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ABSTRACT 

 

The ERM (ezrin, radixin, moesin) proteins act as linkers between plasma membrane 

proteins and the actin-containing cytoskeleton. Ezrin and a related protein, merlin, are 

functionally and structurally quite homologous but have opposite effects on cell 

proliferation. Lack of functional merlin is involved in the tumourigenesis of nervous 

system tumours in the dominantly inherited neurofibromatosis 2 (NF2) disease, while 

increased ezrin expression is associated with enhanced cell growth and poor prognosis 

of malignant tumours. To find reasons for the tumour suppressor function of merlin 

we have analysed the molecular interactions of merlin and ezrin and pathways that 

differentially regulate the conformation and activity of both proteins.  

 ERM proteins are components of the cortical cytoskeleton and their function 

can be regulated through homotypic and heterotypic interactions. In this work we 

showed that merlin shares these properties with ERM-proteins. Merlin colocalised 

with ezrin underneath the plasma membrane in subconfluent cells and a concomitant 

redistribution of both proteins could be seen in confluent cells. The interaction 

domains for self-association and ezrin-binding corresponded to known ERM 

association domains. These data functionally linked merlin to ERM proteins. 

However, merlin appeared to be regulated differently than ezrin.  

 Most tumour suppressors are involved in the regulation of cell proliferation, 

which is often linked to their nuclear targeting. Because of its association with the 

cortical actin cytoskeleton, merlin has been considered an unusual tumour suppressor. 

We showed that the subcellular localisation of merlin is more versatile than previously 

thought. Merlin underwent nucleo-cytoplasmic shuttling that was dependent on the 

CRM1 nuclear export pathway and regulated by cell cycle phase, adhesion and 

confluency. Interestingly, we identified the recently discovered cell cycle regulator 

HEI10 as a novel binding partner for merlin but not ezrin. Merlin and HEI10 

colocalised during certain phases of the cell cycle; at mitosis in the mitotic spindle and 

the contractile ring, and at early G1 in the nucleus. During most of the cell cycle, both 

proteins were also present at the plasma membrane. It is of particular interest that 

expression of merlin and HEI10 alone and together affected cell cycle progression. In 

addition, merlin could affect the localisation and integrity of the HEI10 protein. These 
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findings suggested that merlin possesses novel functions in the nucleus and plays a 

role in the control of cell division. 

 In addition to the tumour suppressor function of merlin, we are interested in its 

other functions in the brain. We performed an extensive study comparing the 

localisation and expression of merlin and ezrin in human, rat and mouse brain, which 

showed that they are widely but differentially expressed. Both merlin and ezrin were 

present in embryonic mouse neurospheres, but in differentiated cells, merlin was 

predominantly found in neurons while ezrin was expressed in astrocytes. Subcellular 

analysis revealed that ezrin was specifically localised to filopodia of adherent 

neuronal progenitor cells and to fine filopodial structures in astrocytes, while merlin 

was detected in neuronal synaptic junctions. As a potential binding partner for merlin 

in the synaptic junction, we identified one of the four regulatory subunits of PKA, 

RIβ, which is mainly expressed in neurons of the hippocampus. Merlin serves as an 

A-kinase anchoring protein (AKAP) by binding RIβ through a conserved α-helical 

AKAP motif, and may regulate the cAMP/PKA pathway important in neuronal 

signalling. The widespread expression of merlin in the central nervous system (CNS) 

and a neuronal merlin interacting protein suggest yet unidentified functions for merlin 

in the brain. 

 In summary, we have described novel and partly unexpected properties for the 

cytoskeletal protein merlin, which suggest a role for merlin in the nucleus, in cell 

cycle regulation and perhaps in synaptic plasticity.  
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REVIEW OF THE LITERATURE 

 

1. THE CELL DIVISION CYCLE 

Cell division lies at the foundation of the biology of all organisms. Single cell 

organisms employ cell division as a means to propagate, while multi-cellular 

organisms require cellular proliferation during development for organ and tissue 

building. In the adult organism cell proliferation is important in maintaining organ and 

tissue homeostasis by replacing cells that are lost or die. 

 Cell division occurs by an ordered series of metabolic and morphogenic 

changes that are collectively called the cell cycle. The duration of the cell cycle varies 

between different cell types. In most mammalian cells it lasts between 10 and 30 

hours. Before division the cell must faithfully replicate its genome, double its mass 

and duplicate its cytoplasmic organelles. The cell cycle can be divided into four 

distinct phases (Fig. 1). During the G1 phase the cell monitors its size and 

environment for growth promoting or suppressing signals. During S phase (synthesis) 

DNA is replicated and a copy of each chromosome is formed. Thereafter, in G2, the 

cell ensures that the DNA has been properly replicated and gets ready for division. 

During M phase (mitosis) the replicated chromosomes separate (nuclear division) and 

cells divide by cytokinesis (cytoplasmic division), as a result of which a pair of 

genetically identical daughter cells are formed. When cells cease to proliferate, they 

exit the cycle and enter a non-dividing, quiescent state, G0. To ensure proper 

progression through the cell cycle, cells have developed a series of checkpoints that 

prevent them from entering into a new phase until they have successfully completed 

the previous one (Hartwell, 1989; Norbury, 1992 Sherr, 1994). 

 Cell cycle progression is mediated in part by the coordinated activity of cyclin-

dependent kinases (Cdks), a group of serine/threonine kinases. Following binding to 

their regulatory subunits, cyclins, Cdks form active heterodimeric complexes, which 

are sequentially activated to coordinate cell cycle progression (Fig. 1). The activation 

of the cyclin D-cdk4,6 complex, triggered by the presence of mitotic growth factors, 

controls progression of G1 or the re-entry of resting G0 cells into the G1 phase of the 

cell cycle. Thereafter, the G1/S transition is controlled by the activation of the cyclin 

E-Cdk2 complex. The DNA replication in the S phase and the transition to the G2 

phase is regulated by the activation of the cyclin A-Cdk2 and cyclin A-Cdk1 
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complexes. Finally, the main regulator of the G2/M transition is the cyclin B-Cdk1 

complex. The balance in maintaining control of the cell cycle is essential. Errors in 

this rigorous regulation can lead to defective embryogenesis, chromosomal aberrations 

and cancer (Nurse, 1990; Hunt, 1991; Norbury, 1992; Sherr, 1994; Grana, 1995; 

Morgan, l997; Sherr, 2000).  

Cyclin B-Cdk1

Cyclin A-Cdk1

Cyclin A-Cdk2
Cyclin E-Cdk2

Cyclin D-Cdk4/6

Cyclin B-Cdk1

Cyclin A-Cdk1

Cyclin A-Cdk2
Cyclin E-Cdk2

Cyclin D-Cdk4/6

 

_____________________________________________________________________ 

Figure 1. The mammalian cell cycle is divided into four phases; G1, S, G2 and M phase. G0 
represents exit from the cell cycle. Cyclin-Cdk complexes that regulate the progression of the 
cell cycle are shown.  
 

2. CANCER GENES 

The process by which normal cells develop into malignant cancerous cells involves 

the successive acquisition of genetic alterations. Mutations that contribute to cancer 

development belong to two categories; gain-of-function mutations that activate 

oncogenes by selectively facilitating the growth of cancerous cells or their precursors 

and loss-of-function mutations that inactivate tumour suppressor genes thereby 

disabling the regular growth control of the cell (Vogelstein, 1988, 1993).  

 

2.1 Oncogenes 

Changes in proto-oncogenes that alter their normal cellular properties result in 

oncogenes that can cause cancer (Parada, 1982; Tabin, 1982; Varmus 1984). 

Oncogenic mutations can be manifested in a variety of ways such as protein 

overexpression, gene amplification, fusion proteins resulting from chromosomal 

translocations and gain-of-function mutations (Bishop, 1991). These mutations often 

affect genes involved in the regulation of the cell cycle, cell division control and 

differentiation.  
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2.2 Tumour suppressor genes 

Loss-of-function mutations in tumour suppressor genes also enhance cancer 

susceptibility (Macleod, 2000). Most tumour suppressor gene abnormalities can be 

inherited as well as acquired. In the hereditary disease there is one inactivated copy of 

a tumour suppressor gene in the germ line and a somatic mutation causing the loss of 

the wild type allele, leading to the formation of a tumour. In sporadic tumours there 

must be two somatic mutations inactivating both copies of the tumour suppressor 

gene. Although inherited cancer syndromes are quite rare, the tumour suppressors 

behind these syndromes are frequently found to be somatically mutated in sporadic 

cancers. This points out the vital role these molecules play in growth control and 

differentiation. These syndromes are inherited in a dominant Mendelian fashion and 

are often associated with developmental defects and non-neoplastic phenotypes such 

as benign tumour formation (Knudson, 1971, 1993; Ponder, 2001).  

 Tumour suppressor proteins can be divided into gatekeepers and caretakers, 

based on their mechanism of action. Gatekeepers regulate the growth of tumours 

directly by inhibiting proliferation or promoting death; such as Rb, APC and NF1. 

Inactivation of these gatekeeper genes normally leads to a very specific tissue 

distribution of cancer. Caretakers, such as mismatch, nucleotide excision and double 

strand break repair genes, are involved in mediating DNA repair. Inactivation of 

caretaker genes promotes neoplasia indirectly and leads to genetic instability, which 

results in increased mutations of all genes (Kinzler, 1997). Some tumour suppressor 

gene defects, called landscapers, do not reside in the neoplastic cell population itself 

but changes the tumour microenvironment, which facilitates the induction, selection 

and expansion of neoplastic populations (Liotta, 2001). In the last years a few 

cytoskeletal proteins have been shown to function as tumour suppressors, such as 

Protein 4.1R, Protein 4.1B, DAL 1, and merlin, which all belong to the Band 4.1 

superfamily of proteins (Ben-Ze’ev, 1997; Tran, 1999; Huang, 2001; Gutmann, 

2001b; Sun, 2002).  

 

3. THE ACTIN CYTOSKELETON  

A complex, highly dynamic network of filamentous cytoskeletal proteins extends 

throughout the cytoplasm of eukaryotic cells. The cytoskeleton consists of three types 

of protein filaments; actin filaments, microtubules and intermediate filaments. Actin is 
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an essential, conserved protein of all eukaryotic cells that is necessary for a large 

number of cellular functions including cell motility and morphogenesis, vesicle 

trafficing, cytokinesis, establishment of cell polarity and intracellular signal 

transduction. In order for the actin cytoskeleton to play such diverse roles, actin 

filament assembly must be spatially and temporally controlled and its different 

functions regulated by a wide variety of actin binding proteins (reviewed in Ayscough, 

1998).  

 

3.1 The actin cytoskeleton in disease 

Interactions between the actin cytoskeleton and cell membrane components allow the 

cell to coordinate cell movement and signalling, cell-cell and cell-extracellular matrix 

(ECM) interactions, to adopt a variety of cellular shapes and establish specialised 

membrane domains. The deregulation of these complexes and of proteins regulating 

the composition of the actin cytoskeleton are involved in a variety of diseases 

including infections, muscle disorders, cardiovascular and neurodegenerative diseases 

and cancer. An intact actin cytoskeleton is essential for the invasion, motility and 

dissemination of various bacteria, viruses and other parasites. The release of 

cytoskeletal elements into the extracellular space may contribute to allergies, 

coagulation defects and cystic fibrosis. The mechanical fragility of dystrophic muscle 

cells can be caused by defects in linking the actin network to the cell surface. 

Moreover, changes in the expression of actin, actin associated proteins and 

membrane-actin linkers participate in the abnormal growth properties of tumour cells, 

their ability to adhere to tissue and their increased ability to metastasize (reviewed in 

Janmey, 1995; Higley, 1997; Jordan, 1998; Towbin, 1998). As previously mentioned, 

cytoskeletal tumour suppressor proteins Band 4.1R, Band 4.1B, DAL-1 and merlin 

(Ben-Ze’ev, 1997; Tran, 1999; Gutmann, 2001b; Huang, 2001; Sun, 2002) have an 

inhibitory effect on cell proliferation, while studies have linked increased expression 

of ezrin, another Band 4.1 superfamily protein, with enhanced cell growth and 

metastasis (Geiger, 2000; Khanna, 2001; Nestl, 2001; Koon, 2004; Yu, 2004).    

 

4. THE BAND 4.1 PROTEIN SUPERFAMILY 

The Band 4.1 protein superfamily includes several membrane-associated signalling 

and cytoskeletal proteins; among them erythrocyte Band 4.1 protein, which connects 



 
 

 - 15 - 
 

the integral membrane protein glycophorin to the subcortical actin-spectrin network 

(Conboy, 1986); talin, which links the fibronectin receptor to the actin cytoskeleton 

via vinculin and α-actinin (Bennett, 1989; Rees, 1990); protein-tyrosine phosphatases 

(Koyano, 1997; Neel, 1997); and the ERM protein family (Gould, 1989; Takeuchi, 

1994a). A common domain in these proteins is the multifunctional protein- and lipid 

binding site called the FERM domain (Four-point-one, Ezrin, Radixin, Moesin) 

(Chishti, 1998) (Fig.2).   

FERM CC FBD FBD/ABD SAB

MERLIN

EZRIN

RADIXIN

MOESIN

BAND 4.1

F1

F2F3

NH2

COOH

Ras-binding domain
Of Raf; ubiquitin

PH; PTB;
EVH1

Acyl-CoA-
binding protein

FERM-DOMAIN

FERM CC FBD FBD/ABD SABFERM CC FBD FBD/ABD SAB

MERLIN

EZRIN

RADIXIN

MOESIN

BAND 4.1
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F2F3

NH2
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Ras-binding domain
Of Raf; ubiquitin

PH; PTB;
EVH1

Acyl-CoA-
binding protein

F1

F2F3

NH2

COOH
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F2F3

NH2

COOH

Ras-binding domain
Of Raf; ubiquitin

PH; PTB;
EVH1

Acyl-CoA-
binding protein

FERM-DOMAIN

 

_____________________________________________________________________ 

Figure 2. The clover leaf structure with the three subdomains of the FERM-domain; F1, F2 
and F3, and the proteins/domains that share each subdomain fold. The ERM-proteins consist 
of an amino-terminal FERM-domain, an extended α-helical coiled-coiled domain and a 
charged carboxy-terminal domain with a FERM-binding domain (FBD) and in ERM proteins an 
actin binding domain (ABD). ERM-proteins belong to the Band 4.1 protein superfamily. The 
Band 4.1 protein has a FERM-domain and a 4.1 spectrin-actin binding domain (SAB). 
 

4.1 The ERM protein family 

The ERM proteins refer to three closely related proteins; ezrin (Gould, 1989; Turunen, 

1989), radixin (Tsukita, 1989; Funayama, 1991) and moesin (Lankes, 1991), which 

share 75-80% amino acid sequence homology. The tumour suppressor merlin, which 

is encoded by the NF2 gene (Rouleau, 1993; Trofatter, 1993), shares the overall 
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domain structure (Fig.2) and possesses some functional properties of ERM proteins. 

In this study we have worked with two of the ERM protein family members, ezrin and 

merlin. 

 

4.1.1 The ERM proteins 

Ezrin was the first characterised member of the ERM-family. It was cloned in 1989 

and encodes for a 585 amino acid protein with a predicted molecular mass of 81 kDa 

(Gould, 1989; Turunen, 1989). The chromosomal localisation of the ezrin gene is 

6q25-q26. 

 ERM proteins play a role in cell adhesion, signal transduction, membrane 

transport and in the regulation of cell growth (reviewed in Bretscher, 2002). They 

participate in the assembly of membrane- and cytoskeleton-associated protein 

complexes (Edwards, 1994; Henry, 1995; Martin, 1995; Helander, 1996) and are 

located in various actin containing cell surface structures, including microvilli, 

filopodia and membrane ruffles where they colocalise with actin (Bretscher, 1983; 

Pakkanen, 1988; Sato, 1992; Berryman, 1993; Franck, 1993; Winckler, 1994). These 

functions are partially redundant within the ERM family members. Experiments 

where the expression of all three ERM proteins was blocked by antisense 

oligonucleotides indicated that ERM proteins have at least partially overlapping 

functions (Takeuchi, 1994b). In Drosophila only a single ERM gene, D-moesin, has 

been found, with closest homology to human moesin (McCartney, 1996). Although 

ERM proteins are coexpressed in most cultured cells, they have a tissue specific 

expression pattern in the body. Ezrin is predominantly expressed in the intestine, 

stomach, lung and kidney; moesin in lung and spleen; and radixin in liver and 

intestine (Tsukita, 1989; Funayama, 1991). Ezrin is found in epithelial and 

mesothelial cells, and moesin in endothelial and hematopoietic cells while hepatocytes 

express only radixin (Berryman, 1993; Amieva, 1994; Nakamura, 1995; Schwartz-

Albiez, 1995). Some unique functions are known for the different ERM proteins. 

Ezrin anchors podocalyxin in specialised podocyte foot processes on the apical 

surface of kidney epithelial cells (Takeda, 2001). In epithelial cells of the kidney 

proximal tubule, ezrin is linked to the ion transporter NHE-3 by EBP50/NHE-RF. 

Ezrin in turn links the complex to the actin cytoskeleton and recruits the kinase by 

binding the PKA regulatory subunit RIIα (Weinman, 1997; Weinman, 2000; Bagorda, 
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2002). Moesin is thought to restrict CD43 to the distal pole complex that forms 

opposite to the immunological synapse in T-cells (Cullinan, 2002). Radixin localises 

to the apical microvilli of bile canaculi cells in the liver and its loss in mice leads to 

abnormal microvillus architecture and loss of the anionic transporter MRP2 from the 

apical surface of the cells (Kikuchi, 2002). The ezrin knock-out mouse showed that 

ezrin is essential for epithelial organisation and villus morphogenesis in the 

developing intestine (Saotome, 2004). The moesin knock-out mouse, however, does 

not have any discernable phenotype (Doi, 1999). 

  

4.1.1.1 Structure of the ERM proteins 

The globular FERM domain in ERM proteins is composed of three subdomains; F1, 

F2 and F3, which are arranged as a clover leaf-like structure (Fig. 2). Although the 

subdomains have no sequence homology to other protein domains their structures are 

homologous to previously described folds; F1 to ubiquitin and the Ras-binding 

domain of Raf, F2 to Acyl-CoA binding protein and F3 to a domain variously 

described as the pleckstrin homology (PH), phosphotyrosine-binding domain (PTB) or 

Enabled/VASP-1 domain (EVH1), which binds peptide and lipid ligands in signalling 

and cytoskeletal proteins (Pearson, 2000). The highly conserved FERM domain is 

followed by an α-helical coiled-coil domain, which is less conserved between the 

ERM proteins. In addition, mammalian ezrin and radixin have a region rich in 

prolines at the end of the α-helical region, the function of which is unknown. The 

charged carboxy-terminal domain contains the C-ERMAD (C-ERM association 

domain) also known as the FBD (FERM binding domain) and an actin binding 

domain (Fig. 2). The C-ERMAD can extend across the FERM-domain surface 

forming a "head-to-tail" closed molecule, potentially masking recognition sites for 

other proteins. When this interaction is weakened, e.g. by phosphorylation, the 

molecule adopts a more extended structure which exposes interaction domains for 

other proteins (Pearson, 2000).  

 

4.1.2 The NF2 protein, merlin 

Neurofibromatosis 2 (NF2) is a tumour suppressor syndrome that predisposes to 

tumours of the nervous system. The NF2-gene codes for a protein called merlin (for 

moesin-ezrin-radixin-like protein) or schwannomin. It was identified in 1993 and 
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localised to chromosome 22q12. Merlin is composed of 18 exons, with two major 

alternatively spliced NF2 variants expressed in vivo. Isoform I, lacking exon 16, 

encodes for a 595 amino acid protein with a predicted molecular mass of 66 kDa 

(Rouleau, 1993; Trofatter, 1993). Isoform II contains exon 16, which inserts 11 

unique carboxy-terminal amino acids followed by a termination codon and prevents 

translation of exon 17 (Bianchi, 1994; Haase, 1994; Hara, 1994; Gutmann, 1995).  

  Merlin, like ERM proteins, is a cytoskeleton-associated membrane-organising 

protein and thus a unique type of tumour suppressor. In cultured cells, merlin is 

localised underneath the plasma membrane in a pattern typical of ERM proteins and is 

mainly seen in membrane ruffles and filopodia (Gonzalez-Agosti, 1996; Sainio, 

1997). Transfected and endogenous merlin partly colocalise with ezrin, although in 

cells with a poorly developed actin cytoskeleton, merlin replaces ezrin in filopodia 

and ruffling edges (Sainio, 1997). 

 Merlin is widely expressed but the expression level in most tissues appears 

low. Merlin mRNA is present in heart, brain, spleen, lung, liver, skeletal muscle and 

kidney (Hara, 1994; Rouleau, 1993). The merlin protein is expressed in lung, 

intestine, muscle, lens, spleen, kidney, spinal cord and brain (Claudio, 1995; den 

Bakker, 1995, 1999), and is highly abundant during mouse fetal development in 

extraembryonic tissues, heart and the nervous and skeletal systems (Huynh, 1996b). 

However, the cell type distrbution and subcellular localisation of merlin in these 

tissues is poorly understood.  

 Merlin is critical at early stages of development and plays a surprisingly broad 

role across many different cell types. Homozygous Nf2 mutant murine embryos    

(Nf2-/-) fail in development at day 7 of gestation caused by a collapsed extraembryonic 

region and the absence of organised extraembryonic ectoderm (McClatchey, 1997). 

Heterozygous Nf2 mutant mice (Nf2+/-) spontaneously develop various tumours 

including osteosarcomas and hepatocellular carcinomas that show loss of the Nf2 wt 

allele. The unusually metastatic behaviour of these tumours indicates that Nf2 loss 

also facilitates tumour metastasis (McClatchey, 1998). The Nf2+/- tumour phenotype 

can be dramatically accelerated in the presence of a targeted mutation in another 

tumour suppressor gene, p53 (McClatchey, 1998). Although Nf2+/- mice do not 

spontaneously develop schwannomas or meningiomas, a conditional deletion of Nf2 

in Schwann and arachnoidal cells leads to hyperplasia and development of 
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schwannomas and meningeal neoplasias, respectively, indicating that loss of the Nf2 

wt allele is rate limiting for the development of these tumours in mice (Giovannini, 

2000; Kalamarides, 2002). In Drosophila a merlin ortholog has been found, called D-

merlin (McCartney, 1996). D-merlin functions in axis speicification during oocytes, 

and D-merlin mutants show defects in nuclear migration and mRNA localisation in 

the oocyte (MacDougall, 2001).  

  

4.1.3 Ezrin and merlin in neoplasia 

Ezrin expression is altered in several tumours (Böhling, 1996; Mäkitie, 2001). 

Increased ezrin expression has been noticed in invasive cells (Hiscox, 1999; Ohtani, 

1999; Wick, 2001) and has been linked to enhanced cell growth, tumour metastasis 

and poor prognosis of malignant tumours (Akisawa, 1999; Geiger, 2001; Khanna, 

2001, 2004; Nestl, 2001; Koon, 2004; Tynninen, 2004; Yu, 2004).  

 Mutations in the NF2-gene have been found in both sporadic and NF2 

associated schwannomas and meningiomas. Biallelic NF2-gene inactivation has also 

been demonstrated in mesotheliomas, melanomas, breast and colon carcinomas and 

lung and ovarian tumours (Arakawa, 1994; Lee, 1999; Pineau, 2003). Although NF2 

is quite rare, sporadic schwannomas and meningiomas are among the most common 

nervous system tumours in humans. They are generally benign but may be intractable 

because of their location, recurrence and in NF2 patients, their multiplicity (Louis, 

1995; Baser 2003). 

 
4.1.3.1 Neurofibromatosis 2, NF2 

NF2 is an autosomal dominantly inherited disease that affects around 1 in 40.000-

87.000 individuals (Evans, 1992; Antinheimo, 2000) with high penetrance (>95%) 

and an onset at puberty (Evans, 1992). Inactivation of the NF2-gene predisposes to 

tumours of the nervous system. Early symptoms of NF2 are dysfunction of the 

acoustic and vestibular nerves leading to hearing loss, tinnitus and problems with 

balance. Other symptoms relate to the location of the tumour and include seizures, 

weakness, muscle wasting and root pain. The hallmark of NF2 is the development of 

bilateral vestibular schwannomas. The other main tumour features are schwannomas 

of other cranial, spinal and peripheral nerves, meningiomas, both intracranial and 

intraspinal, and some low grade CNS malignancies; ependymomas and gliomas. NF2 
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patients may also be affected by peripheral neuropathy, juvenile lens opacities and 

retinal hamartomas (Gutmann, 1997; Evans, 2000). The disease phenotype varies 

from mild (late onset and slowly growing vestibular schwannomas, but few other 

tumours) to an aggressive form (early onset and multiple rapidly growing tumours) 

(Baser, 2003).  

 The majority of inherited NF2 gene mutations of schwannomas are small 

deletions and insertions that create splice-junction mutations, frame shifts and non-

sense mutations. Inactivating mutations have been detected predominantly in exons 1-

15 without mutational hot spots (Lutchman, 1996). There is a partial correlation 

between the type of merlin mutation and the severity of the disease. Missense 

mutations correlate with mild disease while splicing errors, frame shifts and protein 

truncations, which result in loss of function, cause a more severe disease (Ruttledge, 

1996). At least some of the mutant deletion products of merlin observed in NF2 

patients are efficiently degraded by the ubiquitin-proteasome pathway (Gautreau, 

2002). 

 

5. MOLECULAR INTERACTIONS AND FUNCTIONS OF MERLIN AND 

EZRIN  

Regulated attachment of membrane proteins to the actin cytoskeleton is essential for 

many fundamental processes in the cell. By assembling and stabilising complexes of 

membrane- and cytoskeleton-associated proteins, ERM proteins and merlin participate 

in the formation and organisation of specific cell surface domains. 

 

5.1 Association with the cytoskeleton 

The idea that ezrin functions as a cytoskeleton-plasma membrane linker is supported 

by overexpression of ezrin domains in cultured cells. When amino- and carboxy-

terminal halves of ezrin were transfected into cultured fibroblasts, they were targeted 

to plasma membranes and actin-filament bundles, respectively (Algrain, 1993). Actin 

binding was found to involve the last 34 amino acids in the carboxy-terminal domain 

(Turunen, 1994), while the RRRK motif at the end of the FERM-domain, is critical 

for G-actin binding and morphogenic activity (Pestonjamasp, 1995; Martin, 1997; 

Roy, 1997). In addition, ezrin binds the cytoskeletal protein palladin (Mykkänen, 

2001).  
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Figure 3. A list of molecules interacting with merlin and/or ezrin. Molecules in black are known 
to interact with both merlin and ezrin, while proteins in grey interact only with one of the two, or 
has not been tested for both proteins. The location of the molecule’s name under merlin or 
ezrin indicates the approximate position of the interaction site.  
 

 Merlin, like ezrin, is localised to cortical cytoskeletal structures and is partly 

retained in the detergent-insoluble fraction of cell lysates (den Bakker, 1995; 

Gonzalez-Agosti, 1996; Sainio, 1997). Merlin does not, however, have an actin 

binding domain in the carboxy-terminus, but instead binds actin and microtubules 

with its amino-terminus (Xu, 1998; Stokowski, 2000; Brault, 2001; James, 2001; 

Muranen, in preparation). In addition, merlin binds cytoskeletal proteins βII spectrin 

(Scoles, 1998) and paxillin (Fernandez-Valle, 2002). 

 Changes in cell morphology are regulated in a complex manner by both the 

amino- and carboxy-terminal domain of ERM proteins (Henry, 1995; Martin, 1995, 

1997). Transfection of cells with full length ERM proteins gives no response in cell 

morphology but transfection with truncated proteins result in drastic changes by 

induction of cellular extensions (Edwards, 1994; Henry, 1995; Martin, 1995, 1997). In 

contrast, overexpression of full-length merlin can induce morphogenic changes, such 

as cell surface protrusions and elongation of the cell body; however, the changes are 

more drastic with carboxy-terminally truncated proteins (Sainio, 1997; Laulajainen, in 

preparation).  
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5.2 Association with the plasma membrane 

 Ezrin and merlin bind plasma membrane components directly by binding 

cytoplasmic tails of transmembrane proteins (Fig. 3, 4). The FERM domain of ezrin 

binds adhesion molecules CD44 (Tsukita, 1994; Yonemura, 1998), ICAM-1 and 

ICAM-2 (Helander, 1996; Heiska, 1998; Yonemura, 1998). Both CD44 and ICAMs 

have a positively charged amino acid cluster in the juxtamembrane cytoplasmic 

domain which is responsible for binding to ezrin (Heiska, 1998; Yonemura, 1998). 

Furthermore, ezrin binds adhesion molecule L-Selectin (Ivetic, 2002), the tumour 

necrosis factor (TNF) family receptor CD95 (Parlato, 2000), a member of the mucine 

family MUC1 (Bennett, 2001) and the ion transporter NHE1 (Denker, 2000). Merlin 

binds transmembrane proteins CD44 (Sainio, 1997; Morrison, 2001), β1-integrin 

(Obremski, 1998) and paranodin (Denisenko-Nehrbass, 2003).  

 Ezrin and merlin can also associate with plasma membrane components 

indirectly by binding scaffolding proteins that often contain PDZ-domains (Fig. 3, 4). 

Ezrin binds EBP50/NHE-RF (Reczek, 1997), E3KARP (Yun, 1998), synaptic-

associated protein SAP 97 (Bonilha, 2001) and the heparan sulphate proteoglycan 

syndecan-2 (Granes, 2000). Merlin binds EBP50/NHE-RF (Murthy, 1998) and 

syntenin (Jannatipour, 2001). 

E3KARPEBP50

EZRIN

ACTIN

CFTR, NHE-3 

CD44, ICAM-1, -2

EZRIN

ACTIN
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Figure 4.  A model of ezrin plasma membrane-cytoskeleton interaction. Ezrin is present as a 
closed and inactive molecule in the cytoplasm and needs to be activated to make binding sites 
accessible. Activation involves phosphorylation and phospholipids. Ezrin can bind 
transmembrane receptors indirectly through the interaction with PDZ-containing proteins 
EBP50 and E3KARP. The carboxy-terminus of ezrin contains an actin-binding site. 
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5.3 Cell adhesion and cell-cell communication 

ERM proteins and merlin colocalise with, and bind to, several adhesion molecules in 

cultured cells and play important roles in maintaining cell adhesion structures, in the 

regulation of cell-ECM interactions and in intercellular communication. When the 

expression of all three ERM proteins in cultured cells was blocked by antisense 

oligonucleotides, microvilli disappeared and cellular adhesion was disrupted 

(Takeuchi, 1994b). In addition, loss of D-moesin or expression of dominant-negative 

ezrin in mammalian cells disrupts cell-cell communication (Crepaldi, 1997; Speck, 

2003). The ezrin-CD44 interaction is needed for cell motility (Legg, 2002) while the 

ezrin-ICAM-2 interaction is important for the recruitment of ICAM-2 to the uropod of 

natural killer cell targets (Helander, 1996). In addition to the ezrin-binding adhesion 

molecules mentioned before, ezrin binds the tuberous sclerosis complex 1 (TSC1) 

tumour suppressor protein hamartin, which regulates cell adhesion through ERM 

proteins and Rho (Lamb, 2000). Recently, ezrin was shown to control the formation of 

adherens junctions through its activation of Rac1, which perturbs the localisation of 

E-cadherin to the plasma membrane (Pujuguet, 2003). Ezrin also binds focal adhesion 

kinase (FAK) and promotes its phosphorylation, but this effect does not require cell 

adhesion (Poullet, 2001).  

 Antisense oligonucleotides to merlin result in the rounding up of cells and 

their detachment from the substratum (Huynh, 1996a). The merlin-CD44 complex in 

Schwann cells participates in contact inhibition of proliferation while the merlin-

CD44-ERM-Met-complex promotes mitotic signalling (Orian-Rousseau, 2002). 

Furthermore, merlin's association with the paxillin-integrinβ1-ErbB2 complex is 

important for cell-ECM interactions (Fernandez-Valle, 2002). In Nf2 wt cells, merlin 

colocalises and associates with adherens junctions, while Nf2 deficiency leads to the 

loss of contact inhibition and the absence of adherens junctions. Although core 

adherens junction complexes assemble at the membrane of Nf2 deficient cells, they 

remain diffusely localised (Lallemand, 2003). This indicates that merlin is involved in 

the assembly or stabilisation of the mature adherens junction, perhaps through 

interactions with the actin cytoskeleton. The loss of adherens junctions can lead to 

tumour development and metastasis in vivo (Nollet, 1999). 
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5.4 Cell proliferation 

Merlin and ezrin appear to have opposite effects on cell proliferation. Transfection of 

ezrin into NIH3T3 fibroblasts promotes cell proliferation via loss of contact inhibition 

(Kaul, 1996), and fos-induced morphological transformation increases the level of 

ezrin (Jooss, 1995). Ezrin expression is altered in several types of tumours (Böhling, 

1996; Mäkitie, 2001) and recent studies have linked increased ezrin expression with 

enhanced cell growth and poor prognosis of malignant tumours (Akisawa, 1999; 

Geiger, 2000; Khanna, 2001; Nestl, 2001; 2004; Koon, 2004; Tynninen, 2004; Yu, 

2004). In addition, ezrin associates with the regulatory subunit p85 of 

phosphatidylinositol 3-kinase (PI3-kinase), participating in cell survival signalling 

through the PI3K/Akt pathway (Gautreau, 1999). 

 On the other hand, overexpression of merlin isoform I inhibits cell 

proliferation in rat schwannoma cells and NIH 3T3 cells, and suppresses a v-Ha-Ras-

induced malignant phenotype (Tikoo, 1994; Lutchman, 1995; Sherman, 1997), while 

isoform II or truncated constructs of isoform I fail to influence schwannoma growth 

(Sherman, 1997). Transfection of merlin into human primary schwannoma cells 

reduces cell proliferation and promotes the accumulation of cells in G0/G1 (Schulze, 

2002). Conversely, suppression of merlin in tumour cells induces proliferation and a 

targeted disruption of the Nf2 gene results in increased cell proliferation and tumour 

formation (reviewed in McClatchey, 2001) 

 By assembling and stabilising complexes at the plasma membrane, merlin and 

ezrin co-ordinately control cell-ECM and growth factor receptor signalling and, hence, 

control both tumour growth and invasion. According to a model by Morrison et al. 

merlin controls contact-dependent inhibition of cell proliferation through an 

interaction with CD44. At low cell density a complex is formed with CD44, ezrin and 

phosphorylated or hyperphosphorylated merlin. Under these conditions, the tumour 

suppressor function of merlin is inactivated and the complex promotes mitogenic 

signalling, e.g. through the Ras pathway. At high cell density, CD44 interacts with the 

growth suppressive, hypophosphorylated form of merlin, ezrin is not present in the 

complex, and cell proliferation is blocked (Morrison, 2001). Other pathways may 

affect this regulation. CD44 is present in a complex together with growth factor 

receptors such as Met and the epidermal growth factor receptor (EGFR) family 
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member ErbB2 and seems to facilitate signalling via these receptors (Bourguignon, 

1997; Orian-Rousseau, 2002).  

 Growth factor receptors can be regulated by their association with ERM 

protein- and merlin-organised membrane complexes, but it is not yet known whether 

ERM proteins and merlin directly control growth factor receptor signalling or 

transport. If it is the case, loss of merlin could lead to defective growth factor receptor 

turnover and persistent mitogenic signalling. One of the most potent stimuli for 

Schwann cell proliferation and motility is HGF (Krasnoselsky, 1994). Merlin interacts 

with the HGF regulated tyrosine kinase substrate HRS (Scoles, 2000; Gutmann, 

2001a), which is present at the cytoplasmic surface of early endosomes and may 

regulate growth factor receptor internalisation (Hayakawa, 2000; Clague, 2001). HRS 

is a homologue of the yeast protein Vps27, that controls lysosomal sorting of several 

cell-surface molecules, including EGFR (Stahl, 2002). Regulated overexpression of 

HRS in rat schwannoma cells has the same consequences as merlin overexpression 

(Gutmann, 2001a), raising the possibility that HRS participates in merlin growth 

suppression.  

 Both ERM proteins and merlin can interact with EBP50, which in turn 

interacts with platelet derived growth factor receptor (PDGFR) (Maudsley, 2000). 

Merlin can promote PDGFR degradation and thus inhibit extracellular receptor-linked 

kinase (ERK) in a schwannoma cell line (Fraenzer, 2003). By inhibiting the activation 

of the Ras–ERK pathway and ERKs downstream substrate Elk, merlin suppresses 

SRE-dependent transcription, which is important for the progression of the cell cycle 

in G1 (Lim, 2003). Results from Drosophila demonstrate that loss of D-merlin 

function during larvae development results in a 2-3 fold increase of proliferation. and 

that merlin may function antagonistically with the EGFR pathway (LaJeunesse, 2001). 

In addition, D-merlin interacts with expanded, a tumour suppressor and member of the 

Protein 4.1 family, and together they regulate cell proliferation and differentiation 

(McCartney, 2000). 

 Merlin is a negative regulator of Rac (Shaw, 2001). The Rac/JNK pathway is 

upregulated in Nf2 deficient fibroblasts and merlin negative primary human 

schwannoma cells (Shaw, 2001; Kaempchen, 2003). It has previously been shown that 

Rac activity is needed for malignant transformation by Ras and that activated forms of 

Rac have oncogenic properties (Symons, 1995). Increased Rac activity is also 



 
 

 - 26 - 
 

associated with increased cellular motility and might therefore affect metastatic 

potential (Morrison, 2001; Crowe, 2004). 

 Several indirect links between merlin and cell growth regulation have been 

reported. Merlin may be a positive regulator of p53 by inhibiting the Mdm2-mediated 

degradation of p53 (Kim, 2004). Moreover, merlin represses NF-κB activation (Kim, 

2002a), suppresses PI3-kinase activity by binding to the PI3-kinase enhancer PIKE-L 

(Rong, 2004b) and inhibits the tumourigenesis induced by the merlin binding protein 

TRBP (transactivation-responsive RNA binding protein) (Lee, 2004b). Merlin 

expression is upregulated in mammalian fibroblasts arrested in G1 in response to actin 

inhibition, which is dependent on the retinoblastoma protein (Rb) (Lohez, 2003). 

Furthermore, merlin inhibits abnormal cell proliferation that is activated via Ras by 

repressing Rb phosphorylation, blocking the increase of cyclin D1 protein level and 

inhibiting the activation of AP-1- and E2F-1-dependent transcription in NIH3T3 cells 

(Kim, 2002b). The merlin binding protein MAP decreases the AP-1-dependent 

promoter activity (Lee, 2004a), and magicin, a protein that interacts with both merlin 

and Grb2, links merlin to Ras signalling (Wiederhold, 2004).  

 

6. REGULATION OF MERLIN AND EZRIN  

Even if many functions are partially redundant, differences exist in the functional 

properties of ERM proteins and merlin; their phosphorylation patterns, regulation, and 

response to growth factors and proteases. 

 

6.1 Phosphorylation 

ERM proteins are rapidly phosphorylated on tyrosines 145 and 353 following EGF or 

HGF stimulation (Bretscher, 1989; Krieg, 1992; Fazioli, 1993; Franck, 1993; Jiang, 

1995; Crepaldi, 1997), on tyrosine 145 after activation of Lck tyrosine kinase (Autero, 

2003) and on tyrosines 145 and 477 after Src activation (Heiska, 2004; Srivastava, 

2005). Substitution of tyrosine 145 and 353 with phenylalanine decreases the 

morphogenic and motility response of epithelial cells to HGF (Crepaldi, 1997). 

Phosphorylation of ezrin on tyrosine 353 is also important in protecting cells against 

apoptosis by activating the PI3K/Akt-pathway (Gautreau, 1999) and phosphorylation 

on tyrosine 477 by Src induces a phosphospecific association between ezrin and 

kelch-repeat protein family member, KBTBD2 (Heiska, 2004). 
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 At least three kinases phosphorylate the conserved carboxy-terminal threonine 

in ERM-proteins (ezrin T567); Rho kinase (Matsui, 1998; Tran, 2000), PKCα (Ng, 

2001), and PKCθ (Pietromonaco, 1998; Simons, 1998). Phosphorylation of ezrin on 

threonine 567 reduces the affinity of the C-ERMAD for the FERM-domain and 

weakens the "head-to-tail" interaction. Thereby other binding sites become accessible, 

such as those for CD44 and EBP-50 (Nakamura, 1995; Hirao, 1996; Matsui, 1998; 

Simons, 1998). The phosphorylation also results in a redistribution of ERM proteins 

to cell surface structures such as microvilli (Kotani, 1997; Lamb, 1997; Oshiro, 1998; 

Hayashi, 1999; Yonemura, 2002). Recently, serine 66 of ezrin was shown to be 

phosphorylated by PKA in response to histamine stimulation in parietal cells (Zhou, 

2003). During apoptosis, dephosphorylation of ERM proteins results in their 

translocation from the plasma membrane and in loss of microvilli (Kondo, 1997). 

Furthermore, ezrin binds the myosin binding subunit of myosin phosphatase (MBS) 

(Fukata, 1998).  

 Merlin is phosphorylated on both serine and threonine residues but tyrosine 

phosphorylation has not been detected (Shaw, 1998, 2001). The phosphorylation 

status of merlin in cell culture models varies in response to growth conditions. At low 

cell density merlin is phosphorylated, whereas high cell density, serum starvation or 

loss of adhesion results in increased merlin expression and dephosphorylation (Shaw, 

1998). At least three differently phosphorylated forms of merlin are present in cell 

lysates; hypophosphorylated, phosphorylated and hyperphosphorylated. 

Hypophosphorylated merlin is insoluble and enriched in cell culture under inhibitory 

growth conditions and is probably active as a growth suppressing molecule (Shaw, 

1998).   

 p21 activating kinase (PAK) phosphorylates merlin on serine 518 (Kissil, 

2002; Xiao, 2002), which weakens the self association, increases solubility and is 

believed to inactivate the growth suppressing activity of merlin (Shaw, 1998, 2001). It 

also impairs the ability of merlin to bind CD44 and HRS (Rong, 2004a). Interestingly, 

cAMP-dependent protein kinase, PKA, phosphorylates the same residue, serine 518, 

and an additional amino-terminal residue, which has not been mapped (Alfthan, 

2004). PKA phosphorylation of serine 518 enhances the association between merlin 

and ezrin (Alfthan, 2004). Merlin might be regulated by signals from two or more 

different signal transduction pathways since both PKA and PAK, although activated 
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in response to different stimuli, phosphorylate the same site. Interestingly, a cross-talk 

between PKA and PAK has been demonstrated in some cell types, which regulates 

MAPK signalling and cytoskeletal integrity (Howe, 2000a). 
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Figure 5. Phosphorylation of merlin and ezrin. Known merlin and ezrin kinases and their target 
residues. Known consequences of the phosphorylation are listed. 
 

 The cyclic AMP (cAMP)-PKA pathway elicits a wide array of metabolic and 

functional processes including cell growth and differentiation, actin cytoskeleton 

rearrangements, transcription and ion channel conductivity. Activation of the 

cAMP/PKA pathway promotes cell growth and cell cycle progression in Schwann 

cells (Kim, 1997) and is required for myelin formation (Howe, 2000b). In its inactive 

form PKA is a tetramer that consists of two regulatory and two catalytic subunits. 

There are three catalytic subunit isoforms (Cα, Cβ, Cγ) and four regulatory subunit 

isoforms (RIα, RIβ,  RIIα, RIIβ), the expression of which varies among cell types and 

tissues. Cyclic AMP activates PKA by binding to its regulatory subunits, causing the 

tetrameric complex to disassociate, thus activating the kinase (Skalhegg, 2000). 

Although PKA has broad substrate specificity, it is able to selectively phosphorylate 

individual substrates in response to distinct stimuli. Selectivity is achieved by isoform 

multiplicity, by differential subunit expression patterns and through interactions with 
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A-kinase anchoring proteins (AKAPs). AKAPs bind PKA via the regulatory subunit 

and direct the kinase activity towards specific substrates at distinct intracellular 

locations. By binding additional signalling molecules, AKAPs may coordinate 

multiple signal transduction pathways (Colledge, 1999; Edwards, 2000). Ezrin serves 

as an AKAP in gastric parietal cells by binding RIIα, thus anchoring the kinase to 

critical regions in the canalicular target membranes (Dransfield, 1997; Zhou, 2003).  

 

6.2 RHO GTPases 

Both ERM proteins and merlin are regulated by members of the Rho family of 

GTPases. Rho GTPases are members of the Ras superfamily of monomeric GTP-

binding proteins. The best characterised members are Rho, Rac and Cdc42, which 

control actin cytoskeleton remodelling, cell proliferation and survival, gene expression 

and cell morphology. Rho GTPases cycle between an inactive GDP-bound form and 

an active GTP-bound state, which can interact with effector molecules to initiate a 

downstream response. GTP hydrolysis returns the proteins to the GDP-bound state. 

There are numerous proteins that positively or negatively regulate the cycling between 

the GTP- and GDP-bound states. The guanosine nucleotide exchange factors (GEFs) 

facilitate the exchange of GDP for GTP while GTPase activating proteins (GAPs) 

increase the intrinsic rate of GTP hydrolysis of Rho GTPases, thus facilitating the 

inactivation process. Rho GTPases interact with membranes via post-translational 

lipid modifications, but can also be sequestered to the cytoplasm in their inactivated 

state by Rho GDP disassociation inhibitor (RhoGDI), which inhibits the exchange of 

GDP to GTP (reviewed in Etienne-Manneville, 2002). 

 As mentioned above, Rho induces the phosphorylation of the conserved 

carboxy-terminal threonine in ERM proteins by Rho kinase (Matsui, 1998; Tran, 

2000). ERM proteins also positively regulate Rho activity (Mackay, 1997; Lamb, 

2000). ERM-proteins bind Rho-GDI and release inactive Rho from Rho-GDI, which 

results in activation of the Rho pathway (Takahashi, 1997; Maeda, 1999). In addition, 

ERM proteins interact directly with Dbl, a positive regulator of Rho (Takahashi, 

1998). Genetic analysis in Drosophila, however, showed that D-moesin deficiency 

leads to increased RhoA activity (Speck, 2003). The fact that ezrin functions both 

upstream and downstream of Rho implies that there could be a feed back loop for 

Rho-pathway autoregulation.  
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 In contrast to ezrin, phosphorylation of merlin is induced by activated forms of 

Rac and Cdc42, but not by activated Rho. As mentioned above, PAK, a downstream 

target of both Rac and Cdc42, phosphorylates merlin (Kissil, 2002; Xiao, 2002). 

Merlin also interacts directly with the Cdc42/Rac binding domain of PAK1 and 

inhibits PAK1 activity (Kissil, 2003). Overexpression of merlin blocks Rac1 induced 

signalling and transformation, whereas Nf2-deficient fibroblasts have excessive Rac1 

activity (Shaw, 2001). These data suggest that merlin is regulated by, and can serve as 

a negative regulator of the Rac/Cdc42 signalling pathway. Merlin can also interact 

with Rho-GDI (Maeda, 1999) but it is not known if it interacts with Dbl.  

 

6.3 Homotypic and heterotypic binding 

Homotypic and heterotypic associations of ERM proteins have been described as ways 

to regulate protein function. The binding domain in the amino-terminus of ezrin, N-

ERMAD, has been mapped to amino acids 1-296, which corresponds to the domain 

called the FERM-domain. The carboxy-terminal binding domain, C-ERMAD, has 

been mapped to amino acids 479-585 (Gary, 1993, 1995; Magendantz, 1995). When 

the C-ERMAD binds to the FERM-domain, the carboxy-terminal residues adopt an 

extended structure that binds to and covers an extensive area of the FERM-domain 

surface (Pearson, 2000).  

 Intramolecular or intermolecular associations regulate ERM protein function 

(Gary, 1995; Henry, 1995; Magendantz, 1995; Martin, 1995). The folded state of the 

monomers and ERM protein oligomers represent the inactive form of the protein. 

Signals disrupting these interactions expose functional sites, allowing them to bind 

other proteins. The ezrin FERM-domain binding sites, at least for EBP50, Rho-GDI, 

CD44 and F-actin, are masked when associated with the C-ERMAD (Takahashi, 

1997; Reczek, 1998; Hirao, 1996; Simons, 1998). Additionally, the morphogenic 

activity of ezrin appears to be masked by inter- and intramolecular interactions 

(Martin, 1995). 

 

6.4 Other mechanisms of regulation   

Phosphoinositides participate in the activation of ERM proteins (Yonemura, 2002). 

ERM proteins and merlin have a phosphatidylinositol-4,5-biphospahte (PIP2) binding 

site in the FERM-domain (Niggli, 1995; Gonzalez-Agosti, 1999). PIP2 can regulate 
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the binding of ezrin to ICAM-1, ICAM-2 (Heiska, 1998) and CD44 (Hirao, 1996). It 

binds between F2 and F3 in the FERM domain and may induce a conformational 

change that reduces the affinity of the C-ERMAD for the free FERM-domain 

(Hamada, 2000). Local production of PIP2 is thought to recruit ERM-proteins to the 

plasma membrane. This places them in a location where they can be phosphorylated 

and, thereby, activated to bind transmembrane proteins, scaffolding molecules and 

actin and participate in signalling pathways (Fig. 4). 

  Furthermore, ERM and merlin protein levels and function are regulated by 

ubiquitin-proteasome or calpain mediated proteolysis (Kimura, 1998; Shcherbina, 

1999; Gautreau, 2002; Kaneko, 2001). 
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 AIMS OF THE STUDY 

 

When this study was initiated, no cellular functions or interaction partners for merlin 

were known. Merlin was viewed as a structural protein associated with the plasma 

membrane-cytoskeleton interface and no association with cell cycle control had been 

reported. Therefore, merlin was regarded as a unique type of tumour suppressor, with 

growth inhibitory mechanisms linked to cell surface organisation and adhesion. The 

fact that merlin and its closest homologue, ezrin, have opposite effect on proliferation 

was of particular interest. Our aim was to elucidate the biological function of merlin 

by identifying binding partners specific for merlin or ezrin, and by analysing pathways 

that differentially regulate their functions. This could provide us with clues on how 

merlin exerts its growth regulatory activity.  

 

Initial specific aims: 

1) To determine whether merlin is a functional member of the ERM protein 

family. 

2) To determine whether unique molecular interactions can explain the opposite 

effect of merlin and ezrin on cell proliferation. 

As a result of these studies, we identified two molecules that specifically interact with 

merlin; the cell cycle regulator HEI10 and the neuron-specific PKA regulatory 

subunit, RIβ. We also noticed that the subcellular localisation of merlin was more 

versatile than previously thought.  

 

Subsequent specific aims: 

3) To analyse the mechanisms, regulation and functional consequences of the 

observed nucleo-cytoplasmic shuttling of merlin. 

4) To study the role of the intercation between merlin and HEI10, and its 

potential involvement in the regulation of cell proliferation. 

5) To characterise the expression pattern of merlin, ezrin and RIβ in the CNS. 

6) To characterise the merlin-RIβ interaction and the role of merlin in neurons 

of the CNS. 



 
 

 - 33 - 
 

METHODS 

The materials and methods are described in detail in the original publications, which 

are referred to here using Roman numerals. 

 

METHODS USED IN STUDY 

 

Production of recombinant DNA constructs I, II, III, V 

Cell culture and cell transfections I, II, III, IV, V 

Primary culture of rat embryo hippocampal cells IV, V 

Primary culture of mouse progenitor cells IV 

Primary culture of Schwann and schwannoma cells III 

Cell cycle synchronisation II, III 

Subcellular fractionation of nuclei II 

Flow and laser scanning cytometry II, III 

Immunofluorescence and laser scanning confocal microscopy I, II, III, IV, V 

Immunohistochemistry IV, V 

Coimmunoprecipitations I, III, V 

cAMP-pull downs and coimmunoprecipitation from rat brain  V 

Fractionation of synaptosomes from rat brain IV 

Chemical cross-linking I 

Production of recombinant proteins I, III, V 

In vitro protein translation III 

Yeast two-hybrid analysis 

library screen 

mating assay 

determination of β-galactosidase activity 

 

III 

I, III, V 

I 

Protein blot overlay I 

Protein affinity precipitation I, III, V 

Peptide array screening and sequence alignment V 

Western blot analysis and immunoblotting I, II, III, IV, V 
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RESULTS AND DISCUSSION 

 

The main results of the studies are summarised here. The results are presented and 

discussed in detail in the accompanying original publications, which are referred to 

using Roman numerals. 

 

1. HETEROTYPIC AND HOMOTYPIC INTERACTIONS OF MERLIN AND 

EZRIN (I) 

 

1.1 Heterotypic interactions 

To find out whether merlin shares known properties of ERM proteins, we studied the 

subcellular distribution of merlin and ezrin in human U251 glioma cells, which 

express both proteins endogenously. We showed that the subcellular distribution of 

both merlin and ezrin was affected by an increase in confluency. In subconfluent cells, 

double staining of merlin and ezrin revealed a highly overlapping distribution at cell 

surface projections resembling ruffling edges. In confluent cell cultures, only few cells 

with accumulation of merlin and ezrin at the cell periphery could be observed. Instead, 

most of the cells showed a diffuse or punctuate cytoplasmic pattern. The results 

demonstrated a coregulation of merlin and ezrin distribution under certain growth 

conditions (I, Fig. 1).  

 By coimmunoprecipitation experiments of endogenous and transfected 

proteins, we showed that merlin and ezrin not only colocalise, but form a complex in 

cells. After treatment of cells with a chemical cross-linker, novel bands, at sizes 

between 140-170 kDa appeared in merlin and ezrin immunoblots of cell lysates. 

Based on the sizes, the bands likely correspond to a merlin homodimer and a merlin-

ezrin heterodimer (I, Fig. 2).  

 The merlin-ezrin heterodimerisation was also detected by several in vitro 

techniques, which showed that the interaction was direct. As previously reported for 

ERM proteins (Gary, 1995), also the merlin-ezrin heterotypic interaction occurred as 

"head-to-tail", the amino-terminus binding the carboxy-terminus. The interaction 

appeared to be under conformational regulation since only truncated, but not full 

length, proteins bound, indicating that the association sites in ezrin and merlin had to 

be unmasked for heterodimerisation (I, Figs 5-8). The result is thus analogous with 
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previous findings for two ezrin monomers, which need to be activated or truncated for 

homotypic binding (Gary, 1995).  

 

1.2 Homotypic interactions 

Our experiments of ezrin homotypic interactions were in accordance with previous 

studies. Homotypic binding between two ezrin molecules needed conformational 

regulation in analogy with the heterotypic binding between ezrin and moesin (Gary, 

1995). Full-length ezrin molecules did not interact, but truncated ezrin proteins bound 

in a "head-to-tail" manner (I, Figs 5-8).  

 For homotypic binding of merlin, the functional regulation appears to be 

different. This was suggested by the fact that merlin, in contrast to ezrin, did not 

require exposure of the association domains for homotypic binding. Full length merlin 

was capable of homotypic interactions. Removal of the last 10 amino acids from one 

of the binding partners retained the interaction. However, no binding was seen after 

removal of the carboxy-terminal residues from both proteins. These results further 

supported "head-to-tail" binding of merlin (I, Figs 5-7). 
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_____________________________________________________________________ 

Figure 6. Model of homotypic and heterotypic interactions. Merlin and ezrin need to be 
activated to release an intermolecular association domain and to adopt a more extended 
conformation. This may result in homotypic and heterotypic binding. Homotypic interaction of 
merlin does not to require activation.  
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1.3 Merlin N-ERMAD and C-ERMAD 

In ezrin, the amino-terminal association domain, N-ERMAD, contains residues 1-296 

(Gary, 1995). Binding of merlin to carboxy-terminal merlin or ezrin proteins occurred 

via residues 1-339. Later we have mapped the merlin N-ERMAD to residues 1-314 

(unpublished data). Thus, the amino-terminal association domain of merlin seems to 

be very similar to the N-ERMAD of ezrin (Fig. 6).  

 Based on the fact that the residues of the C-ERMAD of ezrin are poorly 

conserved in merlin, it had been suggested that the carboxy-terminus of merlin would 

not allow self-association (Gary, 1995). Our results indicate that this is not the case. In 

fact, the carboxy-terminus of merlin not only bound to the amino-terminus of merlin, 

but also to ezrin. In our study, the C-ERMAD of merlin could not be mapped as 

precisely as that of ezrin, which is contained in residues 479-585. However, we have 

since shown that a construct containing the carboxy-terminal residues 492-595 of 

merlin is sufficient for amino-terminal binding (unpublished data) and, hence, the C-

ERMAD of merlin is functionally very similar to that of ezrin. A similar feature for 

the binding domain of merlin and ezrin is the absolute requirement of the last residues 

of the carboxy-terminus (Fig. 6). 

 The amino acid identity between merlin and ezrin is 61% in the amino-

terminal domain, but the carboxy-terminal domain of merlin shares only 22% identity 

with ezrin (Turunen, 1998). The structure of all three ERM-proteins and merlin can, 

however, be roughly superimposed showing that the residues on the N-ERMAD and 

C-ERMAD binding interface are strongly conserved between merlin and the ERM 

proteins (Pearson, 2000). Although the overall structure of the merlin N- to C-

ERMAD interface is similar to that of ERM proteins, there are some differences. Most 

divergent residues are found clustered on the surface of the N-ERMAD/FERM-

domain possibly allowing for merlin specific interactions (Kang, 2002; Shimizu, 

2002). Among the divergent residues is a seven amino acid stretch, the so-called blue 

box. The blue box is not found in ERM proteins but is perfectly conserved in D-

merlin and essential for D-merlin function (LaJeunesse, 1998).  

 Other groups have later confirmed merlin homodimerisation and merlin-ezrin 

heterodimerisation (Gonzalez-Agosti, 1999; Gutmann, 1999; Meng, 2000). 

Heterotypic binding between ezrin and moesin (Gary, 1995) and merlin and moesin 
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(Gonzales-Agosti, 1999) have also been reported, reflecting a conservation of the 

association domain between ERM proteins and merlin. The protein 4.1B/DAL-1 also 

interacts with ERM proteins and merlin (Gutmann, 2001b), raising the possibility that 

additional members of the Protein 4.1 family are able to form intra- and intermolecular 

complexes. 

 In addition to the "head-to-tail" interaction, merlin forms an intramolecular 

interaction within the amino-terminus, which is needed for the N- to C-ERMAD 

interaction, the localisation of merlin underneath the plasma membrane and its 

association with actin. Known NF2 patient mutations in the amino-terminus of merlin 

impair these intramolecular interactions, suggesting that the interactions are important 

for the tumour suppressor function of merlin (Gutmann, 1999; Brault, 2001). Merlin 

isoform II has a different carboxy-terminus than isoform I and is not active as a 

tumour suppressor. In contrast to isoform I, it has been shown to bind full length 

ezrin, indicating that the intermolecular association in the two isoforms is regulated 

differently (Meng, 2000).  

 

1.4 Regulation of the dormant and active states 

The mechanism of a regulatory domain binding another part of the molecule to mask 

or inhibit its activity is not restricted to the ERM protein family. Conformational 

activation is found in the cytoskeletal protein vinculin, whose F-actin and talin 

binding sites are masked by a "head-to-tail" interaction that may be unmasked by PIP2 

(Bakolitsa, 1999). It has also been suggested that N-WASP homotypic interactions, 

necessary for activating the Arp2/3 complex, can be unmasked by activated Cdc42 

(Rohatgi, 1999).  

 Our studies show that the regulation of the homotypic "head-to-tail" 

association of merlin is different from that of ezrin. As discussed in the introduction, 

the homotypic binding retains ERM proteins in a dormant state, in which binding sites 

for other molecules are masked. ERM proteins need to be activated and "opened" to 

allow them to interact with other molecules. The intramolecular association of ezrin is 

more stable than that of merlin (Nguyen, 2001). But merlin displays conformational 

activation, which is a prerequisite for heterodimerisation but not for 

homodimerisation. A merlin S518D mutation, which mimics the phosphorylated 

protein, blocks interactions between the C-ERMAD and N-ERMAD, while the S518A 
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mutation, mimicking the unphosphorylated protein, promotes this interaction (Shaw, 

1998, 2001; Rong, 2004a). Phosphorylation of serine 518 by PAK2 was shown to 

impair the ability of merlin to bind to CD44 and HRS (Rong, 2004a) and we recently 

showed that PKA phosphorylation of merlin serine 518 directly enhances the 

association between merlin and ezrin (Alfthan, 2004). This suggests that 

phosphorylation of merlin directly modulates merlin intramolecular 

and intermolecular associations, which are important for the ability of merlin to 

function as a tumour suppressor. Differential phosphorylation of merlin may be a way 

to switch between different merlin containing complexes, which regulate downstream 

signalling.  

 Although our interaction studies were only semiquantitative, we repeatedly 

detected a stronger heterotypic binding between merlin and ezrin than the homotypic 

binding of ezrin or merlin. This was later confirmed by a study which showed that the 

merlin C-ERMAD has a stronger preference for binding the N-ERMAD of ezrin over 

its own and that merlin forms more stable interactions with ERM proteins than with 

itself (Nguyen, 2001). Therefore, the proportion of “active” ezrin in the cell could 

have implications on the activity of merlin and vice versa. Signals that effect the 

activation of merlin and ezrin can regulate the rank of order for their different binding 

partners. The merlin-ezrin coimmunoprecipitation experiments strongly suggest that at 

least a fraction of merlin and ezrin in cells are in a conformation that allows them to 

associate heterotypically.  

 In the tumour suppressor model by Morrison et al. (2001) and Ponta et al. 

(2003) (Fig. 7), distinct functions are given for the merlin and merlin-ERM complex. 

Contact inhibition of cell proliferation is mediated through interaction between CD44 

and hypophosphorylated merlin while the CD44/merlin/ezrin-complex including 

phosphorylated merlin and ezrin, is growth promoting. The "open" ezrin molecule is 

called active, since binding domains for many interaction partners are exposed. In 

contrast, the hypophosphorylated, "closed" merlin molecule has been called active, 

since it appears to be active as a tumour suppressor. These terms may be 

oversimplified since both proteins are regulated in a complex manner, which involves 

several ways of activation and inactivation. At least three forms of phosphorylated 

merlin have been identified, and in Drosophila, the unfolded form of D-merlin is also 

active in vivo. Truncating mutations in D-merlin that remove the carboxy-terminus 
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and do not allow "head-to-tail" binding can still provide full genetic rescue of a null 

merlin mutant (LaJeunesse, 1998). This might be due to differential regulation or to 

merlin binding partners unique to Drosophila. Further analysis of the functional 

consequences of heterotypic binding between merlin and ezrin and the complex 

interplay between the different activating and inactivating modifications could provide 

novel information on how merlin and ezrin regulate proliferation. 
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Figure 7. Model for the control of cell proliferation and growth arrest. Growth factors 
cause the formation of a growth promoting complex. Phosphorylation of ezrin allows it to bind 
the cytoplasmic tail of CD44, which can be in complex with e.g. Met. Phosphorylated merlin is 
bound to ezrin, and they link the cytoskeleton to these transmembrane receptors. At high cell 
density, high molecular weight hyaluronan (HMW HA) binds CD44. Ezrin is dephosphorylated, 
inactive and present in the cytoplasm as a closed monomer. The hypophosphorylated, closed 
merlin can replace ezrin as a binding partner for CD44 and is active as a tumour suppressor, 
thereby blocking Ras signalling and the link to the cytoskeleton. Adapted from Morrison et al., 
2001 and Ponta et al., 2003. 
 

2. NUCLEO-CYTOPLASMIC SHUTTLING OF MERLIN (II) 

In general, functions of tumour suppressor proteins include the regulation of cellular 

responses to growth promoting signals, DNA damage and cell cycle checkpoints. 

These activities typically require nuclear localisation of the tumour suppressor protein, 

which may occur in a cell cycle specific manner (Fabbro, 2003).  

 To study if merlin shares these common properties of tumour suppressors, we 

used U251 glioma and U2OS osteosarcoma cell lines, which express endogenous 

merlin. We found that merlin was concentrated underneath the cell membrane in 
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subconfluent conditions in line with earlier studies. A small fraction of cells, however, 

demonstrated nuclear staining of varying intensity. Subcellular fractionation 

experiments with isolated nuclear and cytoplasmic fractions confirmed the presence of 

merlin in the nuclear as well as in the membrane fraction. Furthermore, the nuclear 

localisation of merlin was affected by cell density. A nuclear merlin signal was not 

detected in confluent cells, instead, merlin was localised to the cortical membrane and 

the cytoplasm. Laser scanning cytometric quantification of cells double-stained for 

merlin and DNA verified these findings (II, Figs 1-3).  

 

2.1 Nucleo-cytoplasmic shuttling is dependent on the CRM1/exportin pathway 

Nucleo-cytoplasmic shuttling of proteins is an active process regulated by various 

import and export pathways (Weis, 2003). The CRM1/exportin-mediated nuclear 

export can be blocked by Leptomycin B (LMB) (Kudo, 1998). Previous studies using 

transfected mutant merlin constructs have shown that they can be targeted to the 

nucleus and their export is regulated by the CRM1-pathway (Kressel, 2002). We 

showed that also the nuclear export of endogenous merlin was dependent on the 

CRM1 pathway. After LMB treatment, most of the subconfluent cells demonstrated 

strong nuclear merlin staining, and some nuclear accumulation was also seen in 

confluent cells (II, Fig. 3). 

 

2.2 Nucleo-cytoplasmic shuttling is cell cycle-dependent 

The fact that nuclear localisation was seen in actively proliferating cells but not in 

confluent or contact inhibited cells, suggested that nuclear targeting might occur in a 

cell cycle-specific manner. A similar pattern of expression has been shown for the 

APC and VHL tumour suppressors, which mainly localise to the cytoplasm of 

confluent cells, but shift to the nucleus in subconfluent cells and affect growth in a 

cell cycle-dependent manner (Lee, 1996; Zhang, 2001). In cells about to enter mitosis 

(late G2/M), merlin was localised in the cytoplasm and concentrated to the perinuclear 

region. During early mitosis, merlin was condensed around the breaking nuclear 

envelope, especially in nuclear envelope invaginations, i.e. regions, in which 

microtubules are concentrated in prophase (Burke, 2002). As mitosis progressed, 

merlin was present in mitotic spindles and in the midbody during cytokinesis. After 

mitosis, at early G1, merlin accumulated in the nucleus, but was also detected 
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underneath the plasma membrane. Progression of the cell cycle to late G1 phase 

resulted in export of merlin from the nucleus. At G1/S, merlin was concentrated to the 

membrane, and less prominently to the perinuclear region (II, Figs 4 and 5).  

 Previous studies have shown that merlin can bind tubulin in vitro (Xu, 1998; 

Stokowski, 2000) but have not demonstrated cellular colocalisation between merlin 

and tubulin. Our imaging results provide an explanation for the apparent controversy 

by showing that the association between merlin and tubulin may be transient and 

occur only during mitotic division. Preliminary results suggest that merlin associates 

with microtubules in a regulated manner and that the association may be important for 

the organisation of the mitotic spindle (Muranen, in preparation). 

 

2.3 Nucleo-cytoplasmic shuttling is dependent on cell adhesion 

Adhesion and anchorage to the substratum are known to regulate cell cycle 

progression at early G1 (Assoian, 1997). We studied merlin localisation during cell 

attachment and spreading, which also take place shortly after mitosis at G1. No 

nuclear merlin was seen in non-adherent cells, where merlin was concentrated at the 

submembranous regions. Strong nuclear merlin staining was detected at early phases 

of reattachment, both after trypsination and mitotic shake off. At later time points, 

when the cells were spread, merlin was again concentrated underneath the membrane 

and the nuclear localisation disappeared (II, Fig. 7).  

 Nuclear targeting of phosphorylated ERK is required for cell cycle progression 

at G1. Its activity depends on integrin-mediated cell adhesion and the presence of an 

intact actin cytoskeleton (Aplin, 2001). A downstream target of ERK in the nucleus is 

the Elk-1 transcription factor. Phosphorylation of Elk-1 increases its affinity to SRE 

and enhances transcription of growth-related proteins. This ultimately leads to the 

induction of cyclin D1 that regulates the passage through G1 (Marais, 1993; 

Whitmarsh, 1995; Vanhoutte, 2001). Interestingly, merlin inhibits phosphorylation of 

ERK as well as ERK-dependent nuclear Elk-1 phosphorylation (Lim, 2003). In 

addition, merlin prolongs the G1 phase of the cell cycle (Schulze, 2002). Therefore, 

we investigated if there is a functional interplay between ERK and merlin for their 

nuclear localisation. Both merlin and ERK were localised to the nucleus of adhering 

cells and at early G1. However, the nuclear localisation of merlin was not dependent 

on the nuclear localisation of ERK or an intact actin cytoskeleton (II, Fig. 8).  
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2.4 Regulation of the nucleo-cytoplasmic shuttling 

We still do not know the molecular interactions of merlin in the nucleus or how the 

nucleo-cytoplasmic shuttling is regulated. Since merlin function is affected by 

phosphorylation, it is tempting to speculate that phosphorylation regulates its nuclear 

localisation. However, we found phosphorylated merlin both in the nuclear and 

cytoplasmic fractions, and did not find direct evidence that activation or inhibition of 

PAK and/or PKA would have an effect on its nuclear localisation (II, Fig. 6). But we 

cannot exclude an indirect link or transient effect between PAK- or PKA-dependent 

phosphorylation of merlin and its subcellular targeting. For two additional molecular 

partners of merlin; paxillin and syntenin, nucleo-cytoplasmic shuttling has been 

demonstrated (Jannatipour, 2001; Fernandez-Valle, 2002; Woods, 2002; 

Zimmermann, 2001). Both proteins also possess transcriptional potential (Aplin, 

2003). However, it is not known whether they can bind merlin in the nucleus. 

Furthermore, a study demonstrated that human polyoma virus T-antigen, which is able 

to transform cells of neural origin, is in complex with merlin in the nucleus of 

malignant peripheral nerve sheath tumours (Shollar, 2004). Merlin pull down 

experiments from purified nuclei will hopefully clarify whether any of the known 

interaction partners or novel molecules, such as nucleic acids, bind merlin in the 

nucleus.  

 Several isoforms of band 4.1 proteins are targeted to the nucleus by nuclear 

localisation signals (NLS) (Correas, 1991; Lallena, 1997; De Carcer, 1995). An 

important NLS in band 4.1 proteins is a stretch of basic residues, KKKR, which is 

suggested to bind to a negatively charged motif of importin (Gascard, 1999). Recently 

localisation of ERM proteins to the nucleus was reported, and a functional NLS 

mapped to 435RRRK438 in ezrin (Batchelor, 2004). Merlin contains an analogous 

stretch of basic residues, 309RRRK312, which may be involved in its nuclear targeting. 

Merlin also has a cytoplasmic retention signal in exon 2, which can keep merlin in the 

cytoplasm (Kressel, 2002). Paxillin binds to the region of merlin encoded by exon 2 

and facilitates the localisation of merlin to the cell membrane where it can interact 

with cell surface proteins, such as CD44 and ß1-integrin (Fernandez-Valle, 2002; 

Obremski, 1998). Thus, there may be several signal motifs with opposite effects 

whose interplay dictates the cell cycle-dependent distribution of merlin.    
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3. INTERACTION WITH HEI-10 CONNECTS MERLIN TO CELL CYCLE 

REGULATION (III) 

To find explanations for the opposite effects merlin and ezrin play on cell 

proliferation, we looked for specific interaction partners for merlin, but not ezrin, in a 

yeast two-hybrid screen against a HeLa cDNA library. We found one cDNA that 

bound a merlin construct containing the α-helix and carboxy-terminus (amino acids 

252-595) but not a similar ezrin construct (amino acids 278-585). The same gene was 

independently identified in a genetic screen aimed at identification of human cDNAs 

that promote invasion in yeast (Toby, 2003). Interestingly, it turned out to be a cell 

cycle regulator, mainly localised to the nucleus, and was given the name HEI10 

(Human Enhancer of Invasion). The gene encodes for a 277 amino acid protein which 

consists of an amino-terminal RING-finger like motif characteristic of E3 ubiquitin 

ligase, a coiled-coil domain and a carboxy-terminal domain with a VSPSR motif, 

which is phosphorylated by cyclin B/cdk1 (Toby, 2003) (Fig. 8). The amino-terminal 

part of HEI10 interacts with the UbcH7 E2 ubiquitin conjugating enzyme and with 

cyclin B. HEI10 controls the accumulation of cyclin B, thereby regulating the passage 

through G2 in both yeast and vertebrates (Toby, 2003). Interestingly, recent reports 

have demonstrated that the HEI10 gene is a component of a translocation fusion to the 

HMG1C gene in uterine leiomyoma (Mine, 2001) and altered HEI10 expression has 

been detected in melanomas (Smith, 2004). These results imply that deregulation of 

HEI10 may have consequences for tumour development. 

 

1          50         108               196          277

RING-FINGER COILED-COIL

Cyclin B

E2 ubiquitin
conjugating enzyme

Merlin
1          50         108               196          277

RING-FINGER COILED-COIL

Cyclin B

E2 ubiquitin
conjugating enzyme

Merlin

                    

_____________________________________________________________________ 

Figure 8. Structure of the HEI10 protein. HEI10 encodes a 277 amino acid protein with an 
amino-terminal RING finger domain, and a coiled-coil structure. Known protein binding 
partners are shown below. The arrow indicates the cyclin B/cdk1 phosphorylation site. 
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3.1 Merlin and HEI10 interact through coiled-coil domains 

Based on binding studies, constructs containing the α-helical region of merlin 

interacted with the coiled-coil domain of HEI10. Further mapping using a transposon 

mutation library of merlin, identified residues 306-339 in merlin critical for the 

binding interphase, and indicated that the carboxy-terminus of the FERM domain may 

be involved in the regulation of binding. The interaction forms between two coiled- 

coil domains (III, Figs 1-3), which are known protein interaction domains, particularly 

for protein oligomerisation (Burkhard, 2001). Interestingly, although the sequence in 

ezrin is very similar to the binding site in merlin, ezrin does not bind to HEI10. 

 Only few interaction partners are known for the α-helical part of merlin. One 

of them is the regulatory subunit RIβ of PKA. A mutation which inhibits the RIβ-

binding amphipathic helix, did not affect the HEI10 interaction. Based on previous 

studies, merlin interacting proteins that only bind to merlin isoform I after its 

conformation has been "opened", can bind to isoform II, which appears to have a more 

open conformation (Meng, 2000; unpublished data). HEI10, however, did not interact 

with merlin isoform II (III, Fig. 3). 

 Two known NF2 patient missense mutations, L316W and L316F, have been 

identified within residues 306-339. These mutations did not, however, affect binding 

of merlin to HEI10, which indicates that disuption of the interaction is not the likely 

cause for NF2 in these patients (III, Fig. 3). It has also recently been shown that PAK1 

can be directly inhibited by merlin through two separate domains (Hirokawa, 2004). 

The HEI10 binding site lies within one of the domains comprising amino acids 288-

359, indicating that this domain may be important in the regulation of PAK function. 

 

3.2 Merlin and HEI10 interaction requires regulation of both proteins 

Our results indicate that the association between merlin and HEI10 needs 

conformational activation of merlin, but so far, we do not know what regulates the 

merlin-HEI10 interaction. No binding was detected between HEI10 and merlin 1-595 

containing mutations mimicking the phosphorylated and unphosphorylated serine 518 

(S518D and S518A). Neither did mutation of threonine 576 (T576D and T576A), the 

residue whose phosphorylation in ERM proteins open the molecule, affect merlin 

binding to HEI10. 
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 Also HEI10 appears to need activation for its interaction with merlin. The 

carboxy-terminus of HEI10 is phosphorylated by cyclin B/Cdk1 (Toby, 2003) and 

HEI10 appears to form homotypic interactions (unpublished data), which might 

represent a means to regulate its molecular interactions. 

 

3.3 The colocalisation of merlin and HEI10 is dependent on cell adhesion, cell 

cycle stage and merlin expression levels 

To find out whether merlin and HEI10 share subcellular localisation, we studied the 

proteins in varying culture conditions. During early reattachment of trypsinised cells, 

both merlin and HEI10 localised to the nucleus. As cells started to spread, merlin and 

HEI10 could be seen in punctuate structures at the plasma membrane. A fraction of 

HEI10 was still present in the nucleus (III, Fig. 4). When the cells were spread, merlin 

and HEI10 could be seen diffusely in the cytoplasm and underneath the membrane 

where HEI10 colocalised with focal adhesion proteins (unpublished data). 

 In analogy to merlin, the localisation of HEI10 varied in a cell cycle specific 

manner and HEI10 colocalised with merlin during parts, but not all, of the cell cycle. 

In early G1 merlin and HEI10 were present in the nucleus but both proteins rapidly 

disappeared from the nucleus as cells progressed in G1. HEI10 returned to the nucleus 

in S-phase, remaining in this compartment until mitosis. In contrast, merlin remained 

at the cell periphery until late G2, when the protein accumulated in the perinuclear 

region. During the entire cell cycle a fraction of both proteins were also found at the 

membrane. During mitosis both proteins associated with microtubules at the 

centrosome, mitotic spindle and contractile ring (III, Fig. 5). The partial colocalisation 

between merlin and HEI10 can indicate functional interplay between merlin and 

HEI10 in certain cell cycle phases.  

 Schwannomas are the primary manifestation of NF2. Therefore, it was 

interesting that Schwann cells express HEI10. We noticed a difference in HEI10 

distriburion in primary human Schwann cells and schwannoma cells, which due to a 

genetic defect lack merlin, and in rat schwannoma cells expressing low or high levels 

of merlin. In cells deficient for merlin expression, HEI10 was frequently seen in the 

nucleus, whereas in cells expressing increased levels of merlin, HEI10 was 

cytoplasmic and localisesd to the plasma membrane. The results indicate that merlin 

is, either directly or indirectly, involved in targeting of HEI10. An indirect effect 
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might result from the fact that merlin expressing cells accumulate in G1 (Schulze, 

2002), and during G1, HEI10 localised mainly to the cell membrane and cytosplasm. 

Since both proteins are exported from the nucleus at a similar time frame during G1, it 

is also possible that merlin contributes to the transport of HEI10 from the nucleus (III, 

Fig. 6). Cells treated with LMB to block the CRM1 export pathway caused an 

accumulation of merlin in the nucleus; however, no effect was seen for HEI10 

(unpublished data), indicating that the CRM1 pathway is not the main export route for 

HEI10.  

 The nucleo-cytoplasmic shuttling may provide means for merlin and HEI10 to 

affect cell growth, although no nuclear function for either protein is known so far. 

Since merlin is concentrated around the nuclear envelope and in the nuclear groove 

during early stages of mitosis, it may play a role in nuclear envelope breakdown, as 

already demonstrated for HEI10 (Toby, 2003). Of interest is the potential interplay 

between merlin and merlin interacting proteins during mitosis and their role in the 

organisation of the centrosome, mitotic spindle and midbody. An earlier report stated 

that merlin could be immunoprecipitated in complex with the microtubule-associated 

protein kinesin-1 (Hakimi, 2002), which plays a role in microtubule motor-linked 

activities, regulation of cell adhesion and in cytokinesis (Krylyshkina, 2002; Glotzer, 

2003). Band 4.1 protein isoforms are associated with mitotic spindles during early 

mitosis (Mattagajasingh, 1999; Krauss, 1997) and HEI10, PAK and PKA are localised 

to centrosomes, the mitotic spindle and/or the contractile ring (Li, 2002, Banerjee, 

2002, Chiroli, 2003; Witczak, 1999). The centrosome also contains γ-tubulin (Stearns, 

1991; Zheng, 1991) and cyclin B (Bailly, 1992). The centrosome is thought to 

function as a scaffold that brings together proteins needed for cell cycle regulation. 

There is, however, increasing evidence that the centrosome is home to several proteins 

that have nothing to do with centrosomal function, and may use association with the 

centrosome as a means of ensuring segregation at mitosis, or as a way to increase local 

protein concentration. A potential functional interplay of merlin and HEI10 during 

mitotic progression with their binding partners mentioned above, as well as their role 

in spindle formation and cytokinesis, need further study.  
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3.4 Merlin and HEI10 affect cell cycle progression 

Since both merlin and HEI10 are linked to the regulation of cell proliferation, we 

studied their effect on the cell cycle. Transfection experiments demonstrated that 

merlin and HEI10, both independently and in combination, affected cell cycle 

progression. In cells expressing merlin, the amount of cells in G0/G1 phase was 

increased in agreement with previous results (Schulze, 2002). This effect was not seen 

in cells expressing constitutively open merlin. Similarly, expression of HEI10 

prolonged the G0/G1 phase and with combined expression of merlin and HEI10 the 

amount of cells in G0/G1 was even higher than with either protein alone. In contrast, 

coexpression of HEI10 and constitutively open merlin resulted in an increase of cells 

in S phase. These findings suggest interplay between merlin and HEI10 in cell cycle 

control.  

 Although full length merlin did not interact with HEI10 in cells, constitutively 

open merlin could bind HEI10, perhaps through an interaction domain that normally 

needs activation to be exposed (III, Fig. 2). This interaction appeared to alter HEI10 

function and its effect on cell cycle progression and interestingly, it also affected the 

integrity of HEI10 (III, Figs 7 and 8). In the cells coexpressing constitutively open 

merlin and HEI10, western blot analysis showed a significant decrease of the full 

length HEI10 protein and the presence of an abnormal HEI10 band, possibly a result 

of increased degradation of HEI10. Whether this abnormal HEI10 protein allows cells 

to pass the G1/S checkpoint, or whether constitutively open merlin can block HEI10 

nuclear entry at S-phase, thereby affecting cell cycle progression, remains to be 

studied.  

 HEI10 is ubiquitinated and may function as an E3 ubiquitin ligase for cyclin B 

(Toby, 2003). Interestingly, Mdm2 functions as an E3 ubiquitin ligase for p53 (Honda, 

1997) and merlin functions as a positive regulator of p53 by causing the degradation 

of Mdm2 (Kim, 2004). The decrease of the full length HEI10 protein by constitutively 

open merlin may be caused by merlin induced ubiquitination of HEI10. It could also 

be a result of the induction of other degradation pathways, protein cleavage or by 

regulated transcription. The effect of merlin on the integrity of the HEI10 protein and 

its consequences for HEI10 function is of great interest and needs further study. 

 In a recent report, adenovirus-mediated expression of merlin in a NF2 

deficient mesothelioma cell lines, caused the accumulation of cells in G1 concomitant 
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with a decreased expression of cyclin D1, inhibition of Cdk4 activity and 

dephosphorylation of Rb, which are important for G1/S transtition. This decrease was 

caused by merlin's inhibitory effect on PAK, a known upstream activator of cyclin D1 

transcription (Xiao, 2005). In NIH 3T3 cells, however, expression of merlin caused a 

decrease in cyclin D1 transcription by inhibiting the ERK-Elk1 pathway (Lim, 2003) 

which was not affected in mesothelioma cells (Xiao, 2005). It is of interest to study 

whether the accumulation of cells in G1 by HEI10 expression is caused by inhibition 

of the same pathways as merlin expression.   
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Figure 9. Possible pathways regulated by merlin and HEI10 during the cell cycle. At the G2/M 
phase HEI10 can affect cyclin B-levels and is phosphorylated by cyclin B-Cdk1. During mitosis 
merlin and HEI10 localise to the mitotic spindle, centrosome and midbody. After mitosis, in 
early G1, both proteins reside in the nucleus. Merlin and/or HEI10 cause the accumulation of 
cells in G0/G1, while expression of a constitutively open form of merlin together with HEI10 
increases the amount of cells in S phase, and causes a decrease in HEI10 protein levels. The 
presence of merlin can affect cyclin D1 transcription either through the ERK-Elk1 pathway or 
by inhibiting PAK, which could inhibit NF-κB mediated transcription of cyclin D1 (Lim, 2003 
and Xiao, 2005). Merlin can also positively regulate p53 by inhibiting the p53 inhibitor Mdm2 
(Kim, 2004). 
 
 
 Previously, models for the tumour suppressor role of merlin at the membrane-

cytoskeleton interphase have been proposed. We have shown a more versatile 

localisation of merlin, which is regulated by cell cycle phase, an interaction with the 

cell cycle regulator HEI10 and a functional interplay between merlin and HEI10 in the 

regulation of cell cycle progression (Fig. 9). This suggests that merlin performs 
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several functions in cells, which may all be linked to its function as a tumour 

suppressor. 

 
 
4. MERLIN IN THE CNS (IV) 

Several reports have analysed the tumour suppressor activity of merlin, but so far little 

is known of its additional functions. An indispensable role in early development and 

rather wide tissue expression pattern suggest yet unidentified functions for merlin 

(McClatchey, 1997). Of special interest is the CNS, in which high expression levels of 

merlin have been detected during and after organogenesis (Claudio, 1995; Stemmer-

Rachamimov, 1997a). In our study, we have thoroughly compared the expression and 

localisation of merlin and ezrin in the CNS. 

 

4.1 Analysis of merlin and ezrin in the developing and adult brain 

We showed that merlin and ezrin are widely expressed in the CNS of mouse, rat and 

human. However, they have a markedly different expression pattern. In neurospheres, 

which can self-renew and generate both neuronal and glia cells, both proteins were 

present and partially colocalised. In attaching neurospheres, ezrin was predominantly 

seen in the outer cell layer in short filopodia, while merlin was present in the cell 

body. As cells started to differentiate, merlin was more prominent in neurons and 

ezrin almost exclusively found in astrocytes (IV, Figs 6 and 7). A potential role for 

merlin and ezrin in the differentiation process remains to be elucidated. From mouse 

E8 through E10, the CNS is composed of mostly undifferentiated neuroepithelia but 

by E11-E13 the brain and spinal cord are well developed. We could detect an abrupt 

neoexpression of merlin at E11 in lysates from whole fetus, which interestingly 

coincides with the onset of neurogenesis. Various amounts of ezrin were present from 

E5 onward (IV, Fig. 1). 

 Lysates of different human brain regions were immunoblotted for merlin and 

ezrin. Merlin was present in most regions with strongest staining in the brain stem, 

cerebellum, diencephalon, basal ganglia, corpus callosum, hypophysis and optic 

nerve. A double band of merlin, possibly representing differently phosphorylated 

forms (Kissil, 2002; Xiao, 2002; Alfthan, 2004), was seen in the brain stem and 

diencephalon. The strongest ezrin staining was detected in the cerebral cortex, basal 
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ganglia, hippocampus, hypophysis and optic nerve. Comparison of grey and white 

matter of the frontal lobe demonstrated stronger expression in the grey matter for both 

merlin and ezrin (IV, Fig. 2).  

 In analogy with the differentiated neuronal progenitor cells, merlin was 

detected predominantly in neurons, and ezrin in astrocytes in most human brain 

tissues studied. However, in the brain stem, astrocytes were negative for ezrin and 

instead strong ezrin immunoreactivity was seen in neurons. Although ezrin staining 

was weak in adult brains, a very strong ezrin staining was detected in the Purkinje cell 

layer and in part of the molecular layer of infant brain. However, Purkinje cells were 

ezrin negative. Merlin, on the other hand, was expressed in Purkinje cells and there 

was no difference in the intensity of merlin immunoreactivity between infant and adult 

brain (IV, Figs 3-5).  

 

4.2 Subcellular distribution of merlin and ezrin in brain cells  

Ezrin is an unlikely interaction partner for merlin in the adult CNS because of the lack 

of coexpression of merlin and ezrin after the onset of neuronal progenitor cell 

differentiation and in adult brain. Both proteins were specifically localised to distinct 

actin rich structures. When neurospheres were allowed to attach, ezrin positive 

microspikes could be seen extending from the border cells and migrating cells, which 

may suggest a role for ezrin in migration of differentiating glia cells (IV, Figs 6 and 

7). Peripheral astrocytic processes (PAPs) of cultured hippocampal astrocytes were 

strongly labelled for ezrin (IV, Fig. 8) in agreement with Derouiche et al. (2001), who 

suggested a potential role for ezrin in the regulation of PAPs morphogenic properties 

and its connections to signalling pathways. An important role for glial cells in 

regulation of synapse structure and function has recently been described. The 

astrocytic processes that engulf the synaptic terminal modulate synaptic activity and 

effectively take up transmitters released by neurons (Haydon, 2001). 

 Merlin staining was strong in the cell soma of neurons and along dendritic 

extensions in a punctuate manner. Merlin and a marker of the postsynaptic density, 

PSD-95, colocalised in many punctuate structures, whereas presynaptic marker 

synapsin-containing structures were not stained with the merlin antibody. The 

presence of merlin in synaptic junctions was confirmed by synaptic fractionations of 

rat brain lysates (IV, Figs 8 and 9). 
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5. RIβ, A POTENTIAL INTERACTION PARTNER FOR MERLIN IN THE 

SYNAPTIC JUNCTIONS (IV, V) 

A potential merlin interacting partner in the synaptic junctions is the PKA regulatory 

subunit RIβ, which is mainly expressed in neurons of the hippocampus (Clegg, 1988; 

Solberg, 1991). Multiple characterised protein interactions are involved in the 

targeting and regulation of the other PKA regulatory subunits, RIα, RIIα and RIIβ, but 

no such interactions had been described for RIβ. Ezrin has previously been shown to 

interact with RIα (Dransfield, 1997). 

 

5.1 The merlin-RIβ interaction 

We studied the expression of RIβ in the brain, which showed that both RIβ and merlin 

are present in neurons of human brain tissues (V, Figs 1 and 2). RIβ was localised to 

neuronal synaptic junctions as detected by immunofluorescence of rat hippocampal 

neurons and fractionation studies from rat brain (IV, Figs 8 and 9). To investigate a 

possible interaction between merlin and RIβ, we studied their association in rat brain 

homogenates. Both merlin and RIβ were present in the cytoskeletal fraction of rat 

brain lysate from which they could be coprecipitated. Furthermore, merlin was 

coprecipitated with a cAMP-agarose bead / RIβ-complex from rat brain, indicating 

that merlin and RIβ are present in the same complex in rat brain (V, Fig. 4).  

 The localisation and interaction between merlin and RIβ were further studied 

by transfection experiments. Merlin and RIβ could be coprecipitated from transfected 

cells and a partial colocalisation between merlin and RIβ-GFP could be seen in 

regions underneath the cell membrane. In these cells, ezrin formed a complex with 

merlin but not with RIβ (V, Figs 5 and 6).  

 

5.2 Regulation of the merlin-RIβ interaction 

Full length merlin did not interact with RIβ in the yeast two-hybrid experiment, 

indicating that it needs activation for the interaction. Full-length merlin with 

introduced mutations mimicking the phosphorylated and unphosphorylated serine 518 

also did not bind RIβ, indicating that the interaction is not regulated by the 

phosphorylation status of serine 518 alone. According to coimmunoprecipitation 
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experiments RIβ is specifically associated with the hypophosphorylated but not the 

phosphorylated or hyperphosphorylated forms of merlin. In accordance with this, the 

amount of coprecipitated RIβ and merlin was increased in confluent cells, in which 

the amount of the hypophosphorylated form was highest (V, Figs 6 and 8).  

 

5.3 Mapping of the AKAP interaction site 

Binding studies demonstrated a direct interaction between merlin and RIβ, and 

suggest that the interaction domain resides within the α-helical part of merlin. 

Proteins that bind PKA regulatory subunits, AKAPs, function as multivalent scaffolds 

that assemble and integrate signals from multiple pathways. An AKAP should contain 

a sequence motif for binding regulatory subunits, an ampipathic helix with 

hydrophobic residues aligned along one face of the helix and charged residues along 

the other (Carr, 1991; Newlon, 1999, 2001). Comparison with known AKAPs 

identified a sequence between residues 463-480 of the α-helical domain of merlin, 

which shares most of the functionally relevant hydrophobic residues previously 

reported for RII-binding (Carr, 1991; Newlon, 1999, 2001). Comparison between 

merlin and D-AKAP1, a protein known to bind RI, identified six additional identical 

or conserved amino acids, which may be associated with the specificity of the 

interaction between these AKAPs and the RI regulatory subunits. Proline substitution 

within the merlin AKAP consensus site, A468P, fully abolished the interaction and 

another substitution, L472P, reduced binding to RIβ. Interestingly, our results 

demonstrate that ezrin does not interact with RIβ and merlin does not bind to RIIα (V, 

Figs 7-10). Thus, although merlin and ezrin share many common interaction partners, 

and a fairly similar AKAP consensus sequence, they demonstrate selectivity in their 

interactions with PKA subunits.  

 

5.4 Potential functions for the merlin-PKA association 

In neurons, extensive signal transduction machinery is localised to thousands of small 

compartments at presynaptic and postsynaptic sites. Postsynaptic densities (PSDs) are 

present at the tips of dendritic spines, which are contact sites for most excitatory 

synapses in the brain. They undergo morphological changes in response to activities 

associated with neuronal plasticity, learning and memory functions (Yuste, 2001). The 
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PSD is localised to the postsynaptic membrane in register with the active zones of the 

presynaptic terminal and provides a structural framework for localising functional 

molecules, regulating adhesion, controlling receptor clustering and regulating receptor 

function (Siekevitz, 1985). There is a link between synaptic activation and changes in 

spine morphology through the regulation of actin turnover, providing a possible 

mechanism of learning and memory in brain (Star, 2002). Drugs that inhibit actin 

dynamics suppress long term potentiation (LTP) and block shape changes in dendritic 

filopodia and spines (Kim, 1999; Krucker, 2000).  

 An important signalling route involved in learning and memory and in 

synaptic plasticity in the PSD, is the cAMP-PKA pathway (Brandon, 1997; Albright, 

2000; Waltereit, 2003; Bauman, 2004). Hippocampal synaptic plasticity including 

LTP and long term depression (LTD) are defective in mice carrying a targeted 

disruption of the gene encoding for RIβ (Huang, 1995; Brandon, 1995). Since merlin 

and RIβ are expressed in the same cell types in the CNS, including the hippocampus, 

form a complex there, and colocalise in synaptic structures in cultured neurons, merlin 

may participate in neuronal PKA signalling and memory functions. In addition to 

PKA-RIβ, merlin binds to βII-spectrin/fodrin (Scoles, 1998), actin and tubulin (Xu, 

1998; Brault, 2001; James, 2001), which are all integral components of the PSD 

(Kennedy, 1993). Merlin also binds to integrins (Obremski, 1998) and forms a 

complex with cadherins (Lallemand, 2003), which are both components of synaptic 

junctions. Cadherins have been suggested to play a role in synaptic junction formation 

and synaptic plasticity (Tanaka, 2000; Tang, 1998) and integrins in synaptic 

maturation (Chavis, 2001). Furthermore, the merlin binding partner paranodin 

(Denisenko-Nehrbass, 2003) is also enriched in synapses in the hippocampus (Murai, 

2002). Whether or not merlin interacts with any of these proteins in the synapse needs 

further study. A potential role for merlin in the regulation of actin rearrangement in 

the dendritic spine and as a scaffolding protein in the synaptic junction should be 

further studied, which may suggest a novel function for merlin in connecting neuronal 

cytoskeleton to PKA signalling.  

 The link between merlin and PKA is also interesting for the understanding of 

tumour cell growth in schwannomas. In cultured Schwann cells, induction of the PKA 

signalling pathway promotes cell growth and cell cycle progression, which can be 

blocked by inhibitors of PKA activity (Kim, 1997). In addition to RIβ, merlin also 
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interacts with the regulatory subunit RIα (unpublished data). Disease causing 

mutations in the Carney complex (CNC) tumour suppressor syndrome results from 

mutations in the PKA regulatory subunit RIα, which leads to increased PKA activity 

(Kirschner, 2000). Interestingly, one of the manifestations of CNC is the formation of 

schwannomas. Thus, it is possible that the molecular pathways altered in CNC and 

NF2 overlap, and may be connected through merlin.  

 In Figure 10, a model is presented which is modified from that in Figure 7. It 

shows how merlin and ezrin containing complexes may affect cell proliferation in 

Schwann cells. The phosphorylation of merlin by PKA after cAMP stimulation, leads 

to merlin-ezrin association and induces downstream signalling, resulting in cell 

proliferation.  
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Figure 10. A model for the regulation of merlin activity by PKA phosphorylation. 
Hypophosphorylated merlin inhibits cell growth, possibly by blocking receptor mediated 
signalling (such as CD44) and Ras activation, whereas phosphorylated merlin permits growth. 
In the growth inhibitory complex, merlin may bind the regulatory subunit (R) of inactive PKA. 
PKA promotes growth of Schwann cells with yet unknown mechanisms. Binding of a ligand 
(e.g. hormones, neurotransmitters) to the G-protein-coupled receptor (GPCR) causes 
accumulation of cAMP. Following cAMP binding to the PKA regulatory subunits, active PKA 
catalytic subunits (C) are released. This may involve phosphorylation of merlin at serine 518, 
which increases heterodimerisation between merlin and ezrin. In this growth promoting 
complex phosphorylated ezrin is bound to the receptor resulting in downstream signalling and 
cell proliferation. An analogous chain of events may result from activation of PAK.   
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CONCLUSIONS AND FUTURE DIRECTIONS 

In conclusion this study identified four novel interaction partners for merlin; merlin, 

ezrin, HEI10 and RIβ. Our aim was to determine whether unique molecular 

interactions could explain the opposite effect of merlin and ezrin on cell proliferation. 

The merlin interaction with RIβ in neurons will most likely not explain the tumour 

suppressor function of merlin. It can, however, provide information about novel roles 

merlin plays in the CNS. We speculate that merlin participates in neuronal PKA 

signalling but further studies in animals models with a targeted neuronal disruption of 

the Nf2-gene are needed to further address this question. The identification of merlin 

as a regulator and substrate of the PKA complex is of interest also for the regulation 

of cell proliferation, since it links merlin to the cAMP/PKA signalling pathway known 

to promote cell growth and cell cycle progression in Schwann cells. Merlin can, as an 

AKAP, regulate PKA function but is also a target for PKA-induced phosphorylation. 

This promotes heterodimerisation between merlin and ezrin, an event suggested to 

convert merlin from the growth suppressive to the growth permissive state. Of interest 

is if PKA induced phosphorylation of merlin regulates the antiproliferative activity of 

merlin in Schwann cells. 

 Many binding partners to the ERM protein family members have been found 

since this study began. They bind signalling molecules, cytoskeletal proteins and 

transmembrane receptors. It is likely that merlin and ezrin function as scaffolding 

proteins which can associate with transmembrane receptors, the cytoskeleton, kinases, 

their substrates and perhaps phosphatases. Thereby they may spatially and temporally 

affect the formation of complexes that can regulate cell signalling, morphology, 

migration, adhesion, proliferation and differentiation. These complexes may look very 

different depending on cell types, subcellular localisation and stages of development 

and differentiation. Merlin and ezrin-containing complexes can consist of different 

components and merlin and ezrin can be present in the same complexes, which in 

different situations are regulated by distinct regulatory cues leading to different 

downstream effects. Whether merlin and ezrin function cooperatively and/or 

antagonistically is still not clear. With new functional models available we can 

attempt to elucidate whether the presence of ezrin can inhibit merlin function, thereby 
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promoting tumour growth and metastasis - and conversely, whether loss of merlin 

causes ezrin activation.  

 Merlin may be involved in the regulation of cellular proliferation at the plasma 

membrane by regulating signalling pathways and cell adhesion signals, as suggested. 

But the fact that merlin localises to the nucleus in a cell cycle-dependent manner 

opens up new possibilities for how merlin suppresses cell growth. We still do not 

know the functional consequences of the nuclear localisation of merlin. Further 

studies are needed to understand how the nucleo-cytoplasmic shuttling of merlin is 

regulated, to find the nuclear binding partners of merlin, and to explain its function in 

the nucleus. So far, described nuclear roles for cytoskeletal proteins include regulation 

of transcription, RNA splicing and transport and providing the cell with a cytoskeletal 

scaffold inside the nucleus.  

 Furthermore, interactions with molecules involved in cell cycle regulation, 

such as HEI10, are of special interest in trying to understand the molecular basis of the 

growth regulatory activity of merlin. The potential involvements of merlin in nuclear 

envelope breakdown and mitotic entry and in centrosome and spindle morphology, 

which all regulate the progression of the cell cycle, are of great interest. It appears that 

merlin is linked to cell cycle regulation in several ways; through different pathways 

and at different cell cycle stages. 

 What was once thought to be a passive contributor to cytoskeletal architecture 

is now known to play a significant role in many vital processes in cells. The extensive 

research of recent years has produced novel information of merlin's interaction 

partners, its involvement in various signalling pathways and its different ways of 

regulation. However, the mechanism by which merlin acts as a tumour suppressor is 

not yet understood in sufficient detail to reach the ultimate goal for our research, to 

help patients with NF2 by providing specific treatments against the disease. 
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