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ABBREVIATIONS

8-Cys eight cysteine protein domain, also known as TB (TGF-f binding protein like)
domain and CR (cysteine-rich) domain

a,M o, macroglobulin

BAMBI BMP and activin membrane-bound inhibitor

BDNF brain-derived neurotrophic factor

BMP bone morphogenetic protein

CDMP cartilage-derived morphogenetic protein

cDNA complementary deoxyribonucleic acid

CNTF ciliary neurotrophic factor

ECM extracellular matrix

EGF epidermal growth factor

EST expressed sequence tag

FAST forkhead activin signal transducer

FGF fibroblast growth factor

GAG glycosaminoglycan

GDF growth and differentiation factor

GDNF glial cell line-derived neurotrophic factor

GM-CSF granulocyte-macrophage colony stimulating factor

HGF hepatocyte growth factor (also known as scatter factor)

HHT-1 hereditary hemorrhagic telangiectasia

IFN-y interferon-y

IGF insulin-like growth factor

IL interleukin

kb kilobase

kDa kilodalton

LAP latency associated protein / peptide

LIF leukemia inhibitory factor

LTBP latent TGF-f3 binding protein

MFS Marfan syndrome

MH Mad homology

MIS/AMH Miillerian inhibiting substance/anti-Miillerian hormone

MMP matrix metalloproteinase

mRNA messenger ribonucleic acid

NGF nerve growth factor

NT neurotrophin

PA plasminogen activator

PCR polymerase chain reaction

PDGF platelet-derived growth factor

SARA SMAD anchor for activation

SBE SMAD binding element

SCID Severe combined immunodeficiency

SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis

TGF-B transforming growth factor beta

TBRI, TRRII TGF-P type I and II receptors

TIE TGF-B inhibitory element

TIMP tissue inhibitor of metalloproteinases

TNF-a tumor necrosis factor-a

tPA tissue-type plasminogen activator

TSP thrombospondin

uPA urokinase-type plasminogen activator

uPAR receptor for urokinase-type plasminogen activator

VEGF vascular endothelial growth factor
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4 SUMMARY

Transforming growth factor-betas (TGF-s) are multipotent peptide growth factors,
whose main effects are to enhance the synthesis of extracellular matrix (ECM) components, to
decrease ECM proteolysis, to inhibit cell proliferation and to act as immunosuppressive agents.

TGF-P is secreted from cells as a latent complex, consisting of a TGF-f3 dimer and its
N-terminal latency associated propeptide (LAP) dimer. TGF-3 and LAP are proteolytically
cleaved apart during secretion, but remain associated via non-covalent forces. In TGF-3
activation, this interaction is disrupted or modified so that TGF-f3 can bind to its cell surface
signaling receptors. Frequently, a latent TGF-[3 binding protein (LTBP) is covalently attached
to the LAP part of the TGF-[3 complex. LTBPs are required for the correct folding and efficient
secretion of the complex. LTBPs are ECM components, directing the large latent TGF-3
complex to the ECM structures.

In the current work, the protein domains of LTBP-1 responsible for both the deposition
of LTBP-1 to ECM and for the covalent association with TGF-BLAP were first identified.
Using stably co-transfected cell lines, TGF-BLAP was found to be secreted as the large latent
complex, whenever LTBP-1 or endogenous LTBP proteins were present. The ECM binding
function was localized to the N-terminus of LTBP-1S protein.

All mammalian TGF-BLAP isoforms were found to associate with the 3™ 8-Cys repeat
of LTBPs -1 and -3, providing the first biological function for these protein domains. Fibrillins
-1 and -2, as well as LTBP-2, were found to be incapable of covalent or non-covalent
association with LAP, while LTBP-4 could associate very weakly with TGF-B1LAP isoform.
Molecular modeling of multiple 8-Cys repeats of LTBPs revealed increased hydrophobic
surfaces in all of the TGF-[3 binding type 8-Cys repeats as well as to some extent a more relaxed
structure. These results suggest that hydrophobic interaction(s) may well be involved in the
association of LTBPs with TGF-BLAP, enabling the formation of a large latent TGF-3
complex and its efficient secretion.

In addition, a new member of the LTBP-fibrillin family was cloned and named as
LTBP-4. The human LTBP-4 gene is located in the chromosomal position 19q13.1-13.2. The
LTBP-4 protein has a domain structure similar to the other known LTBPs. LTBP-4 was found
to be efficiently incorporated into the ECM and is susceptible to specific proteolytic release
from the ECM.

Cloning of the genomic region covering parts of the LTBP-1 gene revealed that the two
LTBP-1 isoforms, LTBP-1S and LTBP-1L, have their own independent promoters, which are
regulated in a cell-type specific manner. Independent promoters may provide a more specific
regulation of expression in response to different stimuli during e.g. development or tissue
repair. The generation of the two LTBP-1 transcripts was found to employ a rare intra-exonic
splice acceptor site, in which the same genomic sequence can be used as an exon for
transcription of LTBP-18S, while a part of it will be spliced out as an intron, when the LTBP-1L
is transcribed from its own promoter

The current work emphasizes the controlled localization as well as the rapid and
targeted responses acquired by the activation of latent growth factors deposited to ECM
structures. The results aid our understanding of the biological functions of LTBP proteins in
ECM accumulation and activation of latent TGF-3s.
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S INTRODUCTION

5.1 Transforming growth factor-3 superfamily

The transforming growth factor-[3 superfamily consists of more than 30 different genes
(reviewed by Kingsley, 1994, Roberts and Sporn, 1996, Massague, 1998). This growth factor
superfamily has distinctive subfamilies, like the TGF-f3s, activins/inhibins, bone
morphogenetic proteins (BMPs) as well as growth and differentiation factors (GDFs).
However, the boundaries between these subfamilies have at least partly vanished due to the
cloning of new family members. The members of TGF-3 superfamily have very diverse and
profound effects at various stages of development as well as in regulating tissue function and
integrity during adult life (Table 1).

Table 1. Transforming growth factor-f3 superfamily and their representative activities
(modified from Massague, 1998)

Name [Homologue] % Activities and references
BMP2 subfamily

Gastrulation, neurogenesis, chondrogenesis, interdigital apoptosis; in frog: mesoderm

D
BMP2 [Dpp”] 100 patterning; in fly: dorsalization, eyes, wings (Harland, 1994, Hogan, 1996, Mehler et al., 1997).

BMP4 92

BMP5 subfamily
Along with BMPs 2 and 4, this subfamily participates in the development of nearly all organs;

BIPS [60 A°) 61 many roles in neurogenesis (Hogan, 1996, Mehler et al., 1997).
BMP6/Vgr1 61
BMP7/0P1 60
BMP8/OP2 55

GDF5 subfamily

GDF5/CDMP1 57  Chondrogenesis in developing limbs (Kingsley, 1994, Hogan, 1996).
GDF6/CDMP2 54
GDF7 57

Vg1 subfamily
GDF1 [Vg1X] 42 Vg1: axial mesoderm induction in frog and fish (Kingsley, 1994).
GDF3/Vgr2 53

BMP3 subfamily
BMP3/osteogenin 48 ((e)ts:ogigglg)d|ﬁerent|at|on, endochondral bone formation, monocyte chemotaxis (Cunningham

GDF10 46

Intermediate members
Nodal [Xnr1t0 3X] 42  Axial mesoderm induction, left-right asymmetry (Beddington, 1996, Hogan, 1996).
Dorsalin 40 Regulation of cell differentiation within the neural tube (Basler et al., 1993).
GDF8 41 Inhibition of skeletal muscle growth (McPherron et al., 1997).
GDF9 34
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Activin subfamily
Pituitary follicle-stimulating hormone (FSH) production, erythroid cell differentiation; in frog,

Activin BA 42 mesoderm induction (Vale et al., 1990, Harland, 1994, Gaddy-Kurten et al., 1995).
Activin 3B 42
Activin BC 37
Activin BE 40

TGF-3 subfamily
Cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation
TGF-B1 35 and differentiation, wound healing, ECM production, immunosuppression (Massague, 1990,
Roberts and Sporn, 1990, Roberts and Sporn, 1993, Alexandrow and Moses, 1995).

TGF-B2 34
TGF-33 36
Distant members
MIS/AMH 27  Mllerian duct regression (Cate et al., 1990, Josso et al., 1993).
" Inhibition of FSH production and other actions of activin (Gaddy-Kurten et al., 1995, McPherron
Inhibin 22
et al., 1997).
GDNF 23 Dopaminergic neuron survival, kidney development (Massague, 1996a).

The sequence identities for the mature growth factor regions are shown in percentages, using BMP-2
sequence as the reference. All members listed have been identified in human and/or mouse. Important
homologues from Drosophila (D) and Xenopus (X) are listed in brackets. CDF, growth and differentiation
factor. CDMP, cartilage-derived morphogenetic protein.  MIS/AMH, Miillerian inhibiting
substance/anti-Millerian hormone. GDNF, glial cell-derived neurotrophic factor.

The different isoforms of TGF-3 have been cloned from various sources, including
mammalian TGF-f3s -1, -2 and -3 (Derynck et al., 1985, de Martin et al., 1987, Derynck et al.,
1988, Hanks et al., 1988, ten Dijke et al., 1988), chicken TGF-P4 (Jakowlew et al., 1988) and
Xenopus TGF-B5 (Kondaiah et al., 1990). TGF-f3 is a dimeric growth factor, and while
homodimers are most prevalent, also biologically active heterodimers, like TGF-f3 1.2 and
TGF- 2.3 have been identified (Cheifetz et al., 1987, Ogawa et al., 1992). Other heterodimeric
growth factors of the TGF-[3 superfamily have also been characterized. These include activins
BA and BB homo- and heterodimers as well as inhibins, which are heterodimers of inhibin

0-chains and activin [3-chains and function as antagonists of activins (reviewed by Mathews,
1994) as well as BMP 4/7 and 2/7 heterodimers (Israel et al., 1996, Nishimatsu and Thomsen,
1998).

5.2 Biological effects of TGF-j3

TGF-Bs are multipotent growth modulators. The effects of TGF-Bs are usually
categorized by the enhancement of ECM production and suppression of ECM proteolysis,
growth inhibitory actions for epithelial and endothelial cells and strong immunosuppressive
effects (Fig. 1; reviewed by Massague, 1990, Laiho and Keski-Oja, 1992, Kingsley, 1994,
Lawrence, 1996, Moses and Serra, 1996). The major sources of TGF-[3 are the platelets, bone
and serum.
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An essential piece of information about the biological effects of different TGF-f3
isoforms has been obtained from mice lacking the corresponding functional gene. The
immunosuppressive effects of TGF-31 are well exemplified in TGF-B1 deficient mice (Shull ez
al., 1992, Kulkarni et al., 1993, Christ ef al., 1994, Diebold et al., 1995, Letterio and Roberts,
1996). About half of the mice die before birth because of defects in vasculogenesis and
hematopoiesis (Dickson et al., 1995). The born pups die shortly after weaning due to a massive
infiltration of cells of the immune system to different tissues (Boivin et al., 1995, Dickson et
al., 1995). Tt has been suggested that maternal supply of TGF-B1 would contribute to the
development of the born mice (Letterio et al., 1994). When TGF-31 gene deficiency was
introduced in SCID (severe combined immune deficiency) mice, they could live untill
adulthood (Diebold et al., 1995). TGF-B -2 and -3 deficient mice have different, but not
overlapping developmental defects (Kaartinen et al., 1995, Proetzel et al., 1995, Sanford et al.,
1997). TGF-B2 deficiency causes perinatal lethality and a number of developmental
malformations in various organs, including the heart, lung, eye and ear as well as in the
urogenital system (Sanford et al., 1997). Homozygous TGF-B3 deficient mice suffer from
delayed pulmonary development and cleft palate and die soon after birth (Kaartinen et al.,
1995, Proetzel et al., 1995). The different phenotypes of the various TGF-3 isoform null mice
might indicate low levels of isoformic redundancy in vivo. Also the expression patterns of
different TGF- isoforms as well as their promoter regions are unique, contributing to the
phenotypic differences of the various TGF-3 gene deficient mice (reviewed by Roberts and
Sporn, 1990, Roberts ef al., 1991).

Angiogenesis

Mesenchymal .
cell proliferation %% > ECM synthesis
2¥ds
i'?.r -\t—ﬂ"‘
Epithelial/endothelial ECM d dat
cell proliferation TGF-O egradation
Epithelial/endothelial Immune responses

cell migration

Figure 1. The main effects of TGF-3
The main biological effects of TGF- are presented. TGF- increases the events indicated by the +
symbol and decreases the events indicated by the - symbol.
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5.2.1 Effects of TGF-[3 on extracellular matrix and skeletal system

TGF-f has very strong effects on the regulation of ECM synthesis and degradation.
TGF-f induces the expression of multiple ECM components, including collagen, fibronectin,
tenascin, thrombospondin, vitronectin, elastin and proteoglycans. TGF-B decreases
extracellular proteolysis by decreasing the expression of proteases and their activators like
plasmin, plasminogen activators and metalloproteinases and by increasing expression of
protease inhibitors, like plasminogen-activator inhibitor (PAI-1) and type 1 tissue inhibitor of
metalloproteinase (TIMP-1). TGF-3 also regulates the expression of certain cell surface
receptors for ECM proteins (integrins) (reviewed by Laiho and Keski-Oja, 1992, Noble ef a!.,
1992, Roberts and Sporn, 1996, Taipale et al., 1998).

TGF-f3 has important functions in wound healing. Platelets are a very rich source of
TGF-P and release a part of their TGF-[3 load, complexed with the latent TGF-[3 binding protein
-1 (LTBP-1), into the wound from their a-granules upon activation (Assoian and Sporn, 1986,
Grainger et al., 1995; see below section 5.4 Large latent TGF-3 complex). The rest of the
TGF-f from platelets remains in the clot and can be released by peptides containing the RGD
sequence motif, providing a long-lasting TGF-[ reservoir during wound healing (Grainger et
al., 1995). TGF-P is chemotactic for e.g. fibroblasts, macrophages and leukocytes, and capable
of enhancing platelet aggregation (Roberts et al., 1986, Postlethwaite et al., 1987, Wahl et al.,
1987, Hoying et al., 1999) and recruiting them to the injured area. By increasing the production
of several ECM components and by inducing angiogenesis, the net effect of TGF-[3 function in
wound healing is increased maturation and strength of the wounds (reviewed by Roberts and
Sporn, 1996, O'Kane and Ferguson, 1997). The importance of an intact TGF-f signaling
pathway for generation and maintenance of blood vessels is demonstrated by the TGF-[31 as
well as TGF-f type II receptor null mice (Dickson et al., 1995, Oshima et al., 1996). These
mice suffer from weak blood vessels and inadequate capillary vessel formation. The negative
effect of the enhanced wound healing by TGF-f is increased scarring. This has been observed
for exogenously added TGF-B1 in adult rodent wounds, while anti-TGF-31 antibodies reduce
scarring (Shah et al., 1992, Shah et al., 1994). TGF-B31 is the prevalent isoform in wound fluids
of adults, whereas in the wounds of fetuses, TGF-f32 predominates (Longaker et al., 1990,
Whitby and Ferguson, 1991a, Whitby and Ferguson, 1991b). The latter is a phenomenon,
which may contribute to the lack of scarring of fetal wounds (reviewed by Mast et al., 1992,
Adzick and Lorenz, 1994).

TGF- is also centrally involved in bone formation. Because of its large mass, the bone
tissue is the richest source of TGF-f31 (reviewed by Bonewald and Dallas, 1994, Bonewald,
1996). Osteoblasts are stimulated by TGF-3 (Centrella et al., 1987, Pfeilschifter and Mundy,
1987, Pfeilschifter et al., 1987), which is in agreement with TGF-[3 induced bone formation. In
addition, TGF-B1 gene deficient mice suffer from a decreased bone mass and elasticity (Geiser

et al., 1998). During bone degradation, latent TGF-[3, stored in bone matrix, is activated and
inhibits bone-degrading osteoclasts.
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5.2.2 TGF-B in regulation of cell proliferation

Despite its name, TGF-[3 is a potent suppressor of growth for many cell types. TGF-3
inhibits epithelial, endothelial and hematopoietic cell proliferation in a reversible manner
(Tucker et al., 1984, Heimark et al., 1986 , Shipley et al., 1986, Miiller et al., 1987, Silberstein
and Daniel, 1987, Takehara et al., 1987, Sato and Ritkin, 1989). The inhibition is caused by
arresting the cell cycle at the G-phase (reviewed by Ravitz and Wenner, 1997). However, the
effects of TGF-[3 on the proliferation of cells of mesenchymal origin are quite opposite. TGF-3
can stimulate the growth of e.g. fibroblasts under certain culture conditions (Shipley et al.,
1985, Soma and Grotendorst, 1989). Mesenchymal cell proliferation caused by TGF-f is
believed to be indirect. Namely, TGF-3 increases its own expression as well as that of several
other growth factors like platelet derived growth factor (PDGF), basic fibroblast growth factor
(bFGF) and vascular endothelial growth factor (VEGF), which are considered to be responsible
for TGF-f induced cell proliferation and angiogenesis in an auto/paracrine fashion (Leof et al.,
1986, Battegay et al., 1990, Bronzert et al., 1990, Pertovaara et al., 1993, Pertovaara et al.,
1994, Kay et al., 1998).

5.2.3 TGF-$ as an immunosuppressive agent

TGF-f is a very potent immunomodulatory factor (reviewed by McCartney-Francis
and Wahl, 1994, Letterio and Roberts, 1997, Letterio and Roberts, 1998, de Visser and Kast,
1999). The immunomodulatory functions of TGF-3 are quite diverse. TGF-3 can induce both
differentiation and growth of precursors of many hematopoietic cells. TGF-f3 is also
chemotactic for e.g. macrophages. At the same time, TGF-B exhibits strong
immunosuppressive effects, as clearly demonstrated by the TGF-B1 null mice. These mice die
after weaning due to a multifocal infiltration of inflammatory cells, especially to the heart,
lungs and salivary glands (Shull et al., 1992, Kulkarni et al., 1993, Christ et al., 1994).

TGF-B is expressed by many leukocyte linecages (Assoian et al., 1987). E.g. activation
of resting T lymphocytes results in the upregulation of TGF-[3 and its signaling receptors (Kehrl
et al., 1986b). In general, TGF-[3 is considered to be growth inhibitory as well as an apoptotic
factor for both T and B lymphocytes (Kehrl et al., 1986b, Kehrl ef al., 1986a, Ranges ef al.,
1987, Kehrl et al., 1989, Kehrl et al., 1991, Holder et al., 1992, Lomo et al., 1995). TGF-[3 also
suppresses natural killer (NK) cells (Rook et al., 1986). However, TGF-[3 promotes the growth

of'naive T cells (Cerwenka et al., 1994). In addition, TGF-[3 decreases the expression of MHC
class II proteins (Czarniecki et al., 1988), an effect that may attenuate host responses against
tumors. TGF-[3 has a strong influence on inflammation as well as on fibrosis caused by chronic
inflammation. Monocytes/macrophages, centrally involved in these processes, are regulated by
TGF-B (reviewed by Wahl, 1992, Bogdan and Nathan, 1993, Border and Noble, 1994).
Macrophages are also capable of activating TGF-[3 (see below, Activation of latent TGF-[3 ).
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5.3  Synthesis and processing of TGF-(3

The TGF-3 ¢cDNA codes for both an N-terminal pro-domain, LAP (TGF-3 latency
associated protein; Lawrence et al., 1984, Gentry et al., 1988) and the C-terminal mature
TGF-B. TGF-B is cleaved from its LAP propeptide by a furin-like endoproteinase at an
RR[KA][RKL] sequence during the secretion of the TGF-B-LAP complex (Dubois et al.,
1995). LAP is required for the correct folding, disulphide bond-mediated dimerization and
secretion of TGF-B (Gray and Mason, 1990). The secreted TGF-P is dimerized via a single
disulphide bridge between the monomers, while dimerization of the LAP part involves two
disulphide bridges (Gentry et al., 1988). The LAP part is substantially larger than the TGF-[3
part. BILAP is 279 amino acids long and has a calculated molecular mass of about 33 kDa,
while TGF-f31 is 112 amino acids long, and has a calculated molecular mass of about 14 kDa.
Recombinant LAP, is glycosylated, whereas TGF-f3 is not (Brunner et al., 1988, Purchio et al.,
1988). The correct glycosylation of LAP is required for the secretion of the protein complex
(Sha et al., 1989).

The LAP propeptide dimer remains associated with the TGF-[3 dimer by non-covalent
interactions after secretion (Gentry et al., 1988, Gentry and Nash, 1990). The interaction of
TGF-B with LAP renders TGF-[3 biologically latent, i.e. unable to bind to its signaling receptors
on a cell surface. The latent TGF-3 complex consisting of LAP and TGF-f3 is referred to as
small latent TGF-[3. The association between active TGF-[3 and its LAP propeptide is reversible
(Gentry and Nash, 1990, McMabhon et al., 1996, Yang et al., 1997). BI1LAP is able to inactivate
the mammalian TGF-f3s -1, -2 and -3 (Gentry and Nash, 1990, Miller ef al., 1992, Bottinger et
al., 1996) suggesting that the inactivation of TGF-3 via LAP is not TGF-f3 isoform-specific.
However, it is not known whether the non-isoform-specific “neutralization”, or reversible
binding of active TGF-f3 to LAP is physiologically relevant. The 3-dimensional structures of
TGF-Bs -1, -2 and -3 have been determined, and they all involve four internal disulphide
bridges as well as a disulphide link between the monomers (Daopin et al., 1992, Schlunegger
and Grutter, 1992, Archer et al., 1993, Daopin et al., 1993, Schlunegger and Grutter, 1993,
Mittl et al., 1996). TGF-Bs are composed mainly of [3-strands. An alpha helix and a beta sheet
interact between the monomers, forming a hydrophobic core. In addition to the single
disulphide bridge, the dimer is stabilized via multiple hydrogen bonds. The three-dimensional
structure of LAP is not known, but it is predicted to be also rich in 3-strands (McMahon et al.,
1996). The association of TGF-f3 with LAP results in extensive structural changes in LAP
(McMahon et al., 1996).

Similar regulation of the activity of the other members of the TGF-3 superfamily by
their propeptide parts is not known to exist. However, other proteins are known to be capable of
inhibiting the activity of the activins and BMPs. Follistatin is a secreted protein that can bind to
activin and BMPs and prevent their binding to cell surface signaling receptors (de Winter et al.,
1996, lemura et al., 1998). Similarly, noggin, chordin and members of the DAN family bind to
BMPs and block their interaction with signaling receptors (Piccolo ef al., 1996, Zimmerman et
al., 1996, Hsu et al., 1998, Piccolo et al., 1999, Yokouchi ef al., 1999).
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5.4 Large latent TGF-3 complex

In platelets, which are a rich source of TGF-[3, TGF-3 was found to be in complex with
a high molecular weight protein (Miyazono et al., 1988, Wakefield et al., 1988). This protein
was cloned and named as latent TGF-[3 binding protein (LTBP or transforming growth factor
type beta masking protein, later renamed as LTBP-1; Kanzaki et al., 1990, Tsuji et al., 1990).
After the characterization of LTBP-1, two other LTBP isoforms were cloned (Moren et al.,
1994, Gibson et al., 1995, Yin et al., 1995a). The interaction between TGF-f3 binding LTBP
and TGF-f is covalent, involving disulphide bond(s) between LAP propeptide of TGF-3 and
LTBP. LTBPs are ECM components, which target the large latent complex rapidly after
secretion to ECM structures, where TGF-[3 resides in a latent form (Taipale et al., 1994, Dallas
et al., 1995, Nakajima et al., 1997). In addition to LTBPs, also the cysteine-rich fibroblast
growth factor receptor has been reported to function as a small latent TGF-[3 binding protein
(Olofsson et al., 1997).

LTBP-1 has been found to possess a central role in the processing and secretion of
TGF-B1 (Miyazono et al., 1991, Miyazono et al., 1992), and the expression of LTBP-1 is in
some cases found to be co-regulated with TGF-B1 (Miyazono et al., 1991, Dallas et al., 1994,
Taipale et al., 1994, Koli and Keski-Oja, 1995). The small latent TGF-3 complex is secreted
very slowly residing in the cis-aspect of the Golgi apparatus (Miyazono et al., 1991, Miyazono
et al., 1992, Mizoi et al., 1993). Furthermore, the secreted small latent TGF-3 complex is not
correctly folded (Miyazono et al., 1991). LTBPs, in turn, are secreted rapidly, and the
association of the small latent TGF-[3 with LTBP-1 is required for the correct folding and rapid
secretion of TGF-f3 (Miyazono et al., 1991, see also Taipale et al., 1994). TGF-[3s are secreted
in the large latent complex in most studied cultured cell lines (Olofsson et al., 1992, Dallas et
al., 1994, Taipale et al., 1994, Taipale ef al., 1995). However, the major fraction of secreted
LTBPs does not contain TGF-3 (Miyazono et al., 1991, Taipale et al., 1994, Taipale et al.,
1995), and thus the association with TGF-f3 is optional for LTBPs. The only known cell types
secreting both small and large latent TGF- complexes are platelets, cells from malignant

tumors as well as some osteoblast cell lines and primary osteoblasts (Bonewald ef al., 1991,
Eklov et al., 1993, Mizoi et al., 1993, Dallas et al., 1994, Grainger et al., 1995).

5.5 Activation of latent TGF-3

Activation of TGF-f3 involves the disruption or modification of the non-covalent
interaction between LAP and TGF-3 in a way that enables TGF-3 to bind to its signaling
receptors. Since TGF-B signaling receptors are ubiquitously expressed (reviewed by
Massague, 1996b), the activation of TGF-f3 is a key step in the regulation of its biological
effects. Cultured cells do not normally secrete active TGF-[3 or activate significant proportions
of latent TGF-[3. Only a few primary cells and established cell lines have been found to contain

activated TGF-f in their conditioned culture medium. Cultured BSC-1 African green monkey
kidney cells (Holley et al., 1985, Hanks et al., 1988, McPherson et al., 1989) as well as certain
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human glioblastoma cell lines (de Martin et al., 1987, Olofsson et al., 1992) have been found to
secrete active TGF-3. In addition, certain tumor cells, like the human gastric cancer cell line
Kato III, have been reported to have the capacity to activate secreted TGF-f31 (Ura et al., 1991,
Takiuchi et al., 1992, Mahara et al., 1994, Horimoto et al., 1995). Multiple pathways resulting
in the activation of TGF-[3s have been described (Table 2).

Table 2. Mechanisms involved in activation of latent TGF-3 (modified from

Saharinen et al., 1999)

_ Activation method

Reference

Physicochemical
Acidic cellular microenvironment
Extremes of pH
Gamma-irradiation
Reactive oxygen species

Enzymatic
Proteases
- plasmin, cathepsin G
- calpain
- MMP-2, MMP-9
-Kato lll cells (unidentified protease)
Glycosidases

Nonspecified protein interactions
Thrombospondin-mediated

Integrin avbs-mediated

Jullien et al., 1989

Brown et al., 1990
Barcellos-Hoff, 1993
Barcellos-Hoff and Dix, 1996

Lyons et al., 1988, Lyons et al., 1990,Sato and Rifkin, 1989
Abe et al., 1998

Yu and Stamenkovic, 2000

Horimoto et al., 1995

Miyazono and Heldin, 1989

Schultz-Cherry and Murphy-Ullrich, 1993, Schultz-Cherry et al.,
1994a, Schultz-Cherry et al., 1994b
Munger et al., 1999

Drug-induced (biochemical mechanism unknown)

Antiestrogens
Retinoids
Vitamin D3
Glucocorticoids

Knabbe et al., 1987, Colletta et al., 1990
Glick et al., 1989, Kojima and Rifkin, 1993
Koli and Keski-Oja, 1993

Oursler et al., 1993, Boulanger et al., 1995

5.5.1 Proteolytic activation of TGF-3

Proteolysis is the most studied activation mechanism of TGF-[3. Proteolysis has been
shown to target degradation of LAP propeptide in vitro, resulting in the liberation of active

TGF-B (Lyons et al., 1988). Protease inhibitors can abrogate activation of TGF-f3 in several cell
culture models (Antonelli-Orlidge et al., 1989, Sato and Rifkin, 1989, Sato et al., 1990, Huber
etal., 1992, Chu and Kawinski, 1998). Proteolysis can also lead to conditions, where the effects

of TGF-f are suppressed. For example, shedding of the TGF-f type III receptor, betaglycan,
from the cell surface (LaMarre et al., 1994, Lopez-Casillas et al., 1994) results in the

sequestration of TGF-f3 from its signaling receptors (see below section 5.6 TGF- signal

transduction).
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Plasmin mediated TGF-f activation is the best-characterized proteolytic TGF-f3
activation model (Lyons et al., 1988, Lyons et al., 1990, Grainger et al., 1995). It has been
shown to require several other factors including urokinase plasminogen activator (uPA) and its
receptor (UPAR), carbohydrates on LAP as well as mannose 6-phosphate / insulin-like growth
factor II receptor (Kovacina et al., 1989, Dennis and Rifkin, 1991b, Kojima and Rifkin, 1993,
Sato et al., 1993, Odekon et al., 1994). The biological model for plasmin-mediated TGF-3
activation is co-cultivation of endothelial and smooth muscle cells, requiring close proximity of
the two cell types (Antonelli-Orlidge et al., 1989, Sato and Rifkin, 1989, Sato et al., 1990).

The ECM bound large latent TGF-[3 complex is susceptible to proteolysis that releases
the complex still in a latent form. TGF-[3 activation in the co-cultivation assay can be prevented
by exogenous LTBP-1, free of TGF-[3, and by anti-LTBP-1 antibodies against either its N- or
C-terminal regions (Flaumenhaft ef al., 1993, Kojima and Rifkin, 1993, Nunes ef al., 1997).
Transglutaminase has been found to be essential for covalent binding of the large latent
complexes to ECM (Nunes et al., 1997, Verderio et al., 1999). In the co-cultivation or retinoid
stimulation mediated TGF-[3 activation models the blocking of transglutaminase activation
results in inhibition of TGF-[3 activation (Kojima et al., 1993, Kojima et al., 1995, Nunes et al.,
1995, Nunes et al., 1997). Thus, at least in the co-cultivation model, proper ECM deposition of
the large latent complex has a distinctive role in TGF-[3 activation. This suggests that TGF-[3
activation, at least in the proteolytic activation models, is preceded by the release of large latent
complex from the ECM. The activation itself would then take place at or near the cell surface by
another step, which could involve also proteolysis or other activation mechanisms (presented
schematically in Fig. 2). In addition to plasmin, also other proteases have been identified
capable of releasing large latent complexes from the ECM. However, these proteases have not
been found to activate TGF-[3 (Taipale et al., 1995).

The proposed plasmin dependent TGF-[3 activation model is self-regulatory; TGF-3
increases the expression of plasminogen activator inhibitor-1 (PAI-1), which inhibits the
activation of plasminogen by plasminogen activators and subsequent TGF-3 activation (Laiho
et al., 1986). However, the results from transgenic mice suggest alternative pathways for the
activation of TGF-B. Mice defective either in plasminogen, receptor for urokinase-type
plasminogen activator (uPAR, CD87), or both urokinase and tissue type plasminogen
activators (uPA and tPA) do not have phenotypic overlap with TGF-B1 knockout mice,
indicating that these factors are not indispensable for TGF-f31 activation (Shull et al., 1992,
Carmeliet et al., 1994, Bugge et al., 1995).

In addition to plasmin, also other proteases have been found to be involved in TGF-3
activation. The gastric cancer cell line Kato III cells have been reported to activate secreted
TGF-B1 from the conditioned medium (Horimoto et al., 1995), by a serine protease other than
plasmin. Abe and co-workers (Abe et al., 1998) have reported that the calpain protease is
capable of activating TGF-3. Also subtilisin-like endoproteases (Chu and Kawinski, 1998),
thrombin (Benezra et al., 1993) as well as matrix metalloproteinases MMP-2 and MMP-9 are
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able to activate TGF- (Yu and Stamenkovic, 2000). The MMP-mediated proteolytic
activation model was been found to be TGF-3 isoform specific. TGF-33 was most readily
activated with MMP-9, whereas the effect on latent TGF-f31 was negligible.

LAP dimer
Vi

A TGE-f dimer
i)
LTBP

> C—Drfrmrfmnrn’ SO0

Synthesis of the large latent Deposition .
TGF-B complex to extracellular fibrils in tl:‘roteoly.tlc re(ljeast(_e frgm
and secretion from cells latent form € matrix and activation

Figure 2. Proposed life course of the large latent TGF-3 complex

TGF-B is secreted from the cells in a covalent complex with the TGF-3 binding LTBPs. This complex is
rapidly accumulated to ECM via the LTBPs, thus depositing TGF-§3 in a latent, ECM-bound form. The
activation cascade of TGF-$ can first involve a release of the large latent complex from the ECM by
proteolytic cleavage(s) in the LTBP. The final activation of TGF-3 requires conformational changes in the
association of TGF-3 with LAP, enabling TGF-f to bind to its signaling receptors. This can be a proteolytic
cleavage of the LAP part or a change of the conformation of LAP via interaction with other proteins. The
activated TGF-B can then induce signaling by binding to the cell surface TGF-f3 receptor system. The
TGF- signaling can also be prevented by sequestering of activated TGF-3 with proteins not involved in
TGF-B signaling. For detailed structure of the large latent complex, see Fig. 11.

5.5.2 Thrombospondin-1 as a latent TGF-P3 activating protein

Thrombospondins
(TSPs) are large, trimeric Monomer Trimer
proteins that are produced by
many cell types (Fig. 3). The
apparent molecular weight of
the TSP monomer is about
160 kDa. TSPs are involved
in cell adhesion and

Collagen
. . . Heparin Laminin
angiogenesis (reviewed by Sulfatides Fibrinogen Ca"
Mosher, 1990, Adams, 1997, Fic 3. Struct ¢ thromb g
i ig 3. Structure of thrombospondin

DiPietro, 1997). The TSP is a trimeric molecule, linked together by interchain disulphide

a-granules of platelets are a bridges near the N-termini. The globular N-terminal domain of TSP

rich source of TSPs as well as °inds heparin. The center part of TSP is composed of linear domain.
The C-terminus contains a large globular domain, that binds Ca**.

large latent TGF-B1, from TSP has three identified cell binding sites, two at the C-terminal

which they are released domain and one in the N-terminal doman. Modified from Yamada,
1991.
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during platelet activation. TSP-1 has been shown to activate both large latent TGF-f and
recombinant small latent TGF-[3 (Schultz-Cherry and Murphy-Ullrich, 1993, Schultz-Cherry et
al., 1994b). On the contrary, TSP-2 is unable to activate TGF-[3 and appears to inhibit TSP-1
mediated TGF-[3 activation by competing for TGF-[3 binding (Melnick et al., 2000). The TSP-1
mediated activation mechanism involves the N-terminal end of LAP (Schultz-Cherry ef al.,
1994b, Yang et al., 1997, Ribeiro et al., 1999) and two specific sequences in the type I repeats
of TSP-1 (Schultz-Cherry et al., 1994a, Schultz-Cherry et al., 1995). TGF-f3 activation by
TSP-1 occurs most likely via a conformational change of LAP, which allows TGF-f to bind to
its signaling receptors. Activation of TGF-1 can be achieved also with small peptides
containing the KRFK sequence, as in type [ repeats of TSP-1 (Schultz-Cherry et al., 1995), and
this activation can be prevented by anti-LAP antibodies (Schultz-Cherry ef al., 1994b, Yang et
al., 1997). Recombinant LAP is shown to interact with purified TSP-1 (Yang et al., 1997) and
co-purify with TSP-1 (Ribeiro et al., 1999). In addition, TSP-1 is found to be associated with
TGF-B (Murphy-Ullrich et al., 1992). However, the interaction between TSP-1 and
TGF-B1TGF-f seems to be indirect, since in surface plasmon resonance experiments no direct
interaction between the TSPs -1 or -2 and TGF-f31, B1LAP or TGF-B1LAP complex could be
detected (Bailly et al., 1997). TSP-1 has been localized to microfibrils between the basement
membrane and connective tissue by electron microscopy (Arbeille et al., 1991). A direct
interaction between TSP-1 type I repeats and fibrillin-2, a member of LTBP-fibrillin family,
has been reported (Aho and Uitto, 1998, reviewed by Dennis and Rifkin, 1991a,
Fauvel-Lafeve, 1999; see below section 5.7 LTBP- fibrillin family). However, whether TSPs
directly associate with LTBPs remains to be studied. TSP-1 expression is stimulated by TGF-[3,
suggesting a positive feedback loop for TGF-[3 activation (Penttinen et al., 1988). TSP
associates with the cell surface via the CD36 protein (Asch et al., 1987, Kieffer et al., 1988,
Imamura et al., 1989, Silverstein et al., 1989). Thus, one possible mechanism for the TSP-1
mediated TGF-[3 activation would be that the large latent TGF-[3 complex is first removed from
the ECM by proteases. TGF-f in the soluble large latent complex would then be activated by
the cell surface associated TSP-1.

Interestingly, TSP-1 deficient mice display many phenotypic alterations, similar to
those seen in TGF-f31 deficient mice (Crawford et al., 1998). The abnormalities in some tissues
of the TSP-1 null mutant animals were even reverted by TSP-1 derived TGF-3 activating
peptides, further emphasizing the role for TSP-1 in TGF-f3 activation. However, no less
TGF-B1 activation was observed in thrombin-treated platelets from TSP-1 null mice compared

to the wild type animals, suggesting other activation methods for platelet derived TGF-p1
(Abdelouahed et al., 2000).

5.5.3 Other mechanisms of TGF-3 activation

The LAP parts of TGF-Bs -1 and -3 contain RGD-motifs, which are recognized by
integrins a,3; and o,Bs (Munger et al., 1998; see Fig. 4). In addition, integrin o, is also able
to activate TGF-31 (Munger et al., 1999). This activation model is particularly interesting,
because the a,[3¢ integrin is expressed solely on epithelial cells, which are very sensitive to
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TGF-B-mediated growth inhibition, and also because
of the overlap of the phenotypes of TGF-B1 and CYTOSKELETAL CONNECTIONS
integrin 3¢ chain deficient mice. 3¢ integrin deficient
mice show increased inflammation and decreased W «
fibrosis, processes which are strongly regulated by
TGF- (Huang et al., 1996). It is not known, whether
this integrin activation can directly utilize the ECM
bound large latent complexes or, whether the
complexes have to be first solubilized by proteolysis. bpvaLent

CATION

TGF-f activation by the 03¢ integrin could be a part BINDING

CYSTEINE-RICH
REGION

[

of the proteolysis mediated TGF-f3 activation model
observed in epithelial and smooth muscle cell
co-cultivation. Thus, the final stages of the TGF-[3 o 6D MATRIX
activation, after release of large latent TGF-f3 2 & \PROTE'N
complex from ECM by plasmin digest, would be

carried out by the o, integrin at the surface of

epithelial cells. Figure 4. Structure of integrin

Integrins are composed of a- and (3-chains,
o that are non-covalently linked together.
the non-covalent association between TGF-B and Integrins have usually short cytoplasmic

LAP. The removal of the glycosyl moieties from tails, which interact with the cytoskeleton.
Integrins mediate cellECM as well as

LAP by Endo F glycosidase can bring about the .. %o interactions. Modified  from
activation of TGF-3 (Miyazono and Heldin, 1989). Ruoslahti, 1991.

The authors speculated that sialidase, produced by

Glycosylation is predicted to be important for

activated macrophages, could activate TGF-[ in vivo.

y-radiation is causes a rapid TGF-f activation in situ (Barcellos-Hoff, 1993,
Barcellos-Hoff et al., 1994). Evidence for the role of TGF-[3 in irradiation-mediated induction
of fibrosis and growth inhibition stems from the observation that the irradiation induced effects
were attenuated by neutralizing antibodies against TGF-3 (Ehrhart et al., 1997, Burger et al.,
1998). Using recombinant latent TGF-B it was found that TGF-f activation is efficiently
induced both by ionizing radiation and metal ion catalyzed ascorbate oxidation, both of which
are systems producing reactive oxygen species (Barcellos-Hoff and Dix, 1996). The oxidation
of LAP was suggested to lead a change in its conformation and thus TGF-f3 activation.

5.5.4 Binding of activated TGF-P to proteins not involved in signal transduction

After activation, TGF-[3 can bind either to its specific cell surface signaling receptors or
to other proteins that can abrogate TGF-[ signaling. Active TGF-[3 has a very short half-life in
plasma (Coffey et al., 1987), whereas the half-life of the LAP bound latent TGF-f is
significantly longer (Wakefield et al., 1990). The plasma protease inhibitor 0,-macroglobulin
(azM) exists at high concentrations in plasma, and binds active TGF-f3 (O'Connor-McCourt
and Wakefield, 1987, Huang et al., 1988, Philip and O'Connor-McCourt, 1991). TGF-3
binding to 0,M is enhanced by treatment of 0,M with proteases, involved also in TGF-3
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activation (LaMarre et al, 1991c). s

Cs o tyrosine sulfate

Thus, 0,M may have a TGF-f3 clearance ———KS§ C--—C disulfides

. = N-linked oligo 3 leucine-rich motif
function. a,M complex can be
endocytosed by its receptor (LaMarre et ’
al., 1991a, Moestrup, 1994). However, -5-5 e —— mj,c -C—
this requires a conformational change in biglycan
0,M (Gonias and Pizzo, 1983,
Sottrup-Jensen, 1989), which is not
induced by the bound TGF-B. In Q Y Y Y
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addition, the half-life of TGF- in
plasma is not affected by inhibition of

the oM receptor (Philip and
O'Connor-McCourt, 1991). Therefore, J J
also a TGF-[ carrier function for a,M 999¢¢

. C--C{—T T L [T L T 1 cC---C
has been presented (Philip and
O'Connor-McCourt, 1991,  Borth,
1992). In addition to TGF-3, a,M binds Figure 5. Biglycan, decorin and fibromodulin

also other cytokines and growth factors, _T_L°te°9|y‘il"‘mst | tain brotein backb bout
. ese small proteoglycan contain protein backbone, abou
like NGF (nerve growth factor), CNTF 4560 kDa, to which the glycosaminoglycans are attached.

(ciliary neurotrophic factor), NT-3 and These proteins conatin ten copies of leucine-rich repeats

i . } (about 25 amino acids long).
4 (neurotrophins), TNF-0 (tumor .\ " " ondroitin sulphate: KS = keratan sulphate.

necrosis factor-0), PDGF-BB, BDNF Modified from Hascall et al., 1991.
(brain-derived neurotrophic factor),
IFN-y (interferon-y) and interleukins IL-1f3, IL-2, IL-4, IL-6, IL-8 and IL-10 (LaMarre et al.,
1991a, James et al., 1992, Liebl and Koo, 1993, Wolf and Gonias, 1994, Gonias et al., 2000,
Garber et al., 2000; reviewed by LaMarre et al., 1991b).

TGF-f has also been found to associate with several ECM proteins, such as fibronectin
(Fava and McClure, 1987), collagen IV (Paralkar et al., 1991, Vukicevic et al., 1992),
fibromodulin, decorin and biglycan (Hildebrand et al., 1994). Small proteoglycans decorin and
biglycan have also the ability to neutralize (Yamaguchi et al., 1990, Border et al., 1992) or
enhance (Takeuchi et al., 1994) the activity of TGF-3s (Fig. 5).

decorin

fibromodulin

5.6 TGF-B signal transduction

TGF-f signaling involves three different types of transmembrane receptors, two of
which, namely TGF-3 receptors I and II (TBR-I and TPR-II, respectively), have signaling
capacities via their cytoplasmic serine/threonine kinase domains. The third receptor type, type
III receptor (TPR-III), has only a short intracellular part with no known signaling motifs (Fig.
6). The TPR-III is speculated to function as an auxiliary transmembrane protein, associating
with TGF-B and subsequently “serving” the active TGF-[3 to the actual signaling receptors
(Cheifetz et al., 1988). TGF-[3 signaling receptors are expressed in almost all cell types.
Currently the best known downstream signaling molecules following the TGF-[3 receptors are
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the SMAD proteins. TGF-[3 signal
transduction has been reviewed by
Massague, 1998, Christian and
Nakayama, 1999, Piek et al., 1999,
Roberts, 1999, Zhang and
Derynck, 1999, Massague and
Wotton, 2000, ten Dijke ef al.,
2000, Wrana, 2000.

5.6.1 TGF-f receptors

Two different
transmembrane proteins,
betaglycan and endoglin (CD105)
can independently function as
TPR-IIIs (Wang et al, 1991,

Lopez-Casillas et al, 1991,
Cheifetz et al., 1992,
Lopez-Casillas et al., 1993).

Betaglycan is more prevalent,
while endoglin is expressed only
on endothelial cells (St-Jacques et
al., 1994). TGF-B3 isoforms have
varying affinities for the different
TBR-IIIs, providing also a way for
TBR-IIIs to modulate TGF-
signaling. TGF-B2 has a weaker
affinity for TBR-II than other

TGF- isoforms. TRR-IIT
betaglycan favors binding of
TGF-Bs -1 and -2, whereas

TGF-B3 has a weaker affinity for
betaglycan. The net overall effect

is boosting of TGF-P2 signaling
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Figure 6. TGF-{3 receptors type I, Il and Il

The signaling type | and Il recpetors have relatively short
extracellular parts, with a charasteristic cysteine motif. The
intracellular parts code for a serine/threonine kinase domain,
which is preceeded in type | recpetor by a GS-domain.
Constantly active type |l receptor phosphorylates the
GS-domain of type | receptor, leading to activation of type |
receptor.

Type lll receptor (here betaglycan) is a transmembrane protein,
with two attached glycosaminoglycans. The type lll receptor is
suggested to serve the TGF-3 to the actual type | and Il signaling
recpetors, boosting TGF-3 signaling. Betaglycan has endoglin
and uromodulin like domains, which both have a binding site for
TGF-B. In addition, betaglycan also binds FGF. Betaglycan can
be cleaved with plasmin, resulting in a soluble extracellular part,
capable of binding TGF- and sequestering it away from the
signaling recpetors.

by betaglycan (Sankar et al., 1995, Kaname and Ruoslahti, 1996). In certain cell types, which
do not express betaglycan, TGF-[32 is less efficient in activating TGF-[3 signaling. Transfection

of betaglycan to these cells enhances TGF-32 activity. Endoglin can associate with TGF-f3s -1
and -3, but not with TGF-B2 (Cheifetz et al., 1992), further decreasing TGF-2 signaling
potency. In contrast to betaglycan, endoglin can also bind activin A, BMP-2 and BMP-7 in the
presence of either type I or type Il receptors (Barbara et al., 1999). Mutations in endoglin can
lead to the hereditary hemorrhagic telangiectasia type -1 disorder (HHT-1) (McAllister et al.,

1994).



24

Juha Saharinen

Betaglycan is a proteoglycan, which has attached heparin- and chondroitin-sulphate
glycosaminoglycans (GAGs). These GAGs are required for binding of FGF, but not for TGF-[3
binding (Andres et al., 1992). Betaglycan is also found as a soluble molecule (Andres et al.,
1989), where the TGF-3 binding part has been proteolytically cleaved by plasmin (LaMarre et
al., 1994, Lopez-Casillas et al., 1994). Soluble betaglycan is able to hinder TGF-[3 binding to its
signaling receptors. A similar soluble form has been suggested also for endoglin (Li et al.,
1998).

The actual TGF-[ signaling receptors TBR-I and TRR-II belong to their respective type
I and II TGF- receptor families, which include the receptors involved in the signaling of the
different members of the TGF-[3 superfamily except the most diverse family member, GDNF.
Currently twelve type I receptors, including orphan ALK 7 receptor, and seven type Il receptors
are known.

Type I and 1II receptors are glycoproteins with molecular masses of about 55 and 70
kDa, respectively. Their extracellular parts are rather small, about 150 amino acids and include
several cysteine residues, some of which form a characteristic motif near the transmembrane
area. In type I receptors, a characteristic GS domain containing the sequence SGSGSG is
located just before the serine/threonine kinase domain in the intracellular part.

In the absence of ligand, the type I and II receptors are found as monomers. TGF-3
binds to TBR-II, which recruits TBR-I to the receptor complex (Attisano et al., 1993, Franzen et
al., 1993, Chen et al., 1995). TRR-I alone is unable to bind TGF-3 in solution, but it can
associate with the TBR-II — TGF-f3 complex (Wrana et al., 1992, Wrana et al., 1994). The
sequential binding model applies in addition to TGF-fs, also to activins (see Fig. 7), whereas
with BMPs, both receptor types I and II can bind it with weak affinity, but the actual signaling
complex requires the presence of both receptor types. Type Il receptor is a constitutively active
kinase. Substrates for type II receptor are the receptor itself (autophosphorylation) and the GS
motif of type I receptor. Phosphorylation of type I receptor by type II receptor activates type |
receptor, which is assumed to be solely responsible for the subsequent downstream signaling
events. The substrate specificity of type [ receptor is determined by its kinase domain (Feng and
Derynck, 1997, Persson et al., 1998). Intracellular proteins FKBP-12 and BAMBI can inhibit
activation of type II receptor by type I receptor (Wang et al., 1996, Onichtchouk et al., 1999).
BAMBI (BMP and activin membrane-bound inhibitor) is a type I pseudoreceptor that lacks the
kinase domain and prevents formation of functional receptor complex (Onichtchouk et al.,
1999). The immunophilin FKBP-12 binds to the GS motif of type I receptor, and by steric
hindrance inhibits type II receptor mediated activation (Huse ef al., 1999). FKBP-12 has been
suggested to function as a regulatory mechanism inhibiting signaling in the absence of the
extracellular ligand (Chen et al., 1997) and FKBP-12 has been shown to be dispensable for
TGF-f3 signaling (Charng et al., 1996, Bassing et al., 1998, Shou et al., 1998).

5.6.2 SMAD proteins as downstream signal transducers of TGF-3

The major downstream signaling proteins for the activated type I receptors are thought
to be the SMADs (see Fig. 7 and Fig. 8). SMADs can be divided into three different groups.
The so-called receptor regulated SMADs (R-SMADs, namely SMADs -1, -2, -3, -5 and -8) are
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Figure 7. Initiation of the TGF-f3 signaling

TGF-B employs sequential signaling mechanisms, leading to activation of the SMAD proteins. Activated
TGF-B can first associate with the type Il receptor (TRR-III), which is thought to serve TGF-f to the actual
signaling receptor TBR-Il. The participation of TER-IIl is optional and functions to boost TGF-f3 signaling.
TBR-Ilis a constitutively active threonine/serine kinase receptor. Association of TBR-Il with TGF-f3 recruits
TBR-I to the receptor complex. TRR-I is phosphorylated at its GS domain by TBR-II, which dislocates the
GS domain from the TPR-I kinase domain and hence activates TRR-I. TBR-I is thought to be solely
responsible for the further downstream signaling events. Receptor-SMAD (R-SMADs 2 and 3) proteins
are ligands for TBR-I. SARA (Smad anchor for activation), being a membrane protein, is assisting in the
enrollment of R-SMADs to TBR-I. The ubiquitous immunophilin FKBP-12 blocks TRR-I basal activity by
binding to GS domain. The ligand induced formation of the TBR-l - TRR-II receptor complex via is
supposed to release FKBP12 from TBR-l. Once activated by phosphorylation, R-SMAD is dimerized with
Co-SMAD (SMAD-4), and the heterodimeric SMAD complex is translocated to the nucleus, where it can
function as a transcription factor. Inhibitory-SMAD-7 (Anti-SMAD-7) can dimerize with activated
R-SMADs and block the signaling. Transcriptional activation by SMAD dimers is assisted by DNA binding
partners and can be hindered by SMAD co-repressors, like TGIF, Ski and SnoN.
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substrates for type 1 receptor. The SMAD

recruitment of the R-SMADs to the DNA MAP-K  SARA (R-SMADs)
receptor complex is enhanced by the

SARA protein (Tsukazaki et al., 1998). N TR &l\(/Jll_l-SK/l-,lADs] MH-2 —C
Receptor associated R-SMADs are —_
phosphorylated, which allows them to TypgS;(Srec.
heterodimerize with the Co-SMAD, (R-SMADs)

Q
SMAD-4. This complex 1is then Uo,n OO
translocated to the nucleus, where it
Figure 8. SMAD proteins

functions as a transcription factor. Tpe SMAD proteins have two protein domains,
SMADs -6 and -7 are inhibitory SMADs N-terminal MH-1 (Mad homology 1) and C-terminal

(anti-SMADs), which can block the MH-2, 9onnected with a Iinkgr region. The exception is
. . . the anti-SMADs 6 and 7, which lack most of the MH-1
SMAD signaling. SMAD-7 functions by gomain. MH-1 domain has the DNA binding function,

occupying type I receptor and thus while MH-2is required for the SMAD dimerization as well

: P as for the interaction with SARA. In inactive SMADs,
preventing activation of the R-SMADs. MH-1 and MH-2 are interacting, and phosphorylation of

BMP signaling specific SMAD-6 can  the SSXS motif at the end of MH-2 activates SMADs. The
form heterodimers with activated linker region is a substrate for many regulatory proteins,

R-SMADs, instead of SMAD-4, resulting like the MAP-kinase.

in inactive SMAD-6 - R-SMAD

heterodimers. The expression of anti-SMADs is rapidly enhanced after TGF-3 stimulation,
providing negative feedback for the TGF-[3 signaling cascades (Nakao et al., 1997a, Afrakhte
et al., 1998, Takase et al., 1998). SMADs -2, -3, -4 and -7 are involved in TGF-[3 signaling
(Eppert et al., 1996, Macias-Silva et al., 1996, Zhang et al., 1996, Nakao et al., 1997b).
Mutations of the SMAD proteins occur in many disorders (see below section 5.8.4 Role of
TGF- in cancer).

5.7 LTBP-fibrillin family

The latent transforming growth factor-f3 binding protein (LTBP) — fibrillin family
consists of LTBPs and fibrillins (Fig. 9). LTBPs and fibrillins are ECM proteins, often seen to
assemble to long microfibrillar structures with a diameter of about 10 nm. Before the present
study, three LTBPs had been cloned from human and other mammalian sources (Kanzaki et al.,
1990, Tsuji et al., 1990, Moren et al., 1994, Gibson et al., 1995, Yin et al., 1995a, Fang et al.,
1997). LTBPs are large glycoproteins of about 120 to 220 kDa. Fibrillins are considerably
larger glycoproteins than LTBPs with molecular masses of about 350 kDa. Fibrillins are found
in diverse species, which include mammals, chicken and Xenopus (Sakai et al., 1986, Lee et al.,
1991, Maslen etal., 1991, Zhang et al., 1994, Yin et al., 1995b, Kanwar et al., 1998, Masabanda
et al., 1999, Yang et al., 1999, Zhou et al., 2000).
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Figure 9. Domain structure of LTBPs and fibrillins

LTBPs and fibrillins are both composed mainly of multiple copies of EGF-like and 8-Cys repeats. Most of
the EGF-like repeats are of calcium-binding type. Some of the 8-Cys repeats, namely the first ones in
LTBPs, and the first and the fourth ones in fibrillins, are less conserved. These domains are often called
also as hybrid domains. LTBPs have an apparent molecular mass between 120 - 170 kDa, whereas
fibrillins are considerably larger, about 350 kDa in size. The N-terminal regions of LTBPs contain less
repeated structures, and have a lower degree of similarity among the different LTBPs. A protease
sensitive hinge region has been assigned to the non-repetitive area on the N-terminal side of the long,
central cluster of repeated EGF-like domains in LTBPs.

5.7.1 LTBPs and fibrillins are mainly composed of EGF-like and 8-Cys repeat
protein domains

LTBPs and fibrillins have a repetitive domain structure, consisting mainly of epidermal
growth factor (EGF) like repeats and protein domains with a conserved pattern of eight cysteine
residues, called eight cysteine repeats (8-Cys
repeats/domains). LTBPs contain 15-20 EGF-like repeats
and four 8-Cys repeats. The first 8-Cys repeat of LTBPs is
often called also as the hybrid-domain, since it is
divergent from the other 8-Cys repeats. Controversy has
arisen about whether the hybrid domains should be
considered as 8-Cys repeats or as distinct entities. In this
review the hybrid domains are included in the 8-Cys
repeats, and the numbering of 8-Cys repeats in LTBPs and
fibrillins reflects this convention. Fibrillins have 47
EGF-like repeats and nine 8-Cys repeats, including two
hybrid type 8-Cys repeats.

EGF-like repeats are conserved, approximately 45
amino acid long protein domains, with six cysteine
residues, forming interdomain disulphide bridges in a 1-3,
2-4, 5-6 arrangement. In addition to LTBPs and fibrillins, Figure 10. Calcium binding type
EGF-like repeats are. pre.sent in I?any extracellu.lar and ggqﬁ;g:gerep;agﬁf and  disulphide
transmembrane proteins like fibulins -1 and -2, nidogen, bridging is shown. The conserved
protein S, uromodulin, thrombomodulin, low density residues are numbered.
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lipoprotein (LDL) receptor as well as Drosophila’s Notch, Delta and Serrate. EGF-like repeats
function as structural domains and in mediating protein—protein interactions between e.g.
Notch and Delta proteins (Rebay ef al., 1991) as well as between fibulin-1 and nidogen (Adam
etal., 1997).

EGF-like repeats are divided into two groups according to their ability to bind calcium.
The majority of the EGF-like repeats in LTBPs and fibrillins are of calcium binding type
(cbEGF  repeats,  Fig. 10), with  the  characteristic sequence  motif
[DN]-x-[DN]-[EQ]-C-x(6)-C-x(4)-C-x-[DN]-x(4)-[ YF] at their N-termini. Calcium stabilizes
the cbEGF repeats, and the cbEGF repeats are often found as tandem domains, in which the
calcium binding is critical for providing the structural integrity (Werner et al., 2000). The
packing of EGF/cbEGF-cbEGF tandem repeats can either result in a very extended structure as
in fibrillins and LTBPs (Downing et al., 1996), or in more globular organization, like in factor
IX and Notch / Delta / Serrate (Rao ef al., 1995). There are significant changes in the Ca"™
binding affinities of the various cbEGF-like repeats (Smallridge et al., 1999). Changes in the
Ca'" saturation of cbEGF-like repeats may alter the protein flexibility. Numerous mutations in
the cbEGF domains have been identified, causing disorders like hemophilia (factor IX
mutations), familial hypercholesterolemia (LDL receptor mutations) and the Marfan syndrome
(MFS; fibrillin-1 mutations. See below section 5.8.1 Connective tissue disorders related to
LTBP-fibrillin family).

8-Cys repeats have been found only in LTBPs and fibrillins. They are approximately 55
amino acids long protein domains with a characteristic cysteine pattern. 8-Cys repeats contain
eight cysteine residues, except the hybrid domains, that contain usually seven cysteine
residues. In the hybrid domains one of the three adjacent cysteine 3-5 residues is missing. The
N-terminal halves of the hybrid domains are well conserved, while the C-terminal regions of
the hybrid domains are divergent. The 8-Cys repeats are essential for the function of fibrillin
microfibrils, as demonstrated by mutations in 8-Cys repeats causing Marfan syndrome (see
below section 5.7.2 LTBP-fibrillin microfibrils and tissue distribution of LTBPs and 5.8.1
Connective tissue disorders related to LTBP-fibrillin family). However, before the current
study, no specific functions were assigned for the 8-Cys repeats.

5.7.2 LTBP-fibrillin microfibrils

Fibrillins are known to be integral components of the so-called fibrillin microfibrils
with a diameter of 8-12 nm. They have a characteristic “beads on a string” appearance, with a
regular periodicity (Keene et al., 1991, Sakai ef al., 1991). Fibrillin-containing microfibrils are
found abundantly in all areas of the body, often in the vicinity of elastin, like in the aorta and
ligaments. Fibrillin microfibrils are extensible structures, possibly strengthening the elastic
tissue (Keene et al., 1991, Lillie et al., 1998). The role of fibrillin-1 in these microfibrils seems
to be to maintain tissue integrity, as the mice with fibrillin-1 underexpression revealed that
fibrillin-1 containing microfibrils are not critical for elastic fiber construction (Pereira et al.,
1997, see also Raghunath et al., 1996). Instead fibrillin-2, which appears earlier in the
development, is suggested to provide the scaffolding upon which the elastic fibers are
assembled in early embryogenesis (Zhang ef al., 1995, Rongish et al., 1998).
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There is considerable evidence that also LTBPs are deposited to the fibrillin containing
microfibrils. LTBP-1 from fibroblast cultures has been found to be deposited to both 50 nm
thick fibronectin fibrils in the vicinity of the cell surface, and to 10 nm microfibrillar structures
of cultured fibroblasts (Taipale et al., 1996). These microfibrils were devoid of collagen VI,
which also forms similar microfibrillar structures, suggesting that the observed microfibrils are
fibrillin microfibrils. In cultured osteoblasts LTBP-1 has also been localized both to fibronectin
fibers and fibrillin microfibrils (Dallas et al., 2000). Deposition of LTBP-1 to fibronectin fibers
took place earlier, while during prolonged culture, LTBP-1 no longer co-localized with
fibronectin, but was instead detected in microfibrillar structures only. Also other reports
confirm the association of LTBP-1 with collagen and fibronectin (Olofsson et al., 1995,
Verderio et al., 1999). In the developing mouse heart, LTBP-1 has been found to co-localize
with 40-100 nm fibers as well as in 5-10 nm microfibrils surrounding the endocardial cushion
(Nakajima et al., 1997, Nakajima et al., 1999). Interestingly, LTBP-1 antibodies were able to
prevent endothelial-mesenchymal transformation in that model. In both fibroblast cultures and
developing mouse heart, TGF-f1 co-localized with LTBP-1 in fibrillar structures (Taipale et
al., 1996, Nakajima et al., 1997). In addition, LTBP-1 has been localized to the fibrillin
microfibrils in the skin (Raghunath et al., 1998, see also Karonen et al., 1997). Bovine LTBP-2
has been localized to developing elastin associated microfibrils in bovine aorta and nuchal
ligament, with biochemical data supporting these microfibrils being the fibrillin microfibrils
(Gibson et al., 1995).

The role of LTBPs in the fibrillin microfibrils structures is unclear. It is not known,
whether LTBPs are just “accessory” proteins “decorating” the microfibrils, and some of the
LTBPs being able to deposit TGF-[3 to these structures, or whether LTBPs are more integral
components, required for the assembly of the microfibrils. The very early lethality of the
LTBP-2 null mice suggests a crucial role for LTBPs in the ECM structures (Shipley ef al.,
2000).

Most of the EGF-like repeats in fibrillins and LTBPs are of the calcium binding type,
and calcium has been found to be required for the stability and lateral packaging of these
microfibrils (Kielty and Shuttleworth, 1993, Handford et al., 1995, Wu et al., 1995, Downing et
al., 1996, Reinhardt et al., 1997a, Reinhardt et al., 1997b, Wess et al., 1998). The long stretches
of EGF-like repeats are assumed to form the extended areas between the beads in the
microfibrils (Cam et al.,, 1997, Cardy and Handford, 1998). In addition, some of the
asparagines in certain EGF-like repeats in the fibrillin-L TBP family proteins are hydroxylated
(Glanville et al., 1994).

The length of a single fibrillin molecule is about 148 nm (Sakai et al., 1991). This is
considerably longer than the observed about 55 nm periodicity of fibrillin molecules in
microfibrils (Wess et al., 1997). Based on the dimensions of a cbEGF dimer (14.5 x 2 nm), the
microfibrils are apparently built up from 50% overlapping, parallel fibrillin molecules
(Downing et al., 1996). The use of Ca" -chelation lead to a relaxed, distorted structure of the
microfibrils, with a decreased length of the interbead areas and increased flexibility (Cardy and
Handford, 1998). Observed mutations in the cbEGF domains of fibrillin-1, resulting in
impaired Ca™ binding ability, can result in Marfan syndrome, possibly due to weakened
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microfibril structure and hence increased susceptibility for proteolysis (Dietz et al., 1993,
Handford et al., 1995, Reinhardt et al., 1997b; see below section 5.8.1 Connective tissue
disorder related to LTBP-fibrillin family).

In addition to fibrillins and LTBPs, the fibrillin-microfibrils contain a number of other
proteins, often localized to the “bead” regions (see Table 3). These other proteins can connect
the microfibrils to other ECM structures and have cell-adhesive properties via their
RGD-motifs.

Table 3. Components of fibrillin microfibrils and the location of their genes in the
human genome (modified from Pyeritz, 2000, Robinson and Godfrey, 2000)

_ Protein Map locus Reference
Confirmed
Fibrillin-1 (FBN1) 15921.1 Sakai et al., 1986
Fibrillin-2 (FBN2) 5q23.q31 Lee et al., 1991, Zhang et al., 1994
LTBP-1 2p12-q22 Kanzaki et al., 1990, Tsuiji et al., 1990
LTBP-2 14q24 Moren et al., 1994, Gibson et al., 1995
Possible
Microfibril-associated protein-1 (MFAP-1) 15915-912 Horrigan et al., 1992
Yin et al, 1995a, Saharinen et al.,
LTBP-3 11qg12
manuscript 2000
LTBP-4 19913.1-13.2 Il Giltay et al., 1997
Fibulin-2 3p24.2-p25 Reinhardt et al., 1996b
Laminin 32 3p21.2-21.3 Rupp and Maslen, 1996
Emilin 2p23.2-23.3 Bressan et al., 1993
Versican 5q12-5914 Zimmermann et al., 1994
Chondroitin sulphate proteoglycans Kielty et al., 1996

Immunolocalized only

Microfibril-associated protein-2 (MFAP-2, also known as
1p36.1-p35 Gibson et al., 1986
microfibril-associated glycoprotein-1, MAGP-1)

Microfibril-associated glycoprotein-2 (MAGP-2) 12p13.1-p12.3  Gibson et al., 1996
Microfibril-associated protein-3 (MFAP-3) 5032-933.3 Abrams et al., 1995
Microfibril-associated protein-4 (MFAP-4) 17p11.2 Kobayashi et al., 1989

Lysyl oxidase (LOX) (found in elastic fibers but not in
5923.3-g31.2  Kagan et al., 1986
isolated microfibrils)
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5.7.3 Connective tissue disorders related to LTBP-fibrillin family

Several disorders of microfibrils have been described (Table 4). The best studied is the
Marfan syndrome (MFS), a genetic disorder with an autosomal inheritance pattern (Lee et al.,
1991, Maslen et al., 1991). MFS is caused by mutations in the fibrillin-1 gene. In MFS the
structure of the fibrillin-containing microfibrils in the connective tissue is perturbed leading to
diverse effects on various organs. The disorder affects the heart, lungs, eyes, the skeletal tissue
and blood vessels. The most serious complications of MFS are the mitral valve collapse in the
heart, and aortic dilatation and disruption. The skeletal symptoms include scoliosis and a
generally tall stature, including long digits, arms and legs as well as chest alterations. Other
hallmarks of MFS are the lens dislocation and myopia. There are numerous reports on the
different mutations of the fibrillin-1 gene causing MFS (reviewed by Ramirez, 1996, Child,
1997, Pyeritz, 2000). Currently 137 different MFS causing mutations are known in the Marfan
database, available on the Internet at http://www.umd.necker.fr. MFS is quite a frequent
hereditary disorder, affecting about one out of 10.000 people.

Table 4. Human disorders of fibrillin microfibrils and their Online Mendelian
Inheritance in Man database accession numbers (modified from Pyeritz, 2000)

_Disorder OMIM#  Reference
Confirmed
Familial aortic aneurysm/dissection 132900 Francke et al., 1995
Familial ectopia lentis 129600 Kainulainen et al., 1994, Lénnqvist et al., 1994
Marfan syndrome (MFS) 154700 Lee et al., 1991, Maslen et al., 1991
Severe neonatal Marfan syndrome (nMFS) (154700) Kainulainen et al., 1994
Isolated skeletal features of the MFS (154700) Milewicz et al., 1995

MASS phenotype/familial mitral valve prolapse / )
. ) 604308 Dietz et al., 1993
familial myxomatous valvular disease

Congenital contractural arachnodactyly (CCA) 121050 Lee etal., 1991

Shprintzen-Goldberg syndrome (SGS) 182212 Sood et al., 1996

Familial arachnodactyly 121050 Hayward et al., 1994

Possible

Homocystinuria 236200 Reviewed by Finkelstein and Martin, 2000
Bicuspid aortic valve/coarctation/ascending

aortic aneurysm 109730

Weill-Marchesani syndrome 277600 Wirtz et al., 1996

Scleroderma 181750 Tan et al., 1998

Ectopia lentis et pupillae 225200 Colley et al., 1991

Marfanoid mental retardation syndrome 248770 Fragoso and Cantu, 1984

Online Mendelian Inheritance in Men (OMIM) database is available on the Internet at
http:/ /www.ncbi.nlm.nih.gov/omim. Diseases with their OMIM numbers in parenthesis
do not have their own OMIM entries, and the number refers to the more general disease
classification.
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The most severe form of MFS is the neonatal MFS (nMFS, Kainulainen et al., 1994).
All the known mutations causing nMFS are located in fibrillin-1 exons 24-27 and 31-32. nMFS
is usually diagnosed right after birth, and the death occurs within one to two years due to
congestive heart failure.

A disease association for fibrillin-2 has also been found. Mutations in fibrillin-2 cause a
genetic disorder, namely congenital contractural arachnodactyly (CCA; Lee et al., 1991), a
disorder related to MFS. Both MFS and CCA are caused by various mutations in the fibrillin
genes, resulting either in amino acid changes or shortening of the coded protein by the
generation of STOP-codons. Notably, over 2/3 of the mutations in MFS are located in the
calcium binding type EGF-like repeats, emphasizing the role for calcium in the microfibril
integrity. MFS results supposedly from the interference of the microfibril construction by the
mutated protein, thus giving this syndrome its dominant character.

The tight skin syndrome (TSK) in mice is another disorder resulting from modifications
in fibrillin-1 gene. The heterozygous TSK phenotype includes thickened skin, increased
growth of cartilage and bone (Green et al., 1976). Homozygous TSK mice die between
embryonic days 7 and 8. TSK results from a partial duplication (30-40 kbp) of the fibrillin-1
gene (Siracusa et al., 1996). The fibrillin-1 protein encoded in the TSK mice has an increased
molecular mass of approximately 450 kDa, compared to the 350 kDa of the wild type
fibrillin-1. The TSK fibrillin-1 protein is expressed and secreted as wild type fibrillin-1. The
fibrillin microfibrils in TSK mice are in two separate populations, those with a normal fibrillin
morphology and those that have an altered structure specific to the TSK mice. These
microfibrils have a longer interbead periodicity and more diffuse interbead regions than normal
fibrillin microfibrils (Kielty ef al., 1998). Additional disorders which result, or have been
suggested to result, from mutations in the fibrillin genes are listed in Table 4. While the LTBPs
are structurally very similar to fibrillins, direct disease associations for LTBPs have not been
detected yet. Mathews et al. have found two incidents, where the patient had partial phenotypic
match to those of patients with MFS and a mutation in their LTBP-2 gene, suggesting that
alterations in LTBPs could cause MFS-like disorder (Mathews and Godfrey, 1997). The
importance of LTBPs is also clearly observed in LTBP-2 deficient mice. These mice have an
embryonic lethal phenotype and appear to die very early, between E3.5 and E6.5, which
coincides with the implantation period (Shipley et al., 2000). The function of LTBP-2 during
this time in development is not clear. The possible vital importance of LTBPs in general may be
the reason why LTBPs have not been associated with diseases so far.

5.7.4 Modification of the expression of LTBPs in certain diseases

The expression of matrix-associated LTBP-1 is elevated in several fibrotic conditions,
such as allograft arteriosclerosis, and tuberculosis pleurisy (Maeda et al., 1993, Waltenberger
et al., 1993a, Waltenberger et al., 1993b). In tuberculous pleurisy, the levels of LTBP-1 are
highest in fibroblasts and mesothelia of immature fibrotic areas, while granulomas containing
infiltrated T-cells and macrophages are no longer positive for LTBP-1 (Maeda et al., 1993). In
the skin, LTBP-1 immunoreactivity is increased in areas of solar damage suggesting an
association with elastin (Karonen et al., 1997). LTBP-1 was missing in areas of anetoderma,
which are characterized by the absence of elastin. In immunohistology, LTBP-1 co-distributed
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with elastic fibers, and co-distribution of TGF-3 with LTBP-1 was identical indicating that
these proteins are retained in similar structures also in vivo (Karonen et al., 1997, see also
Raghunath ez al., 1998).

The effects of secreted TGF-f3 can be modulated by the deposition of TGF-3 to the
matrix, and by activation. A failure of its paracrine growth control may be related to the
expression and matrix deposition of LTBP-1. SV40 transformed fibroblasts lack ECM, which
is known to contain LTBP-1 fibrils (Taipale et al., 1996). In prostatic tumors, the tumor cells of
various stages of differentiation, as well as the stromal cells, stain positively for TGF-{31.
Cystectomized and benign prostatic tumors stain also positively for LTBP-1 (Eklov ef al.,
1993). However, the staining for LTBP-1 is lost in malignant prostatic cells (Eklov et al.,
1993). Similarly, in gastrointestinal carcinomas, TGF-f31 is found in both tumor and stromal
cells, while LTBP-1 is found only in stromal cells and in the stromal ECM (Mizoi et al., 1992,

Mizoi et al., 1993), and in studied ovarian cancer cases, TGF-[3 expression was increased, while
LTBP-1 was mainly detected only in normal epithelial cells (Henriksen et al., 1995).

5.7.5 Role of TGF-§ in cancer

TGF-B is often associated with various malignancies. However, there is no clear
relation between TGF-3 and its role as an inhibitor or activator of malignant cell growth.

TGF-f increases the synthesis of ECM and decreases the proteolytic degradation of ECM. This
is an obstacle for metastasing cancer cells, which need to penetrate ECM structures for invasion
and intra- and extravasation. Transgenic mice overexpressing active form of TGF-f1 are
resistant to chemically induced mammary tumors (Pierce ef al., 1995), while more tumors
could be generated in TGF-B1"" mice (Shida et al., 1998, Tang et al., 1998). Also keratinocytes
from TGF-f31 null mice are more susceptible to malignant transformation (Glick et al., 1994).
However, TGF-[3 has also angiogenic effects, favoring neovascularization required for tumor
growth, which supports TGF-B’s role as an oncogenic growth factor (Ueki et al., 1992,
O'Mahony et al., 1998, Wikstrom et al., 1998; reviewed by Pepper, 1997). It has been proposed

that in the initial stages of carcinogenesis, TGF-[3 is acting as tumor suppressor, inhibiting the
growth of transformed cells. However, when these cells overcome the inhibitory effects of

TGF-f3, the endogenous expression and unresponsiveness to TGF-[3 can be favorable to cancer
cells (reviewed by Reiss, 1999).

Several tumor cells endogenously express TGF-3 (Terui et al., 1990, Lotz et al., 1994,
Vanky et al., 1997, Picon et al., 1998, Wikstrom et al., 1998, Junker et al., 1996, Wunderlich et
al., 1997, Constam et al., 1992; reviewed by Reiss, 1999), and TGF-[3 levels have been tested to
be clinical markers of tumor progression (Kong et al., 1995, Tsushima et al., 1996, Perry et al.,
1997, Sminia et al., 1998). Since most tumors are derived from epithelial or myeloid cells,
which are sensitive for TGF-f3 induced growth inhibition, the proliferation of tumor cells would
thus be inhibited by TGF-[. This is actually the case for some slowly progressing tumors, such
as B-cell chronic lymphocytic leukemia (B-CLL) (Lotz et al., 1994), where endogenously
produced TGF-[3 suppresses the proliferation, but the B-CLL cells are still insensitive to TGF-[3
induced apoptosis (Douglas et al., 1997). In contrast, B cell precursor acute lymphoblastic
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leukemia cells (B-ALL) do not endogenously express TGF-f3, but are sensitive to exogenous
TGF-B, which both suppresses their growth and induces apoptosis (Buske ez al., 1997). Tumor
cells can also have lost their responsiveness to TGF-[3, by e.g. lack of functional TGF-f type I
or IT receptors (TRRI, TRRII) (DeCoteau et al., 1997, Markowitz et al., 1995, Kim et al., 1996a,
Kim et al., 1998, Kimchi et al., 1988) or the intracellular TGF-f signaling proteins SMAD?2 or
SMADA4 (see above section 5.6 TGF- signal transduction; Eppert et al., 1996, Hahn et al.,
1996, Kim et al., 1996b, Riggins et al., 1996, Schutte et al., 1996, Uchida et al., 1996,
MacGrogan et al., 1997). Humans homozygous for altered TBR-I have significantly higher risk
for various neoplasms (Pasche et al., 1998, Chen et al., 1999). The TGF-[ insensitivity together
with TGF-3 overexpression provides cancer cells a way to escape the host’s
immunosurveillance, which is efficiently prevented by TGF-[3 (see above section 5.2.3 TGF-
as an immunosuppressive agent).

5.7.6 TGF- and fibrosis

Overproduction of activated TGF-[3 is known to lead to pathological conditions, in
which the accumulation of ECM is exaggerated. Tissue specific overexpression of active
TGF-B typically results in massive fibrosis of the organs where TGF-f3 is expressed, while
overexpression of active TGF-3 in a tissue type independent manner is lethal (reviewed by
Bottinger and Kopp, 1998, McCartney-Francis and Wahl, 1994). The pathological situations,
where TGF-[3 is overexpressed include disease states like cheloid formation, scleroderma and
liver chirrosis (reviewed by Border and Noble, 1994). Underexpression of TGF-3 can cause
reduced bone mass, and a TGF-B1 gene variant has been associated with very low bone mass in
osteoporotic women (Langdahl et al., 1997).
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6 AIMS OF THE PRESENT STUDY

The different biological effects of TGF-[3 have been very extensively studied during the
fifteen years since its discovery. However, a key step in the biology of TGF-s, how these
growth factors are deposited to the ECM in latent forms and subsequently activated, is much
less known. In most cases, the latent TGF-[ is covalently bound to the LTBPs proteins, which
target it to the ECM. This study concentrated on elucidating the molecular level mechanisms
involved in the TGF-f3 latency aspect namely:

1) How latent TGF-f interacts with LTBPs?
2) How LTBPs in turn are deposited to ECM?
3) What are the elements regulating the transcription of LTBPs?

4) Do new human LTBPs exist?



36

Juha Saharinen

7 MATERIALS AND METHODS

7.0.1 Cell lines

The cell lines used are listed in the table below with their ATCC (American Type Culture
Collection, Manassas, VA, USA) identification numbers:

_Name Description Usedin  Culture medium
CCL-137 Human embryonic lung fibroblasts. ATCC CCL-137. I I, I, IV MEM +10% FCS
. . MEM + 0.2% BSA,

CHO-K1 Chinese hamster ovary epithelial cells. ATCC CCL-61. I, 1l +10% ECS

African green monkey kidney epithelial cells, SV40 i 0
COS-7 transformed. ATCC CRL-1651, LiLe - DMEM+10% FCS

Human kidney epithelial cells, expressing the i +109
2031 transforming gene of adenovirus 5. ATCC CRL-1573. I, D-MEM +10% FCS
WI-38 Human lung fibroblasts. ATCC CCL-75. v MEM +10% FCS
WI-38/VA13  SV40 transformed subline of WI-38. ATCC CCL-75.1. IV MEM +10% FCS
HT-1080 Human fibrosarcoma cells. ATCC CCL-121. v MEM +10% FCS

. L Medium 199 + 0.1%

HA Human umbilical vein epithelial primary culture v glucose, + 10% FCS

Cell culturing was carried out in the medium mentioned in the above table, supplemented
with 100 IU/ml penicillin and 50 pg/ml streptomycin. All experiments were carried out under
serum-free conditions. For the collection of conditioned medium, the cells were washed twice with
serum-free medium, and the subsequently added serum-free medium was collected after specified
periods of time.

7.0.2 Antibodies

Polyclonal antibodies against human LTBP-1 (Ab39) and LTBP-2, immunoprecipitating
anti-human TGF-B1LAP (Lt2) and anti-human TGF-B3LAP (Ab95) antibodies were kind gifts of
Dr. C.-H. Heldin (Ludwig Institute for Cancer Research, Uppsala, Sweden) and used as purified
IgG. Mouse monoclonal anti-fibrillin-1 antibodies mAb 201 and mAb 69 were kind gifts of Dr.
Lynn Sakai (Shriners Hospital, Oregon, USA). Affinity purified polyclonal anti-human TGF-31
(#627) and TGF-B1LAP (#680) peptide antibodies as well as anti-human LTBP-2 antibodies have
been described previously (Taipale et al., 1992; Taipale et al., 1995, Hyytidinen et al., 1998).
Mouse monoclonal antibody 12CAS against the hemagglutinin epitope was purchased from
Berkeley Antibody Co. (Berkeley, CA, USA) and used as purified IgG. Polyclonal anti- human
TGF-[2 sc-20 antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

For the generation of LTBP-4 specific antibodies, synthetic peptides derived from LTBP-4
sequence at the beginning of the 3 (YFDTAAPDACDNILARNVTWQE) and 4%
(WQEVGADLVCSHPRLDRQATYTE) 8-Cys repeats, respectively, were coupled to keyhole
limpet hemocyanin (KLH, Pierce, Rockford, IL, USA). The KLH-peptide complexes were used to
raise antibodies #28-3 (against the 3™ 8-Cys repeat) and #33-4 (against the 4" 8-Cys repeat) in
rabbits. Subsequently, the antibodies were affinity purified with the antigenic peptide. Both Ab
#28-3 and Ab #33-4 were reactive in immunoblotting assays under both reducing and non-reducing
conditions.
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7.0.3 DNA constructs

The DNA constructs used are listed in their respective publications. Most LTBP and
fibrillin-cDNA fragments were expressed from a vector, named pSignal, initially constructed for
the publication I. pSignal is derived from InVitrogen’s pcDNAIII (Oxon, UK). In the 5° end of the
polylinker (HindIII-BamHI), a synthetic epitope coding for an optimized so-called Kozak
translation initiation sequence, followed by in frame IgG heavy chain signaling sequence was
inserted. In the 3’end of the polylinker (Xhol-Xbal), a synthetic epitope sequence was added, that
codes for both IBI’s FLAG and BabCO’s HA-epitopes as well as an in-frame STOP codon. Both the
signal sequence and the epitope were done by annealing two partially overlapping oligonucleotides,
filling the ends with Klenow polymerase, restricting with mentioned restriction endonucleases and
then cloned into pcDNALIIIL. pEpitope is a derivative of pSignal, which lacks the signal sequence.
pEpitope was used to express N-terminal LTBP fragments containing their own native signal
sequence.

7.0.4 Cloning of cDNA and genomic DNA

LTBP-4 cDNA was cloned from two human heart cDNA libraries, obtained from Clontech
(Palo Alto, CA, USA). Library HL3005q is poly-T primed pCDM-8 plasmid library, and library
HL3026a is both poly-T and random primed A gt10 phage library. The library was screened with
[*?P]dCTP labeled LTBP-4 ¢cDNA probes, initially derived from the identified LTBP-4 EST,
subsequently with probes derived from the newly cloned cDNA.

The genomic region coding for the LTBP-1S promoter was cloned by using a commercial
Genome Walker Kit and nested oligonucleotides derived from the LTBP-1S cDNA. The
amplification products obtained from different genomic restriction fragment pools were cloned in
pGEM-T vector (Promega, Madison, WI, USA). Initially a total of 1.75 kbp of genomic DNA
upstream of translation initiation site was obtained. A second round of genome walking produced a
further 1.2 kbp genomic 5’ flanking sequence.

The upstream genomic region of LTBP-1L was cloned from human placenta genomic A
phage library, using a [**P]dCTP labeled LTBP-1L 5’ ¢cDNA fragment as a probe. Inserts from
positive phages were cloned into Bluescript II KS vector (Stratagene, La Jolla, CA, USA).

7.0.5 Sequencing, sequence analysis and molecular modeling

DNA clones were sequenced using Amersham-Pharmacia's ALF Express
(Amersham-Pharmacia Biotech, Uppsala, Sweden) and Perkin-Elmer’s ABI 373, ABI 377 and ABI
310 automatic DNA-sequencers at the Haartman Institute and at Institute of Biotechnology,
University of Helsinki.

All trace file analyses, restrictions, translations, primer design, creation of silent restriction
sites etc. general sequence analyses were done using DNA Works sequence analysis package,
developed during this thesis project for Microsoft Windows (Microsoft Corp., Redmond, WA,
USA) using Borland Delphi software development environment (Inprise Corp., Scotts Valley, CA,
USA). The assembly and analysis of contigs from overlapping reads were performed using the
Staden sequence assembly package (Bonfield et al., 1995) in a Linux workstation (Linus Torvalds,
University of Helsinki, Finland).

The multiple sequence alignment was done by using the Clustal W 1.74 program
(Thompson et al., 1994) and corrected by hand. In the sequence alignments, the human LTBP-3
sequence was used. The molecular models were built using the Insight I version 98 (Molecular
Simulations Inc., San Diego, CA, USA), using an SGI Origin 2000 computer (SGI Corp, Mountain
View, CA, USA, located at Center for Scientific Computing, Finland). The NMR solved structure
of the 8" 8-Cys repeat of human fibrillin-1 (PDB accession number 1APJ, 7% structure out of 21
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structures in entry 1APJ) was used as a template. All the indels were modeled by searching from
PDB-loop database. The preliminary models were soaked in a waterbox, extending at least 9 A
beyond the 8-Cys repeat. The energy minimizations were done by gradually diminishing the
fixations of the model between successive minimization steps with the steepest descent followed by
conjugate gradient algorithms using the Discover v. 2.98 module and Amber forcefield.

7.0.6 Northern hybridization analysis

The ¢cDNA fragments used as probes in Northern blotting were [**P]dCTP labeled using
random priming kit (Amersham-Pharmacia Biotech). In multitissue Northern blots, 3-actin probe
was used as a control. Hybridization of both multitissue and RNA Master blots were carried out
according to manufacturer's instructions (Clontech). The amounts of RNA in RNA Master blot have
been equalized by the manufacturer by comparing the expression levels of 8 different housekeeping
mRNAs. Radioactivity levels in hybridized RNA Master blots were quantitated with a BAS-1500
bio-imaging analyzer (Fuji Photo Film Co, Ltd., Tokyo, Japan).

7.0.7 Transfection of cell lines

Cells were transfected prior to confluency, except human lung fibroblasts CCL-137, which
were transfected as confluent cultures. Transfections were carried out using a calcium phosphate
transfection system (Gibco-BRL, Gaithersburg, MD, USA), lipofectamine (Gibco-BRL) or
FuGENE6 (Roche Molecular Biochemicals, Palo Alto, CA, USA) according to manufacturer's
instructions. After transfection, the cells were washed twice, fed with serum-free medium, and the
conditioned medium was collected after specified time.

7.0.8 Isolation of the extracellular matrix

ECM was prepared by first washing cell cultures once with phosphate-buffered saline
(PBS; 0.14 M NaCl, 10 mM sodium phosphate buffer, pH 7.4) and then treated three times with
0.5% sodium deoxycholate in 10 mM Tris-HCl buffer, pH 8.0, at 0°C for 10 min (see Hedman et al.,
1979). The plates were then washed again with PBS and allowed to dry overnight at room
temperature. Cross linked components of the matrix were partially solubilized by digesting the
sodium deoxycholate insoluble matrices by plasmin (0.3 CU/ml) in matrix digestion buffer (PBS
containing 1 mM Ca™, 1 mM Mg™ and 0.1% n-octyl-d-B-glycopyranoside) at 37°C for 1 hr.
Finally, released ECM proteins were dissolved in non-reducing SDS-PAGE sample buffer (see
Taipale et al., 1994).

7.0.9 Proteinase digestion of fibroblast conditioned medium

Conditioned medium from confluent fibroblasts was collected for 3 days under serum-free
conditions. Aliquots of the medium were treated with proteinases at 37°C for 1 hr. The following
concentrations of proteinases were used: 50 nM plasmin; 10 nM chymase; 10 nM leukocyte
elastase; 10 nM porcine pancreatic elastase; 100 nM cathepsin G; 500 nM cathepsin G; 500 nM
cathepsin D (see Taipale et al., 1995).

7.0.10 Interspecies genomic DNA blot

Zoo Southern blot (Clontech) contained 10 pig of EcoRI digested genomic DNA from
various species. The Zoo-blot was hybridized using [**P]dCTP labeled clone 1.1.1 A as a probe and
washed first with 1xSSC, 0,1% SDS and subsequently with 0.1xSSC, 0,1% SDS at 42°C.
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7.0.11 Fluorescence in situ hybridization

A fragment LTBP-1 or -4 cDNA was used as a probe to clone the genomic DNA from a
human genomic PAC library (Genome Systems Inc, St Louis, MO, USA). The obtained PAC clone
in vector pAd10SacBII was labeled with biotin-14-dATP by nick translation. The metaphase
preparations made from human lymphocyte culture were pretreated with pepsin (0.2 mg/ml at 0.01
M HCI) for 10 minutes at 37°C, and chromosomes were denatured in 70% formamide in 0.3 M
NaCl, 0.3 M Na-citrate, pH 7.0 (2xSSC) at 64°C for 2 minutes. Hybridization signals were detected
by avidin-tetramethylrhodamine isothiocyanate (TRITC) and analyzed by Olympus fluorescence
microscope equipped with an ISIS digital image analysis system (Metasystems, Altlussheim,
Germany). The chromosome identity was verified by painting with a chromosome specific probe
according to manufacturer’s instructions (Cambio, Cambridge, UK).

7.0.12 Primer extension

The oligonucleotide used in primer extension experiments was end-labeled with
[y-?P]ATP using T4 polynucleotide kinase. The oligonucleotide was allowed to anneal with
denatured total RNA and extended with SuperScript Il RNase H-reverse transcriptase. Extension
products were separated in denaturing urea polyacrylamide gel.

7.0.13 RNase protection

cDNA fragments to be used in RNase protection assays were cloned into pGEM-7Zf vector
(Promega) and linearized. Antisense RNA probes were synthesized with T7 RNA-polymerase in
the presence of [a-*PJUTP. RNA probes were annealed to total RNA and single stranded RNA was
degraded by RNase A/RNase T1 mix (Ambion Inc., Austin, TX, USA). Protected fragments were
separated in denaturing urea polyacrylamide gel.

7.0.14 Luciferase reporter assays

Fragments of LTBP-1S and -1L promoter to be used in luciferase reported assays were
cloned into pGL3 Basic vector (Promega). These constructs were transfected with pRL-TK control
plasmid. The cells were washed twice with PBS 48 hours after transfection, lysed with Passive
Lysis Buffer (Dual Luciferase Kit, Promega) and lysates were subjected for luciferase activity
measurements.
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8 RESULTS

8.1 Identification of the ECM and TGF-B binding regions of
LTBP-1 (I)

8.1.1 N-terminal region of LTBP-1 is required for ECM-binding

The large latent TGF-3 complex had previously been found to consist of TGF-1LAP
covalently bound to LTBP-1 (Kanzaki et al., 1990, Tsuji et al., 1990, Miyazono et al., 1991).
This complex was subsequently observed to be deposited into the sodium deoxycholate
insoluble ECM, from where it could be released by proteolysis (Taipale et al., 1992, Taipale et
al., 1994). Plasmin digestion resulted thus in generation of LTBP-1 with a molecular mass
approximately the same as the truncated LTBP-1 found in platelets (Miyazono et al., 1988,
Wakefield et al., 1988, Kanzaki et al., 1990). In order to identify the regions of LTBP-1
mediating the association with the ECM, expression vectors coding for different parts of the
LTBP-1 cDNA were cloned and stably expressed in CHO cells. Analysis of the deposition of
these LTBP-1 proteins into ECM showed that the protein encoded by LTBP-1 construct
lacking the N-terminal region (first 400 amino acids) was unable to get incorporated into the
deoxycholate insoluble ECM fraction, whereas both full length LTBP-1S and LTBP-1
construct containing the N-terminal region were assembled to the ECM. Thus, the first 400
N-terminal amino acids were found to contain the ECM binding region of LTBP-1.

8.1.2  Co-expression of TGF-B1 and LTBP-1 results in the formation of covalent
large latent TGF-[3 complexes

Most studied cell types had been known to secrete TGF-3 in the large latent complex,
covalently bound to LTBPs. However, in certain cell lines had also been found to secrete small

latent TGF-f. In order to answer to the question, whether the rarely observed secretion of small
latent TGF-B is due to the lack of endogenous expression of LTBPs, CHO cells were
co-transfected with TGF-31 and LTBP-1 ¢cDNAs. Endogenous TGF-f31 of CHO cells was
observed in the large latent complex. Upon overexpression of TGF-B1 alone, the amount of
endogenous large latent TGF-31 complex increased, but the majority of TGF-[31 was seen in
the small latent complex. The secretion of the small latent complex upon overexpression is
most likely due to the saturation of endogenous LTBPs. However, when the cells were
co-transfected with cDNAs for both TGF-31 and LTBP-1, the majority of TGF-31 was in the
large latent complex, indicating that when both TGF- and LTBP are available, TGF-f3 is
secreted in the large latent complex. These results were in accordance with earlier results,
indicating that in the absence of LTBP-1, the small latent TGF-[3 is secreted slowly and may
contain anomalous disulphide bridges (Miyazono et al., 1991). Furthermore, the rarely
observed secretion of the small latent TGF-f in certain cell models (Bonewald et al., 1991,
Eklov et al., 1993, Mizoi et al., 1993, Dallas et al., 1994, Grainger ef al., 1995) is thus most
likely due to the lack of LTBPs.
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8.1.3 Identification of the 3" 8-Cys repeat of LTBP-1 as the TGF-B binding
domain

LTBP-1 had been found to bind covalently to the LAP part of the small latent TGF-[31.
This binding is dependent on oxidized cysteine residues, since reduction of the complex breaks
its association (Miyazono et al., 1988, Miyazono et al., 1991). However, the actual protein
domain(s) of LTBP-1 involved in this association were not known. To analyze the region of
LTBP-1 responsible for the association with LAP, a series of deletion constructs of LTBP-1
cDNA were created and co-expressed in COS cells together with TGF-31 ¢cDNA. The secreted
proteins were analyzed in SDS-PAGEs under non-reducing conditions for the presence of
BILAP complexed with LTBP-1 fragments. By gradually excluding different regions of
LTBP-1, the 3 8-Cys repeat was found to be solely responsible for the association with
TGF-B1. The other 8-Cys repeats were verified not to be able to covalently associate with
BILAP.

8.1.4 Cysteine 33 of TGF-B1LAP is required for the covalent association with
LTBP-1

The LAP-part of TGF-B1LAP contains three cysteines. Cys-223 and Cys-225 were
previously found to be required for the dimerization of the LAP (Brunner et al., 1988), whereas
the function for Cys-33 was not known. Since the interaction between the 3" 8-Cys repeat of
LTBP-1 and B1LAP was found to be mediated by covalent disulphide bonds, the requirement
of BILAP Cys-33 for the interaction with 8-Cys repeat was studied. The codon for Cys-33 of
B1LAP was mutated to code for serine and this mutated TGF-31 was transfected with f1LAP
binding constructs to COS-cells. The mutation of Cys-33 to serine resulted in a complete loss of
the covalent complexes with the proteins encoded by all BILAP binding LTBP-1 constructs.

8.2 Molecular analysis of the 8-Cys repeat interaction with
TGF-3 (1)

8.2.1 The 3" 8-Cys repeats of LTBPs -1, -3 and -4, but not of LTBP-2, are
capable of forming covalent association with TGF-[3s

Fibrillins and LTBPs contain a total of 34 different 8-Cys repeats. Previously, the
TGF-BILAP binding function had been assigned to the 3™ 8-Cys repeat of LTBP-1 (I).
However, no solid data existed of the ability of the 8-Cys repeats to associate with B1LAP. In

addition, it was not known whether the two other BLAP isoforms (-2 and -3) were able to
associate with the 8-Cys repeats. Therefore, an analysis of the abilities of LTBPs and fibrillins
to associate with TGF-[3s was carried out.

In these studies, BILAP was found to co-immunoprecipitate with LTBP-1 protein
secreted by fibroblasts. However, while present in the conditioned medium, neither LTBP-2
nor fibrillin-1 was co-precipitated with B1LAP. When fibroblasts were transfected with
TGF-f1 ¢cDNA, endogenous LTBP-1 was found to become complexed with 1LAP, whereas
the overexpression of TGF-B1 did not yield any complexes with LTBP-2 or fibrillin-1. The



42

Juha Saharinen

inability of LTBP-2 to covalently associate with BILAP was confirmed by transient
co-expression of full length LTBP-2 with TGF-B1. These results indicated that LTBP-2, unlike
LTBP-1, was unable to complex with B1LAP. In addition, some of the 8-Cys repeats of
fibrillin-1 were co-expressed with TGF-B1LAP and found out to be incapable in binding to
BILAP. These constructs included the 8" 8-Cys repeats of fibrillins -1 and -2, which are the
most similar ones to the TGF-P binding 3™ 8-Cys repeat of LTBPs.

Next, LTBPs 1-4 were analyzed for their abilities to associate with the three
mammalian isoforms -1, -2 and -3 of BLAPs. LTBP constructs coding for the 3™ and 4™ 8-Cys
repeats and the two intervening EGF-like repeats were co-expressed with TGF-3s 1-3. Proteins
coded by LTBP -1 and -3 constructs were found to efficiently form complexes with all BLAP
isoforms. On the contrary, LTBP-4 (III) had much weaker complex forming ability as

compared to LTBPs -1 and -3, and it was detected to form a complex with B1LAP isoform only.
The protein encoded by the LTBP-2 construct was not able to form covalent complexes with
any of the BLAP isoforms.

In addition to the 3™ 8-Cys repeats of LTBPs -1, -3 and -4, also other 8-Cys repeats have
been suggested to be capable of associating with B1LAP in co-precipitation assays (Moren et
al., 1994, Yin et al., 1998a). In both of those reports, TGF-P1 and either full length LTBP-2 or
fragments of LTBPs -2 and -3 were overexpressed in COS-cells and co-precipitation of B1LAP
with LTBP-2 or fragments of LTBPs -2 or -3 was detected. In contrast with those results, other
8-Cys repeats of LTBP-1 than the 3™ one, were found to have no covalent B1LAP binding
ability in different cell types, including COS-, 293T- and insect Sf9-cells (I, II, Gleizes et al.,
1996). In addition, no LTBP-2 - B1LAP complexes could be detected with bovine LTBP-2
(Gibson et al., 1995, Robert Mecham, personal communication). Furthermore, no LTBP-2 -
BILAP complexes were detected in the conditioned medium of stable CHO-cell clones, or
transiently transfected COS or 293 T-cells overexpressing LTBP-2 and TGF-31 (II, Hyytidinen
etal., 1998). In addition, endogenous LTBP-2 did not co-precipitate with B1LAP from TGF-1
transfected primary fibroblasts (II). Thus, the reported interaction of LTBP-2 as well as the
other 8-Cys repeats than the 3™ ones of LTBPs -1, -3 and -4 with B1LAP most likely represents
non-covalent co-precipitation under mild conditions than used in (II). The biological
significance of non-covalent interactions between LTBPs and B1LAP is unknown and may just
represent the used overexpression system, since in non-transfected cells, only covalent
interactions between LTBP-1 and B1LAP have been found (Taipale et al., 1994, Taipale et al.,
1995). In addition, the documented stoichiometry of the complex between TGF- binding
LTBPs and BLAP argues against the possibility of TGF-31LAP interacting with more than one
8-Cys repeat of LTBPs, as suggested by Yin et al., (Yin et al., 1998a).

8.2.2 Identification of the TGF-3 binding motif in 8-Cys repeats

The 8-Cys repeats are about 55 amino acids long protein domains, which fold into a
globular structure (Yuan et al., 1997, Yuan et al., 1998). When the TGF-BLAP binding
functions were found to be limited to a very small subset of the 8-Cys repeats, the obvious

question was, what determines their BLAP binding ability. For this purpose, chimeric cDNA
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constructs were generated. The backbone of these constructs was the 3™ 8-Cys repeat of
LTBP-1, and all the residues between successive cysteines were exchanged to those of the 3™
8-Cys repeat of LTBP-2. The constructs were then transfected together with TGF-31 cDNA,
and the formed complexes were analyzed from the conditioned medium. The proteins encoded
by all chimeric constructs, except construct L1AL2-4, were able to bind B1LAP in a covalent

manner, like the wild type construct. In construct L1AL2-4, the region between the 6™ and 7"
cysteine residues was exchanged (CEIFPC in LTBP-1, CEIC in LTBP-2).

To verify these results, two new chimeric constructs were made and analyzed in a
similar manner. Construct L1AL4-4 coded for a similar chimera as L1AL4-2 between LTBP-1
(backbone) and LTBP-4. Protein coded by L1AL4-4 retained the ability to covalently associate
with B1LAP, like the protein coded by wild type LTBP-1 construct. Construct LTBP-2GAIN
coded for an analogous chimera between LTBP-2 (backbone) and LTBP-1. The protein
expressed from LTBP-2GAIN gained the TGF-31LAP binding ability. Thus, the change of the
short specific region between the 6™ and 7™ cysteine residues in the 3™ 8-Cys repeat of LTBP-2
to that of LTBP-1 was enough to provide this protein domain with the B1LAP binding ability.
This small sequence motif yielding latent TGF-3 binding ability was named briefly as the
TGF-B binding motifin 8-Cys repeats. Sequence analysis of all the 8-Cys repeats of LTBPs and
fibrillins indicated that this motif is present only in three of the known 34 different 8-Cys
repeats, namely in the 3™ 8-Cys repeats of TGF- binding LTBPs, -1, -3 and -4.

8.2.3 Molecular models for TGF-B binding and non-binding type 8-Cys repeats

In order to analyze the actual consequences of the TGF-[3 binding motif in the 8-Cys
repeats, molecular modeling was used. Several 8-Cys repeats were modeled, including both
TGF-B binding and non-binding types. The previously determined structure of the 8" 8-Cys
repeat of fibrillin-1 was used as a template for the modeling (Yuan et al., 1997). When the
backbone of the structure of the 8" 8-Cys repeat of fibrillin was aligned with the models for the
3" 8-Cys repeat of LTBPs -1 and -2, the largest difference in the backbone alignment was in the
TGF- binding determinant region between the 6™ and 7™ cysteine residues of the model for the
3" 8-Cys repeat of LTBP-1.

This resulted in the loss of altogether three hydrogen bonds that were present both in the
structure of the 8" 8-Cys repeat of fibrillin and in the model for the 3" 8-Cys repeat of LTBP-2.
The lack of these hydrogen bonds suggests increased flexibility of the 3™ 8-Cys repeat of
LTBP-1. The sulthydryl groups of the cysteine residues were not consistently more exposed in
the models for TGF-[3 binding type 8-Cys repeats. However, the surface hydrophobicity was
increased considerably in all the models for the TGF-f3 binding type 8-Cys repeats. The
increased surface hydrophobicity may have a role in creating favorable conditions for the
complex formation between the TGF-BLAP and LTBPs in the secretory pathway.
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8.2.4 Direct disulphide bridges mediate the binding between the 8-Cys repeat
and the Cys-33 of B1LAP

Previously the covalent interaction between the 3™ 8-Cys repeat of LTBP-1 and B1LAP
had been found to be dependent on the Cys-33 of BILAP (I). It was also known that the cysteine
residues in the 8-Cys repeat are all in oxidized form (Gleizes et al., 1996, Reinhardt et al.,
1996a). However, the character of this interaction was still unspecified. Namely, it was not
known whether the cysteine residues required for 8-Cys - B1LAP complexes are involved in
inter- or intramolecular disulphide bridges. In the intermolecular disulphide bridge model, one
or both of the Cys-33s of the BILAP dimer are forming a disulphide bridge with unknown
cysteine(s) of the 8-Cys repeat. In the intramolecular cysteine disulphide bridge model, all the
cysteines of the TGF-B binding 8-Cys repeat and B1LAP are involved in intramolecular
disulphide bridges. However, the molecules would be folded in a way, where they are kept
together like two engaged circles. The complex would thus resist the non-reducing sample
denaturation in SDS-PAGEs. The dimerization of B1LAP was prevented by mutating the
cysteines 223 and 225 to serines, and this construct was co-expressed in COS-cells with an
LTBP-1 fragment, capable of covalent interaction with the BILAP via its 3™ 8-Cys repeat. In
the conditioned medium of the transfected cells, the mutated f1LAP was found to retain the
ability of the wild type B1LAP to form covalent LTBP-1 complexes. This interaction recruited
both copies of the monomeric B1LAP, as indicated by both the observed mobility of the
complex and by its detection in the immunoblot, since the used BILAP antibodies did not
detect the single chain B1LAP. These results suggest that the interaction between B1LAP and
LTBP-1 is mediated by two direct cysteine disulphide bridges between the molecules.

8.3 Cloning of a novel latent TGF-3 binding protein, LTBP-4 (lll)

8.3.1 Cloning of human LTBP-4 and its alternatively spliced forms

New members to the LTBP-fibrillin gene family had been cloned based on the
sequence homology (Moren et al., 1994, Gibson et al., 1995, Yin et al., 1995a).
Simultaneously, a large number of the expressed sequence tags (ESTs) sequences became
available. In order to identify novel proteins containing an 8-Cys repeat, the EST databank was
searched using the 3™ 8-Cys repeat of LTBP-1 as a probe (Altschul et al., 1990). Several ESTs
were obtained, coding for unknown 8-Cys repeat containing proteins. Using the ESTs as
probes, a new cDNA of 4944 bp was obtained and named as LTBP-4S. LTBP-4S contained all
the unknown 8-Cys repeats found in different EST clones. The overall structure of LTBP-4S is
very similar to those of the previously identified LTBPs -1, -2 and -3. Alternatively spliced
forms of LTBP-4 cDNA emerged during the cloning, which had different numbers of EGF-like
repeats in the central core of successive EGF-like repeats. These alternatively spliced forms
were named as LTBP-4-AE and LTBP-4-A2E. In addition, a part of LTBP-4L ¢cDNA, coding
for an alternative N-terminal end was cloned. The open reading frame of LTBP-4L cDNA
continues upstream and the full-length sequence of LTBP-4L is not yet known. During this
work, an LTBP-4 sequence, with yet another 5’ end was described (Giltay et al., 1997).
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LTBP-4 cDNA was used to isolate a genomic LTBP-4 PAC clone, which was further
used to analyze the chromosomal localization of the LTBP-4 gene. Human metaphase
leukocyte chromosomes were hybridized with biotinylated LTBP-4 PAC probe and LTBP-4
gene was localized to chromosome 19, at the region of 19q13.1 — 19q13.2.

8.3.2 Analysis of LTBP-4 expression in different tissues

In multitissue Northern blots, a single LTBP-4 mRNA form was detected. The size of
this mRNA was approximately 5.1 kb. Tissue specific expression of LTBP-4 was analyzed by
using multitissue Northern blots as well as a dot-blot, containing mRNA from 50 different
tissues. LTBP-4 was found to be quite ubiquitously expressed, and the highest levels of
LTBP-4 expression were in the heart, aorta, uterus, small intestine, ovary and adrenal gland.
Notably, the expression of LTBP-4 in most fetal tissues was significantly lower than in adult
tissues suggesting that LTBP-4 expression emerges later in the development.

Two antibodies were raised against peptides derived from the 3" and 4" 8-Cys repeats
of LTBP-4 to study the protein level expression of LTBP-4. LTBP-4 was found to be present in
fibroblast conditioned medium. A fraction of LTBP-4 appeared to be associated with some as
yet unidentified protein(s) via its 3" 8-Cys repeat, since the antibodies against the 4™ 8-Cys
repeat detected other, higher molecular mass forms of LTBP-4 in non-reduced samples. From
the respective reduced samples, both antibodies detected only a single form of LTBP-4.
Overexpression of full length LTBP-4 in mammalian cells turned out to be very inefficient,
only very low levels of LTBP-4 were secreted. Co-expression of LTBP-4 with TGF-31 resulted
in relatively inefficient complex formation, indicating that LTBP-4 is a true TGF-f31 binding
protein, but less active than LTBP-1.

8.3.3 Identification of LTBP-4 as a protease sensitive ECM component

LTBPs were known to be deposited to the ECM structures in such a way that they are
not extractable without breaking covalent interactions (Taipale et al., 1992, Taipale et al.,
1994). Using the antibodies raised against LTBP-4, also LTBP-4 was found to be assembled to
ECM. Plasmin, which can release LTBP-1 from the ECM, resulted also in the release of
LTBP-4 in a truncated form from fibroblast ECM, with a cleavage in its N-terminal region.
LTBP-4 complexed with unidentified protein(s) via its 3" 8-Cys repeat was detected also in the
ECM extracted samples.

LTBP-1 had earlier been found to be susceptible for proteolytic release by plasmin,
elastases and mast cell chymase (Taipale et al., 1995). These proteases cleaved LTBP-1 at its
hinge region, releasing LTBP-1 and possibly complexed TGF-BLAP as a truncated large latent
complex. LTBP-4 was analyzed here for its susceptibility to proteolytic cleavage, using several
proteases. Of the proteases tested plasmin, leukocyte and pancreatic elastases as well as mast
cell chymase were able to process LTBP-4 to large fragments of slightly lower molecular
weight than intact LTBP-4.
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8.4 Identification of two independent promoter regions that
regulate the transcription of LTBP-1S and LTBP-1L (IV)

84.1 LTBP-1S and LTBP-1L are transcribed from their independent
promoters

LTBP-1 was previous found to exist in two, N-terminally different forms, that were
differentially expressed in different tissues (Kanzaki et al., 1990, Tsuji et al., 1990). In
addition, LTBP-1 expression was shown to be reduced in malignant prostate as well as
digestive tract tumors (EkIov ef al., 1993, Mizoi et al., 1993). In order to study the mechanism
generating the different LTBP-1 forms as well as reducing their expression in certain
conditions, the upstream regions of LTBP-1S and -1L in the human genome were cloned.
These were subsequently inserted into a luciferase reporter vector to analyze for the presence of
promoter activity. The 5° upstream regions (hereby called as “promoters”) of both LTBP-1S
and -1L strongly induced luciferase expression, thus indicating that both forms of LTBP-1 have
their own, independent promoter regions. No TATA boxes were present in either of the
promoter regions. However, a number of other potential transcription factor binding sites were
predicted by the sequence, including a TGF-3 inhibitory element (TIE) and SMAD binding
element (SBE) in LTBP-1S promoter.

The sequence of the junction point between the LTBP-1S and -1L also revealed the
utilization of a rare intraexonic splice acceptor site (IV, Oklu et al., 1998a). This splice site is
within one of the exons for LTBP-1S, whereas a part of the exon is used as a splice acceptor site
in the LTBP-1L transcript.

8.4.2 Localization of the regulatory elements in the 5° upstream regions of
LTBP-1S and -1L

Several 5° end deletion constructs were made from the promoters for both forms of
LTBP-1. Extending of the used promoter length of LTBP-1S increased the observed luciferase
activities. When the same constructs were transfected to human amniotic epithelial cells, no
such correlation was observed. This is in accordance with the previous results of Northern blots
suggesting negatively regulated transcription of LTBP-1S in placenta.

Transcriptional activities of similar LTBP-1L promoter deletion constructs were quite
the opposite. Their activities were significantly increased upon shortening of the used promoter
regions, down to the size of about 450 bp.

8.4.3 Cell type-specific transcription of LTBP-1S and LTBP-1L

The LTBP-1S and -1L promoters were found to be differently regulated in different cell
types. Generally, the transcriptional activity from the LTBP-1S promoter was higher than from
the LTBP-1L promoter. In the used fibroblast model, the activity of LTBP-1S promoter was
more than ten fold higher than that of the LTBP-1L promoter. In primary human amnion
epithelial cells, the activities of both promoters were much lower, and the LTBP-1L promoter
was more active than the LTBP-1S promoter in this cell model. This indicates that the LTBP-1



Interactions of TGF-B-LAPs with LTBPs

47

promoters had independent, cell type specific activities. Earlier the LTBP-1 isoforms were
found to be differentially expressed in different tissue types, as detected by mRNA Northern
blotting (Olofsson et al., 1995).

The SV-40 virus transformed VA-13 subline of WI-38 fibroblasts was used as a model
for cells with transformed phenotype. As compared to the transcriptional activity of LTBP-1S
and -L promoters in WI-38 wild type fibroblasts, promoter activities for both LTBP-1 promoter
regions were very low in VA-13 cells. Similar results were obtained from HT-1080
fibrosarcoma cell line.
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9  DISCUSSION

Growth factors are extracellular signal mediator molecules, that function as auto /
paracrine ways. Unlike endocrine hormones, that can circulate and act all over the body, growth
factors usually show a more restricted spatial pattern of their action regarding to the place of the

synthesis. Good examples are many members of the TGF-3 superfamily, which take part in
guiding the various stages of the development, where controlled function of the growth factor
induced effects both in time and space is crucial.

TGF-B and insulin like growth factor (IGF) are examples of growth factors that are
bound to their respective binding proteins in extracellular space. Dissociation of the binding
proteins is required for binding to the growth factor signaling receptors. Fibroblast growth
factor (FGF), platelet derived growth factor (PDGF), granylocyte-macrophage colony
stimulating factor (GM-CSF), leukemia inhibitory factor (LIF), tumor necrosis factor-alpha
(TNF-a) and vascular endothelial growth factor (VEGF) are all associated with ionic
interactions with ECM molecules and are hence also localized in space. Another type of
regulation of growth factor availability is a required proteolytic cleavage of the pre-form of the
growth factor in order to gain biological activity, like in the case of bone morphogenetic
proteins (BMPs) and hepatocyte growth factor (HGF).

This work has concentrated on the molecular mechanisms by which TGF-[3 is secreted
from the cells in a complex with its binding proteins, LTBPs and subsequently, how these latent
TGF-B complexes are deposited to the ECM and how the expression of LTBPs is regulated.

9.1  Extracellular matrix deposition of TGF-3 via LTBP-proteins

The overall domain structure of the LTBP proteins is well conserved and can be divided
to four parts, the N-terminal region, the following hinge domain, the central cluster of EGF-like
repeats and the C-terminal TGF-f3 binding region (Fig. 11). The main differences between
LTBPs are in the number of EGF-like repeats in the central part and in the non-homologous
N-terminal region. The observed alternative N-terminal ends provide even more variability to
the N-terminal regions of LTBPs.

9.1.1 Amino-termini of LTBPs are required for the ECM deposition

The N-termini of all LTBPs contain two to three copies of EGF-like repeats, including
one cbEGF-like repeat, and two 8-Cys repeats, the latter being a hybrid domain type 8-Cys
repeat. The region of LTBP-1 required for covalent interaction with the ECM was mapped to
the N-terminus of LTBP-1 (I). This result was in accordance with other observations for
LTBPs. The soluble form of LTBP-1 from platelets lacks the N-terminal part (Kanzaki et al.,
1990, Miyazono et al., 1991), like the LTBP-1 released from the matrix by proteolysis (Taipale
et al., 1994). In addition, the N-terminally extended LTBP-1L isoform has enhanced ECM
binding ability (Olofsson et al., 1995; see below section 9.2 Structural variability of LTBPs).
Subsequently, the ECM association of LTBP-1 was found to involve
transglutaminase-mediated cross linking (Nunes et al., 1997, Verderio et al., 1999). In
addition, recombinant LTBP-2 is incorporated into the ECM of cultured fibroblasts in a
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covalent manner, possibly also by a transglutaminase catalyzed reaction (Hyytidinen et al.,
1998). Recently a putative second ECM binging region has been proposed to be located in the
very C-terminal part of LTBP-1, including the 4™ 8-Cys and the two last EGF-like repeats
(Unsold et al., manuscript submitted 2000; see Fig. 11).

Large portions of the N-termini of LTBPs contain no known protein domains and
include cysteine residues that are not part of any EGF-like or 8-Cys repeats. Some of the
“lonely” cysteine residues may be involved in covalent disulphide linkages with the ECM
structures to which LTBPs are deposited. In addition, the N-termini of LTBPs contain so-called
4-Cys repeats, in which overall sequence conservation and patterning of the cysteine residues is
quite limited, as compared to the EGF-like or 8-Cys repeats. No biological functions have been
identified for the 4-Cys repeats. A 4-Cys repeat is found also in the N-termini of both fibrillins
-1 and -2. The hybrid type 8-Cys repeats in the N-termini of LTBPs have an odd number of

LAP dimer
\ 2 /

Cys-223, -225

TGF-Odimer

1 SSGALPGPAE (120 kDa)

¥ LTBP Cys-33 Pug, ..
—>s 3 GCM Z'-‘{t/ye

«™» 8-Cys repeat
> Hybrid domain

[] ca" binding EGF-like repeat

[ ] Non-Ca" binding EGF-like repeat

Figure 11. A schematic structure of the large latent TGF-3 complex

LTBP-proteins are covalently associated with the ECM via their N- and possibly also C-termini (I, Taipale
etal., 1994, Unséld et al., manuscript submitted 2000). The 3™ 8-Cys repeat of TGF-f binding LTBPs can
be covalently associated with the LAP part of small latent TGF-f by direct disulphide bonds involving
Cys-33 residues of LAP-dimer (I, Il, Gleizes et al., 1996). The other cysteine residues of LAP, Cys-223
and Cys-225 are required for the dimerization of the LAP (Gentry et al., 1988). Large latent complex can
be released from the ECM by proteolysis at specific sites (I, lll, Taipale et al., 1994, Taipale et al., 1995),
three of the sequenced sites in LTBP-2 are indicated by arrows (numbers 1-3) in addition to the sequence
after the cleavage site (Hyytidinen et al., 1998). Cysteine residue numbering refers to the TGF-p1 isoform.
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cysteine residues. In fibrillin-1, one of the cysteines in the first hybrid type 8-Cys repeat is
found to occur as a free thiol, thus being able to form inter-protein disulphide bridges
(Reinhardt ef al., 2000).

The dimerization of the fibrillin monomers is suggested to be an early step leading to
the construction of the microfibril. The N-terminal region of fibrillin-1 has been shown to direct
its dimerization (Trask et al, 1999). Similar results have been obtained with LTBP-1,
suggesting that the 8-Cys repeats in the N-terminus may be required for disulphide-mediated
dimerization (Unsold et al., manuscript submitted 2000).

9.1.2 Proteolysis at the hinge domain between the amino-terminal ECM binding

region and central core of EGF-like repeats releases large latent TGF-3
complex from the ECM

LTBP, possibly complexed with latent TGF-3, can be released from the ECM by
proteolytic cleavage at a so-called hinge region, located after the ECM-binding N-terminal part
(I, I, Taipale et al., 1994, Hyytidinen et al., 1998). The release of the large latent TGF-3
complex may well be a critical requirement for the activation of TGF-[3. The length of the hinge
region is between 90-150 amino acids in different LTBPs. It does not contain any known
protein domains, but is rich in proline and basic amino acid residues. The region seems to be
susceptible at least to plasmin, elastases, thrombin and mast cell chymase (III, Taipale et al.,
1992, Taipale et al., 1996, Hyytidinen et al., 1998). Also the anti-adhesive functions of LTBPs
-1 and -2 were localized to their proline-rich hinge regions (Hyytidinen ef al., manuscript 2000;
see section below 9.1.5 Other biological functions for LTBPs). In addition to hinge region,
there are other potential protease sensitive sites in the N-terminal region of LTBPs. Some of the
proteolytic cleavage sites have been confirmed by amino acid sequencing from LTBP-2
(Hyytidinen et al., 1998; See Fig. 11).

In fibrillin-1 a proline-rich putative protease sensitive site is located in the N-terminus,
between the 1* 8-Cys repeat and the successive non-Ca’" binding type EGF-like repeat.
Fibrillin-2 does not have a proline-rich region but instead the corresponding area has high
concentration of glycine residues. The glycine and proline-rich regions of fibrillins have been
suggested to be involved in the initial dimerization of fibrillins (Ashworth et al., 1999a).
Fibrillins also contain multiple proteinase sensitive cleavage sites, and various proteases are
able to degrade fibrillins (Kielty et al., 1994, Ashworth et al., 1999b, Hindson et al., 1999).

9.1.3 Central core of LTBPs is composed of multiple consecutive EGF-like
repeats

The central parts of all LTBPs are composed of a long stretch of EGF-like repeats. This
part consists of 9-14 repeats, and is about a third of the total protein size. All the EGF-like
repeats, except the first one, in this region are of calcium binding type. This region is resistant to
proteolysis (II, Taipale ez al., 1995, Hyytidinen et al., 1998). However, the biological functions
for this region in LTBPs are not well known. It has been suggested that this region would form a
helical-rod like structure like the similar regions in fibrillins containing cbEGF-like repeats
(Downing et al., 1996).
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9.1.4 Association of LTBPs with TGF-BLAP is mediated by a specific 8-Cys
repeat in the carboxy-terminal part of TGF-[3 binding LTBPs

The localization of the covalent TGF-B1LAP interacting domain to the 3™ 8-Cys repeat
of LTBP-1, near to its C-terminus, was the first observed biological function for 8-Cys repeat
protein domains, which are found only in the LTBP and fibrillin proteins (I). These results were
later verified using an insect cell expression system (Gleizes et al., 1996). In the C-termini of all
LTBPs, a typical structure of 8-Cys[] EGFJ EGFO 8-Cys is found, but the covalent TGF-[3
binding function is present only in the first 8-Cys repeat of this region. Even though there are
altogether 34 8-Cys repeats in the LTBP-fibrillin family, with quite conserved sequences, only
a minor subset of those is able to associate with BLAP (II). The observed weak association of
LTBP-4 with TGF-BILAP may well be overcome in vivo by the simultaneous expression of
LTBPs -1 or -3 and their efficient interaction with BLAPs. Thus, LTBP-4 seems to have a less
important role in depositing TGF-[3 to extracellular matrix than LTBPs -1 and -3. Further, the
results encourage search for other functions for the majority of the abundant 8-Cys repeats of
LTBPs and fibrillins (II). Interestingly, the weak TGF-[3 binding ability of LTBP-4, together
with the observed high proportion of LTBP-4 complexed with unknown protein(s) via its 3™
8-Cys repeat (II), strengthens the possibility of other proteins to be covalently deposited into
the ECM via an interaction with the 8-Cys repeats. The further identification of the protein(s)
associating with the 3" 8-Cys repeat of LTBP-4, and possibly with other members of the
LTBP-fibrillin family is of great interest.

The interaction of the 3" 8-Cys repeat of LTBP-1 with BILAP occurs via two direct
disulphide bonds involving both Cys-33s of TGF-B1LAP and yet unknown cysteines in the
8-Cys repeat (I, II). Since all of the eight cysteine residues in 8-Cys repeats are involved in
intradomain disulphide bonding in a 1-3, 2-6, 4-7, 5-8 pattern (Gleizes et al., 1996, Reinhardt et
al., 1996a, Yuan et al, 1997), the interaction with TGF-BLAP appears to result in
rearrangement of at least one disulphide bridge in the 8-Cys repeat (II). Previously the function
of the other two cysteines (Cys-223 and -225) of BILAP has been found to be in the
dimerization of the LAP-propeptide (Brunner et al., 1988). Since all TGF-f3 isoforms contain
cysteines at analogous positions, one might expect that all BLAP - LTBP interactions are
mechanistically similar to the studied 1LAP - LTBP-1 interaction. The possibility of other
TGF-f superfamily members being covalently associated with the 8-Cys repeats seems thus to
include the requirement of a cysteine residue in their propeptide parts analogous to the Cys-33
of BILAP.

The TGF-f binding function was found to correlate with the insertion of two amino
acids between the 6™ and 7™ cysteine residues of the 8-Cys repeats (II). In LTBPs -1 and -3,
which bind TGF- very efficiently, the area between the 6™ and 7™ Cys residue is coded by
EIFP and ETIYP, respectively, whereas in the weak TGF-[3 binding protein, LTBP-4, it is coded
by a more diverse RIQQ sequence. All the 8-Cys repeats in LTBP-2 and in fibrillins are of the
non-TGF-P binding type. Replacement of the TGF-[ binding motif from the 3" 8-Cys repeat of
LTBP-1 with the analogous region of LTBP-2 results in the loss of TGF-BLAP binding ability
(IT). When the TGF- binding motif of LTBP-1 is inserted in the non-TGF-f binding 3™ 8-Cys
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repeat of LTBP-2, the modified 8-Cys repeat gains the ability to associate covalently with
TGF-BLAP (IT). The 8-Cys repeats can hence be classified to TGF-3 binding and non-binding
types (II) by their primary sequence. However, the small TGF-f3 binding motif is most likely
not enough to provide TGF-f3 binding ability for all of the 8-Cys repeats, but more likely, also
other replacements for the more divergent 8-Cys repeats would be required.

During these studies, the structure of the 8™ 8-Cys repeat from fibrillin-1 was
determined by NMR (Yuan ef al., 1997). This protein domain folds into a globular structure,
containing six beta-strands and two alpha-helices. Cysteines 3-5, which are next to each other
in the sequence, are located in the hydrophobic core and form disulphide bridges with cysteines
closer to the surface of the domain. The homology models of the 8-Cys repeats of LTBPs
revealed a clear difference between the TGF-3 binding and non-binding type 8-Cys repeats (11,
Saharinen, unpublished data; see Fig. 12). An increased hydrophobic surface, extending from
the vicinity of the TGF-3 binding motif was present in the TGF-[3 binding type 8-Cys repeats,
while the non-TGF-[3 binding type 8-Cys repeats were resembling the structure of the fibrillin
8-Cys repeat in this aspect (II; see also Yuan et al., 1997, Rudd et al., 2000). This suggests that
the association of BLAP with the TGF-[3 binding type 8-Cys repeats in the secretory pathway
involves hydrophobic interactions. Although the interaction with TGF-f is formed by
disulphide bridges, the availability of the SH-groups in the models did not correlate with the
TGF-P binding ability. In the model for the 3™ 8-Cys repeat of LTBP-1 (II, Yuan et al., 1997),
some of the disulphide bridges were more accessible, and were suggested to have a plausible
role required for interaction with BLAP (Yuan et al., 1997). However, in the other models of the
TGF-B binding type 8-Cys repeats, these
disulphide bridges were not more accessible
than in the non-TGF-B binding type 8-Cys
repeat models (II). These results suggest that
the surface accessibility of the disulphide
bridges of an 8-Cys repeat is not critical for
association with BLAP and the fold of an 8-Cys
repeat undergoes structural changes upon
interacting with BLAP. Nevertheless, in the
absence of experimental structural data the
results from the molecular modeling studies
may not give the correct structural information
of the TGF-f3 binding type 8-Cys repeats.

9.1.5 Other biological functions for
LTBPs Figure 12. Structure of an 8-Cys repeat

The backbone of the NMR-derived 8" 8-Cys

The RGD sequence motifs, possibly
mediating cell adhesive functions via integrins
(Ruoslahti, 1996), exist in human isoform of
LTBP-1, LTBP-2 and in one LTBP-4 isoform
as well as in fibrillins -1 and -2. In fibrillins, the

repeat of fibrillin-1 is shown in black. The cysteine
residues are numbered and their sidechains are
shown. The area between the 6™ and 7"
Cys-residues of the TGF-B binding type 3™ 8-Cys
repeat of LTBP-1 is superimposed, shown in grey
and indicated by an arrow. Modified from Il and
Yuan et al., 1997.
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RGD-sequences are located on the 8-Cys repeats, unlike in LTBPs. Purified fibrillin
microfibrils have been found to mediate cell adhesion and platelet aggregation (Kielty et al.,
1992, Pfaff et al., 1996, Sakamoto et al., 1996 see also Ross et al., 1998). Cell attachment to
fibrillin-1 is mediated by oy[3; integrin (Pfaff et al., 1996, Sakamoto et al., 1996, D'Arrigo et
al., 1998) and to fibrillin-2 by av[3; and 053, integrins (D'Arrigo et al., 1998). The fibrillin
containing microfibrils are also known to support platelet adhesion (Ross et al., 1998). Also the
microfibrillar protein, MAGP-2, contains the RGD sequence motif, and MAGP-2 protein is
suggested to provide a link to connect microfibrils to the cell surface (Gibson et al., 1998). The
plausible cell adhesive capability of the RGD motifs in LTBPs has yet to be demonstrated. The
RGD sequences present in TGF-[3 binding LTBPs may be involved in the targeting of the latent
TGF-B complexes to activation at cell surface after release from ECM via the
integrin-mediated TGF-[3 activation system.

LTBPs -1 and -2 have been found to be anti-adhesive for certain cell types (Hyytidinen
et al., manuscript 2000). The anti-adhesive functions were mapped to the proline-rich hinge
region of both LTBP-1 and -2. Recombinant LTBP-1 and -2 were found to prevent totally cell
adhesion to fibronectin, when fibronectin and LTBP were coated on cell culture plates before
the seeding of the cells. Interestingly, LTBP-1 or -2 had no effect on cell adhesion, when cells
were seeded onto fibronectin-coated cell culture plates together with soluble recombinant
LTBP. LTBP-1 has been reported to play a role also in vascular remodeling (Kanzaki et al.,
1998). After mechanical injury to rat arteries, LTBP-1 was located in the intimal layers of the
arteries, and found to have strong chemotactic functions towards rat smooth muscle cells in
vascular remodeling (Kanzaki et al., 1998).

9.2 Structural variability of LTBPs

Structural variation has been found in all LTBPs (Fig. 13). Two different variants of
LTBP-1 are known, the longer LTBP-1L having a 346 amino acid N-terminal extension. The
fusion site is immediately after the putative signal sequence of LTBP-1S (Kanzaki et al., 1990,
Tsuji et al., 1990, Olofsson et al., 1995; LTBP-1L and LTBP-1S in Fig. 13). The longer form
has been reported to interact more efficiently with the ECM than LTBP-1S (Olofsson et al.,
1995), emphasizing the importance of the N-termini of the LTBPs for the ECM association.
These isoforms have their own, independent promoter regions. (IV). These promoters were
found to regulate transcription differentially and in cell line specific manner (IV). This is likely
to be the reason for the tissue type specific expression of LTBP-1 isoforms (Olofsson et al.,
1995). The use of multiple promoter regions, regulating the composition of the N-termini of the
translated proteins is found also in other ECM proteins, including different collagens
(Nishimura et al., 1989, Saitta and Chu, 1994, Sugimoto et al., 1994, Thomas et al., 1995,
Pallante et al., 1996, Rehn et al., 1996, Zhang et al., 1997) and laminin a3 (Ferrigno ef al.,
1997). The utilization of independent promoters may allow a more precise control of
expression in different tissue types and different stages of development. Similar alternative
N-terminal variability as found in LTBP-1 may also occur in LTBP-2, since in Northern blots,
LTBP-2 appears as two mRNA species (Moren et al., 1994). Whether the cloned LTBP-2
cDNA represents the longer or smaller species detected in the LTBP-2 Northern blots is not
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Figure 13. Structural variability of LTBPs (modified from Saharinen et al., 1999)

LTBPs display an extensive structural variability, generated both by alternative splicing as well as by the
use of different promoter regions. The small and large (S and L) forms of LTBPs, differing in their
N-termini, are generated most likely by use of independent promoters for the different forms. Alternative
splicing is known to generate variability in the number of both EGF-like and 8-Cys repeats. Deletions of
one or two EGF-like repeats have been observed in LTBPs -2, -3 and -4, as well as an insertion of an
additional EGF-like repeat in human LTBP-3. In mouse LTBP-3, a splice variants lacking first or both
exons coding for the 4™ 8-Cys repeat have been characterized. In human LTBP-4, a splice variant lacking
the TGF-B binding 3™ 8-Cys repeat has been found. In LTBPs -1 and -3, splice variants lacking parts of the
protease sensitive hinge regions have been identified.
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known, since the size of the cloned LTBP-2 ¢cDNA is smaller than both of the LTBP-2 mRNA
forms detected in Northern blots. In LTBP-4 at least three different 5’-ends have been
identified at the cDNA level (111, Giltay et al., 1997; LTBP-4S, LTBP-4L1 and LTBP-4L2 in
Fig. 13). Interestingly, one of these isoforms codes for an RGD sequence, suggesting a cell
adhesive role for this LTBP-4 isoform. The sequence of fibrillin-1 gene suggests that there
could be at least three different 5’-regions (Corson ef al., 1993), resulting in different
N-terminally alternative forms. However, observations on the sequence conservation between
the protein coding areas of human and pig genomic fibrillin-1 sequences argue against the
N-terminal variability (Biery et al., 1999).

In addition to N-terminal variability due to independent promoter regions, also several
variable forms of LTBPs generated via alternative splicing have been found. These alterations
scatter all around the LTBP-proteins. However, the biological functions for these variable
forms are generally unknown. Alternative splicing generated variability has been observed in
the N-terminal extension of LTBP-1L (Oklu et al., 1998a; LTBP-1L 55 in Fig. 13), creating a
LTBP-1L variant lacking 55 amino acids, including two potential N-glycosylation sites.

The composition of the protease sensitive hinge region of LTBPs is also controlled by
alternative splicing. An alternatively spliced form of LTBP-1 lacks 53 amino acids that include
a consensus heparin binding site, and has been suggested to be less protease sensitive (Michel
et al., 1998, Oklu et al., 1998b; LTBP-1 53 heparin in Fig. 13). Also LTBP-3 cDNA lacking
parts of the hinge region has been reported, but the specific function for this splice variant is
unknown (Yin ef al., 1998b; LTBP-3 hinge in Fig. 13).

In the central cluster of successive EGF-like repeats, there is alternatively splicing
generated variation in at least LTBPs -1and -4, probably also in LTBP-2 (III, Saharinen et al.,
manuscript 2000, Oklu et al, 1998a; LTBP-1 EGF, LTBP-2 rat, LTBP-4 EGF and
LTBP-4 EGF in Fig. 13). The exact biological functions of any of these splice variants are
not known. In addition to affecting the length of the predicted rod like structure generated by
the long stretches of EGF-like repeats (Downing et al., 1996), the variability in the number of
the EGF-like repeats can be involved in controlling possible protein-protein interactions, as is
known for the certain EGF-like repeats of Notch and Delta (Rebay et al., 1991).

Alternative splicing has also been reported to generate a partial or complete deletion of
an 8-Cys repeat of mouse LTBP-3 and human LTBP-4 (Koli et al., manuscript submitted 2000,
Saharinen et al., manuscript 2000, Saharinen et al., 1996, Yin et al., 1998b). Unlike the
EGF-like repeats, which are encoded by a single exon, the 8-Cys repeats are encoded by two
exons. This generates the observed partial deletion of 8-Cys repeats, in which the first exon
coding for the 8-Cys repeat is missing and thus the region covering the first seven cysteine
residues is lost. Alternative splicing resulting in the loss of the 3™ 8-Cys repeat of LTBP-4 is
biologically interesting (Koli et al., manuscript submitted 2000), because it affects the TGF-[3
binding function of LTBP-4 (II, III). In bovine LTBP-2, a repeat containing four cysteines,
resembling a part of an 8-Cys repeat is located at the C-terminus, after the last 8-Cys repeat
(Gibson et al., 1995). Interestingly, this repeat is against the exon boundaries in the 8-Cys
repeats. As soon as additional biological functions for the 8-Cys repeats are discovered, there
will be more biological insights into the alternative splicing regulating the number of 8-Cys
repeats.
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9.3 Regulation of expression of LTBPs

The existence of four members of LTBPs and their structural similarities raise
questions of the possible functional differences between these proteins. The expression
patterns of different LTBPs in different tissues are partially overlapping. LTBP-1 is mainly
expressed in the heart, placenta, lung, spleen, kidney, and stomach (Kanzaki et al., 1990, Tsuji
etal., 1990, Moren et al., 1994) and human LTBP-2 in lung, skeletal muscle, liver and placenta
(Moren et al., 1994). Strikingly, the expression pattern of mouse LTBP-2 is very limited, being
expressed only in cartilage perichondrium and blood vessels (Fang et al., 1997). In the
developing mouse, LTBP-3 is expressed widely in mesenchymal cells (Yin et al., 1995a).
Significant expression was observed by in situ analysis in the developing osteoblasts, central
nervous system, respiratory epithelial cells and connective tissue cells in the pulmonary
interstitium, somites and the cardiovascular system. In Northern blotting, the expression levels
of human LTBP-3 and LTBP-4 are quite similar. They both are predominantly expressed in the
aorta, heart, small intestine and ovaries (III, Saharinen et a/., manuscript 2000, Giltay ef al.,
1997). The expression levels of LTBP-3 and LTBP-4 were significantly lower in most fetal
tissues than in adult tissues (I1I, Saharinen et al., manuscript 2000). This might indicate that
neither LTBP-3 nor LTBP-4 is required for the initial formation of microfibrillar structures, but
they can provide a way to store latent TGF-[3 or related molecules in the extracellular fibrils. In
contrast, LTBP-2 is expressed at early stages of the development, as exemplified by the drastic
death of the LTBP-2 deficient mice between D3.5-6.5 (Shipley et al., 2000). “Switching” of
isoform expression during development may be typical of the LTBP-fibrillin family. For
example, fibrillin-2 is expressed earlier and in a more transient manner in the mammalian
development than fibrillin-1, which is expressed at later stages of development (Zhang ef al.,
1995, Rongish et al., 1998). Since there are at least four members in the LTBP-family, it will be
of interest to learn more of the expression of different LTBPs in different stages of
development, and thus to provide possible explanations and biological functions for the
existence of multiple LTBPs.

The promoters regulating the gene expression are known only for LTBP-1 (IV). The
LTBP-1 gene codes for two independent promoters, regulating the transcription of
N-terminally different LTBP-1 isoforms. Treatment of fibroblasts with TGF-[ either had no
effect (LTBP-1L) or decreased (LTBP-1S) the activity of the promoters. However, the mRNA
levels of both LTBP-1 isoforms in Northern-blots were up regulated by TGF-[3, indicating post
transcriptional mechanisms in the regulation of the LTBP-1 expression. LTBP-1 promoters
were found to have cell type specific regulation of transcription. Interestingly, the activities of
both of the promoters were reduced in the used SV-40 virus transformed cell model. This is in
accordance with the previous results, indicating reduced expression of LTBP-1 in transformed
cells, including cells isolated from malignant prostate and digestive tract tumors (EkIov ef al.,
1993, Mizoi et al., 1993, Dallas et al., 1994, Taipale et al., 1996). Tumor cells are known to
produce very little ECM components, whereas they often have increased extracellular
proteolysis (Vaheri and Ruoslahti, 1975, Mignatti and Rifkin, 1993). This phenotype is
required for e.g. the invasive processes of malignant tumors. TGF-3 strongly regulates the
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homeostasis of the ECM production and degradation, increasing production of multiple ECM

components and reducing extracellular proteolysis (see above section 5.2. 1 Effects of TGF- on
extracellular matrix and skeletal system). Thus, the downregulation of LTBP production may
be beneficial for tumors.



58

Juha Saharinen

10 PERSPECTIVE

The results of this study revealed a specific mechanism by which LTBPs associate with
latent TGF-f to deposit it in the ECM (I, IT). However, it was also found that only a minority of
expressed LTBP molecules is associated with latent TGF-3 and not all the LTBPs even have
the latent TGF-[3 binding ability (I, II) .Therefore, other biological functions of LTBPs,
including their role in the fibrillin-microfibrils and in other ECM structures are to be found.
Interaction of latent TGF-3 with LTBPs targets the localization of the growth factor and via
TGF-p activation, provides a rapid mechanism for availability of a growth modulating factor,
without the need of gene expression. The localization of various members of the TGF-[3
superfamily is strictly controlled during developmental processes. However, it is not known,
whether other members of TGF-[3 superfamily than TGF-[3s themselves associate with LTBPs.
Cloning and subsequent characterization of LTBP-4 suggested that LTBP-4 might be
associated with a heterologous protein other than TGF-f (III). A number of structurally
different forms of LTBPs, generated by alternative splicing as well by the use of different
promoter regions, are known (I1I, IV). However, the specific functions of most of these protein
variants are to be found. In addition, the role of LTBPs in the TGF-3 activation is an issue
requiring further investigation
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