2.2.8 Network orientation and putative causality ......................................... 66 

     4.2.2.9 Connectedness of the network ............................................................ 67 

5 Results and discussion ...................................................................................... 68 

5.1 LACTASE PERSISTENCE ASSOCIATION WITH BODY MASS INDEX (I) .......... 68 
5.1.1 Association analyses and meta-analyses.......................................... 68 
5.1.2 Addressing stratification .................................................................. 70 
5.1.3 Imputation ....................................................................................... 72 
5.1.4 Power reduction and model in analyses ........................................... 72 
5.1.5 Discussion ....................................................................................... 73 

5.2 GENOME-WIDE LINKAGE SCAN FOR BODY MASS INDEX IN EUROPEAN 

TWIN COHORTS (II) ................................................................................... 75 
5.2.1 Discussion ....................................................................................... 78 

5.3 INTEGRATION OF THREE OMICS IN EXAMINATION OF OBESITY-RELATED 

COMPONENTS IN FINNISH POPULATION COHORT (III) ............................... 80 
5.3.1 Network analysis and module association to metabolic 

phenotypes ....................................................................................... 80 



 

 

5.3.2 Genetic factors affecting LL module expression ............................. 83 
5.3.3 Integrity testing ................................................................................ 84 
5.3.4 Inferring causality ............................................................................ 85 
5.3.5 Discussion ....................................................................................... 86 

6 Conclusions ........................................................................................................... 88 

7 Acknowledgements ............................................................................................ 89 

8 References ............................................................................................................. 91 

 

 



 

THL 2010 – Research 38 

Examination of Genetic Components Affecting Human Obesity-Related Quantitative Traits 12 
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Health2000  The Health 2000 Health Examination Survey 
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KORA  Cooperative health research in the Region of 
Augsburg, Southern Germany 
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LL  The Lipid-Leukocyte module 



 

THL 2010 – Research 38 

Examination of Genetic Components Affecting Human Obesity-Related Quantitative Traits 13 

LOD  Logarithm-of-odds 

MLOD  Multipoint logarithm of odds score 

mRNA  Messenger ribonucleic acid 

MS  Mass spectrometry 

N  Number of individuals 

NA  Not available 

NEO  Network Edge Orientation 

NFBC 1966  The North Finland Birth Cohort 1966  

NR  Not reported 

OR  Odds ratio 

PCA  Principal components analysis 

QTL  Quantitative trait locus 

RNA  Ribonucleic acid 

rRNA  Ribosomal ribonucleic acid 

SD  Standard deviation 

SNP  Single nucleotide polymorphisms 

TFBS  Transcription factor binding site 

tRNA  Transfer ribonucleic acid 

VC  Variance components 

VLDL  Very low density lipoprotein 
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YF  The Cardiovascular Risk of Young Finns Study 
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1 INTRODUCTION 

In the last two decades our knowledge of the human genome has increased 
dramatically. Looking back at the technological advances that have been made is 
astonishing. Large numbers of “Mendelian” disease genes have been found, but the 
hunt for complex trait genes is still ongoing. Obesity, defined as excessive fat 
accumulation, is one of those complex traits. Obesity increases risk for many 
diseases, including type 2 diabetes mellitus, cardiovascular disease, certain types of 
cancer and osteoarthritis. Body mass is defined by genes and environmental 
influences acting individually and in concert. A large number of genes involvel in 
obesity have been identified, but they still explain only a fraction of the variance 
attributed to genetic factors identified by family and twin studies. Advances have 
been made in finding some rare high-effect variants, such as the MC4R-mutations. 
On the other end of spectrum lie the common, low-effect variants such as those in 
the FTO gene region. Most of the variation between these two ends of the spectrum 
is still unfound and more work needs to be done in finding the rest of the genetic 
variance explaining the trait’s heritability. Genetic studies have proceeded from 
single gene association to linkage and now whole genome association. Quite 
possibly the next step will be sequencing the whole genome in several individuals in 
order to identify trait-related alleles. 

It seems that we have now picked the low hanging fruits from a large number of 
phenotypes. Now, genome-wide association studies for obesity require samples in 
the order of 200 000 to find new loci with minute effect sizes. It is time for us to 
take another point of view and explore different aspects. One possibility is to 
venture into the world of gene expression, which is studied using challenging data 
sets revealing several details influencing the expression level of a gene. These 
factors include the tissue of interest, environmental exposures, genetic variation and 
developmental time. In this study we approached this complexity in the simplest 
possible way by measuring gene expression levels from whole blood, which is the 
same functional matrix where the phenotypes of interest, metabolites, are found. 

Another way to reduce the complexity is to refine our phenotypes of interest. How 
well does a simple measure of fat accumulation describe the predisposition to 
cardiovascular disease? It certainly plays its role but lipoproteins are closer to the 
site of action and are actually causing the foam cells to emerge in the first place. 
Lipoproteins have been studied widely before this study. We introduce an effective 
way to gain information on the lipoprotein fractions using proton nuclear magnetic 
resonance (1H NMR). 1H NMR gives more detailed information on both blood 
metabolites and different sub classes of lipoproteins. 
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2 REVIEW OF THE LITERATURE 

2.1 Genomics 

The term genome describes the entire hereditary material of an organism. It consists 
mostly of deoxyribonucleic acid (DNA), but in some viruses it consists of 
ribonucleic acid (RNA). Genomics is a term describing the study of genomes. It 
covers everything from sequencing the whole genome of an organism to fine scale 
genetic mapping. It also includes study of intragenomic interplay of genetic effects, 
such as pleiotropy (one gene can modify several phenotypic traits) and epistasis (a 
function of a gene is modified by one or several others).  

2.1.1 Structure and variation of human genome 

Most of the heritable genetic material in humans is packed in the nuclei of cells. It is 
a tightly packed structure where a double helical string of DNA is wound around 
histone beads. Coiling of histones and further scaffolding forms a superstructure 
called a chromosome (Figure 1). The human genome is diploid in most nuclei 
(haploid in germ cells) and consists of 22 autosomal chromosome pairs and a sex 
chromosome pair (Figure 2), which is either XX (female) or XY (male). In addition 
to the DNA in nuclei, there is a ~16 kilo-base circular DNA molecule in 
mitochondria, which is a cell organelle mostly responsible for cellular energy 
metabolism. 

 

Figure 1. The DNA organization into a chromosome (www.genome.gov/Glossary) 
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If the number of base pairs of all chromosomes were added together it would total 
over 3 billion base pairs. Of this grand total only about 1.5% codes for proteins and 
is called the exome. The human genome contains over 20 000 protein coding genes. 
The definition of a gene has become rather vague in the recent years. A gene is now 
broadly defined as a “union of genomic sequences encoding a coherent set of 
potentially overlapping functional products” (Gerstein et al., 2007). The function, if 
any, of the remaining 97% of the human genome remains unknown. It consists 
largely (~50%) of repeat sequences, such as short and long interspersed nuclear 
elements, tandem repeats and non-coding RNA genes. 

 

Figure 2. The human chromosomes (www.genome.gov/Glossary) 

Genetic mapping utilizes genetic variation between individuals. The smallest type of 
variation in the nucleotide sequence is the single nucleotide polymorphism (SNP), in 
which a single nucleotide is substituted by another. The average genomic mutation 
rate for a base is ~2.5*10-8 per meiosis (Nachman & Crowell, 2000). 

Mutation throughout the genomic sequence, including single nucleotides, causes 
variation. However, some mutations produce changes that render the organism non-
viable, thus these variations are not detected in population. Pieces of DNA can be 
transferred to another location in the genome, in a process called translocation. A 
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fragment of DNA can be either inserted (insertion) or removed (deletion) from 
genomic sequence (described in Figure 3 and Figure 4). Alleles are the different 
forms of a given DNA sequence. 

 

Figure 3 . Mutation events of SNPs (modified from:www.genome.gov/Glossary) 

Microsatellites are tandem repeats of 1-6 nucleotide sequences. The number of 
repeats can vary between individuals and is quantifiable as illustrated in Figure 5. 
Microsatellites have higher mutation rate (4.5*10-4) than SNPs (Whittaker et al., 
2003). The most commonly used genetic markers in mapping studies are 
microsatellites and SNPs. 

Other types of mutation in the human genome are copy number variation (CNV) and 
chromosomal rearrangements (Figure 4). They include large insertions, deletions 
and translocations in the genome. Current technologies enable as small as 443 base 
pair CNVs to be detected, as described in the CNV mapping effort by Conrad and 
colleagues (Conrad et al., 2010). The largest copy number variation can include the 
whole chromosome (trisomy) leading to severe developmental problems. The 
introduction of CNV assays on genome-wide SNP arrays has enabled the 
genotyping of CNVs in large population cohorts, which has dramatically increased 
the studies of CNV association with several traits of interest, including obesity 
(Bochukova et al., 2010). 

 

Figure 4. Description of different large scale mutations in the genome (modified 

from: www.genome.gov/Glossary) 
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Figure 5. Copy number variation or microsatellites, each arrow represents a copy 

of a nucleotide sequence (modified from: www.genome.gov/Glossary) 

 

Recombination is a major force, which reorganizes genetic material. It is a common 
phenomenon in which two chromosomes exchange segments of nucleotide 
sequence. It may occur between similar DNA sequences (homologous 
recombination) or different sequences (non-homologous end joining). When 
recombination within a chromosome happens in meiosis, it is the result of a 
chromosomal crossover which occurs between paired chromosomes (Figure 6). One 
recombination event appears roughly once in every one hundred million base pairs. 
This adds up to over 30 recombination events within chromosomes per meiosis on 
average. Meiosis is a source of genetic shuffling on genomic level. The haploid sex 
cells of an individual can contain 223 combinations of the individual’s chromosome 
pairs even without intra-chromosomal recombination. An egg after fertilization can 
have any of possible 423 (~7*1013) combinations of the parental chromosomes. If 
one adds recombination to the shuffling of genomic information in meiosis and 
fertilization, the numbers in combinatorics become immense. 
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Figure 6. Meiosis and recombination (http://images.nigms.nih.gov/) 
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2.1.1.1 Sequencing the human genome 

The human genome project was an international collaborative project where the 
genome of one individual was sequenced. It took ten years for the world’s best 
genome centers to produce 90% of the total sequence of that individual (Collins et 
al., 2003). After the publication of the human genome, the international HapMap 
project started (The International HapMap Consortium, 2003). Its goal was to 
catalogue patterns of common variation (common SNPs) in the human genome in 
different populations. These patterns are described as correlations between SNPs. 
The measure is called linkage disequilibrium (LD). It describes a phenomenon 
where the alleles of two loci occur together more often in the population than what 
would be expected by the random formation of haplotypes. This means that there is 
limited recombination between the two loci or that one or both of the alleles arose 
recently. 

We are now in the wake of the 1000 genomes project (www.1000genomes.org) 
which aims to sequence a total of 2500 individuals from diverse population 
backgrounds, including 100 Finns, within the next few years. The project was made 
possible by the advances made in sequencing technology. This effort will 
revolutionize human genomics since even after the first pilot release of 60 
individuals at rather low resolution, over 8 million SNPs have been revealed. 
Parallel to the 1000 genomes project, other groups are performing whole exome 
sequencing, in which all known RNA-coding regions are sequenced. Several 
conference presentations have reported novel coding variants on the order of several 
hundred per individual. As these projects are running, new ones are being planned. 
The UK10k project aims to sequence 10 000 individuals from United Kingdom in 
the near future. 

2.1.2 Mapping quantitative trait loci 

Phenotypes used in trait mapping can be classified broadly into two categories. They 
can be either dichotomous (yes/no) or continuous (quantitative). Dichotomous 
phenotypes are usually, for example, disease status such as type 2 diabetes mellitus 
or Crohn’s disease. Quantitative phenotypes can be of any value, but the distribution 
of the phenotype sets limitations on the analysis options. Sometimes quantitative 
phenotypes are dichotomized by using a certain threshold to classify individuals as 
affected/not affected (Figure 7). The loss of information using this approach has 
been shown to reduce power in genetic analysis (Duggirala et al., 1997). The power 
of a study is the probability that it rejects a false null hypothesis. There are 
numerous factors that affect the power of a study including: sample size, multiple 
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testing, effect size of the functional variant, linkage disequilibrium between the 
studied marker and the functional variant, penetrance, allele frequency of the 
functional variant and age of onset. 

 

 

Figure 7. Dichotomizing a quantitative trait, such as BMI, to obesity classes loses a 

significant amount of information 

 

The study of quantitative genetic variation in humans goes back to the work of 
Fisher and Galton at the turn of 20th century. Galton introduced the term correlation 
and made observations about the relationship of parent and offspring height (Galton, 
1889, Galton, 1890, Galton, 1897). Fisher introduced the notion of quantitative 
genetic variation where multiple genes, in addition to environmental variance, could 
produce continuous variation (Fisher, 1918). This study by Fisher combined two 
rival fields, Mendelian and Galtonian, of genetics and introduced a new theory that 
could be applied to both. 
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2.1.2.1 Basic principles of quantitative trait mapping 

An individual’s phenotypic value is a combination of a genetic value (G) and an 
environmental value (E): 

P = G + E 

The genetic value represents the influence of all genetic variation and is therefore 
often divided into additive (A) and dominance (D) components. The additive effect 
describes the cumulative effect of individual genes. The dominance component 
refers to dominant gene action in a locus where the effect of one allele dominates the 
effect of the other. The environmental factor can be subdivided into pure 
environmental components and the interaction component (I) that describes the 
epistatic interactions between genes: 

P = A + D + I + E 

These can be expanded from an individual to a population where one can estimate 
the variance components of each: 

Vp = Va + Vd + Vi + Ve 

2.1.2.2 Heritability 

Broad sense heritability (H2) is defined as the proportion of the total trait variance 
(Vp) that can be explained by genetic variation (Vg [Va+Vd]): 

H 2 
Vg

Vp

 

The narrow sense (h2) of heritability is defined by the proportion of cumulative 
genetic effects (Va) from the total phenotypic variance (Vp): 

h2 
Va

Vp

 

Heritability is estimated from a sample where familial relationships are known or 
can be readily estimated. In family-based studies the familial relationships are 
known (though perhaps with errors). The genome-wide SNP data can be utilized to 
estimate familial relationship in population cohorts (Visscher et al., 2006). 
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Heritability is an estimate derived from the study sample and gives a crude measure 
of the possible genetic contribution to the phenotype. 

2.1.2.3 Linkage mapping 

Linkage is a measure of whether two loci are inherited together. It can be utilized to 
position markers into chromosomal positions or to map positions in the genome that 
influence a certain trait. The linkage method in trait mapping aims to identify 
genetic loci where an allele segregates in a family along with a locus affecting a trait 
of interest. The method can be only performed in samples with known familial 
relationships. Linkage commonly utilizes microsatellite markers since they are very 
informative. They can be selected so that they have a large number of common 
alleles, and thus produce a maximum number of informative meioses (full 
heterozygous parents) in pedigrees. The relatively large mutation rate of 
microsatellites is usually not a problem because the segregation is only measured in 
a few generations per pedigree and the probability of a mutation is low. Linkage can 
be performed either by testing one marker at a time against the trait of interest 
(singlepoint), or by testing several markers at a time in small regions 
(multipoint).The multipoint linkage method increases power to detect linkage 
because it increases the information content by incorporating haplotype information 
across several markers. On the downside, the multipoint method is sensitive to miss-
specified marker distances, which in turn reduces power (Halpern & Whittemore, 
1999). In addition to locus mapping, linkage has been successfully utilized in 
Mendelian disorders leading to causal gene discovery, exemplified by Meckel 
syndrome (Kyttala et al., 2006) and Aspartylglucosaminuria (Ikonen et al., 1991). 

Mendelian disorders commonly have few high penetrance mutations, clear clinical 
phenotypes and they show distinct hereditary patterns in pedigrees. The mode of 
inheritance is also usually easily identifiable if the disease requires two causal alleles 
for onset (recessive form) or if one causal allele is sufficient for the trait 
manifestation (dominant form). The recessive form is exemplified by 
RAPADILINO-syndrome (Kaariainen et al., 1989), which is a rare recessive disease 
and requires two causal alleles for the disease to manifest. The dominant form is 
exemplified by lactase persistence, where only one mutated transcription factor 
binding site is sufficient to cause the trait (Enattah et al., 2002). In contrast, multiple 
genes and environmental factors underlie complex traits, each having a relatively 
small effect on the trait. This is thought to be the reason why linkage studies have 
not been able to consistently detect genomic regions affecting complex traits. 
Linkage, as a method, is powerful in detecting large effect size variants, even though 
they may be relatively rare. This is exemplified by monogenic forms of severe 
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obesity, such as mutations in the POMC (Krude et al., 1998, Comuzzie et al., 1997) 
and MC4R (Duggirala et al., 1996, Yeo et al., 1998, Vaisse et al., 1998) genes. 
Genes reported to cause monogenic forms of obesity are listed in Table 1. Although 
obesity is clearly a complex trait and linkage has not been able to identify any 
common variants affecting human obesity, these rare Mendelian forms of obesity are 
exceptions. 

Table 1. Genes reported to cause monogenic forms of obesity in mouse or human 

studies 

Gene HUGO gene 
name 

First Author(s) 

Leptin LEP (Montague et al., 1997, Strobel et 
al., 1998, Ozata et al., 1999) 

Leptin receptor LEPR (Clement et al., 1998) 

Pro-opiomelanocortin POMC (Krude et al., 1998, Challis et al., 
2002)  

Melanacortin 4 receptor MC4R (Vaisse et al., 1998, Yeo et al., 
1998, Farooqi et al., 2003, 
Lubrano-Berthelier et al., 2003) 

Melanacortin 3 receptor MC3R (Lee et al., 2002) 

Agouti signaling protein ASIP *(Bultman et al., 1992) 

Agouti-related peptide AGRP *(Huszar et al., 1997), *(Ollmann 
et al., 1997) 

prohormone convertase 1 PC1 (Jackson et al., 1997, Jackson et 
al., 2003), *(Naggert et al., 1995) 

G protein-coupled receptor 24 GPR24 (Gibson et al., 2004) 

Corticotropin-releasing hormone receptor-1 CRHR1 (Challis et al., 2004) 

Corticotropin-releasing hormone receptor-2 CRHR2 (Challis et al., 2004) 

bHLH-PAS transcription factor SIM1 (Holder et al., 2000, Faivre et al., 
2002) 

HUGO = Human Genome Organization, * = evidence from studies in mice 

 

When a linkage study is performed on a dichotomous trait, one can use parametric 
linkage, in which disease locus parameters, penetrance and disease allele frequency 
are predefined. Penetrance is defined as the proportion of individuals who actually 
manifest the trait divided by the proportion of individuals who should get the disease 
based on their genetic composition. In nonparametric linkage these parameters are 
not required, because the nonparametric method utilizes sib-pairs (Penrose, 1935) or 
affected sib-pairs (Bishop & Williamson, 1990) and simply tests for IBD sharing. In 
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quantitative trait mapping, one tests for the change of phenotypic covariance with 
respect to the change in the sharing of genetic material per locus. The modification 
of the nonparametric linkage method to study quantitative traits was originally done 
by Haseman and Elston (Haseman & Elston, 1972). The mode of inheritance is 
generally assumed to be additive, such that each causal allele contributes equally to 
the trait. Genetic sharing is usually defined by identity-by-descent (IBD). IBD is a 
measure, between two individuals, of sharing an allele which is segregated from a 
common ancestor. The Haseman-Elston method was originally intended for sib-pairs 
where the squared trait value difference was regressed against the IBD estimate of 
each locus. When larger pedigrees are at hand this method is no longer applicable. 
The variance components (VC) method takes the expected genetic covariance into 
account, enabling larger pedigrees to be handled. The resulting model is a function 
of additive genetic components based on the expected genetic covariance 
(relatedness) and estimated IBD sharing of the locus of interest. The VC method 
also takes into account the environmental variance, but it is assumed that there is no 
correlation between environmental deviations and genotypic values and that there is 
no interaction between environment and genes. This is estimated by maximum 
likelihood and is usually represented as and the logarithm-of-odds (LOD) score. 
Likelihood estimation is computationally very intensive. 

 

LOD  log10

Vq
2 ,Vg

2 ,Ve
2

maxL(Vq
2,Vg

2,Ve
2)

Vg
2 ,Ve

2
maxL(Vq

2  0,Vg
2,Ve

2)
 

 

2.1.2.4 Association analysis 

To overcome the problem of large linked regions with usually close to a hundred 
genes for further study under the linkage peak, one can do an association analysis. 
Linkage tests for joint segregation of a genetic marker and a trait whereas 
association tests if the allele segregating in the population is the same. Association 
testing can be performed in families as well as in a population sample. The model in 
population samples excludes the expected genetic covariance and makes an 
assumption of unrelatedness. Association testing is generally performed with less 
computationally intensive methods in population samples. Commonly used methods 
are logistic regression for dichotomous traits and linear regression for quantitative 
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traits. There is an information portal, GENSTAT, which is designed to aid in the 
planning and analysis of a genetic association study (Ripatti et al., 2009). 

The term genome-wide association study (GWAS) refers to association testing 
where a sample is genotyped on a dense genome-wide SNP panel, typically between 
100 000 and 1 000 000 markers, and each SNP is correlated against the phenotype of 
interest. The SNP panels are commercially available by two main manufacturers, 
Affymetrix and Illumina, and contain fixed marker sets. Custom design panels are 
also available. Illumina has selected the markers on their platforms using the LD 
structure of the 90 European ancestry HapMap individuals whereas Affymetrix has 
used an evenly spaced approach. The SNP panels currently available contain 
approximately one million SNPs across the whole genome. The first major GWAS 
for an obesity-related trait was published by Sladek for type 2 diabetes mellitus 
(Sladek et al., 2007). After the study by Sladek et al, numerous GWASs of a large 
number of traits have been collected by the National Human Genome Research 
Institute website (http://genome.gov/26525384). The website is not focused on any 
trait and all reported p-values under 1*10-5 are represented as circles in Figure 8. 
Table 2 summarizes GWAs for total cholesterol levels, Table 3 for HDL cholesterol 
levels, Table 4 for LDL cholesterol levels and Table 5 for triglycerides and obesity-
related blood measures other than metabolomic levels. Metabolomic GWAS are 
summarized in more detail in Table 11 and Table 12. Obesity-related anthropometric 
measures, other than BMI, are summarized in Table 6. BMI studies are summarized 
in more detail in Table 9. Additional studies have been reported for blood measures 
(Zemunik et al., 2009, Kathiresan et al., 2007) and anthropometric traits (Kang et 
al., 2010, Kiel et al., 2007, Liu et al., 2010, Liu et al., 2009b, Norris et al., 2009, 
Polasek et al., 2009) but these studies have not shown association at genome-wide 
significance level; probably due to their small sample sizes. 

 

Table 2. Published GWASs for total cholesterol 

Author Trait Chromosomal position reported 

(Igl et al., 2010) Cholesterol, total 16q13 

(Ma et al., 2010) Cholesterol, total 2q21.3, 12q21.2 

(Aulchenko et al., 2009) Cholesterol, total 

1p13.3, 1p31.3, 1p36.11, 2p21, 
2p24.1, 5q13.3, 7p15.3, 8q24.13, 

11q12.2, 11q23.3, 15q22.1, 18q21.1, 
19p13.11, 19p13.2, 19q13.32 
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 Table 3. Published GWASs for HDL cholesterol 

Author Trait Chromosomal position reported 

(Aulchenko et al., 2009) HDL cholesterol 
2p24.1, 8p21.3, 9q31.1, 11p11.2, 

11q12.2, 15q22.1, 16q13, 16q22.1, 
18q21.1, 19q13.32 

(Chambers et al., 2008) HDL cholesterol 8p21.3, 16q13 

(Chasman et al., 2008) HDL cholesterol 15q21.3, 16q13 

(Heid et al., 2009) HDL cholesterol 8p21.3, 16q13, 18q21.1 

(Kathiresan et al., 2009) HDL cholesterol 

1q42.13, 8p21.3, 9p22.3, 9q31.1, 
11q12.2, 11q23.3, 12q24.11, 15q22.1, 

16q13, 16q22.1, 18q21.1, 19p13.2, 
20q13.12, 20q13.12 

(Kathiresan et al., 2008) HDL cholesterol 
1q42.13, 8p21.3, 9q31.1, 15q22.1, 

16q13, 18q21.1 

(Ridker et al., 2009) HDL cholesterol 16q13 

(Sabatti et al., 2009) HDL cholesterol 
11p11.2, 16q13, 16q22.1, 15q22.1, 

17p13.3 

(Willer et al., 2008) HDL cholesterol 
1q42.13, 8p21.3, 9q31.1, 12q24.11, 

15q22.1, 16q13, 16q22.1, 18q21.1 

 HDL = high density lipoprotein 
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Table 4. Published GWASs for LDL cholesterol 

Author Trait Chromosomal position reported 

(Aulchenko et al., 2009) LDL cholesterol 
1p13.3, 1p31.3, 2p21, 2p24.1, 

5q13.3, 7p15.3, 8q24.13, 11q12.2, 
11q23.3, 19p13.11, 19p13.2, 19q13.32 

(Burkhardt et al., 2008) LDL cholesterol 5q13.3, 19q13.32 

(Chasman et al., 2008) LDL cholesterol 1q13.3, 2p24.1, 19p13.2, 19q13.31 

(Hiura et al., 2009) LDL cholesterol 16q13 

(Kathiresan et al., 2009) LDL cholesterol 
1p13.3, 1p32.3, 2p21, 2p24.1, 

5q13.3, 5q33.3, 12q24.31, 19p13.11, 
19p13.2, 19q13.32, 20q12 

(Kathiresan et al., 2008) LDL cholesterol 
1p13.3, 1p32.3, 2p24.1, 5q13.3, 

19p13.11, 19p13.2, 19q13.32 

(Sabatti et al., 2009) LDL cholesterol 
1p13.3, 1q32.2, 2p24.1, 11q12.2, 
19p13.2, 19q13.32, Xq12 

(Sandhu et al., 2008) LDL cholesterol 1p13.3, 2p24.1, 19q13.32 

(Wallace et al., 2008) LDL cholesterol 1p13.3, 2p23.3, 11q23.3 

(Willer et al., 2008) LDL cholesterol 
1p13.3, 1p32.3, 2p24.1, 6p21.32, 

19p13.11, 19p13.2, 19q13.32 

LDL = low density lipoprotein  
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Table 5. GWAs for triglycerides and obesity-related blood measures other than 

metabolomic levels 

Author Trait Chromosomal position reported 

(Heid et al., 2009) Adiponectin levels 3q27.3 

(Ling et al., 2009) 
Adiponectin 
levels 

3q27.3, 5q35.2 

(Richards et al., 2009) 
Adiponectin 
levels 

3q27.3, 5q11.2 

(SUN et al.) 
Soluble LEPR 

levels 
1p31.3 

(Hicks et al., 2009) 
Sphingolipid 

concentrations 
4p12, 11q12.3, 14q23.2, 19p13.2, 

20p12.1 

(Aulchenko et al., 2009) Triglycerides 
1p31.3, 2p23.3, 2p24.1, 7q11.23, 8p21.3, 

11q23.3, 19p13.11, 19q13.32 

(Chambers et al., 2008) Triglycerides 2p23.3 

(Chasman et al., 2008) Triglycerides 2p23.3, 8p21.3, 11q23.3 

(Kamatani et al., 2010) Triglycerides 11q23.3 

(Kathiresan et al., 2009) Triglycerides 
1p31.3, 2p23.3, 2p24.1, 7q11.23, 8p21.3, 

8p23.1, 8q24.13, 11q12.2, 11q23.3, 19p13.11, 
20q13.12 

(Kathiresan et al., 2008) Triglycerides 
1p31.3, 1q42.13, 2p23.3, 2p24.1, 

7q11.23, 8p21.3, 8q24.13, 11q23.3, 19p13.11 

(Kooner et al., 2008) Triglycerides 7q11.23, 8p21.3, 11q23.3 

(Lowe et al., 2009) Triglycerides 11q23.3 

(Pollin et al., 2008) Triglycerides 11q23.3 

(Sabatti et al., 2009) Triglycerides 2p23.3, 2p24.1, 8p21.3, 15q14 

(Saxena et al., 2007) Triglycerides 2p24.1, 8p21.3, 16q13, 19q13.32 

(Willer et al., 2008) Triglycerides 
1p31.3, 1q42.13, 2p23.3, 7q11.23, 

8p21.3, 8q24.13, 11q23.3, 15q22.1, 19p13.11 
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Table 6 . Published GWASs for obesity-related anthropometric measures, other 
than BMI 

Author Trait Chromosomal position reported 

(Freathy et al., 2010) Birth weight 3q21.1, 3q25.31 

(Liu et al., 2009a) Body mass (lean) 8q23.1 

(Scuteri et al., 2007) Hip 16q12.2 

(Herbert et al., 2006) Obesity 2q14.2 

(Liu et al., 2008) Obesity 20q11.32 

(Meyre et al., 2009) Obesity 
10p13, 16q12.2, 16q23.2, 18q11.2, 

18q21.32 

(Hinney et al., 2007) 
Obesity (early onset 

extreme) 
16q12.2 

(Cotsapas et al., 2009) Obesity (extreme) 
2p16.1, 2q33.3, 3p24.2, 3p24.3, 4q26, 
5q23.3, 6p21.31, 10p11.21, 10q22.1, 

11p14.2, 16q12.2, 20p12.1 
(Scherag et al., 2010) Obesity (extreme) 16q12.2, 18q21.32 

(Chambers et al., 2008) Waist circumference 18q21.32 

(Heard-Costa et al., 2009) Waist circumference 
5p14.3, 6p12.2, 11p15.4, 12q13.13, 

14q31.1, 16q12.2, 18q21.32,  
(Lindgren et al., 2009) Waist circumference 1q42.3, 6p12.3, 8p23.1 

(Cho et al., 2009) Waist-to-hip ratio 12q24.13 

(Lindgren et al., 2009) Waist-to-hip ratio 1q41 (in women) 

(Johansson et al., 2009) Weight 5q35.3 

(Thorleifsson et al., 2009) Weight 

1p21.3, 1p31.1, 1q25.2, 2p25.3, 3q27.2, 
5q23.2, 6p21.33, 11p14.1, 12q13.13, 

13q12.2, 16p11.2, 16q12.2, 18q21.32, 
19q13.11 
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Figure 8. All reported p-values under 1*10-5 in GWAS up to 3/2010 depicted as 

circles (modified from http://www.genome.gov/images/illustrations/GWAS2010-

3.ppt) 

2.1.3 Population genetics 

A population is defined as group of individuals in which there is random mating. 
This usually means that the individuals are of the same species and near each other 
geographically. There are four main forces that influence the genetic diversity of a 
population of interest: natural selection, genetic drift, mutation and gene flow. 
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Table 7.  A theoretical example of changes in haplotypic frequencies under positive 

selection. This lead to increased linkage disequilibrium in the region under 

selection. Occurrence of the new beneficial mutation is marked in bold. 

 

 Original ancestral haplotypes  
Frequency of the beneficial 

haplotype increases 

a) Haplotypes Frequency b) Haplotypes Frequency 

 
TGGCGGGTGG 0.2 TGGCGGGTGG 0.03 

 
AGTCGCGAGG 0.15 AGTCGCGAGG 0 

 
AGGCGGGTTG 0.21 AGGCGGGTTG 0.03 

 
ACTCGGGTGG 0.34 ACTCGGGTGG 0.09 

 
TGGCCCGTTG 0.1 TGGCCCGTTG 0 

 
TGGTCCGTTG New mutation TGGTCCGTTG 0.85 

 

Natural selection is a phenomenon where certain phenotypes benefit their carriers 
enabling them to have more offspring. This leads to the increase of the phenotype in 
frequency and may even fix the beneficial causative allele. Selection leaves distinct 
and identifiable pattern in the genome around the variant under selection. The 
haplotype that carries an allele under positive selection increases rapidly in 
frequency as shown in Table 7. This leads to large LD around the variant and may 
lead to decreased haplotypic variation. Selection may be due to the occurrence of a 
new beneficial mutation or change of environment. Hollox et al gave four possible 
explanations for the positive selection of the LCT region: i) extra nutrition from the 
lactose component of fresh milk, ii) additional water source for desert nomads iii) 
improved calcium absorption from calcium rich milk and iv) protection from 
malaria due to riboflavin in milk (Hollox et al., 2001). 

Genetic drift is a random process where allele frequencies fluctuate by chance over 
time. The genetic drift is large in small populations and small in large populations. 
The Finnish population history shows a good example of genetic drift. Finland was 
settled slowly and the population underwent several bottle necks. Finland has the 
most extensive LD structures in Europe but also very large genetic differences 
between regions (Jakkula et al., 2008, Service et al., 2006). The regional differences 
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describe the Finnish population history where each village formation has been a 
bottleneck and source for rapid genetic drift. 

Genetic variation is increased in the population by new mutations and gene flow. 
Every human germ line contains a host of new mutations. Different kinds of 
mutations are described in Figure 4. Gene flow occurs in migration into and out of 
the population. Immigration may introduce new genetic variation into the 
population. On the other hand emigration may reduce the variation. 

2.2 Body mass index, lipids and obesity 

2.2.1 Obesity 

The definitions of overweight and obesity [OMIM 601665] are defined as abnormal 
or excessive fat accumulation that presents a risk to health. A crude population 
measure of obesity is the body mass index (BMI), a person’s weight (in kilograms) 
divided by the square of his/her height (in meters). A person with a BMI of 30 or 
more is generally considered obese. A person with a BMI equal to or more than 25 
is considered overweight. More detailed cut-off points for obesity are presented in 
Table 8. The World Health Organization (WHO) has gathered facts about obesity on 
their website (www.who.int/mediacentre/factsheets/fs311/en/index.html). According 
to WHO, approximately 1.6 billion adults (age 15+) were overweight and 400 
million were obese in 2005. In the organization’s 2015 projection 2.6 billion are 
overweight and 700 million are obese. The WHO predicts that diabetes-related 
deaths will increase by more than 50 % in the next 10 years. 

Other anthropometric measures of obesity include waist circumference, hip 
circumference and waist-to-hip ratio. Waist-to-hip ratio is considered the best way to 
measure abdominal fat. More laborious, but also generally more accurate, measures 
are exemplified by bioelectric impedance analysis, underwater weighing, computed 
tomography and magnetic resonance imaging (Bell et al., 2005). These techniques 
are not routinely available in sample collections whereas weight and height are 
common measures and therefore BMI is readily available for analysis. 
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2.2.1.1 Obesity as a risk factor 

Overweight and obesity are major risk factors for a number of chronic diseases, 
including diabetes, cardiovascular diseases and certain types of cancer. Once 
considered a problem only in high income countries, overweight and obesity can be 
considered pandemic due to the rapid increase in developing countries, particularly 
in urban areas. The increase in obesity prevalence and obesity-associated diseases 
will produce a major increase in medical costs. 

BMI values do not depend on age or gender for adults. But on the other hand, BMI 
acts differently as a predictor for risk of obesity-related disorders in different 
populations. For instance, the proportion of Asian people with a high risk of type 2 
diabetes and cardiovascular disease is substantial at BMI's lower than the existing 
WHO cut-off points for overweight (WHO, 2004). This may result from the 
descriptive properties of BMI for percentage of body fat and body fat distribution 
among different populations. The question has been raised that should the obesity 
limits, such as those proposed in Table 8, be derived for different populations 
individually rather than from global cut-off points. 

2.2.1.2 Obesity and environment 

Environment plays a role in the development of obesity. Changes in the economic 
climate during last century have consequently changed the balance between physical 
exercise and energy intake. Food availability has increased globally. These factors 
have led to an “obesogenic” environment where we eat too much and exercise too 
little. The environmental influence is best detected in the increase of obesity 
prevalence in the world. 

The change in obesity prevalence from mid 20th century is well described in the 
Swedish army conscripts. The 2.4 times increase in overweight prevalence was 
reported by Rasmussen between 1971 and 1995 in 18 year old males (Rasmussen et 
al., 1999). The obesity prevalence increased from 6.9% to 16.3%. 
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Table 8. The International Classification of adult underweight, overweight and 
obesity according to BMI (kg/m2) Source: Adapted from WHO, 1995, WHO, 2000 
and WHO 2004.  

Classification BMI 
 Principal cut-off points 
Underweight <18.50
Severe thinness <16.00 
Moderate thinness 16.00 - 16.99 
Mild thinness 17.00 - 18.49 
Normal range 18.50 - 24.99
Overweight ≥25.00
Pre-obese 25.00 - 29.99 
Obese ≥30.00 
Obese class I 30.00 - 34-99 
Obese class II 35.00 - 39.99 
Obese class III ≥40.00 

 

 

 

2.2.1.3 Genes affecting body mass index 

Obesity has been a well-studied trait due to its increasing risk for adverse health 
conditions. Every chromosome, except Y, has been linked to an obesity-related trait 
during the last few decades. The human obesity gene map catalogued all association 
and linkage findings up to year 2005 (Rankinen et al., 2006). Numerous twin, family 
and adoption studies have been conducted for BMI and they report estimates of 
heritability that range roughly between 30 and 70 percent (Bouchard et al., 1990, 
Allison et al., 1996, Comuzzie et al., 1996, Price & Gottesman, 1991, Stunkard et 
al., 1986, Maes et al., 1997, Stunkard et al., 1990, Sorensen et al., 1992a, Sorensen 
et al., 1992b, Vogler et al., 1995, Rice et al., 1999). Therefore, a relatively large 
genetic contribution to the total phenotypic variance exists. 

The obesity-related quantitative trait GWAS era started in the last decade with a 
paper published in Science by Frayling (Frayling et al., 2007). They reported an 
association of the FTO gene with BMI. Interestingly, they did not study BMI 
initially but type 2 diabetes mellitus. They found a hit on chromosome 16 that did 
not replicate in other type 2 diabetes studies, which baffled them. After investigation 
they found that they had not controlled the association study with BMI as the other 
studies had, and thus their association to type 2 diabetes mellitus was mediated 
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through BMI (which increases the risk for type 2 diabetes). Several GWASs have 
reported BMI-associated loci during the last few years (Table 9). The effort is still 
alive to grow the sample sets even larger to identify more of the loci with smaller 
effect sizes. 

Table 9. Published GWAS for BMI 

Region Reported 
Gene(s) 

Strongest SNP-
Risk Allele 

Risk Allele 
Frequency in 

Controls 

P-value OR or beta-
coefficient and 

[95% CI] 

Author 

1p21.3 NR rs10783050-C 0.36 4 x 10-6 2.6 [1.50-3.70] % 
SD 

(Thorleifsson et al., 2009) 

1p31.1 NEGR1 rs2568958-A 0.58 1 x 10-11 3.77 [2.67-4.87] % 
SD 

(Thorleifsson et al., 2009) 

1p31.1 NEGR1 rs2815752-A 0.62 6 x 10-8 .1 [0.04-0.16] 
kg/m2 increase 

(Willer et al., 2009) 

1q25.2 SEC16B, 
RASAL2 

rs10913469-C 0.2 6 x 10-8 3.36 [2.14-4.58] % 
SD 

(Thorleifsson et al., 2009) 

2p25.3 TMEM18 rs7561317-G 0.84 4 x 10-17 6.12 [4.69-7.55] % 
SD 

(Thorleifsson et al., 2009) 

2p25.3 TMEM18 rs6548238-C 0.84 1 x 10-18 .26 [0.19-0.34] 
kg/m2 increase 

(Willer et al., 2009) 

3q27.2 SFRS10, 
ETV5, DGKG 

rs7647305-C 0.77 7 x 10-11 4.42 [3.09-5.75] % 
SD 

(Thorleifsson et al., 2009) 

4p13 GNPDA2 rs10938397-G 0.45 3 x 10-16 .19 [0.13-0.25] 
kg/m2 

(Willer et al., 2009) 

10p13 PTER rs10508503-C 0.91 2 x 10-7 
(children) 

1.56 [1.10-2.78] (Meyre et al., 2009) 

11p11.2 MTCH2 rs10838738-G 0.34 5 x 10-9 .07 [0.01-0.13] 
kg/m2 increase 

(Willer et al., 2009) 

11p14.1 BDNF rs6265-G 0.85 5 x 10-10 4.58 [3.07-6.09] % 
SD 

(Thorleifsson et al., 2009) 

11p14.1 BDNF rs925946-T 0.34 9 x 10-10 3.85 [2.62-5.08] % 
SD 

(Thorleifsson et al., 2009) 

11p14.1 BDNF rs7481311-T 0.24 8 x 10-6 3.15 [1.78-4.52] % 
SD 

(Thorleifsson et al., 2009) 

11p15.4 STK33 rs10769908-C 0.53 1 x 10-6 NR (Willer et al., 2009) 

12q13.13 BCDIN3D, 
FAIM2 

rs7138803-A 0.37 1 x 10-7 3.28 [2.06-4.50] % 
SD 

(Thorleifsson et al., 2009) 

15q25.2 RKHD3 rs12324805-C 0.31 7 x 10-6 NR (Willer et al., 2009) 

16p11.2 SH2B1, 
ATP2A1 

rs7498665-G 0.44 3 x 10-10 3.63 [2.49-4.77] % 
SD 

(Thorleifsson et al., 2009) 

16p11.2 SH2B1 rs7498665-G 0.41 5 x 10-11 .15 [0.08-0.21] 
kg/m2 increase 

(Willer et al., 2009) 

16q12.2 FTO rs8050136-A 0.41 1 x 10-47 8.04 [6.96-9.12] % 
SD 

(Thorleifsson et al., 2009) 

16q12.2 FTO rs6499640-A 0.41 4 x 10-13 5.25 [3.82-6.68] % 
SD 

(Thorleifsson et al., 2009) 

16q12.2 FTO rs9939609-A 0.41 4 x 10-51 .33 [0.27-0.39] 
kg/m2 increase 

(Willer et al., 2009) 

16q12.2 FTO rs1121980-? NR 4 x 10-8 .06 [0.04-0.08] 
unit increase in 

log(BMI) 

(Loos et al., 2008) 
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16q12.2 FTO rs9939609-A 0.39 2 x 10-20 .36 [NR] kg/m2 
per copy in adults 

(Frayling et al., 2007) 

16q12.2 FTO rs1421085-C 0.4 1 x 10-28 
(children) 

1.39 [1.27-1.51] (Meyre et al., 2009) 

16q23.2 MAF rs1424233-A 0.43 4 x 10-13 
(children) 

1.12 [1.00-1.24] (Meyre et al., 2009) 

18q11.2 NPC1 rs1805081-A 0.56 3 x 10-7 
(children) 

1.33 [1.08-1.75] (Meyre et al., 2009) 

18q21.32 MC4R rs12970134-A 0.3 1 x 10-12 4.38 [3.16-5.60] % 
SD 

(Thorleifsson et al., 2009) 

18q21.32 MC4R rs17782313-C 0.21 5 x 10-18 .2 [0.12-0.28] 
kg/m2 increase 

(Willer et al., 2009) 

18q21.32 MC4R rs17782313-C 0.24 3 x 10-15 .05 [0.04-0.06] 
unit increase in 

log(BMI) 

(Loos et al., 2008) 

18q21.32 MC4R rs17782313-C 0.18 5 x 10-15 
(children) 

1.22 [1.05-1.40] (Meyre et al., 2009) 

19q13.11 KCTD15, 
CHST8 

rs29941-C 0.69 7 x 10-12 4.18 [2.98-5.38] % 
SD 

(Thorleifsson et al., 2009) 

19q13.11 KCTD15 rs11084753-G 0.67 2 x 10-8 .06 [-0.01-0.13] 
kg/m2 increase 

(Willer et al., 2009) 

20p12.3 BMP2 rs2145270-T 0.65 6 x 10-6 NR (Willer et al., 2009) 

NR = not reported, SD=standard deviation, OR=odds ratio, CI=confidence intervals 

 

2.2.2 Lipids and lipoprotein metabolism 

The term lipid is an umbrella for a diverse range of molecules. They are relatively 
water-insoluble or non-polar compounds of biological origin. They include waxes, 
fatty acids, phospholipids, sphingolipids and glycolipids. Lipids come in diverse 
shapes. Some are linear aliphatic molecules and others have ring structures. Some 
are aromatic, while others are not. This produces a huge range of structural 
properties. Generally lipids are largely non-polar with some additional polar 
chemical groups. For example, in cholesterol the polar group is one hydroxyl group 
(-OH). The non-polar part does not like to interact with polar solvents such as water. 

Lipids and their structural components are obtained from diet. In a simplified model 
ingested fat (including triglycerides, phospholipids and cholesterol) passes through 
the stomach and through to small intestine where it is emulsified by bile. Fatty acids 
form micelles and are taken into intestinal cells where they are used in chylomicron 
synthesis. Lipoprotein is a biochemical term describing an assembly that contains 
both lipids and proteins, which may be bound covalently or non-covalently. 
Immature chylomicrons enter the blood stream where high density lipoprotein 
(HDL) particles donate apolipoproteins (CII and E) to the immature chylomicrons 
transforming them to the mature form. In the blood vessel apolipoprotein CII 
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activates lipoprotein lipase in the surface of endothelial cells allowing triglycerides 
in the lipoprotein to be broken down. Free fatty acids are taken into the adjacent 
tissue cell as a result and are either utilized or stored. Chylomicrons donate the 
ApoCII to HDL in the blood stream and become chylomicron remnants. 
Chylomicron remnants are then taken into the liver for endocytosis. The resulting 
components (triacylglycerol and cholesterol) are used for very low density 
lipoprotein (VLDL) synthesis. In this process VLDL particles gain ApoB-100 and 
enter blood stream. HDL particles in blood donate ApoCII and ApoE to produce 
mature VLDL particles. Again apolipoprotein CII activates lipoprotein lipase 
allowing triglycerides in the lipoprotein to be broken down. Free fatty acids are 
taken into the adjacent tissue cell as a result and are either utilized or stored. VLDL 
donates ApoCII to HDL in the blood stream and in the process VLDL turns into 
intermediate density lipoprotein (IDL). As IDL loses triacylglycerols it becomes less 
dense and transforms to low density lipoprotein (LDL). LDL are then taken up and 
used as fuel for tissue. The diameter, density and fat content of different lipoprotein 
classes are summarized in Table 10 and the schematic representation of lipid 
metabolism is depicted in Figure 9. 

 

Table 10. Lipoproteins are broadly classified by their density. Lipoproteins are 
larger and less dense if they consist of more fat than protein (modified from 
Biochemistry 2nd Ed. 1995 Garrett & Grisham) 

Density 
(g/mL) 

Class Diameter 
(nm) 

Protein 
(%) 

Cholesterol 
(%) 

Phospholipid 
(%) 

Triacylglycerol 
(%) 

>1.063 HDL 5-15 33 30 29 4 

1.019-1.063 LDL 18-28 25 50 21 8 

1.006-1.019 IDL 25-50 18 29 22 31 

0.95-1.006 VLDL 30-80 10 22 18 50 

<0.95 Chylomicrons 100-1000 <2 8 7 84 

HDL = high density lipoprotein, LDL = low density lipoprotein, IDL = intermediate density lipoprotein, VLDL 

= very low density lipoprotein 
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Figure 9. Schematic figure of lipid metabolism and the genes involved (modified 

from: (Lusis & Pajukanta, 2008)) 
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2.2.3 Lipoproteins, obesity and insulin resistance 

Dyslipidemia is a disruption of the normal blood lipid levels. Abnormalities in 
lipoprotein levels are strongly associated with central obesity (the accumulation of 
abdominal fat). Centrally obese individuals have an increased proportion of visceral 
fat packed inside the perinoteal cavity. Visceral fat promotes insulin resistance (Enzi 
et al., 1986). Centrally obese individuals generally have increased triglyceride 
levels, low HDL levels, high ApoB levels and high (small and dense particles in 
particular) LDL levels. All of these metabolic traits are inter-correlated and are 
associated with insulin resistance. Insulin resistance plays a role in dyslipidemia 
through VLDL metabolism. Insulin resistance leads to increased hepatic glucose 
production, increased release of free fatty acids from adipose tissue and decreased 
muscle glucose uptake and oxidation (Howard et al., 2003). This results in an 
increased intake of free fatty acids and glucose to the liver, which leads to an 
increased production of VLDL and triglycerides. VLDL is lipolysed by hepatic 
lipase, which results in small and dense LDL particles and a decrease in blood HDL 
cholesterol levels. 

2.2.4 Lipoproteins and cardiovascular disease 

Dyslipidemia has several functional mechanisms through which it affects the risk for 
a cardiovascular event. Elevated triglyceride levels promote atherogenic subspecies 
of LDL and HDL. It causes endothelial dysfunction and increases thrombotic risk. 
HDL particles are anti-atherogenetic and anti-inflammatory. They remove 
cholesterol from arterial wall in reverse cholesterol transport and take it back to the 
liver. They also inhibit LDL oxidation. Small and dense LDL particles have a better 
ability to enter the arterial wall. Small and dense LDL particles are more prone to 
oxidation and glycosylation. Inside the vascular wall these particles are engulfed by 
macrophages that turn into foam cells, the start of atherosclerosis. ApoB-containing 
lipoprotein particles are all atherogenic and it has been shown that ApoB levels may 
actually better predict a future cardiovascular event than LDL measures (Walldius et 
al., 2001, Sniderman et al., 2001). Inflammation is an important state in the 
atherosclerotic progress. To date, the most important inflammatory cells include 
macrophages and T cells. Early atherosclerotic lesions consist mainly of these cells. 
Mathieu and colleagues conclude in their obesity, inflammation and cardiovascular 
risk review paper that there is clear evidence that visceral fat is a source of 
inflammatory responses in obesity and cardiovascular disease (Mathieu et al., 2010). 
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2.3 Transcriptomics 

The transcriptome refers to the expression profile of active genes in a given cell, 
tissue or even whole organism. The most abundant of the known functional elements 
in the human genome are protein-coding genes. A protein coding gene consists of 
exons and introns. When a gene is producing protein, both exons and introns are 
copied into messenger ribonucleic acid (mRNA) in the transcription process. Exons 
contain the code of the final protein product, because introns are removed in the 
splicing process. After splicing and further modification, the code mRNA is 
translated to peptides by ribosomes. Transcription and translation are illustrated in . 
The transcriptome also includes transfer RNAs (tRNA), ribosomal RNAs (rRNA), 
and other non-coding RNAs with very diverse functions. The function of tRNA is to 
transfer amino acids to the polypeptide chain in protein synthesis. rRNA is the 
ribosomal RNA component that interacts with both tRNA and mRNA in translation. 

The trascriptome, or expression profile, is studied using high throughput techniques. 
These techniques measure the levels of mRNA in the study sample using 
commercially available expression arrays, which contain probes for most of the 
expressed genes. The probe sets differ between manufacturers and vary depending 
on which gene annotation was used in the probe set creation. New sequencing 
technologies also allow expression detection and are not limited to given probe sets, 
but the ensuing data handling is very laborious. 

The mRNA contains a sequence of codons, comprised of combinations of three 
nucleic acids, that code for one amino acid. The newly translated protein goes 
through further modifications and folds into its final functional structure.  
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Figure 10. Transcription and translation (http://images.nigms.nih.gov/) 
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2.3.1 Transcription regulation 

Gene expression is modified by transcription factors. These are proteins that bind, 
either alone or in a complex, to DNA at specific sequence motifs (transcription 
factor binding site, TFBS). The motif binding may promote expression (enhancer 
motif) by recruiting RNA polymerase or it may block RNA polymerase binding 
(silencer motif). The regulation of gene expression is a very complex process and 
involves a host of different proteins (Rockman & Kruglyak, 2006). 

Mutations in the TFBSs can affect the factor binding. Mutation can even prevent the 
binding altogether. This is the case in lactase persistence (OMIM 223100). A 
mutation (SNP rs4988235) in the lactase-gene silencer binding site prevents the 
down regulation of the lactase enzyme in childhood (Enattah et al., 2002). The 
mutation was found by Enattah et al in Finnish families and its effect has been 
shown in vivo (Rasinpera et al., 2005). It enables the expression of the enzyme in 
intestinal epithelial cells and allows milk sugar lactose to be digested in adulthood. 
If the mutation occurs in the coding region of the gene, it can lead to a synonymous, 
non-synonymous or frameshift mutation. A synonymous mutation changes the 
nucleotide, but since the amino acids are coded with several combinations of 
codons, it may happen that the codon still codes for the same amino acid. For 
example, a point mutation in a codon coding for aspargine is TTA may change it to 
TTG which also codes for aspargine. Non-synonymous mutations change the amino 
acid in the protein (missense mutation) or introduce a premature stop codon 
(nonsense mutation) leading to a truncated, probably non-functional protein. 
Frameshift mutations are caused by insertions or deletions and they change the 
reading frame of the RNA after the mutation, given that the insertion/deletion is not 
divisible by three (in which case they do not change frame but insert or remove 
amino acids from protein). 

Another heritable force that changes gene expression is epigenetics. Epigenetics 
refers to DNA methylation and chromatin remodeling and epigenetic patterns can be 
passed to offspring in what is called imprinting (Cooney et al., 2002). Methylation 
generally occurs at CpG sites where cytosine is converted to 5-methylcytosine. In 
general, highly methylated regions tend to be less active, although the mechanism is 
not fully understood. Chromatin is the complex of DNA and histone proteins with 
which it associates. If the association between DNA and histones change, gene 
expression can change as well. Histone modifications occur throughout the entire 
DNA sequence. The N-termini of histones (called histone tails) are particularly 
prone to modification. These modifications include acetylation, methylation, 
phosphorylation, ubiquitylation and sumoylation. The transciptional effect of 
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modification is exemplified by acetylation, which is generally correlated with 
transcriptional competence. Epigenetic changes have been shown to be prone to 
environmental exposure. This is demostrated in work by Cooney and colleagues 
where they show that methyl dietary supplements alter the DNA methylation in mice 
offspring (Cooney et al., 2002). 

The environment where the human cell resides also affects its expression profile. 
This has been shown by Choi and Kim in their study of the expression profiles of 
monozygotic twins (Choi & Kim, 2007). While they are genetically identical, they 
display remarkable variation in phenotype. Some of this variation may be result of 
by epigenetic changes between monozygotic twins. Fraga and colleagues showed 
that the changes were larger in older twins, which underscores the responsiveness of 
epigenetics to environment (Fraga et al., 2005). 

During the last decade, several studies have been performed to assess the effect of 
genetic variation on gene expression due to technical advances in array technologies. 
These human expression quantitative trait loci (eQTL) have been mapped in cell 
lines and tissues using whole genome SNP platforms (Dimas et al., 2009, Emilsson 
et al., 2008, Stranger et al., 2005). Dimas and colleagues made the observation that 
there are cell type-specific eQTLs as they studied lymphoblastoid cell lines, T-cells 
and fibroblasts (Dimas et al., 2009). Work by Chen and colleagues showed that the 
expression of single genes could be grouped into networks and the summary profile 
of the whole network (pathway) could be correlated with a phenotype (Chen et al., 
2008). 
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2.4 Metabolomics 

Metabolomics refers to the study of metabolic profiles of a cell, tissue and even a 
whole organism. Metabolites are the end products of cellular processes. Horning and 
Horning (Horning & Horning, 1970) were the first to introduce the term “metabolic 
profiles”, defining the patterns of biochemically related metabolites. The modern 
technical era of metabolite measurement started in 1966 when Dalgliesh and 
colleagues demonstrated that it was possible to obtain multi-component gas-
chromatographic analyses of the derivatives from a variety of trace organic 
compounds present in urine and tissue extracts (Dalgliesh et al., 1966). 

Currently, two methods are routinely used in profiling metabolites from human 
blood samples: nuclear magnetic resonance spectroscopy (NMR) and mass 
spectrometry (MS) (Novotny et al., 2008). MS is a very powerful method for 
screening metabolites. It is based in mass-to-charge ratio of ions fromed from 
molecules. It requires laborious cleaning and separation steps prior analysis and is 
therefore usually coupled with high performance liquid chromatograph or gas 
chromatograph for the preceding analytic separation step. NMR can detect a large 
number of metabolites: NMR detects metabolites that contain a nucleus with a 
nuclear spin (1H, 13C, 19F, 31P, etc). Nuclear spin is a phenomenon where a nucleus 
rotates around its axis. The spinning is caused by odd pairs of protons and neutrons 
in the nucleus that have opposite nuclear spins. Protons (1H) are mostly used in 
magnetic spectroscopy due to their high abundance in organic compounds. 

Metabolic profiling gives a range of intermediate phenotypes that may be closely 
related to a disease mechanism. It also subdivides commonly used intermediate 
phenotypes and gives more detailed information about them. For example 1H NMR 
subdivides HDL particles into different density fractions that are not inter-correlated 
and may have different antiatherogenic functions (data presented in study III). 

The GWAS era has extended to metabolic profiles. Illig and colleagues published a 
GWAS on the ratios of 163 MS measured blood metabolite phenotypes in 1029 
German individuals (Illig et al., 2009). They built on a previous underpowered 
genome scan of 284 males that did not reveal any significant loci (Gieger et al., 
2008). They hypothesized that there would be an enzyme that accounts for the 
transition from one metabolite to another. All significant loci from the study by Illig 
et al are listed in Table 11. 
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Table 11. Findings of the GWAS for the ratios of metabolites from study by Illig 

and colleagues (Illig et al., 2009). 

Cytoband Gene 
Strongest 
SNP-Risk 

Allele 

Allele 
Frequency 

P-value (trait transition) 
Variance 
explained 

(%) 
1p31.1 ACADM rs211718-C 0.31 1 x 10-63 (C12/C10) 14.6 

2q34 ACADL rs2286963-T 0.37 3 x 10-60 (C9/C10:2) 13.8 

4q32.1 ETFDH rs8396-T 0.30 4 x 10-24  (C14:1-OH/C10) 5.6 

11q12.2 FADS1 rs174547-T 0.30 7 x 10-179 (PC aa C36:3/PC aa 
C36:4) 

36.3 

12q24.31 ACADS rs2014355-T 0.28 5 x 10-96 (C3/C4) 21.5 

C3 = Propionylcarnitine, C4 = Butyrylcarnitine, C9 = Nonaylcarnitine, C10 = Decanoylcarnitine, C10:2 = 

Decadienylcarnitine, C12 = Dodecanoylcarnitine, C14:1-OH = Hydroxytetradecenoylcarnitine, PC aa C36:3 = 

Phosphatidylcholine diacyl C36:3, PC aa C36:4 = Phosphatidylcholine diacyl C36:4 

 

Chasman and colleagues published a metabolomic GWAS which only included 
lipoproteins and their subclasses, which had a total of 22 measures (Chasman et al., 
2009). They had large sample size of 12 489 fasting samples and a total of 17 296 
indviduals including replication samples, all of which were females. They identified 
43 loci which associated significantly with metabolic traits including seven novel 
loci listed in Table 12. Although both of these studies report a hit in 12q24.31, they 
seem to be independent signals since they are 3 Mb apart. 
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Table 12. Novel loci and candidate genes with genome-wide significant associations 

(p < 5*10-8) for 22 lipoprotein measures 

locus Whole sample Fasting sample candidate gene(s) 

3q22.3 HDL:S - PCCB, STAG1 

6p21.32 TG:N, VLDL:L TG:N, VLDL:L BTNL2,HLA-DRA, 
HLA-DRB5 

7q32.2 HDL:Z, LDL:T, LDL:S, TG - COPG2, KLF14, 
TSGA13 

12q23.2 HDL:T, HDL:N - intergenic ASCL1, 
PAH 

12q24.31.B HDL:L,HDL:Z, LDL:T, LDL:S, LDL:Z, TG HDL:L CCDC92, DNAH10, 
ZNF664 

17q24.2 HDL:M - PRKAR1A, WIPI1 

8p23.1 - VLDL:Z intergenic PPP1R3B 

LDL = low density lipoprotein, HDL = high density lipoprotein, VLDL = very low density lipoprotein, TG = 

triglycerides, X:L = large particles, X:M = medium particles, X:S = small particles, X:Z = mean particle size, 

X:T total particles 
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3 AIMS OF THE STUDY 

The aim of this study was to identify genetic factors correlated with variation in 
human obesity-related quantitative traits using following methods: 

1) To investigate the possible cause for positive selection in the lactase region 
by genotyping the causative SNP for lactase persistence in large population 
cohorts. To test for a difference in BMI and height between cases and 
controls. 

2) To combine European genome-wide linkage screens to perform a combined 
linkage scan for BMI in Australian, Danish, Dutch, Finnish, Swedish and 
United Kingdom families. To test for the effect of reduced environmental 
variation by limiting the analyses to dizygotic twin pairs. 

3) To identify networks from gene expression data and test for correlation with 
metabolic profiles using genetic markers. To perform eQTL analyses and 
metabolite GWAS for the complete incorporation with pathway analyses. 
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4 MATERIALS AND METHODS 

4.1 Study subjects 

More detailed description of the study samples can be found in the original 
publications (I-III) and the references therein. 

4.1.1 Population samples in the lactase study (I) 

Study I consisted of cross-sectional population samples from Finland. Three of the 
studies (FINRISK, YF and HEALTH 2000) were collected across Finland. 
NFBC1966 was collected in the northernmost provinces of Finland. ATBC was 
collected in Southwest Finland. More detailed descriptions of these four cohorts can 
be found at www.nationalbiobanks.fi and http://vanha.med.utu.fi/cardio/ 
youngfinnsstudy/. In brief: ATBC was collected for cancer study included males 
only; FINRISK was collected for the study of chronic disease, coronary risk factors 
and health behaviour; HEALTH 2000 was a general health examination and 
interview survey collected in year 2000; NFBC 1966 was collected in 1966 from the 
Oulu region as a birth cohort and follow up study, the NFBC 1966 subjects have 
been followed up since the first antenatal contact (10-16th week of pregnancy); YF is 
an ongoing follow-up study to assess the influence of childhood lifestyle and 
biological and psychological measures to the risk of cardiovascular diseases in 
adulthood. The European replication cohorts included KORA from Germany, two 
samples from the Netherlands (ERF, Rotterdam) and BWWHS from UK. The 
Rupchen Family (ERF) study is an extended-pedigree study that consists of a single 
pedigree from a population isolate in the Netherlands. The study’s main focus areas 
are quantitative trait loci related to neuropsychiatric, cardiovascular, endocrinologic, 
ophthalmologic and musculoskeletal disorders. The Rotterdam study is an ongoing 
follow-up study. The aim of the study was to reveal the incidence and determinants 
of chronic disabling diseases that occur in the study subjects during follow up. The 
KORA (Cooperative health research in the Region of Augsburg, Southern Germany) 
study was designed to survey the development and course of chronic diseases. Its 
main focus traits are myocardial infarction and diabetes mellitus along with the 
associated risk factors. The British Women’s Heart and Health Study (BWHHS) is a 
prospective cohort study of heart disease. Its aim is to provide information about 
existing patterns of treatment of heart disease and to better the understanding of risk 
factors and disease prevention. The samples included in the lactase study are 
summarized in Table 13. 
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Table 13. The sample demographics of the cohorts used in the lactase study 

 
N (M/F) 

BMI 
(kg/m2) 

BMI 
SD 

Age 
Age 
SD 

LP prevalence 
(%) 

NFBC 1966 5498 (2636/2862) 24.6 3.9 31 0 85 
ATBC 2126 (2126/0) 26.9 4.2 64 5 84 
FINRISK 2265 (1555/710) 28.1 5.3 58 10 80 
Health2000 5320 (2437/2883) 26.8 4.5 53 15 82 
YF 2165 (985/1180) 25.9 5.0 38 5 83 
BWHHS 3109 (0/3109) 27.3 4.5 69 5 94 
ERF 2104 (909/1195) 26.9 4.8 50 15 90 
Rotterdam 5689 (3320/795) 26.0 3.5 70 9 91 
KORA S3 1578 (783/795) 27.2 3.8 53 10 87 
KORA S4 1755 (859/896) 27.4 3.9 54 9 87 

N = number of individuals, SD = standard deviation, NA = Not available, M = males, F = females, 

LP = lactase persistence 

4.1.2 The GenomEUtwin sample (II) 

The samples in study II were collected from twin cohorts from seven European 
countries (Denmark, Finland, Italy, The Netherlands, Norway, Sweden and United 
Kingdom) and Australia. The sample consisted from 4401 families with twins and 
was collected by the GenomEUtwin consortium (www.genomeutwin.org). We were 
able to include 10535 individuals with genotype and phenotype information to this 
study. The sample demographics are presented in Table 14. 
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Table 14. Demographics of the GenomeUtwin sample 

 Mean 
BMI 

SD Mean 
Age 

N 

All     
Males 25.3 3.4 50.2 3667 

Females 24.7 4.5 48.9 6868 
Australia     

Males 25.4 3.7 44.5 1214 
Females 24.7 4.6 44.4 1876 

Denmark     
Males 25.2 3.3 53.7 247 

Females 23.5 3.7 61 377 
Finland     
Males 25.5 3.7 52.1 518 

Females 24.7 5.2 60.4 339 
The Netherlands    
Males 25.2 3.3 45.1 1160 

Females 24.5 4.1 43.6 1535 
Sweden     
Males 25.5 2.7 74.6 528 

Females 25.2 3.7 75 525 
UK     

Females 25.1 4.7 47.3 2216 
N= number of individuals, SD = standard deviation 

 

4.1.3 The Dietary, Lifestyle, and Genetic determinants of Obesity and 
Metabolic syndrome study (III) 

The Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic 
syndrome (DILGOM) study consist of 5025 individuals who took part in the larger 
FINRISK 2007 collection. The DILGOM sample was collected in order to study in 
greater detail the components affecting obesity and metabolic syndrome. It has five 
major components: 1) investigation of diet, physical activity, psychosocial factors, 
markers of obesity and glucose metabolism in 5025 men and women aged between 
25 and 74 years; 2) investigation of the roles of psychosocial factors on diet, 
physical activity, obesity and metabolic syndrome; 3) assessment of the influence of 
diet on selected endocrinological factors, cytokines and other biomarkers, and their 
relationship to weight and glucose metabolism; 4) the profiling of abdominal obesity 
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and metabolic syndrome against whole genome SNP data and the testing of the 
effect of identified markers on weight gain and changes in glucose metabolism in a 
prospective manner. Funding for a five year follow-up is currently being applied for. 
This study included 303 females and 287 males of age between 25 and 74 years 
(average = 52, standard deviation = 13.6) from Helsinki region. 

4.1.4 Laboratory measurements 

4.1.4.1 Metabolome 

The 1H NMR technique is based on proton resonance in a magnetic field. The 
resonance is dependent on the structure of covalent bonds surrounding the proton of 
interest. The surrounding chemical composition gives distinct resonance spectra that 
can be utilized in the quantitation of the compound of interest. In study III we used 
1H NMR to quantitatively identify 134 serum metabolites. Measurement is 
performed in three separate steps or windows. The first window contains low 
molecular weight metabolites (LMWM, Figure 11). The LIPO window (Figure 12) 
contains information about lipoproteins and subclasses. The LIPID window (Figure 
13) is analyzed using lipid extract and contains more detailed molecular information 
on various serum lipid constituents like free and esterified cholesterol, 
sphingomyelin, polyunsaturation and ω-3 fatty acids. Metabolites for the 518 
individuals used in study III were quantified using a Bruker AVANCE III 
spectrometer operating at 500.36 MHz (1H observation frequency; 11.74 T). 
Temperature was stabilized by using an A BTO-2000 thermocouple at the level of 
approximately 0.01 °C in the sample. 
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Figure 11.  The LMWM window of the 1H NMR (produced by Mika Ala-Korpela, 

reproduced with permission) 

 

 

Figure 12. The LIPO window of the 1H NMR (produced by Mika Ala-Korpela, 

reproduced with permission) 
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Figure 13.  The LIPID window of the 1H NMR (produced by Mika Ala-Korpela, 

reproduced with permission) 

 

4.1.4.2 Transcriptome 

To obtain stabilized total RNA in study III, the PAXgene Blood RNA System 
(PreAnalytiX GMbH, Hombrechtikon, Switzerland) was used. The protocol includes 
the collection of 2.5 ml peripheral blood into PAXgene Blood RNA Tubes (Becton 
Dickinson and Co., Franklin Lakes, NJ, USA) and the total RNA extraction using 
the PAXgene Blood RNA Kit (Qiagen GmbH, Hilden, Germany). We used the s 
standard manufacturer’s protocol. The fragmentation of the RNA sample was 
measured with the 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 
We produced biotinylated cRNA from 200 ng of total RNA with the Ambion 
Illumina TotalPrep RNA Amplification Kit (Applied Biosystems, Foster City, CA, 
USA), following the manufacturer’s protocol. Biotinylated cRNA (750 ng) was 
hybridized onto Illumina HumanHT-12 Expression BeadChips (Illumina Inc., San 
Diego, CA, USA), according to the manufacturer’s protocol. 
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4.1.4.3 Genomic markers 

The SNP LCT C/T-13910 was genotyped using the iPlex assay on the MassARRAY 
System (Sequenom, San Diego, CA, USA) using standard protocols in 15 209 
Finnish individuals. The YF cohort LCT C/T-13910 genotyping was performed by 
using the 50-nuclease assay and fluorogenic, allele-specific, TaqMan probes and 
primers (Applied Biosystems, Foster City, CA, USA). Reactions were run using the 
ABI Prism 7000 sequence detection system (Applied Biosystems). The genotype 
frequencies were in Hardy–Weinberg equilibrium (HWE) in all five cohorts (YF, P 
= 0.814; ATBC, P = 0.84; FR, P = 0.77; NFBC, P = 0.93; Health2000, P = 0.54) and 
the call rate was greater than 95% in all samples. BWHHS genotypes for LCT C/T-
13910 (rs4988235) were generated using KASPar chemistry, which is a competitive 
allele-specific PCR SNP genotyping system using FRET quencher cassette oligos 
following standard protocols (KBiosciences, Essex, UK). 

Genome-wide SNP data was used in studies I and III. Samples were successfully 
genotyped after excluding chip failures and poor quality samples (as determined by 
visual inspection of a 0.75% agarose gel or poor Sequenom call rate). Low quality 
samples were removed from further analysis when the call rate was less than 95%. A 
sequenom fingerprint was performed prior to the SNP array. Twenty SNPs were 
genotyped for quality control purposes. An individual was removed if it failed to 
match Sequenom genotype fingerprinting (concordance < 0.90 for at least 10 
genotypes). If two individuals were closely related or a sample was present in 
duplicate samples (pairwise identity by state pi-hat > 0.10), the sample with the 
smaller call rate was removed. SNPs failing to meet the following quality thresholds 
were also removed from further analysis: call rate > 0.95, minor allele frequency > 
0.01 and Hardy-Weinberg equilibrium P value > 1.0x10-6.  In study I we had 
genome-wide SNP data (Illumina HumanHap 370, Illumina Inc., San Diego, CA, 
USA) available for 5 555 individuals from the NFBC 1966 cohort. Similarly, we had 
genome-wide SNP data (llumina HumanHap 610-Quad SNP array) available for a 
subset of the Health2000 cohort (2145 individuals) ascertained for a matched case–
control study of metabolic syndrome. In study III the genotyping was performed 
with the Illumina 610 chip using standard protocols. 

The genome-wide microsatellite markers used in study II were combined from 
genotype data provided by each registry as the participating twin registries released 
their data for the combined analysis. The participating registries were: the Australian 
Twin Registry (Hopper, 2002), the Danish Twin Registry (Skytthe et al., 2002), the 
Finnish Twin Cohort (Kaprio & Koskenvuo, 2002), the Netherlands Twin Register 
(Boomsma et al., 2002), the Swedish Twin Registry (Pedersen et al., 2002) and the 
TwinsUK Adult Twin Registry (Spector & MacGregor, 2002). 
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4.2 Statistical methods 

4.2.1 Quality control 

4.2.1.1 Familial relationships 

In the context of linkage mapping one must be certain that all familial relationships 
are correctly specified. The expected genetic covariance in linkage analysis is 
derived from the declared familial relationships. The validity of twin zygosity and 
other familial relationships were tested in study II with the program Graphical 
Representation of Relationships (Abecasis et al., 2001). 

In contrast, the population is expected to be unrelated in association studies. One 
cannot test for relatedness when one only has a few markers, such as in study I 
where only one genotype was studied. However, when a large number of 
polymorphic markers (at least roughly 500 SNPs or 100 microsatellites) spread 
evenly across the genome are available, one can detect close relatives using the 
average identity-by-state (IBS) sharing over the whole genome. This approach was 
used to remove closely related individuals in study III. 

4.2.1.2 Genotype quality controls 

The first quality control step usually performed after genotyping is assessing 
missing genotype rates or the success of genotyping. If the missing genotype rate is 
large (over 20 %), one can assume that the successful genotypes are unreliable and 
the marker should be discarded. This is a common threshold in studies with few 
markers since the genotypes are commonly called manually. In genome-wide SNP 
panels it would be too laborious to manually curate the genotypes and therefore a 
computational algorithm is applied to make the calls. In our studies we used the 
Illuminus-algorithm (Teo et al., 2007). In the case of computationally curated 
genotypes, we have used a more stringent missing genotype rate threshold (over 
5%). 

The calling algorithm is sensitive to the genotype cluster sizes as it attempts to 
position the clusters. If the frequency of the minor allele is low (less than 1 %) the 
positioning becomes unreliable using the Illuminus algorithm, and therefore are 
removed from the analyses. 
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In family studies one can confirm that the markers segregate by the laws of Mendel. 
Mendelian inconsistencies were removed in study II using the program PedCheck 
(O'Connell & Weeks, 1998). Sometimes the genotyping error is not obvious and the 
surrounding haplotype structure provides evidence that the genotype is probably 
erroneous. The non-Mendelian inconsistencies were evaluated with the linkage 
analysis program Merlin and they were removed using the option pedwipe (Abecasis 
et al., 2002). 

Hardy-Weinberg equilibrium (HWE) states that allele and genotype frequencies are 
in equilibrium, or in other words that the frequencies of the genotype classes are the 
products of allele frequencies. While the HWE assumes, for example, that the 
population size is infinite, mating is random, there are no new mutations, there is no 
selection and there is no migration. It is robust enough to function in populations 
where these expectations are not met. Deviation from HWE can be tested with a χ2 
test, which we performed in all studies. There was no deviation from HWE in study 
I. We used p > 0.001 as a threshold in study II and removed all markers falling 
below the threshold. In studies I and III we used p > 1*10-6 as a threshold since we 
had significantly more markers. One would expect to find a p-value as small as 
2*10-6 just by chance on a 610k chip and as small as 3*10-6 on 370k chip. 

4.2.1.3 Phenotype quality control, transformations and corrections 

All statistical tests used in studies I-III assume that the trait is normally distributed. 
Outliers deviating far from the mean have larger weight in the test statistics. 
Therefore, in study II we tested for the skewness and kurtosis of BMI in the total 
sample. The values were 1.14 and 2.69, respectively, and thus a log base10 
transformation was used. Normalization changed the distribution and the skewness 
and kurtosis of logBMI were 0.47 and 0.82, respectively. Sex, age and country of 
origin were used as covariates in the combined sex analysis since they correlated 
significantly with logBMI. Outliers (n = 393) were excluded from the analyses. 
Outliers were defined as individuals differing by more than 3 SD from the 
population mean. In study I the BMI was not transformed since after outlier removal 
(3 SD) the distribution was approximately normal (both skewness and kurtosis were 
between -1 and 1). There were a large number of phenotypes, with non-normal 
distribution in study III. Box-Cox power transformation was applied to all 
phenotypes, and values deviating more than 4 SD were removed. The variation in 
phenotype caused by non-genetic factors was removed prior analysis (studies I and 
III). Covariate correction was applied during the analysis (study I) for the same 
reason.  
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Table 15. Corrections for phenotypes used in study I 

 Sex Age Area of origin PCA 
NFBC 1966 x    
ATBC  x   
FINRISK x x x  
Health2000 x x x  
YF x x x  
BWHHS  x x  
ERF x x   
Rotterdam x x  x 
KORA S3 x x  x 
KORA S4 x x  x 

PCA: Principal components analysis of genome wide SNP data was utilized to control for possible population 

stratification using the first ten principal components 

 

In study I phenotypes were corrected, where applicable, for area of origin, gender, 
age and the ten first principal components. Corrections are summarized in Table 15. 
Sex, age and country of origin correlate significantly with BMI in study II and they 
were used as covariates in the analysis. We also performed sex stratified analyses in 
study II where sex was not a covariate. The phenotypes in study III were corrected 
for age, gender, and the first 10 principal components by taking the standardized 
residuals from a multiple linear regression with the above as covariates. 

4.2.1.4 Quality control in expression arrays 

Background corrected probe signal intensities and bead counts of the scanned data 
were taken from the Illumina’s BeadStudio software for further processing in study 
III. Quantile normalization was used to force probe intensities for all samples on all 
arrays to be the same. Pearson’s product moment correlation coefficient and 
Spearman’s rank correlation coefficient were used to measure the correlation of 
normalized technical replicate pairs for all samples. The MA plot (application of a 
Bland–Altman plot) was used to visualize the intensity-dependent ratio of 
microarray data. M (y-axis) is the intensity ratio and A (x-axis) is the average 
intensity for a dot in the plot. The MA plot gives a quick overview of the data. Each 
MA plot was manually curated for curvature or deviation from M = 0 axis, none of 
which were found. A sample was removed from further analysis if its Ρ was <0.94 
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or ρ was <0.60 (9 samples failed). Raw signal intensities from corresponding 
replicates were combined. The number of beads that contributed to each signal were 
weighted and summed to obtain one measure of signal intensity for each sample on 
each probe. Probes that did not meet certain criteria were excluded from further 
analysis. Probes were removed if they were non-autosomal, were complementary to 
cDNA from erythrocyte globin components or mapped to several genomic positions. 
We use the expression markers defined in Whitney and colleagues’ paper  to correct 
for the relative cell type numbers (Whitney et al., 2003). The corrected cell type 
proportions included B cells, cytotoxic T lymphocytes/natural killer cells, 
erythrocytes, lymphocytes, Myc-regulated cells, neutrophils and 
reticulocytesmyeloid cells (profiles for the time of day were also included). We were 
not able to correct for T cells (uncovered on HT-12 array), mast cells (not assessed 
in Whitney et al. 2003) and basophils (not assessed in Whitney et al. 2003). 

4.2.1.5 Association analysis with expression data (III) 

All univariate statistical tests and permutations were performed with PopGenomix, a 
custom C++ package. Using genome-wide SNP genotypes on the same individuals, 
we investigated the genetic effects on expression for each gene in the LL module 
and for the LL module as a whole; 35 419 log2 normalized expression probes and 
541 654 SNPs (2 061 516 SNPs after imputation) were taken forward for further 
analyses. For SNPs in cis, within 1 Mb of the expression probe midpoint, a linear 
regression was performed. In order to determine significance, a permutation 
procedure was implemented (Stranger et al., 2005). For trans SNPs, greater than 5 
Mb away or on a different chromosome, the non-parametric Spearman rank 
correlation was used (Stranger et al., 2005). The Spearman rank correlation offers a 
more robust test of association since permutation across the whole genome is 
computationally prohibitive. To determine the significance of the nominal Spearman 
P value, a threshold of 5.0*10-7 was implemented. 10 000 permutations were 
performed in order to evaluate the level of significance. We then assessed how gene 
expression correlated with metabolic measures by linear regression to obtain a list of 
metabolite-correlating genes for network analysis. 
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4.2.2 Statistical analyses 

4.2.2.1 Linkage 

Marker maps from all of the cohorts in study II were combined using the 
Cartographer program (Sammalisto et al., 2005). We performed the variance 
components linkage analysis for logBMI in 4401 families (10535 individuals) using 
Merlin (Abecasis et al., 2002). Merlin utilizes the Lander-Green algorithm (Lander 
& Green, 1987) for the IBD estimation and the standard variance components 
framework for linkage analyses. In total, there were 3356 dizygotic twin (DZ) pairs 
(706 male pairs, 2040 female pairs and 610 opposite-sex pairs). The linkage analysis 
program Merlin estimates the heritability of a given trait along with the linkage 
analyses. We performed country-specific analysis in extended families (where 
available) and DZ twins only. We performed an analysis of combined samples 
across countries for both the combined DZ twin sample and the extended families 
sample. The extended families sample included all available individuals. We also 
performed sex-stratified analysis in the combined sample to examine whether there 
was a sex-specific contribution to the linkage signal at a given locus. 

4.2.2.2 Power calculation 

We estimated the decrease of power when the incorrect analysis method is used. An 
additive model is a common compromise to avoid multiple testing when running 
GWAS for quantitative traits. The additive model may hinder the power to detect an 
association when true mode of inheritance is not additive. The effect is usually more 
pronounced when the true effect is seen between the minor allele homozygotes and 
the major allele carriers, as is the case in study I. The test of power reduction was 
performed by the bootstrapping method, using the R package. We simulated 10 000 
samples of 17 374 individuals and randomly assigned a normally distributed 
quantitative “phenotype” to them. We distributed a random genotype with a 0.39 
minor allele frequency and assigned a phenotype decrease of 0.08 trait value for 
minor allele homozygotes. Each of the 10 000 samples were subsequently analyzed 
with both additive and recessive models and p-values were collected. 
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4.2.2.3 Association testing and dominance deviation 

Association testing was performed in studies I and III. The minor allele 
homozygotes were tested against major allele carriers in all of the cohorts in study I. 
All samples except for ERF were analyzed using standard linear regression on the 
corrected phenotype. The ERF cohort, a family sample, was analyzed with QTDT 
(Abecasis et al., 2000) which utilizes variance components methodology and 
transmission disequilibrium test.  Since the project was collaborative, all of the 
cohorts performed their individual analyses which were subsequently combined in 
meta-analysis. The population cohorts were analyzed using the following statistical 
packages: NFBC 1966 and Health2000 were analyzed with PLINK 1.04 (Purcell et 
al., 2007); FINRISK, KORA and ATBC with R (R Development Core Team, 2007); 
and BWHHS, YF and Rotterdam with SPSS (SPSS, 1999). In addition to a regular 
test for association, we performed a formal test for rejecting the additive model in 
study I. The dominance deviation tests whether the heterozygous genotypes deviate 
from the additive model. We also performed sex stratified analyses to test if there 
was a gender-specific contribution to the signal. The metabolite GWAS in study III 
was performed using PLINK with linear regression and an additive model for all 
134 transformed and corrected metabolic phenotypes (Purcell et al., 2007). 

4.2.2.4 Imputation 

Imputation is a method used to fill in missing data with respect to a reference set 
(Figure 14). One can fill in missing genotypes in a haplotype if an available 
reference set has denser marker map.A commonly used reference is the HapMap 
Central European ancestry trio sample. It contains over 2 million phased SNPs. The 
NFBC 1966, Health2000 subset, Rotterdam, ERF and KORA samples in study I 
were imputed using the MACH program (Li et al., 2009) and the HapMap (The 
International HapMap Consortium, 2003) CEU reference. 
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4.2.2.5 Principal components analysis 

Principal components analysis is a mathematical method where the variation of a 
dataset of correlating variables is captured in a smaller number of uncorrelated 
variables. Principal components analysis was utilized in studies I and III. The 
genetic correlation between individuals was reduced to principal components to 
detect population structure as described in a paper by Jakkula and colleagues 
(Jakkula et al., 2008). The genotype information should be available from no less 
than 50 000 SNP markers evenly spaced across the genome in order to obtain 
reliable information on the population structure. The EIGENSOFT program (Price et 
al., 2006), which utilizes the genotypes of individuals, was used to reduce the 
genetic variation into principal components in study I. The first component is fitted 
so that it captures the largest amount possible of variation. Then the next principal 
components are fitted orthogonally to the previous. In study III, a different but 
analogous approach was used to detect population structure. Multidimensional 
scaling, utilized in the PLINK program (Purcell et al., 2007), uses the relationship 
matrix to calculate the principal components. Relationship matrix contains mean 
IBS sharing across the whole genome for each pair of individuals in the data. Since 
the expression of the gene pathway is correlated, we used principal components 
analysis in study III to reduce the expression of the whole pathway into one vector 
that could be used in the correlation test with metabolites and genetic markers. 
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Figure 14. 1) The reference panel contains haplotypes of alleles 0 and 1. 2) The 
genotyped sample contains allele counts 0 and 2 represent homozygotes, 1 
heterozygotes and ? missing data. 3) The missing values are filled in according 
to the haplotypes of the reference and the surrounding markers from data. 

1. Reference set of haplotypes 

0 0 1 1 1 1 ? 1 1 0 0 0 ? 1 1 

0 0 0 0 0 0 ? 1 0 1 1 1 ? 0 1 

1 1 1 1 1 1 ? 0 1 0 0 0 ? 0 0 

1 0 1 1 1 1 ? 1 1 1 1 1 ? 0 1 

2. Sample with missing genotypes respect to reference 

1 ? ? ? 2 ? 0 ? ? ? ? 0 1 ? 1 

1 ? ? ? 1 ? 0 ? ? ? ? ? 0 ? 0 

0 ? ? ? 1 ? 1 ? ? ? ? 1 0 ? 1 

1 ? ? ? ? ? 0 ? ? ? ? 0 1 ? 1 

? ? ? ? 2 ? 0 ? ? ? ? 0 0 ? 0 

1 ? ? ? 1 ? 1 ? ? ? ? 1 0 ? ? 

0 ? ? ? 2 ? 0 ? ? ? ? 0 1 ? 1 

1 ? ? ? 1 ? 1 ? ? ? ? 1 1 ? 2 

3. Imputing the missing data 

1 1 2 2 2 0 0 1 2 0 0 0 1 1 1 

1 1 1 1 1 0 0 1 2 1 0 0 0 0 0 

0 0 1 1 1 1 1 2 1 1 1 1 0 0 1 

1 2 2 2 1 0 0 1 2 0 0 0 1 1 1 

2 1 2 2 2 0 0 0 2 2 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 

0 0 2 2 2 0 0 2 2 2 2 0 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
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4.2.2.6 Meta-analysis, heterogeneity and interaction using summary statistics 

All study cohorts were analyzed separately in study I. Therefore the test statistics 
were combined using meta-analysis to obtain the test statistics for the combined 
sample and sex-stratified analyses. In meta-analysis, the effect size estimates (β) of 
linear regression is weighted with their respective standard errors and combined 
together. Standard error will correct for the sample size differences. The response 
variable must be uniformly treated prior to linear regression because the effect 
estimate is a measure of change in standard deviation units. If one study has 
standardized (SD = 1, mean = 0) the trait values and another uses raw trait values, 
for example BMI (SD=4, mean =25), the effect estimate will be in different standard 
deviation units and combination of these is not obvious. Therefore, the phenotype 
was standardized in all cohorts in study I. Heterogeneity analysis tests if some of the 
effect estimates are very different from others. This is similarly performed using the 
effect estimates’ standard errors. 

We used the summary statistics in study I to test for gender interaction. In brief, we 
had the sex-specific analyses performed in all cohorts and those were meta-analyzed 
to produce a combined effect for both genders. We then tested if there was a 
significant difference between the effect size estimates between genders (Hardy, 
1993). 

4.2.2.7 Network analysis in gene expression 

In biological pathways, many genes tend to co-express. Therefore, it is natural to 
incorporate these correlations into a network-based framework. Within this 
framework, pair-wise correlations between genes are used to describe the 
connectedness of the network, and clusters of tightly correlated genes (or modules) 
can define pathways. Network analysis was performed using the WGCNA R 
package (Langfelder & Horvath, 2008).  To construct a co-expression network that 
characterizes metabolic traits, the method of Horvath and Dong (Horvath & Dong, 
2008, Langfelder & Horvath, 2008) was used to assess the top 10% of expression 
signals for all metabolites (3,520 unique signals). The correlation matrix was 
constructed by obtaining all against all Pearson correlation coefficients and the 
adjacency matrix was calculated with a soft threshold power of seven. The initial 
modules were determined with the dynamic tree cut function in WGCNA where the 
minimum module size of 10 genes was used. Summary profiles were obtained from 
each individual module by singular value decomposition (first vector of PCA). 
Highly correlated modules were identified by clustering the summary module 
profiles. The modules with dendogram height less than 0.20 were merged. 
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4.2.2.8 Network orientation and putative causality 

Genetic markers are used as causal anchors to direct the edges of a network (Chen et 
al., 2007a, Thomas & Conti, 2004, Schadt et al., 2005, Li et al., 2006, Zhu et al., 
2007, Kulp & Jagalur, 2006, Chen et al., 2007b, Sieberts & Schadt, 2007). Genetic 
markers are thought to be ideal in causality tests due to the underlying 
randomization by Medelian laws, and are thus less susceptible to confounding 
effects (Kulp & Jagalur, 2006, Greenland, 1990, Katan, 1986, Clayton & McKeigue, 
2001, Zhu et al., 2004, Thompson et al., 2005). If a trait is associated with a genetic 
marker, the genetic marker must cause the variation in trait: 

Marker → Trait A (Schadt et al., 2005) 

This is then extended to the graph where causation is referred as: 

Marker → Trait A → Trait B 

The SNP causes variation in Trait A which in turn causes variation in Trait B. 
Conditional independencies of the variables can be determined by the graphical 
property of d-separation, an algorithm used to compute all the conditional 
independence relations implicated by their graphs (Pearl, 1988, Pearl, 2000, Shipley, 
2000). We used the R package NEO (Aten et al., 2008) in our attempt to infer 
causality and directedness of the network. We included metabolites in edge orienting 
that were associated with Lipid-Leukocyte (LL) module expression and had at least 
one SNP associated with P < 5*10-7. The LL module was the strongest network of 
genes that showed association with metabolomic phenotypes in study III. We were 
left with 29 metabolites in the directed network analysis along with the LL module 
genes. We selected SNPs as causal anchors by two criteria; either they were 
associated with a metabolite (P value < 5*10-7) or the gene expression in cis of at 
least one of the LL module genes (P value < 5*10-3). The automatic SNP selection 
approach implemented in NEO was used to assess the causality of a give SNP. The 
selection uses both greedy and forward-stepwise regression. The causality of an 
oriented edge was determined by (i) its NEO.NB.OCA score being greater than 0.30 
(ii) its causal model P value being greater than 0.10 and (iii) the edge’s A  B path 
coefficient had a Z score statistic smaller than -1.96 or greater than 1.96. 
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4.2.2.9 Connectedness of the network 

We attempted to assess if the LL module’s core co-expression changes with 
metabolite levels. The log2-normalized expression values were partitioned into 
quintiles for each module gene. We leveled the number of individuals in each 
quintile. We calculated a correlation matrix of the gene expression using Spearman 
rank correlation in each quintile and fitted a linear model across all co-expression 
pairs. We assessed from the slope of the curve if the expression of the module was 
dependent on the metabolite concentrations. 
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5 RESULTS AND DISCUSSION 

5.1 Lactase persistence association with body mass index (I) 

5.1.1 Association analyses and meta-analyses 

We used five Finnish population cohorts to assess the effect of LP, none of which 
had been ascertained for height or BMI. The cohorts were The North Finland Birth 
Cohort 1966 (NFBC 1966), The Health 2000 Health Examination Survey 
(Health2000), The Cardiovascular Risk of Young Finns Study (YF), the Alpha- 
Tocopherol, Beta-Carotene Cancer Prevention (ATBC) study and the FINRISK. 
FINRISK is a cross-sectional population survey targeting coronary risk factors and 
is collected every 5 years. We performed additional analyses in European 
populations: the British population using the British Women’s Heart and Health 
Study (BWHHS), the German using the KORA S3 and KORA S4 study samples, 
and the Dutch using the Erasmus Rupchen Family (ERF) study with extended 
pedigrees and the Rotterdam study. Each population cohort was analyzed using 
linear regression to test if the lactase persistent C-13910 allele homozygotes differed 
from the lactase non-persistent T-13910-allele carriers. The effect estimate and its 
standard error in the ERF family sample were obtained from QTDT. Table 16 
summarizes the results from individual cohorts. 

Table 16. Results summary of all cohorts 

 n β se p-value 

NFBC 1966 5498 -0.11 0.04 0.002 
ATBC 2126 -0.12 0.06 0.04 
FINRISK 2265 -0.09 0.05 0.09 
Health2000 5320 -0.06 0.03 0.1 
YF 2165 -0.04 0.06 0.51 
BWHHS 3109 -0.06 0.07 0.4 
ERF 2104 -0.08 0.06 0.16 
Rotterdam 5689 -0.02 0.05 0.69 
KORA S3 1578 -0.001 0.07 0.99 
KORA S4 1755 0.08 0.06 0.24 

β = effect estimate, n = number of individuals, se = standard error 
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We combined the effect estimates and their standard errors in the meta-analysis of 
17 374 Finns (β = -0.08, P = 1.5*10-5) and found that the CC genotype was 
associated with decreased BMI. We tested for heterogeneity in the meta-analysis. 
There was some evidence of heterogeneity (I2 = 10), but the Q statistic was not 
significant (P = 0.35). The LP allele carriers had 0.3 kg/m2 higher BMI than lactase 
non-persistent individuals. This corresponds to ~1 kg difference for an average 
person. LP explained 0.2% of the BMI variance in the NFBC 1966 cohort. We had 
the FTO rs9939609 genotypes available in NFBC 1966 to compare the proportion of 
variance explained. The proportions of variance explained by the FTO variant was 
found to be equal (0.2%) in the NFBC 1966. In sex-stratified analyses we found that 
males (n = 9739, β= -0.09, P = 1.6*10-4) had a somewhat higher effect estimate in 
the model than females (n = 7635, b = -0.06, P = 0.02). The difference was not 
statistically significant (P = 0.6). We added the effect sizes of the additional four 
European cohorts to the meta-analysis for a total of nine cohorts and 31 720 
individuals. The association with BMI remained robust (β = -0.06, P = 7.9*10-5) in 
the combined meta-analysis of all samples. The results from linear regression and 
the meta-analyses are summarized as a forest plot (Figure 15). 

 

Figure 15 . Forest plot of the individual cohort analyses and the meta-analyses 
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5.1.2 Addressing stratification 

We had genome wide SNP data available in two of the cohorts, NFBC 1966 (n = 
4911) and Health2000 (n = 2145, metabolic syndrome case–control sample). The 
first 14 eigenvectors explained the largest proportion of the variance in the principal 
components analysis of NFBC 1966 genome-wide SNP data. We tested for the 
correlation between BMI and the first fourteen eigenvectors in NFBC 1966 and 
Health2000. Figure 16 is a Scree-plot of the eigenvalues. Figure 17 shows the first 
two principal components of the NFBC 1966 data, black dots indicate lactase 
persistent and gray dots controls. It has been previously shown by Lahti-Koski and 
colleagues that there is no correlation between geographic location and BMI within 
Finland, which might have lead to spurious association due to stratification (Lahti-
Koski et al., 2008). 

  

 

Figure 16. The Scree plot of the first 100 eigenvectors where the first eigenvector 

explains the largest proportion of variance 
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Linear regression was utilized to evaluate evidence of correlation between the 
eigenvectors and BMI. We did not find correlation in either NFBC 1966 or 
Health2000 (P > 0.05). We used logistic regression to test for the correlation 
between LP and eigenvectors. The association did not change after adding all 
significantly correlating eigenvectors as covariates in the NFBC 1966 data or in the 
Health2000 subsample. The Health2000 GWAS subsample was ascertained as a 
case-control cohort for metabolic syndrome and hence we tested for the effect of LP 
in both cases and controls separately. We found that there was no difference in the 
linear regression β between the groups. 

 

 

Figure 17. The first two principal components from the NFBC 1966 data; lactase 

persistent (black) and lactase non-persistent (gray) 
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5.1.3 Imputation 

We compared the imputed genotypes of the rs4988235 SNP with the Sequenom 
genotyped genotypes for individuals in the Health2000 subsample and NFBC 1966. 
The imputation quality score was 0.91 and r2 was 0.81, which suggest that the 
imputation was successful. After comparing the genotypes we found that the LP 
phenotype defining C/C genotype had a 23% difference between the genotyped and 
imputed genotypes. The imputation had not called 245 C/C genotypes that were 
confirmed by the 1060 C/C genotypes in the genotyped data. There were 15 cases 
where the imputation had called a C/C genotype and genotyping had called C/T. 
When counting all genotypes, the amount of discordance between imputation and 
genotyping was 11%. 

5.1.4 Power reduction and model in analyses 

Since the initial GWASs have not identified association in the LCT region, and 
lactase persistence shows a dominant pattern of inheritance, we used the dominance 
deviation test from additivity to see if the effect was additive or dominant. We 
analyzed each cohort separately and combined the β-estimates with their standard 
errors in meta-analysis. The dominance term showed evidence that we could reject 
the additive model (P = 0.001, β = 0.047). We used the additive model in our 
analyses with the Finnish data instead of the correct dominant model and combined 
the results with meta-analysis. The additive model showed a decrease of association 
(P = 0.001) compared with the dominant model (P = 1.5*10-5). We used 
bootstrapping to simulate the reduction in power when using the wrong model. The 
result of this power reduction is summarized in Table 17. 
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Table 17. The results of power calculation for using the additive model instead of 

correct dominant model where sample size (n = 17 374), effect size (β = 0.082) and 

MAF (0.39) are the same as the LCT variant had in Finnish sample of this study 

Significance level Power (D/A, %) 

0.05 98/83 

0.01 91/63 

0.001 73/35 

1*10-4 51/16 

1*10-5 30/7 

1*10-6 16/2 

1*10-7 8/1 

5*10-8 6/1 

D = dominant model, A = additive model 

 

5.1.5 Discussion 

In the study I we present a novel association with genetically defined lactase 
persistence and BMI (P = 7.9*10-5). The LCT region has been shown to cause 
spurious associations due to its frequency gradient by Cambell and colleagues 
(Campbell et al., 2005). We were able to show that the association was not due to 
population stratification by using principle components analysis for population 
stratification detection. Additionally, the example made by Cambell and colleagues 
concentrated on stature, where we did not find any evidence of association (P = 
0.41). The BMI association was mediated by the body weight of individuals (P = 
1.4*10-5). 

We critically addressed two aspects that influence the success of GWAS probably 
not only in LCT region. All of the cohorts used in the meta-analyses have been 
imputed with the same HapMap 2 reference because the functional variant of the 
lactase gene is commonly not included in SNP panels and the LD to the nearest 
variant on the panel is insufficient. In addition to false genotypes, the wrong analysis 
model has been utilized. We showed that the wrong analysis model decreases power 
substantially when true effect is present among minor allele homozygotes only. The 
false genotypes and the inappropriate analytical model combined have a detrimental 
effect on the power of association analysis in this specific region even in a very 
large meta-analysis. This region shows strong LD structure and if a common 
haplotype is by chance missing from the reference set, the result may be false 
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negative finding. This may play a large role in why the Rotterdam and KORA 
cohorts did not replicate the finding. The ERF sample was not susceptible to the 
imputation issue, because the imputation reference was genotyped from within the 
family and no external reference set was used. Additionally, the family structure of 
ERF makes a large difference in the imputation. Therefore, the LD structure and 
problems with imputation may somewhat explain why the non-Finnish population 
samples did not replicate the association significantly (P = 0.24). 

We cannot exclude the possibility that cultural influences on milk consumption 
override the rather minor discomfort consequent to milk ingestion by non-persistent 
individuals. It has been shown by Smith et al that the association of LP with milk 
consumption varies between populations. (Smith et al., 2008)  They showed that it 
was stronger in intermediate allele frequency regions than in those where one allele 
is rare. The consumption of dairy products is large in Finland and this may have 
inflated the effect size because in Finland there is a correlation with liquid dairy 
product consumption and LP (Lehtimaki et al., 2006, Enattah et al., 2004). 

It remains unclear how LP affects body composition. It may be due to the dietary 
restriction caused by the trait or perhaps by the negative symptoms such as 
diarrhoea. The lactase locus has been under strong positive selection and this novel 
association with BMI may provide some explanation to the positive selection. The  
lactase association with BMI also gives an excellent example for James Neel’s the 
thrifty gene hypothesis where a 'thrifty' genotype would have been advantageous 
during times of food scarcity and in today’s obesogenic environment becomes 
detrimental (Neel, 1962). We have shown here that the recent GWASs have not yet 
been able to reveal all of the common variants affecting BMI. In summary, we show 
evidence that the European lactase persistence variant, and perhaps other regulatory 
variants in the lactase region, plays a role in the human adult BMI development. 
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5.2 Genome-wide linkage scan for body mass index in European 
twin cohorts (II) 

The heritability of BMI was 54 % in the extended families sample and 73% in the 
DZ twin sample. We performed sex-stratified analyses in the combined samples of 
both DZ twin and extended families, but not in the country specific samples. All 
linkage results per chromosome in the extended family sample, DZ twins only 
sample and sex stratified analyses are shown. The linkage results of chromosomes 
with either a linkage peak reported in this study or a published GWAS hit can be 
viewed in Figure 18 and Figure 19. The DZ twin data provided evidence for more 
loci than the extended family sample. The DZ linkage loci of multipoint logarithm 
of odds score (MLOD) > 1 included 1p32 (MLOD = 1.3), 3q27 (MLOD = 2.5), 
3q29 (MLOD = 2.6), 7q36 (MLOD = 2.4), 16p13 (MLOD = 1.3), 18q12 (MLOD = 
1.6), 20p12 (MLOD = 1.1) and 22q13 (MLOD = 1.9). The extended families’ loci of 
MLOD > 1 included only 16p13 (MLOD = 1.3) and 20q13 (MLOD = 1.7). Since the 
individual cohorts have smaller sample sizes, we only report the loci of MLOD > 2. 
The cohort-specific DZ linkage loci of MLOD > 2 included 2p24 (MLOD = 3.4, 
Dutch cohort), 6q26 (MLOD = 2.6, Dutch cohort), 7q36 (MLOD = 2.6, Australian 
cohort), 7q36 (MLOD = 2.4, Danish cohort) and 18q12 (MLOD = 2.2, Swedish 
cohort). The extended families’ linkage loci of MLOD > 2 included 3q26 (MLOD = 
2.0, Australian cohort), 10q22 (MLOD = 2.6, Finnish cohort), 16q23 (MLOD = 3.7, 
Dutch cohort), 17p13 (MLOD = 2.3, Finnish cohort) and 20q13 (MLOD = 3.2, 
Finnish cohort). 
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Figure 18. The multipoint variance components linkage results for chromosomes 1 

to 11 that have either reported linkage in this study or are published genome-wide 

association loci 
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Figure 19. The multipoint variance components linkage results for chromosomes 12 

to 22 that have either reported linkage in this study or are published genome-wide 

association loci 
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5.2.1 Discussion 

Linkage studies have been thus far unable to reliably pinpoint regions in the human 
genome that contribute to human obesity. The human obesity gene map catalogue 
contains published linkage and candidate gene association findings in every 
chromosome, except Y, for obesity-related traits (Rankinen et al., 2006). Perhaps 
this speaks of the very complex nature of the trait. In study II we provided further 
evidence for two previously replicated loci in the largest linkage scan to date. We 
found that the loci 3q29 and 7q36 (MLOD = 2.6 and MLOD = 2.4, respectively) 
showed suggestive evidence for linkage. These regions have been extensively linked 
to obesity-related traits. Francke showed evidence for linkage with coronary heart 
disease and myocardial infarction in the 3q29 region in a North Indian-originating 
population (MLOD = 2.1, families n = 99, individuals n =535) (Francke et al., 
2001). They studied. Kissebah et al have linked 3q29 with metabolic syndrome 
component traits in a Caucasian population (MLOD = 2.4-3.5, families n = 507, 
individuals n = 2209) (Kissebah et al., 2000). Luke et al have found very strong 
evidence for linkage in an African American population with BMI and in the 3q29 
chromosome region (MLOD = 4.3, families n = 329, individuals n = 1163) (Luke et 
al., 2003). Vionnet et al have shown strong binomial likelihood in the 3q29 region 
in the French population for early onset type 2 diabetes (Binomial likelihood = 4.6, 
families n = 143, individuals n = 637) (Vionnet et al., 2000). Walder and colleagues 
has shown linkage with BMI and the 3q29 region in Pima Indians (MLOD = 1.4, 
families n = 239, individuals n = 770) (Walder et al., 2000). Wu et al show 
significant evidence of linkage for BMI in 3q29 in a large study of mixed European 
American, African American and Mexican American populations (Wu et al., 2002). 
The 7q36 region has also been replicated several times. Feitosa et al show 
significant evidence of linkage for BMI in an European American population 
(MLOD = 4.9, families n = 536, individuals n = 3407) (Feitosa et al., 2002). Hsueh 
and colleagues have shown evidence of linkage for BMI-adjusted leptin levels in an 
Amish population (MLOD = 1.8, families n = 28, individuals n = 672) (Hsueh et al., 
2001). Pérusse and colleagues have shown evidence for linkage in Caucasion 
population for abdominal subcutaneous fat (MLOD = 2, families n = 156, 
individuals n = 521) (Perusse et al., 2001). Sex specific analyses provided evidence 
that the 7q36 locus may be female driven, which is supported by previous evidence 
provided by Sammalisto et al (MLOD = 2.9, families n = 3032, individuals n = 
5788) (Sammalisto et al., 2009). Our study strengthens the evidence that these loci 
do indeed harbour genetic variants affecting human adult obesity. 

DZ twins are of the same age, have shared the same prenatal and family rearing 
environment and school experiences more closely than full siblings. As BMI 
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changes with age, matching on age is an important advantage of the twin sample. 
The DZ twin sample showed higher heritability estimates, which means there is a 
reduced total variance in the sample when compared to the sample where additional 
family members were included. This is something that could be tested by using a 
linear mixed effects model in a large sample of families with twins and siblings if 
the variance is smaller within twin pairs than twin-sib pairs or sib-sib pairs. On the 
other hand, this may be due to the problematic modelling of the shared environment 
in small pedigrees compared to large pedigrees. The shared environment mimics the 
effect of shared genes in small pedigrees. Similarly, the twins showed stronger 
linkage and replicated previous findings, which suggests that the sampling strategy 
was successful. Interestingly, the FTO gene region does not show evidence of 
linkage in our study even though it is the strongest common variant found in GWAS 
(Frayling et al., 2007). Four of the 13 published GWA loci show evidence for 
linkage (MLOD > 1) in the combined sample including NPC1, LGR4, ETV5 and 
NCR3 as shown in Figure 18 and Figure 19. These regions may harbour both 
common small effect, and rare, strong effect variants. There are very good candidate 
genes residing under the two strongest linkage peaks. APOD gene is right under the 
3q29 peak. APOD is primarily localized in HDL (~65%) but its function remains 
largely unclear. There are two excellent candidate genes under the 7q36 region 
linkage peak, namely LEP and INSIG1. The leptin gene has been shown to cause 
severe obesity both in mice and humans [OMIM 164160]. INSIG1 [OMIM 602055] 
has been shown to regulate the cholesterol concentration in cells. All three genes 
may harbor strong effect variants, which are shared in the six European populations 
and are good candidates for resequencing studies. 

In the light of this evidence, the next logical step would be to study these GWAS-
replicated loci in more family samples and utilize the linkage method. In this way, 
one might screen the loci that harbor the high effect variants, and thus identify areas 
for selective resequencing. For example, the FTO locus does not show evidence for 
linkage suggesting that there are no high effect variants and it may not be a good 
target for resequencing. On the other hand, MC4R has been shown to harbour 
variants [OMIM 155541] that cause severe obesity and indeed there is a linkage 
peak 20 cM from the gene that may be caused by non-syndromic but high effect 
variants. These variants will explain some of the missing heritability, but more 
importantly they have a large effect on the individuals carrying them. Therefore, it is 
essential to pinpoint these mutations. 
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5.3 Integration of three omics in examination of obesity-related 
components in Finnish population cohort (III) 

5.3.1 Network analysis and module association to metabolic phenotypes 

The network analysis revealed 21 independent modules. Summary profiles (first 
principal component) of the module expression were correlated with metabolic traits 
using Spearman correlation. The strongest associations were identified for module 
A, the Lipid-Leukocyte (LL) module genes are summarized in Table 18 and 
significant associations in Table 19. 

Table 18. Lipid-Leukocyte -module gene composition 

Gene 

C1ORF186 

CPA3 

ENPP3 

FCER1A 

GATA2 

HDC 

HS.132563 

MS4A2 

SLC45A3 

SPRYD5 

CACNG6 
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Table 19. Significant Lipid-Lleukocyte module associations with serum metabolites 

Metabolite 
Effect 

direction 
P-value 

Concentration of chylomicrons and extremely large VLDL particles - 4.46*10-29 

Triglycerides in medium VLDL - 3.46*10-26 

Concentration of large VLDL particles - 4.51*10-26 

Free cholesterol in large VLDL - 4.89*10-26 

Triglycerides in large VLDL - 5.20*10-26 

Triglycerides in VLDL - 7.25*10-26 

Concentration of very large VLDL particles - 8.88*10-26 

Total cholesterol in large VLDL - 1.00*10-25 

Triglycerides in very large VLDL - 1.09*10-25 

Phospholipids in large VLDL - 1.43*10-25 

Total lipids in large VLDL - 1.98*10-25 

Triglycerides in VLDL (Lipido) - 3.77*10-25 

Concentration of medium VLDL particles - 8.80*10-25 

Cholesterol esters in large VLDL - 9.68*10-25 

Total lipids in very large VLDL - 1.32*10-24 

Total lipids in medium VLDL - 1.59*10-24 

Serum total triglycerides - 2.53*10-24 

Phospholipids in medium VLDL - 6.17*10-24 

Triglycerides in small VLDL - 1.27*10-23 

Total triglycerides - 2.87*10-23 

Mobile lipids -CH2- - 3.25*10-23 

Free cholesterol in medium VLDL - 3.26*10-23 

Phospholipids in very large VLDL - 6.36*10-23 

Ratio of triglycerides to phosphoglycerides - 2.14*10-22 

Total cholesterol in medium VLDL - 7.78*10-22 

Concentration of small VLDL particles - 1.18*10-20 

Cholesterol esters in medium VLDL - 1.36*10-19 

Phospholipids in chylomicrons and extremely large VLDL - 2.56*10-19 

Total lipids in chylomicrons and extremely large VLDL - 7.91*10-19 

Triglycerides in small HDL - 1.00*10-18 

Total lipids in small VLDL - 1.18*10-18 

Triglycerides in chylomicrons and extremely large VLDL - 2.03*10-18 
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Phospholipids in small VLDL - 1.70*10-17 

Mobile lipids -CH3 - 2.11*10-16 

Isoleucine - 4.03*10-16 

Unsaturated lipids - 9.41*10-16 

Free cholesterol in small VLDL - 1.43*10-15 

Triglycerides in very small VLDL - 2.97*10-15 

Omega-9 and saturated fatty acids - 1.61*10-14 

Total fatty acids - 1.66*10-13 

Total cholesterol in IDL (Lipido) - 9.13*10-13 

Apolipoprotein B by apolipoprotein A-I - 3.90*10-12 

Total cholesterol in small VLDL - 1.18*10-10 

Free cholesterol in large HDL - 2.59*10-10 

Omega-6 and -7 fatty acids - 5.02*10-10 

Apolipoprotein B - 1.17*10-9 

Average number of methylene groups per a double bond - 1.24*10-9 

Ratio of bisallylic groups to total fatty acids + 1.29*10-9 

Ratio of bisallylic groups to double bonds + 4.16*10-9 

Total cholesterol in large HDL + 5.15*10-9 

Total lipids in large HDL + 1.57*10-8 

Phospholipids in large HDL + 1.77*10-8 

Glycoproteins - 1.83*10-8 

Cholesterol esters in large HDL + 2.26*10-8 

Concentration of large HDL particles + 2.87*10-8 

Average number of double bonds in a fatty acid chain + 3.39*10-8 

Leucine - 5.58*10-8 

Total cholesterol in medium HDL + 5.94*10-8 

Ratio of omega-9 and saturated fatty acids to total fatty acids - 6.82*10-8 

Phospholipids in very large HDL + 4.00*10-7 

Total cholesterol in large HDL - 1.30*10-6 

Concentration of very large HDL particles + 2.56*10-6 

Triglycerides in IDL - 5.24*10-6 

Total lipids in very large HDL + 5.49*10-6 

Ratio of omega-6/7 fatty acids to total fatty acids + 8.94*10-6 

Total cholesterol in HDL + 1.17*10-5 

Free cholesterol in very large HDL + 1.96*10-5 
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Concentration of very small VLDL particles - 3.23*10-5 

Cholesterol esters in very large HDL + 5.08*10-5 

3-hydroxybutyrate + 9.48*10-5 

Concentration of small LDL particles - 1.02*10-4 

Total cholesterol in very large HDL + 1.25*10-4 

18:2, linoleic acid - 4.48*10-4 

Concentration of small HDL particles - 4.48*10-4 

Total phosphoglycerides - 5.78*10-4 

Total lipids in small LDL - 7.87*10-4 

Other polyunsaturated fatty acids than 18:2 - 8.30*10-4 

Creatine + 9.02*10-4 

Total lipids in very small VLDL - 9.13*10-4 

Description of average fatty acid chain length (not carbon number) + 1.26*10-3 

Phospholipids in medium LDL - 1.31*10-3 

Triglycerides in very large HDL - 1.33*10-3 

HDL = high density lipoprotein, LDL = low density lipoprotein, IDL = intermediate density lipoprotein, VLDL 

= very low density lipoprotein 

 

5.3.2 Genetic factors affecting LL module expression 

Only two SNPs (rs12569123 and rs12569261, SLC45A3) associated significantly 
with gene expression in the LL module in cis, but they did not affect the LL module 
expression significantly (Table 20). It was of note that rs2251746, an 
experimentally-verified eQTL of FCER1A and the strongest signal in a recent 
GWAS for serum immunoglobulin E (IgE) levels, nominally influenced FCER1A 
expression (nominal P = 1.83*10-4), but showed strong evidence in of association 
with total LL module expression (P = 4.28*10-6). For trans SNPs, only three 
significant associations and all were observed between MS4A3 expression and a 
haploblock on chromosome 6 containing PNRC1 and SRrp35. These SNPs also 
strongly predicted LL module expression (Table 21). 
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Table 20. Cis expression quantitative trait loci in the Lipid-Leukocyte module 

Gene Chr SNP 
SNP 

position 
P value β 

Permuted 
significance 

LL association P 

SLC45A3 1 rs12569123 204794597 9.44*10-5 -0.29 0.05 5.67*10-2 

SLC45A3 1 rs12569261 204793883 9.70*10-5 -0.29 0.05 1.76*10-1 

FCER1A 1 rs2251746 157538684 1.83*10-4 -0.17 - 4.28*10-6 

β = effect estimate, LL = Lipid-Leukocyte module 

 

Table 21. Trans expression quantitative trait loci in the Lipid-Leukocyte module 

Gene 
Probe 

chr 
SNP 

SNP 
chr 

SNP 
position 

P value Rho LL association P 

MS4A3 11 rs10455501 6 89856456 3.90*10-7 0.22 8.77*10-3 

MS4A3 11 rs6938490 6 89862949 4.21*10-7 -0.22 3.89*10-3 

MS4A3 11 rs765798 6 89837202 4.34*10-7 0.22 8.46*10-4 

Rho = Spearman’s rank correlation coefficient, LL = Lipid-Leukocyte module 

 

5.3.3 Integrity testing 

We tested for the integrity of the network by dividing the sample into quintiles 
according to the metabolic phenotype of interest. The co-expression of all core LL 
module gene pairs was measured via Spearman rank correlation. For 63 metabolites 
there was significant association (P < 2.4*10-3) with LL module expression and 
additionally a significant linear fit (P < 0.05). All associations displayed an inverse 
relationship between the direction of association for the metabolite concentration vs. 
LL module expression and metabolite quintile vs. co-expression stability 
exemplified by Figure 20. 
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Figure 20. Lipid-Leukocyte module expression (y-axis) partitioned into 
quintiles (x-axis) based on metabolite concentration rank; a linear model is 
fitted to test for the expression dependence of the metabolite concentration. 

5.3.4 Inferring causality 

We used Network Edge Orientation (NEO) conditional correlation analysis to infer a 
Bayesian network of core LL module gene expression with all metabolites. The 
metabolites were selected so that they had significant association to the LL module 
expression as well as a genetic component for the edge orientation (at least one SNP 
associated with P<5.0*10-7). The network consisted of 36 nodes (7 genes from the 
LL module and 29 metabolites) and 137 causal edges. The Bayesian network 
inferred a reactive role for the core LL module to fatty acids and all lipoprotein 
fractions. However, a contradicting trend was observed for free cholesterol and 
phospholipids in large VLDL, which appeared to be driven by expression of three of 
the module genes (CPA3, HDC and SPRYD5). We observed an interesting trend in 
the triglyceride levels of small HDL particles. It appeared to be driven by the 
concentration of large and medium HDL subclasses. Interestingly, the level of 
triglycerides present in the smallest HDL particles (those which showed the 
strongest negative relationship with larger HDL subclasses) was strongly driven by 
the concentration of large/medium HDL. 



Results and Discussion 

 

THL 2010 – Research 38 

Examination of Genetic Components Affecting Human Obesity-Related Quantitative Traits 86 

 

5.3.5 Discussion 

In study III we presented the first evaluation of metabonomic, transcriptomic and 
genomic variation in a large population-based cohort. Gene networks were created 
to portray biological pathways. In networks, pair-wise correlations between genes 
were used to describe the connectedness of the network, and clusters of tightly 
correlated genes (modules) were used to characterize the pathways. The genes were 
chosen in relation to their association with metabolic phenotypes. After network 
analysis, 21 independent modules were identified. The LL module expression was 
shown to correlate strongly with several peripheral blood metabolites. The LL 
module contains genes (HDC, FCER1A, GATA2, CPA3, MS4A2, SPRYD5, and 
SLC45A3) that are key components of inflammation and allergy. The expression of 
the module was associated with the SNP rs2251746, which is the strongest regulator 
of serum igE levels. The functions of SLC45A3, GATA2, and CPA3 are largely 
unknown, but FCER1A and HDC are involved in inflammation and allergy. HDC is 
the catalyst for the conversion of histidine to histamine, a well-known initiator of 
inflammation and immune response to pathogens that is secreted by basophils and 
mast cells (BMCs). BMCs have been previously associated, as have lipids and 
lipoproteins, with atherosclerosis and myocardial infarction (McQueen et al., 2008, 
Tanimoto et al., 2006, Kaartinen et al., 1994, Kovanen et al., 1995). Previous 
evidence in mice has shown HDC’s involvement in hyperleptinemia, glucose 
tolerance, body weight and atherosclerosis (Jorgensen et al., 2006, Fulop et al., 
2003, Tanimoto et al., 2006). FCER1A plays a powerful role in the immune 
response and in histamine release as the encoded receptor subunit directly interacts 
with antigen-bound IgE to initiate cross-linking and BMC activation on the cell 
surface (Kraft & Kinet, 2007). Serum igE levels have been shown to associate with 
FCER1A, but more interestingly co-expression with GATA2 was shown in the same 
study (Weidinger et al., 2008). Since there was strong correlation between LL 
module genes, we hypothesized that HDC, FCER1A, SLC45A3, GATA2, and CPA3 
function as part of the same pathway. 

One additional interesting observation was the opposite correlations of HDL 
subclasses both in terms of LL module association and over all. The smallest 
subclass of HDL behaved in the same way as VLDL subclasses and had a negative 
correlation to other HDL subclasses. This suggests that the clinical serum HDL 
measurement is not a coherent physiological function and its physiological meaning 
may be confounded by a high relative concentration of small HDL particles. The 
smallest HDL fraction may have its own pro-atherogenic role in the determination of 
triglyceride levels and the APOB cascade. 
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We utilized the Bayesian network to evaluate gene/gene or gene/metabolite 
causality. The expression of the LL module genes seemed largely reactive to 
metabolites, but free cholesterol and phospholipids in large VLDL seemed to be 
driven by the LL module expression. Additionally, the triglyceride content in 
smallest HDL particles was driven by medium/large HDL particles. 

We were able to assess the co-expression dynamics of the LL module in different 
metabolic environments. There were 63 metabolites that showed change in the 
connectedness of the LL module expression. This raises the hypothesis that the 
function of the LL module is dampened, for example, in the face of large/medium 
HDL, 3-hydroxybutyrate stimulated by metabolites like triglycerides, glycoproteins 
and small HDL. 

This is the first study of its kind and we provide both a proof of concept and 
roadmap for integrated analysis of variation at the genetic, transcriptional, and 
metabonomic levels. Perhaps the future studies using this approach will catalogue 
the expressional pathways in other tissues’ correlation with various human traits. 
Adipose tissue would be the next obvious tissue to study due to its impact on lipid 
levels and energy metabolism. In this study, we elucidated the role of the LL module 
as a pathway linking metabolic compounds and immune response. 
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6 CONCLUSIONS 

In the course of this thesis science has taken giant leaps forward. The thesis work 
started when whole genome linkage scans and subsequent candidate gene 
association tests were the way to do genetics. The array technologies quickly 
became the trend and they have delivered many success stories in pinpointing loci 
for complex traits. However, a large part of the genetic variance still remains hidden 
and more work is needed to unveil the rest of the genetic influence on complex 
traits. Family studies will most likely come back into fashion after a few years of 
neglectance. They still offer different information than GWAS by helping isolate 
high impact, rare variants. The combination of these two will probably reveal the 
regions suitable for subsequent targeted sequencing efforts. Common obesity will 
most likely not be cured due to these genetic findings. They provide a means to 
pinpoint individuals who carry a high load of risk variants and cases in which early 
intervention in terms of lifestyle factors is crucial. This kind of screening clearly 
elicits ethical issues, but they are beyond the scope of this thesis. The monogenic 
forms of obesity, however, are more prone to medical intervention. The problem is 
that they are so rare that medical companies will not turn a profit by producing the 
drug. But as the work goes on, this projection may change. 

We are in the wake of the 1000 genomes project, which will shed light on the total 
variation and the amount of rare variants in human genome. The project will finish 
in the next few years. We will, most probably, soon have thousands of exomes and 
genomes for analysis. These will offer a glimpse into the future before all studies 
will have sequence data from all individuals instead of array genotypes. 

Transcriptomic profiling has the major benefit of producing more detailed 
information of the current state of a tissue of an organism. The future will tell 
whether we will have human transcriptomic profiles of every tissue, from which it is 
ethically possible to take samples, in individuals at each state of development. Here, 
we have made the initial effort to show the benefit of this approach. 

Sequence data, transcriptomic profiles at different time points, epigenetic patterns 
and metabolic profiles at different time points along with detailed phenotyping will 
produce vast amounts of data for investigation of the molecular mechanisms 
underlying metabolic processes and human complex disease. Hopefully the rate of 
participation in cohort collections will remain high since without the volunteering 
individuals, none of this work would be possible. 
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