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Science is a balance between faith and criticism

Too much faith
- you go wrong

Too much criticism
- you go nowhere 

The author

To Timo and my family
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ABBREVIATIONS

ACE  Angiotensin converting enzyme

AER  Albumin excretion rate 

AGE   Advanced glycation end-product

ApoE  Apolipoprotein E 

AUC  Area under curve

Clamp  Euglycemic hyperinsulinemic clamp technique 

CNF  Congenital nephrotic syndrome of the Finnish type 

DN  Diabetic nephropathy 

EM  Electron microscopy

ESRD  End-stage renal disease

GBM  Glomerular basement membrane 

GFR  Glomerular fi ltration rate

4-HNE  4-hydroxynonenal 

IVGTT   Intravenous glucose tolerance test 

LDL  Low density lipoprotein

Macro  Macroalbuminuric patients

MDA  Malonyldialdehyde

M/I  Whole body glucose uptake

Micro  Microalbuminuric patients

Normo  Normoalbuminuric patients

OGTT  Oral glucose tolerance test

PAN   Puromycin aminonucleoside nephrosis 

PKC  Protein kinase C 

RAGE  Receptor for advanced glycation end products

RAS  Renin-angiotensin system

ROS  Reactive oxygen species/radicals

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

STZ  Streptozotocin 

T1DM  Type 1 diabetes mellitus

T2DM   Type 2 diabetes mellitus

TGF-β  Transforming growth factor-β
VEGF  Vascular endothelial growth factor 
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1. ABSTRACT

The number of diabetic patients is an increasing 

worldwide health care problem. Approximately 

one third will eventually develop the diabetic 

kidney complication, diabetic nephropathy. 

Microalbuminuria is the most widely used mark-

er but at the time of diagnosis there are already 

advanced lesions in the kidney fi ltration appa-

ratus, the glomeruli. Nephrin is an important 

molecule in the glomeruli and it forms part of 

the fi ltration barrier, through which the primary 

urine is fi ltered. The expression of nephrin shows 

characteristic changes in diabetes and in other ac-

quired proteinuric diseases. 

Hypercholesterolemia is one of the known 

risk factors for kidney damage and a constant 

fi nding in kidney diseases. The present study 

investigated the causal relationship of hyperc-

holesterolemia and proteinuria, and the effect of 

hypercholesterolemia on glomerular damage and 

on nephrin expression in the mouse. The study 

found that hypercholesterolemia was a prerequi-

site for proteinuria and that nephrin expression 

was diminished both at the mRNA and protein 

levels. Increased lipid peroxidation was involved 

in the pathogenic process in this model.

In the development of diabetic nephropa-

thy, nephrin expression increases initially just 

before albuminuria starts and diminishes at the 

stage of overt albuminuria. In the present study, 

type 1 diabetic patients with or without neph-

ropathy were studied for the presence of urinary 

proteins detectable with nephrin antisera. First, 

urine from one third of the patients showed 

proteins that reacted with nephrin antisera. The 

presence of these protein fragments was not asso-

ciated with clinical variables. Second, the 75 kDa 

protein turned out to be the most specifi c for 

nephrin. In two separate type 1 diabetic patient 

cohorts the occurrence of this 75 kDa nephrin 

was signifi cantly lower in patients with more se-

vere nephropathy, and the occurrence was high-

est in the diabetic patients with no clinical signs 

of nephropathy. Of type 1 diabetic patients 73 

were followed for an average of 7.8 years for the 

progression of nephropathy. 20% of progressors 

and 42% of non-progressors showed 75 kDa ne-

phrin in urine at baseline (p=0.23). Further stud-

ies are needed to evaluate whether this protein 

may serve as a marker for progression of diabetic 

nephropathy. In this cohort, healthy controls 

were negative for the presence of urinary proteins 

reacting with nephrin antiserum.

Nondiabetic fi rst-degree relatives of T2DM 

patients have an almost threefold increased life-

time risk of diabetes compared to the background 

population. Type 2 diabetes is often preceded by 

a stage characterized by alterations in glucose me-

tabolism. First-degree relatives of type 2 diabetic 

patients are more insulin resistant, and they may 

also show other signs of the metabolic syndrome, 

such as central adiposity, hypertension, glucose 

intolerance, hypercoagulability, microalbuminu-

ria, and dyslipidemia. In the present study urine 

samples from the offspring of type 2 diabetic 

patients were investigated for the presence of 

proteins reacting with nephrin antiserum. Of the 

offspring, 27% showed a 100 kDa urinary pro-

tein in the urine, while healthy controls were all 

negative. The offspring were further divided into 

strongly positive, weakly positive and negative 

groups according to the presence of this protein. 

The strongly positive offspring were signifi cantly 
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more insulin resistant compared to the negative 

offspring and their nonoxidative glucose disposal 

was lower. It is possible that insulin resistance 

and diabetes cause changes in podocyte metabo-

lism and in nephrin expression, which is refl ected 

in urine.
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2.1. The kidney; fi ltration function and   
 structure

The main functions of the kidneys are secretion 

of metabolic end products, maintenance of cor-

rect fl uid, electrolyte, and acid-base balance of the 

body and participation in production of crucial 

substances like the vitamin D and erythropoietin 

(Guyton, 1991). One kidney (Figure 2.1) con-

tains an estimated 500 000 nephrons which are 

the basic functional units forming urine. A ne-

phron (Figure 2.2) is composed of a glomerulus 

(the capillary bundle), through which fl uid is fi l-

tered from blood and primary urine is produced, 

and a long tubule in which the primary urine is 

transformed into fi nal urine. The tubule can be 

divided anatomically and functionally into dis-

tinct parts with specifi c roles in water and elec-

trolyte balance, pH regulation, reabsorption of 

fi ltered substances and secretion of metabolic end 

products. From tubules urine fl ows through the 

collecting duct system to the renal pelvis, and fi -

nally via ureters to the bladder. The outer zone of 

the kidney, the cortex, contains all the glomeruli 

and the inner zone, the medulla, contains parts 

of the tubules and the fi nal parts of the collect-

ing ducts. Blood enters the glomerulus via the 

afferent arteriole and then leaves via the efferent 

arteriole, which directs the blood then through 

the peritubular capillary network surrounding 

the entire tubular system. The tubular epithelial 

cells are in addition to reabsorbing valuable sub-

stances from the tubular lumen also capable of 

actively secreting substances from the blood into 

the urine (O’Callaghan and Brenner, 2000). 

Figure 2.1 Figure 2.2

2. REVIEW OF THE LITERATURE 
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An estimated 180 liters of primary urine is 

fi ltered each day through the selectively perme-

able glomerular fi ltration barrier into the Bow-

man’s capsule (the urinary space) surrounding 

the glomerulus (Figure 2.3). The fi ltration bar-

rier itself comprises capillary endothelial cells, 

glomerular basement membrane (GBM) and 

visceral epithelial cells, called podocytes. The 

capillary endothelial cells have abundant 70-100 

nm openings (fenestrations), which are aligned 

with negatively charged glycoproteins and lipids 

(Tisher and Madsen, 1991). This unique po-

rosity allows free contact of components of the 

blood circulation with the underlying GBM, al-

though favoring fi ltration of cationic molecules. 

The negatively charged, 300 nm-thick, GBM is 

composed mainly of type IV collagen and lam-

inin, as well as heparan sulphate proteoglycans 

(agrin and perlecan), fi bronectin, and nidogen 

(Miner, 1999; Timpl, 1989). The podocytes are 

facing directly the urinary space. They have long 

projections from which the primary and second-

ary foot processes arise, and attach to the urinary 

side of the glomerular basement membrane. The 

foot processes from neighbouring podocytes in-

terdigitate and it is proposed that they form form 

35-45 nm zipper-like fi ltration slit diaphragms 

separating foot processes from each other (Rode-

wald and Karnovsky, 1974; Tryggvason, 1999). 

This arrangement allows free passage of small 

molecules through the slit while preventing leak-

age of large molecules into the primary urine. 

It has been suggested that the slits may be par-

tially elastic and that the slit width may increase 

with pulsating intraglomerular pressure (Kriz 

et al., 1996; Yu et al., 1997). Electron micro-

scopic (EM) studies have shown that the width 

of the slit might vary even between 20-50 nm 

(Ohno et al., 1992) although different fi xation 

methods may alter the dimensions measurable 

by EM (Furukawa et al., 1991). The fi ltration 

barrier functions both as a size-selective and a 

charge-selective sieve. The glomerulus also con-

tains mesangial cells, which provide a scaffold to 

support the capillary loops and have contractile 

and phagocytic properties (Hawkins et al., 1990; 

Pfeilschifter et al., 1993).

Figure 2.3
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2.2. Nephrin as an interacting component of  
 the podocyte proteome

2.2.1. Nephrin

The glomerular fi ltration barrier is affected in 

numerous primary and secondary kidney dis-

eases resulting in leakage of albumin and larger 

plasma proteins into the urine with generalized 

oedema and nephrotic syndrome as the fi nal con-

sequence. Congenital nephrotic syndrome of the 

Finnish type (CNF) is an autosomal, recessive 

disorder, characterized by massive proteinuria 

in utero and nephrosis at birth (Hallman et al., 

1956; Norio et al., 1964). This syndrome is seen 

in 1:10000 to 1:8000 newborns in Finland (Hol-

mberg et al., 1996) and serves as a model disease 

for podocyte-specifi c proteinuria. The typical 

clinical symptoms include severe hypoproteine-

mia due to massive loss of circulating proteins 

into the urine most likely due to a fi ltration slit 

defect. Other symptoms include edema, hyperli-

pidemia, and susceptibility for thromboembolic 

complications and for bacterial infections. The 

patients show overt proteinuria of intrauterine 

onset, which is associated with enlargement of 

the placenta and high alpha-fetoprotein levels in 

amnionic fl uid and in maternal serum (Holm-

berg et al., 1996). The characteristic pathologic 

fi ndings are fusion of the podocyte foot proc-

esses (foot process effacement), dilation of the 

proximal tubules, mesangial hypercellularity, and 

thickening of the GBM (Hallman et al., 1956; 

Huttunen et al., 1980; Ljungberg et al., 1993). 

Using positional cloning Kestilä et al. were 

able to identify the nephrin gene (NPHS1) mu-

tated in CNF (Kestila et al., 1998). This gene 

is located in the long arm of chromosome nine-

teen in locus 13.1 and contains 29 exons (Kestila 

et al., 1994; Mannikko et al., 1995). The gene 

product, nephrin, is a 1241-residue transmem-

brane protein belonging to the immunoglobulin 

super family (Figure 2.4 and 2.5). Two muta-

tions account for most Finnish patients and 

lead to synthesis of a truncated form of nephrin; 

frameshift deletion in exon 2 (Finn major) and 

nonsense mutation in exon 26 (Finn minor). In 

other countries point mutations in the nephrin 

gene cause sporadic cases closely resembling 

CNF (Beltcheva et al., 2001; Lenkkeri et al., 

1999). Although CNF is a recessive disorder, 

fetal carriers of the nephrin mutation show fu-

sion of the podocyte foot processes, temporary 

proteinuria, and a false positive alpha-fetoprotein 

test (Patrakka et al., 2002a). Later on one func-

tional allele is enough and carriers show normal 

kidney function. Nephrin-defi cient mouse mod-

els strengthen the crucial role of nephrin in the 

glomerular fi ltration function by expressing heavy 

proteinuria (Putaala et al., 2001) (Hamano et al., 

2002; Rantanen et al., 2002). Interestingly, one 

third of the foot processes were fused in electron 

micrographs and there was over 60% decrease 

of nephrin-specifi c mRNA level in glomeruli of 

asymptomatic heterozygous nephrin-defi cient 

mice (Rantanen et al., 2002). 
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Nephrin is expressed in the islets of Lang-

erhans in the pancreas (Palmen et al., 2001; 

Putaala et al., 2001). Positive protein staining has 

been found in the pancreatic beta cells (Palmen 

et al., 2001), and recently in islet microendothe-

lium (Zanone et al., 2005). The exact function 

of pancreatic nephrin is still not known, but it 

may serve as a structural protein in islet micro-

endothelium (Zanone et al., 2005). Moreover, 

controversial data on whether nephrin is truly 

expressed in the pancreas do exist suggesting 

that nephrin has not major signifi cance outside 

the kidney (Kuusniemi et al., 2004). Nephrin is 

expressed also in distinct locations in the mouse 

brain during brain development (Putaala et al., 

2001), in the Sertoli cells of mouse testis (Liu et 

al., 2001), and in rat spleen (Ahola et al., 1999). 

In the kidney nephrin is specifi cally located at 

the slit diaphragm (Holthofer et al., 1999; Ruot-

salainen et al., 1999) and its strands contribute to 

the protein scaffold of the fi ltration slit as seen in 

electron tomography (Wartiovaara et al., 2004). 

Spliced nephrin (nephrin α) has been found at 

the mRNA level in both the rat and human kid-

ney (Ahola et al., 1999; Holthofer et al., 1999; 

Luimula et al., 2000a) as well as in the pancreas 

(Palmen et al., 2001). Nephrin α lacks the whole 

amino acid sequence spanning the transmem-

brane domain encoded by exon 24 in the human 

and thus could represent a soluble form of the 

protein. The eight extracellular Ig-like domains of 

nephrin are of type C2 that is typically found in 

proteins participating in cell-cell (Brummendorf 

and Rathjen, 1995; Chothia and Jones, 1997) 

or cell-matrix interactions (Fahrig et al., 1987). 

Nephrin has three free cysteine residues which 

are suggested to form disulfi de bridges between 

different nephrin molecules so that homophilic 

interactions between different nephrin molecules 

over the slit are possible (Kestila et al., 1998; Try-

ggvason, 1999). Nephrin was shown to form a 

homophilic interaction with nephrin and a het-

erophilic interaction with NEPH1 (Gerke et al., 

2003) (Barletta et al., 2003; Liu et al., 2003). 

The homophilic interaction of extracellular ne-

phrin was of high affi nity and was promoted by 

calcium ions (Khoshnoodi et al., 2003). The 90-

kDa NEPH1 is a protein with weak homology 

Figure 2.4
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and structural similarity to nephrin. The lack of 

NEPH1 leads to prenatal lethality with proteinu-

ria in Neph1 -/- mice (Donoviel et al., 2001). The 

calculated molecular mass of nephrin is 132.5 

kDa, while in sodium dodecyl sulfate-polyacry-

lamide gel electrophoresis (SDS-PAGE) nephrin 

runs as a 185-200 kDa protein doublet suggest-

ing posttranslational modifi cations (Ahola et al., 

1999; Topham et al., 1999). In the extracellular 

part of human nephrin there are ten potential 

sites for N-glycosylation (Kestila et al., 1998) 

and it has been shown that mouse nephrin is N-

glycosylated (Holzman et al., 1999) and that N-

glycosylation of nephrin is critical for its proper 

folding and localization in the plasma membrane 

(Yan et al., 2002). Glycosylation is needed also 

for proper interaction with NEPH1 (Gerke et 

al., 2003). Nephrin carries seven potential at-

tachment sites for heparan sulfate (Kestila et al., 

1998).

Nephrin also contains a fi bronectin type 

III-like domain in the extracellular part near the 

transmembrane region and an intracellular C-

terminal part. Nephrin has signaling functions 

enabled by the nine tyrosines of the intracellular 

domain, some of which are phosphorylated dur-

ing ligand binding as well as endogenously (Ver-

ma et al., 2003). Oligomerized nephrin is associ-

ated with signalling microdomains, lipid rafts, in 

a cholesterol dependent manner (Simons et al., 

2001). In vivo injection of antibodies against po-

docyte-specifi c 9-O-acetylated GD3 ganglioside, 

which is an important component of lipid rafts, 

leads to morphological changes of the fi ltration 

slits resembling foot process effacement. In this 

model nephrin dislocated to the apical pole of 

the narrowed fi ltration slits and was tyrosine 

phosphorylated (Simons et al., 2001). Further-

more, clustering of extracellular domain of ne-

phrin by nephrin antibodies in a cell line leads 

to disruption of cell-cell contacts (Khoshnoodi 

et al., 2003) and to phosphorylation of nephrin 

by Src family kinases (Lahdenperä et al., 2003). 

Similarly intravenous injection of the nephrin-

specifi c monoclonal antibody 5-1-6 induced 

massive proteinuria in rats (Orikasa et al., 1988) 

and decreased nephrin expression (Kawachi et 

al., 2000). Phosphorylated nephrin is able to 

bind p85 regulatory subunit of phosphoinositide 

3-OH kinase (PI3K) and activate by phosphor-

ylation the PI3K target protein, serine-threonine 

kinase AKT (Huber et al., 2003a). This leads to 

phosphorylation of downstream molecules, one 

of which is the proapoptotic Bcl-2 family mem-

ber Bad. Phosphorylation of Bad prevents detach-

ment-induced apoptosis and safeguards podocyte 

viability (Huber et al., 2003a). However, Foster 

et al. suggested that vascular endothelial growth 

factor (VEGF) treatment caused nephrin phos-

phorylation together with decrease in AKT-sig-

naling (Foster et al., 2005). Glycoprotein VEGF 

is a key survival factor for vascular endothelium 

(Ferrara, 2002). Down-regulation or neutraliza-

tion of circulating VEGF caused proteinuria with 

endothelial cell detachment, podocyte changes, 

and reduction in nephrin expression (Sugimoto 

et al., 2003). The infl ammatory cytokines inter-

leukin-1β and tumor necrosis factor-α are able 

to up-regulate nephrin expression in podocytes 

in vitro and this phenomenon involves activity 

of an unknown protein kinase (Huwiler et al., 

2003). The protein kinase C (PKC) pathway 

may be involved in nephrin signaling (Wang et 

al., 2001b). 
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Figure 2.5
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2.2.2. Proteins of the slit diaphragm area 

CD2 adaptor protein (CD2AP), initially found 

to be associated with the T-lymphocyte molecule 

CD2, is also present at the slit membrane level in 

podocytes and is linked to the intracellular part 

of nephrin via its C-terminal domain (Palmen 

et al., 2002; Shih et al., 2001). The N-terminal 

part of CD2AP binds to p85 and potentiates the 

nephrin-induced AKT activation (Huber et al., 

2003a). CD2AP-knockout mice have defects in 

the foot processes of podocytes and hyperplasia 

of the mesangial cells with extracellular matrix 

depositions (Shih et al., 1999). Although CD2AP 

knockout mice develop nephrotic syndrome sim-

ilar to CNF, the symptoms develop later, at the 

age of 3-4 weeks. This suggests that the function 

of CD2AP might be compensated for at some 

stage by other proteins (Shih et al., 1999). Kid-

neys from CD2AP -/- mice initially exhibited 

normal nephrin localization, but with aging the 

foot processes became effaced and the nephrin 

disappeared (Li et al., 2000). CD2AP is con-

nected directly or indirectly to F-actin (Welsch 

et al., 2001), and nephrin in the slits is linked to 

the actin cytoskeleton, possibly through CD2AP 

or other intermediary linker proteins (Yuan et al., 

2002a). These may include densin (Ahola et al., 

2003), IQGAP1 (Liu et al., 2005), p120 catenin, 

P-cadherin, and CASK (Lehtonen et al., 2004), 

which have very recently been found being di-

rectly or indirectly linked to nephrin (Figure 

2.5). 

Another important protein at the slit area 

is podocin, which is mutated in autosomal reces-

sive familiar focal segmental glomerulosclerosis, 

sporadic focal segmental glomerulosclerosis, and 

in some CNF patients in whom nephrin muta-

tions are not found (Boute et al., 2000; Karle et 

al., 2002; Koziell et al., 2002; Roselli et al., 2002; 

Tsukaguchi et al., 2000). Podocin is a hairpin-

like integral membrane protein belonging to the 

stomatin family and it is also accumulated in an 

oligomerized form in lipid rafts, localizing at 

the insertion site of the slit diaphragm (Roselli 

et al., 2002; Schwarz et al., 2001). Pull-down 

experiments and co-immunoprecipitations have 

revealed that podocin associates via its C-termi-

nal domain with CD2AP and nephrin, and may 

serve as a scaffolding protein in the organization 

of the slit diaphragm complex (Huber et al., 2001; 

Schwarz et al., 2001). Podocin also increased 

the ability of nephrin to activate mitogen-acti-

vated protein kinase cascades in the embryonic 

kidney 293T cell system by recruiting nephrin 

into lipid rafts (Huber et al., 2001; Huber et al., 

2003b). Mutations in C-terminal podocin causes 

retention of both podocin and nephrin in endo-

plasmic reticulum showing no staining of these 

proteins at the plasma membrane in transfected 

human embryonic kidney cells (Nishibori et al., 

2004). Depending on the mutation podocin ei-

ther does not leave the endoplasmic reticulum or 

localize in lipid rafts on the plasma membrane 

and is consequently unable to potentiate nephrin 

signaling (Huber et al., 2003b). Knocking down 

podocin expression in a podocyte cell line by 

mRNA interference decreased nephrin expres-

sion by 70% and altered nephrin localization 

from the membrane surface to the nuclear area 

(Fan et al., 2004). Podocin-defi cient mice also 

show antenatal proteinuria, fusion of foot proc-

esses and massive mesangial sclerosis with vastly 

reduced nephrin expression (Roselli et al., 2004). 

Podocin interacts with the C-terminal domain of 

NEPH1 and with two other NEPH-family pro-

teins, NEPH2 and NEPH3, which are similar to 

nephrin (Ihalmo et al., 2003; Sellin et al., 2003). 
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Defective action of podocin might have a role in 

the development of secondary focal segmental 

glomerulosclerosis observed in various diseases 

such as diabetic nephropathy, HIV nephropathy 

and morbid obesity. 

The membrane protein ZO-1, namely its 

isoform lacking motif-alpha, is expressed in the 

cytoplasmic surface of the slit (Kurihara et al., 

1992a; Kurihara et al., 1992b). ZO-1 is not at-

tached to nephrin and the same holds true for 

the transmembrane protein occludin (Holthofer 

et al., 1999). ZO-1 has a different staining pat-

tern compared to nephrin (Kawachi et al., 2000) 

and it is normally found at the cytosolic side of 

tight junctions where it interacts with occludin 

and with the actin cytoskeleton (Balda and Mat-

ter, 2000). Early in podocyte development tight 

junctions are found in place of the slit membranes 

and therefore it was suggested that the mature slit 

membrane is actually a modifi ed tight junction 

(Schnabel et al., 1990). Supporting this view, Ka-

wachi et al. reported down-regulation of ZO-1 in 

proteinuric diseases (Kawachi et al., 1997). Other 

studies, however, failed to identify any changes in 

ZO-1 expression during proteinuria (Bains et al., 

1997; Rantanen et al., 2002; Yuan et al., 2002b). 

In addition, other proteins characteristic for tight 

junctions have not been found from the slit area. 

Instead, members of adherens junctions, α-, β-, 

and γ-catenin as well as P-cadherin that can also 

associate with ZO-1 were observed (Reiser et al., 

2000). Since P-cadherin defi cient mice and hu-

mans with a mutation in P-cadherin gene show 

no kidney phenotype it may not have signifi -

cance for the glomerular fi ltration (Dahl et al., 

2002; Radice et al., 1997; Sprecher et al., 2001). 

Another member of the cadherin super family, 

FAT, has been localized to the slit area co-localiz-

ing with ZO-1 and nephrin but its function still 

remains unknown (Inoue et al., 2001).

Mutations in a cytosolic actin-fi lament 

cross-linking protein, α-actinin-4, have also been 

shown to cause another form of proteinuric dis-

ease, the autosomal dominant familial focal seg-

mental glomerulosclerosis (Kaplan et al., 2000). 

Most likely this protein is one of the links for 

the slit diaphragm proteins to the actin cytoskel-

eton for fi nal functional effects: changing rapidly 

the shape of podocytes from the well organized 

orderly foot processes to the fl attening found in 

proteinuric states. An intact submembranous 

actin cytoskeleton appears to be indispensable 

for maintaining podocyte architecture. Endlich 

et al. have shown that mechanical stress induces 

reorganization of the actin cytoskeleton in po-

docytes by a calcium and Rho kinase dependent 

mechanism (Endlich et al., 2001). Saleem et al. 

also showed that nephrin and podocin expression 

was altered in a podocyte cell line after treatment 

with cytochalasin D, an agent known to de-po-

lymerize actin stress fi bers (Saleem et al., 2002).

2.2.3. Apical side of podocytes 

The apical membrane of foot processes consti-

tutes another functional unit. Podocalyxin is a 

highly glycosylated integral membrane protein 

which is thought to contribute to the mainte-

nance of the negative charge in the podocyte 

plasma membrane and thus keep the fi ltration 

pores open (Dekan et al., 1991; Kerjaschki et 

al., 1984). It is mainly distributed on the apical 

surface of glomerular podocytes and contributes 

directly to the stability of foot processes, be-

cause a genetic knockout resulted in immature 

glomeruli with fl attened embryonic podocytes 

(Doyonnas et al., 2001). GLEPP1 is a receptor 
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tyrosine phosphatase present also on the apical 

side of the podocytes and it is thought to regu-

late the glomerular fi ltration through an effect on 

podocyte structure and function (Thomas et al., 

1994; Wharram et al., 2000). GLEPP1 knock-

out mice showed reduced nephrin expression, re-

duced glomerular fi ltration rate, fewer foot proc-

esses, but no detectable increase in proteinuria 

(Wharram et al., 2000).

2.2.4. Basal side of podocytes 

The sole of the foot process is linked to the 

GBM by dystroglycan (Regele et al., 2000), 

α3β1 integrin (Kerjaschki et al., 1989), podo-

planin (Breiteneder-Geleff et al., 1997; Matsui 

et al., 1998), and megalin (Kerjaschki and Far-

quhar, 1983). α3β1 integrin is important for 

podocyte maturation (Kreidberg et al., 1996) 

but in glomerular diseases it comprises a static 

bond between podocytes and the GBM, and 

its expression is relatively stable. α3β1 integrin 

associates with the podocyte actin cytoskeleton 

through paxillin, talin, vinculin or α-actinin 

(Drenckhahn and Franke, 1988; Otey et al., 

1993). Dystroglycan complex associates with the 

actin cytoskeleton through utrophin (Raats et al., 

2000). Both the dystroglycan complex and α3β1 

integrin attach to laminin and agrin of the GBM 

(Kerjaschki, 2001). Megalin belongs to the LDL-

receptor family and serves as an endocytic recep-

tor for lipoproteins (Kerjaschki et al., 1997). 

2.3. Puromycin aminonucleoside nephrosis 

The aminonucleoside of puromycin has been 

used to induce experimental proteinuric neph-

ropathy. PAN has shown to be morphologically 

and functionally a useful experimental model for 

human minimal change nephropathy (Vernier et 

al., 1959). Minimal change nephropathy mani-

fests usually at childhood and its typical features 

are proteinuria, hypoalbuminemia, hyperlipi-

demia, and occasionally haematuria (Glassock et 

al., 1991). Pathologic lesions include thickening 

of the capillary wall, subepithelial and intramem-

branous immune complex deposits together with 

disruption of podocyte foot process structure 

(Glassock et al., 1991). PAN may be induced 

with a single puromycin injection leading to pro-

teinuria starting around day 3, peaking at day 10, 

and resolving by day 28 after injection (Ryan and 

Karnovsky, 1975). Injection of puromycin ami-

nonucleoside leads to proteinuria in rats, which 

is characterized by detachment of the podocyte 

foot processes and GBM alterations (Caulfi eld et 

al., 1976). The number of foot processes is re-

duced, the foot processes are fused and the slit 

diaphragms are altered, even lost and replaced by 

occluding-type junctions (Caulfi eld et al., 1976; 

Kurihara et al., 1992b). The tubuli show dilation 

(Ryan and Karnovsky, 1975; Vernier et al., 1959) 

and fi nally the ruptured epithelium detaches 

from the GBM and allows direct contact of the 

GBM with the urinary space (Messina et al., 

1987). Mice are generally resistant to the effects 

of puromycin, but proteinuria can be induced in 

mice with adriamycin possibly by a toxic effect 

mediated by the immune system (Amore et al., 

1996; Chen et al., 1995). In some mouse strains 

repeated puromycin injections produce proteinu-

ria (Pierce and Nakane, 1969). Both adriamycin 

and puromycin nephrosis mimic closely human 

minimal change nephropathy, but these toxins 

act most likely at different levels fi nally exerting 

their effects on protein synthesis. Adriamycin 

acts at the DNA level while puromycin acts on 

ribosomes (Whiteside et al., 1989).
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Ahola et al. fi rst showed that nephrin mRNA 

expression was reduced already at day 3 after 

PAN induction (Ahola et al., 1999), thus before 

proteinuria appeared. Kawachi et al. found that 

nephrin mRNA expression was reduced already 

two hours after puromycin injection by 51.2% 

when proteinuria was not yet present (Kawachi 

et al., 2000). Nephrin expression still decreased 

to a level of 20% of normal at day 10, as shown 

both in mRNA and protein levels (Luimula et 

al., 2000b). The nephrin staining pattern was al-

tered from the basolateral area towards the more 

apical area in EM (Luimula et al., 2000b) and 

from a linear to a coarse granular appearance in 

immunofl uorescence (Kawachi et al., 2000). Ne-

phrin expression has also been found to be com-

parable to normal in areas where slits are well 

preserved, but lower in areas of foot process ef-

facement (Lee et al., 2004). Luimula et al. found 

urinary nephrin of molecular size of 166 kDa 

in the most proteinuric urine samples (Luimula 

et al., 2000a). Podocin was down-regulated in 

PAN similar to nephrin (Luimula et al., 2002) 

although differing results also exist suggesting 

that pathogenic factors may cause disconnection 

of nephrin and podocin and result in an altered 

expression pattern (Kawachi et al., 2003). Saleem 

et al. reported that puromycin caused similar 

granular redistribution of both nephrin and actin 

in a podocyte cell line suggesting disruption of 

the actin-linked protein complex (Saleem et al., 

2002). Expressional changes of other podocyte 

proteins in PAN are reviewed by Pavenstädt et al. 

(Pavenstadt et al., 2003). 

Podocytes are particularly susceptible to 

toxic injury by oxidants. Overproduction of reac-

tive oxygen species (ROS) through the xanthine 

oxidase pathway has been reported in PAN (Dia-

mond et al., 1986). In vitro studies have shown 

that puromycin exerts an impact on rat glomeru-

lar epithelial cells by generation of active oxygen 

(Kawaguchi et al., 1992; Ricardo et al., 1994). 

Several studies have shown that antioxidants re-

duce proteinuria in PAN and inhibit foot process 

effacement (Diamond et al., 1986; Ricardo et al., 

1994; Thakur et al., 1988). The major pheno-

types in antioxidant-defective mouse overpro-

ducing ROS are podocyte injury and glomerulo-

sclerosis (Binder et al., 1999). In PAN, podocyte 

depletion and glomerulosclerosis have a direct 

relationship (Kim et al., 2001). Probucol, a mol-

ecule that prevents lipid peroxidation, normal-

izes nephrin expression and prevents proteinuria 

in PAN (Luimula et al., 2000b). Administration 

of retinoid acid (vitamin A) to PAN rats amel-

iorated proteinuria and induced nephrin expres-

sion, but the exact pathway of this phenomenon 

is not yet known (Suzuki et al., 2003). 

2.4. Apolipoprotein E 

ApoE is a 34 kDa serum protein that mediates 

extracellular cholesterol transport and regulates 

multiple metabolic pathways. It is involved in 

the pathogenesis of atherosclerosis and Alzhe-

imer’s disease (Mahley and Huang, 1999). ApoE 

is a constituent of very low density lipoprotein 

synthesized by the liver, of intestinally synthe-

sized chylomicrons, and of a subfraction of the 

high-density lipoproteins (Mahley, 1986). ApoE 

mediates high-affi nity binding of ApoE-con-

taining lipoprotein particles to the low density 

lipoprotein (LDL) receptor and is thus, among 

its other functions, responsible for the cellular 

uptake of these particles (Hui et al., 1981). The 

ApoE-knockout (ApoE-KO) mouse line was 

originally created using homologous recombina-

tion (Plump et al., 1992). These mice show high 
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cholesterol levels even when on low fat diet and 

have extensive atherosclerotic lesions at the age 

of ten weeks (Plump et al., 1992; Zhang et al., 

1992). Elevated levels of very low and interme-

diate density lipoproteins are mainly responsi-

ble for the hypercholesterolemia in this model 

(Plump et al., 1992). Although the ApoE and 

total cholesterol levels in mice and men are dif-

ferent, the mouse ApoE knockout model has 

provided an invaluable insight into the roles of 

lipids and disease.

ApoE plays a role in the pathogenesis and 

progression of a variety of renal diseases, as well 

as in their atherosclerotic complications (Libe-

ropoulos et al., 2004). Abnormal lipoprotein 

metabolism accelerates atherosclerosis and pre-

disposes to the development of global glomeru-

losclerosis in patients with renal disease (Keane et 

al., 1988). For example increased Lipoprotein(a) 

level may contribute to accelerated atheroscle-

rosis in ESRD patients (Milionis et al., 1999; 

Siamopoulos et al., 1995), whereas the ApoE 

polymorphism has been shown to infl uence the 

Lipoprotein(a) levels in nonuremic subjects (de 

Knijff et al., 1991). The polymorphisms of ApoE 

have been suggested to act as major determinants 

of plasma lipid levels of uremic patients (Libe-

ropoulos et al., 2004). Certain mutations of the 

ApoE gene are associated with the unique and 

rare disorder, the lipoprotein glomerulopathy, 

which is characterized by nephrotic-range pro-

teinuria without systemic manifestations (Saito et 

al., 2002). The histological features include pres-

ence of lipoprotein thrombi in capillary lumina 

of affected glomeruli, foam cells, vascular chang-

es, and segmental sclerosis with periglomerular 

fi brosis in advanced stages of the disease (Saito 

et al., 1999). In normal glomeruli mesangial cells 

are the major expressors of ApoE and it has been 

speculated that ApoE may act as an autocrine 

regulator of mesangial and glomerular functions 

(Liberopoulos et al., 2004).

2.5. Type 1 diabetes 

Finland has the world’s highest incidence for 

type 1 diabetes mellitus (T1DM) being approxi-

mately 50 new annual cases per 100 000 chil-

dren under the age of 15 years (Reunanen, 2004; 

Tuomilehto et al., 1999). The number of T1DM 

patients in Finland is now around 30 000 (Re-

unanen, 2004). The disease usually starts at an 

early age and is characterized by hyperglycemia 

caused by insulin defi ciency leading to symptoms 

like weight loss, thirst and polyuria. Insulin-pro-

ducing beta cells in the pancreas are slowly de-

stroyed by an autoimmune mechanism launched 

by (polygenic) genetic and environmental factors. 

The autoimmune pre-diabetic process is charac-

terized by T-cell infi ltrations around the islets 

of Langerhans and fi nally inside the islets (Bot-

tazzo et al., 1985; Gepts, 1965; Hanninen et al., 

1992; Itoh et al., 1993). The patients carry sev-

eral autoantibodies to beta cell autoantigens like 

glutamic acid decarboxylase (GAD65, GAD67), 

insulin and protein tyrosine phosphatase-related 

IA-2 molecule, and these antibodies are used to 

diagnose the pre-diabetic stage (Baekkeskov et 

al., 1990; Knip, 2002; Lan et al., 1996). HLA 

genotyping has been used also in evaluating 

subjects at risk for T1DM (Kupila et al., 2001). 

Although more than 90% of the patients with 

T1DM carry the predisposing HLA-DQ8 and/

or –DQ2 alleles, only a minority of the geneti-

cally susceptible individuals progress to clinical 

disease (Kimpimaki et al., 2001b). There is evi-

dence that environmental factors such as entero-

virus infections (Hiltunen et al., 1997; Hyoty et 
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al., 1995), short-term breastfeeding (Kimpimaki 

et al., 2001a), and early induction of cow’s milk-

based infant formulas (Vaarala et al., 1999) may 

predispose genetically susceptible children to 

T1DM. Several intervention studies aimed at the 

prevention of T1DM are underway. The disease 

was untreatable until the discovery of insulin by 

Banting and Best in 1922 but although insulin 

replacement therapies are nowadays very good 

they are not completely able to mimic the physi-

ological production of insulin.

2.6. Type 2 diabetes

The incidence of type 2 diabetes mellitus 

(T2DM) has increased during the last decades 

all over the world. The World Health Organi-

zation has estimated that there will be over 300 

million diabetic patients in the world by the year 

2025. In Finland there are now around 190 000 

T2DM patients and the estimated number will 

be around 400 000 by the year 2030 (Reunanen, 

2004). T2DM is a heterogeneous metabolic 

disorder characterized by defects both in insu-

lin secretion and in insulin action (DeFronzo, 

1988). T2DM can be present sub-clinically for 

many years (Harris et al., 1992) because symp-

toms of hyperglycemia manifest slowly and often 

the fi rst symptoms are secondary, like infections. 

For many T2DM patients, insulin resistance is 

marked and forms part of the metabolic syn-

drome, which also includes central adiposity, 

hypertension, glucose intolerance, hypercoagu-

lation tendency, microalbuminuria, and dysli-

pidemia (Alberti and Zimmet, 1998). Develop-

ment of T2DM is, to some extent, predictable. 

Family history of diabetes and obesity are potent 

risk factors amplifi ed by increasing age. In ad-

dition, both fasting hyperinsulinemia and fast-

ing plasma glucose concentration independently 

indicate an enhanced risk of developing the dis-

ease (Haffner et al., 1990; Haffner et al., 1992). 

Insulin resistance and diabetes are not equiva-

lent end points, and insulin resistance and beta 

cell dysfunction independently predict diabetes 

(Weyer et al., 2001). Several studies in different 

populations have identifi ed anthropometrical 

and metabolic characteristics that increase the 

likelihood that a person with initially normal 

glucose tolerance will progress to diabetes over a 

specifi c period of time (Hanley et al., 2003; Har-

ris et al., 1987; Zimmet and Whitehouse, 1978). 

Hanley et al. showed in a combined analysis of 

three prospective studies that the presence of one 

or more components of the metabolic syndrome, 

namely, hyperinsulinemia, dyslipidemia, hyper-

tension, and glucose intolerance, predicted the 

emergence of diabetes over 8 years of follow-up 

(Hanley et al., 2003).

Concordance rates for T2DM are high-

er in monozygotic twins who share 100% of 

their genes, than in dizygotic twins who share 

less genes (Barnett et al., 1981; Newman et al., 

1987). However, no consistent inheritance pat-

tern has emerged, with some studies suggesting 

a major gene effect while others are more in 

keeping with polygenic inheritance. Nondiabetic 

fi rst-degree relatives of T2DM patients have an 

almost threefold increased lifetime risk of diabe-

tes in comparison to the background population. 

Insulin resistance is an early metabolic feature 

of nondiabetic fi rst-degree relatives of T2DM 

patients (Eriksson et al., 1989) and also shows 

familial clustering in keeping with an underly-

ing genetic predisposition (Lillioja et al., 1987). 

Maturity-onset diabetes of the young (MODY), 

a comparatively rare type of diabetes, is a mono-

genic disease and inherited as autosomal domi-
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nant trait. MODY is characterized by beta cell 

dysfunction and young age at diagnosis, usually 

less than 25 years, leading to early-onset T2DM. 

There are at least six genes implicated in the 

pathogenesis of different forms of the disease 

(Frayling et al., 2001; Pearson et al., 2001). 

2.7. Diabetic nephropathy 

General pathologic complications caused by 

both T1DM and T2DM are usually divided 

into macrovascular and microvascular. The mi-

crovascular complications impair the function 

of small arteries partially by non-enzymatic gly-

cosylation and the most common target organs 

are the kidneys, the peripheral nerves, and the 

eyes. Approximately one third of T1DM patients 

and one fi fth of T2DM patients will eventually 

develop a diabetic kidney complication, dia-

betic nephropathy (DN). It is characterized by 

hypertension, persistent proteinuria, decline in 

renal function fi nally leading to renal failure and 

uremia. The fi rst clinical sign of nephropathy is 

microalbuminuria caused by leakage of albumin 

to urine through the impaired glomerular fi ltra-

tion barrier. This albumin is detected by routine 

laboratory methods such as radioimmunoassay. 

Microalbuminuria is defi ned as a 24-h urinary 

albumin excretion rate (AER) of 30–300 mg in 

two of three consecutive 24-h urine collections 

and macroalbuminuria as AER >300 mg/24 h. 

From spot urine sample microalbuminuria may 

be determined by normalizing the excretion of 

albumin to creatinine. Microalbuminuric cut-

off-points for albumin/creatinine ratios are 3.5 

mg/mmol for women and 2.5 mg/mmol for men 

(Viberti et al., 1994). 

The fi rst histopathologic lesions of DN 

include enlarged glomeruli (hypertrophy, hyper-

plasia and glomerulomegaly), which is associated 

with increased glomerular fi ltration rate (GFR) 

(Mauer et al., 1984). At the microalbuminu-

ric stage the glomerular basement membrane is 

thickened and there is mesangial matrix expan-

sion, which may be accompanied by mild mesang-

ial hypercellularity (Osterby et al., 1983). Overt 

glomerular matrix expansion (glomerulosclerosis) 

manifests as two basic patterns: diffuse glomeru-

losclerosis and nodular glomerulosclerosis. These 

two patterns often are present together in a bi-

opsy specimen (Jennette, 2004). The nodular le-

sions of diabetic glomerulosclerosis were fi rst de-

scribed by Kimmelstiel and Wilson and are thus 

called Kimmelstiel-Wilson nodules (Kimmelstiel 

and Wilson, 1936). The nodules are often focal 

and segmental, although sometimes biopsies may 

show diffuse global nodularity. Glomerular hy-

alinosis is a common feature of diabetic glomeru-

losclerosis. Diabetic glomerulosclerosis is found 

in both type 1 and type 2 diabetes. In the latter it 

is somewhat more heterogeneous in appearance, 

in part because of concurrent changes caused by 

hypertension and aging (Bertani et al., 1996; 

Gambara et al., 1993). Atherosclerosis typically 

accompanies diabetic glomerulosclerosis. The 

earliest tubular change is thickening of the tu-

bular basement membrane that is analogous to 

thickening of the GBM. With advancing disease, 

tubules become atrophic and the interstitium de-

velops fi brosis and chronic infl ammation. In EM 

the typical fi ndings are thickening of the GBM, 

mesangial matrix expansion and hyalinosis (Jen-

nette, 2004). 
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2.8. Factors affecting the pathogenesis of   
 diabetic nephropathy

The landmark study that established the value 

of intensive blood glucose control to prevent 

the microvascular complications of T1DM was 

the Diabetes Control and Complications study 

(Anonymous, 1993). A few years later the UK 

Prospective Diabetes Study (UKPDS) fulfi lled 

the same role for T2DM (Anonymous, 1998a, 

b). At the time of diagnosis of T1DM an in-

crease in AER can be observed, which may be-

come normal when glycaemic control improves 

(Mogensen, 1971). Also in non-diabetic subjects 

the prevalence of microalbuminuria increases 

with decreasing glucose tolerance (Collins et al., 

1989). There are at least four main hypotheses 

that are proposed to explain how hyperglycemia 

causes diabetic complications: increased ad-

vanced glycation end-product (AGE) formation, 

increased polyol pathway fl ux, activation of PKC 

isoforms, and increased hexosamine pathway 

fl ux (Brownlee, 2001). It appears that intracel-

lular hyperglycemia leads to formation of reac-

tive, intracellular dicarbonyls, which react with 

amino groups of intracellular and extracellular 

proteins to form AGEs (Brownlee, 2001). The 

AGEs alter the structure and function of the in-

tracellular proteins, and the extracellular matrix 

components modifi ed by AGE precursors have 

altered function leading to altered cell to cell in-

teraction. The plasma proteins modifi ed by AGE 

precursors bind to AGE receptors on various cell 

types and induce receptor-mediated production 

of ROS leading to pathologic changes in gene ex-

pression and to vascular damage. Chronic hyper-

glycemia causes an increased fl ux of glucose via 

the polyol pathway and leads to accumulation of 

intracellular sorbitol. This may increase osmotic 

stress, induce activation of PKC or increase the 

intracellular oxidative stress in the cells, but the 

effects may be species, site, and tissue dependent 

(Brownlee, 2001). In vivo studies of inhibition 

of the polyol pathway have yielded inconsist-

ent results. Activation of PKC isoforms by the 

lipid second messenger diacylglycerol (DAG) 

stimulates extracellular matrix production, ex-

pression of growth factors, and alters the func-

tion of vascular cells (Koya et al., 1997; Koya 

and King, 1998). Shunting of excess intracellu-

lar glucose into the hexosamine pathway might 

cause manifestation of diabetic complications 

possibly through transforming growth factor-β 

(TGF-β)-dependent increased mesangial matrix 

production (Kolm-Litty et al., 1998). Activation 

of the hexosamine pathway by hyperglycemia 

may result in alterations of gene expression and 

protein function. Recently, it was found that 

overproduction of superoxide by the mitochon-

drial electron-transport chain would activate all 

the four hyperglycemia-induced pathways and 

would thus be a common denominator for these 

four mechanisms (Du et al., 2000; Nishikawa et 

al., 2000).

Hypertension is a key player in the patho-

genesis of DN, because intraglomerular pressure 

can increase protein fi ltration and fi nally cause 

mesangial expansion (Hostetter et al., 1982). In-

creased blood pressure is one of the key symp-

toms of DN, but it has also been thought that it 

may be secondary to the condition. Studies have 

shown that blood pressure lowering drugs, like 

ACE inhibitors, are able to postpone the devel-

opment of DN in T1DM (Anonymous, 1996; 

Lewis et al., 1993; Mogensen et al., 1995). The 

same effect has been shown with angiotensin II 

type 1 receptor blockers on development of DN 

in T2DM patients (Brenner et al., 2001; Lewis 
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et al., 2001; Parving et al., 2001). Interestingly, 

in an experimental model AGE-RAGE-medi-

ated ROS generation activated TGF-β-Smad 

signaling and subsequently induced mesangial 

cell hypertrophy and fi bronectin synthesis by au-

tocrine angiotensin II production in mesangial 

cells (Fukami et al., 2004).

Hyperlipidemia is one of the typical features 

of DN (Groop et al., 1996) but whether hyper-

lipidemia causes renal injury is not known. Ab-

normalities in lipid metabolism have been found 

already in microalbuminuric diabetic patients 

(Jensen et al., 1988; Tarnow et al., 1996). In a 

rat nephrectomy model of kidney injury a lipid-

lowering agent clofi bric acid reduced proteinuria 

(Kasiske et al., 1988) while cholesterol-lowering 

drug, lovastatin, did the same in diabetic rats (In-

man et al., 1999). DN in T1DM has also been 

associated with genetic factors (Seaquist et al., 

1989), smoking (Muhlhauser et al., 1986), high 

protein intake (Pedrini et al., 1996), and male 

gender (Seliger et al., 2001).

2.9. Nephrin in diabetic nephropathy

Streptozotocin (STZ) injection into rats causes 

rapid destruction of insulin-producing pancreat-

ic beta cells leading to the phenotype of T1DM 

(Junod et al., 1967). Non-obese diabetic mice 

(NOD mice) spontaneously develop T1DM at 

the age of 3 to 6 months after T cell -mediated 

destruction of beta cells (Tisch et al., 1993). In 

these models it takes from four to eight weeks af-

ter the onset of diabetes to develop the fi rst signs 

of nephropathy, enlargement of the glomeruli 

and albuminuria, if the blood glucose levels are 

not controlled well enough with insulin (Doi et 

al., 1990; O’Donnell et al., 1988). Aaltonen et al. 

showed that glomerular nephrin expression was 

increased by 50% in the STZ rats 4 weeks after 

induction of diabetes and a two-fold increase was 

present in 3 weeks old NOD mice even thought 

these mice did not demonstrate diabetes at that 

stage yet (Aaltonen et al., 2001). Whole-sized 

nephrin was found in the urine of the STZ-rats 

from 4 to 6 weeks after induction. Bonnet at al 

used STZ in spontaneously hypertensive rats and 

at 32 weeks the animals showed advanced DN 

together with clear reduction in both glomerular 

nephrin mRNA and protein levels (Bonnet et al., 

2001). Very similar results have been observed 

in several other studies with an initial increase 

in nephrin expression after induction of diabe-

tes followed by a later decrease in advanced DN 

(Forbes, 2002). 

ACE inhibitors and angiotensin-receptor 

antagonists, which modulate the renin-angi-

otensin system (RAS), are known to reduce pro-

teinuria (Lewis et al., 1993; Lewis et al., 2001). 

It has now been shown in several studies that 

these agents are able to normalize the decreased 

nephrin expression in experimental models of 

diabetes both at the mRNA and protein levels 

(Bonnet et al., 2001; Kelly et al., 2002). In a sim-

ilar model the ACE inhibitor ramipril and an-

giotensin-receptor antagonist valsartan were able 

to normalize the structural alterations like podo-

cyte foot process broadening and thickening of 

the GBM (Mifsud et al., 2001). RAS modifying 

agents are also able to modify the specifi c ZO-1 

redistribution (Macconi et al., 2000). Podocytes 

express both type 1 and type 2 angiotensin II re-

ceptors and it has been shown that angiotensin II 

causes an increase in cyclic AMP and rearrange-

ment of the actin cytoskeleton in podocytes, 

which is normalized by blocking simultaneously 

both receptors (Sharma et al., 1998). Stimula-

tion of cultured podocytes with angiotensin II 
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or glycated albumin has been shown to cause a 

reduction in nephrin expression (Doublier et al., 

2003). This was mediated through RAGE for 

glycated albumin and through cytoskeletal rear-

rangement for angiotensin II (Doublier et al., 

2003). Controversial studies exist on treatment 

of diabetic rats with aminoguanidine, a blocker of 

AGE formation. One study showed no effect of 

aminoguanidine on nephrin expression in a STZ 

model, although it reduced proteinuria (Kelly et 

al., 2002), while another study showed normali-

zation of nephrin expression in a similar model 

and even an additive effect with the ACE inhibi-

tor, perindopril (Davis et al., 2004). Davis also 

showed that the vasopeptidase inhibitor, omap-

atrilat, was able to restore reduced nephrin ex-

pression in a similar model (Davis et al., 2003b). 

It is not surprising since vasopeptidase inhibitors 

simultaneously inhibit both ACE and neutral en-

dopeptidase, a zinc dependent metallopeptidase. 

This leads to decreased levels of vasoconstrictor 

effector molecules such as angiotensin II as well 

as an increase in the levels of vasodilatory agents 

such as atrial natriuretic peptide and bradykinin 

(Fournie-Zaluski et al., 1994). It seems that the 

changes in nephrin expression are not only due 

to a reduction in blood pressure, since calcium 

channel blockers that reduced blood pressure 

equally effectively compared to angiotensin-re-

ceptor antagonist valsartan in a STZ model, had 

no effect on decreased nephrin expression (Davis 

et al., 2003a). Blanco et al. showed in a Zucker 

rat model that mimics T2DM that the ACE in-

hibitor quinapril increased nephrin expression 

while the calcium channel blocker diltiazem 

did not when compared to untreated diabetic 

animals (Blanco et al., 2005). Unfortunately this 

study did not compare the results to nondiabetic 

animals, so whether nephrin expression is altered 

per se in T2DM experimental model compared 

to nondiabetic animals remains unknown.

Langham et al. investigated renal biopsies 

from T2DM patients with proteinuria who had 

been randomized to receive the ACE inhibitor 

perindopril or placebo for two years. Nephrin 

mRNA was reduced in diabetic patients com-

pared to healthy controls by 62% while the levels 

of perindopril treated patients were similar to the 

levels of the controls (Langham et al., 2002). Dou-

blier et al. found a reduction in nephrin protein 

levels both in T1DM and T2DM patients with 

nephrotic syndrome (Doublier et al., 2003). They 

found a profound reduction in nephrin staining 

already in patients with microalbuminuria and 

that the staining pattern was changed to granular 

from the normal linear. Koop et al. showed that 

nephrin protein expression was reduced in biop-

sies of DN patients, while podocin and podoca-

lyxin staining was comparable to that of normal 

controls (Koop et al., 2003). In this study they 

found inverse correlation between nephrin pro-

tein levels and mean width of the podocyte foot 

processes but no correlation between nephrin 

and serum creatinine. Toyoda et al. showed an 

inverse correlation between glomerular nephrin 

mRNA levels and proteinuria in T2DM patients 

with DN (Toyoda et al., 2004). Benigni et al. 

reported that in diabetic nephropathy of T2DM 

extracellular nephrin staining was reduced while 

staining with nephrin antibody against the intra-

cellular domain was normal suggesting a possible 

diabetes-associated nephrin splicing (Benigni et 

al., 2004). None of the human studies has as-

sessed nephrin expression in normoalbuminuric 

diabetic patients.
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Discovery of the pathogenic process of the CNF has provided us with a deeper understanding of the 

molecular structure of the glomerular fi ltration diaphragm and knowledge that nephrin is a key molecule 

in the fi ltration function. The aims of this thesis are the following:

1.  To study the role of nephrin and lipid peroxidation in glomerular damage in the novel 

 hypercholesterolemic PAN mouse model (I)

2. To study the presence of urinary proteins, detected with nephrin antisera, in the urine of type 1   

 diabetic patients with or without nephropathy (II)

3. To identify nephrin among the proteins found in the urine of type 1 diabetic patients (III)

4. To study whether the 75 kDa urinary nephrin can be used as a marker for progression of diabetic  

 nephropathy in type 1 diabetes (III)

5.  To study whether offspring of type 2 diabetic patients exhibit urinary proteins detectable with 

 nephrin antiserum and whether presence of these proteins associate with mediators of glucose 

 metabolism, especially with insulin resistance (IV)

3. AIMS OF THE PRESENT STUDY
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4.1. Tissues

Normal kidney tissue was obtained from De-

partment of Surgery (University of Helsinki, 

Finland) from cadaver kidneys taken for trans-

plantation but not grafted because of vascular 

anatomic abnormalities in accordance with the 

principles of the Declaration of Helsinki. Kidney 

cortex was stored at –70°C, and the tissue was 

used as such or further prepared for glomerular 

isolation by graded sieving method (Holthofer et 

al., 1994; Striker and Striker, 1985). Collected 

glomeruli were aliquoted and stored in –70°C 

for lysate preparation (Study IV, Research design 

and methods).

4. MATERIALS AND METHODS 

4.2. Animals

The ApoE knockout mice were housed in con-

trolled humidity and temperature in the animal 

facility of University of Tampere, Finland. The 

procedures were approved by the ethics commit-

tee of the University of Tampere. The mice were 

randomly assigned to two main dietary groups: 

apoE group-1 fed with normal mouse chow diet, 

and apoE group-2 fed with a high fat diet. The 

mice were further divided into four treatment 

subgroups: puromycin, puromycin + probucol, 

probucol and control as shown in Table 4.1 (See 

details in Study I, Methods). The PAN was in-

duced by a single 15 mg/100 g intraperitoneal 

injection of puromycin (Sigma Chemicals Co, St 

Louis, MO, USA) and the control group received 

an equal volume of 0.9% saline. Probucol (Sigma 

Chemicals) was given in the diet (2% wt/wt) and 

consumption was recorded daily.

Table 4.1. Experimental design of Study I

Treatment
High fat diet (ApoE group-2) N -10 days 0 days 3 days 8 days

PAN 3+3 U, PAN U, B, K

✝ (n=3)

U, B, K

✝ (n=3)
PAN+Pro 3+3 Pro U, PAN U, B, K

✝ (n=3)

U, B, K

✝ (n=3)
Pro 3+3 Pro U, saline U, B, K

✝ (n=3)

U, B, K

✝ (n=3)
Control 3+3 U, saline U, B, K

✝ (n=3)

U, B, K

✝ (n=3)

Treatment
Normal mouse diet (ApoE group-1) N -10 days 0 days 3 days 8 days

PAN 2 U, PAN U, B, K ✝

PAN+Pro 2 Pro U, PAN U, B, K ✝

Pro 2 Pro U, saline U, B, K ✝

Control 2 U, saline U, B, K ✝

PAN, aminonucleoside of puromycin; Pro, probucol; ✝, sacrifi ce; U, urine sample; B, blood sample; K, 

kidney sample
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4.3. Measurement of nephrin mRNA   
 expression

Cortical kidney RNA was isolated from the 

frozen mouse tissues using the single-step acid 

guanidium thiocyanate-phenol-chloroform pro-

cedure with Trizol® reagent (Life Technologies, 

Gibco BRL, Paisley, UK) according to manu-

facturer’s instructions. For removal of genomic 

DNA, the total RNA was incubated with Dnase 

I (Promega, Madison, WI, USA) together with 

Rnase inhibitor (Promega) for 30 min at 37°C. 

Using oligo dT15 primer (Roche Diagnostics 

GmbH, Mannheim, Germany) and Moloney-

Murine Leukemia Virus reverse transcriptase 

(Promega) RNA was transcribed into cDNA fol-

lowed by quantifi cation of nephrin expression by 

Taqman® Real-Time PCR ABI Prism® 7700 

Sequence Detector System (Perkin-Elmer Ap-

plied Biosystems, Norwalk, CT, USA). In this 

method, a probe (5’-ccctctctaaatgcacggccacca-3’) 

with a 5’-reporter dye FAM® (6-carboxy-fl uo-

rescein) and a 3’-quencher dye TAMRA (6-car-

boxy-tetramethylrhodamine), and a primer pair 

5’-atctccaagaccccaggtacaca-3’ (forward) and 

5’-agggtcagggcgctgat-3’ (reverse) were used for 

amplifi cation of mouse nephrin cDNA. Taq-

man Universal Master Mix was used in all PCR 

reactions. Finally, nephrin mRNA level of each 

mouse was compared to its respective GAPDH 

(glyceraldehydes-3-phosphate dehydrogenase; 

housekeeping gene) mRNA level. 

4.4. Type 1 diabetic patients and controls

The type 1 diabetic patients (n=159) of cross-sec-

tional cohort of Study II and Study III (Cohort 

I) were from the FinnDiane study (Department 

of Medicine, Division of Nephrology, Helsinki 

University Central Hospital and Folkhälsan Re-

search Centre, Biomedicum Helsinki, Finland). 

FinnDiane is an ongoing, multicenter, nation-

wide study that aims at characterizing 25% of 

the Finnish type 1 diabetic population. The type 

1 diabetic patients were divided into four groups 

according to AER-measurements: Normoalbu-

minuric (Normo in Study II, Normo-I in Study 

III, n=40), microalbuminuric (Micro, Micro-

I, n=41), macroalbuminuric (Macro, Macro-I, 

n=39) and new microalbuminuric (newMicro, 

newMicro-I, n=39) groups. The newMicro con-

sisted of patients previously normoalbuminuric, 

but the urine sample analyzed in the study was 

the fi rst showing microalbuminuric range AER. 

The Macro patients had recent onset (<2 years) 

of diabetic nephropathy. Healthy nondiabetic 

laboratory personnel (n=29) were used as control 

subjects. For detailed clinical characteristics of 

the diabetic study subjects and healthy controls 

see Study II; Table 1, and Research design and 

methods. 

The Study III follow-up patients (Cohort 

II) were recruited from the Outpatient Clinic 

of the Department of Ophthalmology, Helsinki 

University Central Hospital, during years 1980-

1981. The patients were re-examined 7.8 years 

later. Research design and methods are described 

in detail in Study III. Every patient gave a written 

informed consent, and the studies were approved 

by the local ethics committees.

4.5. Offspring of type 2 diabetic patients and  
 controls

For Study IV 128 healthy offspring of type 2 

diabetic patients and 9 control subjects were 

studied. The diabetic patients (probands) were 

randomly selected among type 2 diabetic pa-

tients living in the region of Kuopio University 

Hospital. Spouses of the probands had to have 

a normal oral glucose tolerance test (OGTT). 
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One to three offspring from each family were in-

cluded in metabolic studies (details in Study IV; 

Research design and methods) of which OGTT, 

intravenous glucose tolerance test (IVGTT), 

and euglycemic hyperinsulinemic clamp (clamp) 

techniques are explained briefl y below. All study 

subjects gave written informed consent and the 

study was approved by the Ethics Committee of 

the University of Kuopio.

Table 4.2. Summary of subjects and urine samples in Studies II, III and IV

N Urine sample Classifi cation Used in

Type 1 diabetic patients, Cohort I 159 24-h urine AER II, III

Type 1 diabetic patients, 7.8-years follow up, 

Cohort II

73 24-h urine AER III

Offspring of type 2 diabetic patients 128 Timed overnight urine AER IV

Healthy control subjects, uncharacterized 29 Morning urine Alb/Crea II

Healthy control subjects, characterized by 

metabolic studies

9 Timed overnight urine AER IV

4.6. Oral glucose tolerance test (OGTT), 
 intravenous glucose tolerance test 
 (IVGTT) and euglycemic    
 hyperinsulinemic clamp  (clamp)

Glucose tolerance tests are used to determine the 

ability of an individual to maintain homeostasis 

of blood glucose. It includes measuring blood 

glucose levels in the fasting state and at prescribed 

intervals before and after oral glucose intake 

(OGTT) or intravenous infusion (intravenous 

glucose tolerance test, IVGTT). OGTT is widely 

used for detecting impaired glucose tolerance, i.e. 

a state with higher than normal blood glucose, 

but not high enough to establish a diagnosis of 

diabetes. After a 12-hours fast a 75 g glucose dose 

is given orally and samples for blood glucose and 

plasma insulin measurements are drawn at –10, 

0, 30, 60 and 120 min. For determining the fi rst-

phase insulin secretion capacity after a 12-hours 

fast an IVGTT is performed. In this method a 

bolus of glucose (300 mg/kg as a 50% solution) 

is given within 30 sec into the antecubital vein. 

Blood glucose and plasma insulin samples (arte-

rialized venous blood) are drawn at -5, 0, 2, 4, 6, 

8, 10, 20, 30, 40, 50 and 60 min. 

Insulin sensitivity can be evaluated with 

the euglycemic hyperinsulinemic clamp tech-

nique (clamp) using insulin infusion rate of 240 

pmol/min/m2 body surface area. Blood glucose 

for the next 120 min is maintained at 5.0 mmol/l 

by infusing 20% glucose at varying rates accord-

ing to blood glucose measurements performed at 

5-min intervals. Indirect calorimetry before the 

clamp and during the last 20 min of the clamp 

can be coupled to the technique using a compu-

terized fl ow-through canopy gas analyzer system 

(DELTATRAC®, TM Datex, Helsinki, Finland) 

(Vauhkonen et al., 1998). Mean values of the data 

during the last 20 min of the clamp are used to 

calculate the M-value (whole body glucose uptake; 

glucose infusion µmol/kg lean body mass/min), 

glucose oxidation and lipid oxidation. The rates 

of nonoxidative glucose disposal during the clamp 

may be estimated by subtracting the rates of glu-

cose oxidation from the glucose infusion rate. 
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4.7. Antibodies  used

Table 4.3.

Primary antibodies

Name Antigen Source Dilution or 

concentration

Used in

MDA (616) Mouse malondialdehyde Rabbit polyclonal, Dr. 

T. Montine (Mon-

tine et al., 1996)

IF 1:50 I

4-HNE (614) Mouse 4-hydroxynonenal Rabbit polyclonal, Dr. 

T. Montine (Mon-

tine et al., 1996)

IF1:50 I

Ant i -nephr in 

#6878

Mouse nephrin Rabbit polyclonal, Dr. 

L. Holzman (Holz-

man et al., 1999)

IF 1:100 I

Aff338 Human nephrin, recom-

binant protein alpha-435: 

aa1031-1055 and 1096-1215

Rabbit polyclo-

nal, rabbit 338

WB 1:5

IF 1:1

II, IV

Aff380 Human nephrin, recom-

binant protein alpha-435: 

aa1031-1055 and 1096-1215

Rabbit polyclo-

nal, rabbit 380

WB 1:5

IF 1:1

II

#1188 Human nephrin, recom-

binant protein alpha-435: 

aa1031-1055 and 1096-1215

Rabbit polyclonal, protein 

A –purifi ed, rabbit 338

15 ug/ml III

#1135 Human nephrin, recom-

binant protein alpha-435: 

aa1031-1055 and 1096-1215

Rabbit polyclonal, protein 

A –purifi ed, rabbit 380

15 ug/ml III

Glucagon Human glucagon Rabbit polyclonal, Zymed IF 1:50 II

Secondary antibodies

Name Antigen Source Dilution Used in

FITC-anti Rb 

IgG

Rabbit IgG Rat polyclonal, FITC-

conjugated, Dako

IF 1:100 I

TRITC-anti Rb 

IgG

Rabbit IgG Goat polyclonal, TRITC-

conjugated, Jackson

IF 1:200 II

HRP-anti Rb 

IgG

Rabbit IgG Goat polyclonal, HRP-

conjugated, Jackson

WB 1:40 000 II, III, 

IV
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4.8. Immunofl uorescence microscopy

Frozen (-70°C) kidney cortexes were embedded 

in Tissue-Tek® mounting medium (Sakura) and 

4-5 µm cryosections were cut. The sections were 

either fi xed with ice-cold (-20°C) acetone for 5 

min or air-dried for 30 min before fi xing with 

acetone. After washing with PBS the sections 

were incubated with primary antibody in 1% 

goat or 5% rat serum in PBS overnight at 6°C. 

The sections were washed with PBS followed by 

incubations with secondary antibody at room 

temperature for 30 min. The slides were covered 

with mounting medium (Shandon, Pittsburgh, 

PA, USA) and examined using an Olympus 

BX50 microscope (Olympus Optical, Tokyo, Ja-

pan) equipped with a CCD camera (Hamamatsu 

Photonics, Hamamatsu City, Japan). Openlab 

2.2.3 (Improvision, Coventry, U.K.) and Adobe 

Photoshop (Adobe Systems, San Jose, CA, USA) 

software was used for image documentation. For 

Study I a dilution series of the primary antibody 

was used to assess the level of nephrin protein 

expression. See details of the incubation and mi-

croscopy conditions in Study I (Methods) and 

Study II (Research design and methods).

4.9. Determination of urinary proteins

The mouse urinary albumin concentration was 

measured by nephelometry (Luimula et al., 

2000b). The human urine samples used and the 

methods for classifi cation of albumin excretion 

rate are listed in Table 4.2. Urinary albumin 

concentration was measured using radioimmu-

noassay in Study II. Alternatively, albumin was 

determined by immunoturbidometry (Study III) 

or by kinetic nephelometry (Study IV). 

Total urinary protein concentration was 

measured with the Lowry method using RC DC 

Protein Assay kit (Bio-Rad Laboratories, Hel-

cules, CA, USA) according to the manufacturer’s 

instructions. The concentration of non-albumin 

urinary proteins was calculated as the difference 

between the concentration of total protein mi-

nus the concentration of albumin. A larger urine 

volume corresponding to 30 µg of non-albumin 

proteins was used in Studies II and III. Because 

the albumin/total protein ratio of 42 samples in 

Study IV correlated with the ratios of Normo in 

Study II, we were able to calculate the total uri-

nary protein concentration for the rest of Study 

IV samples using the abovementioned formula 

and albumin concentration. 

4.10. Western blotting

Sample volumes corresponding to 30 µg of to-

tal protein or 30 µg of non-albumin proteins 

(microalbuminuric and macroalbuminuric 

groups in Studies II and III) were precipitated 

with 10% (wt/vol) trichloroacetic acid in PBS on 

ice for 30 min. The samples were centrifuged for 

10 min at 13,100g at 4°C and the precipitate was 

washed twice with ice-cold acetone. The samples 

were air-dried and dissolved in Laemmli buffer 

(62.5 mmol/l Tris-HCl (pH 6.8), 10% glycerol, 

2% SDS, 5% 2-mercaptoethanol, and 0.05% 

bromophenol blue) followed by heating at 95°C 

for 5 min. The samples were analyzed in 10% 

polyacrylamide gels with the Protean Mini-gel 

electrophoresis system using Ready Gels (Bio-

Rad Laboratories). A nephrinuric urine sample 

from a type 1 diabetic patient was used as a posi-

tive control in every gel. After the run the pro-

teins were transferred onto nitrocellulose fi lters 

(Amersham Biosciences, Buckinghamshire, UK) 
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followed by blocking for two hours at room tem-

perature (RT) with 3% non-fat dried milk (Val-

io, Helsinki, Finland) in PBS. The fi lters were 

incubated with the primary antibody (listed in 

Table 4.3) in PBS containing 1% non-fat dried 

milk and 0.02% sodium azide at RT (for 1 hour 

in Study II and III, and 1.5 hours in Study IV), 

and then washed several times in PBS containing 

0.2% Tween 20. Then the fi lters were incubated 

with horseradish peroxidase -labeled second-

ary antibody for one hour at RT, and washed as 

above. The bound antibody was detected with 

Super Signal ECL substrate (Pierce, Rockford, 

IL, USA). Presence of any protein band visible 

with both antibodies in Western blots was re-

garded as positive for nephrinuria in Study II. 

4.11. Absorption of antisera

The E. coli strain TOP10 (Invitrogen Life Tech-

nologies, Carlsbad, CA, USA) was used for pro-

duction of the alpha-435 recombinant fusion 

protein immunogen (Figure 2.4). A lysate of the 

nontransfected strain was produced as described 

in Study III. The primary polyclonal nephrin 

antiserum (5 ml of 15 µg/ml of IgG in PBS 

containing 1% non-fat dried milk and 0.02% 

sodium azide) was incubated with alpha-435 

antigen (100 µg and 600 µg) for four hours at 

RT to absorb the nephrin specifi c antibodies in 

the antiserum or alternatively with TOP10 lysate 

(100 µg and 600 µg) to absorb the E. coli specifi c 

antibodies. The absorbed antisera were then used 

as primary antibodies for Western blottings of 

the test samples (a positive urine sample from a 

nephrinuric type 1 diabetic patient and glomeru-

lar lysate) in Study III.

4.12. Statistical analyses 

Data were analyzed with BMDP statistical pack-

age (BMDP Statistical Software, Los Angeles, 

CA, USA) in Study II, and with the SPSS for 

Windows program (SPSS Inc., Chicago, IL, 

USA) in Studies III and IV. Differences between 

the groups were tested using analysis of variance 

(ANOVA). A P-value <0.05 was considered sta-

tistically signifi cant. Regression analysis was per-

formed to evaluate the association of different 

variables with whole body glucose uptake (M/I) 

in Study IV.

4.13. Miscellaneous

Serum cholesterol and triglyceride concentra-

tions were measured enzymatically in Study I 

(Friedewald et al., 1972). Routine clinical chem-

istry was performed in the central laboratories of 

Kuopio and Helsinki University Central Hospi-

tals in Studies II, III and IV.  
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5. RESULTS 

5.1. Hypercholesterolemia is a prerequisite  
 for glomerular damage in the    
 proteinuric PAN mouse model (I)

ApoE mice on a high fat diet (apoE group-2) 

had signifi cantly higher serum cholesterol val-

ues compared to the values of mice on a normal 

diet (Study I, Table 1). Interestingly, puromycin 

treated animals on high fat diet group had 34% 

lower cholesterol than control animals on same 

diet. Probucol lowered the cholesterol level alone 

and together with puromycin by 70%. Puromy-

cin was able to induce proteinuria in the apoE 

mice on a high fat diet, but not in apoE mice 

on a normal diet. The difference was most re-

markable at day 3 as shown in Figure 5.1 (see 

also Study I, Figure 1). Probucol treatment prior 

to puromycin injection was able to prevent pro-

teinuria. 

Figure 5.1 Urinary albumin-to-creatinine ratios of ApoE mice on high fat diet.

*p=0.05 P=Puromycin, Pro=Probucol
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5.2. Nephrin expression and lipid    
 peroxidation in hypercholesterolemic   
 PAN mouse model (I)

Nephrin mRNA expression decreased by 30% 

and 50% at days 3 and 8 after puromycin injec-

tion, respectively, but the changes were not sta-

tistically signifi cant (Study I, Figure 3). Probu-

col was able to increase nephrin expression both 

alone and when used with puromycin, although 

not statistically signifi cantly. At the protein level 

puromycin reduced nephrin expression in the 

glomeruli of apoE group-2 mice, but not when 

probucol was used prior to puromycin injection 

(Study I, Figure 4 and Table 2).

The immunostaining for MDA and 4-

HNE was increased at day 3 in puromycin-treat-

ed animals of apoE group-2 (Study I, Figure 2). 

In mice treated with probucol alone or probucol 

with puromycin, the staining was comparable to 

that of controls. The staining of MDA and 4-

HNE appeared to localize to the mesangial part 

of the glomeruli, although granular staining was 

also noticed next to the urinary space.

5.3. Urinary proteins detected by nephrin   
 antisera in type 1 diabetic patients with  
 or without nephropathy (II)

In Study II the criterion for nephrinuria was 

whether there was any protein band in urine that 

was visible with both of two different nephrin 

polyclonal antisera against the same immunogen 

alpha-435. Using this criterium, 30% of Normo 

patients were nephrinuric, while 28% of newMi-

cro and Macro patients. Of Micro patients 17% 

were nephrinuric, while all healthy control sub-

jects were negative (Study II, Figure 1). Of all 

female diabetic patients 35% but only 19% of 

all male patients were nephrinuric (P=0.02). Ne-

phrinuric and non-nephrinuric patients did not 

differ from each other in respect to the variables 

listed in Study II; Table 1. The nephrin antisera 

revealed protein bands in urine most commonly 

of sizes 32, 40, 60, and 75 kDa (Study II, Figure 

3). The antisera Aff338 and Aff380 also recog-

nized full-length nephrin (185kDa) in human 

glomerular lysate (Study II, Figure 3) and pro-

duced typical immunostaining of nephrin in hu-

man glomeruli (Study II, Figure 4).

5.4. Specifi city of the urinary proteins found  
 in type 1 diabetic patients (III)

To investigate which of the urinary proteins 

found in the urine of T1DM patient would be 

most specifi c for nephrin a specifi city assay was 

conducted with absorbed antibodies. In the 75 

kDa area a distinct and closely packed doublet of 

protein bands was detected and this doublet was 

called 75 kDa nephrin. 32 and 40 kDa bands 

weakened when the polyclonal nephrin antise-

rum was absorbed with TOP10 E. coli lysate 

suggesting that these band were not nephrin-de-

rived (Study III, Figure 1). However, both the 75 

kDa urinary nephrin and 185 kDa glomerular 

nephrin remained positive with this absorbed 

antibody, and disappeared when the antibody 

was absorbed with the immunogen, alpha-435 

(Study III, Figure 1). 
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5.5. The occurrence of 75 kDa nephrin is  
 highest in normoalbuminuric type 1 
 diabetic patients and diminishes when   
 diabetic nephropathy progresses (III)

According to the results of the specifi city assay 

using absorbed antibodies the 75 kDa protein 

was nephrin-derived. We reanalyzed the type 1 

diabetic patients of Study II, called the Cohort 

I in Study III, for the presence of this particular 

protein. The analysis revealed that of Normo-

I, newMicro-I, Micro-I, and Macro-I 22.5%, 

23.1%, 9.8%, and 2.6% (p=0.022), respectively, 

were positive (Study III, Figure 2). There were no 

signifi cant differences in clinical variables such as 

duration of diabetes, BMI, systolic blood pres-

sure, diastolic blood pressure, serum lipid levels 

or glycated hemoglobin levels between subjects 

positive or negative for 75 kDa nephrin. Of all 

diabetic female patients in Cohort I, 21.7% were 

nephrinuric compared with only 8.9% of the 

male patients (p=0.022). In Cohort II 75 kDa 

nephrin occurred in 45.4%, 26.4%, and 0% 

(p=0.001) in Normo-II, Micro-II and Macro-II 

groups, respectively (Study III, Figure 3). Pa-

tients positive or negative for 75 kDa nephrin 

did not differ signifi cantly from each other with 

respect to age, sex, duration of diabetes, BMI, 

serum lipid levels, serum creatinine, creatinine 

clearance or glycated hemoglobin. In total, four 

patients in the Normo-II group and six patients 

in the Micro-II group progressed. Of these pro-

gressors only two out of ten were positive for 75 

kDa nephrin at baseline while this was the case 

in 15 out of 36 nonprogressors (p=0.282; Study 

III, Figure 4). 

5.6. Offspring of type 2 diabetic patients   
 exhibit urinary proteins detectable with  
 a nephrin antiserum (IV)

Of all offspring 26.6% showed a 100 kDa uri-

nary protein in the Western blots that stained 

with the Aff338 antiserum (Study IV, Figure 1), 

while all control subjects were negative. The sub-

jects were divided into strongly positive (12.5%), 

weakly positive (14.1%) and negative groups and 

compared for the clinical characteristics. The 

offspring had lower HDL cholesterol than the 

healthy controls (Study IV, Table 1). The strongly 

positive offspring showed a trend towards lower 

HDL cholesterol, higher BMI, higher percentage 

of smokers, and higher fasting and 120 minutes 

insulin levels in OGTT, although these differenc-

es were not statistically signifi cant. Interestingly, 

the nephrin antiserum occasionally detected a 

100 kDa protein in glomerular lysate. Altogether 

79% of offspring and 78% of control subjects 

showed a urinary protein band of size 185-200 

kDa (Study IV, Figure 1). Subjects positive or 

negative for this band did not differ with respect 

to clinical and biochemical characteristics. 

5.7. The 100 kDa urinary protein is   
 associated with insulin resistance in the  
 offspring of type 2 diabetic patients (IV) 

During the fi rst 10 min of the intravenous glu-

cose tolerance test the strongly positive group 

had a higher insulin AUC value than the negative 

group (3700 ± 706 vs. 2306 ± 159 pmol/lxmin, 

P=0.007), but the insulin AUC of the weakly 

positive group (2456 ± 345 pmol/lxmin) did not 

differ signifi cantly from those of the other groups 

(Study IV, Figure 2). During the last 20 min of 

the euglycemic hyperinsulinemic clamp the in-
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sulin levels of the strongly positive offspring 

were higher compared to the levels of negative 

offspring (459.6 ± 29.9 pmol/l vs. 389.4 ± 8.3 

pmol/l, P=0.003) and tended to be higher than 

the levels of weakly positive offspring (427.8 ± 

17.2 pmol/l). The strongly positive offspring had 

lower insulin sensitivity than the negative off-

spring (11.3 ± 1.2 vs. 15.8 ± 0.6 µmol/kg/min/

pmol/l, P=0.007) as expressed by whole body glu-

cose uptake (M/I) normalized to plasma insulin 

concentrations during the last 20 minutes of the 

euglycemic hyperinsulinemic clamp (Study IV, 

Figure 3). After adjustment for the insulin AUC 

values during the fi rst 10 minutes of the IVGTT 

(ANCOVA) the difference in M/I between the 

groups disappeared suggesting that the subjects 

positive for the 100 kDa urinary protein were ca-

pable of compensating their insulin resistance by 

increased insulin secretion. Nonoxidative glucose 

disposal was lower in the strongly positive group 

compared to the negative group (6.4 ± 0.9 vs. 

10 ± 0.5 µmol/kg/min/pmol/l, P=0.007) but did 

not differ signifi cantly from that of the weakly 

positive group (9 ± 1.3 µmol/kg/min/pmol/l). 

Multiple regression analysis showed that the 

presence of 100 kDa urinary protein was associ-

ated with the rates of M/I and non-oxidative glu-

cose disposal independently of several factors as-

sociated with insulin resistance (Study IV, Table 

2). Subjects positive or negative for the 185-200 

kDa urinary protein did not show any difference 

in fi rst phase insulin secretion during IVGTT or 

in insulin sensitivity during the clamp.
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6. DISCUSSION

6.1. Proteinuria, lipid peroxidation, and   
 nephrin expression in the PAN model of  
 hypercholesterolemic ApoE mice

The rat proteinuric PAN model has been widely 

used to mimic human minimal change disease, 

while mice are rather resistant to puromycin and 

have generally not shown proteinuria. In Study 

I only ApoE mice on a high fat diet with overt 

hypercholesterolemia were prone to puromy-

cin-induced proteinuria. Probucol reduced both 

cholesterolemia and proteinuria suggesting that 

hypercholesterolemia, actually, may act as a risk 

factor for proteinuria, rather than being a conse-

quence of kidney failure. In humans hypercho-

lesterolemia is a frequent fi nding in glomerular 

diseases (Kaysen et al., 1986; Keane et al., 1988), 

like in DN (Groop et al., 1996) although the 

mechanisms for this remain obscure. Microalbu-

minuric diabetic patients already show lipid ab-

normalities (Tarnow et al., 1996) and this is also 

the case in patients with the metabolic syndrome 

(Eckel et al., 2005). It is also known that with 

age ApoE-KO mice develop mild progressive re-

nal injury with spontaneous glomerular lesions 

with foam cells and widening of the mesangial 

area resembling changes in human type III hy-

perlipoproteinemia (Wen et al., 2002).

Lipid peroxidation is directly associated 

with glomerular damage as shown in the Hey-

mann nephritis model of membranous glomeru-

lonephritis (Neale et al., 1994; Neale et al., 1993) 

and in the PAN model (Gwinner et al., 1997). 

Puromycin may mediate its functions through 

mitochondrial damage (Goldenberg et al., 2005; 

Solin et al., 2000) or through production of ROS 

via the xanthine oxidase pathway (Diamond et 

al., 1986). Adenosine deaminase may also be in-

volved in this pathway by regulating production 

of ROS, since inhibition of adenosine deaminase 

prevents proteinuria in rat PAN (Nosaka et al., 

1997). However, the mechanisms by which ROS 

and particularly lipid peroxidation may cause 

renal disease remain to be defi ned. When ROS 

react with lipids, various adducts are formed, of 

which MDA and 4-HNE are some of the most 

abundant ones. MDA reacts with DNA and 

is mutagenic (Marnett, 2002), while 4-HNE 

stimulates neutrophil chemotaxis and activates 

enzymes like phospholipase C leading to altered 

cellular functions (Dianzani, 2003). Probucol 

is a lipid antioxidant and it has also previously 

been shown to lower lipoprotein levels and pro-

teinuria in PAN (Hirano et al., 1991). In Study 

I we found that puromycin-treated hypercholes-

terolemic mice showed increased levels of MDA 

and 4-HNE in the glomeruli, especially in the 

mesangial area. When given before puromycin, 

probucol prevented these changes. Taken to-

gether, these results suggest that high cholesterol, 

formation of ROS, and lipid peroxidation con-

tribute to the development of proteinuria.

In our study glomerular nephrin mRNA 

expression was diminished in hypercholeste-

rolemic mice by 30% and 50% at days 3 and 8 

after puromycin injection, respectively. The pro-

tein expression of nephrin was also diminished in 

proteinuric mice. Probucol reduced proteinuria 

and nephrin expression to the level of the control 

mice. These results are consistent with previous 

studies using the PAN model, in which nephrin 

staining also was reported to change from a linear 
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to more granular pattern (Kawachi et al., 2000; 

Luimula et al., 2000b). Using immuno-EM Lu-

imula et al. observed that nephrin shifted from 

slits to an apical position on podocytes. Similar 

results were observed in another study, but ne-

phrin expression was altered only in areas with 

foot process effacement, while in preserved areas 

the localization of nephrin was normal (Lee et al., 

2004). Kawachi et al. reported that podocin ex-

pression is also diminished in PAN but it did not 

shift to an apical localization but partly remained 

in the slit area in newly formed tight junctions. 

Furthermore, they suggested that podocin was 

excreted into urine (Kawachi et al., 2003). Po-

docin and podocalyxin have been found being 

excreted in urinary exosomes (Knepper, 2004). 

It has also been shown that podocyte loss and 

glomerulosclerosis are associated in the PAN 

model (Kim et al., 2001). At the same time po-

docytes appear in urine as evidenced by detec-

tion of nephrin mRNA (Kim et al., 2001). In-

terestingly, foot process effacement is preceded 

by induction of α-actinin and α3β1 integrin 

mRNA in PAN, suggesting that morphological 

changes i.e., alterations in podocyte proteins and 

disturbed interaction of proteins with GBM and 

with the actin cytoskeleton may lead to proteinu-

ria (Luimula et al., 2002; Smoyer et al., 1997). 

Puromycin caused a change to granular distribu-

tion of nephrin, podocin, and actin fi bers in a 

human podocyte cell line (Saleem et al., 2002). 

This effect was similar to that of cytochalasin, 

an agent that disrupts actin stress fi bers (Saleem 

et al., 2002). Changes in nephrin expression in 

PAN may thus be secondary to alterations in the 

actin cytoskeleton leading to disturbed podo-

cyte morphology. B7-1 (CD80) is not expressed 

in the normal podocyte, but its mRNA is up-

regulated in puromycin-treated podocytes. This 

was suggested to contribute to the pathogenesis 

of proteinuria by disrupting the slit diaphragm 

protein complex and by reorganizing the actin 

cytoskeleton (Reiser et al., 2004).

Megalin is a protein located between the 

podocyte and the GBM. It belongs to the LDL 

receptor family and could mediate some of the 

effects of hypercholesterolemia by acting as an 

endocytic receptor for lipoproteins (Kerjaschki et 

al., 1997). Some of the effects of hypercholester-

olemia could also be mediated through the RAS, 

since hypercholesterolemia increases angiotensin 

II type 1 receptors in vascular smooth muscle 

cells leading to an increase in ROS (Griendling 

et al., 1994; Nickenig et al., 1997). Blocking the 

RAS with ACE inhibitors or angiotensin-recep-

tor antagonists reduces proteinuria (Lewis et al., 

1993; Lewis et al., 2001; Parving et al., 2001). 

These agents also normalized changes in nephrin 

expression in a proteinuric model of Heymann 

nephritis (Benigni et al., 2001). Interestingly, 

ACE inhibitors have benefi cial effects even in 

the treatment of some CNF patients (Guez et 

al., 1998; Pomeranz et al., 1995). Hydroxy-3-

methylglutaryl coenzyme A reductase inhibitors, 

i.e. statins, are effective lipid lowering drugs and 

statin treatment protects kidneys from ischemia-

reperfusion injury in a uninephrectomized rat 

model (Gueler et al., 2002). The effects are pos-

sibly mediated through the nuclear factor-κB 

pathway (Gueler et al., 2002), which also medi-

ates angiotensin II signaling (Ruiz-Ortega et al., 

2000). Taken together, the results suggest a direct 

but as yet unknown relationship between serum 

lipids and proteinuria. Interestingly, induction 

of diabetes with streptozotocin in the ApoE-KO 

mice resulted in accelerated renal injury (Lassila 
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et al., 2004). The increase in albuminuria was at-

tenuated by treatment with an inhibitor of AGE 

formation and with a cross-link breaker that 

cleaves the preformed AGE (Lassila et al., 2004). 

The study suggested that AGE is not only de-

rived from glucose-dependent pathways but that 

lipids may also contribute to the accumulation 

of AGE. Attenuation of renal injury by AGE in-

hibitors was associated with reduced expression 

of profi brotic and proinfl ammatory substances 

like TGF-β1 and collagens (Lassila et al., 2004). 

6.2. Podocyturia, nephrin, and nephrinuria  
 in type 1 diabetes

The number of podocytes appears to be reduced 

in both T1DM (Steffes et al., 2001) and T2DM 

(Dalla Vestra et al., 2003; Pagtalunan et al., 1997). 

A study of T2DM patients showed that together 

with GBM thickening the podocyte foot proc-

esses were broadened, the podocyte number was 

reduced and the fi ltration surface area covered by 

remaining podocytes was increased (Pagtalunan 

et al., 1997). It has been shown that approxi-

mately one in fi ve podocytes is reduced in T1DM 

of short duration indicating an increased risk for 

functional abnormalities as diabetes progresses 

(Steffes et al., 2001). In another study on T1DM 

patients no changes in podocyte number were 

detected compared to healthy controls, but dur-

ing follow-up there was an association between 

podocyte loss and increased AER (White et al., 

2002). In T2DM patients a reduced number 

of podocytes predicts rapid progression of renal 

disease (Meyer et al., 1999) and an increase in 

AER (Dalla Vestra et al., 2003). It is believed that 

podocytes are incapable of replication and have 

a limited potential for repair (Kriz et al., 1998). 

Interestingly, viable detached podocytes have 

been found in urine of proteinuric rats (Peter-

mann et al., 2003) and patients with glomerular 

disease (Vogelmann et al., 2003). In the study 

by Vogelmann et al, the patients had focal seg-

mental glomerulosclerosis and Lupus nephritis, 

and over 80% of these patients had podocalyxin-

positive cells, regarded as podocytes, in the urine 

(Vogelmann et al., 2003). Interestingly, 44% of 

healthy controls also had podocyturia. Podoca-

lyxin is also expressed in human peripheral blood 

leucocytes at the mRNA, but not on the protein 

level (Kerosuo et al., 2004). Thus there is a pos-

sibility that podocalyxin-expressing cells in urine 

are not podocytes. Indeed in Vogelmann’s study, 

only 30-40% of the samples positive for podo-

calyxin were positive for other podocyte mark-

ers, such as synaptopodin, GLEPP1, or podocin. 

Part of the cells were apoptotic and podocyturia 

tended to be highest in patients with the lowest 

levels of albuminuria (Vogelmann et al., 2003). 

Podocalyxin was also used as a marker for urinary 

podocytes in a study of T2DM patients: 53% 

and 80% of microalbuminuric and macroalbu-

minuric patients, respectively, showed podocytu-

ria, whereas none of the controls or normoalbu-

minuric patients did (Nakamura et al., 2000b). 

That study found no correlation between AER 

and the number of urinary podocytes, and pa-

tients with chronic renal failure failed to show 

podocyturia. Interestingly, here an ACE inhibi-

tor, trandolapril, was able to reduce podocyturia 

in T2DM patients during 2-months follow-up 

(Nakamura et al., 2000b). In another study 21% 

of microalbuminuric T2DM patients showed po-

docyturia, and when these patients were treated 

with an antiplatelet drug dilazep dihydrochloride 

for six months their AER and also the number of 

podocytes in the urine decreased (Nakamura et 
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al., 2000a). In lupus nephritis, podocyturia has 

been found in the active phase of the disease in 

patients showing proteinuria of over 500 mg/24 

h (Nakamura et al., 2000c). Here, patients with 

stable kidney function and healthy controls did 

not show any podocalyxin-positive cells in the 

urine. 

Altered nephrin expression in diabetes was 

fi rst demonstrated by Aaltonen et al. using ex-

perimental streptozotocin rat model (Aaltonen et 

al., 2001). Nephrin mRNA was increased at 4 

weeks after induction of diabetes and the same 

initial increase was also found in non-obese dia-

betic mice. Increase in nephrin expression in 

the pre-proteinuric stage has also been observed 

in the PAN model (Hosoyamada et al., 2005). 

When proteinuria progresses, nephrin expression 

has been found to be reduced both at the mRNA 

and protein level in experimental (Forbes, 2002; 

Kelly et al., 2002) and human studies (Doubli-

er et al., 2003; Koop et al., 2003). One study 

showed that expression of extracellular nephrin 

was diminished in DN but intracellular expres-

sion remained comparable to that of controls, 

although the intracellular expression was dimin-

ished in sclerotic areas (Benigni et al., 2004). It 

has been shown that the lower the numbers of 

nephrin positive cells (Toyoda et al., 2004) and 

the lower the level of nephrin mRNA expression 

are (Langham et al., 2002) in the glomeruli, the 

higher the level of urinary AER is.

One third of T1DM patients in Study II 

showed urinary proteins that reacted with ne-

phrin antisera. The criterion for nephrinuria in 

Study II was the presence of any protein band 

detectable with both antisera in Western blots. 

The most common protein sizes found were 

32, 40 and 75 kDa. When the patients with 

nephrinuria were compared to patients without 

nephrinuria no differences were found in clini-

cal characteristics, such as duration of diabetes, 

body mass index, blood pressure, use of RAS 

modifying drugs, smoking, AER, glycated he-

moglobin and cholesterol levels (Study II). Study 

III showed that of the urinary proteins reacting 

with nephrin antisera the 75 kDa protein most 

probably represents a nephrin fragment. In Study 

III the same patients as in Study II (Cohort I) 

and another T1DM patient cohort with or with-

out nephropathy (Cohort II) were analyzed for 

the presence of the 75 kDa urinary nephrin. In 

both cohorts 75 kDa nephrin was found most 

commonly in the normoalbuminuric and micro-

albuminuric patients, but it was not detectable 

in urine of healthy controls. This suggests that 

75 kDa nephrin is found specifi cally in T1DM 

and that its expression ceases when nephropathy 

progresses and proteinuria increases. In Cohort 

I most of the nephrinuric patients were female, 

but we did not fi nd any signifi cant differences 

in clinical variables between patients positive or 

negative for 75 kDa nephrin in the two cohorts.

A splicing variant of nephrin, nephrin α, 

has been found at the mRNA level in human 

(Holthofer et al., 1999) and rat glomeruli (Ahola 

et al., 1999). This form lacks the transmembrane 

region thus allowing production of a soluble 

form of the protein but the protein product has 

not yet been identifi ed. Both in Study II and III 

we did not fi nd full-length nephrin in the urine 

of T1DM patients. In the rat PAN model a 166 

kDa urinary nephrin has been found (Luimula et 

al., 2000a) (Aaltonen et al., 2001). In the stud-

ies of Aaltonen and of Luimula, an antiserum 

against the extracellular domain of nephrin was 

used. We used antisera against nephrin α and 
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these antisera have epitopes in the intra- and ex-

tracellular domains near the transmembrane re-

gion (unpublished results). It is possible that our 

antisera detected a degraded form of nephrin. 

Nephrin α has only been found at the mRNA 

level and a relatively short transcript of it has 

been demonstrated using primers spanning the 

transmembrane region of intact nephrin (Ahola 

et al., 1999; Holthofer et al., 1999), thus it is not 

known whether additional splicing occurs in its 

outermost extracellular part. The 75 kDa nephrin 

may represent the splicing variant of nephrin or 

a fragment of if. Podocytes may start to secrete 

or shed soluble nephrin or nephrin-like proteins 

as a physiological response to an altered glucose 

environment. It may also represent nephrin that 

had detached from podocytes and that was pro-

teolytically degraded during passage through 

the tubuli. Diabetes itself may cause metabolic 

changes and increase local proteolytic activity in 

the glomerulus leading to degradation of nephrin. 

Interestingly, proteolytic cleavage of urinary albu-

min has been observed in diabetic patients (Osi-

cka et al., 2000a). The 75 kDa nephrin may also 

represent a yet unidentifi ed nephrin-like protein. 

The fi nding that 75 kDa urinary nephrin was 

more common in normoalbuminuric patients 

compared to micro- and macroalbuminuric pa-

tients supports the fi nding that podocytes and/

or nephrin are excreted in the early phase of the 

disease in the same manner as in podocyturia. 

The 75 kDa nephrin may also derive from uri-

nary exosomes, as podocin and podocalyxin have 

been found in these (Knepper, 2002; Pisitkun et 

al., 2004). Interestingly, the nephrin-like protein 

NEPH2 is shed from podocytes by the action of 

a metalloproteinase, and it can be visualized with 

antibodies against the extracellular, but not the 

intracellular domain, suggesting that only the 

extracellular part is shed (Gerke et al., 2004). 

This form of the protein has also been found in 

urine of healthy subjects (Gerke et al., 2004). It 

is possible that the nephrin observed in our stud-

ies represent shed extracellular nephrin since our 

antisera do also recognize an epitope in the extra-

cellular part of nephrin near the transmembrane 

region (unpublished results). Interestingly, the 

32 and 40 kDa proteins lost positivity in West-

ern blotting when an antiserum absorbed with 

E. coli lysate was used. Polyclonal antisera raised 

against recombinant proteins produced in E. coli 

may react with bacterial proteins that contami-

nate the immunogen in spite of the purifi cation 

processes. When analyzing urine, contamination 

of the samples with E. coli is possible, since this 

bacterium belongs to the normal fl ora of the 

urinary tract. However, with antiserum that was 

absorbed with the E. coli lysate, the full-sized 

glomerular nephrin and the 75 kDa nephrin re-

mained reactive. These proteins became invisible 

when the nephrin immunogen alpha-435 was 

used for absorption, indicating that the antise-

rum detects nephrin.

What could be the mechanisms behind 

the changes in nephrin expression? An ACE 

inhibitor, perindopril, restores nephrin expres-

sion on human kidney biopsies in DN (Lang-

ham et al., 2002). It has also been shown that 

the AGE inhibitor aminoguanidine normalizes 

the decreased nephrin expression in a diabetic 

rat model (Davis et al., 2004), but in another 

study no effects on nephrin expression were ob-

served (Kelly et al., 2002). It is known that RAS 

modifi ers and aminoguanidine are able to reduce 

PKC activity in experimental diabetes (Osicka 

et al., 2000b) and that nephrin expression may 
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be modifi ed through this pathway (Wang et al., 

2001b). Furthermore, PKC knockout mice are 

protected against development of albuminuria in 

diabetes (Menne et al., 2004). The effect of RAS 

inhibition seems to be quite specifi c for nephrin 

expression, since calcium channel blockers were 

not able to restore nephrin expression whereas 

valsartan was (Davis et al., 2003a). Interestingly, 

vasoactive mechanisms other than angiotensin II 

may be important modulators of nephrin expres-

sion, since the vasopeptidase inhibitor omapat-

rilat was also able to restore nephrin expression 

in a diabetic rat model (Davis et al., 2003b). 

Vasopeptidase inhibitors simultaneously inhibit 

both ACE and neutral endopeptidase leading to 

decreased levels of vasoconstrictor effector mol-

ecules such as angiotensin II as well as an increase 

in the levels of vasodilatory agents such as atrial 

natriuretic peptide and bradykinin (Fournie-Za-

luski et al., 1994). Mechanical strain also causes 

up-regulation of angiotensin II and the produc-

tion of angiotensin II type 1 receptors in podo-

cyte culture, and valsartan ameliorates stretch-in-

duced apoptosis (Durvasula et al., 2004). In the 

same study added exogenous angiotensin II alone 

increased podocyte apoptosis. Over-expression of 

angiotensin II type 1 receptors in podocytes led 

to glomerulosclerosis in a transgenic rat model 

(Hoffmann et al., 2004). In our studies females 

showed more often nephrinuria than did males. 

The difference could be explained by the fact that 

androgens stimulate the systemic and local RAS 

(Kang and Miller, 2002) and this could lead to 

increased angiotensin II levels and then decreased 

expression of nephrin in diabetes. This could also 

be one cause for the male gender being a known 

risk factor for DN (Seliger et al., 2001). 

The occurrence of urinary 75 kDa nephrin 

was lower in T1DM patients with more severe 

nephropathy compared to that of normoalbu-

minuric and microalbuminuric patients in both 

patient cohorts in Study III. When proteinuria 

and DN progresses the expression of 75 kDa 

nephrin ceases. The patients of Cohort II were 

followed for 7.8 years for progression of DN. 

We analyzed the progression of patients that 

were normoalbuminuric or microalbuminuric 

at baseline, since the macroalbuminuric patients 

already had overt nephropathy and no patients 

were positive for 75 kDa nephrin in that group. 

These preliminary results showed that 20% of 

progressors were nephrinuric as compared to 

42% of non-progressors. It is conceivable that 

75 kDa nephrin is a marker of slower progres-

sion of diabetic nephropathy, but the fi nding was 

not statistically signifi cant and more patients are 

needed to answer this question. 

Nephrin is found in very low amounts in 

the pancreatic islets of Langerhans (Palmen et al., 

2001; Putaala et al., 2001). Beta cells (Palmen et 

al., 2001) and islet microendothelia (Zanone et 

al., 2005) are proposed to exhibit specifi c expres-

sion. The function of pancreatic nephrin is still 

not known, but it does not appear to have any 

major signifi cance for insulin secretion as studied 

in CNF patients using OGTT (Kuusniemi et al., 

2004). Circulating antibodies against nephrin 

have been found in a subset of T1DM patients 

(Aaltonen et al., 2003). In experimental models 

injection of nephrin antibodies caused massive 

proteinuria in rats (Orikasa et al., 1988) and 

decreased nephrin expression (Kawachi et al., 

2000). Interestingly, some CNF patients show 

increased nephrin autoantibody titers during 

recurrence of nephrotic syndrome after trans-
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plantation (Patrakka et al., 2002b; Wang et al., 

2001a). It remains to be studied whether nephrin 

autoantibodies have real pathophysiologic im-

portance for the development of DN.

6.3. Nephrin and insulin resistance

In Study IV we found a 100 kDa urinary pro-

tein that reacted with a nephrin antiserum in the 

urine of approximately one third of the offspring 

of T2DM patients. Healthy controls that did 

not have any fi rst-degree relative with T2DM 

were all negative for this protein. The offspring 

of T2DM patients have an almost threefold 

increased risk of diabetes in comparison to the 

background population and insulin resistance is 

an early metabolic feature of the offspring (Eriks-

son et al., 1989). Thus even though the study 

subjects were relatively healthy and young they 

could be considered somewhat abnormal regard-

ing their glucose and insulin metabolism. Thus it 

is interesting that they showed changes in urinary 

excretion of the 100 kDa nephrin. The strongly 

positive subjects were more insulin resistant than 

weakly positive and negative ones. We did not 

fi nd any difference between the positive and 

negative groups with respect to AER. Generally, 

microalbuminuria is considered a characteristic 

of the metabolic syndrome (Haffner et al., 1993). 

However, microalbuminuria has (Nosadini et al., 

1992) (Forsblom et al., 1995) and has not (Toft 

et al., 2002) been associated with insulin resist-

ance. 

There are no studies concerning insulin re-

sistance and the presence of podocyte proteins in 

urine but one study showed that piogliotazone 

was able to reduce both AER and the number 

of urinary podocytes in T2DM patients (Naka-

mura et al., 2001). Piogliotazone is an insulin-

sensitizing agent that reduces insulin resistance 

by activating the peroxisome proliferator acti-

vated receptor gamma (PPAR-gamma). This 

pathway could also alter nephrin expression. 

Doublier et al. found that angiotensin II caused 

rearrangement of the actin cytoskeleton and de-

creased nephrin expression in cultured podocytes 

(Doublier et al., 2003). This was accompanied 

by excretion of a 100 kDa protein reacting with 

a nephrin antibody against the extracellular do-

main but not with an antibody against the in-

tracellular domain (Doublier et al., 2003). It 

is possible that this protein represents the 100 

kDa nephrin found in the offspring of T2DM 

in Study IV, since the antiserum used also rec-

ognizes an epitope in the extracellular domain 

of nephrin. Doublier’s study also showed that 

glycated albumin caused a decrease in nephrin 

expression in podocytes and this was mediated 

through RAGE. When this pathway was active 

there was no excretion of the 100 kDa nephrin. 

RAS is involved in insulin resistance since RAS 

blockade increases adiponectin concentrations 

in patients with hypertension (Furuhashi et al., 

2003). Adiponectin is an adipocyte-derived pro-

tein that has been suggested to play an important 

role in insulin sensitivity (Furuhashi et al., 2003). 

Large intervention studies have shown that ACE 

inhibitors and angiotensin-receptor antagonists 

may prevent development of T2DM (Hansson 

et al., 1999; Julius et al., 2004; Lindholm et al., 

2002; Yusuf et al., 2000). The mechanisms caus-

ing insulin resistance may also affect podocytes. 

Insulin resistant diabetic Zucker rats show pro-

gressive diabetic nephropathy with evidence of 

podocyte injury and cultured podocytes exposed 

to high glucose show hypertrophy (Hoshi et al., 

2002). A genetic model of lipoatrophic diabetes 
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(A-ZIP/F-1 mice) also show DN that is associ-

ated with podocyte damage (Suganami et al., 

2005).

What could be the source of 100 kDa uri-

nary nephrin, and why do the offspring of T2DM 

patients show this protein and not 75kDa urinary 

nephrin? What could be the biological signifi -

cance of the 75 kDa and 100 kDa nephrins? The 

hypotheses proposed for the 75 kDa nephrin are 

valid also for the 100 kDa nephrin. The subjects 

in Study IV were healthy offspring of T2DM pa-

tients whereas the T1DM patients in Studies II 

and III had a long history of severely disturbed 

glucose metabolism causing pathophysiologic 

post-translational protein modifi cations, and al-

tered intracellular signaling pathways. It must be 

addressed that T2DM is a heterogeneous disease 

with different, yet unidentifi ed subgroups due to 

polygenic inheritance and environmental factors 

affecting the disease development and the pre-di-

abetic stage. This may explain why the results for 

T1DM patients differ from those for offspring 

of T2DM patients. Furthermore, in studies of 

T1DM patients a sample from 24-h urine col-

lection was used instead of timed overnight urine 

in Study IV for offspring of T2DM patients. The 

24-h urine sample may have been stored for a 

longer time at room temperature compared to the 

timed overnight urine sample that was collected 

and quickly frozen in the morning when the 

metabolic studies were conducted. Degradation 

during storage may have caused the difference in 

size of the nephrin fragments detected. This may 

also explain the fi nding that in Study IV a larger, 

185-200 kDa protein was observed in some sam-

ples. All the samples in Studies II-IV were frozen 

without centrifugation, preservatives or protein-

ase inhibitors. The nephrins may originate from 

cells or from the soluble fraction of urine. Fur-

ther identifi cation and characterization of the 

100 kDa and 75 kDa urinary nephrins will be 

particularly important. Interestingly, a 100 kDa 

form of nephrin was also detected in glomerular 

lysate in Study IV. To clarify the source of the 

nephrin fragments in urine the proteins need to 

be characterized by proteomic methods includ-

ing mass-spectrometry. Nephrin has been identi-

fi ed using mass-spectrometry in only one study, 

in which nephrin was purifi ed from 100 rat kid-

neys and identifi ed by sequencing three peptides 

(Topham et al., 1999). Thus the task is demand-

ing and characterization of the urinary nephrin 

fragments is the topic for further studies. 
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7. CONCLUSIONS 

Puromycin causes proteinuria in ApoE mice on 

a high fat diet with overt hypercholesterolemia, 

but not in ApoE mice on a normal mouse diet. 

Pretreatment with the lipid antioxidant probucol 

reduces serum cholesterol levels and proteinuria. 

The proteinuric mice show decreased expression  

of glomerular nephrin, which is accompanied by 

increased levels of lipid peroxidation adducts, 

MDA and 4-HNE. Probucol also normalized 

the expression of nephrin and lipid peroxida-

tion adducts. Taken together the results suggest 

a role for cholesterol and lipid peroxidation in 

proteinuria and in nephrin expression.

Approximately one third of type 1 diabetic 

patients with or without nephropathy showed 

urinary proteins detectable with nephrin antisera. 

Female patients more often showed nephrinuria 

than male patients. None of the control subjects 

showed nephrinuria. Of the urinary proteins re-

acting with nephrin antisera the 75 kDa protein 

appears to be nephrin-derived fragment. The oc-

currence of 75 kDa nephrin is highest in normo- 

and microalbuminuric type 1 diabetic patients 

and decreases when nephropathy progresses. 

20% of progressors and 42% or non-progressors 

were nephrinuric at baseline in 7.8 years follow-

up (p=0.282). Whether 75 kDa urinary nephrin 

has true prognostic value for diabetic nephropa-

thy requires further investigation with a larger 

number of patients.

Proteins detectable with nephrin antiserum 

are more often present in urine of offspring of 

type 2 diabetic patients than in that of controls. 

A 100 kDa nephrin fragment was associated with 

insulin resistance and with lower levels of non-

oxidative glucose disposal. Whether this protein 

may serve as a marker of susceptibility for type 2 

diabetes needs further investigation and follow-

up. 

It would be important to fi nd new urinary 

markers for insulin resistance and for the meta-

bolic syndrome that could be used for evaluating 

the risk of individuals to develop T2DM. Such 

markers would provide new information about 

the pathological processes causing diabetes and 

diabetic complications and they might also facili-

tate development of new drugs that could pre-

vent the adverse effects of diabetes.
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Nuoruustyypin ja erityisesti aikuistyypin sokeri-

tautia sairastavien potilaiden määrä lisääntyy ym-

päri maailman. Tämä kehitys aiheuttaa haasteita 

sokeritaudin ja sen liitännäissairauksien aikaiselle 

toteamiselle. Noin 20-30% sokeritautipotilaista 

kehittää taudin edetessä munuaisvaurion, yleisen 

liitännäissairauden, jonka toteamiseen käytetään 

virtsan tärkeimmän valkuaisen, albumiinin, mit-

tausta. Munuaisvaurion esivaiheessa albumiinia 

vuotaa pieniä määriä munaisen suodatuskalvon 

lävitse virtsaan ja tätä ilmiötä kutsutaan mikroal-

buminuriaksi. Mikroalbuminuriavaiheessa osal-

la sokeritautipotilaista on jo pysyviä muutoksia 

munuaisissaan. Nefriini on tärkeä munuaisen 

rakennevalkuaisaine ja se muodostaa keskeisen 

osan toiminnallisesta munuaisen suodatuskalvos-

ta. Kokeellisissa malleissa ja sokeritautipotilaiden 

munuaisnäytteissä on todettu nefriinin vähene-

vän sokeritaudin munuaisvaurion kehittyessä. 

Korkea veren kolesterolipitoisuus, hyper-

kolesterolemia, on tunnettu riskitekijä munu-

aisvaurion etenemiselle ja hyperkolesterolemia 

löytyy useimmilta munuaisvauriopotilaista. 

Aikuistyypin sokeritautipotilaiden lähisu-

kulaisten tiedetään olevan suuremmassa riskis-

sä sairastua sokeritautiin kuin muun väestön. 

Aikuistyypin sokeritaudin kehittymistä edeltää 

usein tila, jossa kudokset kuten lihakset ja ras-

vakudos eivät reagoikaan enää yhtä hyvin sokeri-

aineenvaihdunnassa tärkeälle hormonille, insulii-

nille. Tätä tilaa kutsutaan insuliiniresistenssiksi. 

Insuliini toimittaa veressä olevan sokerin kudos-

ten soluihin ja mikäli kudokset eivät enää reagoi 

sille veren sokeripitoisuus nousee. Aikuistyypin 

sokeritautipotilaiden lähisukulaisten, mm. las-

ten, tiedetään olevan insuliiniresistentimpejä 

kuin muun väestön.

8. YLEISTIETEELLINEN YHTEENVETO SUOMEKSI

Tutkimuksen tarkoituksena oli selvittää 

miten hyperkolesterolemia vaikuttaa munuais-

vaurion kehittymiseen käyttämällä kokeellista 

mallia, jossa munuaisvaurio saadaan aikaiseksi 

puromysiini-nimisellä aineella hiirillä, joilla on 

geneettisen muuntelun vuoksi normaalia kor-

keammat veren kolesteroliarvot. Tutkimuksessa 

mitattiin valkuaisvirtsaisuuden kehittymistä, 

nefriinin muutoksia munuaisissa, sekä rasvojen 

hapettumisen yhteydessä syntyviä yhdisteitä mu-

nuaisissa, sekä sitä, miten rasvojen hapettumista 

vähentävä aine, probukoli, vaikuttaa mallissa. 

Hiirille, joilla oli hyperkolesterolemia, kehittyi 

vaikeampi munuaisvaurio kuin hiirille, joilla oli 

alhaisemmat veren kolesterolitasot. Probukoli vä-

hensi veren kolesterolipitoisuutta ja lievensi myös 

munuaisvauriota. Mallissa havaittuun munuais-

vaurioon liittyi myös nefriinin vähentyminen 

sekä rasvojen hapettumisen yhteydessä syntyvien 

tuotteiden lisääntyminen munuaisessa.

Väitöstutkimuksessa selvitettiin edelleen 

löytyykö nuoruustyypin sokeritautipotilaiden 

virtsasta rakennevalkuaisaine nefriiniä tai sen pilk-

koutumistuotteita ja voidaanko virtsan nefriiniä 

pitää munuaisvaurion kehittymistä ennustavana 

merkkiaineena. Virtsanäyte tutkittiin  kahden 

tutkimuksen potilailta, joista osalla ei ollut vielä 

munuaisvauriota, osalla oli munuaisvaurion var-

haisvaihetta kuvaava mikroalbuminuria ja osalla 

jo merkittävä munuaisvaurio valkuaisvirtsaisuu-

della. Näistä potilaista noin kolmasosalta löytyi 

valkuaisaineita virtsasta, jotka oli osoitettavissa 

nefriiniin sitoutuvalla vasta-aineella. Jatkotutki-

muksessa kävi ilmi, että näistä valkuaisaineista 

75 kDa -kokoinen kappale edusti mitä todennä-

köisimmin nefriiniä tai nefriinin kaltaista valku-
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aisainetta. Tämä valkuaisaine löytyi useimmiten 

sokeritautipotilailta, joilla ei ollut vielä merkkejä 

alkavasta tai varsinaisesta munuaisvauriosta, kun 

taas tämän valkuaisaineen esiintyvyys oli vähäi-

sempi, mikäli munuaisvaurio oli edennyt pitkäl-

le. Osa potilaista kuului seurantatutkimukseen, 

jossa osoittautui, että potilaat, joilta 75 kDa -

nefriini löytyi tutkimuksen alkuvaiheessa, eivät 

edenneet varsinaiseen munuaistautiin yhtä nope-

asti kuin ne, joiden virtsassa tätä valkuaisainetta 

ei ollut. 

Kolmantena tavoitteena oli selvittää löytyy-

kö nefriiniä tai sen kaltaista valkuaisainetta ai-

kuistyypin sokeritautipotilaiden lähisukulaisten 

virtsasta ja mikäli löytyy, liittyykö sen esiintymi-

nen jotenkin heidän sokeriaineenvaihduntansa 

muutoksiin. Kävi ilmi, että 27% lähisukulaisista 

löytyi virtsasta 100 kDa -kokoinen valkuaisaine, 

jota ei ollut terveiden kontrollihenkilöiden virt-

sassa. Ne, joilta kyseistä valkuaisainetta virtsasta 

löytyi, olivat insuliiniresistentimpejä kuin ne, 

joilta sitä ei löytynyt.

Korkea veren kolesterolipitoisuus, eli hy-

perkolesterolemia, on selvästi myös altistava 

tekijä munuaisvauriolle, eikä vain munuaisvau-

rion seuraus. Hyperkolesterolemian altistamaan 

munuaisvaurioon liittyy rasvojen hapettuminen 

ja nefriinin vähentyminen munuaisissa. 75 kDa 

-nefriini voi olla merkki nuoruustyypin sokeri-

tautipotilaan pienemmästä riskistä saada munu-

aisvaurio, mutta potilasaineiston koosta johtuen 

näitä tuloksia on pidettävä alustavina. Aikuistyy-

pin sokeritautipotilaiden lähisukulaisilta löytynyt 

100 kDa -nefriini voisi toimia insuliiniresistens-

sin merkkiaineena ja mahdollisesti myös ennus-

taa riskiä sairastua aikuistyypin sokeritautiin. On 

tärkeää löytää uusia merkkiaineita sokeritaudin 

varhaisvaiheen tunnistamiselle ja liitännäissaira-

uksien kehittymisen ennustamiselle, jotta näiden 

sairauksien kehittymistä estävät elintapamuu-

tokset ja/tai lääkitys voidaan aloittaa tehokkaasti 

mahdollisimman varhaisessa vaiheessa. Virtsan 

merkkiaineet tuovat uutta tietoa tautien ja nii-

den liitännäissairauksien kehittymisestä ja voivat 

siten auttaa jopa uusien lääkkeiden kehittämistä.
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