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ABSTRACT 
Meckel syndrome (MKS, MIM 249000) is an autosomal recessive developmental 

disorder causing death in utero or shortly after birth. The hallmarks of the disease 

are cystic kidney dysplasia and fibrotic changes of the liver, occipital encephalocele 

with or without hydrocephalus and polydactyly. Other anomalies frequently seen in 

the patients are incomplete development of the male genitalia, club feet and cleft lip 

or palate. The clinical picture has been well characterized in the literature while the 

molecular pathology underlying the disease has remained unclear until now.  

In this study we identified the first MKS gene by utilizing the disease 

haplotypes in Finnish MKS families linked to the MKS1 locus on chromosome 

17q23 (MKS1) locus.  Subsequently, the genetic heterogeneity of MKS was 

established in the Finnish families. Mutations in at least four different genes can 

cause MKS. These genes have been mapped to the chromosomes 17q23 (MKS1), 

11q13 (MKS2), 8q22 (MKS3) and 9q33 (MKS4). Two of these genes have been 

identified so far: The MKS1 gene (this work) and  the MKS3 gene (Smith et al., 

2006).   

The identified MKS1 gene was initially a novel human gene which is 

conserved among species. We  found three different MKS mutations, one of them 

being the Finnish founder mutation. The information available from MKS1 orthologs 

in other species convinced us that the MKS1 gene is required for normal 

ciliogenesis. Defects of the cilial system in other human diseases and model 

organisms actually cause phenotypic features similar to those seen in MKS patients. 

The MKS3 (TMEM67) gene  encodes a transmembrane protein and the gene maps to 
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the syntenic Wpk locus in the rat, which is a model with polycystic kidney disease, 

agenesis of the corpus callosum and hydrocephalus. The available information from 

these two genes suggest that MKS1 would encode a structural component of the 

centriole required for normal ciliary functions, and MKS3 would be a 

transmembrane component most likely required for normal ciliary sensory signaling. 

The MKS4 locus was localized to chromosome 9q32-33 in this study by using 

an inbred Finnish family with two affected and two healthy children. This fourth 

locus contains TRIM32 gene, which is associated to another well characterized 

human ciliopathy, Bardet Biedl syndrome (BBS). Future studies should identify the 

MKS4 gene on chromosome 9q and confirm if there are more than two genes 

causing MKS Finnish families. 

The research on critical signaling pathways in organogenesis have shown 

that both Wnt and Hedgehog pathways are dependent on functional cilia. The MKS 

gene products will serve as excellent model molecules for more detailed studies of 

the functional role of cilia in organogenesis. 

 

Keywords: MKS1, MKS2, MKS3, MKS4, developmental disorder, disease 

mutation, ciliopathy.  
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TIIVISTELMÄ 
Meckelin oireyhtymä (MKS, MIM 249000) on monioireinen sikiön vakava 

kehityshäiriö, joka johtaa kuolemaan sikiövaiheessa tai heti syntymän jälkeen. 

Taudin keskeisimmät oireet ovat munuaisten kystinen dysplasia, maksan fibroottiset 

muutokset ja keskushermostoputken sulkeutumishäiriö. Näiden oireiden kanssa 

tavataan aina postaksiaalista polydaktyliaa (pikkusormen/-varpaan puolella 

ylimääräinen sormi/varvas).   

 MKS:n on perinteisesti ajateltu kuuluvan nk. suomalaiseen tautiperintöön,  

joka koostuu 36 lähinnä väistyvästi periytyvästä taudista, jotka esiintyvät 

runsaimmin Suomessa kuin muualla maailmassa, jos lainkaan. MKS:n esiintyvyys 

on Suomessa noin yksi 9 000:sta vastasyntyneestä. Epätyypillistä on että MKS:ää on 

raportoitu esiintyvän jopa korkeammalla esiintyvyydellä muissa geneettisesti 

suhteellisen homogeenisissä väestöissä. MKS1 geeni sijaitsee kromosomin 17 

pitkässä käsivarressa q23. Useiden alueellisten kandidaattigeenien poissuljennan 

jälkeen ja uusien perheiden haplotyyppikartoituksen avulla pystyimme lopulta 

pitävästi rajaamaan kriittisen alueen, jolle sijoittuu vain viisi transkriptiä. Näiden 

sekvensointi potilaiden DNA:sta osoitti patogeenisen muutoksen ainoastaan 

tuntemattomassa transkriptissä FLJ20345 (MKS1), Noin 70% suomalaisista MKS 

perheistä edustaa kromosomin 17q23 (MKS1) valtamutaatiota (FINmajor), ja potilaat 

näissä perheissä ovat homotsygootteja tämän mutaation suhteen. Niistä perheistä 

(30%), joissa potilaat eivät ole homotsygootteja valtamutaation suhteen ei ole 

löytynyt mutaatioita potilaiden MKS1 geeniä koodittavilta alueilta. FINmajor-mutaatio 

löydettiin homotsygoottisena sairailta myös kolmesta muusta perheestä, jotka 
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edustavat ei-suomalaista valkoihoista eurooppalaista väestöä. Tämä osoittaisi, että 

suomalainen valtamutaatio on vanha muutos eurooppalaisessa geeniperimässä.   

 Tämä mutaatio on introninen 29 emäksen deleetio, josta aiheuttuu virheellinen 

geenin luenta ja tämän seurauksena potilaan transkriptistä puuttuu kokonaan yksi 

eksoni. Tästä seuraa lukukehyksen siirtymä, joka johtaa virheelliseen 

proteiinituotteeseen alkaen aminohaposta 470 polypeptidissä. Lisäksi saksalaisesta 

MKS perheestä löytyi kaksi muuta MKS1 geenin mutaatiota, jotka ovat viiden 

emäksen insertio eksonissa yksi ja emästransitio intronin yksi silmukoinnin 

donorikohdassa (engl. splice donor site). 

Geneettinen heterogeenisyys on tyypillistä MKS:lle, ja tautigeenejä onkin 

kartoitettu jo neljään eri  kohtaan genomissa: kromosomiin 17q23 (MKS1), 11q13 

(MKS2), 8q24 (MKS3) ja 9q33 (MKS4). Neljäs MKS lokus on kartoitettu 

toimestamme suomalaisessa perheessä, jossa on kaksi sairasta ja kaksi tervettä lasta. 

Lähtökohtaisesti genealogian pohjalta tiesimme, että perheen  vanhemmilla on 

yhteisiä esivanhempia arviolta 1700-luvulla. Kun perheessä taudin kytkeytyminen 

tunnettuihin MKS lokuksiin oli poissuljettu, etenimme koko genomin laajuiseen 

kartoitukseen, missä käyttämämme keskimääräinen geenimerkkietäisyys oli n. 10 

cM. Tutkimme näitä tuloksia tarkemmin genotyyppittämällä 10 K SNP geenisirun, 

jossa keskimääräinen etäisyys SNP-geenimerkkien välillä on n. 200 kb. Ainoana  

positiivisena löydöksenä näistä koko genomin laajuisista kartoituksista havaitsimme 

kromosomissa 9q32-33.1 monipiste LOD arvon 3.6,  joka nähtiin yli 5 cM 

kokoisella alueella.  Erityisen mielenkiintoiseksi  tämän löydöksen tekee seikka, että 

samalle kromosomaaliselle alueelle on kartoitettu toinen ihmisen tauti, Bardet Biedl-

oireyhtymä (BBS, MIM 209900), joka on tunnettu perinnöllinen  tauti. BBS:n 

tunnetut geenivirheet johtavat värekarvarakenteiden (cilia) toiminnallisiin vikoihin.  

 MKS1 geenin on osoitettu lajien välisen vertailevan genetiikan avulla 

kuuluvan ryhmään geenejä, jotka ovat keskeisiä kudosten värekarvarakenteille (engl. 

cilia), niiden ylläpidolle ja toiminnalle (Flagellar and basal body proteome, FABB 

proteome). Värekarvat eli ciliat ovat solu-organelleja, jotka liittyvät mm. solun 
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liikkumiseen, solusykliin ja sensoriseen solusignalointiin, ja niillä on keskeinen rooli 

solun tasopolarisuuden muodostumisessa. Lisäksi muut taudit sekä eläinmallit, 

joissa tunnetaan cilian rakenteellisia tai toiminnan kannalta keskeisiä geenivirheitä 

jakavat paljon yhteisiä piirteitä MKS:n kanssa. Myös alustavat tutkimuksemme 

MKS1:n solulokalisaatiosta tukevat MKS:n ciliopatia luonnetta. MKS geenituotteet 

tulevat mitä todennäköisimmin toimimaan tärkeinä mallimolekyyleinä näiden 

suhteellisen vähän karakterisoitujen soluorganellien toiminnassa.  

 

Avansanat: MKS, lokusheterogeenisyys, suomalainen tautiperintö, sikiön 

kehityshäiriö, kytkentäepätasapaino, tautimutaatio. 
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INTRODUCTION 
Meckel syndrome (MKS) is one of the best characterized human malformation 

syndromes.  The clinical features of MKS were described for the first time in the 

literature over hundred years ago, but the molecular and cellular pathogenesis of this 

autosomal recessive developmental defect has remained obscure until now. The aim 

of this thesis work was to identify the gene underlying the disease by utilizing the 

founder effect of an isolated population. Our study was greatly aided by the 

advances of the Human genome project and we successfully identified a novel 

human gene mutated in MKS. The initial analysis of this gene (MKS1) and its gene 

product has already provided significant new knowledge about the pathogenesis of 

MKS at the molecular level. In the future the research on the MKS1 gene will 

provide more detailed information about the molecular mechanisms critical in 

normal embryonic development. This should also provide essential information in 

understanding some more common conditions with related defects.  
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REVIEW OF THE LITERATURE 
1. MECKEL SYNDROME 

1.1 History 

Meckel syndrome is one of the best characterized malformation syndromes affecting 

normal embryonic development. The clinical picture of MKS has been described in 

the literature for the first time already in 1684 by Christopher Krahe describing a 

monstrous child born in Denmark who possibly suffered from MKS (Kompanje, 

2003). In 1822 J. F. Meckel published a detailed pathological report of two siblings 

(male and female), who died with identical lethal malformations. Meckel´s clinical 

descriptions still agree with the modern diagnostic criteria.  Over hundred years later 

Gruber (1934) suggested the genetic origin of MKS because the cases were familial. 

In the 1960´s Opitz and Howe introduced the name Meckel syndrome and delineated 

the clinical and pathological features based on one observation and presented a 

thorough review of the literature (Opitz and Howe, 1969). In Finland the careful 

clinical, epidemiological and pathological studies were performed by Salonen and 

Norio which expedited the research on the molecular genetics of MKS in Finland 

(Salonen 1984; Salonen and Norio 1984). 

 

1.2 Meckel syndrome world wide 

MKS is reported world wide (Hsia et al., 1971; Mecke and Passarge, 1971; 

Moerman 1982). There are several reports of the incidences available in the 

literature, however the true extended reports of the prevelences in distinct 

populations are rare. The incidence in Northern America and Western Europe varies 

from the estimates of   

1: 3 400- 1: 140 000 newborn (Holmes, 1976; Seller 1978). The lowest incidence is 

reported from Great Britain and respectively the highest from Belgium.  In Finland 

Salonen and Norio (1984) studied a comprehensive cohort of cases and families and 

estimated the prevalence in Finland to be 1: 9 000 newborn. This means that there 

are approximately 5-7 new cases in a year. Several reports are available from 
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distinct populations throughout the world: Indonesia, Pakistan and Japan (Tan and 

Thomas, 1970; Crawfurd et al., 1978; Sugiura et al., 1996) as well as in Arabs in 

Saudi Arabia, Jews and Palestinian Arabs in Israel (Haque and Zaidi 1981; Fried, 

1973; Zlotogora, 1997).  Surprisingly high incidences have been reported in Gujarati 

Indians, 1: 1 100; Kuwaitian Bedouins, 1: 3 530 and in Belgians, 1: 3 400 (Young et 

al., 1985; Teebi et al., 1992; Moerman et al., 1982).  

 

1.3 Clinical picture 

1.3.1 Main features 

In the most typical cases MKS results in a death in couple hours after birth. In the 67 

MKS cases reported by Salonen (1984; 1986) the detected rate of spontaneous 

abortions (15.2%) is within the normal range. The survival time of 40 liveborn 

infants was under 2.5 hours. The cesarian section was performed in ten cases 

because of hydrocephaly, abnormal position or asphyctic signs of the fetus. 

Oligohydramnious was detected at birth in 30 cases including 15 cases without 

amniotic fluid. MKS can be diagnosed reliably by the ultrasound examination of the 

embryo. In most cases the pregnancies will be terminated at 10-14 weeks of 

gestation  if MKS is diagnosed.  

The main characteristic features are the CNS (central nervous system) defect 

that always appears together with cystic dysplasia of the kidneys, fibrotic changes of 

the liver and polydactyly (Fig. 1).  
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Figure 1. A fetus with MKS having the typical phenotype at 21 weeks of gestation. 
The arrows are pointing the main hallmarks: Occipital encephalocele, polydactyly 
and the massive abdomen caused by the distended cystic kidneys.  The picture is a 
courtesy from Dr. Riitta Salonen. 
 

1.3.2 Central nervous system, (CNS) 

The occipital meningo encephalocele is seen in 90% of the cases (Aleksic et al., 

1984; Paetau et al., 1985; Ahdad-Barmada and Claasen, 1990). In 10-20% of the 

patients it is accompanied with hydrocephaly.  However, the severity of the CNS 

malformation can vary from a mild partial defect of corpus callosum to a severe total 

craniorachischisis (open spinal canal) and anencephaly.   

The dysgenesis of the forebrain with the absence of the olfactory tracts and 

bulbs is frequent (Miller and Selden, 1967; Rehder and Labbe, 1981; Anderson, 

1982; Paetau et al., 1985; Ahbad-Barmada and Claasen, 1990). A microscopically 

interesting feature is the reported neuroepithelial rosettes, or as the author himself 

described the phenomenon: “peculiar ectopic neuroepithelial rosettes” (Paetau et al., 

1985). These can be interpreted as ependymal rosettes, which are mainly detected in 
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the germinal matrix region but they can also be found far from the midline of the 

brain. The neuroepithelial rosettes could reflect a defect in the neuronal proliferation 

and migration.  Similar findings are also observed in the eye: retinal dysplasia with 

rosettes of pigmented retinal epithelium (Miller and Selden, 1967; Anderson, 1982). 

 

1.3.3 Kidneys 

 One of the most consistent malformation in MKS is the enlarged kidneys (with 5-50 

fold increase in weight), that cause the bulky abdomen which is typical for an 

embryo having MKS. In most cases the enlargement involves both kidneys. The 

macroscopical cysts vary in size from several millimetres to 200 mm (Fig. 2a). 

Histologically the renal parenchyma is characterized by smaller cysts in the 

peripheral cortex with a thin zone of normal glomeruli, and thin walled, larger cysts 

in the medullary part separated by loose connective tissue (Fig. 2b and 2c) 

(Moerman et al., 1982; Rehder and Labbe, 1981; Anderson, 1982; Rapola and 

Salonen, 1985; Blankenberg, 1987). 
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Figure 2 a) Photograph of MKS kidney. The picture is a courtesy from Dr. Riitta 
Salonen. b) Histology of MKS kidney at 20+4 weeks of gestation. c) Histology of 
normal control kidney at 13 weeks of gestation.   
 

1.3.4 Liver  

Macroscopically the liver often seems normal, but can be somewhat enlarged. 

Occasionally macroscopic fibrosis and cysts of liver occur. The microscopic 

findings are detected in a histological examination exposing in all cases liver bile 

duct anomalies and fibrotic changes (“collagenous tissue”, Salonen, 1986), 
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especially in the portal areas (Fig. 3) (Moerman et al., 1982; Rehder and Labbe, 

1981; Anderson, 1982; Rapola and Salonen, 1985; Blankenberg, 1987).   

 
Figure 3. Histology of MKS liver at 20+4 weeks of gestation showing the typical 
ductal plate malformation.  
 
1.3.5 Situs inversus in MKS  

In the initial publication by Salonen (1984) three out of 67 MKS cases are reported 

with a finding of situs inversus totalis, demonstrating an elevated incidence of this 

rare condition in the MKS patients. Since MKS is screened efficiently by prenatal 

ultrasound examination, and the detected MKS pregnancies are normally terminated 

during the gestational weeks 10-14, it is possible that in the small embryo the 

abnormal organ situs has not always been detected if it is not an expected finding.  

Situs inversus is known to occur with increased frequency in diseases that 

affect the structure or the function of cilia. Good examples are human diseases like 

Kartagener syndrome (MIM 244400) and primary ciliary dyskinesia (PCD, MIM 

242650). The embryonic nodal cilia have been studied in detailed in mice, and they 

are involved in the left right situs determination and ciliary dysfunction leads to 

randomized situs formation (Supp et al., 1997; Okada et al., 1999).  
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1.3.6 Other frequent symptoms 

Epithelial branching morphogenesis is typical for most of the tissues affected in 

MKS and the pathological findings are considerably similar in different tissue types 

(Blankenberg et al., 1987). Lungs are frequently reported to be small and 

hypoplastic in patients. Rapola and Salonen (1985) reported that the weight of the 

lungs varied 20-80% from the expected in 14 recorded cases and only in one case 

the weight was within normal limits. Club feet and the ambiguous male genitalia are 

also typical features of MKS. The other variably associated malformations are: heart 

defect, cleft lip and/or palate, anomalies and tumours of the tongue, ocular 

anomalies and polysplenia. (Fried et al., 1971; Mecke and Passarge, 1971; Fraser 

and Lytwyn, 1981; Rehder and Labbe, 1981; Anderson, 1982; Moerman et al., 1982, 

Salonen 1984; Ahbad-Barmada and Claasen, 1990). 

 

1.4 Genetics of MKS  

The autosomal recessive inheritance and locus heterogeneity have been established 

in MKS (Hsia et al., 1971; Mecke and Passarge, 1971; Salonen, 1984; Roume et al., 

1997; Morgan et al., 2002).  Three genetic loci are known to be involved. These loci 

have been assigned in families representing relatively isolated populations. The 

three identified MKS loci are located on chromosomes 17q23 (MKS1, Paavola et 

al., 1995), 11q13 (MKS2, Roume et al., 1998) and 8q22 (MKS3, Morgan et al., 

2002). The MKS3 gene has recently been identified (Smith et al., 2006).  
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1.4.1 Chromosome 17q, MKS1  

The original linkage study assigned the first MKS locus to chromosome 17q21-q24 

in a genome scan of five Finnish families with two or more MKS affected siblings 

(Paavola et al., 1995).  This produced a maximum pair wise LOD score of 5.42 for 

microsatellite marker D17S1606. The initial linkage was observed over a 13 cM 

genetic region (Paavola et al., 1995).  

 

1.4.2 Chromosome 11q, MKS2 

The MKS2 locus was assigned to chromosome 11q13 in Middle Eastern and 

Northern African MKS families (Roume et al., 1998). Linkage to MKS1 locus had 

been previously excluded in these families (Roume et al., 1997). A genome wide 

scan in a total of seven consanguineous families (4 Tunisian, 1 Algerian, 1 

Senegalian and 1 Pakistani) resulted in the highest pair wise LOD score of 4.4, 

which was obtained at two marker loci: D11S906 and D11S911. The affected 

fetuses of Tunisian ancestry had the same haplotype at marker loci D11S911 and 

D11S906, suggesting a founder effect in Tunisian MKS families. 

 

 1.4.3 Chromosome 8q and MKS3 gene mutated in MKS 

The MKS3 locus was mapped in consanguineous English families originating from 

Pakistan and India. The original genome scan assigned the MKS3 locus to 

chromosome 8q24 (Morgan et al., 2002). The MKS3 (Meckelin) gene was recently 

identified and is mutated in MKS3 (Smith et al., 2006).  The MKS3 gene is located 

on 8q22, which is somewhat more proximal than the region on 8q24, which was 

originally defined by linkage (Morgan et al., 2002). 
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The TMEM67/MKS3 gene is mutated in MKS3 

The TMEM67/MKS3 gene encodes a transmembrane receptor protein, which 

mutations in the rat ortholous gene (Mks3) causes polycystic kidney disease, 

agenesis of the corpus callosum and hydrocephalus. (Smith et al., 2006).  The role of 

the MKS3 gene in ciliary functions has been hypothesized based on its topological 

similarity to the  Drosophila melanogaster FZ (Frizzled) family of receptors 

(Cadigan and Nusse, 1997; Xu et al., 1998). The Frizzled signaling in fruit fly has an 

important role in epithelial planar cell polarity (PCP) (Jenny et al., 2005). Disrupted 

PCP signaling has been implicated in Bardet Biedl syndrome (BBS) (Ross et al., 

2005) a disorder associated with primary ciliary and basal body dysfunction (Ansley 

et al., 2003; Beales 2005). Further evidence of the ciliary expression comes from the 

Caenorhabditis elegans homolog of MKS3/TMEM67 (F35D2.4) which has a 

previously described X-box motif approximately 75 bp upstream of the probable 

start codon, a characteristic of proteins found in cilia (Efimenko et al., 2005). 

 

2. THE FINNISH DISEASE HERITAGE 

2.1 Concept  

MKS belongs to the so called Finnish disease heritage (FDH). The concept of FDH 

was introduced over 30 years ago in the original publication by Norio and co-workers 

in 1973: “Hereditary diseases in Finland; A rare flora in a rare soil”. It described 10 

genetic disorders more common in Finland than elsewhere in the world. Nowadays 

total of 36 disorders are included to the FDH (table 1). In 33 of them the disease 

causing mutation has been identified in a relatively short time period. 

The genetic structure of Finnish the population is probably the most important 

factor that led to the rapid identification of the mutations in the FDH (de la Chapelle 

and Wright, 1998; Peltonen et al., 1999; Norio, 2003; www.findis.org). In addition, 

the Finnish healthcare is of high quality and available for all citizens, the common 

attitude towards research is positive, and families are willing to participate in genetic 

studies. Furthermore, the church has kept comprehensive records of the population 
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over centuries, which makes it possible to trace back families in some cases up to 

the 16th century with the help of taxation records.   

The identification of the disease mutations underlying many of the diseases in 

the FDH has revealed previously unknown biological functions of several human 

genes. The monogenic human disorders can provide detailed information about 

novel cellular mechanisms affecting both health and disease. This information can 

be exploited in medicine in understanding related conditions, some being common 

in complex traits. 

 

Table 1.  The 36 diseases belonging to the Finnish disease heritage (FDH). In 33 of 
them the disease mutation has been identified. In most of the diseases the patients 
are homozygous for the same major (founder) mutation. The diseases are presented 
below in the chronological order of the identification of the gene defect.  

Gene defect is identified, disease,      
MIM number Defective protein product Reference for the Finnish mutation 

HYPERORNITHINEMIA WITH 
GYRATE ATROPHY OF CHOROID 
AND RETINA, (HOGA), 258870 

Ornithine ketoacid 
aminotransferase, (OAT) Mitchell et al., 1989 

MERETOJA TYPE AMYLOIDOSIS, 
(FAF), 105120, dominant Gelsolin (GSN) Levy et al., 1990; Maury et al., 1990 

ASPARTYLGLUCOSAMINURIA 
 (AGU), 208400 

Aspartyliglucosaminidase, 
(AGA) Ikonen et al., 1991 

CHOROIDEREMIA, (CHM), 303100, 
X linked, Recessive Rab-protein, (REP1) Sankila et al., 1992 

HYPERGLYCINEMIA, 
NONKETOTIC, (NKH), 605899 

Glycine decarboxylase, 
(GLDC) Kure et al., 1992 

DIASTROPHIC DYSPLASIA, (DTD) 
222600  

Diastrofic dysplasia sulfate 
carrier, (DTDST) Hästbacka et al., 1994 

CEROID LIPOFUSCINOSIS, 
NEURONAL 1, INFANTILE, 256730 

palmitoyl-protein 
thioesterase 1, (PPT) Vesa et al., 1995 

NEURONAL CEROID 
LIPOFUSCINOSIS, JUVENILE 
TYPE, (JINCL), 204200 

CLN3-protein The international Batten disease 
consortium 

OVARIAN DYSGENESIS, 
HYPERGONADOTROPIC, (ODG1), 
233300 

FSH-receptor, (FSHR) Aittomäki et al., 1995 

CHLORIDE DIARRHEA, FAMILIAL, 
(CLD), 214700 DRA-protein Höglund et al., 1996 
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PROGRESSIVE MYOCLONIC 
EPILEPSY, (PME1), 254800 Cystatin B, (CSTB) Pennacchio et al., 1996, Virtaneva et 

al., 1997 

 AUTOIMMUNE 
POLYENDOCRINOPATHY 
SYNDROME, (APECED), 240300 

Autoimmune regulator 
AIRE-protein 

Nagamine et al., 1997; The Finnish 
German APECED consortium,1997 

FINNISH CONGENITAL 
NEPHROSIS, (CNF), 256300 Nephrin Kestilä et al., 1998 

NEURONAL CEROID 
LIPOFUSCINOSIS, FINNISH 
VARIANT, LATE INFANTILE, 
(vLINCL),256731 

CLN5-protein Savukoski et al., 1998 

RETINOSCHISIS, 312700 (X linked 
recessive)  XLRS1-protein The retinoschisis consortium, 1998 

LYSINURIC PROTEIN 
INTOLERANCE, (LPI), 222700 SLC7A7-protein Torrents et al., 1999; Borsani et al., 

1999 

MEGALOBLASTIC ANEMIA 1,  
(SMB12), 261100 Cubilin protein (CUBN) Aminoff et al., 1999 

NORTHERN EPILEPSY, (EPMR), 
600143 CLN8-protein Ranta et al., 1999 

SIALURIA, FINNISH TYPE, 604369 SLC17A5-protein Verheijen et al., 1999 

CORNEA PLANA 2, (CNA2), 217300 KERA-protein Pellegata et al., 2000 

MULIBREY NANISM, 253250 TRIM37-protein Avela et al., 2000 

NASU-HAKOLA DISEASE, 
(PLOSL), 221770 

TYRO protein tyrosine 
kinase-binding protein 
(TYROBP)  

Paloneva et al., 2000 

CARTILAGE-HAIR HYPOPLASIA, 
(CHH), 250250 

RNA-processing 
endoribonuclease (RNRP) Ridanpää et al., 2001 

USHER SYNDROME, TYPE III, 
276902 USH3A-protein Joensuu et al., 2001 

TIBIAL MUSCULAR DYSTROPHY 
(TMD), 600334, dominant Titin (TTN) Hackman et al., 2002 

COHEN SYNDROME, 216550 COH1-protein Kolehmainen et al., 2003 
GRACILE SYNDROME, 603358 BCS1L-protein Visapää et al., 2003 
RAPADILINO SYNDROME, 266280 REQL4-helicase Siitonen et al., 2003 

MUSCLE-EYE-BRAIN DISEASE, 
(MEB), 253280 POMGnT1 Diesen et al., 2004  

HYDROLETHALUS SYNDROME, 
236680 HYLS1-protein Mee et al., 2005 

INFANTILE-ONSET 
SPINOCEREBELLAR ATAXIA; 
IOSCA, 271245              

Twinkle  Nikali et al., 2005 

LACTASE DEFICIENCY, 
CONGENITAL, (CLD), 223000 Lactase Kuokkanen et al., 2005 
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MECKEL SYNDROME, (MKS1), 
249000         MKS1 protein Kyttälä et al., 2006 (original 

publication III) 

The chromosomal locus of the gene 
has been assigned, disease, MIM 
number 

Chromosomal locus   

LETHAL CONGENITAL 
CONTRACTURE SYNDROME 1, 
(LCCS), 253310 

9q Mäkelä-Bengs et al., 1998 

The chromosomal location of the 
defect gene is not known, disease, 
MIM number 

  Reference  

PEHO SYNDROME, 260565  Salonen et al., 1991 
LETHAL ARTHROGRYPOSIS WITH 
ANTERIOR HORN CELL DISEASE, 
(LAAHD) 

 Vuopala et al., 1995 

 

2.2 Inhabitation of Finland and founder effect  

One theory of the inhabitation of Finland is called the dual theory and it is supported by 

studies of the Y chromosomal haplotypes (Kittles et al., 1998; Lahermo et al, 1999). 

According to this theory there have been two important groups of settlers (Fig. 4).   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The two important migrations to Finland according to the dual theory: The  
first settlers came 4000 years ago from South Russia, and the second group 2000 
years ago from central Europe (Peltonen et al., 1999). 
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The assumption is that the first inhabitants notably affecting to the gene pool came to 

Finland already 4000 years ago from the east (Norio 1981, Eriksson 1973, Peltonen et 

al. 1999). The second migration some 2000 years ago has still at the present day the 

most impact on the Finnish gene pool (Nevanlinna 1972, de la Chapelle 1993, 

Peltonen et al. 1999). The mitochondrial DNA (mDNA) and nuclear DNA variations 

confirm the European origin of the majority of the gene variations in Finland (Cavalli-

Sforza and Piazza 1993, Sajantila and Pääbö 1995, Lahermo et al., 1996, Sajantila et 

al., 1996, Laan and Pääbö 1997, Torroni et al., 1998). Since there is no explicit 

evidence of two major immigration waves, it is most probable that the immigration 

has occurred more gradually in small groups (Peltonen at al., 1999).  

The original founder population was small and it has been estimated that the 

population size was 50 000 people in the 12th century, but it expanded and spread to 

the country following the coastal lines while the inland remained virtually 

unpopulated.  In the beginning of the 16th century the population size of Finland was 

approximated to be 250 000 concentrating mainly on the coastal parts of the country. 

The Swedish king Gustavus of Wasa/Vasa promoted the inhabitation of the central 

and eastern parts of Finland in 16th century by providing taxation relieves for people 

moving further to the inland. This movement established the late settlement region 

in Finland (Fig. 5).  
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Figure 5.The inhabitation of Finland. The early settlement region follows the 
coastal line. The late settlement region was formed by the internal migration in the 
16th century (Peltonen et al., 1999). 
 

The villages in the late settlement region originating from a small area of 

Southeastern Finland (South Savo) remained stable for centuries because of the 

relatively long geographical distances and low population density enabling the 

formation of genetic subisolates. This as well as wars, epidemics and famines 

created significant population bottlenecks. The Finnish population has expanded to 

5.3 million in just about three centuries from approximately 250 000 inhabitants.  

The rare disease alleles were enriched in the subisolates and to the whole population. 

The unique gene pool was moulded by different bottleneck effects in the small 

founder populations over centuries. Despite the industrialization and the population 

migration from rural areas to urban regions, the subpopulations particularly in the 
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late settlement areas have remained unmixed (de la Chapelle 1993; Peltonen et al., 

1999; Varilo 1999; Norio 2003). 

Many disorders, which are common elsewhere in the world, such as cystic 

fibrosis (incidence 1: 2 500 in Western Europe) are uncommon in Finland. On the 

other hand, there are many diseases in FDH which have been found only in Finland, 

like the variant form of late infantile neuronal ceroid lipofuscinosis (vLINCL) and 

Northern epilepsy (EPMR). Genetic drift also influences other more common 

monogenic diseases like familial hypercholesterolemia (FH), in which only two 

founder mutations are responsible for most of the cases among Finns (Aalto-Setälä 

et al., 1989; Koivisto et al., 1992). For many of the diseases belonging to FDH the 

birthplaces of the patients´ grandparents reflect the historical population migration 

(Varilo 1999; Norio 2000). The distribution of the grandparental birthplaces can be 

utilized in categorizing the diseases by the estimated age of the founder mutation.  

In approximately half of the diseases belonging to the FDH the grandparents´ 

birthplaces cluster to the regions of the late settlement (Norio, 2000), suggesting that 

the disease mutations have been spread during the inhabitation of central and eastern 

parts of the country in the 16th century. These mutations were introduced to the 

population some 30-40 generations ago (Varilo 1999).   

Another group of diseases is composed of those which are the most common 

in FDH: AGU, INCL, PME, JNCL and CNF. The prevalence of these disorders has 

been estimated to be 1: 8 000- 1: 19 000 and grandparental birthplaces are 

distributed evenly through out the country; however some denser regions can be 

detected on the late settlement regions. This indicates that the mutations have been 

introduced to the population earlier, approximately 80-120 generations ago 

(Peltonen 1995, Varilo 1999). vLINCL and EPMR are the youngest diseases in 

FDH, and the ancestral birthplaces can be seen only in a small, very restricted region 

on the map (Varilo et al. 1996, Norio 2000). In vLINCL families the grandparental 

birthplaces are geographically densely located in the Southern Ostrobotnia region on 

the West coast and the significant LD can be detected across 11 cM genetic region 
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thus supporting the young age of the mutation in Finland. EPMR can also be 

geographically positioned to the Nortwestern part of the country to a small region 

based on the grandparental birthplaces. The length of significant LD in the EPMR 

disease chromosomes is 10 cM is congruent with the hypothesis of a recent mutation 

(approximately 20-30 generations) (Varilo, 1999).   

 

3. DISEASE GENE IDENTIFICATION 

3.1 Main strategies 

There are several strategies to identify human disease genes. Probably the most 

important of them are the functional cloning, candidate gene analysis and positional 

cloning. In most cases it is beneficial to use a combination of the strategies.   

The functional cloning is the oldest approach to clone a disease gene. It was 

the only possible method to identify disease genes before there were genetic maps 

available from the human genome. In this strategy the defective protein product is 

first isolated and its peptide sequence will indicate the corresponding gene. The 

identification of Haemophilia A gene is an example wher this strategy was used 

(Gitschier et al., 1984).  

The candidate gene analysis requires knowledge about the molecular level 

pathogenesis of the disease. This information may be available from functional 

studies in humans or animal models. Mutations can be screened directly from the 

candidate gene in the patients. Many times this strategy is not successful alone 

without positional cloning (positional candidate gene approach).   

  The human genome maps have enabled the positional cloning approach. 

This strategy depends fully on suitable family material. This approach is most 

successful when families represent isolated populations with one founder mutation. 

In this strategy the defective gene is identified by first assigning its chromosomal 

location with classic linkage mapping. No functional information about the gene is 

required. This method is sensitive to misdiagnosis, also locus heterogeneity in the 

family material can substantially hamper the mapping effort. The linked 
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chromosomal region can be further fine mapped by utilizing linkage disequilibrium 

(LD) in the disease chromosomes. By utilizing the LD and haplotype mapping the 

critical chromosomal region can be greatly reduced from that originally detected by 

linkage. Linkage is typically seen in a vast chromosomal region spanning across 

several cM region. A combination of positional cloning and candidate gene analysis 

(positional candidate gene analysis) is at the present time probably the most rational 

approach for the disease gene identification with the growing knowledge of the 

function of the human genome. After assignment of the gene locus the regional 

candidates can be evaluated based on the information of their known functions and 

their tissue expression profiles. 

 

3.2 Human genome project 

The sequence of the 3 billion base pairs human genome has been available since 

2003, when the International Human Genome Sequencing Consortium completed 

this gigantic sequencing project (Collins et al., 2003).  

 The development of the research on the human genome from the structure of 

DNA to the finished genomic sequence has proceeded enormously just in fifty years 

(Watson and Crick, 1953; Collins et al., 2003).  At the very early stage leading to the 

human genome sequencing project a YAC contig map was available which covered 

approximately 75% of the genome (Chumakov et al., 1992). This map was soon 

complemented with STS based physical maps (Hudson et al., 1995), which were 

achieved in part by mapping whole genome radiation panels. The human genome 

mapping has evolved in only two decades from the genetic maps based on RFLPs 

(restricted fragment length polymorphism) to the first high resolution maps based on 

microsatellite markers (Weissenbach et al., 1992), and finally to the finished human 

sequence.  

 Since then, the HGP has completed sequencing of a large amount of model 

organisms (http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html). Results from 

the various genome sequencing projects have carried the biomedical research into 
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the genomic era that utilize the gene conservation among species and develop the 

ultimate tools for gene mapping in form of high-throughput SNP based techniques.  

 

3.2.1 Comparative genomics 

Comparative genomics involves analysis of two or more genomes to identify the 

extent of similarity of various features, or large scale screening of the genomes to 

identify sequences present in another genome.   

 Comparative genomics can be utilized to study evolutionary relationships of 

different species. This can be further employed to recognize genes behind in specific 

cellular machineries or functions, which are known to be present/absent in the 

species that are compared. The comparisons of different complex genomes also 

enable also identification of gene coding regions as well as potential regulatory 

regions.  An analysis of the of conserved regulatory regions showed that for most of 

them (81%)  there is more than 50% sequence similarity between human and mouse, 

which is significantly higher than seen in average non-coding intronic sequence (Liu 

et al.,  2004). 

   

3.3 Linkage analysis 

Polymorphisms are normal sequence variations in the genome, and can be used as 

genetic markers in linking a disease to a certain chromosomal region. The closer the 

marker is to the disease gene the less likely a meiotic recombination has occurred 

between the two (disease and polymorphism) and hence they are more likely to be 

inherited together. The distinction between a polymorphism and a rare variant is that 

the latter one occurs in a frequency less than 1% in the population. 

 The first generation polymorphic genetic markers were RFLPs. Later the PCR 

technology made the microsatellite markers as a standard tools for linkage analysis. 

These are most often di -, tri - or tetra nucleotide repeats. The advantage of the 

multiallelic microsatellite markers is that they are normally more informative in 

genetic analyses than the SNP markers. However, the mutation rate is approximately 
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10-3-10-4 per generation for repeat markers (microsatellites), which is much higher 

than for SNPs (10-8 or less) (Drake et al., 1998).  The lower mutation rate makes 

SNPs more optimal for analyses where the cosegregation of a marker allele and 

disease is monitored for many generations (Kruglyak., 1997). There are nearly 1.4 

million SNPs in human genome and some 9 million of them have been identified as 

a result of the HGP project.  

 In order to perform linkage analysis the first requirement is to establish 

genotypes for the individuals in the study sample. The analysis follows the segregation 

of the condition and marker alleles at consecutive loci. The interpretation of the 

genotype data requires statistical means and the basis of the statistics is the formula 

developed by N.E. Morton (1955), which measures the strength of linkage in units of 

logarithm of the odds (LOD score, Z). This can be written: 

 

(1) Z(Θ)=log10 L(Θ)/L(0.5) 

Θ stands for recombination fraction between two loci where the LOD score 

peaks. Θ≥0.5 indicates that there is no linkage between loci. In logarithmic scale 

the definition for statistically significant linkage is LOD score ≥3.0 for human 

disorders with classic mendelian inheritance.  

 

 In most cases the initial linkage can be detected over a large chromosomal 

region. This resolution is not sufficient for efficient candidate gene study unless 

there are some functionally obvious candidates. In most cases the chromosomal 

region observed with the initial linkage analysis needs to get narrowed down.  

 

3.3.1 Linkage disequilibrium, LD 

Linkage disequilibrium is the non random association of alleles at different loci on 

chromosomes with frequencies higher than expected from the random combinations 

of their frequencies in the population. Several measures are available for quantifying 
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this phenomenon. λ, D´ and r2 are frequently used parameters to measure the  

amount of LD (Terwilliger, 1995; Zondervan and Cardon, 2004).  

The fundamental idea of utilizing linkage disequilibrium and haplotype 

mapping in gene mapping is that the affected individuals have inherited the gene 

defect underlying the disease from the same ancestral relative (founder) who has 

introduced the mutation to the population. As a results the genetic region in the 

vicinity of the mutation is identical in all the affected individuals carrying the same 

founder mutation in their chromosomes i.e. the mutation and the marker alleles are 

in linkage disequilibrium (LD) (Fig. 6). The length of LD reflects the mutation age 

(number of generations since the mutation was introduced to the population).  The 

mutation age can be mathematically estimated by using the Luria Delbruck based 

algorithm (Hästbacka et al. 1992).  

Isolated populations with relatively small amount of founders have been 

especially useful in isolating genes in Mendelian disorders due to the reduced 

genetic heterogeneity (Peltonen, 1999) and often the disease causing mutation is in 

complete LD with regional genetic marker(s).  
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Figure 6. The principle of LD. The black chromosome represents the original 
ancestral chromosome carrying the disease mutation. After ten generations (n=10) 
the recombinations have narrowed the chromosomal region around the mutation. 
After 50 generations (n=50) there is only a relatively short chromosomal region  in 
the closest surrounding area of the mutation originating from the ancestral disease 
chromosome.  

 

3.3.2 Haplotype mapping 

In homogenic and isolated populations patients with a rare genetic disorder are likely 

to be remotely related.  The haplotype conservation of disease chromosomes over a 

large chromosomal region confirms that they are identical by descent. Haplotype 

mapping can be utilized after the disease locus has been fine-mapped and where the 

analysis of the recombination sites in disease chromosomes has enabled significant 

reduction in the size of the critical chromosomal region.  A good example of 

restriction of the critical DNA region based on the shared haplotype is from EPM1 

(Progressive myoclonus epilepsy). The haplotype shared by affected individuals 

restricted the EPM1 critical chromosomal region to 176 kb (Lehesjoki et al., 1993). 
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3.3.3 Homozygosity mapping  

In rare recessive diseases the affected children of consanguineous parents have 

inherited two identical defective gene copies from a common ancestor. As a result 

the affected individuals share the same homozygous alleles near the disease 

mutation (Smith, 1953). The approach, in which shared homozygous disease 

haplotypes resulting from consanguineous matings are utilized in disease locus 

identification, is called homozygosity mapping (Lander and Botstein, 1987). 

 

3.3.4 Identification of a disease mutation  

The interpretation of observed sequence variants in the patients´ DNA and their 

putative role in disease pathogenesis is critical. Mutations causing frameshift 

alterations in the transcript or premature stop codons (nonsense mutations) 

significantly alter the gene product and make the evaluation of the disease causing 

mutations normally less problematic than in cases where the putative disease 

causing mutation changes only one amino acid to another (missense mutation).  In 

the latter case the pathogenicity of the suspected disease mutation has to be tested. 

This can be done by utilizing the gene conservation between species since most 

often the disease causing mutation alter a conserved functional domains in the gene 

products. The mutation may change the stability of the polypeptide, which can be 

experimentally studied by comparing the stability of the mutated gene product to a 

normal control. Another important tool to analyse the potential disease mutation is 

to establish experimentally its carrier frequency in the population, which should not 

exceed the estimated carrier frequency. Even if the experimental tests would support 

the pathogenic role of the missense mutation the final proof of its causative role 

comes from studies in a model organism, where the missense mutation produces a 

pathogenic phenotype. However, in some cases species may have evolved 

differently and  complementing pathways may still result in a normal phenotype in 

the model organism (Engle et al., 1996; Cantor 1998).  
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4. CILIA 

The implications of cilia in the vertebrate organogenesis have only recently been 

recognized. The establishment of left right asymmetry of the gastrulating embryo is 

the earliest developmental process associated with cilia. Patients with primary 

ciliary dyskinesia syndrome (PCD) have abnormalities in the organ situs which are 

caused by defects in different axonemal dynein proteins affecting the ciliary motility 

(Afzelius, 1985). Around the time of gastrulation, the embryo forms a node, which 

carries motile cilia. The cilia beat, producing a leftward flow of fluid, which is 

detected by immotile sensory cilia on the left side, "telling the left side of the 

embryo that that's the left side". Paralysis and loss of fluid flow of the embryonic 

nodal cilia in mouse mutants affecting the cilia functions have indicated the key role 

of cilia in establishing the organ situs (Brody et al., 2000; Chen et al., 1998; 

Marszlek et al., 1999, Nonaka et al., 1998). In zebrafish it has also been shown that 

the loss of the fluid flow in the Kupffer´s vesicle (KV) is associated with laterality 

defects (Kramer-Zucker et al., 2005).  

Known mouse phenotypes associated with abnormal cilial functions are CNS 

defects (hydrocephalus), bile duct hyperplasia, kidney cysts and skeletal patterning 

defects (Yoder et al., 1995; Cano et al., 2004).  Zebrafish embryos with ciliary 

dysfunction have similar developmental phenotypes as characterized in mouse 

models for cilial dysfunction. The cilia driven fluid flow is required for normal 

organogenesis in zebrafish (Kramer-Zucker et al., 2005). The mechanism by which 

ciliary dysfunction may lead to the various organ pathologies still remains unclear. 
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4.1 Virtually ubiquitous organelle in mammalian cells 

Cilia and flagella (the terms are interchangeable) are microtubule-based structures 

nucleated by modified centrioles termed basal bodies. Cilia are predominantly 

associated with epithelial cells. These small organelles are also present in 

endothelial cells, neurons, fibroblasts, chondrocytes, and many other cell types, with 

the few exceptions being avoid from cells of myeloid and lymphoid origin 

(Wheatley, 1995). The general structure of a cilium consists of a membrane-

enclosed tube surrounding a central core of microtubules (axoneme). A cross section 

of cilia axoneme reveals nine microtubule doublets (9+0) surrounding, in some cases 

a central pair of microtubules (9+2) (Takahashi, 1984). The motile 9+2 cilia are 

present on the respiratory tract, the epithelium of the oviduct, the efferent ductules 

of the testis, and the ependymal lining of the brain.  The primary cilia (9+0), found 

in many cell types, are normally non-motile, however the cilia in the embryonic 

node with 9+0 structure are motile and are capable in rotational beating (Nonaka, 

1998).  All eukaryotic cilia and flagella are surrounded by a membrane that is 

continuos with the plasma membrane, but appears to be a separate domain with a 

unique complement of membrane proteins (Handel, 1999; Brailov, 2000; Pazour, 

2002).  Cilium originates from one of the basal bodies, a modified form of centriole. 

The primary cilia are thought to be sensory organelles involved in chemo-, photo-, 

and mechanoreception (Rohlich, 1975; Burchell, 1991).   
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Figure 7. Schematic picture of the structure of a cilium composed of the basal body 
and cilial axoneme. Modified from Zhang et al., 2004. 
 

4.2 FABB proteome 

The assembly and maintenance (ciliogenesis) of 9+2, 9+0 cilia/ flagella are 

dependent on intraflagellar transport (IFT). IFT is the bidirectional movement of 

multisubunit protein particles along axonemal microtubules, which is required for 

assembly and maintenance of eukaryotic flagella and cilia. One posited role of IFT is 

to transport flagellar precursors to the flagellar tip for assembly. The IFT was first 

described in Chlamydomononas (algae) (Kozminski, 1993) and has subsequently 

been found to be essential for the assembly of cilia in many organisms. IFT 

polypeptides are conserved in ciliated organisms from C. elegans to humans, but are 

not found in non-ciliated organisms like Saccharomyces and Arabidopsis (Cole, 

1998; Pazour, 2000). Comparative genomics study in Chlamydomonas (having 

flagella), human (having cilia) and Arabidopsis (have no cilia of flagella) has 
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resulted in the identification of the proposed human ciliary proteome, a group of 688 

gene products. These gene products compose so called flagellar (cilial) basal body 

(FABB) -proteome (Avidor-Reiss et al., 2004; Li et al., 2004). 

 

4.3 C.elegans´ X box genes 

Studies with model organisms such as C. elegans and Chlamydomonas have 

provided important information about the well conserved mechanisms in 

ciliogenesis. C. elegans has only 9+0 type of cilia and the regulation of the 

ciliogenesis in worm has also been characterized on the transcriptional level.  In C. 

elegans 60 out of the 302 neurons of the hermaphrodite are ciliated sensory neurons 

(CSN) (Ward et al., 1975) forming many structurally distinct types of sensory cilia 

The RFX-type (regulatory factor binding to the X box) transcription factor daf-19 is 

required for the sensory neuron cilium formation, and loss of daf-19 function results 

in absence of sensory cilia (Swoboda et al., 2000).  The analysis of X box sites in the 

C.elegans genome have enabled to identify genes coding peptides for the worm 

ciliary proteome that are under the control of cilia specific transcription factor daf-

19 (Efimenko et al., 2005). The high conservation of the sensory cilia in worm and 

mammals makes the nematode a significant model for the cilia functions. 

 

4.4 Cilia in the early development and cell cycle 

4.4.1 Conserved nodal cilia  

The conserved nodal cilia in different model organisms (mouse, xenopus, zebrafish 

and chicken) indicate that the activity of nodal cilia probably is a universal 

mechanism for specifying the left-right axis. The earliest known asymmetric 

expression patterns are common to all vertebrates although exhibit considerable 

variability in their time of onset among different vertebrate classes (Capdevila et al., 

2000; Wright 2001). The asymmetries are always preceded by the onset left-right 

dynein heavy chain (Lrdr) gene expression, which is a component of the ciliary 

motor and by the appearance of the cilia, indicating that nodal cilia may be 
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responsible for initiating the left-right asymmetric gene expression and for 

establishing the final body plan in all vertebrates (Essner et al., 2002).  

In human the mutations in the dynein heavy-chain gene (DNAH5) are also 

associated with immotile cilia syndrome, which is an inherited disorder that has 

mirror-image reversal of the internal organs in half of the affected individuals 

(Olbrich et al., 2002). 

 

4.4.2 Cilia in cell cycle  

The presence of a cilium is associated with establishment of polarity and 

differentiation of the cell. In tissue culture cells usually grow primary cilium as they 

approach confluence, and most ciliated cells are probably in stationary or G0 phase 

of the cell cycle (Tucker et al., 1979). In many cells the entry into the cell cycle is 

preceded by ciliary resorption whereas exit from mitosis is accompanied by ciliary 

assembly, which may reflect the use of the basal bodies/centrioles as mitotic spindle 

poles (Rieder et al., 1979; Tucker et al., 1979; Ehler et al., 1995; Wheatley, 1996).   

Research on Chlamydomonas has provided insights as to how cilia and the 

cell cycle are co-coordinately regulated. Nek family of cell cycle kinases provides an 

important general connection between cilia and regulation of the cell cycle 

progression because of the axonemal location (Quarmby et al., 2005). The many 

Neks in organisms with cilia have roles in cell cycle regulation. The only connection 

to the vertebrates comes from studies of PKD models. The causative genes of two 

mouse PKD models are Nek kinases (Nek1 and Nek8). Human Nek1 has been found 

to bind kinesin-2 and some other proteins that are required for ciliogenesis (Surpili 

et al., 2003). A kinase domain mutation of the human orthologue of Nek8 affects 

cell cycle progression, probably at G2/M checkpoint.  

There is a relationship between cilia, and cell cycle progression. Available 

data indicates that most vertebrate cells are ciliated and that the genesis and 

disassembly of the cilia is coordinated with progression through the cell cycle. 
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4.4.3 Cilia and signaling 

The kidney morphogenesis and Wnt 

The Wnt/Frizzled pathway is a major pathway (Fig. 8) implicated in the 

specification of cell and tissue polarity and operating in different developmental 

processes, including heart and neural tissue development, kidney morphogenesis, 

limb polarity and sex determination. The mouse model with disrupted inversin – 

gene (Inv/Inv) has left-right axis defects, hepatobiliary tract anomalies and severe 

renal cystic disease (Mochizuki et al, 1998; Morgan 1998).  Mutations in human the 

homolog INVS result in an infantile form of nephronophthisis (NPHP2; Otto et al., 

2003). The inversin peptide contains multiple ankyrin repeats, two D boxes and two 

calmodulin binding motifs. It associates with nephrocystin-1 (NPHP1) and this 

protein complex has been localized to the primary cilia-basal body-centrosomal 

complex (Otto et al., 2003; Morgan et al., 2002; Nurnberg et al., 2002). The kidney 

phenotype in inv/inv mice is similar to mice with dysregulated Wnt-β-catenin 

signaling proposing that Inversin is implicated in the Wnt pathway. Based on the 

studies in mouse and xenopus  it has been  shown that inversin inhibits the canonical 

Wnt signaling upstream of the β-catenin degradation complex and further the study 

in the zebrafish model showed that inversin functions as a positive regulator of the 

non-canonical Wnt signaling (Fig. 8). Further, studies on the ciliated MDCK 

(Madin-Darby canine kidney cells) showed that the passing a flow (acting as a signal 

that flips the switch from canonical to non canonical Wnt signaling) over the apical 

surface of these ciliated cells results in increased expression of inversin 

accompanied by modest reduction in  β-catenin levels (Simons et al., 2005).  This 

would suggest a model that any process that impairs this switch would result in 

unopposed canonical Wnt signaling and renal cystic disease (Simons et al., 2005; 

Germino 2005).  The essential role of unopposed canonical signaling as a central 

pathogenic failure in cystic renal disease remains still unknown and this model most 

likely will not explain all forms of polycystic kidney disease. However, the finding 
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that cilial-basal body-centrosomal complex regulates non-canonical Wnt signaling 

could explain the various genes implicated in cystic kidney disease (Germino 2005).  

 
Figure 8. Linking cilia to Wnts. Flow-based model of Wnt regulation in the kidney. 
In the model proposed by Simons et al., Wnt signaling occurs primarily through -
catenin−dependent pathways in the absence of flow. Ligand binding by the Frizzled-
LRP complex results in inactivation of the -catenin destruction complex, increased 
cytoplasmic and nuclear -catenin levels, and upregulation of effector gene 
expression (left). Stimulation of the primary cilium by flow is postulated to result in 
increased expression of inversin (Inv), which then reduces levels of cytoplasmic Dvl 
by increasing its proteasomal degradation. This process is thought to switch off the 
canonical pathway by allowing reassembly and activation of the -catenin destruction 
complex. Inversin might also enhance trafficking of Dvl to the plasma membrane, 
where it could activate noncanonical Wnt pathway components. The question marks 
indicate uncertainty as to whether the inversin-Dvl or Frizzled-LRP complexes are 
present in the primary cilia−basal body−centrosomal complex. Modified from 
Germino, 2005. 
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Hedgehog: CNS and limb bud morphology  

The specification of ventral cell types in mammalian neural tube depends on sonic 

hedgehog release from the notochord (Chiang et al., 1996; Ingham and McMahon, 

2001). Mouse studies have shown that the intraflagellar transport (IFT) proteins 

Ift172/Wimple and Polaris/Ift88 and the anterograde IFT motor protein Kinesin-2 

are required for the ciliogenesis as well as for the activation of targets on the mouse 

Hedgehog pathway by Gli transcription factors (Huangfu and Anderson, 2005). Gli3 

repressor is required for the normal anterior-posterior patterning of the limb, and the 

reduction of Gli3 can account for the polydactyly phenotype seen in partial loss of 

Polaris mouse mutants (Huangfu et al., 2003; Liu et al., 2005). It has been already 

noticed that specialized primary cilia can detect the fluid flow (mechanosensory 

cilia), and also that the somastotatin receptor 3 and serotonin 5-HT6 receptor localize 

to the primary cilia on of brain neurons (Händel et al., 1999; Brailov 2000) and thus 

suggest that the cilia have chemosensory functions. The studies with the IFT 

proteins in vertebrate model organisms propose a structural role of cilia in cells 

which is essential for responding to positive and negative Hedgehog signals 

(Huangfu and Anderson, 2005).  

 

4.5 Human ciliopathies 

The main hallmark of the known human ciliopathies is cyst formation in the kidneys, 

which occurs when the kidneys are not properly formed or the instructions for 

maintaining the proper kidney diameter are somehow missing. It has been presumed 

with the present knowledge that in all cystic kidney diseases no matter of the age of 

the clinical manifestation of the disease, the initial events of cyst formation occur 

during embryonic development (Simons and Walz, unpublished). Two of the most 

common and best characterized human disorders that can be considered as ciliopathies 

are Polycystic kidney disorders and Bardet Biedl syndrome. 

Autosomal dominant polycystic kidney disorder (ADPKD) is the most common 

human monogenic disease affecting 500-1000 in a population. ADPKD leads to end 
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stage renal disease at the age of 50-60. In ARPKD the patients suffer renal failures and 

liver fibrosis in the early childhood. Another subgroup of PKD is Nephronophthisis 

(NPHP); with prevalence of 1: 100 000 being the most frequent genetic cause of 

chronical renal failure of children.  Five different loci have been assigned so far for 

NPHP that account for approximately 50% of the cases (Otto et al., 2005).  

Several mechanisms have been proposed underlying the cyst formation in 

PKDs, but they still remain poorly understood. The PKD mouse models have shown 

the significance of the functional cilia in the pathology of the kidney cyst formation.  

 

Bardet Biedl syndrome 

Bardet Biedl syndrome (BBS, MIM 209900) is a pleiotropic condition. The 

phenotype of BBS partially overlaps with MKS. However, the BBS phenotype is 

notably milder, characterized by postaxial polydactyly, progressive retinal 

dystrophy, obesity, hypogonadism, renal dysfunction and learning difficulties. Other 

frequent symptoms are diabetes mellitus, heart disease, hepatic fibrosis, and 

neurological features. The condition is heterogeneous and already ten disease genes 

have been identified to be involved in genetics of the BBS (Nishimura et al., 2005; 

Chiang et al., personal communication and abstract: ASHG meeting 2005). 

Polydactyly, cystic kidneys, genital-, heart- and liver anomalies can be observed in 

BBS patients at the birth but not severe CNS defect (occipital encephalocele) as in 

MKS patients. The ethiology underlying BBS is dysfunction of proteins involved in 

centriole/cilia assembly and function (Ansley et al., 2003).  It has been already 

suggested in the literature that MKS and BBS might interact genetically, although 

the authors assumed that it would be unlikely that these disorders could be allelic 

(Karmous-Beinally et al., 2005).  
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AIMS OF THE PRESENT STUDY 

When this study was initiated the MKS1 locus had been assigned to chromosome 

17q and the following aims were set for this study: 

 

1. To produce physical maps for the critical MKS1 chromosomal regions in 
both human and mouse to enable and facilitate efficient candidate gene 
study (I, II). 

 

2. To identify the MKS1 disease gene in Finnish families (III). 

 

 

3. To provide initial information of the molecular pathogenesis in MKS (III). 

 

 

4. To validate the genetic heterogeneity of MKS in the Finnish families (IV).   
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SUBJECTS AND METHODS 
1. SUBJECTS 

1.1 Family material and ethical aspects 

Initially we had DNA samples from 24 Finnish MKS families (I), but 16 new 

families have been included in the study during the years 1999-2006, so at the moment 

we have samples from 40 Finnish families (III). The DNA samples are available from 

parents, MKS affected children and most of the healthy siblings. All the Finnish 

families fulfil the modern diagnostic criteria for MKS (Salonen, 1984). In addition, we 

have DNA samples from 20 non-Finnish families of European descent.  

Fibroblast cell lines have been established for most of the Finnish patients. 

The DNA samples and patient fibroblast cell lines have been obtained in 

collaboration with clinicians and genetic counsellors both in Finland and abroad.  

This study was carried out with approvals (decision numbers 28/94, 

205/E0/04, 57/E0/04) from the ethical committees of the Hospital District of 

Helsinki and Uusimaa (HUS).   

 

1.1.1 Control chromosomes and normal control tissues  

A total of 541 control DNA samples were collected from western, central and eastern 

Finland. In addition 92 CEPH grandparental DNA samples, two human variation 

panels (one with 50 Caucasian and one with 100 African American DNAs) from the 

Coriell Institute were used for carrier screening of the detected sequence alterations. 

The normal control tissues samples and fibroblast cell lines were obtained 

from fetuses aborted for social reasons.  
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2. METHODS 

2.1 Laboratory methods 

Table 1: The used laboratory methods and materials.  

Materials and methods Reference Study 
Bacterial artificial chromosomes (BAC) Shizuya et al., 1992 I 

Direct sequencing  

Maxam and Gilbert, 
1977; Sanger et al., 
1977  I, II, III, IV 

Nucleic acid extraction  Sambrook et al., 1989 I, II,  III, IV 

Electromobility shift assay (EMSA) 

Samadani and Costa, 
1996; Kyttälä masters´ 
thesis 2003 unpublished 

Fluorescence in situ hybridization (FISH) 
Pinkel et al. 1986; 
Lichter et al. 1988 I 

Haplotype analysis Ramsay et al., 1993 I, III, IV 

Linkage analysis 
Botstein et al., 1980; 
Ott, 1991 IV, unpublished  

Linkage disequilibrium (LD) analysis Hästbacka et al., 1992 I, III, IV 
Molecular cloning  Sambrook et al., 1989 unpublished 
Northern blot analysis Sambrook et al., 1989 II 

Physical mapping  Green and Olson, 1990 I, II, IV 
Polymerase chain reaction (PCR) Weber and May, 1989 I, II, III, IV 
P1 clones (PACs) Ioannou et al., 1994 I 
Reverse transcriptase PCR (RT-PCR) Ohara et al., 1989 II, III 
RNA in Situ hybridization Breitschopf et al., 1992 III 
Western blot analysis Burnette, 1981 unpublished 
Yeast artificial chromosomes (YACs) Burke et al., 1987 I 

 

2.1.1 Physical mapping  

The contiguous genomic contig (I)  

Firstly the YAC clones were identified for the MKS-MUL region (I). Clones 

positive for the previously mapped STSs and ESTs (Hudson et al., 1995; Dib et al., 

1996) between markers D17S957 and D17S1604 were provided by CEPH. 

Individual clones were cultured and total yeast DNA was extracted and stored in 

agarose beads or extracted by the alkaline lysis method. The chimerism of YAC 

clones was analyzed by the metaphase FISH technique (Bray-Ward et al., 1996), and 

clones mapping only to 17q22-q23 were used for further mapping. The presence of 

STSs and ESTs (Hudson et al., 1995; Schuler et al., 1996) in the YACs was tested 
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by PCR. The STSs and ESTs present in the YACs were used for screening of PAC 

and BAC libraries by PCR. The PAC library consisting of 321 multiwell microtiter 

plates was kindly provided by Professor Pieter J. De Jong (Roswell Park Institute, 

Buffalo, NY). The commercially available P1 library (Genome Systems, Inc., St. 

Louis, MO) and BAC library DNA pools (release III, Research Genetics, Inc., 

Huntsville, AL) were used for the P1 and BAC screenings. PCR-positive clones 

were picked and cultured in Terrific Broth media of Luria-Bertani media, 

supplemented with 25 mg/ml of kanamycin (PACs) (Ioannou et al., 1994) or 

12.5 mg/ml of chloramphenicol (BACs) (Shizuya et al., 1992). DNA was extracted 

using a Plasmid Maxiprep (tip 500) kit (Qiagen).  

 

FISH, Fluorescence in situ hybridization (I) 

The metaphase chromosome targets were achieved by culturing human peripheral 

blood lymphocytes according to standard protocols (Lemieux et al., 1992; Tenhunen 

et al. 1995). Agarose-embedded lymphocytes were used as a source of free DNA 

fibers according to the method described earlier (Heiskanen et al., 1994, 1996). All 

clones used for the FISH experiments (PACs and BACs) were labeled with biotin 

11-dUTP (Sigma) and digoxigenin 11-dUTP (Boehringer Mannheim) by nick 

translation according to standard protocols. The FISH procedure was performed as 

described earlier (Pinkel et al. 1986; Lichter et al. 1988; Aaltonen et al. 1997). 

Briefly, the hybridization mixture contained 50% formamide and 10% dextran 

sulfate in 2× SSC. Repetitive sequences were suppressed with 10-fold excess of Cot-

1 DNA (BRL, Gaithersburg, MD). After overnight incubation at 37°C the slides 

were washed at 44°C three times in 50% formamide and 2× SSC, twice in 2× SSC, 

and once in 0.5× SSC. The slides were counterstained with DAPI (Sigma).  

Digital Imaging A multicolor image analysis was used for acquisition, display and 

quantitative analysis of fiber FISH as described elsewhere (Heiskanen et al. 1996; 

Aaltonen et al. 1997). In fiber FISH, the clone sizes determined by pulse field gel 

electrophoresis (PFGE) were used as a standard for calibration in each individual 
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fiber FISH image. The distance measurements were done by applying the distance 

measurement option of the IPLab software (Signal Analytics Corp., Vienna, VA). In 

each fiber FISH image, at least one clone was used as a calibration standard to 

measure the sizes of other clones, gaps separating different clones, and overlaps 

between these clones. The known clone sizes enabled compatible and therefore 

reliable measurements to be made. If two known clone sizes were in the same 

hybridization, the results of the distance measurements were verified with each other. 

 

Isolation of Novel CA-Repeats (I, III)  

Before the genomic sequence was available novel CA-repeats were isolated from the 

PAC and BAC clones (I, Klockars et al., 1996; Ranta et al., 1997). Shortly, PAC 

DNA was digested with Sau3A1 and ligated to pGEM7, transformed into DH5  

cells and plated onto selective agar plates. BAC DNA was digested with RsaI and 

ligated to SmaI-cut pUC18 vector (Pharmacia, Biotech), transformed into Epicurian 

Coli SURE competent cells (Stratagene), and plated onto selective agar plates. The 

colonies were transferred onto nylon filters (Hybond-N, Amersham or Magna Chart, 

MSI) and hybridized with a radioactively labeled (GT)16 oligonucleotide at 65°C 

overnight. After autoradiography, positive colonies were selected, and DNA was 

isolated using a Plasmid Miniprep (tip 20) kit (Qiagen) or Wizard Plus Miniprep kit 

(Promega). The inserts were sequenced with SP6 and T7 vector primers. 

Oligonucleotide primers flanking the CA-repeats were selected with Primer3 

software (Whitehead Institute). Nowadays the repeats are identified directly from the 

genomic sequence and the putative polymorphism is tested in chromosomes 

representing the population (III). 

 

2.1.2 Candidate gene studies in the patients 

The positional candidate genes for MKS1 were selected by monitoring the shortest 

region of shared homozygosity in the Finnish MKS chromosomes (I, III). We chose 

three Finnish patients with the common Finnish disease haplotype in the marker interval 
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(17q: D17S1290-132-CA (I), and later D17S2263-D17S1290 (III) for the candidate gene 

sequencing. In addition, we extracted RNA for northern blot and RT-PCR analyses from 

fibroblast cell lines and from frozen tissue biopsies (in liquid Nitrogen) from patients 

with the common Finnish MKS haplotype and normal controls.  

 

Candidate gene sequencing 

The coding regions and intron-exon boundaries of the candidate genes were 

sequenced from genomic DNA and RT-PCR products. PCR primers were designed 

with the Primer3 program (Whitehead Institute).  

PCR products were enzymatically purified (schrimp alkaline phosphatase and 

EXOI, Amersham Pharmasia) and bidirectionally sequenced with BigDye 

Terminator chemistry on 377/3730 DNA Analyzer (Applied Biosystems). We 

analyzed the sequences with Sequencher software (Gene Codes; v. 4.0.5).    

 

Electromobility shift assay, EMSA (Kyttälä, 2003) 

The nuclear extract was extracted from the human embryonic kidney cell line 

HEK293T by following the protocol by Andrews and Faller (1991). The EMSA 

assay conditions reported by Samadani and Costa (1996) were slightly modified.  

The DNA-protein hybridization contained 2ng labeled DNA probe (PCR product/ 

61-mer oligo), 20 mM HEPES (pH 7.9), 4% Ficoll, 2mM MgCl2, 40 mM KCl, 0.1 

mM EGTA, 0.5 mM DDT (dithiotreiol), 4 ng sonicated salmon sperm and 40 ng of 

the nuclear extract from the HEK293T cells.  

Two different types of DNA probes were utilized: ds 61-mer oligos and PCR 

products. Both type of DNA probes were tested for the wild type (normal control) 

sequence and for the patient sequence (homozygous for the SEPT4 gene G-allele; 

mRNA GI_17986248, bp 594).   

The used ds 61-mer oligos for patient and wild type alleles were (only the forward 

strand sequence shown): G GAG TGT GTG GTG GTG GTG GTG GTG GTG GTG 

GTG GTG GTG TGT T/G TG TGT GTG TGT GTA TCT. The underlined T/G 
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bases show the site of observed sequence alteration in the patients (T→G). The 

results, which were obtained with the ds oligos, were verified with PCR amplified 

DNA probes (146 bp in size) from patient and control DNA templates. The PAGE 

and blotting were performed in standard non-denaturating conditions. The ds 61-mer 

oligos and PCR amplified DNA probes were both detected in ECL (biotinylated 

DNA probe) (Amersham Biosciences) and in autoradiography with 32P labeling 

(Redivue γ-32P-ATP, Amersham Biosciences).   

 

Northern blot (II, unpublished) 

The transcripts were analyzed on blots generated from 3 μg of mRNA extracted 

from fetal tissue (MKS and normal control) by using the Direct mRNA midi kit 

(Qiagen) following the manufacturer’s protocol. Probes: 400 to 500 bp DNA 

fragments were generated by RT-PCR amplification, and 32P labeled with a random 

priming kit (Invitrogen). Blots were hybridized with the Express-Hyb solution 

(Clontech), as recommended by the manufacturer. 

 

2.1.3 Genotyping  
Polymorphic markers were amplified by PCR and the fragments were analyzed on 377 

(I) or 3730 (III, IV) DNA Analyzers (Applied Biosystems). The allele sizes were 

determined using the size standard provided by the manufacturer with the standard 

software package (GeneMapper v.3.7). 

  

10K SNP array (IV) 

The genome wide SNP analysis was undertaken by using the GeneChip® Human 

Mapping 10K Array Xba 131 and assay kit (Affymetrix, Santa Clara, CA). The 10K 

array contains nearly 11 500 SNPs and the median intermarker distance is 

approximately 200 kb. An average heterozygosity of 0.37 for these SNPs is reported 

by the manufacturer. The assay was performed according to the Affymetrix 

GeneChip® Mapping Assay Manual. SNP-genotypes were obtained by following 
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the protocol for the GeneChip® mapping 10K Xba Array. All analyzed DNA-

samples achieved over 95% call rate.   

 

Genome-wide scan with microsatellite-markers (IV) 

The genome-wide scan with 380 multiallelic markers (Applied Biosystems) was 

performed by The Finnish Genome Center (FGC) (http://www.genome.helsinki.fi/).  

 

2.2 Biocomputing programs and statistical analyses 

Table 2: Biocomputing programs and databases utilized in computational analysis.  
Program/ 
Database 

Brief description URL/ Reference Study  

Blast  Sequence alignments and 
comparisons. 

http://www.ncbi.nlm.nih.gov/BLA
ST/ 

I, II, III 

Boxshade Organizes the results from 
multiple sequence alignments 
to a visually  

http://www.ch.embnet.org/softw
are/BOX_form.html  

III 

ClustalW Multiple sequence alignment 
tool. 

http://searchlauncher.bcm.tmc.e
du/multi-align/multi-align.html 

III 

GENEHUNTER Multpoint calculations. Kruglyak et al., 1996 IV, 
unpublished  

Genotator Gene prediction: an annotation 
workbench that runs various 
sequence analysis programs  

Harris, 1997 II 

Genscan Gene prediction: Predicts exon-
intron structures of genes in 
genomic sequences  

Burge and Karlin, 1997 II, III 

Linkage package  Basic linkage calculations. Lathrop et al., 1985 IV, 
unpublished  

MAPMAKER/ 
HOMOZ 

Rapid multipoint analysis in 
nuclear pedigrees. 

Kruglyak et al., 1995 IV 

MatInspector Transcription factor binding site 
prediction program. 

http://www.genomatix.de/ 
online_help/help_matinspector/
matinspector_help.html 

unpublished 

NCBI main page Genome data from different 
species and tools to analyze 
them. Contains links to a 
variety of other genome and 
related resourses. 

http://www.ncbi.nlm.nih.gov/ I, II, III, IV 
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Pfam Predicts domains based on the 
peptide sequence. 

http://www.sanger.ac.uk/ 
Software/Pfam/ 

III 

Primer3 Primer design. http://frodo.wi.mit.edu/cgi-
bin/primer3/primer3_www.cgi; 
Rozen and Skaletsky, 2000 

I,II, III, IV 

Prosite Proteomic tools. http://au.expasy.org/prosite/; 
Hofmann et al., 1999 

III 

PSORT Predicts cellular localization for 
peptide sequence. 

http://www.psort.org/ unpublished 

UCSC genome 
bioinformatics 

Genome data from different 
species and tools to analyze 
them. Contains links to a 
variety of other genome and 
related resourses. 

http://hgdownload.cse.ucsc. 
edu/downloads.html 

II, III, IV 

 

2.2.1 Statistical analysis  

Linkage  

The two point LOD-scores were calculated using the linkage package program 

MLINK (Lathrop et al., 1985). Autosomal recessive inheritance with full penetrance 

and estimated disease allele frequency 0.001 were used in the calculations.  

 

LD analysis   

The significance of LD between the disease and marker loci was analyzed using the 

DISLAMB program (Terwilliger, 1995). This program applies a likelihood-based 

test for linkage disequilibrium and has only one degree of freedom, irrespective of 

the number of alleles at any given marker. The calculations are based on the 

parameter , which expresses the proportion of the increase of a certain allele in the 

disease chromosomes, relative to its population frequency. Confidence intervals for 

 were calculated for 1-lod units. The most likely haplotypes were constructed 

manually, assuming a minimum number of recombinations in each family. 

 

Multipoint analysis of the 10K SNP array with MAPMAKER/HOMOZ program (IV) 

We analyzed the genotypes produced with the 10K SNP (Affymetrix) array with the 

MAPMAKER/HOMOZ program (Kruglyak et al., 1995) for finding the regions of 

the shared homozygosity by the affected siblings. This program has been developed 
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for fast multipoint linkage analysis in small nuclear families. The fundamental 

assumption was that the parents have common ancestors (IV). The SNP markers on 

the 10K array were localized on the genetic map by using the data provided by 

Affymetrix. The missing genetic map information was estimated for some of the 

markers by utilizing their known physical position, and using linear interpolation 

with the adjacent SNP markers for which both physical and genetic map information 

was known. The markers were arranged into sets of 70 adjacent markers with 20 

markers overlap between marker sets on a given chromosome. The genetic map 

positions of SNP-markers were converted to the Haldane units. The allelic 

frequencies were used as provided by Affymetrix in the Caucasian population, 

derived from the larger sample size. Five out of 11 229 SNP markers were void of 

allelic frequency information (SNP_A_1511539, on Chr5; SNP_A_1513409, on 

Chr11; SNP_A_1512847, on Chr12; SNP_A_1508640, on Chr15; and 

SNP_A_1511759, on Chr16) and were left out of the analysis. The SNP multipoint 

linkage analysis was performed by utilizing MAPMAKER/HOMOZ (v. 0.9) 

program with increments of 1 cM and 20 cM beyond the ends of the chromosomes.  

 

2.3 RNA in situ hybridization of Mks1 (I)  

The RNA In situ hybridization was performed to sections of mouse embryos 

(C57BL/National Public Health Institute, Helsinki, Finland) at embryonic day 15.5 

(E15.5). The embryos were fixed by overnight immersion in 4% PFA in 0.1 M PB, 

pH 7.4. Samples were embedded in paraffin and cut into 5 µm thick sagittal sections. 

Mounting was performed onto SuperFrost/Plus microscope slides (Merck, 

Germany). The study is approved by the animal care and use committee of the 

National Public Health Institute, Helsinki, Finland. The work has been carried out 

following the good practice in handling of laboratory animals. The probe was 

produced by amplifying cDNA derived from a mouse fibroblast cell line with the 

Mks1 specific primers: Insitu-F: AAGGGTTCAGCCAGCAGAGT; Insitu-R: 

TGGTTGCCAAACTCCCTTT. The 500 bp probe fragment was cloned into the 
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pGEM-T Easy Vector (Promega) and the anti-sense and sense probes with the 

digoxigenin label were created with a DIG RNA labeling kit (Roche), according to 

the manufacturer's protocol. The probes were diluted in 1:400 in a hybridization 

buffer containing 2x SSC, 10% dextran sulfate, 0.01% sheared salmon sperm DNA, 

0.02% SDS and 50% formamide. A method described by Breitschopf and coworkers 

(1992) was used for the hybridization with slight modifications. Photographing and 

analysis of the samples were performed using a Leica microscope equipped with 

DC300F camera and IM1000 software and a Zeiss Axioplan 2 imaging microscope 

(Zeiss). The final figures were prepared by using CorelDraw v.12 and Paint Shop 

Pro v.7.04 softwares.   

 

2.4 Transient expression of MKS1 (unpublished) 

Plasmid construct  

The protein coding region of the MKS1 cDNA was amplified by RT-PCR with 

primers coding-F: ATGGCGGAGACCGTCTGGA and coding-R: 

CTAGGAGACCAGGGTTCCA. The RT-PCR product was cloned into pCR-BluntII-

TOPO vector by using Zero blunt TOPO-PCR Cloning kit (Invitrogen) following 

manufacturers´ guidelines. The MKS1 insert was restricted from pCR-BluntII-TOPO 

vector with NsiI (NEB) and ligated with T4-ligase (NEB) to pEGFp-C1 vector 

restricted with PstI (NEB). The N-terminally GFP-tagged MKS1 construct was 

verified by sequencing and in western blot with GFP-antibody, which produced a band 

agreeing with the size of GFP-MKS1 fusion protein. The cell lysate for the western 

blot was made of HEK293 cells transiently transfected with Fugene 6 (Roche). 

 

Cell culture  

HEK293 and fibroblast cell lines were maintained in DMEM supplemented with 

10% fetal bovine serum (FBS), 2 mM glutamine, 100 IU/ml penicillin and 100 

μg/ml streptomycin at 37ºC degrees in 5% CO2. 
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Immunofluorescence  

Cells were grown on cover slips washed in phosphate buffered saline (PBS) and 

fixed with 4% paraformaldehyde (PFA). The cover slips were rinsed with PBS and 

permeabilized with 0.1% Triton x-100/0.5% bovine serum albumin (BSA) in PBS 

for 15 min in RT. Washed twice with PBS and blocked with 0.5% BSA in PBS for 

30 min in RT. The cover slips were incubated for 1 h in RT with monoclonal anti-

polyglutamylated tubulin mouse immunoglobulin (T9822, Sigma-Aldrich), which 

was diluted 1:16 000 into the blocking solution. Same procedure was repeated with 

the TRITC conjugated secondary antibody. Cover slips were finally washed twice 

with PBS and with dH2O prior mounting. 
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RESULTS AND DISCUSSION  
1. PHYSICAL MAP OF THE MKS1 LOCUS ON 17q23  

The original linkage study by Paavola and colleagues (1995) assigned the first MKS 

locus (MKS1) to a 13 cM region on chromosome 17q in Finnish families.  At that 

time, the public genetic maps for the region were inadequate for LD based mapping 

and direct candidate gene studies. Soon after, the MKS1 region was restricted to 5 

cM between markers D17S1606 and D17S807 (Paavola et al., unpublished), but the 

exact physical size and gene content of the chromosomal region was missing. When 

the gene defect causing Mulibrey Nanism (MUL, MIM 253250) was assigned to the 

same chromosomal region on 17q (Avela et al., 1997), a close collaboration was 

initiated for physical mapping of the overlapping MKS-MUL loci together with the 

MUL research group.   

 In the beginning of physical mapping project a contig of genomic YAC clones 

was available for the human genome covering approximately 75% of the genome 

(Chumakov et al., 1995). This provided the basis of the MKS-MUL physical map. 

The YAC clones were utilized for STS-content mapping to confirm the order of the 

clones and the available STSs. We screened PAC and BAC libraries (Shizuya et al., 

1992; Ioannou et al., 1994) with the available STSs and expressed sequence tags 

(ESTs) to construct a multiple coverage of genomic PAC and BAC clones  and to 

generate additional microsatellite markers, which enabled the LD and haplotype 

mapping in the critical disease gene regions.  

 

1.1 Initially restricted critical chromosomal region 

Six novel dinucleotide repeat markers were isolated from three PAC (95i19, 52i20, 

and 58p18) and two BAC (272g3 and 132i10) clones on the 17q23 region. These 

were the markers: 95-CA, 272a-CA, 272b-CA, 132-CA, 58-CA and 52-CA) (Fig. 1).   
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Figure 1. The physical map of the 17q MKS-MUL critical region. The horizontal bars 
stand for the multiple coverage YAC (with black line on top), PAC (black) and BAC 
(grey) clones. At the time only two sequenced genomic clones were available in the 
Genbank (NCBI) for the region: hRPK.506h21 and hRPC.1171i10. The dashed arrow 
lines indicate the genes which were later found to be defective in MUL (Avela et al. 
2000) and MKS (III).  
 

The original assumption was that all the 24 Finnish families available for us at the 

time would have mutations in the same gene on chromosome 17q. Due to this all the 

disease chromosomes were included in the LD and haplotype analyses. This defined 

a minimum 1 cM genetic region for the MKS locus between the markers D17S1290 

and 132-CA (Fig. 2, on page 64). Five patients were thought to be compound 

heterozygous for the common MKS haplotype and another haplotype, and in two 

patients, both chromosomes differed from the common MKS haplotype. In seven of 
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the patients, four different putatively rare MKS haplotypes were observed and those 

were interpreted to represent probable "minor" MKS mutations.  

 The insert sizes of the PAC and BAC clones constituting the minimum tiling 

path of the contig were determined by using restriction digestion followed by 

pulsed-field gel electrophoresis. Fiber FISH analyses were used to verify and 

confirm these size estimations. In fiber FISH, one or two bacterial clones, whose 

sizes were determined by PFGE, were used as a standard for calibration in each 

hybridization image to estimate the sizes of other clones. According to the PFGE 

data and fiber FISH, the size of the contig from D17S1290 to 52-CA, that is also the 

critical region for MUL, was estimated to be ~1.4 Mb. Furthermore, the total 

physical length of the critical region for MKS was determined to be ~800 kb 

between the markers D17S1290 and 132-CA (Fig. 1). 

 The detailed physical map enabled us to precisely localize a total of 20 ESTs 

of both known and unknown homology, which were previously only roughly 

assigned either by radiation hybrid mapping or by STS-content mapping to the YAC 

clones in the region (Fig. 1) These ESTs were derived from the gene map of the 

human genome (Schuler et al.,  1996).  
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1.2 Discussion of the impacts of the physical map 

Before the genomic sequence and transcript maps were available physical mapping 

was a necessity prior to positional candidate gene analysis. It also enabled the LD 

and haplotype analysis with novel dense markers in disease chromosomes. The 

physical map made it possible to exclude functionally significant candidate genes 

based on their physical position 

 The assigned gene loci for MKS and MUL overlapped but it was not clear 

whether these two disorders were allelic or not. The MUL gene was found in the distal 

part of the MKS region by Avela and colleagues in 2000 (Fig. 1). The gene mutated in 

MUL did not contain any pathogenic sequence alterations in direct sequencing of the 

genomic- and RT-PCR products in the MKS patients. The northern analysis of the 

MUL gene in  patients´ tissue samples did not detect any changes in the expression 

levels nor in the transcript sizes when compared to a normal controls (Kyttälä et al., 

unpublished).  

 The size of the MKS1 critical chromosomal region (D171290-132-CA) was 

estimated to be 800 kb by pulsed field gel electrophoresis and fiber FISH analysis. 

This agrees very well with the exact size of  782 254 bp (USCS, genome browser, 

May 2004). 

 

2. HUMAN AND MOUSE COMPARATIVE MAPS OF MKS REGIONS 

Comparative genomics in human and mouse was utilized to facilitate the positional 

cloning of the MKS gene on the human chromosome 17q. The critical MKS region 

was restricted in the LD and haplotype analyses between the marker interval 

D171290-132-CA, which is 800 kb in size. We identified the mouse syntenic 

regions for the three known human MKS loci and the gene content and order in 

them. Initially the available public genomic sequences and transcript maps in both 

species were incomplete alone. The comparative genomics provided an alternative 

tool to extract more information from the regional candidate genes. Reciprocal 

comparisons of the known transcripts, ESTs and genomic sequences in human and 
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mouse enabled us to predict the correct gene structures and the regional gene order 

in both species. This was done by utilizing the blast tools (UCSC, NCBI), but for the 

human and mouse MKS1 loci the results were also verified experimentally by PCR 

and RT-PCR.   

Ideally we could have identified a novel mouse gene in one of the three 

syntenic MKS loci, which function and gene expression pattern would have agreed 

with the MKS phenotype. This type of mouse ortholog would have represented an 

excellent functional and positional candidate gene for MKS. The identification of a 

mouse ortholog for the human MKS gene at the MKS2 or MKS3 loci could have 

provided essential functional information for the identification of the MKS1 gene on 

human chromosome 17q. In the most optimal circumstances we could have 

identified a mouse phenotype mimicking the patient phenotype caused by a mutation 

in a gene at the mouse syntenic MKS1 locus. In addition, the identification of the 

conserved non coding sequences could have indicated important regulatory elements 

in the human MKS1 region.  The identification of the conserved regulatory regions 

was relevant, since no coding region mutations had not been detected in the regional 

candidates in the patients by the time Original publication II was published (2004).  

At that time, the finished genomic sequence was already available and the transcript 

map for the chromosome 17q23 locus was complete.  

 

2.1 Syntenic mouse MKS1 locus 

The comparative mapping project was conducted in a collaboration with a research 

group screening recessive mouse phenotypes which were produced with the point 

mutagen ENU (N-ethyl-N-nitrosourea) and a balancer chromosome, inversion on mouse 

chromosome 11, which  covered the mouse syntenic MKS1 region (Kile et al. 2003).  

The mouse chromosome 11C is syntenic to human chromosome 17q23 (Fig. 3).  
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Figure 3: The human and mouse MKS1 critical regions.  On the left is the original 
MKS1 linkage region on human Chr17, spanning 17q12 – 17q23.3.  On the right is 
the corresponding mouse genomic region, from 46 –63 cM on mouse Chr11. Note, 
the MKS1 critical region is shown as a box next to the human and mouse 
chromosomes.  Original publication II. 
 

We observed only small differences in human and mouse MKS loci on the 

gene coding regions: The order of sept4 (PNUTL)-gene (NM_004574) and flj12338 

(AK022400) transcript differed between species and the homolog for the putative 

human transcript FLJ20264 (AK000271) was missing completely from the mouse 

MKS syntenic region on chromosome 11C (Fig. 4). The mouse syntenic MKS1 

locus was slightly smaller in size (500 kb) compared to the 800 kb MKS1 locus on 

human chromosome 17q23.   

 



 68 

 
 

Figure 4. The human MKS1 critical region extends from D17S1290 – 132CA. BAC 
clones are shown as grey boxes. Genes in the MKS1 interval are shown in the 
middle. The transcript direction is shown as black arrows. The corresponding mouse 
genomic region is shown below the human. Mouse BAC clones are shown as gray 
boxes, and mouse transcript direction is shown as black arrows. The identified 
MKS1 gene is the second transcript on the left (FLJ20345). Original publication II. 
 

2.2 Discussion of the comparative mapping  

The comparative mapping demonstrated high conservation of the syntenic MKS1 

regions in human and mouse, both in gene order and content. This supports the idea 

of mouse being a good animal model for human MKS as a mammal and allowing 

targeted mutagenesis in its genome.  

Unfortunately the ENU-mutagenesis project conducted by our collaborators 

did not produce phenotypes similar to human MKS, which could have potentially 

represented a mutation in the mouse Mks1 gene. This could have provided an 
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alternative tool for the MKS gene identification in human. The comparative 

genomics of the two other MKS loci (MKS2 and MKS3) in human (11q and 8q) and 

mouse (chr7 and chr15) did not either provide any resolving information of the 

MKS gene on human chromosome 17q.  

The MKS3 locus was initially mapped too far to the distal part of 

chromosome 8q24 (Morgan et al., 2002). This was recently recognized when the 

MKS3 gene was identified to be mutated in MKS on 8q22 (Smith et al., 2006).  The 

future studies will show if the MKS2 locus have been assigned correctly to 

chromosome 11q13 (Roume et al., 1998). The original linkage is often pointing to a 

vast chromosomal region and a careful analysis of the disease chromosomes with 

densely distributed markers is required in most cases to establish the minimum 

chromosomal region for the disease gene. In the case of MKS the locus 

heterogeneity can cause major disturbances in this type of studies.  

 

3. EXCLUSION OF THE CANDIDATE GENES  

3.1 Analysis of a rare sequence variant in the disease chromosomes  

The scrutiny of the 800 kb critical MKS region, which was restricted between the 

markers D17S1290-132-CA on chromosome 17q23.2, demonstrated that it contains 

total of 13 transcripts (Fig. 4; on page 68: MPO-TRIM37).  The direct sequencing of 

these transcripts in the Finnish MKS patients revealed only non pathogenic 

polymorphisms and one rare variant in the mRNA variant 4 (NM_080417) of the 

SEPT4 (PNUTL)-gene. The variant was bp 594 T→G (NM_080417) on non coding 

region of the 5´ UTR. This allele was observed to be in complete LD in the 23 

unrelated patients (p= 0.00) with the common MKS haplotype on chromosome 

17q23. We screened the carrier frequency of this rare variant in over 1000 Finnish 

control chromosomes and it correlated well with the estimated carrier frequency of 

Finnish founder  mutation (common disease associated haplotype) in the families. 

We were not able to detect any alterations in the patients’ transcript of SEPT4 gene 

in the RT-PCR and northern analysis when compared to normal controls.   
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MatInspector program predicted for the genomic sequence on this particular 

region a transcription factor binding site for HFH-transcription factor, which was 

missing in the patients´ sequence with the T→G transition. However, we were not 

able to confirm this in electro mobility shift assay (EMSA). In the EMSA analysis 

we utilized nuclear extract from human embryonic kidney cell line (HEK 293), but 

no specific shift was observed in this analysis. This indicates that the prediction  by 

the MatInspector program might be invalid (Kyttälä, 2003, Masters´ thesis).  

Finally, all the 13 transcripts on chromosome 17q23.2:  bp 53,686,396- 

54,468,630 (UCSC May 2004 assembly) were excluded in the candidate gene 

analysis based on direct sequencing and RT-PCR sequencing and/or northern 

analysis in patient and control samples (Kyttälä et al., unpublished; Table 1.).  
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Table 1. The excluded regional transcripts on the marker interval D17S1290- 132-
CA (Kyttälä et al., unpublished). The dark colour indicates the methods which have 
been used for the exclusion of the regional candidate genes. The Transcript 
FLJ20264 (Fig. 4) is not included to the table since it exists no longer in Genbank.  
 
         Transcript     Sequencing of the patient DNA   Northern 
Name; Genbank acc#         Genomic          cDNA   analysis 
LPO, NM_006151  
MPO, NM_000250  
PRAX-1, NM_004758    
SUPT4H1, NM_003168  
FJL20315, NM_017763  
HSM802074, BC033020  
MTMR4, NM_004687  
SEPT4, NM_004574  
FJL12338, BC022189  
TEX14, NM_198393  
RAD51c, NM_002876    
PPM1E, NM_014906    
TRIM37, NM_001005207     

 
3.2 Discussion and the exclusion of the entire initial candidate region 
(D17S1290-132-CA) 
The analysis of the regional candidate genes did not detect any mutations in the 

Finnish MKS patients. The rare variant in the SEPT4 gene was excluded as the 

disease causing mutation. This was based on the observation of normal transcripts in 

the patients and the functional analysis of the variant. The exclusion was confirmed 

after additional MKS disease chromosomes with more informative meiotic 

recombinations were available for us, since the SEPT4 gene is located outside of the 

refined MKS locus (see 4.1 Final restriction of MKS1 locus). 

However, the rare variant (T/G) of the SEPT4 gene provided a very specific 

marker for MKS chromosomes since the allele G was originally detected in 

complete LD in 23 Finnish families with the common MKS haplotype. The genetic 

heterogeneity had been established in MKS and we began to use this rare variant as 

the criterion for Finnish families to have linkage to chromosome 17q23 region. By 
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analysing only the disease chromosomes of the patients who were either 

homozygous or heterozygous for the G-allele, we observed that there was only one 

disease chromosome, which restricted the critical region proximally to the marker 

D17S1290 (Fig. 5a: The haplotype on the second row from top). The genotypes with 

the novel markers detected significant LD on proximal region of the marker 

D17S1290 (Fig. 5a). The analyses of the disease haplotypes in the 26 Finnish MKS 

families excluded eventually completely the region that was initially restricted 

between the markers D17S1290-132-CA (Fig. 5). 

 

4. IDENTIFICATION OF THE MKS1 GENE 

4.1 Final restriction of MKS1 locus  

The new families which had participated in the study after construction of the 

original physical map (Fig. 1) demonstrated the deficient restriction of the critical 

chromosomal region on the proximal site of marker D17S1290. There were no 

genotype data available from the Finnish disease chromosomes on this region except 

the original linkage marker D17S1606 (Paavola et al., 1995), which locates 

proximally 1 cM apart from the D17S1290. Unluckily the allelic mutation in the 

disease chromosome with D17S1290 (Fig. 5a: the haplotype on the 2nd row) had an 

impact on the initial disease locus restriction. The locus heterogeneity in Finnish 

MKS families interfered the haplotype mapping of the MKS1 locus.   
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Since there were no markers available in the database (UCSC, human genome 

browser, May 2004) on the near proximal region to the marker D17S1290, we 

constructed four new polymorphic markers (D17S2261-D17S2264) in this particular 

region in the close vicinity of D17S1290 by utilizing polymorphic short tandem 

repeats in the genomic sequence.  The genotypes with the novel markers in Finnish 

disease chromosomes greatly facilitated the final restriction of the chromosome 17q 

MKS locus to 99 kb (Fig. 5b).  This newly assigned MKS critical chromosomal 

region was restricted between the markers D17S2262-D17S1290 and it contains 

only five transcripts (UCSC May 2004 assembly).  

 

 Figure 5.   
 a) The markers and marker alleles in the disease chromosomes of 26 Finnish 
unrelated MKS families with confirmed linkage to chr17q23. MKS1Δ marks the 29 
bp intronic deletion (Δ) of MKS1 gene. This allele is in complete LD in the disease 
chromosomes (p= 0.00). The alleles marked with bold font are the same size as 
alleles which are seen in the full length disease haplotype (the 1st row). The alleles 
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marked with Italics represent alleles with probable allele mutation in the ancient 
disease chromosome (haplotypes on the 2nd and 3rd row). Grey color shows 
recombination haplotypes.  
b) The transcript map of the restricted 99 kb MKS1 region on chr17q23. We 
sequenced the coding regions and exon-intron boundaries of the transcripts in the 
patients. The only pathogenic sequence alteration was found in the MKS1 gene.  
c) The genomic structure of the MKS1 gene. The longest open reading frame is 
coded by the exons 1-18, which is the region between bp: 76-1755, of the 2267 bp 
long cDNA (DQ185029). The exon 16 is missing from the MKS1 transcript in the 
Finnish patients homozygous for the 29 bp intronic deletion. This is the founder 
mutation in Finland (FINmajor mutation).  The black arrows on the transcripts are 
pointing the 5´-3´ orientation. Original publication III. 
 

4.2 MKS1 mutations in patients  

The sequencing of the four of the regional (D17S2262-D17S1290) genes revealed 

only non pathogenic polymorphism in direct sequencing of three Finnish patients 

and one German patient with strong evidence of linkage to MKS1 locus. The 

sequencing of the novel gene MKS1 (FLJ20345) detected a 29 bp deletion in intron 

15 only four bp apart from the splice acceptor site (Fig. 5c).  We sequenced the 

MKS1 gene in 20 non-Finnish MKS families available to us and identified disease 

causing mutations in four of them. In three of the non-Finnish families the affected 

individuals were homozygous for the Finnish founder mutation. One MKS case of 

German ancestry was found to be a compound heterozygote for two different 

mutations in MKS1. Both mutations are located at the very beginning of the 

transcript: a five bp insertion in exon 1 (50insCCGGG) causing a frame shift and a 

T→C substitution at the splice donor site in intron 1 (IVS1+2T→C) (Table 2).  
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Table 2. The identified patient mutations in MKS1 gene. Grey highlighting marks 
the FINmajor mutation. All the patients in the Finnish families were homozygous for 
this mutation. The FINmajor mutation was found in homozygous form also in four 
non-Finnish families of European descent.  
 

Mutation  Consequence in 
the gene product  exon  intron 

IVS15-7_35del P470fsX562 -  15 
50insCCGGG P17fsX163 1  - 
IVS1+2T→C splicing -  1 

 

 All the patients in the 26 Finnish families were homozygous for the FINmajor 

mutation and we could not identify other mutations in the sequence analysis of the 14 

kb MKS1 gene in the remaining 14 (30%) Finnish MKS families. However, in these 

families the common disease haplotype is not observed and the definitive evidence for 

the linkage to 17q23 is missing in these families with one affected child. This would 

suggest that mutations in the other two known or in some still uncharacterized MKS 

loci would explain the molecular background in these families.  

 

The consequence of the FINmajor mutation in the patient transcript  

To investigate the effect of the intronic deletion on the mRNA level, we analyzed 

the RT-PCR products from MKS (n= 3) and control fibroblasts (n= 6). A size 

difference was observed in agarose gel electrophoresis and sequence analysis of the 

RT-PCR products demonstrated that the patients´ transcript misses 83 bp 

encompassing exon 16 (Figs 6a and b).  To confirm the presence of this exon in 

various control tissues, we performed PCR analysis of the cDNAs from the fetal 

multiple tissue panel (BD Biosciences). All the tested tissue samples produced one 

major product containing exon 16, which was missing from the patients´ transcript.  

The FINmajor mutation is a 29 bp intronic deletion which locates only four bp apart 

from the splice acceptor site, and most likely grounds to a lacking splice branching 

site in intron 15, which leads to incorrect spliced patient transcript missing 

completely exon 16.   
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Figure 6. 

a) RT-PCR products which are made with primers flanking exon 16 of the MKS1 
gene. On lanes 1-8 are the cDNAs from the embryonic MTC panel (Clontech): 1. 
brain, 2. lung, 3. liver, 4. kidney, 5. heart, 6. spleen, 7. thymus and 8. skeletal 
muscle. Lane 9: control embryonic skin fibroblast cDNA. Lanes 10-12 skin 
fibroblast cDNAs of patients homozygous for the FINmajor mutation. The size 
difference of healthy control transcript and the FINmajor homozygous patient is 83 
bp, which is the size of exon 16. Lane 13. water. 
b) RT-PCR from skin fibroblast RNA across the 18 exons of MKS1 including the 
first methionine and STOP codons. Lanes: 1. Control (WT/WT), 2. FINmajor 
homozygous patient 3. Water. 
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4.3 FINmajor -mutation: Age and carrier frequency in Finland 

The carrier frequency of the identified 29 bp intronic deletion was found to be 1% 

among 1082 Finnish control chromosomes, the prevalence well correlating with the 

estimated 1.5% carrier frequency of the Finnish MKS founder mutation (FINmajor). 

Based on the available MKS samples and Hardy Weinberg (HW) calculations, we 

would estimate that approximately 70% of the Finnish cases are homozygous for the 

founder mutation. MKS is enriched in the Finnish population, the prevalence being 

one in 9000 newborn (Salonen and Norio, 1984), but it does not show 

geographically regional clustering, unlike most of the diseases belonging to FDH. 

Not even when dividing the families into two separate groups. Group1: Families 

with FINmajor mutation (70%) and group2: Families with mutation(s) in other gene(s) 

(30%). The grandparental birthplaces in these both groups reflect geographically the 

population density rather than showing regional clustering. Also the interval of 

significant linkage disequilibrium (LD) in Finnish MKS alleles is exceptionally 

short spanning only some 1 cM region on 17q, the average LD interval in 16 other 

diseases belonging to the FDH being 6.3 cM (Peltonen et al., 1999). These findings 

imply that the MKS1-FINmajor mutation is older than the most FINmajor mutations of 

FDH. Since our mutation detection in MKS1 gene identified non-Finnish patients of 

European descent who were homozygous for the FINmajor mutation, it is very likely 

that the MKS1-FINmajor mutation has been introduced early to the European gene 

pool and the mutation has entered to the area of Finland with the first inhabitants 

immigrating from south. 

 

4.4 Discussion of the mutations in the MKS1 gene 

The old age of the FINmajor-mutation is supported by the small chromosomal region 

of significant LD the disease chromosomes and the geographical distribution of the 

disease throughout the country, opposite to most of the diseases in FDH. Also the 

identification of this mutation in homozygous form in patients in non-Finnish 

families of European descent suggests that the mutation has been introduced early to 
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the European gene pool. The homozygous FINmajor mutations result in the same 

outcome than the compound heterozygous mutations at the very beginning of the 

gene. A frame shift in exon one and a splice donor site mutation in intron one would 

support the idea that a FINmajor homozygous patient most likely represents a null 

mutation of MKS1 lacking completely the gene product. In theory a patient 

homozygous for  FINmajor –mutation would have a peptide with frame shift error at 

position 470 aa (P470fsX562), the size of the wild type peptide being 559 aa. 

However, we could not detect expression level alterations in the MKS1 transcript in 

expression array analysis (Affymetrix Genechip® HG U133 Plus 2.0 Array) in the 

total RNA samples from  patients´ skin fibroblast cell lines when compared  to 

normal controls (Kyttälä et al., unpublished). However, it requires further 

investigitaion to confirm that this applies to all the tissue types. 

  

5. INITIAL CHRACTERIZATION OF THE NOVEL HUMAN GENE, MKS1 

The MKS1 represented a novel human gene with unidentified biological function. It 

contains an open reading frame (DQ185029: bp 76-1755, full length cDNA 2.3 kb) 

for a 559 aa polypeptide containing a conserved B9 domain (pfam07162.1). There 

are two other human proteins containing the conserved B9 domain. One is encoded 

by the EPBB9 (AB030506) gene on 17p and one by the LOC80776 (BC004157) 

sequence on 19q. However, the biological and molecular properties of the 

corresponding polypeptides are so far poorly understood.  All the three human 

segments that are coding peptides with B9 domains can be found from the list of the 

human orthologs for genes coding peptides in the flagellar (cilia in human) basal 

body proteome (Li et al., 2004). This would propose a role of the less characterized  

B9 protein domain in the human ciliary basal body proteome.  
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5.1 Mks1 gene expression in mouse embryo 

The mouse homologue of MKS1, the Mks1 gene locates in mouse syntenic MKS1 

locus on chromosome 11qC. This particular DNA region is well conserved between 

man and mouse both in gene content and order. We confirmed the structure of the 

previously unidentified mouse Mks1 gene (DQ177342) by sequencing the cDNA 

derived from mouse fibroblast cell line. Similarly to the human gene, the mouse 

gene was found to be composed of 18 exons. Mouse and human coding regions are 

86- 88% similar at the nucleotide level and 89% at the amino acid level.  

In situ hybridization detected ubiquitous Mks1 expression in mouse embryonic 

tissues at embryonic day 15.5. The prominent expression was detected in all the 

tissues which malformations are characteristic to MKS (Fig. 7). Intriguingly the 

strongest staining can be seen in the esophageal tract and in bronchioles of the lungs. 

 
 

Figure 7. In situ hybridization expression profile of Mks1 in mouse embryo. Sagittal 
sections of the whole embryo at embryonic day (E) 15.5 with antisense (a) and sense 



 80 

(b) RNA probes. The expression of Mks1 is ubiquitous.  The expression is 
prominent in all the tissues which malformations characterize the disease phenotype: 
brain, kidney, liver and cartilage tissue of developing bone. A strong signal is 
detected also in the lungs. Higher magnification figures show expression in 
epithelial cells of the bronchiolus (arrows) and the staining is also prominent in the 
esophageal epithelium (arrow) (c); Front digits. Strong expression is seen in the 
cartilage tissue of the developing digits (d); Selected brain areas. Chp, choroid 
plexus. Mo, medulla oblongata. (e) Prominent signal is also seen from the neopallial 
cortex (arrow) (f); Cortical region of the kidney. Arrow is pointing the position of 
vertebra (g); Liver (h). Original magnifications: (a)-(b) 1x, (c)-(h) 20x. 
 

5.2 MKS1 is conserved among species 

Comparison of the MKS1 sequence across the species reveals high conservation (Fig. 

8). The MKS1 polypeptide identifies in the reciprocal blastp search only one result in 

C. elegans proteome identifying the xbx-7 gene (R148.1) that contains the X-box 

promoter element. This element is regulated by the transcription factor daf-19, which 

is a member of the RFX protein family and known to be required for cilia formation in 

C. elegans (Swoboda et al., 2000; Efimenko et al., 2005). Cilia and flagella are 

essentially identical organelles and highly conserved among species. A recent study 

used comparative genomics of human (having cilia), Chlamydomonas (having 

flagella) and Arabidopsis (lacking both) to identify genes specific for ciliary proteins 

and proposed that the MKS1 sequence would encode a polypeptide that is conserved in 

the flagellar (cilia in human) and basal body proteome (flagellar apparatus basal body 

proteome, FABB proteome) (Li et al., 2004; Keller et al., 2005). More specifically, the 

Chlamydomonas ortholog of the MKS1 gene has been suggested to encode a core 

structural component of the centriole (Keller et al., 2005). Two other Chlamydomonas 

orthologs in human are suggested to encode centriole components (POC, proteome of 

centriole). These genes are mutated in OFD1 (oral-facial-digital syndrome, MIM 

258860) and NPHP-4 (nephronophthisis-4, MIM 606966). The authors of the 

proteomic analysis of Chlamydomonas centrioles suggest that OFD1 and NPH-4 are 

basal body or centriole defects which lead to ciliary dysfunction (Keller et al., 2005). 

Both of these diseases share similar phenotypic features with MKS. 
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Figure 8. Comparison of human (DQ185029), mouse (CAI25723), zebrafish 
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(XP_707300), Drosophila (NP_572804) and C. elegans (NP_497669) MKS1 
orthologs using ClustalW1.8 (BCM) followed by Boxshade. The orthologs were 
identified in reciprocal blastp searches. Original publication III. 
 

Intriguingly, all three human genes (MKS1, LOC80776 and EPPB9) encoding 

polypeptides with B9 domains are listed in the FABB proteome genes and all worm 

orthologs (R148.1, Y38F2AL.2 and K03E6.4) for the human B9 proteins have X-

box promoter elements and are also both proposed to belong to the ciliary proteome 

based on comparative genomics and their exclusive expression in ciliated cells 

(Blacque et al., 2005).  

 

5.3 Putative cellular localization of MKS1  

Bioinformatics-based analysis (PSORTII) predicts cytoplasmic localization for the 

deduced MKS1 polypeptide. Our immunofluorescence analysis of transiently 

transfected HEK293 cells with the GFP-MKS1 agrees with the predicted 

cytoplasmic location of the peptide. To address the potential cilial localization of 

MKS1 polypeptide, we compared the in vitro expression pattern of the MKS1 with 

the immunostaining of polyglutamylated tubulin, a known molecular component of 

cilia (Bobinnec et al., 1998). Although there are problems associated with transient 

expression systems for intracellular localization studies, we could observe co-

localization of polyglutamylated tubulin and fluorescent MKS1 protein providing 

further support for the ciliopathy-character of MKS (data not shown).  

 

5.4 Discussion of the initial characterization of MKS1 

The identification of the MKS1 gene exposed a previously unknown human gene, 

which function is essential for the normal development of many tissue types and 

organs.  MKS1 is conserved among species which has greatly facilitated the initial 

characterization of its cellular role in ciliary and basal body proteome (FABB 

proteome) (Fig. 9).  
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Figure 9. The concept of the FABB proteome: 688 proteins in the flagellar 
apparatus basal body proteome. Venn diagram of the comparative approach to 
enrich for flagellar and basal body proteins. The proteome of Chlamydomonas 
(upper left) was compared to the proteome of human (upper right) by WU-BLASTP 
to find all the matches with a cutoff E value 10-10. These 4 348 matches were then 
compared to the proteome of Arabidopsis (below) by WU-BLASTP to remove all 
matches a cutoff E value of 10-18. The 688 proteins remaining are designated the 
FABB proteome (The middle overlapping section). Li et al., 2004.  The human 
MKS1 (FLJ20345) belongs to the FABB proteome.  
 

The 559 aa MKS1 peptide contains a conserved B9 domain, which cellular 

function is poorly understood. In the human proteome there are two other gene 

products with B9 domain, and moreover both of them belong to the suggested 

flagellar (ciliary) basal body proteome. In addition, the C.elegans´ orthologs for the 

human genes encoding B9 protein are known to have a binding site for the cilia 

specific transcription factor daf-19.  

We identified and characterized also the genomic structure of the well 

conserved mouse Mks1 gene, which is highly similar to human gene, and provides 

the possibility in future studies for targeted mutagenesis in this good model 

organism for mammalian organogenesis.  RNA in situ hybridization of Mks1 on the 
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mouse embryonic tissues (embryonic day 15.5) established the expression profile for 

the gene, which is congruent with the patients´ tissue phenotype.  Although the 

strong staining in the esophageal tract and lungs was highly unexpected. It is known 

that the epithels of the bronchioles in the lungs and esophageal tract are rich in cilia. 

Hypoplastic lungs are frequently reported in the patients, but this has generally been 

thought to be caused by the mechanical pressure of the vast kidneys and lack of 

amniotic fluid. Another important clinical observation is the increased risk of MKS 

patients for situs inversus totalis. It is known to be caused by dysfunction of the 

nodal cilia and thus supports the putative role of MKS1 in ciliogenesis. The cilia are 

known to be critical in signaling pathways which are involved in the early 

embryonic development. The genes encoding molecular components for the WNT 

and Hedgehog pathways were originally suggested to be excellent candidate genes 

for MKS. The mouse phenotypes with defects in Wnt signaling leads to 

hepatobiliary tract anomalies with cystic kidneys and respectively the defects in the 

Hh pathway causes CNS malformation seen together with dysmorphic limb buds 

(polydactyly). The current data demonstrate a functional structural role of the cilia in 

both signaling pathways critical for normal embryonic development, which agrees 

completely with the initial identification of the MKS1 peptide being a putative 

structural component of the cilia.  

 
6. LOCUS HETEROGENEITY IN FINNISH FAMILIES, MKS4 

We found the primary evidence of the further locus heterogeneity by analyzing a 

Finnish family with two MKS affected children and two healthy siblings. The 

affected siblings fulfilled the diagnostic criteria and no phenotypic differences were 

observed in the careful clinical examination to MKS patients linked to other MKS 

loci. The genealogical study revealed a consanguinity between the maternal 

grandmothers of the parents: six and seven generations back in the middle of the 18th 

century their ancestors lived in the same rural municipality and shared a rare family 

name, which is known to originate from the same household in 90 % of cases.  
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Originally in this family linkage was excluded to the three known MKS loci 

with distinct lack of cosegregation of the diseased haplotypes on MKS1, MKS2 and 

MKS3 loci.   

The genomescan with average 10 cM marker distance in our family showing 

exclusion to known MKS loci produced the maximum two point LOD scores (0.85) 

in six positions in the genome, which were all novel for MKS:   D9S1776 (9q33), 

D14S280 (14q32), D16S516 (16q23), D17S799 (17p12), D17S798 (17q11), 

D22S280 (22q12) and D22S283 (22q12). (Fig. 9a). Further the 10K SNP array 

(Affymetrix) revealed a multipoint LOD score of 3.6 (MAPMAKER/HOMOZ)  on 

9q33-34 agreeing with the maximum two point LOD score with STR marker 

D9S1776 (Fig. 9b). No other significant LOD scores were observed elsewhere in the 

genome in the analysis of the SNP genotypes. The 5 cM homozygous haplotype 

shared by the affected siblings on 9q was confirmed by genotyping a dense STR 

marker set covering this region with intermarker distance ≤ 500 kb.      
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Figure 9. a) Two point LOD scores (MLINK) in the family. The mean intermarker 
distance is 10 cM in the scan with multiallelic markers. The maximum LOD-score of 
0.85 (p<0.02) was obtained for six marker loci. None of them overlap any of the 
three previously established MKS loci. The chromosome 17q maximum LOD-score 
was obtained with marker D17S798 (17q11) that is distinct to MKS1 locus on 17q23. 
b) The multipoint LOD scores on chromosome 9q32-33.1 (HOMOZ/MAPMAKER). 
The microsatellite marker D9S1776 gets assigned on this region. The region of 
shared homozygosity in the MKS affected fetuses is flanked by the SNP markers: 
SNP_A-1508357-SNP_A-1510335 (positions on chromosome 9: 113527724-
118614930; USCS, May 2004).  We confirmed the shared homozygosity on this 
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chromosomal region by genotyping eight additional multiallelic markers (STR) with 
intermarker distance of 500 kb. Original publication IV. 
 

6.1 Novel locus on 9q 

The observed putative shared homozygosity by the affected fetuses with the 9q32-

33.1 SNP genotypes (MAPMAKER/HOMOZ) was confirmed by genotyping eight 

regional multiallelic markers. The longest region of shared homozygosity can be 

restricted between markers D9S1824 and SNP_A-1510335, which demarcate a 4.6 

Mb region on the basepair positions 113 971 790-118 614 930 (UCSC, May 2004) 

(Fig. 10). 

 Interestingly the identified MKS4 locus overlaps a novel Bardet Biedl 

syndrome locus (BBS10), which has been mapped in a consanguineous Bedouin 

family. The BBS in this Bedouin family is associated to a missense mutation in the 

TRIM32 gene. This finding is supported with additional functional data in a zebrafish 

model (Chiang et al., personal communication and abstract: ASHG meeting 2005). 

This gene is also associated to the autosomal recessive limb girdle muscular 

dystrophy type 2H (LGMD2H) (MIM 254110).  

 

Figure 10. The physical map of the critical chromosomal region on MKS4 locus on 
9q32-33.1 (UCSC May 2004; Refseq genes). The sequencing of the circled genes 
TNC and TRIM32 in the patients did not detect any potential pathogenic sequence 
alteration in the coding regions.   
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6.1.1 Candidate gene analysis on MKS4 locus 

There are 17 regional candidates on 9q32-33.1.  The most prominent candidates are 

TNC and TRIM32 genes based on the functional information available. TNC gene is 

also a human ortholog for the FABB proteome similarly to the MKS1 gene. TRIM32 

is associated to Bardet Biedl syndrome (Chiang et al., personal communication, 

ASHG 2005).  

The direct sequencing of TNC and TRIM32 coding regions in the two MKS 

affected siblings did not detect any potentially pathogenic sequence alterations. TRIM32 

is a gene coded by an intron of ASTN2 gene (Fig. 10), which is positionally an excellent 

candidate for MKS4 as well. We are currently analyzing this transcript in patients. 

 

6.2 Discussion of the observed locus heterogeneity and the MKS4 locus 

MKS shares characteristic clinical features with other disorders which are known to be 

caused by ciliary defects. Typical for these disorders are locus heterogeneity and the 

autosomally recessive inheritance mode. An excellent example being Bardet Biedl 

syndrome (BBS), which can be caused by mutations in a minimum of ten genes.  

We identified the fourth MKS gene locus to chromosome 9q32-33.1 in an 

inbred Finnish family. It is not known yet if all the 14 Finnish families in which we 

have not been able to detect coding region mutations in MKS1 gene, would be linked 

to chromosome 9q. Unfortunately most of these families are small in size and have 

only one affected child. Our initial haplotype analyses with multiallelic marker set 

with intermarkers distance 0.5 kb  in these families do not support the idea of a 

common founder mutation on chromosome 9q (Kyttälä et al., unpublished data). 

However, if the mutation is very old it is probable in theory that the marker density 

is not sufficient.  The final disease gene identification will confirm this. 

The MKS4 locus might provide a genetic link to MKS and BBS since one of 

the BBS genes (BBS10, Chiang et al., 2005 ASHG personal communication) has 

been mapped to this particular region, which is at the moment under investigation in 

the MKS patients.  
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CONCLUDING REMARKS AND FUTURE PROSPECTS 
MKS1 is a novel human gene which mutations cause a severe multisymptomic 

embryonic developmental disorder, Meckel syndrome (MKS). The current data 

available from the conserved MKS1 orthologs as well as from other human diseases 

and animal models with ciliary defects all imply that MKS represents a novel 

ciliopathy. There are at least four genes which defects can cause MKS. The 

characterized human ciliopathies demonstrate locus heterogeneity suggesting that it 

is a typical feature for the disorders of ciliary origin. The same phenotype can be 

caused by defects in several molecular components implicated in the ciliogenesis 

and ciliary functions. To date there are four genetic loci identified in MKS and the 

future studies should demonstrate the true extent of the genetic heterogeneity. The 

identification of the disease genes and the extent of the locus heterogeneity will 

provide more accurate prenatal and preimplantation diagnosis for MKS families.  

MKS can not be cured, which makes the precise diagnosis important for the families 

with history of MKS. 

The existence of cilia had been almost ignored for decades, but during the past 

years the research on these cell organelles has shown their implications in many 

disease pathologies. MKS should serve as an excellent model to understand and 

study the role of ciliogenesis in the early embryonic development and provide 

information of its developmental role in very distinct type of tissues. The recent 

research data from Wnt and Hh signaling pathways have shown that they are both 

dependent on functional cilia, which would propose that the secondary effect in the 

cellular pathogenesis of MKS most likely leads to defects in these pathways.  

The loss of normal ciliary function in mammals is responsible for cystic and 

noncystic pathology in the kidney, liver, brain, and pancreas, as well as in severe 

developmental patterning abnormalities. However, the physiological role of cilia in 

most tissues remains obscure. The gene defects underlying in Bardet Biedl 

syndrome have proposed that ciliary functions may have roles also in more common 

human disorders such as hypertension, obesity and diabetes, thus making the 



 90 

research on basal body and cilia highly meaningful also in this aspect. The MKS1 

gene will most likely provide general information of the ciliary functions that can be 

also essential in understanding these common human conditions currently under 

growing interest of pharmaceutical research to provide more specific and efficient 

therapeutic medication for these epidemics in the modern world.  Therefore the main 

challenges in the future functional studies will be to provide the information about 

the specific functional role of MKS1 and the other MKS gene products in basal body 

and ciliary proteome.  They are critical for the normal function of this cell organelle. 

The identification of the MKS1 gene proposes that the research on MKS genes 

should offer novel molecular level information for better understanding the 

physiological role of cilia in many tissue types in which it has not yet been 

recognized.  
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