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ABBREVIATIONS

ABC ATP-binding cassette

ANCL adult neuronal ceroid lipofuscinosis

AP adaptor protein

ATP adenosine triphosphate

bp base pair(s)

BHK cells baby hamster kidney cells

BLAST basic local alignment search tool

c. coding DNA reference sequence position

cathD Drosophila melanogaster cathepsin D gene

cDNA complementary DNA

CEPH Centre d’Etude du Polymorphisme Humain

CLCN3,6,7/CLCN3,6,7 human chloride channel 3, 6, and 7 gene or locus/protein

Clcn3,6,7/CLCN3,6,7 mouse chloride channel 3, 6, and 7 gene or locus/protein

CLN1-10/CLN1-10 human, canine, or bovine CLN1-10 gene or locus/protein or

disease

Cln1-10/CLN1-10 mouse CLN1-10 gene or locus/protein

cM centiMorgan(s)

COS-1 cells African green monkey kidney cells

CTSB,D,F,L/CTSB,D,F,L human, sheep, and canine cathepsin B, D, F, and L gene or

locus/protein

Ctsb,d,f,l/CTSB,D,F,L mouse cathepsin B, D, F, and L gene or locus/protein

del deletion

DNA deoxyribonucleic acid

dup duplication

EDTA ethylenediamine tetra acetic acid

EPMR progressive epilepsy with mental retardation

ER endoplasmic reticulum

ERGIC ER–Golgi intermediate compartment

EST expressed sequence tag

GROD granular osmiophilic deposit

HA hemagglutinin

HLOD heterogeneity LOD

INCL infantile neuronal ceroid lipofuscinosis

JNCL juvenile neuronal ceroid lipofuscinosis

kb kilobase(s)

kDa kilodalton(s)

LAMP1,2/LAMP1,2 lysosomal-associated membrane protein 1 and 2

gene/protein

LD linkage disequilibrium
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LINCL late-infantile neuronal ceroid lipofuscinosis

LOD logarithm of odds

LSD lysosomal storage disorder

M6P mannose 6-phosphate

Mb megabase(s)

MFS major facilitator superfamily

MFSD8,9/MFSD8,9 major facilitator superfamily domain containing 8 and 9

gene or locus/protein

MPR mannose 6-phosphate receptor

mRNA messenger RNA

NCBI National Center for Biotechnology Information

NCL neuronal ceroid lipofuscinosis

NMD nonsense-mediated mRNA decay

OMIM Online Mendelian Inheritance in Man

p. protein reference sequence position

PCR polymerase chain reaction

PPT1,2/PPT1,2 human palmitoyl protein thioesterase 1 and 2 gene or

locus/protein

Ppt1,2/PPT1,2 mouse palmitoyl protein thioesterase 1 and 2 gene or

locus/protein

RNA ribonucleic acid

RT-PCR reverse transcriptase PCR

SLC solute carrier

SNP single nucleotide polymorphism

TGN trans-Golgi network

recombination fraction

TPP1/TPP1 human or canine tripeptidyl peptidase I gene or

locus/protein

Tpp1/TPP1 mouse tripeptidyl peptidase I gene or locus/protein

vLINCL variant late-infantile neuronal ceroid lipofuscinosis

VNTR variable number tandem repeat

Only the abbreviations appearing more than once in the text are listed here.
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ABSTRACT

The neuronal ceroid lipofuscinoses (NCLs) are a group of mostly autosomal

recessively inherited neurodegenerative disorders. Of NCLs, congenital NCL is the

earliest-onset and the most aggressive form whereas Turkish variant late-infantile

NCL  (vLINCL)  belongs  to  the  heterogeneous  group  of  late-infantile  onset  NCLs.  The

aim of this thesis was to characterize the molecular genetic bases of these, previously

genetically undetermined, NCL forms.

In  order  to  define  the  molecular  genetic  background  of  congenital  NCL,  a

candidate gene approach was undertaken. Previously, a mutation in the cathepsin D

(CTSD)  gene  was  shown  to  cause  congenital  NCL  in  sheep.  Based  on  the  close

resemblance  of  the  clinical  phenotypes  between  sheep  and  human  patients  with

congenital NCL, CTSD was  considered  as  a  potential  candidate  gene  in  humans  as

well. When screened for mutations by sequencing, a homozygous nucleotide

duplication creating a premature stop codon was identified in CTSD in one family with

congenital NCL. While in vitro the transiently overexpressed mutant protein was

stable although truncated and inactive, the absence of CTSD staining in brain tissue

samples of patients indicated degradation of the mutant CTSD in vivo. A lack of CTSD

staining was detected also in another,  unrelated family with congenital  NCL but the

presence of CTSD mutation(s) could not be confirmed. These results imply that CTSD

deficiency underlies congenital NCL.

While  initially  Turkish  vLINCL  was  considered  a  distinct  genetic  entity  (CLN7),

mutations in the CLN8 gene were later reported to account for the disease in a subset

of Turkish patients with vLINCL. To further dissect the genetic basis of Turkish vLINCL

a candidate gene approach was first undertaken in 13 mainly consanguineous,

Turkish  vLINCL  families.  All  known  NCL  loci  were  screened  for  homozygosity  by

haplotype analysis of microsatellite markers, and if homozygosity of marker alleles

was detected the genes were sequenced from genomic DNA of the respective

patients. Two novel, family-specific homozygous mutations were identified in the

CLN6 gene. In the remaining families,  all  known human NCL loci  as well  as the loci

underlying NCL-like phenotypes in animal models were excluded.

To further characterize the genetic background of Turkish vLINCL and specifically,

to identify novel gene(s) underlying vLINCL, a genomewide single nucleotide

polymorphism scan, homozygosity mapping, and positional candidate gene

sequencing were performed in ten mainly consanguineous, Turkish vLINCL families.

On chromosome 4q28.1-q28.2, a novel major facilitator superfamily domain

containing 8 (MFSD8) gene with six family-specific homozygous mutations in vLINCL

patients was identified. By northern blot, in silico, and RT-PCR analyses, the MFSD8
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transcript  was  shown  to  be  ubiquitously  expressed  with  a  complex  pattern  of

alternative  splicing.  MFSD8  is  predicted  to  be  a  transmembrane  protein  with  12

membrane-spanning domains. It belongs to the major facilitator superfamily of

transporter proteins. In immunofluorescence analysis, transiently overexpressed

MFSD8 was shown to colocalize with lysosomal markers.  These results  suggest that

MFSD8  is  a  novel  lysosomal  integral  membrane  transporter  protein,  the  cellular

function  of  which  remains  to  be  elucidated.  Identification  of MFSD8 further

emphasizes the genetic heterogeneity of Turkish vLINCL as well as the genetic

heterogeneity  of  NCLs  in  general.  In  families  where  no MFSD8 mutations  were

detected, additional NCL-causing genes remain to be identified.

The  identification  of  mutations  in CTSD and MFSD8 increases  the  number  of

known human NCL-causing genes from six to eight, and is an important step towards

the complete understanding of the genetic spectrum underlying NCLs. In addition, it is

a starting point for dissecting the molecular mechanisms behind the associated NCLs

and contributes to the challenging task of understanding the molecular pathology

underlying the group of NCL disorders.
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INTRODUCTION

The neuronal ceroid lipofuscinoses (NCLs) are mostly autosomal recessively inherited

neurodegenerative disorders of which at least ten forms are thought to exist (CLN1-

CLN9 and congenital NCL) (Haltia 2003). Prior to this thesis, six human NCL-causing

genes (PPT1, TPP1, CLN3, CLN5, CLN6, and CLN8) had been identified (Mole 2004).

The molecular genetic basis has, however, remained undetermined in a great number

of patients with various NCL phenotypes. Identification of the genes responsible for

these  phenotypes  is  of  critical  importance  for  revealing  the  complete  molecular

genetic background of NCLs. This, in turn, is crucial for understanding the disease

mechanisms and the molecular pathology underlying the group of NCL disorders.

The identification of the genes underlying the major NCL forms was in most cases

based on relatively large family material suitable for traditional linkage analyses.

Moreover,  on  many  occasions  an  existing  founder  effect  eased  the  process.  The

search for new genes underlying the rarer NCL forms may be more challenging due to

the limited and genetically heterogeneous family material. Many of these families are,

however, consanguineous, and thus, application of a homozygosity mapping approach

(Lander and Botstein 1987) will increase the probability of the identification of novel

disease genes.

The process of identification of disease genes has undergone tremendous change

since the completion of the Human Genome Project in 2003 and the consequent

availability of genome sequences (International Human Genome Sequencing

Consortium 2004). This, accompanied by the development of new technologies for

marker  genotyping  and  data  analysis,  provides  new  tools  for  the  identification  of

genes underlying genetically inherited diseases, including NCLs.

This  thesis  describes  the  characterization  of  the  molecular  genetic  basis  of  two

non-common  NCL  forms,  congenital  NCL  and  Turkish  variant  late-infantile  NCL

(vLINCL). Since in both diseases the available family material was small, approaches

alternative to traditional linkage analysis were used for the identification of the

disease genes.  In congenital  NCL, a candidate gene approach was applied since the

disease-causing gene was known in the corresponding ovine disease (Tyynelä et al.

2000). In Turkish vLINCL, where the majority of the families were consanguineous, a

central method leading to gene identification was homozygosity mapping.
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REVIEW OF THE LITERATURE

1. Identification of disease genes

The process of identifying disease genes has changed dramatically during recent

years due to the completion of the Human Genome Project and the advancement of

technological platforms (Antonarakis and Beckmann 2006). The consequent

availability of human (and other species) genome sequences as well as high-

throughput assays for marker genotyping have enabled the bypassing or acceleration

of some very laborious steps in the gene identification process. Although the number

of newly identified genes underlying monogenic disorders has declined during the

present  compared  with  the  previous  decade,  the  study  of  Mendelian  disorders  will

continue to be fundamental in elucidating gene functions as well as in understanding

both normal and pathological pathways (Antonarakis and Beckmann 2006).

Additionally, it will provide clues to unravel the susceptibility alleles for polygenic,

complex phenotypes.

1.1. The Human Genome Project

The  Human  Genome  Project,  initiated  in  1990,  was  an  international,  collaborative

effort whose central goals were to determine the nucleotide sequence of the human

genome and to identify all human genes. The International Human Genome

Sequencing Consortium released a draft sequence in 2000 (Lander et  al. 2001),

simultaneously  with  a  private  company,  Celera  Genomics  (Venter et  al. 2001). The

complete sequence, published in 2003, covered ~99% of the euchromatic genome

but still contained some gaps (International Human Genome Sequencing Consortium

2004). In addition to the human genome, genome sequences of hundreds of other

organisms including more than 70 eukaryotic species have been produced

(www.ebi.ac.uk/genomes/index.html, April 2008). In 2007, the first complete diploid

genome sequence of a single human individual was published (Levy et al. 2007).

The  sequence  information  is  freely  available  in  online  public  databases  and

provides biomedical researchers with invaluable tools to explore various features of

the genomes. Analysis of the sequence data for the extraction of its full information

will continue. Of the estimated 20 000-25 000 human protein-coding genes, some are

presumably still to be identified and many more to be annotated and characterized in

order to understand their roles and functions in health and disease (International

Human  Genome  Sequencing  Consortium  2004).  The  regulatory  elements  and  other

non-coding parts of the genome need to be analyzed. Comparative analyses between

http://www.ebi.ac.uk/genomes/index.html
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genomes of different species will identify functional elements of genomes, and

enhance our comprehension of the evolution and diversity of species. Characterization

of  genetic  sequence  variations  will  be  important  in  understanding  their  association

with phenotypic differences and diseases (International Human Genome Sequencing

Consortium 2004).

1.2. Approaches in disease gene identification

The choice of approach for disease gene identification depends on many things, such

as  the  availability  and  properties  of  the  family  material,  and  the  level  of

understanding of  the biochemical  basis  of  the disease.  In many approaches,  careful

delineation  of  the  disease  phenotype  and  the  collection  of  families  with  accurate

diagnoses are of critical importance at the initial stage.

Disease gene identification based on genomic location, an approach referred to as

positional cloning,  has  been  widely  used  in  the  research  of  monogenic  diseases

(Collins 1992, Collins 1995).  The process proceeds in successive steps of  which the

first is to define the chromosomal position of the disease gene by genomewide marker

genotyping (section 1.3) and linkage analysis (section 1.4) in families in which the

responsible gene is segregating. Next, the identified candidate region needs to be

characterized. Before the availability of the genomic sequence data this was carried

out  by  genetic  and  physical  fine  mapping  that  required  a  lot  of  laboratory  work.

Nowadays the characteristics of the candidate region can be examined from physical

maps available in online databases. Haplotype analyses and linkage disequilibrium

(LD) mapping (section 1.4) are utilized to decrease the length of the critical region as

much as possible. Finally, all genes in the candidate region are identified (section 1.6)

and screened for mutations (section 1.7) in order to find out which gene underlies the

disease. After the first successful gene identification by this method in X-linked

chronic granulomatous disease (Royer-Pokora et al. 1986), it has been employed in

determining the genetic background of a number of diseases. The sequence

information  provided  by  the  Human  Genome  Project  has  considerably  eased  and

accelerated  the  process  of  positional  cloning,  especially  of  the  characterization  of

candidate regions and the identification of candidate genes. The critical candidate

regions  may,  however,  be  very  large  and  contain  up  to  hundreds  of  genes.  An

application of positional cloning, positional candidate gene cloning, aims at

reducing the number of candidate genes in a candidate region by selecting the most

likely candidates with the aid of functional information (section 1.6) (Collins 1995).

This  method  has  been  successfully  used  in  the  cloning  of  many  disease  genes,  for

instance of the rhodopsin gene underlying retinitis pigmentosa (Dryja et  al. 1990).

However,  deciding  on  which  are  the  best  candidate  genes  is  sometimes  difficult.

Moreover, the genes ultimately identified sometimes turn out to encode protein
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products  without  known  function  or  with  a  function  not  obviously  related  to  the

respective  disease  phenotype.  The  selection  of  these  as  functional  candidate  genes

would have been unlikely.

The identification of disease genes without information of their chromosomal

position, functional cloning, has been used in certain instances when the disease

has been biochemically well defined (Collins 1992). Prior to the availability of genome

sequences this approach was hampered by the difficulty of identifying the disease

gene  even  if  the  defective  protein  was  known.  Functional  cloning  was  used,  for

instance, in the identification of the phenylalanine hydroxylase gene underlying

phenylketonuria (Robson et al. 1982). Nowadays, if the protein(s) potentially involved

in disease pathogenesis can be deduced, the genes encoding them (candidate genes,

section 1.6) can usually be found directly from the online databases and tested for

linkage and/or screened for mutations in a process designated as candidate gene

cloning.

1.3. Polymorphic markers

Individual variations between human genomes are exploited in human gene mapping.

The  majority  of  the  human  sequence  variation  is  attributable  to  single  nucleotide

polymorphisms  (SNPs),  whereas  the  rest  is  caused  by  insertions  or  deletions  of

nucleotides, repeat length polymorphisms, and rearrangements (Sachidanandam et

al. 2001). These genetic variants can be used as genetic markers in linkage, LD, and

haplotype analyses (section 1.4). In order to utilize these markers in genetic analyses

there should be sufficient amounts of allelic variation between individuals to enable

the analysis of adequate numbers of informative meioses within pedigrees.

The  first  method  suitable  for  genomewide  analysis  of  polymorphic

deoxyribonucleic  acid  (DNA)  markers  was  the  restriction  fragment  length

polymorphism (RFLP) method (Botstein et al. 1980). This method was able to detect

SNPs (see below) as well  as variable number tandem repeats (VNTRs),  in particular

minisatellites. After the development of the polymerase chain reaction (PCR)

technique, microsatellites (or  short  tandem repeats,  STRs),  another class of  VNTRs,

have  become  widely  used  genetic  markers.  They  are  usually  di-,  tri-,  or

tetranucleotide  repeats  that  are  very  polymorphic,  showing  high  levels  of  allelic

variation in the number of repeat units (Gray et al. 2000),  and  thus  are  very

informative. They are widely distributed throughout the human genome, occurring

approximately once per 2 kilobases (kb) of genomic DNA (Lander et al. 2001).  The

high variability of microsatellites is due to their high mutation rate (in humans 10-5-

10-3 nucleotides per cell division) explained mainly by slipped strand mispairing during
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DNA  replication  (Fan  and  Chu  2007).  Microsatellites  can  nowadays  be  analyzed  by

PCR-based methods at a relatively large scale (Dearlove 2002).

In  addition,  SNPs  are  at  present  commonly  used  in  a  broad  spectrum of  human

genetic analyses. They are less polymorphic compared to microsatellites, with

generally only two alleles, but are more stable due to lower mutation rates (Gray et

al. 2000). The density of SNPs is very high, with an estimated more than 10 million

SNPs in the human genome (Kruglyak and Nickerson 2001). The current (April 2008)

Single Nucleotide Polymorphism database (dbSNP) build 128 in the National Center

for Biotechnology Information (NCBI) database contains more than 4.9 million SNPs

(www.ncbi.nlm.nih.gov/sites/entrez?db=snp). SNPs can be genotyped at very large

scales using various assays including microarray-based methods involving allele-

specific hybridization (Syvänen 2005), as in the method utilized in this thesis

(Matsuzaki et al. 2004).

Along with the analysis of genomewide sequence data, it has become evident that

large-scale  copy-number  variants  (CNVs)  account  for  a  substantial  proportion  of

variation between human genomes (Iafrate et al. 2004, Sebat et al. 2004, Redon et

al. 2006).  Obviously,  they  will  have  an  impact  on  human  genetic  studies  but  their

usefulness as polymorphic markers is still unclear.

1.4. Linkage, linkage disequilibrium, and haplotype analyses

Linkage analysis is used for the detection of the chromosomal location of a disease-

causing  gene.  The  idea  is  to  find  out  if  two  loci  cosegregate  more  often  than  they

should  if  they  were  not  physically  close  to  each  other  on  the  same  chromosome

(Terwilliger and Ott 1994). The closer the one locus (e.g. a polymorphic marker) is to

the other locus (e.g. a locus harbouring the disease gene), the more rarely are they

separated  by  recombinations  (Terwilliger  and  Ott  1994).  The  proportion  of

recombinations  observed,  a  recombination  fraction  ( ),  is  used  as  a  measure  of

genetic  distance  between  two  loci  (Terwilliger  and  Ott  1994).  For  unlinked  loci   =

0.5,  whereas  for  linked  loci   <  0.5,  corresponding  to  observing  recombinations  in

less than 50% of meioses (Terwilliger and Ott 1994). The genetic linkage is measured

as a likelihood ratio of two hypotheses: two loci are linked at a certain  compared to

them  being  unlinked  (Morton  1955).  This  likelihood  is  expressed  as  a  logarithm  of

odds  (LOD)  score  (Z).  A  LOD  score  higher  than  3  (odds  ratio  1000:1)  is  generally

considered  as  significant  evidence  for  linkage,  whereas  lower  than  -2  (odds  ratio

1:100)  is  considered  as  proof  of  exclusion  (Terwilliger  and  Ott  1994).  The

chromosomal localization of  the disease gene can be inferred since the approximate

distance between the two loci is equal to the value of  at which the LOD score is

highest (Terwilliger and Ott 1994). Locus heterogeneity can be taken into account in

http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp).
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calculating LOD scores with results expressed as heterogeneity LOD (HLOD) scores.

In  two-point  linkage  analysis  the  LOD  scores  are  calculated  individually  at  single

marker loci, whereas in multipoint linkage analysis allelic data from several loci is

combined in the calculations. Parametric linkage analysis requires information on the

specific disease model, including information of mode of inheritance, penetrances, and

allele frequencies. In nonparametric linkage analyses the disease model does not

have to be known. Linkage analyses are conducted by computer programs, such as

programs  of  the  LINKAGE  package  (Lathrop  and  Lalouel  1984),  GENEHUNTER

(Kruglyak et al. 1996), and Merlin (Abecasis et al. 2002).

The candidate regions identified by linkage analyses are often broad and contain a

large number of  genes.  LD and haplotype analyses are useful  tools  in fine mapping

these regions,  especially  in isolated populations where the major founder mutations

originate  from  single  ancestors  (de  la  Chapelle  and  Wright  1998,  Peltonen et al.

1999). LD refers to the co-inheritance of particular marker alleles at loci close to each

other with a frequency greater than expected from random segregation. A certain set

of marker alleles, a haplotype, surrounding the disease-causing mutation is inherited

along with the ancestral mutation. The extent of LD decreases in each generation, as

the ancestral haplotype is disrupted by historical recombinations in successive

generations, and consequently, the length of the disease-associated haplotype tends

to decrease (de la Chapelle and Wright 1998, Peltonen et al. 2000a). In the case of

locus and allelic homogeneity, comparison of patient haplotypes in order to identify a

major shared haplotype restricted by individual historical recombinations can

considerably narrow down the candidate region (Peltonen et al. 2000a). The degree of

LD varies across the genome and is suggested to be structured into discrete sequence

blocks separated by hotspots of recombination (Daly et al. 2001, Jeffreys et al. 2001).

LD has been utilized in mapping of genes underlying several diseases, including many

belonging to the Finnish Disease Heritage (Peltonen et al. 1999), such as diastrophic

dysplasia (Hästbacka et al. 1992).  LD  and  haplotype  analyses  are  also  exploited  in

homozygosity mapping (Lander and Botstein 1987) (section 1.5). In addition, LD is

utilized in association analyses in dissecting the genetic components of complex traits

(Morton 2005).

1.5. Homozygosity mapping

Homozygosity  (or  autozygosity)  mapping  is  a  powerful  strategy  for  disease  gene

identification in consanguineous families suffering from recessively inherited diseases

(Lander and Botstein 1987). In such an inbred child the marker alleles on the region

surrounding the disease locus are almost always homozygous over several

centiMorgans  (cM)  (Lander  and  Botstein  1987).  An  ancestral  founder  chromosome

segment  is  passed  from  both  parents  to  the  affected  child  and  is  said  to  be
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homozygous  or  identical  by  descent  (IBD).  A  genomic  region  that  is  consistently

homozygous by descent in all patients is most likely to harbour the disease-causing

gene (Lander and Botstein 1987). Segments homozygous by descent are expected to

be observed also on some other genomic regions in each child of  a consanguineous

family,  with  a  higher  frequency  the  closer  the  relationship  of  the  parents,  and,  in

theory, ~6% of the genome of a child of first cousins is expected to be homozygous

by descent (Lander and Botstein 1987). In addition, the segments of homozygosity

are longer the closer the relationship, and the average size of a homozygous segment

is 20 cM in a child of first cousins (Woods et al. 2006). The extensive homozygosity,

in turn, results in an increased incidence of autosomal recessive diseases (Woods et

al. 2006). In populations with long traditions of consanguineous marriages, e.g. in the

Middle East (Bittles 2001), prolonged parental inbreeding has been reported to result

in increased overall levels of homozygosity (Woods et  al. 2006). By homozygosity

mapping disease gene loci  can be successfully  identified even in very small  families

without genotyping all intervening relatives (Carr et al. 2006). Homozygosity mapping

can also be applied in mapping gene(s) for a disease with a heterogeneous genetic

basis by a strategy of simultaneously searching for several loci, at least one of which

is  homozygous  by  descent  in  most  of  the  patients  (Lander  and  Botstein  1987).

Homozygosity can be exploited also in fine mapping the candidate region by searching

for  a  shared,  overlapping  region  of  homozygosity  between  the  patients,  and  thus

possibly  decreasing  the  length  of  the  critical  region  (Lander  and  Botstein  1987).

Homozygosity mapping has been applied in the identification of many disease genes,

one recent example being the tripartite motif-containing 32 (TRIM32) gene in Bardet-

Biedl syndrome (Chiang et  al. 2006). The homozygosity mapping approach also has

some potential pitfalls. There may be unexpected genetic heterogeneity present

within families resulting in loss of shared homozygosity of marker alleles flanking the

disease locus (Miano et  al. 2000). In addition, regions homozygous by descent

unrelated to the disease locus may be identified by chance,  and an underestimated

extent of inbreeding may result in spuriously high LOD scores (Miano et al. 2000).

1.6. Candidate genes

Candidate gene identification is an important step towards disease gene identification,

both in positional and non-positional cloning approaches. It is relatively

straightforward  today  with  the  availability  of  human  (and  many  other  species)

genome  sequences  and  consequently,  the  availability  of  information  on  physical

locations and sequences of many genes.

In positional cloning approaches, all known or putative genes in a candidate locus

are  identified  from  databases  using  genome  browsers,  such  as  NCBI

(www.ncbi.nlm.nih.gov/), Ensembl (www.ensembl.org), or Santa Cruz

http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/
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(genome.ucsc.edu/) browsers on the internet. Despite the existence of almost

complete human genomic sequence information, all genes are not yet identified and

catalogued,  and  thus  these  browsers  should  not  be  entirely  relied  upon.  Additional

genes may be revealed by gene prediction programs (Brent and Guigo 2004).

Functional candidate genes both in positional (in positional candidate gene

cloning) and non-positional (in functional and candidate gene cloning) approaches are

chosen  based  on  prior  knowledge  of  the  pathology  and  biochemical  basis  of  the

disease. The candidates can be chosen based on the known or putative function or

expression pattern of the encoded proteins or their homologs either in humans

(paralogs) or  in other species (orthologs).  Good candidates may also be genes that

are homologous or related to human or animal genes where mutations cause similar

phenotypes.  Additionally,  candidate  genes  may  encode  interaction  partners  of  a

protein  defective  in  a  disease  related  to  the  one  under  study  (Antonarakis  and

Beckmann 2006). Differences in gene expression between cells or tissues from

affected and control individuals detected by genomewide expression profiling using

microarray-based techniques may also suggest candidate genes (Antonarakis and

Beckmann 2006).

1.7. Mutation analysis

Candidate genes have to be individually tested to determine whether or not they are

responsible  for  the  disease  phenotype.  To  gain  confirmative  evidence  for  the

pathogenic  role  of  a  particular  gene,  several  criteria  have  to  be  fulfilled.  Mutation

screening (see below) in patients has to reveal one or preferably more sequence

variants that segregate with the disease in the respective families according to the

predicted mode of inheritance. In order to differentiate disease-causing sequence

variants from neutral polymorphisms, an adequate number of control chromosomes

representing the respective population have to be screened (Collins and Schwartz

2002). In autosomal recessive disorders it is anticipated that the disease-causing

alteration is not seen in homozygous form in unaffected individuals. In addition, the

nature of the sequence variants and their consequences are assessed (see below).

The ultimate proof of the pathogenic role of a gene would be obtained by a functional

test, such as restoration of the normal phenotype in vitro,  or  by  generation  of  an

animal model for the disease. Unfortunately these may be time consuming and not

always immediately feasible, or may not give definite proof for the pathogenic role of

the gene.

While  a  variety  of  methods  for  mutation  screening  have  traditionally  been

employed, nowadays a commonly used method due to its reduced costs is direct

sequencing. It can be performed following the PCR amplification of exons and exon-
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intron boundaries of the candidate genes from the genomic DNA, or of exons from the

complementary DNA (cDNA), of patients, carriers, and control individuals. However,

even this method sometimes fails to detect mutations. Moreover, some mutations are

difficult  to  find,  especially  in  intronic  or  regulatory  regions,  or  in  the  case  of  large

chromosomal rearrangements. Other methods used relatively frequently at present

include, for example, denaturing high-performance liquid chromatography (DHPLC)

(Xiao and Oefner 2001) and multiplex ligation-dependent probe amplification (MLPA)

(Schouten et al. 2002).

Various  types  of  sequence  alterations  can  be  identified,  and  the  assessment  of

their pathogenic role differs accordingly. In recessively inherited diseases, the

mutations  are  usually  expected  to  inactivate  the  gene  product  (loss  of  function

mutations). The easiest to evaluate are probably nonsense mutations that

introduce premature stop codons into the coding regions. If the nonsense mutations

occur more than ~50 nucleotides upstream from the last exon-exon junction they

usually lead to the degradation of the transcript by nonsense-mediated messenger

ribonucleic acid (mRNA) decay (NMD) (Maquat 2004). Alternatively they may produce

truncated protein products. Splicing mutations can be evaluated according to their

effects on splicing of the corresponding transcripts by reverse transcriptase PCR (RT-

PCR). Mutations affecting the consensus sequences at splice donor or splice acceptor

sites or at splice branch sites may render them less effective and abolish the splicing

partially or completely (Cartegni et al. 2002). In addition, cryptic splice-sites can be

activated or splicing enhancers and silencers altered. These may lead to complete or

partial  exon  skipping  or  intron  retention,  as  well  as  to  changes  in  the  ratios  of

different splice variants. Deletions, insertions, and duplications are assessed

based on their predicted effects on amino acid sequences. These, as well as splicing

mutations, can introduce frameshifts and premature stop codons with consequences

as described above. If the reading frame is maintained amino acid(s) can be deleted

or inserted. Missense mutations are  sometimes  difficult  to  differentiate  from rare

neutral  polymorphisms.  A  missense  change  is  more  likely  to  be  pathogenic  if  the

affected  amino  acid  is  conserved  among  homologous  proteins  in  different  species

and/or in human. Differences in the chemical nature of the side chain (acidic vs.

basic,  polar  vs.  nonpolar)  between  the  original  and  the  substituting  amino  acid

suggest a pathogenic role for a variant. A sequence variant in a part of the gene that

codes for a functionally important domain in the corresponding protein is likely to be

pathogenic.
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1.8. Functional analyses

To  understand  the  molecular  pathology  of  the  disease,  a  substantial  amount  of

research is usually needed after the underlying gene has been identified. Revealing

the normal biochemical and cellular function of the gene product will not only help in

understanding the disease mechanism but will also give new information on biological

functions and metabolic pathways in general. Many hints of the gene function can be

obtained by analyzing the gene and/or protein sequence using bioinformatic sequence

analysis  tools  and  by  exploring  various  databases  on  the  internet.  While  a  large

number of these exist, only some are discussed below as examples. These tools are

not always very effective and reliable, and different programs and/or databases may

sometimes provide contradictory results. At least some laboratory research is usually

needed to figure out the functions of the genes comprehensively.

Many physical and chemical characteristics of proteins can be predicted using

various  programs  on  the  internet.  For  instance,  discrimination  between  soluble  and

membrane proteins as well as assessment of the membrane protein topology can be

achieved using several programs (e.g. TMHMM, www.cbs.dtu.dk/services/TMHMM-

2.0/) (Krogh et al. 2001). A search for homologous or related sequences with known

or  predicted  function,  for  example  using  different  basic  local  alignment  search  tool

(BLAST) (Altschul et al. 1990)  programs  through  the  NCBI  web  pages

(www.ncbi.nlm.nih.gov/BLAST/), may be worthwhile since homologous genes have

common evolutionary ancestors and are likely to have related functions. In addition,

sequence alignments may identify conserved protein domains that have functional

roles. Protein domain families have been collected in various databases, such as Pfam

(available e.g. from pfam.sanger.ac.uk) (Sonnhammer et al. 1997).

The experimental approaches for the characterization of gene function are various

and vary widely in the time frame and costs at which they are possible to carry out.

The  simplest  experiments  include  the  analysis  of  spatial  and  temporal  gene

expression patterns by northern blot  and RT-PCR analyses as well  as by ribonucleic

acid (RNA) in  situ hybridization  in  different  cell  lines  and/or  tissues  collected  from

animals at different developmental stages. The intracellular localization of the wild-

type and mutant proteins is also relatively easy to study in an overexpression system

in cell cultures.

For the more demanding experiments aiming at the deep understanding of protein

function and disease mechanisms, the limit is set only by the imagination. However,

application of  many of  these approaches requires production of  an antibody specific

http://www.cbs.dtu.dk/services/TMHMM-
http://www.ncbi.nlm.nih.gov/BLAST/
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for  the  protein  in  question.  The  disease  may  be  modeled  and  the  function  of  the

protein  studied  in  cell  cultures  and  in  various  animal  models,  especially  in  mutant

mice  generated  by  gene  targeting  (Muller  1999).  Inhibition  of  endogeneous  gene

expression by RNA interference (RNAi) (Fire et al. 1998) may also be useful for these

purposes. Genomewide expression profiling using microarray techniques (Lockhart et

al. 1996)  may  also  be  used.  Analysis  of  interaction  partners  of  a  given  protein  by

various methods may reveal the protein complex or cellular pathway it is involved in

(Berggard et al. 2007).



Review of the literature

22

2. Neuronal ceroid lipofuscinoses

The NCLs are worldwide occurring progressive encephalopathies that are, as a group,

considered to be the most common childhood progressive hereditary

neurodegenerative disorders (Rider and Rider 1988, Mole et  al. 2005). The

pathological  features  characteristic  to  all  NCLs  are  the  accumulation  of

autofluorescent ceroid and lipofuscin-like lipopigments in both neuronal and

extraneuronal tissues, brain atrophy, and degeneration of neurons (Goebel 1997).

NCLs  are  inherited  in  an  autosomal  recessive  manner,  with  the  exception  of  some

rare autosomal dominant adult-onset forms (Peltonen et al. 2000b). Although the age

of  onset  in  NCLs  varies  from  newborn  to  adult,  the  clinical  manifestations  are

generally similar in all forms, including progressive psychomotor decline, epileptic

seizures, loss of vision, and ultimately, premature death (Haltia 2003). At least ten

forms  of  NCLs  are  thought  to  exist  (CLN1-CLN9  and  congenital  NCL)  (Haltia  2003)

(Table  1),  and  before  this  thesis,  six  genes  (PPT1, TPP1, CLN3, CLN5, CLN6, and

CLN8) underlying them had been identified (Mole 2004) (Table 2). NCLs belong to the

larger  group  of  lysosomal  storage  disorders  (section  3.4)  (Jeyakumar et  al. 2005).

The  storage  bodies  in  the  cells  of  NCL  patients  show  variable  ultrastructural

characteristics that correlate with the form and the underlying gene, and typically

have  the  appearance  of  granular  osmiophilic  deposits  (GRODs),  or  curvilinear,

rectilinear, or fingerprint profiles (Elleder et al. 1999) (Table 1). There are currently

no effective treatment for NCLs (Hobert and Dawson 2006).



Review of the literature

23

Table 1. Classification, phenotypes, and storage material in NCLs.

Gene/
putative
gene

Major (and minor) phenotypes Main
accumulated
protein

Ultrastructural
phenotype

PPT1 (CLN1) Infantile (late-infantile, juvenile, adult)
NCL

SAPs A and D GROD

TPP1 (CLN2) Late-infantile (infantile, juvenile,
protracted) NCL

subunit c CL

CLN3 Juvenile (atypical, protracted, delayed)
NCL

subunit c FP

CLN4 Adult NCL: Kufs / Parry diseases subunit c  /
SAP D

RL, CL, FP /
GROD

CLN5 Late-infantile (atypical, delayed) NCL subunit c RL, CL, FP
CLN6 Late-infantile (atypical, protracted)

NCL
subunit c RL, CL, FP

CLN7 Late-infantile NCL n.d. RL, CL, FP
CLN8 EPMR: juvenile, protracted /

late-infantile NCL
subunit c /
n.d.

CL-like, granular /
FP, CL, GROD-like

CLN9 Juvenile NCL subunit c GROD, FP, CL
n.d. Congenital NCL n.d. GROD
Abbreviations: n.d. = not determined, EPMR = progressive epilepsy with mental retardation,
SAP = sphingolipid activator protein (saposin), subunit c = subunit c of mitochondrial
adenosine triphosphate synthase, GROD = granular osmiophilic deposits, CL = curvilinear
profiles, FP = fingerprint profiles, RL = rectilinear profiles

Table 2. Currently known human NCL genes and proteins.

Gene Chromosomal
location

Protein Cellular localization

PPT1
(CLN1)

1p34.2 Palmitoyl protein
thioesterase 1 (PPT1)

Lysosomes, presynaptic regions,
synaptosomes, synaptic vesicles

TPP1
(CLN2)

11p15.4 Tripeptidyl peptidase I
(TPP1)

Lysosomes

CLN3 16p11.2 CLN3,
unknown function

Lysosomes, early endosomes,
presynaptic regions (not synaptic
vesicles)

CLN5 13q22.3 CLN5,
unknown function

Lysosomes, ER, neuronal
extensions

CLN6 15q23 CLN6,
unknown function

ER

CLN8 8p23.3 CLN8,
unknown function

ER and ERGIC

Abbreviations: ER = endoplasmic reticulum, ERGIC = ER-Golgi intermediate compartment;
chromosomal locations according to the Ensembl genome browser (www.ensembl.org)

2.1. Classification of NCLs

Originally,  NCLs  were  classified  into  three  childhood  and  two  adult  forms:  infantile

NCL (INCL; Haltia-Santavuori disease; CLN1), late-infantile NCL (LINCL; Jansky-

Bielschowsky  disease;  CLN2),  juvenile  NCL  (JNCL;  Spielmeyer-(Vogt)-Sjögren  or

Batten disease; CLN3), and two forms of adult NCLs (ANCL; Kufs and Parry diseases;

http://www.ensembl.org/
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CLN4) (Rider and Rider 1988). These are distinguished by differences in the ages of

onset,  slight  variations  in  the  clinical  features  and  their  order  of  appearance,  and

differences in neuropathological findings including ultrastructure of the storage

material (Table 1). Following more detailed clinical characterization of these

phenotypes as well as the progress in molecular genetic and biochemical studies that

facilitated the definitive diagnoses, a still growing number of additional forms have

been recognized. The late-infantile group has been revealed to be especially

heterogeneous  with  several  variant  forms  identified:  CLN5  (Finnish  vLINCL),  CLN6,

CLN7 (Turkish vLINCL), and CLN8 (Haltia 2003). The juvenile-onset group shows also

some heterogeneity: Northern epilepsy (progressive epilepsy with mental retardation,

EPMR; CLN8, allelic to CLN8-deficient vLINCL) and CLN9-deficient NCL can be

considered  as  belonging  to  this  category.  In  addition,  a  rare  congenital  NCL  form

occurring in newborns expands the age-range of NCL classification even further. After

identification of NCL-causing genes, this classification has become somewhat out-of-

date since almost all of these genes underlie atypical, protracted, less severe, and/or

delayed forms of the diseases in addition to the classical phenotypes used in the

original  classification.  All  above  mentioned  NCL  forms  are  discussed  in  more  detail

and with appropriate references in sections 2.2 and 2.3.

2.2. NCLs with known molecular genetic basis

2.2.1. CLN1

The PPT1 gene,  assigned  by  linkage  analysis  to  the  short  arm of  chromosome 1  in

Finnish  families  with  INCL  (Järvelä et  al. 1991),  was  identified  by  the  positional

candidate gene cloning method as a gene encoding palmitoyl  protein thioesterase 1

(PPT1) (Vesa et al. 1995). In vitro, PPT1 removes palmitate residues from S-acylated

proteins  (Camp  and  Hofmann  1993),  whereas  the in vivo substrates remain

unidentified. While in non-neuronal cells PPT1 is a soluble lysosomal enzyme (Hellsten

et al. 1996,  Verkruyse  and  Hofmann  1996),  in  neurons  it  is  also  present  in

presynaptic regions of axons and specifically in synaptosomes and synaptic vesicles,

suggesting an extralysosomal function in the brain (Heinonen et al. 2000, Lehtovirta

et al. 2001, Ahtiainen et  al. 2003).  The  crystal  structure  of  PPT1  has  been

determined, providing a structural basis for the genotype-phenotype correlations

(Bellizzi et  al. 2000).  The  exact  physiological  function  of  PPT1  is  still  poorly

understood.

Approximately half of the mutations identified in the PPT1 gene thus far  lead to

the most common, the earliest-onset, and the most severe form of CLN1, INCL, that
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is enriched in the Finnish population with an incidence of 1:20 000 (Santavuori et al.

2000). Affected children are healthy until the age of 6-18 months after which the

symptoms including rapid psychomotor deterioration, hypotonia, ataxia, visual failure,

microcephaly, myoclonus, and epilepsy develop (Santavuori et al. 1973, Santavuori et

al. 1974).  The  disease  progresses  rapidly  and  death  occurs  at  ~10  years  of  age

(Santavuori et al. 2000). In addition to INCL, PPT1 mutations cause a variety of other

clinical phenotypes, with the age of onset varying up to adulthood (Vesa et al. 1995,

Das et al. 1998, Mitchison et al. 1998, van Diggelen et al. 2001). The unifying feature

in all PPT1 deficiencies is the characteristic granular storage material with GRODs in

patient cells (Haltia et al. 1973, Das et al. 1998, Mitchison et al. 1998, van Diggelen

et al. 2001). At least in INCL the major portion of the accumulated proteins in the

storage  bodies  constitutes  of  sphingolipid  activator  proteins  (saposins)  A  and  D

(Tyynelä et al. 1993).

More than 40 PPT1 mutations  have  been  identified  (NCL  Mutation  Database,

www.ucl.ac.uk/ncl/mutation). Some common mutations exist, of which the most

common  (c.364A>T,  p.Arg122Trp),  associated  with  INCL,  is  enriched  in  the  Finnish

population due to a founder effect (Vesa et  al. 1995).  There  is  some  evidence  of

genotype-phenotype correlation. Mutations predicted to result in loss of mRNA and/or

protein or in severely truncated proteins (nonsense or frameshift-causing mutations)

are usually associated with INCL. Other mutations (e.g. missense mutations) that

lead to INCL generally occur near the enzymatically active site and affect catalysis,

substrate binding, conformation, or stability of PPT1 more dramatically than those

that lead to later-onset phenotypes and occur in more peripheral sites (Bellizzi et al.

2000, Das et  al. 2001).  In  addition,  INCL-causing  mutations  lead  to  lack  of  PPT1

enzymatic activity both in overexpression systems and in patient cells whereas some

residual activity is detected with mutations associated with later-onset diseases (Vesa

et al. 1995, Das et  al. 1998, Das et  al. 2001, van Diggelen et al. 2001, Lyly et al.

2007). Some of the mutations have also been shown to disturb the intracellular

routing of the protein in overexpression systems, and the severity of the defect

correlates to some extent with the severity of the resulting phenotype (Hellsten et al.

1996, Das et al. 2001, Salonen et al. 2001, Lyly et al. 2007).

No  naturally  occurring  animal  models  for  PPT1  deficiency  exist  but  two  mouse

models replicating INCL phenotype have been generated by targeted disruption of

Ppt1 (Gupta et al. 2001, Jalanko et al. 2005).

2.2.2. CLN2

A homozygosity mapping approach was applied to localize the TPP1 gene  to

chromosome 11p15 in families with classical LINCL originating from several countries

http://www.ucl.ac.uk/ncl/mutation).
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(Sharp et  al. 1997). The gene, encoding a pepstatin-insensitive carboxyl protease,

was identified by a biochemical strategy as a lysosomal, mannose-6-phosphorylated

protein missing from the brain samples of  patients with classical  LINCL (Sleat et  al.

1997). Subsequently, the protein was recognized as tripeptidyl peptidase I (TPP1), a

serine-carboxyl  proteinase  that  removes  tripeptides  from  the  N-termini  of

polypeptides  (Rawlings  and  Barrett  1999,  Tomkinson  1999,  Vines  and  Warburton

1999, Lin et al. 2001, Wlodawer et al. 2001). Although several substrates have been

suggested based on in vitro experiments (reviewed in (Kyttälä et  al. 2006)),  the

natural substrates and cellular function of TPP1 are not currently known.

Most of the mutations identified in the TPP1 gene lead to classical LINCL with the

age  of  onset  between  two  and  four  years  (Williams et  al. 1999). The symptoms

include seizures, ataxia, myoclonus, developmental regression, psychomotor

deterioration, and visual failure. Patients become chair-bound between four and six

years of age, and death occurs in middle childhood (Williams et al. 1999, Williams et

al. 2006). The storage bodies in patient cells are most commonly curvilinear in their

ultrastructural appearance (Williams et al. 1999), and have subunit c of mitochondrial

adenosine triphosphate (ATP) synthase as the main protein component (Hall et  al.

1991, Palmer et  al. 1992). In addition to classical LINCL, mutations in TPP1 cause

juvenile-onset or protracted diseases (Hartikainen et  al. 1999, Sleat et  al. 1999,

Wisniewski et al. 1999, Steinfeld et al. 2002) as well as infantile-onset disease (Ju et

al. 2002).

To  date,  over  50 TPP1 mutations have been identified (NCL Mutation Database,

www.ucl.ac.uk/ncl/mutation). Two of the mutations, IVS5-1G>C that affects the

splicing  of  the  transcript,  and  a  nonsense  mutation  c.622C>T  (p.Arg208X),  are

especially common. No clear genotype-phenotype correlation has been established,

and most of the mutations, irrespective of the mutation type and the resulting

phenotype, have been reported to lead to a deficiency in TPP1 enzyme activity (Sleat

et al. 1999, Wisniewski et al. 1999, Steinfeld et al. 2004). In addition, some missense

mutations have been shown to disturb the intracellular trafficking of the protein in an

overexpression system (Steinfeld et al. 2004).

A mutation in the canine TPP1 gene has been identified as the cause for an NCL-

like phenotype occurring in Dachshund dogs (Awano et  al. 2006b).  In  addition,  a

mouse model for TPP1 deficiency has been generated by targeted disruption of Tpp1

(Sleat et al. 2004).

http://www.ucl.ac.uk/ncl/mutation).
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2.2.3. CLN3

The CLN3 gene was first localized by linkage analysis and fine mapping to 16p11.2-

p12.1  in  families  with  JNCL  originating  from  several  countries  (Eiberg et  al. 1989,

Mitchison et al. 1994),  and  subsequently  identified  by  positional  cloning  (The

International Batten Disease Consortium 1995). CLN3 codes for a novel membrane

protein with most likely six transmembrane domains (The International Batten

Disease  Consortium  1995,  Janes et  al. 1996, Kyttälä et  al. 2004). The subcellular

localization  of  CLN3  depends  on  the  cell  type.  In  extraneural  cells  it  is  targeted

primarily to the lysosomal compartment (Järvelä et  al. 1998,  Järvelä et  al. 1999,

Kyttälä et al. 2004). In neurons, additional localization to early endosomes and to

synaptic regions excluding synaptic vesicles suggests extralysosomal roles in neuronal

cells (Luiro et al. 2001, Kyttälä et al. 2004). The function of CLN3 is still not clear but

possible roles in the maintenance of lysosomal pH homeostasis, arginine transport,

membrane trafficking, and in preventing apoptosis have been suggested (reviewed by

(Kyttälä et al. 2006)).

The most common phenotype caused by CLN3 mutations is JNCL that manifests at

the age of four to seven years with rapidly progressing visual failure (Hofman et al.

1999).  Other  symptoms  include  progressive  mental  and  motor  deterioration,  and

seizures. Patients become non-ambulatory usually at 15-28 years of age, and die in

the second or third decade of life (Santavuori et al. 2000). Globally, JNCL is the most

common  form  of  the  NCLs,  and,  moreover,  it  is  especially  common  in  the  Finnish

population with an incidence of 1:21 000 (Santavuori et al. 2000). Special findings in

patients with CLN3 mutations are the occurrence of  vacuolated lymphocytes as well

as  fingerprint  profiles  as  the  characteristic  ultrastructural  feature  of  the  storage

material (Hofman et al. 1999).  The  main  protein  component  in  storage  material  is

subunit c of mitochondrial ATP synthase (Hall et al. 1991, Palmer et al. 1992). CLN3

mutations  have  also  been  associated  with  atypical,  protracted,  or  delayed  forms  of

the disease (Järvelä et al. 1997, Munroe et al. 1997, Åberg et al. 1998, Wisniewski et

al. 1998, Lauronen et al. 1999).

More  than  40  mutations  in CLN3 have been identified thus far (NCL Mutation

Database,  www.ucl.ac.uk/ncl/mutation).  The most widespread of  these,  occurring in

almost all patients in at least heterozygous form, is a 1-kb deletion (of exons 7-8,

c.461-677del)  that  produces  a  frameshift  and  a  premature  stop  codon  (The

International Batten Disease Consortium 1995, Munroe et al. 1997). Recently, it has

been suggested that rather than the protein being degraded, truncated mutant

proteins are produced that retain some CLN3 function (Kitzmuller et  al. 2008).

Nevertheless, the intracellular trafficking of the mutant protein has been shown to be

blocked in overexpression systems (Järvelä et al. 1999).  In  most  patients  the

homozygous  1-kb  deletion  is  associated  with  the  JNCL  phenotype  whereas  in

http://www.ucl.ac.uk/ncl/mutation).
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combination with other mutations it  may lead to atypical  phenotypes (Järvelä et  al.

1997, Munroe et al. 1997, Åberg et al. 1998, Wisniewski et al. 1998, Lauronen et al.

1999). In contrast to the 1-kb deletion, many of the missense mutations have been

reported  to  have  no  effect  on  the  subcellular  localization  of  the  protein  in

overexpression systems (Järvelä et  al. 1999,  Haskell et  al. 2000). Some missense

mutations  that  are  associated  with  milder  phenotypes  restore  the  function  of  the

CLN3 homolog battenin (Btn1p, Yhc3p) in Btn1p-deficient yeast cells (Haskell et  al.

2000).

No  natural  model  organisms  for  CLN3  deficiency  exist  but  several  have  been

artificially generated. These include two knock-out mice (Katz et al. 1999, Mitchison

et al. 1999),  one   knock-in  mouse  (Cln3 ex7-8, (Cotman et  al. 2002)),  and  one  -

galactosidase reporter mouse (Eliason et  al. 2007)  models.  In  addition,  yeast

(Saccharomyces cerevisiae  (Pearce  and  Sherman  1997)  and Schizosaccharomyces

pombe (Gachet et  al. 2005)),  and Caenorhabditis elegans (de Voer et  al. 2005)

models for CLN3 deficiency have been produced.

2.2.4. CLN5

The CLN5 gene  was  localized  by  linkage  analysis  to  chromosome  13q22  in  Finnish

families with vLINCL (Savukoski et al. 1994, Klockars et al. 1996), and subsequently

identified by positional cloning as a gene encoding a novel glycoprotein with four

isoforms of different lengths resulting from the use of alternative initiator methionines

(Savukoski et al. 1998, Isosomppi et al. 2002, Vesa et al. 2002). CLN5 may exist in

both soluble and membrane-associated forms, and in non-neuronal cells it is targeted

to lysosomes (Isosomppi et al. 2002, Vesa et al. 2002, Holmberg et al. 2004, Bessa

et al. 2006). In neurons, CLN5 localizes to cell soma, to lysosomes and endoplasmic

reticulum (ER), and to neuronal extensions (Holmberg et  al. 2004). CLN5 has been

shown  to  interact  with  TPP1  and  CLN3  proteins in vitro (Vesa et  al. 2002).  The

function of CLN5 is currently unknown.

CLN5 disease was initially identified in Finnish patients, and has therefore been

denoted as Finnish vLINCL (Santavuori et  al. 1982).  While  clinically  the  disease

resembles classical LINCL (CLN2), the age of onset is somewhat later, between four

and seven years (Santavuori et  al. 1982, Santavuori et  al. 1991).  In  addition,  the

disease shows a slower clinical course. Patients lose the ability to walk at ~10 years

of age, while death usually occurs between the ages of 14 and 32 years (Santavuori

et al. 1982, Santavuori et al. 1991, Santavuori et al. 1999). The ultrastructure of the

storage  bodies  in  patient  cells  includes  features  of  rectilinear,  curvilinear,  and

fingerprint profiles (Santavuori et  al. 1982, Tyynelä et  al. 1997).  The major protein

component in storage material is subunit c of mitochondrial ATP synthase (Tyynelä et
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al. 1997). Occasionally, CLN5 mutations  are  associated  with  atypical  and/or  later-

onset disease phenotypes (Pineda-Trujillo et al. 2005, Cannelli et al. 2007).

Although at least 13 mutations in CLN5 have been reported to underlie the disease

(NCL Mutation Database, www.ucl.ac.uk/ncl/mutation), one of these, the Finnish

founder mutation c.1175delAT (p.Tyr392X), is identified in the majority of the families

(Savukoski et al. 1998). Contradictory results of its effect on trafficking of the mutant

protein have been reported in overexpression systems: it either arrests the protein in

the Golgi or has no effect (Isosomppi et  al. 2002, Vesa et al. 2002).  Some  of  the

other mutations have been shown not to interfere with the subcellular localization of

the mutant proteins (Vesa et al. 2002). Mutations in CLN5 have also been shown to

disrupt the interaction of CLN5 with TPP1 but not with CLN3 (Vesa et al. 2002). There

seems to be no obvious genotype-phenotype correlation since, except for a few

atypical cases (Pineda-Trujillo et  al. 2005, Cannelli et  al. 2007), the phenotype is

rather uniform irrespective of the underlying mutation ((Holmberg et al. 2000), NCL

Mutation Database, www.ucl.ac.uk/ncl/mutation).

Two natural animal models for CLN5 deficiency exist: CLN5 mutations cause NCL-

like phenotypes in Border collie dogs (Melville et  al. 2005)  and  in  Devon  cattle

(Houweling et  al. 2006).  In  addition,  a  CLN5  mouse  model  has  been  generated  by

targeted disruption of Cln5 (Kopra et al. 2004).

2.2.5. CLN6

The CLN6 gene was localized to chromosome 15q21-23 using a homozygosity

mapping strategy in two consanguineous families with vLINCL originating from the

Indian subcontinent (Sharp et al. 1997). The gene was subsequently identified by

positional  cloning  as  a  gene  coding  for  a  novel  ER-resident  transmembrane  protein

with seven membrane-spanning domains (Gao et al. 2002, Wheeler et al. 2002, Heine

et al. 2004, Mole et  al. 2004, Heine et  al. 2007).  The function of  CLN6 is  unknown

although its defects have been reported to result in lysosomal dysfunction (Heine et

al. 2004).

Virtually all mutations in the CLN6 gene lead to a vLINCL phenotype that, apart

from  the  later-onset  at  three  to  eight  years  of  age  and  the  slower  progression,  is

clinically similar to classical LINCL (CLN2) (Mole et al. 2005). The ultrastructure of the

storage bodies is comprised of fingerprint bodies as well as curvilinear and rectilinear

profiles whereas the main protein component seems to be subunit c of mitochondrial

ATP synthase (Elleder et al. 1997, Mole et al. 2005).

http://www.ucl.ac.uk/ncl/mutation)
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In  all,  27  mutations  have  been  identified  in  the CLN6 gene  (NCL  Mutation

Database, www.ucl.ac.uk/ncl/mutation). There is no major founder mutation in CLN6

and  most  of  the  mutations  are  family-specific  (Sharp et  al. 2003).  However,  two

mutations are more common than others: c.214G>T (p.Glu72X) identified in Costa

Rican patients and c.460_462delATC (p.Ile154del) in Portuguese patients (Gao et al.

2002, Wheeler et al. 2002). Mutations in CLN6 have also been detected in patients

originating, for example, from other Mediterranean countries and from the Indian

subcontinent (Wheeler et  al. 2002, Sharp et  al. 2003, Teixeira et  al. 2003).

Irrespective of the underlying CLN6 mutation,  the  vLINCL  phenotype  is  clinically

broadly  uniform  with  only  a  few  patients  reported  to  show  atypical  or  protracted

disease course ((Sharp et  al. 2003), NCL Mutation Database,

www.ucl.ac.uk/ncl/mutation). When studying the effects of mutations on protein

levels,  CLN6  protein  was  shown  to  be  absent  from  fibroblasts  of  two  patients  with

homozygous CLN6 mutations introducing premature stop codons (c.316dupC and

p.Glu72X) (Mole et  al. 2004). In addition, some of the mutations affecting single

amino acids were shown to have no effect on the ER localization of the mutant CLN6

proteins in an overexpression system (Mole et al. 2004).

Naturally occurring mutations in CLN6 orthologs have been identified in the

neuronal ceroid lipofuscinosis (nclf) mouse (Bronson et  al. 1998, Gao et  al. 2002,

Wheeler et al. 2002) and in Merino sheep (Tammen et al. 2006) that show NCL-like

phenotypes.

2.2.6. CLN8

The CLN8 gene, localized by linkage analysis to chromosome 8p23 in Finnish families

with EPMR (Tahvanainen et al. 1994), and subsequently isolated by positional cloning,

is predicted to encode  a  membrane  protein  with  several  (4-7)  transmembrane

domains (Ranta et  al. 1999,  Lonka  2004).  In  extraneural  cells,  ER-resident  CLN8

protein has been suggested to recycle between the ER and ER–Golgi intermediate

compartment (ERGIC) (Lonka et al. 2000), whereas in neurons it is localized mainly

to the ER and possibly additional locations outside the ER (Lonka et al. 2004).  The

function of CLN8 is unknown but it belongs to the TRAM-Lag1p-CLN8 (TLC) family of

proteins, members of which are suggested to have roles in biosynthesis, metabolism,

transport, and sensing of lipids (Winter and Ponting 2002).

Northern epilepsy, in which the CLN8 gene  was  first  identified,  is  present

exclusively in Finnish patients (Ranta et al. 1999). This mildest form of the childhood-

onset NCLs presents with epilepsy usually at the age of 5–10 years, after which the

other  symptoms,  progressive  mental  deterioration,  and  motor  and  behavioural

problems, follow (Hirvasniemi et  al. 1994). The patients may survive until 50-60

http://www.ucl.ac.uk/ncl/mutation).
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years of age (Hirvasniemi et  al. 1995).  The  storage  material  in  EPMR  patient  cells

consists  mostly  of  subunit  c  of  mitochondrial  ATP  synthase  and  shows  patterns

resembling curvilinear, and to a lesser extent, granular ultrastructure (Herva et  al.

2000).  Although  EPMR  was  for  a  long  time  the  only  phenotype  associated  with

mutations in the CLN8 gene, CLN8 mutations  have  now  been  identified  in  patients

with more severe vLINCL phenotypes originating from Turkey, Italy, and Israel

(Mitchell et  al. 2001, Ranta et  al. 2004, Topcu et  al. 2004b,  Cannelli et  al. 2006,

Zelnik et  al. 2007).  The  disease  in  these  patients  is  rather  uniform  and  closely

resembles  the  other  vLINCLs  with  an  age  of  onset  between  two  and  seven  years.

Ultrastructural examination of the storage material revealed fingerprint profiles

and/or curvilinear bodies, and occasionally GROD-like deposits (Mitchell et  al. 2001,

Ranta et al. 2004, Topcu et al. 2004b, Cannelli et al. 2006, Zelnik et al. 2007).

Eleven  mutations  have  now  been  identified  in CLN8 (NCL Mutation Database,

www.ucl.ac.uk/ncl/mutation). The most common mutation c.70C>G (p.Arg24Gly) has

been identified in homozygous form in all  but one EPMR patient (Ranta et  al. 1999,

Siintola et  al. 2006).  This  and  two  of  the  missense  mutations  present  in  Turkish

patients (p.Arg204Cys and p.Trp263Cys) have been shown to have no effect on the

subcellular localization of mutant CLN8 in overexpression systems (Lonka et al. 2000,

Lonka et  al. 2004).  Among CLN8-associated vLINCL, no genotype-phenotype

correlation can be detected.

Two naturally  occurring animal  models for  CLN8 deficiency have been described:

NCL-like phenotypes in motor neuron degeneration (mnd) mice and in English Setter

dogs  are  caused  by  mutations  in  the  corresponding CLN8 orthologs (Ranta et  al.

1999, Katz et al. 2005).

2.3. NCLs with unknown molecular genetic basis

2.3.1. CLN4

A  heterogeneous  group  of  ANCLs  are  the  mildest  forms  of  the  NCLs,  with  ages  of

onset ranging from 11 to 50 years (Berkovic et al. 1988). The symptoms, depending

on the form of the disease, may include dementia, myoclonus, epilepsy, ataxia, motor

disturbances, late pyramidal and extrapyramidal symptoms, and behavioural changes,

whereas no visual failure occurs (Berkovic et  al. 1988, Martin et  al. 1999).  The

diseases  progress  slowly  and  lead  to  death  on  average  12.5  years  after  onset

(Berkovic et  al. 1988).  Ultrastructural  examinations  of  the  storage  material  have

revealed variable patterns with granular, fingerprint, curvilinear, and rectilinear

http://www.ucl.ac.uk/ncl/mutation).
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profiles detected in various combinations in different tissues (Martin et  al. 1999).

Accumulation of subunit c of mitochondrial ATP synthase and/or saposin D in storage

material has been shown at least in some patients (Hall et  al. 1991, Nijssen et  al.

2003).

ANCL  is  most  commonly  inherited  in  an  autosomal  recessive  manner  (Kufs

disease) but some cases with autosomal dominant inheritance (Parry disease) have

also been reported (Berkovic et  al. 1988, Martin et  al. 1999, Nijssen et  al. 2002).

While the putative gene locus CLN4 has been assigned to ANCL, its molecular genetic

background is most probably genetically heterogeneous and remains to be elucidated.

Given  that  most  of  the  NCL-causing  genes  have  additionally  been  associated  with

later-onset and/or atypical  forms, they can be considered candidate genes for  ANCL

forms. Most notably, PPT1 mutations  have  been  identified  in  adult-onset  NCL  with

GRODs (van Diggelen et al. 2001).

2.3.2. CLN7

The CLN7 locus was first designated in 1999 as the one harbouring the causative

gene for vLINCL present in Turkish patients (Wheeler et al. 1999). This Turkish

vLINCL was considered a distinct genetic entity since the other NCL loci known at that

time  (CLN1/PPT1, CLN2/TPP1, CLN3, CLN5, and CLN6)  were  excluded  by

homozygosity analyses (Wheeler et al. 1999). Subsequent homozygosity mapping in

consanguineous Turkish vLINCL families identified a region of shared homozygosity of

marker alleles on chromosome 8p23 (Mitchell et al. 2001) that contained yet another

NCL-causing gene, CLN8, that had meanwhile been identified (Ranta et al. 1999).

After extending the family panel with additional, mostly consanguineous Turkish

families  with  vLINCL  (described  by  (Topcu et al. 2004b)), the disease-causing

mutations were finally identified in CLN8 in a subset of Turkish patients with vLINCL,

thus excluding these patients from the CLN7 entity (Ranta et al. 2004). However, the

remaining patients, still considered to represent a distinct genetic entity (CLN7), were

lacking a molecular genetic explanation for their disease.

The clinical course of the disease in these remaining Turkish patients with vLINCL

is  broadly  similar  to  the  other  vLINCLs  caused  by  mutations  in CLN5, CLN6, and

CLN8.  The disease presents at  the age of  two to seven years,  most commonly with

seizures that show more a severe course compared to classical LINCL (CLN2) (Mitchell

et al. 2001, Topcu et  al. 2004b).  The other initial  symptoms may be motor,  visual,

and speech impairment (Topcu et al. 2004b). The disease progresses rapidly, with the

additional symptoms including myoclonus, mental regression, blindness, ataxia, and

personality disorders. Most patients have been reported to become unambulatory a

few years after disease onset (Mitchell et  al. 2001, Topcu et  al. 2004b), and to die
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prematurely (Topcu M, personal communication). Electron microscopic examinations

revealed solid fingerprint profiles, curvilinear bodies, and/or rectilinear bodies in the

storage material of patient cells (Fig. 1) ((Mitchell et  al. 2001, Topcu et  al. 2004b),

Elleder M, personal communication). Electroencephalogram (EEG), electroretinogram

(ERG), and visual evoked potentials (VEP) recordings have been reported to be

abnormal (Topcu et  al. 2004b).  On  magnetic  resonance  imaging  (MRI),  patients

showed atrophy of the cerebellum and more mildly of cerebrum, and in most cases,

also brainstem involvement (Topcu et al. 2004b).

2.3.3. CLN9

The most recently described NCL form is CLN9-deficient NCL (Schulz et al. 2004). It

resembles  JNCL  (CLN3)  clinically  but  is  differentiated  from  it  and  from  most  other

NCLs by a distinctive gene expression pattern and phenotype of CLN9-deficient cells

(Schulz et  al. 2004). Storage material in patient cells showed GRODs as well as

fingerprint and curvilinear patterns of ultrastructure and was in one patient shown to

be immunoreactive for subunit c of mitochondrial ATP synthase (Schulz et al. 2004).

The  molecular  genetic  basis  of  CLN9  is  currently  unknown  and  involvement  of  all

known NCL-causing genes have been excluded either by sequence analysis (CLN3,

CLN5, CLN6, and CLN8), or by enzymatic tests (PPT1 and TPP1) (Schulz et al. 2004).

However, transfection of CLN9-deficient cells with CLN8 partially  corrects  the

phenotype of these cells (Schulz et al. 2006). CLN9 has been suggested to encode a

regulator of dihydroceramide synthase (Schulz et al. 2006).

Figure 1. An electron micrograph from an epithelial cell of the skin eccrine gland of a
patient  with  CLN7.  The  ultrastructural  pattern  consists  of  irregular  curvilinear  or
rectilinear profiles in a mixture with fingerprints. Magnification is 38 000x. The
picture is a courtesy of Prof. Milan Elleder (Institute of Inherited Metabolic Disorders,
Charles University, Prague, Czech Republic).
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2.3.4. Congenital NCL

Congenital NCL, the earliest-onset and the most aggressive form of the human NCLs,

is very rare with only a few cases described (Norman and Wood 1941, Brown et al.

1954, Sandbank 1968, Humphreys et  al. 1985, Garborg et  al. 1987, Barohn et  al.

1992). Clinically the disease presents at birth with microcephaly, respiratory

problems, rigidity, and epilepsy. Patients die within hours to weeks after birth. Upon

autopsies, extreme atrophy of the brains of the patients was observed, and the brains

were extremely small and firm. In addition, severe loss of neurons in the cerebral and

cerebellar cortex accompanied by extensive gliosis was detected. The autofluorescent

storage bodies showed granular ultrastructure (GRODs) (Humphreys et  al. 1985,

Garborg et al. 1987, Barohn et al. 1992). Based on the occurrence of the disease in

more  than  one  child  of  healthy  parents  in  two  families,  a  recessive  mode  of

inheritance has been proposed (Brown et al. 1954, Sandbank 1968). However, prior

to this thesis the specific molecular genetic defect was unknown.

2.4. Genes underlying NCL-like phenotypes in animals

NCL-like phenotypes have been identified in many animals,  including cow, dog, cat,

sheep, goat, and mouse (Lingaas et al. 1999).  In  some  of  these  the  underlying

genetic  defect  is  known.  In  some  cases,  the  corresponding  human  ortholog  is

associated  with  a  human  NCL  (as  discussed  in  section  2.2),  whereas  for  others  no

NCL-causing mutations have been identified in the orthologous human gene. In many

NCL-like diseases of animals, the underlying genetic defect remains to be identified.

Genes  whose  defects  cause  NCL-like  phenotypes  in  animals  but  not  in  humans

include  cathepsin  D  (CTSD) that is defective in naturally occurring congenital ovine

NCL (Tyynelä et  al. 2000),  and  in  an  NCL-like  phenotype  described  in  American

Bulldogs (Awano et  al. 2006a).  Disruption  of  cathepsin  D  (Ctsd/cathD) by gene

targeting in mouse (Saftig et  al. 1995, Koike et  al. 2000) and in Drosophila

melanogaster (Myllykangas et al. 2005) also leads to NCL-like phenotypes. CTSD and

its deficiencies will be discussed in more detail in section 3.2.1. In addition, artificially

generated  mouse  models  for  CTSF  deficiency,  as  well  as  for  chloride  channel  3

(CLCN3), 6 (CLCN6), and 7 (CLCN7) deficiencies, exhibit NCL-like phenotypes (Kornak

et al. 2001, Yoshikawa et al. 2002, Kasper et al. 2005, Poet et al. 2006, Tang et al.

2006).  Moreover,  phenotypes of  mice deficient  for  a PPT1-homolog,  PPT2 (Gupta et

al. 2001, Gupta et al. 2003), for two cathepsins, CTSB and CTSL (Felbor et al. 2002,

Koike et al. 2005), and for an ancillary -subunit of CLCN7, osteopetrosis associated

transmembrane  protein  1  (OSTM1)  (Lange et  al. 2006),  have  been  reported  to

resemble NCLs.
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3. Lysosomes

Lysosomes, discovered by Christian de Duve and his colleagues more than 50 years

ago (De Duve et  al. 1955), are intracellular, acidic, membrane-enclosed, digestive

organelles. They degrade and recycle material received from the secretory, endocytic,

autophagic, and phagocytic membrane-trafficking routes (Luzio et al. 2007). They are

present in most animal cells, and are heterogeneous in size and morphology.

Lysosomes  contain  at  least  50-60  soluble  hydrolytic  enzymes  that  degrade  various

macromolecules (Journet et  al. 2002, Kollmann et  al. 2005, Sleat et  al. 2005). The

acidic pH optimum of the lysosomal enzymes, so-called acid hydrolases, is achieved

by vacuolar  H+ -ATPases that pump protons into the lysosomal lumen and maintain

the  pH  at  4.5-5  (Mellman et  al. 1986).  Lysosomes  are  surrounded  by  a  single

membrane that preserves their integrity and protects the other parts of the cell from

the harmful effects of the digestive enzymes (Eskelinen et al. 2003). The membrane

has a complex protein composition with up to 215 membrane proteins identified

(Bagshaw et  al. 2005, Schröder et  al. 2007).  Besides  the  roles  in  turnover  of

endogenous and exogenous macromolecules, lysosomes have other functions as well,

for instance as a secretory compartment in some cell types (Blott and Griffiths 2002).

Defects in many of the lysosomal enzymes and membrane proteins as well as proteins

involved in their trafficking and in lysosome biogenesis lead to lysosomal storage

disorders (LSDs) (Futerman and van Meer 2004).

3.1. Targeting of lysosomal proteins

Most of the newly synthesized soluble lysosomal proteins receive mannose 6-

phosphate (M6P) modifications to their N-linked oligosaccharides in the cis-Golgi by

an  enzymatic  reaction  series  (reviewed  by  (Kornfeld  and  Mellman  1989)).  In  the

trans-Golgi network (TGN) these proteins are selected for lysosomal transport as M6P

residues bind to M6P receptors (MPRs),  either to cation-dependent (~46 kilodaltons

(kDa); CD-MPR; MPR46) or cation-independent (~300 kDa; CI-MPR; MPR300) MPRs

(Ghosh et al. 2003). In order to be transported to the endosomal compartments, the

MPR-attached proteins are packaged to clathrin-coated, adaptor protein-1 (AP-1)

containing vesicles that form with the aid of GGA (Golgi-localized, -ear-containing,

adenosine diphosphate ribosylation factor-binding protein) adaptors (Doray et  al.

2002).  In  the  acidic  pH  of  the  endosome  lumen  the  proteins  dissociate  from  the

receptors and are transported to the lysosomes while the MPRs are recycled back to

the TGN (Ghosh et al. 2003). The site of the digestive action of the hydrolases is the

hybrid  organelle  that  results  from  the  fusion  of  late  endosome  and  lysosome  by  a
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transient (kissing event) and/or a permanent fusion of these organelles (Bright et al.

2005).  Finally,  lysosomes  are  reformed  by  a  maturation  process  that  involves

condensation of the lumenal contents and removal of some membrane components

(Pryor et  al. 2000, Bright et  al. 2005). Lysosomes can thus be seen as storage

granules for lysosomal enzymes. To reach lysosomes soluble lysosomal proteins may

also  use  alternative,  MPR-independent  pathways  that  may  be  protein  and  cell  type

specific, as shown in a study of mice deficient for both MPRs (Dittmer et al. 1999).

Newly synthesized lysosomal membrane proteins are transported to lysosomes

independently of MPRs either by an indirect route through plasma membrane or by

direct intracellular routes. The signals for the lysosomal targeting of membrane

proteins lie most commonly in their cytoplasmic domains (Bonifacino and Traub

2003).  The  most  common  are  signals  with  tyrosine-based  (Peters et  al. 1990,

Williams and Fukuda 1990) and dileucine-based (Letourneur and Klausner 1992)

consensus sequences. The targeting signals are recognized by cytosolic adaptor

protein (AP) complexes of which AP-3 has been proposed to be mainly responsible for

lysosomal  sorting  acting  both  in  TGN  and  early  endosomes  (Ihrke et  al. 2004).

Membrane proteins may use several pathways to reach late endosomes/lysosomes:

directly from TGN (Rous et al. 2002) or through early endosomes (Peden et al. 2004),

or indirectly via plasma membrane and early endosomes (Ihrke et al. 2004). Use of

these pathways may depend on specific protein and cell types.

3.2. Soluble lysosomal proteins

The majority of the soluble lysosomal proteins are hydrolytic enzymes including

proteases, glycosidases, lipases, nucleases, phosphatases, and sulfatases (Journet et

al. 2002, Kollmann et  al. 2005, Sleat et  al. 2005).  Lysosomal  proteases,  such  as

cathepsins,  are  according  to  their  active  site  amino  acids  divided  into  three

subgroups: cysteine, aspartic, and serine proteases (Brix 2005). Among soluble

lysosomal  proteins  involved  in  protein  degradation  are  PPT1  and  TPP1,  defects  in

which  underlie  CLN1  and  CLN2  diseases,  respectively,  which  were  reviewed  in

sections 2.2.1 and 2.2.2.

3.2.1. Cathepsin D

Cathepsin  D  is  a  lysosomal  enzyme  that  belongs  to  the  pepsin  family  of  aspartic

proteases (Press et al. 1960, Rawlings and Barrett 1995). Human CTSD is encoded by

nine exons of the CTSD gene on chromosome 11p15.5 (Faust et al. 1985, Augereau

et al. 1988, Redecker et  al. 1991).  Synthesis  and  maturation  of  CTSD to  an  active

enzyme is a complex process involving trimming during several proteolytic processes
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during  the  transport  to  lysosomes.  CTSD  is  synthesized  as  a  larger  inactive

preproenzyme  that  is  co-translationally  translocated  into  ER  with  the  aid  of  an  N-

terminal  20  amino  acid  signal  sequence,  a  pre-sequence,  that  is  cleaved  off  by  ER

signal peptidases (Erickson and Blobel 1979, Hasilik and Neufeld 1980b, Erickson et

al. 1981). The resulting proCTSD (53 kDa) is transported to lysosomes either through

MPR-dependent or MPR-independent pathways (Hasilik and Neufeld 1980a, Kornfeld

and Mellman 1989, Rijnboutt et al. 1991, Glickman and Kornfeld 1993, Dittmer et al.

1999).  ProCTSD  is  converted  to  a  single  chain  intermediate  form  of  43  kDa  by

cleavage of the N-terminal 44 amino acid prosequence (propeptide) that functions as

an activation peptide keeping the enzyme inactive before it is cleaved (Erickson et al.

1981, Gieselmann et al. 1983). In several species, including human, the single-chain

form  is  processed  further  to  a  two-chain  form  consisting  of  two  polypeptide  chains

linked together noncovalently by disulfide bonds: a light chain of 14 kDa (N-terminal

part)  and  heavy  chain  of  31  kDa  (C-terminal  part)  (Huang et al. 1979, Hasilik and

Neufeld  1980b,  Metcalf  and  Fusek  1993).  The  mechanisms  of  these  proteolytic

cleavages are not well characterized but they appear to depend on cysteine proteases

(Gieselmann et al. 1985, Samarel et al. 1989).

The structure of CTSD is bilobed with an active site cleft located in the groove in

between the two domains (Metcalf  and Fusek 1993).  The catalytic  site contains two

aspartic acids crucial for the enzymatic activity, one on each CTSD chain (Faust et al.

1985, Metcalf and Fusek 1993). CTSD is an endopeptidase with a pH optimum of 3-4

that prefers peptide bonds flanked by hydrophobic amino acid residues (Press et  al.

1960,  Rawlings  and  Barrett  1995).  An  important  role  of  CTSD  in  the  turnover  of

lysosomal proteins is most likely dependent on limited proteolysis rather than on bulk

protein degradation (Saftig et  al. 1995).  CTSD has been implicated in processing of

cell  and  tissue  specific  substrates,  such  as  antigens  (Rodriguez  and  Diment  1992,

Mohamadzadeh et  al. 2004) and hormones (Diment et  al. 1989),  as  well  as  in

apoptosis (Liaudet-Coopman et  al. 2006).  CTSD  has  been  associated  with  several

diseases,  including  NCLs  (see  below),  Alzheimer’s  disease  (Cataldo et  al. 1995,

Papassotiropoulos et  al. 1999), and cancer (Fusek and Vetvicka 2005, Liaudet-

Coopman et al. 2006).

3.2.1.1. Cathepsin D deficiency in animals

Both naturally occurring and artificially generated CTSD defects cause NCL-like

phenotypes in animals, as mentioned in section 2.4. Naturally occurring congenital

ovine  NCL  (CONCL)  was  recognized  in  White  Swedish  Landrace  sheep  (Järplid  and

Haltia 1993). The lambs were severely affected at birth: they were trembling, weak,

and unable to stand, and died within a few days (Järplid and Haltia 1993). The brains

of the affected lambs were very small with thin cortices (Tyynelä et al. 2000). Loss of
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neurons was more severe in the cerebrum and hippocampus than in the cerebellum.

Non-neuronal tissues were unaffected. The autofluorescent storage material, present

both in neuronal and non-neuronal tissues, showed GRODs upon electron microscopic

examination (Järplid and Haltia 1993), and contained saposins A and D (Tyynelä et al.

2000).  The  disease  was  inherited  in  an  autosomal  recessive  manner,  and  the

underlying genetic defect was identified in the CTSD gene: a homozygous missense

mutation G->A changes an active site aspartic acid to an asparagine (amino acid 269

in  sheep  CTSD  corresponding  to  p.295  in  human  CTSD)  (Järplid  and  Haltia  1993,

Tyynelä et al. 2000).  The  resulting  protein  product  was  shown  to  be  enzymatically

inactive, but stable and normally processed (Tyynelä et al. 2000).

Another naturally occurring CTSD deficiency has recently been recognized in

American Bulldogs (Evans et  al. 2005, Awano et  al. 2006a). The NCL-like disease,

observed  in  young  adult  dogs  (approximately  one  to  three  years  old),  is  mild

compared to the disease in sheep (Evans et  al. 2005). The clinical features include

hypermetria, ataxia, slowly progressing psychomotor deterioration, and premature

death before the age of seven years (Evans et al. 2005). The autofluorescent storage

material  has  an  atypical  ultrastructure  for  an  NCL  consisting  of  round  uniformly

staining inclusions embedded within granular matrixes (Evans et al. 2005, Awano et

al. 2006a).  The disease is  inherited in an autosomal recessive manner (Evans et al.

2005), and was shown to be caused by a homozygous mutation in the canine CTSD

gene (c.597G>A) resulting in a methionine to isoleucine change at position 199

(p.Met199Ile) (Awano et  al. 2006a).  The CTSD activity in the brains of  the affected

dogs was relatively high, 36% of that detected in control dogs (Awano et al. 2006a).

CTSD-deficient mice, generated by targeted disruption of the Ctsd gene,  are

normal at birth and for the first two weeks of their life (Saftig et al. 1995). After that,

they  develop  progressive  atrophy  of  the  intestinal  mucosa  and  a  massive  loss  of

lymphoid cells of the spleen and thymus, and die at the age of 25-27 days (Saftig et

al. 1995). Ctsd-/- mice were recognized to have an NCL-like phenotype that includes

seizures and blindness after ~20 days of age (Koike et al. 2000). The brains of these

mice  are  moderately  atrophied  with  particularly  evident  neuronal  loss  in  cerebral

cortex and thalamus (Haapanen et al. 2007, Partanen et al. 2008). Furthermore, the

autofluorescent storage bodies detected in their tissues have characteristic features of

GRODs and fingerprint profiles upon electron microscopical investigation, and show

accumulation of subunit c of mitochondrial ATP synthase (Koike et  al. 2000). CTSD

activity is undetectable in the tissues of these mice (Saftig et al. 1995).

Another  artificially  generated  animal  model  for  CTSD  deficiency  was  created  by

inactivating cathD in D. melanogaster (Myllykangas et  al. 2005).  The  mutant  flies

develop normally, are viable and fertile, and have a normal lifespan. Yet they exhibit
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an NCL-like phenotype since their tissues, especially the brains, progressively

accumulate autofluorescent storage material that is granular in ultrastructural

appearance and closely resembles GRODs. Moreover, they show modest age-related

neurodegeneration in the central nervous system (Myllykangas et al. 2005).

3.3. Lysosomal membrane proteins

The membrane surrounding the lysosomes has many important functions conducted

largely  by  associated  proteins.  It  preserves  the  integrity  of  lysosomes  and  by

sequestering the lysosomal hydrolases it protects the other cellular compartments

from their harmful effects (Eskelinen et  al. 2003). The lysosomal membrane has to

permit traffic through it: the entry of the compounds that will be degraded and the

exit  of  the digestion products (Verheijen and Mancini  2005).  These are achieved by

regulating the fusion and fission processes with other vacuoles, by specific

transporters, and by passive diffusion. The membrane also maintains the acidity of

the intralysosomal environment as vacuolar H+ -ATPases pump protons into the lumen

(Forgac 2007). Interactions with other cellular compartments and structures such as

the cytoskeleton are also mediated by the membrane (Winchester 2001). Some of the

lysosomal membrane proteins are briefly reviewed here as examples.

Lysosomal membrane transporter proteins are solute carriers, pumps, and

channels, each of which has a high specificity for groups of amino acids,

carbohydrates, nucleosides, inorganic ions, or vitamins (Verheijen and Mancini 2005).

Of  these  various  transporters,  only  a  few  are  defined  at  the  molecular  level.  Two

amino acid transporters have been identified. The cystine transporter, cystinosin, is

an integral membrane protein with a highly glycosylated large luminal part and seven

predicted membrane-spanning domains that carries cystine out of the lysosome

(Town et al. 1998, Kalatzis et al. 2001). Mutations in the respective gene underlie one

of the LSDs, cystinosis (Town et  al. 1998). Solute carrier family 36 member 1

(SLC36A1; previously known as lysosomal amino acid transporter 1, LYAAT-1)

actively exports neutral amino acids from lysosomes (Sagne et al. 2001). A relatively

well characterized example of monosaccharide transporters is sialin, an integral

membrane protein containing 12 transmembrane domains, that transports sialic acid

and other acidic monosaccharides out of the lysosomes (Verheijen et al. 1999, Morin

et al. 2004). Sialin is defective in free sialic acid storage disorders, Salla disease and

infantile sialic acid storage disease, that belong to the LSDs (Verheijen et al. 1999).

Sialin is a member of the major facilitator superfamily (MFS) of transporter proteins.

Three ATP-binding cassette (ABC) transporters, ABCA2, ABCA5, and ABCB9, have

been shown to localize to lysosomes (Zhang et al. 2000, Vulevic et al. 2001, Kubo et

al. 2005), and of these ABCA2 and ABCB9 are suggested to have roles in trafficking

and/or metabolism of lipids (Davis et  al. 2004, Sakai et  al. 2007),  and transport  of



Review of the literature

40

peptides (Wolters et  al. 2005),  respectively.  CLN3,  a  lysosomal  membrane  protein

defective in CLN3 disease, was reviewed in section 2.2.3.

Lysosomal vacuolar H+ -ATPase, maintaining the acidic pH of the lysosomal lumen,

is a membrane-associated complex consisting of 14 different subunits organized into

V1 and  V0 domains  that  hydrolyze  ATP  and  translocate  the  protons  across  the

membrane, respectively (Arai et  al. 1993,  Forgac  2007).  Mutations  in  the  T  cell

immune regulator 1 (TCIRG1) gene encoding one of the integral membrane subunits

(a3)  of  vacuolar  H+  -ATPase  cause  infantile  malignant  osteopetrosis  (Frattini et  al.

2000). In addition, defects in a lysosomal membrane protein CLCN7 underlie

osteopetrosis (Kornak et al. 2001). An artificially generated mouse model deficient for

this chloride channel displays additionally an NCL-like phenotype, as discussed in

section 2.4.

The most abundant lysosomal membrane proteins are lysosomal-associated

membrane proteins (LAMPs) and lysosomal integral membrane proteins (LIMPs) that

represent  more  than  50%  of  the  total  number  of  membrane  proteins  of  late

endosomes and lysosomes (Eskelinen et  al. 2003). LAMP1 and LAMP2 are highly

homologous membrane proteins with single transmembrane, short cytoplasmic, and

large N-terminal, highly glycosylated luminal domains (Chen et al. 1985, Lewis et al.

1985, Fambrough et  al. 1988, Fukuda et  al. 1988).  LAMP2  has  been  shown  to  be

involved in autophagy (Tanaka et al. 2000), in selective uptake of cytosolic proteins

for degradation in lysosomes (Cuervo and Dice 1996), and in major histocompatibility

complex (MHC) class II presentation of cytoplasmic antigens (Zhou et  al. 2005).

Mutations in LAMP2 lead to an LSD, Danon disease (Nishino et al. 2000). The cellular

function of LAMP1 remains unknown but it has been suggested to partially overlap the

function of LAMP2 as mice deficient for either of these proteins are viable and fertile

but double-knock-out mice show embryonic lethality (Eskelinen et  al. 2004).

Recently,  it  was  shown  that  these  proteins  are  essential  in  phagosome  maturation

(Huynh et al. 2007).

3.4. Lysosomal storage disorders

Defects  in  biogenesis  and  function  of  lysosomes  cause  a  variety  of  diseases.  More

than  forty  of  these,  collectively  referred  to  as  lysosomal  storage  disorders,  are

currently known (Futerman and van Meer 2004). While the majority of these are

caused by defects in lysosomal enzymes, defects in their activators, in transporters of

the digestion products, or in proteins involved in endosomal/lysosomal vesicular

trafficking can also be the underlying causes (Greiner-Tollersrud and Berg 2005).

These  defects  lead  to  lysosomal  accumulation  of  material,  either  directly  of  the

unhydrolyzed  substrate  of  a  defective  enzyme,  or  indirectly  of  some  other  material
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due to lysosomal dysfunction. Mutations in the genes encoding lysosomal proteins

may have various consequences, for example, in the case of soluble hydrolases they

can affect the synthesis, folding, activity, or targeting of the mutant proteins (Vellodi

2005).

The variable effects of lysosomal dysfunction are reflected by the wide spectrum of

clinical phenotypes of LSDs. However, some common characteristics apply to many of

them. All LSDs are monogenic and most of them are autosomal recessively inherited

(Vellodi 2005). Almost all of them are phenotypically heterogeneous but usually no

obvious genotype-phenotype correlations can be observed (Futerman and van Meer

2004). LSDs most commonly affect infants and young children, and are progressive in

nature (Jeyakumar et al. 2005, Vellodi 2005). They are usually multisystemic, and in

most there is neurological involvement that manifests with symptoms including

developmental delay, ataxia, seizures, blindness, abnormal ocular movements,

spasticity, motor problems, and psychiatric disease (Jeyakumar et  al. 2005, Vellodi

2005). As a group the prevalence of LSDs has been determined as ~1 per 8000 live

births (Meikle et  al. 1999, Poorthuis et  al. 1999).  LSDs  are  commonly  classified

according to the nature of either the defective protein or the accumulated substrate.

Based mainly on the latter criteria they are classified into mucopolysaccharidoses,

sphingolipidoses, oligosaccharidoses and glycoproteinoses, lipidoses, diseases caused

by  defects  in  membrane  proteins,  and  other  LSDs  (Futerman  and  van  Meer  2004).

Some examples of LSDs were mentioned in the context of the review of lysosomal

proteins (sections 3.2 and 3.3). The two diseases studied in this thesis, congenital

NCL and Turkish vLINCL (CLN7), are classified as LSDs along with other NCLs.

The various biochemical and cellular pathways affected by lysosomal storage are

relatively poorly characterized (Futerman and van Meer 2004). The defects in these

pathways, in turn, are responsible for the diverse tissue pathology and symptoms of

LSDs.  While  the  existing  cures  for  LSDs,  such  as  bone  marrow  transplantation,

enzyme replacement, and substrate reduction therapies, are currently few and rather

inefficient, the delineation of these pathways may be crucial in developing new

treatments for these diseases (Futerman and van Meer 2004).



Aims of the study

42

AIMS OF THE STUDY

1. To characterize the molecular genetic background of congenital NCL, and

2. To characterize the molecular genetic background of Turkish vLINCL.
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MATERIALS AND METHODS

1. Patients and controls

1.1. Patients with congenital NCL

Four patients with congenital NCL from two families were included in the study. The

patients manifested with microcephaly, respiratory insufficiency, and epilepsy at birth,

and died within hours to days after birth (Humphreys et  al. 1985, Garborg et  al.

1987).  The  storage  material  in  the  patient  brain  tissue  samples  showed  granular

ultrastructure (GRODs). In family A, that was consanguineous and of Pakistani

descent, three of the seven children were affected. From two affected boys (patients

1 and 2),  born in 1985 and 1989, respectively,  only paraffin-embedded brain tissue

samples  were  available,  and  from  one  affected  boy  (patient  3),  born  in  1999,  and

from  their  healthy  father,  only  ethylenediamine  tetra  acetic  acid  (EDTA)  -blood

derived  DNA  was  available.  No  samples  from  the  other  family  members  were

available. The mother of family B was British whereas the origin of the father is not

known. From the affected boy (patient 4), born in 1982, only a paraffin-embedded

brain tissue sample was available. Samples from the parents were not available. Two

of the patients (patients 1 (Garborg et al. 1987) and 4 (Humphreys et al. 1985)) had

been described earlier.

1.2. Patients with variant late-infantile NCL

Altogether 16 patients with vLINCL from 13 families were included in the study (Table

3,  Fig.  2).  The disease onset was at  the age of  two to seven years and the clinical

symptoms included seizures, psychomotor deterioration, visual failure, myoclonus,

ataxia, and personality disorders (Topcu et al. 2004b). In electron microscopic

examinations, either fingerprint profiles or curvilinear bodies were seen in the patient

cells (lymphocytes, or cells present in skin or rectal biopsies). Eleven of the families

were  of  Turkish  origin,  one  (k)  of  Turkish-Georgian  origin,  and  one  (j)  of  Indian

origin.  In  the  beginning,  all  families  were  reported  to  be  consanguineous  but  later,

one of them (j) was reported to be non-consanguineous. In eight families, CLN8 was

previously excluded by the lack of  homozygosity in haplotype analysis  (Ranta et  al.

2004). EDTA-blood derived DNA samples were available from 16 patients, 25 parents,

and five unaffected siblings (indicated by coding in Fig. 2). In two families (family 4:

patient  9124,  and  family  e:  individuals  e1,  e2,  e4,  and  e5),  fibroblast  cells  and
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peripheral blood, respectively, were obtained for the analysis of splicing mutations in

CLN6 and MFSD8 from mRNA.

Table 3. vLINCL patients included in this study.

Family
(patient)
code in
II

Family
(patient)
code in
III

Patient
code in
Topcu
et al.
2004

Country
of
origin

Consan-
guinity

Sample type CLN8
excluded
in Ranta
et al.
2004

1 (17, -) e (e3, e5) 17, - Turkey yes DNA, RNA (from
blood) (e5)

yes

2 (29) g (g3) 29 Turkey yes DNA yes
3 (20,
20S)

- 20, - Turkey yes DNA yes

4 (9124) - Turkey yes DNA, RNA (from
fibroblasts)

-

- a (a3) 18 Turkey yes DNA yes
- b (b3) 24 Turkey yes DNA yes
- c (c3) 25 Turkey yes DNA yes
- d (d3, d4) 28, 27 Turkey yes DNA yes
- f (f3) 22 Turkey yes DNA yes
- h (h3) - Turkey yes DNA -
- j (j3) - India no DNA -
- k (k3) - Turkey/

Georgia
yes DNA -

- l (l3) - Turkey yes DNA -
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Figure 2. Families with vLINCL included in this study. The patients are indicated with
filled symbols. All families are of Turkish origin except for family j which is of Indian
origin  and  family  k  which  is  of  Turkish-Georgian  origin.  The  DNA  samples  were
available from individuals indicated by coding.

1.3. Control samples

The controls for screening for the CTSD mutation consisted of 550 Caucasian (Centre

d’Etude du Polymorphisme Humain (CEPH), and Finnish) chromosomes, for the CLN6

mutations of 119 Turkish chromosomes, and for the MFSD8 mutations of 212 Turkish

and  92  CEPH  chromosomes.  The  control  RNAs  for  RT-PCR  analyses  were  extracted

from fibroblast cells and peripheral blood obtained from control individuals.

1.4. Ethical aspects

All  studies were approved by an institutional  review board of  the Helsinki  University

Central Hospital. The samples were collected after informed consent was obtained.
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2. Methods

The methods used in the original articles included in this study are summarized in

Table 4.

Table 4. Methods used in this study. The original publications in which the methods
were used are indicated with Roman numerals.

Method Original publication

Agarose gel electrophoresis I, II, III

Cell culture I, III

Cathepsin D activity assay I

DNA extraction I, II, III

DNA sequencing I, II, III

Database and computer analysis I, II, III

Genomewide SNP scan III

Haplotype analysis II, III

Immunofluorescence microscopy III

Immunofluorescence staining III

Immunohistochemistry I

In vitro translation III

Microsatellite analysis II, III

Mutation analysis I, II, III

Northern blot analysis III

Polymerase chain reaction (PCR) I, II, III

Recombinant DNA techniques (cloning) I, II, III

Reverse transcriptase PCR (RT-PCR) II, III

RNA extraction II, III

Sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE)

I, III

Site-directed mutagenesis I, III

Transient transfections I, III

Western blot analysis I
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RESULTS AND DISCUSSION

1. Cathepsin D deficiency in congenital human NCL (I)

Before this study, eight cases of congenital human NCL had been reported  (Norman

and Wood 1941, Brown et al. 1954, Sandbank 1968, Humphreys et al. 1985, Garborg

et al. 1987, Barohn et al. 1992). The molecular genetic background of this very rare

and aggressive disease, however, had remained undetermined. Previously, a mutation

affecting one of the active site aspartic acids in the ovine CTSD gene had been shown

to underlie congenital NCL in sheep (Tyynelä et al. 2000). On the basis of the close

resemblance of the clinical phenotypes as well as neuropathological and

ultrastructural findings between congenital NCLs in sheep and human, CTSD was

considered as a potential candidate gene in human as well and its contribution to the

disease pathogenesis of congenital human NCL was explored.

1.1. Mutations in the CTSD gene underlie congenital NCL

In order to screen CTSD for mutations, its nine exons and respective exon-intron

boundaries  were  sequenced  from  the  genomic  DNA  of  a  patient  of  Pakistani  origin

(patient 3) whereby a homozygous nucleotide duplication, c.764dupA, was identified

in  exon  6  (I,  Fig.  1B).  The  father  of  the  patient  was  a  heterozygous  carrier  of  the

alteration, whereas a DNA sample was unavailable from the mother. The change was

not  found  in  control  chromosomes.  The  alteration  is  likely  to  be  a  disease-causing

mutation  as  it  creates  a  premature  stop  codon  (TAC>TAAC) at position 255

(p.Tyr255X).  If  a mutant protein,  truncated by 158 amino acids,  was produced and

stable, it would lack the active site aspartic acid residue at position 295 in the CTSD

polypeptide (Faust et  al. 1985,  Metcalf  and  Fusek  1993).  Most  likely,  however,  the

abnormal  mRNA is  degraded by NMD since the mutation occurs far  upstream of  the

last exon-exon junction (Maquat 2004). Further evidence for the degradation of the

mutant  CTSD  either  at  the  mRNA  or  protein  level  is  provided  by  the  lack  of  CTSD

immunostaining  in  the  brain  samples  from  the  two  affected  siblings  of  patient  3

(patients 1 and 2) (see section 1.3). From the old paraffin-embedded brain tissue

samples from these two patients and from one unrelated patient (patient 4) we were

not able to extract good quality DNA despite several attempts. Thus, the presence of

CTSD mutations in these samples could not be confirmed. In the affected siblings of

patient 3, however, the c.764dupA mutation is most likely present and underlies the

disease but the nature of the mutation(s) in the unrelated patient 4 remains

unknown.



Results and discussion

48

In addition to the c.764dupA mutation, a nucleotide change c.845G>A

(p.Gly282Arg) was identified in CTSD in homozygous form in patient 3 and in

heterozygous form in his father. Since this alteration is located at the 3’ side of the

c.764dupA duplication, the changed amino acid is most probably not translated, and

is unlikely to be the change underlying the disease. Moreover, the affected amino acid

(p.Gly282) is not conserved among species.

1.2. Truncation and inactivation of mutant CTSD in BHK cells

In  order  to  study  the  consequence  of  the  c.764dupA  (p.Tyr255X)  mutation  at  the

protein level in vitro, wild-type and c.764dupA mutant CTSD cDNAs were transiently

expressed in baby hamster kidney (BHK) cells. As a control, an enzymatically inactive

c.883G>A  mutant,  corresponding  to  the  mutation  causing  congenital  ovine  NCL

(Tyynelä et al. 2000, Partanen et al. 2003), was used. In western blot analysis, the

p.Tyr255X  mutant  CTSD  appeared  truncated  but  stable,  since  it  was  detected  as  a

single  band  of  ~27  kDa  corresponding  to  the  calculated  size  of  the  prematurely

truncated  protein  (I,  Fig.  2B).  On  the  contrary,  wild-type  CTSD  appeared  as  two

protein bands in the blots, reflecting the proteolytically processed form of the enzyme

(~43  kDa,  single  chain  active  polypeptide,  and  ~31  kDa,  mature  heavy  chain

polypeptide) (Huang et  al. 1979, Hasilik and Neufeld 1980b, Erickson et al. 1981).

The mutant protein produced from the construct with the c.883G>A mutation was

normally processed but had increased electrophoretic mobility, as reported earlier

(Partanen et al. 2003).

In CTSD activity assays from cell lysates, the p.Tyr255X mutant CTSD, predicted

to lack one of the active site aspartic acids, was inactive as expected, showing activity

values similar to the non-transfected controls and cells transfected with the inactive

c.883G>A mutant construct (I, Fig. 2A). The lack of CTSD activity will be discussed in

more detail in section 1.5.

1.3. CTSD deficiency in the brains of patients with congenital NCL

To  analyze  the  brains  of  patients  with  congenital  NCL  for  the  presence  of  CTSD,

paraffin-embedded brain tissue samples from the two affected siblings of patient 3

(patients  1  and  2)  were  immunohistochemically  stained  with  a  CTSD  antibody.  In

neurons and microglial cells no immunoreactivity for CTSD was detected (I, Fig. 5A).

However,  sometimes  a  weak,  diffuse,  and  probably  unspecific  CTSD  staining  was

detected  in  hypertrophic  astrocytes  (I,  Fig.  5B).  The  sample  from  control  brain

showed a typical lysosomal CTSD staining pattern (I, Fig. 5C). These findings suggest

the  degradation  of  the  p.Tyr255X  mutant  CTSD  at  mRNA  or  protein  levels in vivo
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despite the fact that in vitro the truncated mutant protein was shown to be stable

(section  1.2).  Further,  the  lack  of  CTSD  staining  was  confirmed  in  the  brain  tissue

sample of  an unrelated patient (patient 4) with congenital  NCL. On the basis  of  the

absence of CTSD in these three patients as well as the nearly identical clinical and

neuropathological  findings in all  patients,  CTSD deficiency is  suggested to cause the

disease in all four patients.

1.4. Neuropathological findings in the brains of patients with congenital NCL

The neuropathological features of patients 1, 2, and 4 from which the brain samples

were  available  were  studied.  For  patients  1  and  4  some  data  had  been  reported

earlier (Humphreys et  al. 1985, Garborg et  al. 1987). The normal structure of the

cerebral and cerebellar cortices was destroyed, showing extensive neuronal loss. In

the cerebrum, neurons were disorganized, while in the cerebellum Purkinje cells and

inner  granule  cells  were  lost.  Almost  no  axons  or  myelin  were  present  in  white

matter.  The  glial  activation  in  the  brains  of  the  patients  was  detected  by

immunohistochemical staining. Hypertrophic astrocytes, abundant throughout the

brain tissue, and especially in white matter, contained dense cores staining intensely

with glial fibrillary acidic protein (GFAP) antibody (I, Fig. 3A-C), whereas activated

microglia, present especially in the deeper layers of grey matter of cortices, were

strongly immunoreactive for CD68 (I, Fig. 3D-F). These findings indicate that the

neuropathological changes were extremely severe and uniform in all of these patients.

The storage deposits detected in the patient tissues stained with an antibody for

saposin  D  (I,  Fig.  4A),  but  not  for  subunit  c  of  mitochondrial  ATP  synthase  (I,  Fig.

4B). This feature divides human NCL forms into two categories: the group where the

major  protein  component  of  the  storage  bodies  is  subunit  c  of  mitochondrial  ATP

synthase (most forms of NCLs, including CLN2, CLN3, CLN5, CLN6, CLN8, and CLN9

(Hall et al. 1991, Palmer et al. 1992, Elleder et al. 1997, Tyynelä et al. 1997, Herva et

al. 2000, Schulz et  al. 2004)),  and the group where it  is  saposin A and/or D (CLN1

and Parry disease (Tyynelä et  al. 1993, Nijssen et  al. 2003)).  The  present  results

indicate  that  congenital  human  NCL  is  a  member  of  the  latter  group.  Of  CTSD-

deficient animals, the composition of the storage material has been studied in sheep

and mice. In sheep, the major protein components of storage material are saposins A

and D (Tyynelä et  al. 2000) but,  interestingly,  in mice accumulation of  subunit  c  of

mitochondrial ATP synthase has been reported (Koike et  al. 2000).  This  variation,

however, may be due to the detection method used (Tyynelä J, personal

communication).
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1.5. CTSD deficiency – a novel form of NCL, CLN10

Our results provide the first molecular genetic explanation for congenital human NCL.

While in one patient the disease-causing mutation was demonstrated by sequencing

from genomic DNA, the lack of CTSD staining in tissue samples from his two affected

siblings indicates that the same mutation is the most likely underlying cause for their

disease as well. In the unrelated patient, the absence of CTSD staining implies that

also here CTSD deficiency underlies the disease, but the nature of the disease-causing

mutation(s) remains unknown. Based on nearly identical phenotypes and pathological

features  of  these  patients  and  the  other  reported  cases  of  congenital  NCL,  CTSD

deficiency may underlie all cases of congenital NCL, and should be considered as a

possible diagnosis in microcephalic newborns suffering from seizures at birth.

In tandem with this study, a novel, autosomal recessively inherited NCL-like

disorder with CTSD deficiency was described in one German patient (Steinfeld et al.

2006). The patient presented with visual disturbances and ataxia at early school-age

which  were  followed  by  progressive  psychomotor  decline.  Atrophy  of  cerebrum  and

cerebellum were observed. In electron microscopic analysis heterogeneously

appearing GRODs were identified in Schwann cells derived from skin biopsy material.

In the CTSD gene compound heterozygosity of two missense mutations, c.685T>A

(p.Phe229Ile), and c.1149G>C (p.Trp383Cys), was identified. These mutations were

shown to lead to markedly reduced CTSD activity (6.7% of that detected in controls),

and  decreased  amounts  of  CTSD  in  patient  fibroblasts.  In  overexpression  systems,

maturation of the p.Phe229Ile mutant was slightly delayed whereas processing and

intracellular  trafficking of  the p.Trp383Cys mutant was severely disturbed (Steinfeld

et al. 2006).

These two human CTSD deficiencies, the later-onset NCL described by Steinfeld et

al.  (2006)  and  congenital  NCL  described  by  us,  have  subsequently  been  combined

under the disease entity of CLN10 (Online Mendelian Inheritance in Man (OMIM)

database, http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=610127). Despite

having  defects  in  the  same  gene  (Table  5),  the  diseases  are  different  in  many

respects.  While  congenital  NCL  manifests  at  birth,  the  later-onset  NCL  with  CTSD

deficiency has a more late-infantile or juvenile-onset range. Moreover, differences in

the  severity  and  progression  of  the  diseases  are  great,  as  congenital  NCL  is  very

aggressive  and  leads  to  death  within  hours  to  weeks,  while  the  patient  with  later-

onset NCL with CTSD deficiency suffers from milder symptoms and has survived to at

least the age of 17 years (Steinfeld et al. 2006).

The difference in the severity of the CTSD deficiency disorders may be due to the

different levels of residual CTSD activity. CTSD activity is completely absent in severe

CTSD deficiency phenotypes: in congenital human and ovine NCLs (I and (Tyynelä et

http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=610127).
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al. 2000)) as well as in severe NCL-like phenotype of Ctsd-/- mice (Koike et al. 2000).

Significant residual CTSD activity, reflecting partial CTSD inactivation by missense

mutations in the patient with later-onset human NCL (Steinfeld et  al. 2006)  and  in

American bulldogs with NCL (Awano et  al. 2006a), is associated with relatively mild

phenotypes.  This  implies  that  CTSD  activity  is  critical  for  early  survival  and

development in these vertebrates.

Table 5. All CTSD mutations identified in human patients to date.

Nucleotide
change

Amino acid change
or predicted
consequence

Exon Origin Phenotype Reference

c.685T>A p.Phe229Ile Exon 5 Germany Later-onset NCL-
like disorder

Steinfeld et al.
2006

c.764dupA p.Tyr255X Exon 6 Pakistan Congenital NCL I
c.1149G>C p.Trp383Cys Exon 9 Germany Later-onset NCL-

like disorder
Steinfeld et al.
2006

Although different in many respects, there are also similarities between the two

human  forms  of  CTSD  deficiency.  In  both  diseases  the  storage  material  in  patient

cells showed granular ultrastructure (GRODs) (Humphreys et al. 1985, Garborg et al.

1987, Steinfeld et al. 2006).  GRODs  or  GROD-like  structures  are  also  observed  in

other  CTSD  deficiencies:  in  sheep  (Järplid  and  Haltia  1993),  in  mice  (Koike et al.

2000), and in D. melanogaster (Myllykangas et al. 2005).  Conversely,  in  American

bulldogs deficient for CTSD the storage material has an atypical ultrastructure with

round uniformly staining inclusions embedded within granular matrixes (Evans et al.

2005, Awano et al. 2006a). Thus, while there is some variation in the ultrastructure of

the storage material between different CTSD deficiencies, most seem to resemble

GRODs.

In addition to the presence of saposin A and/or D as the major protein component

of  the  storage  material  in  both  congenital  NCL  and  CLN1,  the  presence  of  GRODs

relates CLN10 to CLN1 with a similar ultrastructure of the storage material (Haltia et

al. 1973, Humphreys et al. 1985, Garborg et al. 1987, Das et al. 1998, Mitchison et

al. 1998, van Diggelen et al. 2001, Steinfeld et al. 2006). This has implications for the

diagnostics of patients with NCL phenotypes with GRODs. Since both CTSD and CLN1

mutations have been shown to underlie NCLs with a wide range of onset ages and

variable disease progressions ((Vesa et  al. 1995, Das et  al. 1998, Mitchison et  al.

1998, van Diggelen et al. 2001, Steinfeld et al. 2006) and I), both genes should be

considered as diagnostic alternatives in patients of all ages with NCL phenotypes with

GRODs.
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2. Molecular genetic background of Turkish vLINCL (II, III,
unpublished)

Variant late-infantile NCL in Turkish patients was initially considered a distinct clinical

and genetic entity, CLN7 (Wheeler et al. 1999). However, mutations in the CLN8 gene

were later reported to cause the disease in a subset of Turkish patients with vLINCL

(Ranta et al. 2004). Subsequently, a number of patients were still lacking a molecular

genetic explanation for their disease. To further dissect the molecular genetic

background of vLINCL in the remaining Turkish patients, a candidate gene approach

was first undertaken to explore the contribution of the previously known NCL genes to

the disease pathogenesis, and then a genomewide homozygosity mapping approach

was applied with the aim to identify novel gene(s) underlying the disease.

2.1. Analysis of known NCL genes in Turkish patients with vLINCL

2.1.1. Exclusion of known NCL genes in Turkish families with vLINCL (II, III)

Since  it  is  clear  that  defects  in  most  of  the  known  NCL  genes  cause  variable

phenotypes (Mole et al. 2005), all human and animal genes known to underlie NCLs

or NCL-like phenotypes were considered as candidate genes for Turkish vLINCL. All

these  NCL  gene  loci  (CLN1/PPT1, CLN2/TPP1, CLN3, CLN5, CLN6, CLN8, CTSD,

CLCN3, and CLCN7) were genotyped using three or four fluorescently labelled

microsatellite markers flanking each locus in altogether 11 Turkish, one Turkish-

Georgian,  and  one  Indian  family  with  vLINCL.  Because  at  that  time  these  families

were all reported to be consanguineous, the haplotypes of marker alleles over these

loci were analyzed for homozygosity, as the genomic region over a locus harbouring a

defective gene is anticipated to be homozygous by descent in consanguineous families

(Lander and Botstein 1987).

All above mentioned NCL loci were excluded in nine families based on the lack of

homozygosity. Three or four adjacent markers flanking the CLN3 and CLN6 loci

showed allele homozygosity in patients from two families each (families 1=e and 2=g

for CLN3, and families 3 and 4 for CLN6) (II, Fig. 1). Haplotypes were different over

the  respective  loci  in  each  family.  In  addition,  one  of  the  patients  homozygous  for

marker alleles over CLN6 (patient 9124 in family 4) showed homozygosity also over

CLN1/PPT1. However, since PPT1 had  previously  been  excluded  by  PPT1  enzymatic

analysis, sequencing of the PPT1 gene  was  not  carried  out.  The  identification  of
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homozygous regions by chance in a child of a consanguineous family is not

unexpected, since for example in a child of first cousins homozygosity by descent can

be anticipated at ~6% of all loci (Lander and Botstein 1987). When sequenced from

genomic DNA of patients homozygous over CLN3 (e3  and  g3)  no  mutations  were

identified in the 15 exons or the exon-intron boundaries of CLN3, excluding it with a

high probability as the underlying gene. Instead, in two families (families 3 and 4)

two novel homozygous mutations in the CLN6 gene were identified (section 2.1.2).

The families in which all NCL loci were excluded either by the lack of homozygosity

in  haplotype  analysis  alone  (nine  families:  a,  b,  c,  d,  f,  h,  j,  k,  and  l)  or  in

combination with genomic sequencing of the CLN3 gene  (families  e  and  g)  were

hypothesized to represent a distinct genetic entity, the “true” Turkish vLINCL (CLN7),

the genetic background of which, at that time, remained to be defined. We continued

the study of these 11 families by a genomewide SNP scan and homozygosity mapping

in order to identify the underlying locus and gene, CLN7 (section 2.2).

2.1.2. Identification of two novel CLN6 mutations in Turkish patients with vLINCL (II)

The CLN6 gene was screened for mutations by sequencing its seven exons and the

respective exon-intron boundaries from the genomic DNA of three patients (patients

20  and  20S  in  family  3,  and  patient  9124  in  family  4)  that  were  found  to  be

homozygous for marker alleles over the CLN6 locus. Two novel homozygous sequence

alterations were identified (II, Fig. 2) that are likely to be disease-causing mutations,

as they predict altered structure of the CLN6 protein. A C-to-G transition (c.663C>G)

in exon 6 was identified in two affected siblings (20 and 20S) in family 3, whereas a

G-to-T transversion (c.542+5G>T) in the fifth nucleotide of intron 5 was identified in

the  only  patient  (9124)  in  family  4.  Both  mutations  cosegregated  with  the  disease

phenotype in the respective families, and moreover, were not found in control

chromosomes, indicating that they are not likely to be polymorphisms.

The  c.663C>G  alteration  is  a  nonsense  mutation  that  creates  a  premature  stop

codon at tyrosine 221 (p.Tyr221X) in the CLN6 polypeptide and predicts a truncation

of the protein by 91 amino acids. The resulting abnormal protein is likely to be non-

functional or degraded. Since the mutation occurs only three nucleotides from the 3’

end of the penultimate exon 6 and thus not more than 50 nucleotides upstream from

the  last  exon-exon  junction,  degradation  of  mRNA  by  NMD  is  less  likely  (Maquat

2004). Truncation of CLN6 might affect the subcellular localization as well as the

homodimerization of the protein since these have been reported to be influenced by

the C-terminal part of the protein (Heine et  al. 2007).  Tyrosine  221,  a  highly

conserved amino acid predicted to lie  within a transmembrane segment,  has earlier
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been  reported  to  be  mutated  (c.662A>C,  p.Tyr221Ser)  in  one  allele  of  a  patient

originating from Argentina (Sharp et al. 2003).

The  c.542+5G>T  alteration  affecting  the  donor  splice  site  sequence  of  intron  5

was shown to alter the splicing of the mRNA by RT-PCR analysis from RNA extracted

from fibroblasts of patient 9124 (II, Fig. 3). No fragments of the expected size (303

base pairs, bp), corresponding to the correctly spliced CLN6 transcript, were

observed.  Instead,  five  other  fragments,  with  sizes  ranging  from  250  to  400  bp

corresponding  to  abnormal  splice  products,  were  detected.  Sequence  analysis  was

technically  possible  from  three  of  the  fragments  revealing  skipping  of  exon  5  in  all

and inclusion of intron 4 sequences in two of the fragments. In the two latter

fragments this indicates the use of cryptic donor splice sites (c.486+26 and

c.486+119) in intron 4 in combination with the acceptor splice site of intron 5. At the

amino acid level, the mutation predicts the absence of a functional CLN6 protein since

two of the mRNA variants contain frameshifts and premature stop codons while one

encodes a product with an in-frame replacement of exon 5 encoded amino acids with

nine new amino acids encoded from intron 4 sequences. The altered splicing resulting

from nucleotide changes at splice sites is not unexpected, as mutations affecting

splice sites may either inactivate them, or render them less effective allowing the

splicing machinery to use other, naturally weaker splice sites (Cartegni et al. 2002).

The current number of CLN6 mutations  is  27  (NCL  Mutation  Database,

www.ucl.ac.uk/ncl/mutation). The two mutations identified in this study were the first

and only ones identified in the CLN6 gene in patients of Turkish origin thus far. This

study further supports the hypothesis that CLN6 is a highly mutable gene, based on

the occurrence of mutations in several small inbred populations or families around the

world, e.g. in the Mediterranean region, in  India, and in Costa Rica (Gao et al. 2002,

Wheeler et al. 2002, Sharp et al. 2003, Teixeira et al. 2003). The clinical phenotypes

of  the  vLINCL  patients  with  CLN6  defects  are  indistinguishable  between  patients  of

Turkish and other origins.

2.2. Identification and characterization of the novel MFSD8 gene underlying
vLINCL (III, unpublished)

2.2.1. Identification of the CLN7 locus

All families with vLINCL included in this study were in the beginning of the study

reported to be consanguineous, and therefore a SNP-based homozygosity mapping

approach was utilized in the search for novel gene(s) underlying vLINCL. The idea

behind this strategy is to search for the chromosomal region with homozygous marker

http://www.ucl.ac.uk/ncl/mutation).
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alleles shared among patients in as many families as possible (Lander and Botstein

1987).  This  segment  would,  with  a  high  probability,  be  inherited  from  a  common

ancestor  of  the  parents  in  each  family,  and  therefore  be  identical  by  descent,  and

possibly contain the disease-causing gene.

The genomewide SNP scan was performed in patients from eight Turkish (a, b, c,

d,  e=1,  f,  g=2,  and  l),  one  Turkish-Georgian  (k),  and  one  Indian  (j)  families  with

vLINCL in which all known NCL loci had previously been excluded (section 2.1.1). The

homozygosity  mapping  revealed  three  regions  with  HLOD  scores  over  2.  The

strongest evidence for linkage with a statistically significant HLOD score of 3.39 was

observed on chromosome 4 at SNP rs348085 (Fig. 3) where six families (a, b, c, e, f,

and j) contributed to this value. The other two linkage peaks were on chromosomes 8

and 15, where four families at both loci (b, c, e, and l, and d, e, g, and l) contributed

to the HLOD scores of 2.05 and 2.48, respectively.

Over the best candidate locus on chromosome 4q26-q28.3, patients in all except

one  of  the  six  families  shared  a  ~19.5  megabase  (Mb)  region  (from rs7657655 to

rs10518621)  of  homozygous  marker  alleles  (Fig.  4).  In  family  a,  the  homozygous

region spanned less than 1 Mb, and was considered too short to be homozygous by

descent, considering the close consanguinity in the family, and therefore unlikely to

harbour the disease-causing gene in the respective family. Analysis of microsatellite

Figure 3. Results  of  the  linkage  analysis  on  chromosome  4.  Multipoint  linkage
analysis  by  the  computer  program  Merlin  in  10  families  with  vLINCL  gave  the
maximum HLOD score of 3.39 at 134.18 cM, at SNP rs348085.
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markers (D4S427, D4S2975, D4S2938, and D4S429)  in  this  ~19.5  Mb  candidate

region  in  families  b,  c,  e,  f,  and  j  did  not  narrow  down  the  region.  Analysis  of  an

additional  patient  (h3)  not  included  in  the  genomewide  SNP  scan  also  revealed

homozygosity of marker alleles over the candidate region but did not restrict it either

(Fig. 4). The identification of a large homozygous region shared in the majority (six

out  of  eleven)  of  the  families  was  consistent  with  our  hypothesis  that  the

chromosomal segment harbouring the disease gene would be identical by descent in

most of the families. The haplotypes over this region were different in all of these six

families (b, c, e, f, h, and j) suggesting the existence of family-specific mutations in

the disease-causing gene.

Figure 4. The CLN7 candidate region on chromosome 4q26-q28.3. The critical region
of ~19.5 Mb is shown within the box. The position of the region is shown both in
relation to chromosomal bands and on the physical map. The homozygosity of
marker alleles in each patient (a3, b3, c3, e3, f3, j3, and h3) is shown by differently
shaded gray bars, indicating the different haplotypes detected in these patients. The
diagonal lines at the ends of the bars indicate that the respective homozygous
haplotypes extend beyond the region shown in the figure. In patient f3 the vertical
line marks one heterozygous SNP within the otherwise homozygous haplotype.
Patient  h3  was  genotyped  only  for  microsatellite  markers  (D4S427, D4S2975,
D4S2938, and D4S429), and thus the analysis did not cover the whole region and the
lack of information is indicated by a question mark. The sequenced candidate genes,
TRAM1L1, TRPC3, and MFSD8 (MGC33302), shown below the physical map with black
bars  are  not  to  scale. MFSD8 is  indicated  with  a  white  arrow,  and  the  SNPs
(rs7657655 and rs10518621) restricting the candidate region and the SNP
(rs348085) with the highest HLOD score in the linkage analysis with black arrows.
The picture has been modified from the Ensembl genome browser view of the region.
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2.2.2. Identification of mutations in MFSD8

Within the best candidate region spanning ~19.5 Mb on chromosome 4q26-q28.3

(Fig.  4),  more  than  90  known  or  putative  genes  were  identified  from  the  NCBI

database. The positional candidate genes were chosen from these based on the

known or predicted functions of the encoded proteins and sequenced from genomic

DNA of patients showing homozygosity over the region (in families b, c, e, f, h, and

j).  After  the exclusion of  two genes (translocation associated membrane protein 1 -

like 1, TRAM1L1, and transient receptor potential cation channel, subfamily C,

member 3, TRPC3), six nucleotide changes were identified in these six families in the

hypothetical gene MGC33302 (GenBank accession number NM_152778) by screening

its 12 protein-coding exons (exons 2-13) (Fig. 5; III, Table 1 and Fig. 1A). All these

sequence variants were homozygous and family-specific, as was expected on the

basis of the haplotype analysis (section 2.2.1). Furthermore, all identified alterations

cosegregated with the disease phenotype in the respective families. Subsequently,

this gene was named as major facilitator superfamily domain containing 8 (MFSD8).

However, as the gene identification was mainly based on Turkish families, the

corresponding locus is denoted as CLN7, the symbol initially assigned for Turkish

vLINCL.

Figure 5. Genomic  structure  of  the MFSD8 gene and positions of vLINCL-
associated  mutations.  Within  the  13  exons  (boxes  1–13)  the  coding  regions  are
shown in darker gray while the untranslated regions are shown in lighter gray.
Introns are not to scale. Positions of the vLINCL-associated mutations are indicated
with  lines  above  the  gene  and  the  initiation  (ATG)  and  stop  (TAA)  codons  are
indicated by arrows below the gene.
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All identified nucleotide changes are predicted to be disease-causing mutations,

since they change the predicted amino acid composition of the MFSD8 protein, and

moreover,  were  not  found  in  control  chromosomes.  In  patient  j3,  a  nonsense

mutation, c.894T>G, was identified in exon 10. It creates a premature stop codon at

position 298 (p.Tyr298X) predicting a protein truncated by 221 amino acids which, if

translated, would probably be non-functional or degraded. More likely, however, is

that the mRNA is degraded by NMD since the mutation occurs far upstream from the

last  exon-exon  junction  (Maquat  2004).  In  two  patients  (c3  and  b3)  missense

mutations, c.929G>A (p.Gly310Asp) and c.1286G>A (p.Gly429Asp), were identified

in  exons  10  and  12,  respectively.  The  affected  amino  acids  are  conserved  across

vertebrates, and according to the hydrophobicity predictions (section 2.2.5), lie within

the 8th and 10th transmembrane domains of MFSD8, respectively (III, Figs. 2 and 4).

These changes, when introduced into the hemagglutinin (HA) tag and wild-type

MFSD8 containing construct, did not interfere with the lysosomal localization of the

HA-MFSD8 protein (section 2.2.7) (III, Fig. 5J-O). This suggests a defect in MFSD8

function rather than in its trafficking. Nucleotide changes (c.697A>G and c.1102G>C)

identified in two patients (f3 and h3, respectively) are missense mutations

(p.Arg233Gly and p.Asp368His, respectively) affecting highly conserved amino acids,

and may thus result in changes in functional and/or structural properties of the

protein. Alternatively they may alter the splicing of the transcript, since the affected

nucleotides reside at the exon-intron boundaries in the 3’ ends of exons 7 and 11,

respectively, and lead to production of abnormal mRNAs and/or proteins. Because

samples suitable for  RNA extraction were not available from these two patients,  the

consequences of these mutations could not be assessed at the mRNA level.

The only intronic MFSD8 mutation detected was c.754+2T>A at the donor splice

site of  intron 8,  identified in two affected children in family e (patients e3 and e5).

RT-PCR analysis from patient (e5) lymphoblastoid RNA with primers from exons 6 and

11  revealed  an  altered  pattern  of  splicing  products  (III,  Fig.  1B).  The  fragment

corresponding  to  the  normal  transcript  (~550  bp),  containing  exons  7  to  10,  was

almost  completely  absent.  There  was  also  a  total  lack  of  an  alternatively  spliced

variant  lacking  exon  7  (~400  bp),  and  increased  expression  of  two  alternatively

spliced variants, one without exon 8 (~500 bp) and one without both exons 7 and 8

(~350  bp).  An  additional  weak  band  of  ~480  bp,  the  sequence  of  which  remained

unknown,  was  detected.  The  first  two  variants  are  predicted  to  contain  frameshifts

and premature stop codons while the one lacking both exons 7 and 8 is predicted to

encode  a  product  with  an  in-frame  deletion  of  amino  acids  encoded  from  the

respective  exons.  Nonetheless,  the  c.754+2T>A  sequence  variant  is  likely  to  be

disease-causing since it leads to almost complete lack of the full-length, in-frame

transcript.  The  detection  of  an  altered  splicing  pattern  was  not  unexpected  since

nucleotide changes at the nearly invariant second thymine at the 5’ end of an intron
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usually lead to imprecise recognition of exon-intron junctions and to disturbed splicing

(Cartegni et al. 2002).

As anticipated, no mutations were identified in the MFSD8 gene in patients lacking

homozygosity over the CLN7 locus (in families a,  d,  g,  l,  and k).  In addition to the

exclusion  of  all  known  NCL  loci  in  these  families  (section  2.1.1),  they  were,  by

analysis of the genomewide SNP data, excluded for candidate genes CTSF and CLCN6,

homologs of which are defective in mice with NCL-like phenotypes (Poet et al. 2006,

Tang et  al. 2006). These results indicate that additional, novel NCL-causing gene(s)

underlie the disease in these families. In fact, when the genomewide scan data were

reanalysed in these families, two extensive regions of homozygosity were identified:

on chromosomes 15 (11.7 Mb shared in families g, and l), and 22 (10.8 Mb in family

d).  The highest  HLOD score calculated in these five families at  chromosome 15 was

2.57 (at SNP rs10519740)  while at  chromosome 22 it  was 1.04 (at  SNP rs133710).

However,  for  family  d  only,  the  highest  LOD score  at  chromosome 22  was  2.05  (at

SNPs rs2746967 and rs1534882). Since not all families showed homozygosity over

these two regions, the results imply the possible presence of at least three disease-

causing genes in these five families. Genotyping of additional families with vLINCL in

these  candidate  regions  as  well  as  on  a  genomewide  scale  followed  by  linkage

analysis  and/or  homozygosity  mapping  will  pave  the  way  for  the  identification  of

novel genes underlying vLINCL.

2.2.3. MFSD8 as a novel NCL gene

Although Turkish vLINCL was initially considered a distinct clinical and genetic entity

(Wheeler et  al. 1999),  recent  studies  ((Ranta et  al. 2004),  II,  III)  indicate  that

Turkish vLINCL, despite the relative homogeneity of the phenotype, is genetically very

heterogeneous. Mutations have already been identified in three genes, CLN6, CLN8,

and MFSD8 ((Ranta et al. 2004), II, III). The existence of additional genes underlying

vLINCL in Turkish patients indicated by this study further corroborates the genetic

heterogeneity  of  Turkish  vLINCL.  This  should  be  taken  into  consideration  when

diagnosing vLINCL patients of Turkish descent.

Further  studies  have  led  to  the  identification  of  several MFSD8 mutations in

patients of various ethnic origins (unpublished observations by the group). This

implies that although the identification of MFSD8 was  based  mainly  on  Turkish

patients, CLN7 is not confined to the Turkish population, and moreover, MFSD8 seems

to be a relatively common gene underlying vLINCL in other populations as well.

Mapping and identification of the disease gene in a certain population followed by the

detection of mutations in other populations is not an uncommon phenomenon within

the  NCL  field.  The CLN5 and CLN8 genes were initially mapped and identified in
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patients originating mainly (CLN5)  or  entirely  (CLN8) from the Finnish population

(Savukoski et al. 1994, Tahvanainen et al. 1994, Savukoski et al. 1998, Ranta et al.

1999). Later, however, mutations in both genes have also been detected in patients

from other populations (Ranta et  al. 2004, Pineda-Trujillo et  al. 2005, Bessa et  al.

2006, Cannelli et al. 2006, Cannelli et al. 2007, Zelnik et al. 2007), thus proving that

these diseases are not restricted to the Finnish population.

Within the NCLs, the late-infantile onset group is genetically the most

heterogeneous with mutations identified in PPT1, TPP1, CLN5, CLN6, MFSD8, and

CLN8 ((Sleat et al. 1997, Das et  al. 1998, Savukoski et  al. 1998,  Gao et  al. 2002,

Wheeler et  al. 2002,  Ranta et  al. 2004, Cannelli et  al. 2006),  III).  Differential

diagnosis,  especially  in  patients  with  vLINCL,  is  often  difficult  due  to  the  similar

phenotypes  and  ultrastructural  features  within  this  group.  Moreover,  the  defects  in

certain NCL-causing genes are not confined to specific populations (NCL Mutation

Database, www.ucl.ac.uk/ncl/mutation), and thus the disease-causing gene cannot be

deduced from the ethnic origin of the patient. For these reasons, the ability to provide

a  molecular  genetic  diagnosis  for  many  patients  nowadays  is  of  particularly  great

value. However, the diagnostics remain challenging because of the great locus and

allelic heterogeneity within LINCLs.

The mapping and subsequent identification of the MFSD8 gene in this  study is  a

good example of a successful application of the homozygosity mapping approach

(Lander and Botstein 1987). With our relatively limited family material it was possible

to identify the disease-causing locus and gene by utilizing consanguineous families.

Since consanguineous marriages are relatively common in the Turkish population

(Bittles 2001), there are additional examples of the identification of disease genes by

the homozygosity mapping approach in consanguineous Turkish families (Topcu et al.

2004a, Collin et al. 2008). Further, mapping genes in patients originating from Turkey

and other countries with high consanguinity rates will most probably be beneficial in

identifying  additional  human disease  genes,  especially  in  rare  inherited  diseases.  In

respect to the family j that was reported to be non-consanguineous, the presence of

an extensive region of homozygosity in the affected child’s genome suggests that the

parents may yet share a common ancestor. Finally, although the genetic background

in our family material turned out to be heterogeneous, the defective gene was shared

in the majority of the families which was sufficient to facilitate the identification of the

locus and the gene. Since the genetic background of the genetically undefined vLINCL

forms is, based on this study and on other, unpublished observations, heterogeneous

and moreover, the family material is often small, the homozygosity mapping

approach utilizing consanguineous families may be ideal in attempts to identify the

novel disease-causing genes in these NCL forms as well.

http://www.ucl.ac.uk/ncl/mutation)
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2.2.4. MFSD8 mRNA expression and alternatively spliced variants

To initially characterize the function of the MFSD8 gene,  its  expression  was  first

analyzed by northern blot, in silico, and RT-PCR analyses. The ubiquitous expression

of MFSD8 was supported both by northern blot analyses from human tissues and in

silico by expressed sequence tag (EST) database searches. In human tissue northern

blot analyses the main transcript of ~5 kb was detected to be expressed at very low

levels in all tissues analyzed (III, Fig. 3). In all regions of the brain and in lung, it was

the only transcript detected. In addition, several transcripts ranging from ~1 to ~3 kb

were seen in heart, placenta, liver, skeletal muscle, kidney, and pancreas. In heart

and skeletal muscle, transcripts of ~6 kb were also detected.

MFSD8 shows a complex pattern of alternative splicing, as suggested by the EST

and  RT-PCR  data.  The  majority  of  the  ESTs  identified  in  the  databases  included  all

exons 1-13. Some ESTs, however, represented four alternatively spliced variants with

more limited tissue distribution: one lacking exon 2 (BI553701), one lacking exon 7

(BX341359),  one  lacking  exons  7  and  8  (BG434527),  and  one  lacking  exon  11

(represented by three ESTs: BX341358, BG542082, and BU618424). In addition to

these, several other alternatively spliced partial variants were identified by RT-PCR

analyses covering the open reading frame of the gene (Table 6). None of the variants

are predicted to produce full-length, in-frame transcripts. Observing the alternatively

spliced variants of MFSD8 mRNA  was  not  unexpected  since  the  majority  of  human

genes are estimated to be alternatively spliced (Ben-Dov et al. 2008). However, the

functional relevance of these variants as well as the variants seen in northern blot

analyses is not clear. Alternative splicing has been suggested to be important in

generating protein diversity as well as in regulating gene expression (Stamm et al.

2005).  It  may  result  in  the  production  of  proteins  with  different  amino  acid

compositions, protein isoforms, that may or may not be biologically relevant, or of

mRNAs  with  different  properties  important,  for  example,  for  their  stability  or

translation. Alternatively, it may result in the production of mRNAs with premature

stop codons that serve as targets for NMD and thus lead to their elimination (Lewis et

al. 2003, Hillman et al. 2004).
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Table 6. Alternatively spliced variants of MFSD8 mRNA detected in this study.

Partial transcript
detected by RT-
PCR analyses

Predicted consequence
(difference to NM_152778)

Corresponding
EST

Lacking exon 2 Translation initiation codon at p.Met46 BI553701
Lacking exon 6 In-frame deletion of 38 aa -
Lacking exons
6 and 7

Frameshift and premature stop codon -

Lacking exons
6, 7, and 8

In-frame deletion of 105 aa -

Lacking exon 7 Frameshift and premature stop codon BX341359
Lacking exons
7 and 8

In-frame deletion of 67 aa BG434527

Lacking exons
7, 8, and 11

In-frame deletion of 67 aa (by lack of exons 7 and
8), frameshift and premature stop codon (by lack of
exon 11)

-

Lacking exons
7 and 11

Frameshift and premature stop codon (by lack of
exon 7)

-

Lacking exon 8 Frameshift and premature stop codon -
Lacking exon 11 Frameshift and premature stop codon BG542082,

BU618424,
BX341358

Abbreviations: RT-PCR = reverse transcriptase polymerase chain reaction, aa = amino acid(s),
EST = expressed sequence tag

2.2.5. MFSD8 protein

The 1554 bp open reading frame of MFSD8 encodes a 518 amino acid protein with a

predicted molecular weight of ~58 kDa. In agreement with this was the detection of

the HA-tagged MFSD8 proteins as ~60 kDa bands in sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) following an in vitro translation assay.

Several attempts to detect the soluble overexpressed HA-MFSD8 in transfected cell

lysates on western blots with HA antibodies were unsuccessful, presumably due to the

hydrophobicity of  the protein,  problems in its  transfer,  or  proteolytic  degradation of

the HA tag.

MFSD8  is  predicted  to  be  a  polytopic  integral  membrane  protein  with  12

transmembrane  domains  (III,  Fig.  4).  It  contains  a  MFS  domain  (MFS_1)  at  amino

acid positions p.42_477, and a sugar (and other) transporter domain (Sugar_tr) at

amino acid positions p.72_147, as detected in the Pfam analysis of the MFSD8 amino

acid sequence. This suggests that MFSD8 is a novel member of the major facilitator

superfamily, a very large family of secondary active transporters, present ubiquitously

from bacteria to eukaryotes (Pao et al. 1998, Lemieux 2007). Proteins belonging to

MFS are single-polypeptide carriers for various small solutes, including sugars, drugs,

inorganic and organic cations, and various metabolites (Pao et al. 1998).  The

structural  architecture  of  MFS  proteins  is  suggested  to  be  similar,  and  like  MFSD8,
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most are predicted to have 12 membrane-spanning domains (Lemieux 2007). The

MFS  proteins  are  divided  into  phylogenetic  subfamilies,  members  of  which  are

predicted to have similar functions and substrate specificity (Pao et al. 1998). MFSD8,

as a member of MFS, is likely to function as a transporter, but its substrate specificity

and exact cellular function are currently unknown.

2.2.6. MFSD8 homologs

MFSD8 is evolutionary conserved with several homologs in different species identified

by  BLAST  searches.  In  vertebrates,  MFSD8  has  single  homologs  in  each  species,

whereas in invertebrates, usually several weakly similar proteins are identifiable. In S.

cerevisiae,  the most similar  proteins to MFSD8 whose functions are known are MFS

proteins involved in the transport of lactate (Jen1p), and glycerophosphoinositol and -

choline (Git1p) (Patton-Vogt and Henry 1998, Casal et  al. 1999, Soares-Silva et  al.

2003, Fisher et  al. 2005).  In humans, the most similar  protein to MFSD8 is  MFSD9

(previously known as MGC11332) with an unknown function. MFSD9 has recently

been  identified  as  a  candidate  gene  showing  evidence  for  association  with  type  2

diabetes in a genomewide association scan (Rampersaud et  al. 2007).  The  other

similar  human  proteins  are  or  are  predicted  to  be  involved  in  the  transport  of

tetracycline (tetracycline transporter-like protein, TETRAN), monoamines (SLC18A2 or

VMAT2), and organic cations (SLC22A18 or ORCTL2) (Liu and Edwards 1997, Reece et

al. 1998).  Some  human  diseases  have  been  associated  with  genes  encoding  MFS

proteins.  Interestingly,  vLINCL  shares  clinical  features,  e.g.  encephalopathy,  with

some of these diseases. Among these, according to MimMiner

(www.cmbi.ru.nl/MimMiner/), that searches for similarities between phenotypes

based  on  the  OMIM  database  (van  Driel et  al. 2006), Salla disease most closely

resembles  vLINCL.  Salla  disease  and  an  allelic  disease,  infantile  sialic  acid  storage

disease,  are  caused  by  mutations  in SLC17A5 encoding a lysosomal integral

membrane protein sialin which exports sialic acid and other acidic monosaccharides

out of lysosomes (Verheijen et al. 1999, Morin et al. 2004).

2.2.7. Intracellular localization of MFSD8

In  order  to  study  the  subcellular  localization  of  MFSD8,  N-  and  C-terminally  HA-

tagged  MFSD8  proteins  were  transiently  overexpressed  in  African  green  monkey

kidney (COS-1) and HeLa cells. In immunofluorescence analyses of the cells using HA

antibodies MFSD8 was detected in punctate structures in the cytoplasm (for COS-1

cells  with  N-terminally  HA-tagged  MFSD8:  III,  Fig.  5A,  5D,  and  5G).  A  variety  of

organelle markers were used to identify these structures in COS-1 cells. The HA-

MFSD8 showed the strongest overlap with lysosomal markers LAMP1 (III, Fig. 5A-C),

http://www.cmbi.ru.nl/MimMiner/
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CTSD,  and  lysobisphosphatidic  acid  (LBPA).  No  overlap  was  observed  with  early

endosomal protein early endosome antigen 1 (EEA1) (III, Fig. 5D-F) or with markers

for the earlier compartments of the secretory pathway, including ER resident protein-

disulfide  isomerase  (PDI),  Golgi  protein  giantin,  and  MPR46  (III,  Fig.  5G-I).  These

results imply that MFSD8 localizes to lysosomes similarly to the majority of the

previously identified NCL proteins (CTSD, PPT1, TPP1, CLN3, and CLN5) (Press et al.

1960, Rawlings and Barrett 1995, Hellsten et al. 1996, Verkruyse and Hofmann 1996,

Järvelä et al. 1998, Isosomppi et al. 2002). Based on the analyses carried out in this

study,  the  MFSD8  protein  is  proposed  to  be  a  novel  integral  membrane  lysosomal

protein. The exact cellular function of this novel putative lysosomal transporter

remains to be elucidated.
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CONCLUSIONS AND FUTURE PROSPECTS

This thesis describes the identification of two novel human NCL-causing genes, CTSD

and MFSD8, which increases the number of known human NCL genes from six to

eight, and thus substantially contributes to the understanding of the complete

molecular genetic spectrum of NCLs.

We provided the first molecular genetic explanation for congenital human NCL by

identification of a disease-causing mutation in the CTSD gene  in  one  family.  CTSD

deficiency  was  shown  to  underlie  the  disease  also  in  another  family,  and  it  may

underlie the disease in all cases of congenital NCL. Thus, CTSD should be studied as a

candidate gene in families with this disease.

The  molecular  genetic  basis  of  vLINCL  in  the  Turkish  population  was  partially

resolved in this  study by detection of  mutations in one previously known NCL gene,

CLN6, and most importantly, by the mapping, identification, and characterization of a

novel gene, MFSD8 (CLN7),  underlying  the  disease.  MFSD8  is  a  novel  putative

lysosomal  integral  membrane  protein  which,  as  a  member  of  the  major  facilitator

superfamily, is predicted to function as a transporter. In addition, this study indicates

the  existence  of  novel  genes  underlying  vLINCL  in  Turkish  families.  These  results

further emphasize the genetic heterogeneity of Turkish vLINCL as well as the genetic

heterogeneity  of  NCLs  in  general.  Moreover,  they  raise  the  expectations  of  the

identification of novel NCL genes in the near future.

For an individual family with congenital NCL or vLINCL, the most important effect

of this study is definitely the new availability of a molecular genetic diagnosis for the

patients  as  well  as  the  opportunity  for  carrier  and  prenatal  screening  within  the

family. The diagnostics may still, however, be difficult because of the great locus and

allelic heterogeneity within NCLs. In addition, some NCL-causing genes are yet to be

identified, hence providing an exact genetic diagnosis may be challenging.

In the long run, the identification of mutations in CTSD and MFSD8 is  a starting

point for dissecting the molecular mechanisms behind the associated disorders. As

MFSD8 is a novel gene, functional studies are of special importance. Resolving the

substrate specificity of this putative transporter will be crucial in unraveling its cellular

function and the disease mechanism in the associated vLINCL. Cell and animal models

may be utilized in these studies. Whether MFSD8 is the underlying disease-causing

gene in some of the existing, naturally occurring animal models for NCL remains to be

explored.
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This thesis underlines the importance of the research on the molecular genetic

background of  rare NCL forms. The information that becomes available immediately

upon gene identification itself, along with the biochemical and functional studies on

the encoded proteins and on the disease mechanisms in associated disorders,

contributes to the challenging task of understanding the complete picture of the

molecular pathology underlying the group of NCL disorders. This will be critical in the

development of preventive or curative therapies for patients with NCLs.
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