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ABSTRACT 

 
Ornithine decarboxylase (ODC) regulates the synthesis of polyamines which are 

involved in many cellular functions e.g. proliferation and differentiation. Due to its 

critical role, ODC is a tightly regulated enzyme. If the regulation fails, the activity of 

ODC increases and may even lead to malignant transformation of a cell. Increased 

ODC activity is found in many common cancers. ODC plays an important role also in 

the central nervous system (CNS). It is involved in brain morphogenesis and in the 

regulation of glutamate receptors (especially NMDA-receptors) and the K+ inward 

rectifier channels. High ODC activity and polyamine levels are considered to be  

important in the development of ischemic brain damage and they are implicated in the 

pathogenesis of Alzheimer’s disease (AD). The aim of this study was to investigate 

the molecular mechanisms by which polyamines and ODC influence cell proliferation 

and transformation (I). Furthermore, the investigations were focussed at the 

regulatory factors of the polyamine-ODC system in the CNS (II-IV). 

 

Reorganization of the actin cytoskeleton is a fundamental event during proliferation 

and cell transformation. It has been implicated that polyamines participate in the 

regulation of actin cytoskeletal dynamics, although the actual molecular mechanism 

has remained unsolved. The small G protein, RhoA is a regulator of actin 

reorganization. Some bacterial toxins are known to covalently link polyamines to 

RhoA. Polyamination activates RhoA constitutively and facilitates the intrusion of 

bacteria into cells. The present results demonstrate that polyamination of RhoA takes 

place also physiologically in cells without bacterial toxins (I). Inhibition of 

transglutaminase 2 (TG2) abolished the polyamination, thus indicating that TG2 has a 

catalytic role in the covalent linking of polyamines to RhoA. Studies on synchronized 

fibroblasts by western blotting with antibodies to RhoA showed that the 

polyamination of RhoA was most extensive in the cell cycle phases of G2 and 

mitosis. Furthermore, analysis by flow-cytometry, revealed that efficient progression 

in the cell cycle of Jurkat cells depended on the intact function of TG2 and the 

polyamination of RhoA. When cells devoid of catalytically active ODC were 

transfected with a mutant form of ODC, in which the membrane translocation PHOX-

motif was deleted, ODC activity was detected in the cytoplasmic fraction only.  
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Neither was any RhoA found in the membrane fraction of these cells whereas 

immunofluorescence staining showed a diffuse cytoplasmic distribution of RhoA. 

These results indicate that ODC not only regulates the activity of RhoA by the 

production of polyamines but also influences its intracellular distribution. 

 

A homolog of ODC was cloned from a human brain cDNA library. The novel protein 

was nevertheless devoid of ODC catalytic activity (II). It was subsequently found to 

be a novel inductor of ODC activity and polyamine synthesis, called antizyme 

inhibitor 2 (AZIN2). Transcripts of human AZIN2 were most abundant in brain and 

testis as detected by mRNA dot blot and in situ hybridization (II-IV). Ten 

alternatively spliced forms of AZIN2 were sequenced (II, IV). The distribution of the 

protein was investigated by immunohistochemistry in order to elucidate the functional 

role of AZIN2. Human brain and testis were studied more closely. Expression of 

AZIN2 was detected in steroid hormone-producing cells of the gonads: in Leydig 

cells of the testis and in luteal cells of the ovary (III). In human brain, AZIN2 was 

localized along the axons covering tracts from all areas of the CNS studied. A 

vesicular or granular distribution of AZIN2 was also detected in the somas of cortical 

pyramidal cells (IV). Reverse transcriptase PCR and western blotting revealed the 

expression of different splicing variants of AZIN2 in the white as well as grey matter 

of the brain (IV). Although the distribution of AZIN2 in pyramidal cells differed 

spatially, double immunofluorescence revealed a partial co-localization with the 

ubiquitously expressed NMDA-type glutamate receptors (NMDAR). Polyamines, 

ODC and NMDAR are implicated in the pathogenesis of AD. An accumulation of 

also AZIN2 was detected in specimens of AD brains (IV). This increased expression 

of AZIN2 was specific for AD and was not found in brains with other 

neurodegenerative diseases including CADASIL or dementia with Lewy bodies. 

 

In conclusion, the results indicate that covalent attachment of polyamines by 

transglutaminase is a physiological means of regulating the activity of RhoA. The 

translocation of RhoA to the plasma membrane, where it exerts its activity is 

dependent on the presence of catalytically active ODC. As the overactivity of ODC 

and RhoA are implicated in cell transformation, the results provide a mechanistic 

explanation of the interrelationship between the polyamine metabolism and the 

reorganization of the actin cytoskeleton occurring in cancer cells. 



 6 

In addition, a novel regulator of polyamine synthesis, AZIN2 was cloned and 

characterized. The distribution of AZIN2 is more restricted in human tissues than its 

functional and structural homolog antizyme inhibitor 1 (AZIN1). The accumulation of 

AZIN2 in vesicle-like formations along the axons and beneath the plasma membrane 

of neurons as well as in steroid hormone producing Leydig cells and luteal cells of the 

gonads implies that AZIN2 plays a role in secretion and vesicle trafficking. 
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ADC  arginine decarboxylase 
adomet-DC S-adenosylmethionine 

decarboxylase  
AMPA alfa-amino-3-hydroxyl-5-

methyl-4-isoxazole-propionate 
AZ  antizyme 
AZIN  antizyme inhibitor  
Ca2+  calcium ion  
CA1-3 subdivisions 1-3 of Ammon's 

horn / cornu Ammonis 
CADASIL cerebral autosomal dominant 

arteriopathy with subcortical 
infarcts and 
leukoencephalopathy 

cdk  cyclin-dependent kinase 
cDNA complementary 

deoxyribonucleic acid 
CHO Chinese hamster ovary cells 
CNS  central nervous system 
DFMO α-difluoromethylornithine 
DLB dementia with Lewy bodies 
DNA  deoxyribonucleic acid 
egr-1  early growth response 1 
eIF5A eukaryotic initiation factor 5A 
ER  endoplasmic reticulum 
ERK extracellular-signal-regulated 

kinase 
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G1 a growth phase of the cell 

cycle 
G2 final subphase of interphase 
GAP  GTPase activating protein 
GDI guanine nucleotide-

dissociation inhibitors 
GDP  guanosine diphosphate 
GEF guanine nucleotide-exchange 

factor 
GTP  guanosine triphosphate 
GTPase enzyme hydrolyzing guanosine 

triphosphate 
JunD  jun D proto-oncogene 
Kir K+ inward rectifier channel 
LH  luteinizing hormone 
 
 

 
 
LIM kinase a serine kinase regulating 

cytoskeleton 
MAPK mitogen-activated protein 

kinase 
mDia mammalian diaphanous 
MDC monodansylcadaverine 
MEK kinase MAPK/ERK kinase kinase 
MLC myosin light chain 
mRNA messenger ribonucleic acid 
MYC myelocytomatosis oncogene 
NAP nuclear aggregates of 

polyamines 
NIH 3T3 immortalized mouse 

embryonic fibroblast cell line 
NMDAR N-methyl D-aspartate type 

glutamate-receptor 
ODC  ornithine decarboxylase 
ODCp ornithine decarboxylase 

paralog 
PHOX phagocyte oxydase motif 
P0  postnatal day 0 
p53  tumor protein p53 
PEST domain rich in proline, 

glutamic acid, serine, threonine  
PI3K phosphoinositide-3-kinase 
PRE polyamine response element 
PSV polyamine sequestering vesicle 
Ras  rat sarcoma oncogene 
RBL-1  rat basophil cell line 
RhoA ras homolog gene family, 

member A 
RNA  ribonucleic acid 
ROCK Rho kinase 
ROS reactive oxygen species 
rRNA ribosomal ribonucleic acid 
RT  room temperature 
siRNA small interfering RNA 
Smurf E3 ubiquitin ligase 
Src Rous sarcoma oncogene 
SSAT spermidine/spermine N1-

acetyltransferase 
TG2 transglutaminase 2 

(tissuetransglutaminase) 
TGF-β transforming growth factor β 
tRNA transfer ribonucleic acid 
Ty1 Transposon yeast 1 

transposable element



INTRODUCTION 

 
Polyamines are small cationic molecules found in all eu- and prokaryotic cells. These 

molecules bind to anionic molecules such as RNA, DNA, proteins, and phospholipids. 

They induce changes in the electrostatic status leading to modifications of the 

macromolecules. Binding of polyamines typically increases the stability of a 

macromolecule by creating a more compact form and providing protection against 

endo- and exogenous hazards including irradiation and reactive oxygen species. A 

majority of the high millimolar concentration of polyamines is constantly attached to 

nucleic acids. Polyamines also function as signalling molecules especially in 

mitogenic signalling cascades. Their binding and detachment, especially to proteins, 

is rapidly regulated by e.g. transglutaminases. 

 

Figure 1. The metabolic pathway of mammalian polyamines. SAM - S-adenosylmethionine, 
adomet-DC - S-adenosylmethionine decarboxylase, SSAT - spermidine/spermine-N1 -acetyl-
transferase, PAO - polyamine oxidase. 

The metabolism of polyamines is regulated by multiple enzymes which in turn are 

tightly controlled at the transcriptional, translational and post-translational levels by 

other regulators. ODC is the first rate-limiting enzyme in polyamine synthesis and 

because of its essential role is being monitored constantly. The half-life of ODC is 

very short, only 10–20 minutes in eukaryotes, emphasizing the importance of its 

regulation. ODC is bound to its inhibitor antizyme (AZ) which targets ODC to 

proteasomal degradation independently of ubiquitination. When the concentration of 

polyamines falls, ODC is synthesized de novo and also released from the AZ-complex 
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by antizyme inhibitor. Antizyme inhibitor (AZIN) is a protein homologous to ODC 

but devoid of decarboxylating activity. Due to its homology it replaces ODC from AZ 

and leads to increased polyamine synthesis. AZ and AZIN regulate also the cellular 

uptake of polyamines. 

 

Polyamines participate in the regulation of numerous cellular functions of which 

proliferation is the most studied. Cells are unable to proliferate without polyamines. 

These are needed for the regulation of cyclins and cyclin dependent kinases (cdk), the 

reorganization of the cytoskeleton, and as a part of ras-, mitogen-activated protein 

kinase (MAPK), and src-signalling cascades. Lack of polyamines halts the cell cycle 

in G1, but also a constantly upregulated polyamine synthesis disturbs the progress of 

the cell cycle. Polyamines are considered fundamental also in differentiation and 

morphogenesis. Transgenic mice with increased activity of ODC and content of 

polyamines in the testis are infertile and show impaired spermatogenesis. Enhanced 

catabolism of spermidine and spermine in SSAT transgenic mice leads to female 

infertility with hypoplasia of the uterus and absence of the developing follicles and 

corpus luteum in the ovary. Homozygous deletion of the ODC gene (knock-out) in 

mice is embryonally lethal. The concentration of polyamines is invariably monitored 

and regulated not only by de novo synthesis and catabolism but also by active uptake 

and efflux from the extracellular space. Polyamines are obtained from alimentary 

sources and they are produced by the intestinal bacterial flora. 

 

The concentration of polyamines is elevated in several human cancers. The activity of 

ODC is constitutively increased e.g. in cancers of the prostate, breast, and colon. 

Furthermore, overexpression of ODC via transfection leads to malignant 

transformation of NIH3T3 fibroblasts indicating an oncogenic role for ODC. Such 

ODC-overexpressing cells are tumorigenic in nude mice. Polyamine analogs and 

ODC inhibitors have been studied and used as chemotherapeutics and adjuvants in the 

treatment of cancer. However, the ultimate molecular mechanisms by which 

polyamines and their regulators influence the cell transformation are not known. The 

participation of polyamines in the regulation of the cell cycle, mitogenic signalling, 

and cytoskeletal reorganization is considered to be essential. 
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In addition to transformation and cancer, polyamines are connected to pathologies of 

the brain. Elevated ODC activity and polyamine levels are measured from brains 

affected by Alzheimer’s disease. Furthermore, in ischemic lesions polyamines 

accumulate in neurons of the penumbra. However, their role in the pathogenesis is 

still unclear. Whether polyamines are neuroprotective or neurotoxic is still 

controversial, but the assumption that they function as scavengers of free oxygen 

radicals refers to a protective role. In normal brain, polyamines participate in neuronal 

signalling. They contribute to signalling by regulating glutamate receptors including 

NMDA receptors, which are connected to memory and learning. The formation of 

action potentials is controlled by K+ inward rectifying channels which are gated by 

polyamines. 
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REVIEW OF THE LITERATURE 

1. Functions of polyamines and ODC 

1.1. Polyamines bind nucleic acids 
 

Polyamines are small, positively charged molecules that exist in all living organisms. 

In mammals, the predominant polyamines are spermidine and spermine and their 

diamine precursor, putrescine. Due to their cationic nature in physiological pH, they 

bind cellular molecules of opposite charge: RNA, DNA, nucleotide triphosphates, 

phospholipids, and proteins (Igarashi K et al. 1982, reviewed in Bachrach U 2005). 

Only 2–15 % of polyamines are free in the cytoplasm, whereas the majority are 

bound, mainly to RNA (Igarashi K, et al. 2000). De novo synthesized polyamines are 

rapidly recruited to anionic compounds in a cell: free putrescine is estimated to vanish 

in 2h, spermidine in one day, and 60% of spermine is bound in four days 

(McCormack SA, et al. 1993). 

 

Since most of the intracellular spermidine and spermine is bound to RNA, this 

interaction is considered to mediate the majority of the functions of polyamines 

(Igarashi K et al. 2000). Polyamines bind both non-coding transfer and ribosomal 

RNAs and message RNA, consequently leading to changes in their secondary 

structure. tRNA is stabilized and protected from degradation by polyamines, whereas 

the phosphate-groups of rRNA are neutralized by spermidine and spermine, enabling 

ribosomal aggregation (Quigley GJ et al. 1978, Erdmann VA et al. 1968, Zillig W et 

al. 1959, Xaplanteri MA et al. 2005, Venkiteswaran S et al. 2005). Polyamine-

mediated changes usually stabilize the structures and stimulate the efficacy and 

fidelity of translation (Igarashi K et al. 1974, Igarashi K et al. 1979, Jelenc PC et al. 

1979). Due to its higher charge compared to spermidine or putrescine, spermine 

stabilizes and aggregates anionic molecules more potently. 

 

In prokaryotic cells, translational frameshifting in mRNA reading is a common 

regulative mechanism. Frameshifting in eukaryotes, on the other hand, is a rare found 

only in the translation of antizyme that is expressed also in mammals and in the Ty1 

transposable element in yeast. Antizyme (AZ) is a negative regulator of ODC activity 
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and polyamine transport. Its translation is reinforced by elevation in polyamine 

concentration. Polyamines induce +1 shift of the reading frame in ribosomes leading 

to the formation of active, full-length antizyme-protein, which further decreases the 

concentration of polyamines (Matsufuji S et al. 1995). mRNA of AZ contains 5´-

element that senses the concentration of polyamines. During translation in ribosomes, 

polyamines might also slow down the reading facilitating frame-shifting (Petros LM, 

et al. 2005). Thus, polyamines display negative feedback regulation via antizyme. The 

archaic regulation of expression by ribosomal frame-shifting underscores the 

fundamental nature of the polyamine metabolism. 

 

Elevated levels of polyamines stimulate the expression of certain transcription factors 

related to the mitogen-activated protein kinase (MAPK) pathway and activated by 

mitogenic stimulus (c-fos, c-myc) (Patel AR et al. 1997). Instead, depletion of 

polyamines provided by the administration of the ODC inhibitor, DFMO (α-

difluoromethylornithine) decreases the mRNA levels of c-fos, c-myc, c-jun, and Egr-1 

(Wang JY et al. 1993, Li L et al. 2001, Stephenson AH et al. 2004). Polyamine 

depletion halts progression of the cell cycle. Decreased levels of polyamines also 

stabilize the transcripts of certain growth inhibitory genes, e.g. p53, TGF-β, and junD 

(Patel AR et al. 1997, Li L et al. 2002, Li L et al. 1999). The mechanism by which 

polyamines regulate the expression of various genes is not fully established, but the 

polyamine response element (PRE) has been recognized in the untranslated region of 

certain genes, e.g. spermidine-spermine-N1-acetyltransferase (SSAT) (Wang Y et al. 

1998, Stephenson AH et al. 2006).  SSAT regulates the levels of polyamines by 

converting spermine to spermidine and spermidine to putrescine, and thereby 

contributes to the catabolism and circulation of polyamines. 

 

Polyamines bind to phosphate groups of double-stranded and even triplex and 

quadruplex DNA, forming intra- and interchain bridges which stabilize the structure 

(Raspaud E et al. 1998, Saminathan M et al. 1999). Furthermore, polyamines regulate 

the conformational changes of DNA between A, B, and Z forms (Bryson K et al. 

2000, Hasan R et al. 1995). Nuclear aggregates of polyamines (NAP) are concentrates 

of phosphate anions and polyamines which bind DNA and further stabilize it, but also 

enable the duplication of DNA during proliferation. The packing of DNA is 
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reinforced by polyamines in nucleosomes which stabilizes the structure and protects it 

from damage induced by e.g. radiation, reactive oxygen species, or enzymatic 

digestion (Snyder RD 1989a, Khan AU et al. 1992, Pedreno E et al. 2005, Snyder RD 

1989b). Depletion of polyamines, instead, prolongs the cell cycle causes 

chromosomal aberrations, e.g. chromosome elongation, unpacking, fragmentation, 

and breaks. Polyamines regulate histone-modifying protein complexes leading to 

changes in the acetylation of histones (Hobbs CA et al. 2002). Acetylation of histones 

enables the binding of promoting factors, e.g. transcription factors, to selected genes. 

Furthermore, the binding of polyamines to DNA provokes its bending, which is of 

importance in the initiation of transcription (Peng HF, et al. 2000). DNA bending 

enables the binding of RNA polymerases and transcription factors thus promoting 

gene expression. 

 

The binding of polyamines to nucleic acids serves a dual function: 1) the structure of 

DNA and RNA is stabilized through packing and protected from degradation; 2) 

polyamines respond to mitogenic stimuli by enhancing proliferation. This latter task 

requires a higher concentration of free, rapidly mobilized polyamines whereas in 

nucleic acid stabilization the binding is more stabile. Since depletion as well as excess 

of polyamines can have a similar effect on cell behaviour, e.g. the inhibition of 

proliferation and the induction of apoptosis, polyamines have been suggested to 

dynamically regulate the proliferative state of a cell (for a review, see Thomas T et al. 

2001). Electrostatic forces between cationic polyamines and anionic nucleic acids are 

believed to be responsible for the interactions. However, structural aspects, such as 

the flexibility and rod-like structure of polyamines and the sequence-specificity of 

nucleic acids also play a role in the binding. 

 

1.2. Interaction of polyamines with proteins 

 

Transglutaminases (TG) are widely distributed bifunctional enzymes, which also have 

non-catalytic functions (for reviews, see Griffin M et al. 2002, Lorand L et al. 2003). 

These enzymes catalyze the hydrolyzation of GTP and post-translational modification 

of proteins, the reactions of which are competitive and partly reversible. TGs induce 

transamidation of amine compounds to γ-glutaminyl residues of proteins. Polyamines 
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are the major source of amines (Piacentini M et al. 1988, Folk JE et al. 1980), but also 

other primary amines are utilized in the covalent linkages (Guilluy C et al. 2007). 

Incorporation of amines increases the net charge of a protein, which changes 

conformation, solubility, stability, and interactions with other macromolecules. 

Transamidation of proteins is considered a biologically important post-translational 

modification. TG also catalyzes protein-protein cross-linking which triggers many 

physiological reactions of polymerization and aggregation, e.g. the clotting of blood 

and semen. Increased transglutaminase activity has been detected in many diseases, 

including Alzheimer’s disease and Huntington disease (Tucholski J et al. 1999, Jeitner 

TM et al. 2008, Muma NA 2007). Post-translational modifications catalyzed by TGs, 

including transamidation, esterification, and hydrolysis require high concentration of 

Ca2+. This can be achieved only in pathological states in which the intracellular Ca2+-

storages are released, or by an influx of extracellular Ca2+ (Smethurst PA et al. 1996). 

In addition, transglutaminases have functions which are unrelated to their Ca2+-

dependent enzymatic reactions: they modify the extracellular matrix and cellular 

structures via interactions with the cytoskeleton, adhesions, and integrins; they also 

participate in signal transduction (Janiak A et al. 2006, Mian S et al. 1995, Gentile V 

et al. 1992). 

 

TG2 (tissueTG) is a ubiquitously expressed isoform localized in the cytoplasm but 

found also in the plasma membrane and nucleus (Lesort M et al. 1998, Slife CW et al. 

1985). TG2 has been found to link polyamines to (i.e. polyaminate) the G protein, 

RhoA at its glutamine 63. This polyamination prevents the GTPase activity of RhoA, 

sustaining it in a constitutively active, GTP-bound form (Flatau G et al. 1997). 

Certain bacterial toxins function as transglutaminases and activate RhoA by 

polyamination.  Since RhoA is a regulator of the actin cytoskeleton, this provokes the 

formation of stress fibers and focal adhesions (Masuda M et al. 2000). Polyamination 

of RhoA has also been implicated in neurite outgrowth and neuronal differentiation 

(Singh US et al. 2003). The migration of epithelial cells during intestinal restitution 

has also been demonstrated to be dependent on the concentrations of polyamines and 

Ca2+ and the activity of Rho proteins (Rao JN et al. 2001, Ray RM et al. 2003). 

  

A specific example of polyamine-dependent protein modification is the incorporation 

of hypusine to eukaryotic initiation factor 5A (eIF5A). A 4-aminobutyl moiety of 
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spermidine is transferred to eIF5A and further modified to hypusine (Cooper HL et al. 

1983). The function of eIF5A is dependent on hypusinylation, and the lack of 

spermidine inhibits hypusinylation and arrests cell growth (Schnier J et al. 1991, Park 

MH, et al. 1993). The role of hypusine in cell proliferation is emphasized by the 

finding that the generation of hypusine is significantly elevated in NIH 3T3 cells 

transformed by the ras oncogene (Chen ZP et al. 1997). Initially, eIF5A was 

considered to be an initiator of transcription, but later it was found to play a role in the 

regulation of mRNA degradation (Zuk D et al. 1998). 

 

The regulation of ion channels by polyamines is of physiological importance in 

protein-polyamine interaction. Small, cationic polyamines existing both intra- and 

extracellularly gate strong K+ inward rectifier channels (Kir) and α-amino-3-hydroxy-

4-methyl-5-isoxazolepropionic acid- (AMPA), kainate-, and N-methyl-D-aspartate 

(NMDA)-type glutamate channels. Polyamines permeate into the channel pore and 

block the flow of ions through the Kir channels depending on the voltage. In the 

glutamate receptors, the attachment of polyamines to specific binding sites modulates 

the electrostatic environment and thus influences the binding capacity of the ligands 

(reviewed in Williams K 1997). Kir channels allow the inward flow of K+ under a 

negative membrane potential (Nichols CG et al. 1997). When depolarization abolishes 

the voltage difference, spermine and spermidine block the channel causing a relative 

decrease in intracellular [K+], which in turn potentiates the amplitude of the action 

potential (Lopatin AN et al. 1994, Fakler B et al. 1994). Small depolarization waves 

do not induce the block, but an inflow of K+ rather continues and counteracts the 

initiation of depolarization. Kir-channels thus set the threshold for the action potential 

and stabilize the membrane. They also amplify the depolarization signals that are 

strong enough to provoke action potentials. Depletion of spermine/spermidine after 

the inhibition of S-adenosylmethionine decarboxylase or ODC reduces the inward 

rectification in RBL-1 and CHO cells, respectively (Bianchi L et al. 1996, Shyng SL 

et al. 1996). A similar reduction in inward rectification was observed in a Gyro-mouse 

with deleted spermine synthase gene and thus lacking spermine (Lopatin AN et al. 

2000). In cardiac myocytes, the excitability is reduced after a decrease in polyamine 

concentration, suggesting that it might serve as a potential target in the treatment of 

arrhythmia (Nichols CG, et al. 1996). Kir channels function in various cells, but the 
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subtypes of channels that are regulated by polyamines reside predominantly in the 

brain, heart, and skeletal muscle (Oliver D et al. 2000). 

 

The NMDA-, AMPA-, and kainate receptors respond to a presynaptic release of 

neurotransmitters by creating excitatory postsynaptic potentials (epsps) and 

depolarization. NMDA-type glutamate receptors allow the intracellular flow of Na+ 

and Ca2+ upon ligand, i.e. glutamate and glycine, binding (McBain CJ et al. 1994).  

The extracellular portion of the receptor contains at least two polyamine-binding sites 

in addition to a binding site in the channel pore to which polyamines have access from 

both intra- and extracellular sides. The binding of spermine and spermidine to the 

receptor enhances the binding of the co-ligand, glycine, and increases the probability 

of the channel to open independently of glycine (Ransom RW et al. 1990). This leads 

to potentiation of the signalling (Benveniste M et al. 1993). Quite the contrary, 

polyamines can inhibit the flow of ions by blocking the channel pore (Araneda RC et 

al. 1999). They also decrease the affinity of glutamate to its receptor (Williams K et 

al. 1994). Physiologically the most relevant mechanisms of action are considered to 

be the glycine-independent activation of channel opening and the attenuation of the 

glutamate-affinity (Williams K 1997). Thus, polyamines strengthen the NMDA 

response to activation signalling by affecting the amplitude and by decreasing the 

length of the response. This kind of vigorous, but rapidly silenced signalling is 

considered fundamental in long-term potentiation and depression, which are pivotal 

for memory and learning (MacDonald JF et al. 2007, Grosshans DR et al. 2002). 

Different subtypes of this receptor vary in their ability to bind polyamines, and also in 

their response to polyamine binding (Williams K et al. 1994, Durand GM et al. 1993). 

Neuronal stimulation alters the composition of receptors and new receptors are 

recruited to the synaptic density from mobile transport packets and extrasynaptic 

membrane areas (Lau CG et al. 2007, Quinlan EM et al. 1999, Ying Z et al. 1998, 

Washbourne P et al. 2004).  Subunits of receptors with a high affinity for spermine 

are expressed embryonally and neonatally, indicating a role for polyamines in 

morphogenesis, e.g. synaptogenesis and axonogenesis (Zhong J et al. 1995). 

 

AMPA- and kainate-type glutamate receptors mediate fast synaptic transmission at 

excitatory synapses by permeating Na+ and occasionally also Ca2+. Subtypes passing 

Ca2+ are voltage-dependently blocked by polyamines, establishing inward 
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rectification. Such receptors are expressed in the fetal and neonatal central nervous 

system (Shin J et al. 2005, Koh DS et al. 1995, Bernard A et al. 1994). Similarly to 

the NMDA receptors, the regulation of perinatal kainate receptors by polyamines 

contributes to synapse formation and plasticity.  

 

1.3. Polyamines and the cell cycle/ cell proliferation 

 
The induction of proliferation has been considered one of the most important function 

of polyamines and the enzymes responsible for their synthesis, i.e. ornithine 

decarboxylase (ODC) and S-adenosylmethionine decarboxylase (adomet-DC). The 

concentration of free polyamines is low in non-proliferating cells, but a significant 

rise in polyamine levels is noted in cells entering the proliferation cycle. The amount 

of polyamines and the activities of polyamine-synthesizing enzymes increase rapidly 

in late G1 and in the transition of G2 to mitosis (Fredlund JO et al. 1995). In the S-

phase and mitosis, polyamine catabolism by spermidine/spermine N1-

acetyltransferase (SSAT) overdrives the synthesis rate (Bettuzzi S et al. 1999).  The 

increase as well as the following decrease in polyamine concentration are necessary 

for the proliferation cycle to progress accurately. The fluctuations of polyamines 

during the proliferation cycle are associated to sequential activation of cyclins and 

cyclin dependent kinases, especially cyclinE/cdk2 and cyclin A/cdk2 complexes 

(Gilmour SK, et al. 1999). One of the early signals in mitogenesis is the stimulation of 

ras, which further activates the mitogen-activated protein kinase (MAPK) and 

phosphoinositide-3-kinase (PI3K) pathways (reviewed in McCubrey JA et al. 2007). 

MAPK and PI3K signalling stimulate the transcription and the activation of ODC 

(Wei LH et al. 2008, Origanti S et al. 2007, Shantz LM 2004, Flamigni F et al. 1997) 

via the transcription factor c-myc that binds to specific responsive elements in the 

promoter of ODC (Bello-Fernandez C et al. 1993). The resulting increases in ODC 

activity and polyamine concentration enhance the growth stimulus by reinforcing the 

expression of transcription factors, including c-myc, c-fos, and c-jun, creating a loop 

of positive feedback. Inhibition of ODC activity by DFMO leads to polyamine 

depletion and cell cycle block in G1/G0 by imbalancing the expression of the above-

mentioned transcription factors and cell cycle inhibitors p21Waf1/Cip1, p27Kip1, p53, 

junD/AP-1, and TGF-β (Wang JY et al. 1993, Ray RM et al. 1999, Ravanko K et al. 
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2000, Patel AR et al. 1999, Patel AR et al. 1998). The fluctuation of polyamines 

during the proliferation cycle is associated with sequential activation of cyclins and 

cyclin-dependent kinases, especially cyclinE/cdk2 and cyclin A/cdk2 complexes 

(Gilmour SK et al. 1999).  

 

1.4. In reproductive organs 

 

ODC is highly expressed in the human reproductive organs, i.e. testis, ovary, and 

prostate. Polyamines were originally described in the semen, where they are secreted 

from the prostate. ODC and polyamines are required for spermatogenesis and 

proliferation of the germinal epithelium in murine testicular tissue (Alcivar AA et al. 

1989, Qian ZU et al. 1985, Weiner KX et al. 1992). Transgenic mice overexpressing 

ODC developed infertility, with reduced size of testes and impaired spermatogenesis 

due to excessive amounts of putrescine (Halmekytö M et al. 1991, Hakovirta H et al. 

1993). Ivanov et al. and Tosaka et al. (Ivanov IP et al. 2000, Tosaka Y et al. 2000) 

originally identified and cloned a testis-specific antizyme (AZ3 or OAZ-t) which is 

expressed exclusively in haploid germ cells, pointing to the need to tightly control the 

activity of ODC and of polyamines. 

 

ODC has also regulatory functions in the gonads, unrelated to proliferation. 

Testosterone-producing Leydig cells of mature murine testis display a high ODC 

activity – even higher than that found in proliferating spermatogenic cells (Qian ZU et 

al. 1985). In Leydig and Sertoli cells, the activity of ODC is regulated by AZ1 

(Tosaka Y et al. 2000). In steroid-hormone-producing cells of testis and ovary, the 

activity of ODC is stimulated by luteinizing hormone (LH) (Osterman J et al. 1983, 

Maudsley DV et al. 1974, Levine JH et al. 1973). Treatment with DFMO reduces the 

production of progesterone by inhibiting LH-induced preovulatory rise in ODC 

activity in mouse corpus luteum (Bastida CM et al. 2002). Intact ODC activity is also 

needed for normal folliculogenesis and luteinization in mouse ovary (Bastida CM et 

al. 2005). The gonadotropin-induced activation of ODC in the gonads suggests that 

ODC has a role in the regulation of steroid hormone synthesis or secretion. 
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2. Regulation of ODC 

 2.1. Antizymes 
 
Antizymes (AZ) are proteins which sequester monomeric ODC molecules. AZs 

prevent the dimerization and formation of enzymatically active ODC  (Heller JS et al. 

1976, Murakami Y et al. 1994). Binding of AZ leads to conformational changes in 

ODC and exposure of the C-terminal PEST sequence (Li X et al. 1993) that provokes 

translocation to the 26S proteasome for degradation without ubiquitination  

(Murakami Y et al. 1992). AZ itself is not degraded together with ODC, but is 

recycled back to the cytoplasm. Due to antizyme-induced degradation, the half-life of 

ODC, only 10–20 min, is among the shortest known for proteins in mammalian cells  

(Murakami Y et al. 1985). A significant amount of ODC is in complex with AZ in 

mouse brain. ODC can be released and activated from this complex which might thus 

serve as a reservoir of rapidly activated enzyme  (Laitinen PH et al. 1986).  

 

Three isoforms of AZ have been recognized: AZ1 and 2 are distributed ubiquitously. 

The expression of AZ3, instead, is restricted to post-meiotic testicular germ cells  

(Ivanov IP et al. 2000, Tosaka Y et al. 2000) in which it is assumed to prevent the 

accumulation of cytotoxic amounts of polyamines. The recent results suggest a role 

for AZ3 also in the formation of head and tail connection in sperm (Tokuhiro K, et al. 

2009). All three antizymes induce inhibition and degradation of ODC, although the 

expression level of AZ2 is lower  (Ivanov IP et al. 1998, Zhu C et al. 1999, Snapir Z 

et al. 2008b).  AZ1 and 2 also interact with yet unrecognized polyamine transporters 

and block the uptake of polyamines when the intracellular concentration is increasing  

(Suzuki T et al. 1994, Mitchell JL et al. 1994).  

 

An increased polyamine content protects AZ from ubiquitin-mediated degradation 

and enhances AZ expression by affecting the rate of ribosomal frame-shifting  

(Matsufuji S et al. 1995, Palanimurugan R et al. 2004). AZ1 contains also a 

mitochondrial targeting motif. It is transported to the mitochondrial membrane where 

it depolarizes the membrane and activates the caspase cascade leading to the 

induction of apoptosis  (Gandre S et al. 2003, Liu GY et al. 2006).  
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Over-expression of AZ1 inhibits cell proliferation and growth via ODC inhibition and 

reduction of the polyamine content  (Murakami Y et al. 1994). Furthermore, in 

prostate cancer cells, failure of AZ induction is related to unregulated proliferation  

(Koike C et al. 1999). Expression of AZ in transgenic mouse reduced tumorigenesis 

in the skin  (Feith DJ et al. 2001). Thus, AZ can be considered a tumor suppressor. 

Depletion of AZ in cultured cells leads to over-duplication of centrosomes, whereas 

the silencing of antizyme inhibitor (AZIN) reduces centrosome abnormalities  

(Mangold U et al. 2007). These data suggest that AZ and AZIN are connected to the 

early stages of carcinogenesis in which the loss of tumor suppressors triggers defects 

in centrosome functioning. 

 

Recent data suggest that antizyme is not solely a regulator of ODC but also controls 

the degradation of other proteins that participate in growth regulation, e.g. cyclin D1, 

Smad1, and Aurora-A  (Newman RM et al. 2004, Fong LY et al. 2003, Gruendler C et 

al. 2001, Lim SK et al. 2007) 

 

 

Figure 2. The interplay of antizyme (AZ), antizyme inhibitor (AZIN), and ornithine 
decarboxylase (ODC) in the regulation of polyamine concentration. ODC catalyzes 
the synthesis of putrescine which is a precursor for higher polyamines, spermidine 
and spermine. AZ inhibits the activity of ODC and blocks the uptake of polyamines 
when the concentration of polyamines increases. AZIN counteracts AZ which leads to 
an increased polyamine content. 
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2.2. Antizyme inhibitors 

 
Antizyme inhibitors (AZIN) have arisen from ODC by gene duplication (Kidron H, et 

al. 2007) and thus share a high degree of sequence similarity with ODC  (Murakami 

Y et al. 1996). Due to the homology, AZINs bind AZs, with even higher affinity than 

ODC, and thus liberate ODC from the heterodimer complex with AZ resulting in the 

formation of active homodimers and increased ODC activity (Mangold U et al. 2004, 

Fujita K et al. 1982). The binding of AZIN to AZ blocks also the inhibition of 

polyamine transporters mediated by AZ, and the uptake of polyamines is enhanced  

(Keren-Paz A et al. 2006, Snapir Z et al. 2008a). The binding of AZ to AZIN or ODC 

is reversible, and the equilibrium is constantly monitored and adjusted by the 

concentration of polyamines. Even though AZ promotes ODC for degradation, it 

actually protects AZIN from ubiquitination and targeting to proteasomes  (Bercovich 

Z et al. 2004).  In biochemical assays, AZIN binds all known AZs, AZ1-3  (Mangold 

U et al. 2004). AZIN remains a monomer under physiological conditions and it is 

unable to bind the cofactor, pyridoxal-L-phosphate, which is needed for the enzymatic 

activity of ODC  (Albeck S et al. 2008).  

 

AZIN increases the concentration of polyamines and has been demonstrated to 

promote proliferation and even transformation, whereas siRNA mediated down-

regulation of AZIN expression reduces proliferation  (Keren-Paz A et al. 2006, Kim 

SW et al. 2006, Choi KS et al. 2005). RNA interference of AZIN causes also the 

accumulation of multinucleated cells  (Murakami Y et al. 2009). Interestingly, the 

same phenomenon was detected in cells in which the expression of ODC was 

constitutively targeted to the membrane  (Heiskala M et al. 1999). In addition, the 

transcription of AZIN is increased by growth stimuli, prior to induction of ODC  

(Nilsson J et al. 2000). During the cell cycle, AZIN is activated similarly to ODC in 

late G1 and again in G2/M, and during mitosis (M) it is located in the centrosome 

analogously to AZ  (Murakami Y et al. 2009). The growth-promoting activity of 

AZIN may not be solely dependent on the neutralization of AZ, since AZIN has been 

demonstrated to stabilize cyclin D1 independently of the AZ-binding (Kim SW et al. 

2006). By using the gene-trap technique, a mouse line with a disrupted AZIN was 

generated  (Tang H et al. 2009). The deletion turned out to be lethal at P0 and these 

mice had diminished levels of ODC activity, putrescine, and spermidine indicating 
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their importance for AZIN in embryogenesis. This experiment also demonstrated the 

in vivo functional role of AZIN in polyamine regulation. The expression of AZIN1 is 

elevated in human gastric cancer compared to normal gastric tissue  (Jung MH et al. 

2000) as well as in ras-transformed fibroblasts  (Keren-Paz A et al. 2006). AZIN also 

promotes the survival of various types of cancer cells via activation of ODC under 

hypoxic conditions  (Svensson KJ et al. 2008). In carcinogenesis, activation of ODC 

is considered to be an early step in malignant transformation. It has, however, been 

postulated that the activation of ODC might actually proceed via induction by AZIN 

(Keren-Paz A et al. 2006). ODC activation itself leads to a rapid increase in the 

amount of AZ, leading to the reciprocal diminution of ODC activity and polyamine 

uptake. In contrast, the activation of AZIN blocks AZ and promotes cell growth via 

sustained polyamine accumulation.  

 

 2.3. Spatial regulation of ODC 

 
Intracellular compartmentalization of polyamines is functionally of great importance, 

since polyamines participate simultaneously in various cellular functions in the 

nucleus, mitochondria, plasma membrane, secretory vesicles, and cytoplasm. 

Investigations on the localization of ODC have proven difficult due to its extremely 

short half-life, and thus minute amounst of detectable protein. On the other hand, 

problems have been encountered in determining the compartmentalization of 

polyamines with the larger pool of bound polyamines compared to freely recruitable 

ones. 

 

Polyamines take part in the modulation of various cellular signalling cascades for 

which they are either synthesized de novo or transported from extracellular spaces. 

Polyamines bound to nucleic acids and proteins are considered rather inactive in the 

event of the rapid recruitment for signalling (Watanabe S et al. 1991). Mitogenic 

signalling translocates ODC to the nucleus  (Schipper RG et al. 2004, Schipper RG et 

al. 1999), possibly in connection with antizyme that is considered to regulate the 

nucleocytoplasmic shuttling of ODC. Indeed, AZ contains two nuclear export signals  

(Murai N et al. 2003). Immunochemical stainings from different cell lines indicate 

that AZ is mainly localized to the nucleus in actively proliferating cells, whereas in rat 
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brain it is also found in the cytoplasm  (Mangold U et al. 2007, Schipper RG et al. 

2004, Kilpelainen P et al. 2000). However, the nuclear transport of AZ is deemed 

important during the development of the rat central nervous system  (Gritli-Linde A et 

al. 2001). Epitope-tagged AZIN1 has also been detected in the nucleus of 

proliferating, cultured cells  (Lopez-Contreras AJ et al. 2009) suggesting that 

reciprocal activities of AZ and AZIN1 mediate the fluctuations in ODC activity 

during the cell cycle. However, the role of ODC in the synthesis of nuclear 

polyamines needs to be investigated further, since the presence of other enzymes 

needed for polyamine synthesis have not been described for the nucleus. If the 

function of nuclear proteasomes is restricted, ODC accumulates in the nucleus, 

indicating that ODC degradation targeted by AZ occurs also in the nucleus  (Gritli-

Linde A et al. 2001). AZ might have a more potent role in the degradational targeting 

in the nucleus, since AZ mediates also the degradation of the oncogene Aurora-A, the 

function of which is related to the progression  of mitosis  (Lim SK et al. 2007). 

During transition from prophase to telophase in mitosis, the proportions of AZ and 

AZIN1 are located in the centrosomes where they facilitate the completion of mitosis 

(Murakami Y et al. 2009). Overactivity of AZ leads to a decrease in the number of 

centrosomes, whereas the increased activity of AZIN1 is followed by an accumulation 

of excess centrioles (Mangold U et al. 2007).  After mitosis, the entire orchestra of 

polyamine regulators, ODC, AZ1, AZIN1, and AZIN2, is detected in the perinuclear 

space  (Mangold U et al. 2007, Schipper RG et al. 2004, our unpublished data). In 

addition to the centrosomes, which are located perinuclearly, ODC has been identified 

in the rough endoplasmic reticulum of human neurons  (Bernstein HG et al. 1999). 

Perinuclearly, phosphorylated ODC colocalizes also with the keratin meshwork, the 

disruption of which is accompanied by a diffuse cytoplasmic spread of ODC  

(Pomidor MM et al. 1999). Specific phosphorylation of serine 167 in the p47PHOX-like 

membrane-translocation motif relocates ODC to the plasma membrane upon cell 

activation  (Heiskala M et al. 1999).  

 

The induction of apoptosis is accompanied by an increase in ODC activity, and the 

resulting accumulation of putrescine is assumed to contribute to the activation of 

apoptotic signalling cascades. However, polyamines have also been proposed to play 

an antiapoptotic role (for a review, see Schipper RG et al. 2000). Conversely, the 

inhibition of ODC by DFMO and the depletion of polyamines protect cells from 
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apoptosis initiated by both extrinsic (receptor-induced) and intrinsic (mitochondria-

derived) pathways  (Ray RM et al. 2000). Although ODC itself has not been detected 

in mitochondria, AZ1 contains an N-terminal motif for mitochondrial targeting  

(Gandre S et al. 2003). An overexpression of AZ1 in hematopoietic cells leads to its 

accumulation in mitochondria, which is subsequently followed by caspase cascade- 

and cytochrome c-mediated apoptosis  (Liu GY et al. 2006). Apoptosis, in which 

partly overlapping signalling cascades with growth induction are activated, 

exemplifies the necessity of compartmentalization and localized regulation of 

polyamines and the regulators of their synthesis. 

 

In order to function as neuromodulators in neuronal ion channels, the concentration of 

polyamines needs to be regulated rapidly: both the uptake and release of polyamines 

needs to be controlled upon signalling. Neocortical rat glia cells are capable of 

efficiently transporting polyamines from the extracellular space and storing them 

intracellularly. Polyamines are also recruited to synaptic vesicles and synaptosomes in 

neurons  (Masuko T et al. 2003). Conversely, spermine is released from hippocampal 

slices to the extracellular space upon depolarization. Polyamine transporters, still 

uncharacterized at the molecular level, are found in most cell types. These 

transporters accept a wide range of structural analogs of polyamines, and the net 

influx through them is enhanced by the depletion of polyamines  (Cullis PM et al. 

1999). Instead, if the intracellular concentration of polyamines is increasing, the 

transporters are inhibited by AZ  (Suzuki T et al. 1994, Mitchell JL et al. 1994). Cells 

contain vast amounts of polyamine-sequestering vesicles (PSV) into which the 

uptaken polyamines are believed to be accommodated by H+:polyamine carriers   

(Cullis PM et al. 1999, Soulet D et al. 2004). Free polyamines apparently do not float 

in the cytoplasm, but are rather stored in vesicles so as to be rapidly released upon 

stimulus. It has been postulated that PSVs may serve as a major reservoir of 

polyamines, a mechanism which prevents the cytotoxic effects of free polyamines and 

provides a readily available tool for signalling purposes  (Poulin R et al. 2006). In 

accordance with this model, the application of NMDA in order to activate its receptor 

has been demonstrated to induce rapid release of spermidine and spermine to the 

extracellular space (Fage D et al. 1992). In addition to their regulators, polyamines 

have also been described to relocate intracellularly upon signalling. Proliferating and 
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migrating cells of the retinal pigment epithelium recruit polyamines from membrane 

patches to cytoplasmic granules  (Johnson DA et al. 2002).  

 

3. The actin cytoskeleton 

3.1. The regulation and functions of Rho 
 

A cell is a three-dimensional structure in a three-dimensional environment. It is part 

of a larger complex of other cells, and its viability and functions are mainly 

determined by the changes in its near surroundings. When the environment creates 

tension to the cell boundaries leading to changes in the cell shape or adhesions to the 

environment, signal cascades are activated inside the cell leading to appropriate 

actions to respond to these changes. Important mediators between mechanical 

rearrangements and chemical cascades are cytoskeleton inside the cell and adhesion 

points to the surrounding cells and extracellular matrix in the plasma membrane{{51 

Ingber,D. 1999; }}. Small G-proteins, Rhos, play an essential role in the regulation of 

both adhesions and cytoskeletal rearrangements {{47 Ridley,A.J. 1992; }}. Rho 

(referring to RhoA, B, and C) belongs to a family of Rho GTPases comprised of 26 

known members of which the most studied are RhoA, Rac1, and Cdc42, and to a 

larger superfamily of ras-proteins  (Takai Y et al. 2001). Numerous members of the 

Rho family proteins participate in various cellular processes including proliferation, 

migration, cell polarity, and vesicle trafficking (Jaffe AB et al. 2005). Rho functions 

as a main regulator of actin polymerization. Activation of Rho in cultured cells leads 

to the formation of actin stress fibers and focal adhesions (Ridley AJ et al. 1992). Rho 

is active in its GTP-bound form, whereas hydrolysis of GTP to GDP renders it 

inactive and unable to interact with its downstream effectors. The activity of Rho is 

regulated by various proteins belonging to three groups (Rossman KL et al. 2005, 

Kaibuchi K et al. 1999). The GTPase-activating proteins (GAP) catalyze the intrinsic 

hydrolysis of GTP to GDP, leading to inactivation of the Rho proteins. The guanine 

nucleotide-exchange factors (GEF) activate Rho proteins by stimulating the change of 

GDP to GTP. GEFs selectively recruit proteins of the Rho family to the site of action 

where they form multimolecular complexes with appropriate downstream effectors. 

Nearly 70 different GEFs have been described with pleiotropic functions in the 

pathogenesis of cancer, invasion of microbes, and development (Rossman KL et al. 
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2005). The guanine nucleotide-dissociation inhibitors (GDI) bind GDP-Rho and keep 

it in an inactive form in the cytoplasm. Rho GAPs, GEFs, and GDIs regulate the 

activity and localization of Rho, and the availability of selective effectors. 

 

The Rho proteins are post-translationally modified by attachment of an isoprenyl 

group to the CAAX box in the C terminus (Hori Y et al. 1991). The isoprenyl group 

targets the protein to specific subcellular membranes (Hori Y et al. 1991). In the case 

of RhoA, the geranyl-geranyl tail attaches it to phospholipids in the plasma 

membrane. GDI-binding to Rho-GDP induces a change of conformation in such a 

way that the isoprenyl tail of Rho is hidden (DerMardirossian C et al. 2005). This 

prevents the membrane translocation of Rho and its interactions with downstream 

effectors. Rho can also be post-translationally phosphorylated. Several bacterial 

toxins modify Rho by ADP ribosylation, glycosylation and transamidation. 

Transamidation, consisting of deamidation and polyamination, is catalyzed by 

bacterial cytotoxic necrotizing factors with transglutaminase activity (Schmidt G et al. 

2001). This leads to constitutive activation of Rho by preventing the hydrolysis of 

GTP (Masuda M et al. 2000). Mammalian transglutaminases also transamidate Rho, 

although its functional significance is still unknown (Flatau G et al. 1997). 

 

Actin nucleators, protein kinases, and phospholipases are downstream targets of the 

Rho family proteins. Rho itself interacts with and regulates many functionally diverse 

downstream effectors which initiate a network of signalling cascades involved in 

transcription and cytoskeletal reorganization  (Bustelo XR et al. 2007). Rho GEFs 

tether the effectors to the plasma membrane where Rho is located and directs 

downstream signalling (Buchsbaum RJ 2007). The interaction of Rho with effectors 

induces conformational change in downstream targets; this is often needed for their 

activation and assembly to hot spots (Bishop AL et al. 2000). The main effectors of 

Rho are ROCK (Rho-associated coiled-coil kinase) and mDia (mammalian homolog 

of Drosophila diaphanous). ROCK is a serine/threonine kinase that induces 

phosphorylation of the myosin light chain (MLC) phosphatase. This induces cross-

linking of myosin II to actin and leads to the formation of contractile actomyosin 

filaments  (Riento K et al. 2003). ROCK inactivates actin severing cofilin and 

stabilizes actin filaments  via phosphorylation of the LIM kinase (Ohashi K et al. 

2000). Rho induces polymerization of actin and the formation of actin fibers through 
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diaphanous-related formin, mDia (Li F et al. 2003). ROCK and mDia modulate the 

activities of each other, and their balance determines the type of stress fibers and the 

shape of a cell (Watanabe N et al. 1999, Tsuji T et al. 2002). Another effector, the 

citron kinase, regulates also the phosphorylation of MLC, but this interaction takes 

place in the cleavage furrow during cytokinesis (Madaule P et al. 1998). ROCK 

activity regulates microtubule collapse and the stabilization of different target proteins  

(Arimura N et al. 2000, Palazzo AF et al. 2001). By regulating the serum response 

factor and interacting with MEKK1, Rho promotes the transcription of genes 

encoding cytoskeletal components. Rho also contributes to the transcription of many 

growth-related genes (Miralles F et al. 2003, Gallagher ED et al. 2004). 

 

The inhibition of Rho family proteins blocks the cell cycle at G1 (Olson MF et al. 

1995). The influence of Rho on this block is regarded to result from the regulation of 

cyclin D1 and the cdk inhibitors, p21cip1 and p27kip1  (Welsh CF et al. 2001, Olson MF 

et al. 1998, Weber JD et al. 1997). The Rho target ROCK is involved in this 

regulation (Roovers K et al. 2003). Perhaps an even more important role for Rho in 

the regulation of the cell cycle takes place during mitosis. Mediated by ROCK and 

myosin II, Rho is needed for the correct positioning of centrosomes during prophase 

(Rosenblatt J et al. 2004). During cytokinesis, Rho also contributes to the formation 

and functioning of the contractile ring and to the localization of the cleavage furrow 

with its effectors anillin, citron kinase, mDia, and ROCK (Nishimura Y et al. 2006, 

Piekny AJ et al. 2008, Glotzer M. 2001). Rho regulates the de novo actin 

polymerization and the dynamics of the actomyosin complex in the contractile ring. 

 

Actin is polymerized and its filaments are elongated at the leading front of the 

migrating cell, and depolymerized at the rear end focal contacts. The contractions of 

the actomyosin filaments move a migrating cell forward. At the rear end, Rho 

activates ROCK, leading to phosphorylation of the myosin light chain, contraction of 

the actomyosin filaments, and retraction of the rear of the cell (Riento K et al. 2003). 

ROCK is postulated to act also at the lateral sides of the cell in preventing 

inappropriate lateral protrusions (Worthylake RA et al. 2003). At the front of the cell, 

where excessive formation of contractile actin fibers needs to be restricted, the 

activity of Rho is controlled by Smurf1-dependent ubiquitination (Wang HR et al. 

2003). Recent studies have, however, revealed that local activation of RhoA takes 
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place also at the edge of the protrusions and not only at the rear end of randomly 

migrating cells (Pertz O et al. 2006, Machacek M et al, 2009). The activity of RhoA 

in migrating cells is regulated by the localized activity of rhoGAPs, e.g. p190rhoGAP 

and DLC-1 (Kim TY et al. 2009, Bartolome RA et al. 2008). Furthermore, the 

relocalization of RhoA in migrating cells seems to be dependent on extracellular cues 

and the type of migration (Pertz O et al. 2006). Rho activates mDia1 in the front edge, 

leading to microtubule stabilization and alignment needed for migration. Rho-

dependent activation of mDia at the rear end recruits c-src to focal adhesions, 

resulting in rac activation and turnover of the focal contacts (Yamana N et al. 2006). 

Intracellular relocalization of Rho balances the contractility of actomyosin fibers and 

enables the directional movement of a cell, for instance during organogenesis and 

chemotaxis. 

 

Focal adhesions are macromolecular assemblies that attach cells to the extracellular 

matrix. The activation of Rho induces the assembly of focal adhesions by aggregation 

of vinculin and talin. The blocking of Rho activity, on the contrary, inhibits the 

assembly of actin stress fibers and focal adhesions (Ridley AJ et al. 1992). Detached 

and rounded cells, however, display high Rho activity which has been suggested to 

contribute to a more rigid actin cortex (Maddox AS et al. 2003). Rho participates also 

in the function of adherens junctions, which are involved in cell-cell contacts and in 

cytoskeletal dynamics. They convey extracellular signalling inside the cell and 

mediate mechanical forces. Rho proteins are postulated to function in the activity 

zones of adherens junctions where their activation and inactivation is balanced 

(Bement WM, et al. 2006, Yamada S, et al. 2007). Cadherins bind adjacent cells to 

each other in adherens junctions, and intracellular catenins link cadherins to the 

cytoskeleton (Hartsock A et al. 2008). The Rho-mediated formation and maintenance 

of adherens junctions is tightly regulated. Mechanical forces and signal transduction 

pathways of attachments activate Rho. Selective inactivation of Rho is mediated by 

rac1-recruited p120-catenin and p190rhoGAP (Wildenberg GA et al. 2006), and an 

adhesion-dependent negative feedback-loop maintains the balance of the Rho activity 

(Ren XD et al. 1999). p120-catenin binds Rho-GDP in adherens junctions and 

sequesters it from activation by GEFs; this leads to the local regulation of actin 

reorganization  (Noren NK et al. 2000).  
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Rho GTPases are also involved in tumor initiation, progression and metastasis 

(Narumiya S et al. 2009). Rho proteins are usually not mutated in cancers, but their 

overactivity is found in a large variety of human tumors (Sahai E et al. 2002a). The 

elevated activity of Rho proteins in cancer cells might explain partly the increased 

motility of neoplastic cells. Enhanced expression of RhoC is screened from highly 

metastatic melanoma cells by DNA arrays. Furhermore, dominant-negative Rho 

inhibits metastasizing (Clark EA et al. 20009). Experiments performed with mutant 

Rho proteins in cultured cells suggest that they play a role in tumor initiation. 

Constitutively active forms of RhoA and Rac1 are able to induce cell transformation, 

whereas dominant-negative mutants of these proteins block ras-induced 

transformation (Qiu RG et al. 1995a, Qiu RG et al. 1995b, Prendergast GC et al. 

1995). The activity of Rho is high in ras-transformed cells, and it is considered a 

prerequisite for ras-induced transformation (Qiu RG et al. 1995b). ERK-MAP kinases 

activate Rho and also regulate the downstream signalling of Rho, thus promoting 

pathways of transformation (Sahai E et al. 2001). Increased proliferation occurs in 

tumor initiation. In addition to its inhibitory effect on inhibitors of cyclin-dependent 

kinases, Rho influences proliferation and the cell cycle by regulating ROCK and 

MEK/ERK. Active Rho enhances the activity of transcription factors (e.g. stat3, NF-

κB, serum response factor)  (Benitah SA et al. 2004, Montaner S et al. 1998, Benitah 

SA et al. 2003, Psichari E et al. 2002).  

 

Rho and ROCK activity is connected especially to a bleb-associated/ameboid mode of 

motility in which cells respond to chemo-attractants by relocating ezrin in a Rho-

dependent fashion, in the direction of movement. The elongated-cell-type of motility 

is less dependent on the activity of Rho/ROCK (Sahai E et al. 2003). In src-

transformed cells, which migrate in an elongated fashion, Rho is relocalized to 

podosomes. Rho may be needed for the formation of podosome structures implicated 

in tumor cell invasion (Berdeaux RL et al. 2004). The src-oncogene regulates the 

local activation and the cytosol-membrane cycling of Rho by inactivating the 

phosphorylation of Rho GDI (DerMardirossian C et al. 2006).  Smurf1, a ubiquitin 

ligase, induces degradation of Rho in the periphery of tumor cells and thereby 

regulates the formation of protrusions and the motility of the cells (Wang HR et al. 

2003, Sahai E, et al. 2007). In colorectal carcinoma cells, a low activity of Rho favors 

the maintenance of adherens junctions via mDia, whereas an increased activity of Rho 
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and ROCK promotes the collapse of junctions and enhances migration (Sahai E et al. 

2002b). The inhibition of RhoA by RNA interference or dominant-negative mutants 

has been found to attenuate the proliferation and tumorigenicity of gastric cancer cells 

and to enhance their sensitivity to chemotherapy (Liu N et al. 2004). A 

chemotherapeutic effect has also been achieved with a specific ROCK inhibitor, Y-

27632, which prevented the establishment of transplanted tumors in mice (Itoh K et 

al. 1999). The same inhibitor also abolished the metastasizing capacity of invasive 

prostate cancer cells in mice (Somlyo AV et al. 2000). 

  

3.2. The effect of polyamine regulation on the cytoskeleton 

 

Cells kept in polyamine-free culture and depleted of polyamines by inhibiting ODC 

activity lack normal actin fibers, thick stress fibers and microtubules (Pohjanpelto P et 

al. 1981, McCormack SA et al. 1994). Such cells may appear rounded with a 

considerably increased actin cortex and reduced lamellipodia, or elongated with a 

single thick actin bundle. The addition of polyamines restores the cytoskeleton and 

cell shape to normal. Inhibition of ODC not only distorts actin stress fibers, but also 

affects rER which perturbs the synthesis of proteins (Parkkinen JJ et al. 1997). Small 

multivalent cations, including polyamines, induce the bundling of actin fibers  (Sowa 

GZ et al. 2006) and also enhance the nucleation and elongation of microtubuli by 

facilitating the diffusion of tubulin  (Mechulam A et al. 2009). In rapidly dividing 

cells, phosphatidylinositol 4,5-bisphosphate mediates the effect of polyamine on actin 

nucleation  (Coburn RF et al. 2006).  An altered distribution of tropomyosin, a 

stabilizer of actin fibers, is found in polyamine-depleted cells (McCormack SA et al. 

1994). Furthermore, depletion of polyamines lowers the amount and activity of Rho 

and its downstream effector ROCK (Rao JN et al. 2003). Polyamines thus influence 

the dynamics of the cytoskeleton in various ways. In ras- and RhoA-transformed 

cells, the morphological changes are reversed by the inhibition of ODC activity 

(Shantz LM et al. 1998). A similar effect was detected in temperature-sensitive src-

transfected cells cultured in polyamine-depleted medium. Inhibition of ODC by 

treatment with DFMO blocked the src-induced depolymerization of filamentous actin 

and morphological transformation  (Höltta E et al. 1993).  
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Cells treated with DFMO also display inadequate attachment to the extracellular 

matrix and are incapable of spreading. Polyamine-depleted cells contain reduced 

amounts of focal adhesion kinase (FAK), and the phosphorylation of FAK and 

paxillin is inhibited (Ray RM et al. 2001). This leads to a failure to form protein 

complexes at the adhesion sites and prevents their binding to the actin stress fibers. 

Furthermore, polyamines are needed for integrin assembly and signalling in the 

adhesions.  

 

Johnson et al. have studied the role of polyamines in intestinal healing, in which the 

migration of enterocytes is a pivotal event. Wound healing and migration of intestinal 

epithelial cells (IEC-6) were inhibited by treatment with DFMO and the subsequent 

depletion of polyamines (Banan A et al. 1996, Ray RM et al. 2002). Exogenous 

polyamines were nevertheless able to restore the mobility of IEC-6 cells. Defects in 

the dynamics of the actin and microtubule cytoskeleton caused the migratory 

inhibition. Polyamine depletion reduced [Ca2+] mediated by voltage gated K+ 

channels leading to the inhibition of RhoA, ROCK, and phosphorylation of the 

myosin light chain  (Rao JN et al. 2003). Polyamines participate in the regulation of 

the cytoskeleton in normal proliferation and migration, as well as in malignant 

transformation. Polyamines are apparently involved in various signalling cascades in 

which Rho plays an important role.  

  

4. Polyamines and ODC in diseases 

4.1. Cancer 

 
If ODC is over-expressed in NIH 3T3 murine fibroblasts, the cells undergo 

transformation and show anchorage-independent growth in soft agar  (Auvinen M et 

al. 1992, Moshier JA et al. 1993). Inoculation of such ODC-overexpressing cells in 

nude mouse gave rise to highly-vascularized fibrosarcomas capable of invasive 

growth  (Auvinen M et al. 1997). ODC is surmised to function at the cross-roads of 

signal transduction pathways downstream of the oncogenes src, myc, and ras, 

including raf/ERK/MEK and PI3K pathways  (Hölttä E et al. 1993, Shantz LM 2004, 

Flamigni F et al. 1997, Auvinen M et al. 2003). In cells transformed by oncogenes or 

carcinogens, the activity of ODC remains constantly elevated  (Hölttä E et al. 1993, 
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Hölttä E et al. 1988, Gilmour SK et al. 1986). The inhibition of ODC activity by 

DFMO, however, retained the normal morphology of src-transformed cells, thus 

emphasizing the role of ODC and polyamines in the transformation process  (Höltta E 

et al. 1993). Experiments on transgenic mice have provided substantial evidence to 

support the participation of ODC and polyamines in tumorigenesis. The most studied 

model is skin tumorigenesis in these mice, in which ODC is expressed under the K6 

keratin promoter. The over-expression of ODC in these mice promotes tumor 

formation after their treatment with carcinogens, UV-radiation, or ras-activation  

(Pegg AE et al. 2003, Hayes CS et al. 2006, George K et al. 2005). Double-transgenic 

mice over-expressing both ODC and v-Ha-ras developed spontaneous tumors  (Smith 

MK et al. 1998). Oral administration of DFMO delayed the formation of skin tumors 

and regressed existing ones in transgenic mice over-expressing MEK1 under the 

keratin 14 promoter. This indicates that ODC activity is needed for the initiation and 

maintenance of tumors  (Feith DJ et al. 2005). However, ODC-transgenic mice in 

which ODC is under its own promoter and over-expressed in all tissues are not prone 

to spontaneous tumorigenesis in life-long surveillance with the exception of skin 

papillomas after two-stage chemical induction   (Alhonen L et al. 1995, Halmekyto M 

et al. 1992). Homozygous deletion of the ODC gene (knockout) is embryonally lethal. 

Haploinsufficient ODC+/- mice develop fewer tumors during their life-span as 

compared to their normal litter mates  (Guo Y et al. 2005). Over-expression of the 

ODC inhibitor, antizyme, in the skin of transgenic animals prevents carcinogen-

induced tumorigenesis  (Feith DJ et al. 2001). Elevated levels of polyamines have 

been measured in human colon, breast, and prostate cancers  (Leveque J et al. 2000, 

Mohan RR et al. 1999, Hixson LJ et al. 1993). Acetylated catabolic derivatives of 

polyamines in urine have been studied and used as a diagnostic marker for cancer  

(Inoue H et al. 2005). In addition, single-nucleotide polymorphism in ODC promoter 

is reported to predict a risk for colon polyps and cancer  (Martinez ME et al. 2003). 

 

The inhibitors of polyamine biosynthesis and polyamine analogs are the focus of 

study as potential chemotherapeutic agents. The ODC inhibitor, DFMO, lowers the 

concentration of putrescine and spermidine, and inhibits proliferation of malignant 

cells in cultures  (Prakash NJ et al. 1980). DFMO can be administered orally or 

peritoneally, and it is non-toxic  (Griffin CA et al. 1987, Abeloff MD et al. 1986). The 

efficacy of DFMO in clinical trials has, however, been disappointing. Polyamine 



 

 34 

metabolism is regulated by various factors, and thus the inhibition of ODC has proved 

inadequate for achieving a significant decrease in the polyamine content of tumors in 

vivo. DFMO is now being studied in combination with non-steroidal anti-

inflammatory drugs as a potential chemopreventive agent of epithelial cancers  

(Meyskens FL Jr. et al. 1999, Meyskens FL Jr et al. 2009). Polyamine analogs, 

various forms of which have been synthesized, have a multi-level impact on 

polyamine metabolism, and thus seem to be more potent chemotherapeutic agents. In 

order to function efficiently as a chemotherapeutic agent, a polyamine analog needs to 

influence polyamine synthesis, catabolism and uptake. It can also be presumed that 

part of the efficacy is explained by the binding of polyamine analogs to the same 

structures as the naturally occurring polyamines  (for a review, see Casero RA Jr. et 

al. 2007).  Polyamines and their analogs are also used as vehicles to provide non-viral 

routes inside a cell for other chemotherapeutic and anti-parasitic compounds  (Holley 

JL et al. 1992, Delcros JG et al. 2006). 

 

4.2. Brain pathologies 

 
The induction of ODC activity results in increased concentrations of putrescine in the 

CNS. This is a general response to various physiological and pathological incidents, 

e.g. seizures, traumatic injuries, Alzheimer’s disease, ischemia, as well as chemical, 

radiation, and electrical stimulation.  

Experiments with mice and rats as well as studies on tissue cultures have shown that 

polyamines and ODC are connected to ischemic responses, especially during the 

reperfusion phase. Transient focal cerebral ischemia induces ODC activity, followed 

by accumulation of putrescine and depletion of the higher polyamines, spermidine 

and spermine  (Paschen W et al. 1991). This effect is particularly pronounced in the 

penumbra on the ipsilateral side of the ischemic lesion, but also in apoptotic cells of 

the hippocampus after mid-cerebral artery occlusions  (Baskaya MK et al. 1997, 

Sauer D et al. 1992, Muller M et al. 1991, Maeda M et al. 1998, Keinänen R et al. 

1997). The same phenomenon has been detected also in ischemic heart  (Zhao YJ et 

al. 2007, Zhao YJ et al. 2009). These findings have led to the assumption that ODC 

induction provokes the onset of ischemic damage and that putrescine mediates 

cytotoxic effects in neurons. However, experiments with transgenic animals that over-

express ODC provide a different picture, pointing to a neuroprotective role of 
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polyamines and ODC. The infarct volume was smaller and the reperfusion damage 

developed more slowly than in the wild-type littermates or DFMO-treated animals 

(Lukkarinen JA et al. 1998, Lukkarinen JA et al. 1999). Long-lasting up-regulation of 

ODC expression was detected also in areas where no reperfusion lesions had 

developed. Intracranial infusion of putrescine has even been reported to provide 

protection against ischemia-induced neuron death  (Keinänen R et al. 1997, Gilad GM 

et al. 1991). Results reinforcing the neuroprotective role of polyamines were obtained 

from experiments on rat brains subjected to continuous infusion of antisense 

oligonucleotide to ODC during transient mid-cerebral artery occlusion. Inhibition of 

ODC predisposed the animals to increased infarct volume, motor deficit, and 

mortality (Raghavendra Rao VL et al. 2001). Maternal hypoxia elevated the activity 

of ODC and the concentration of polyamines in the brain of mouse embryos. 

However, no neurotoxic effects were detected in the embryonal brain  (Longo LD et 

al. 1993). Spermine, but not putrescine or spermidine, had a protective role in primary 

cultures of hippocampal and pyramidal neurons. It promoted the survival of neurons 

in a NMDA-dependent fashion and served as a scavenger of free radicals (Abe K et 

al. 1993, Ha HC et al. 1998). This indicates that different polyamines have specific 

functions. Furthermore, the effect of polyamines on the development of ischemic 

lesions is postulated to depend on the NMDAR activity: antagonists of NMDAR 

blocked the ischemia-induced activation of ODC, and inhibition of ODC prevented 

NMDAR-induced cytotoxicity  (Keinänen R et al. 1997, Markwell MA et al. 1990). 

In conclusion, ODC and polyamines contribute to the modulation of ischemic brain 

trauma. There is still controversy, however, regarding the exact mechanisms, as well 

as the ultimate role that polyamines play in neuroprotection and cytotoxicity. 

 

The expression and activity of ODC is locally increased in Alzheimer’s disease  

(Bernstein HG et al. 1995, Morrison LD et al. 1998). Accumulation of spermidine has 

been found together with reduced levels of putrescine and S-adenosylmethionine, 

indicating enhanced synthesis of higher polyamines  (Morrison LD et al. 1995, 

Morrison LD et al. 1996). Immunohistochemistry of diseased brain tissue has 

revealed accumulation of ODC in neocortical pyramidal cells and interneurons. Not 

only the amount of protein seemed to be elevated, but also the number of ODC-

positive cells was increased  (Bernstein HG et al. 1995, Nilsson T et al. 2006a). 

Furthermore, ODC was intracellularly redistributed. The normal nuclear and 
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perinuclear localization of ODC was spread more diffusely in the cytoplasm of 

neocortical, hippocampal, and Purkinje neurons in AD  (Nilsson T et al. 2006a). ODC 

was detected also in the dendrites and axons of cortical pyramidal cells in AD brains, 

contrary to that of normal brain tissue  (Bernstein HG et al. 1995).  

 

 

Aberrant accumulation of β-amyloid into the extracellular space is considered 

important in the pathogenesis of AD. Activation of the β-amyloid precursor protein, 

which functions as a cell surface receptor, causes a rapid increase in the expression of 

ODC  (Nilsson T et al. 2006b). β-amyloid accelerates the generation of reactive 

oxygen species (ROS), and this in turn induces ODC activity and the production of 

polyamines  (Yatin SM et al. 1999). The uptake of polyamines is also upregulated by 

β-amyloid stimulation which, together with increased ODC activity suggests an 

underlying induction of AZIN.  The generation of ROS is enhanced by the binding of 

β-amyloid oligomers to NMDARs, and is dependent on NMDAR activity  (De Felice 

FG et al. 2007). Activation of NMDAR upregulates the expression of ODC in 

cultured neuronal cells  (Nilsson T et al. 2006a). Simultaneously, β-amyloid disturbs 

NMDAR-mediated long-term potentiation in the hippocampus and interferes with 

down-stream signalling of NMDAR  (Yamin G 2009). Polyamines regulate NMDAR 

activity in various ways, mostly by enhancing ligand binding  (Araneda RC et al. 

1999, Benveniste M et al. 1993). A positive feedback loop is formed between ODC 

and NMDAR, since NMDAR has been found to stimulate ODC activity leading to 

enhanced synthesis of polyamines, which in turn amplify NMDAR signalling. Further 

evidence supporting functional coupling between ODC and NMDAR was obtained 

from ODC transgenic mice with impaired performance in spatial learning and 

memory  (Halonen T et al. 1993), i.e. functions regulated by NMDAR signalling. 

Whether polyamines are neuroprotective or neurotoxic in AD is still unsolved. 

Nevertheless, ODC transgenic mice which have high ODC activity and putrescine 

levels, do not develop more age-related neurodegenerative changes in neurons or 

brains than their wild-type littermates  (Alhonen L et al. 1995).  This suggests that 

ODC activation itself does not have deleterious effects, but is rather an adaptive 

response to noxious stimuli. The accumulation of spermine in AD might indicate an 

attempt to neutralize free radicals formed by the overactivity of β-amyloid  (Yatin SM 
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et al. 2001). There is evidence of the involvement of polyamines in other 

neurodegenerative diseases, e.g. Parkinson’s disease, in which spermine enhances the 

aggregation of α-synuclein (Grabenauer M et al. 2008).  

 

The overall view of polyamines and ODC in brain pathology is in favor of 

neuroprotective responses to pathological events, despite numerous controversial 

findings. Therapeutic interventions using the polyamine system have not advanced, 

however, except for the use of memantine in AD. Overactivity of NMDAR leading to 

cytotoxicity is prevented by memantine which interferes with the polyamine binding 

to NMDAR (Bresink I et al. 1995). 
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AIMS OF THE STUDY 

 
The aim of this study was to investigate the functional factors involved in the 

regulation of polyamines and ornithine decarboxylase, and to search for a mechanistic 

link between the polyamine system and the dynamics of the actin cytoskeleton. The  

specific aims were: 

 

− to investigate the polyamination of a small G protein, RhoA and the role of  

transglutaminase in polyamination 

− to evaluate the relevance of polyamination in proliferation and transformation 

− to investigate the influence of ODC activity and localization on RhoA 

regulation 

− to characterize a novel ODC homolog from human brain 

− to investigate the tissue-specific expression of AZIN2 

− to gather basic knowledge of AZIN2 in order to determine its functional role. 
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MATERIAL AND METHODS 

The material and methods used in this thesis work are described in detail in the 

original publications. The table below summarizes the methods used with a referral to 

the respective publication. 

  

Method Publication 

Antibody production III, IV 

Cell culture I, II 

Cell cycle synchronization I 

cDNA cloning I, II 

DNA histogram (flow cytometry) I 

DNA purification I-IV 

DNA sequencing I - IV 

Dot blot  II 

Fractionation of cells I 

Immunohistochemistry III, IV 

Immunofluorescence stainings I, IV 

Immunoprecipitation I 

In vitro translation II 

In situ hybridization III, IV 

Metabolic labeling I 

Microscopy, confocal I 

Microscopy, epifluorescence I, IV 

Light microscopy  I, III-IV 

ODC-assay I, II 

PCR I, II,  

RT-PCR II, IV 

Transfection I - IV 

Transformation assay I 

SDS-PAGE I, II 

Sequence alignment I 

Site-directed mutagenesis I 

Validation of antibody III, IV 

Western blotting / SDS-PAGE I-IV 
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RESULTS AND DISCUSSION 

1. ODC and the cytoskeleton 

1.1. Transglutaminase mediates polyamination of RhoA 

 

The physiological polyamination of RhoA was studied in murine fibroblast cell lines 

(NIH 3T3 and Rat1 tsRSVLA29), and in a cell line of Chinese hamster ovary in 

which the ODC-protein was mutated and catalytically inactive (C55.7, called CHO 

ODC- in these studies). The CHO ODC- cell line was further transfected with active 

ODC (CHO ODC+), and with ODC incapable of membrane translocation (CHO 

PHOX). All of the above-mentioned cell lines were metabolically labeled with 14C-

putrescine or 14C-spermidine. Separated cell lysates were visualized with both an 

antibody to RhoA and by autofluorography. Western blotting revealed two closely 

spaced bands, but only the faster moving band incorporated labeled polyamines. 

Furthermore, from the same cell lysates, RhoA was immunoprecipitated, and after 

SDS-PAGE and autofluorography, binding of labeled polyamines to RhoA was 

detected (I, Fig 1A). The results are in accordance with those of Masuda and 

coworkers, who have earlier reported that polyaminated RhoA displays faster 

mobility on SDS-PAGE than does unmodified RhoA (Masuda M et al. 2000). It is 

noteworthy that the peptide antibody used in our studies detects not only RhoA, but 

also RhoC, the function of which is less characterized but considered to be similar to 

that of RhoA. Therefore the possibility that RhoC also might be polyaminated cannot 

be ruled out. Polyamination of RhoA has previously been detected in vivo only in the 

presence of exogenous transglutaminase (Bordetella dermonecrotizing toxin) which 

catalyses polyamination of RhoA by covalent cross-linking of putrescine and 

spermidine to Gln63 (Masuda M et al. 2000, Shin DM et al. 2008). This modification 

activates RhoA by inhibiting its intrinsic and extrinsic GTPase activity, and leaves the 

G protein in a constitutively active, GTP-bound configuration. Earlier, the 

polyamination of RhoA has been shown only with additive transglutaminases, 

whereas in the present studies the polyamination was detected in all cell lines tested 

without addition of exogenous transglutaminases. Differences in the relative amounts 

of polyaminated RhoA were, however detected between cell lines, which might 

explain the discrepancy in detecting physiological polyamination of RhoA. In 
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addition, the detection of the polyamination of RhoA proved to be inaccurate from 

frozen and thawed samples. Only fresh prepared samples were thus used in the 

studies. 

 

To further study the role of transglutaminase activity for the polyamination of RhoA, 

Rat1 tsRSVLA29 and CHO ODC+ cells were treated with 0.2 mM 

monodansylcadaverine (MDC), an inhibitor of tissue transglutaminase 2 (TG2). 

Western blotting of lysates from MDC-treated cells revealed greatly reduced amounts 

and even an absence of fast-moving, polyaminated RhoA (I, Fig 1B). This indicated 

that the catalytic activity of transglutaminase was needed for the polyamination of 

RhoA and further confirmed that the faster moving band of RhoA was modified by 

polyamination. These results are in accordance with the findings of Singh et al. who 

have earlier shown that the transamidation of RhoA is prevented by inhibiting the 

activity of transglutaminase (Singh US et al. 2001). Recently, the inhibition of TG2 

and the following reduction in the polyamination of RhoA have been shown to 

prevent also the interaction of RhoA with its downstream effector, ROCK (Shin DM 

et al. 2008).  

 

Transamidation activity of TG is dependent on high [Ca2+], and such a concentration 

has been linked only to pathological states. However, the present results suggest the 

transamidation of RhoA by polyamines to take place in physiological states including 

proliferation. Most likely high concentration of Ca2+ is achieved by local regulation.  

 

1.2. Polyamination of RhoA and the cell cycle 

 

Changes in the relative amounts of polyaminated RhoA were investigated in lysates 

collected at various stages of the cell cycle from synchronized NIH 3T3 cells. 

Western blotting with polyclonal antibody against RhoA revealed changes in the 

proportion of intact versus polyaminated RhoA. Faster moving, polyaminated RhoA 

dominated in cells entering the G2/M phases when the incorporation of radio-labeled 

spermidine was also detected by SDS-PAGE and autofluorography (I, Fig 2B). In 

contrast, unmodified RhoA was abundant during G1 and S. The impact of RhoA 

polyamination on the progress of the cell cycle was also studied in Jurkat cells treated 
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with two inhibitors of TG2 (0.2 mM MDC or 0.2 mM cystamine) for three days prior 

to flow-cytometric analysis. Inhibition of TG2 induced a relative block between 

G2/M and G1, with an increase from 6% to 29% of the cell population (with MDC) in 

G2/M without accumulation in G1 (I, Fig 2E). Overexpression of RhoA by a transient 

transfection sensitized these cells to a relative cell cycle block induced by inhibitors 

of TG2. Similarly, a reduction in the amount of polyaminated RhoA, obtained by 

transfecting the cells with a polyamination-deficient mutant of RhoA, RhoA-Q63A, 

blocked the cell cycle. 70% of the cells accumulated in G2/M. Treatment with 

inhibitors of transglutaminase 2 had no further effect on the accumulation of cells 

expressing RhoA-Q63A in G2/M. 

 

polyamines

polyamine synthesis

polyamine catabolism

RhoA polyamination

 
 G1           S   G2/M 

Figure 3. The concentration of polyamines and the activities of their metabolizing 
enzymes fluctuate during the cell cycle. Polyamination of RhoA is detected 
simultaneously with the elevated amount of polyamines in G2/M phases. 

 

MDC and cystamine are amines that inhibit transglutaminase by competitive binding, 

although cystamine also directly inhibits transamidation. The activity of ODC and the 

relative amount of spermidine were measured from the cell lines used in these 

experiments in order to exclude the possibility that the detected cell cycle block was 

caused merely by the reduced polyamine synthesis induced by these compounds 

acting as polyamine analogs. No decrease in the activity or in the content of 

spermidine was detected in Jurkat or CHO ODC+ cells after treatment with MDC or 

cystamine (I, supplementary material). This proved that the effects of the compounds 
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were due solely to the inhibition of TG2.  Since MDC decreased slightly the activity 

of ODC and also the content of spermidine in Rat1 tsRSVLA29 cells, only cystamine 

was used to treat this cell line. 

 

These results show that the extent of polyamination of RhoA alters during the cell 

cycle, and that the fluctuation is required for proper progress of the cell division. In 

mitosis, RhoA affects centrosome positioning (Rosenblatt J et al. 2004) and is 

involved in creating contractile forces at the cleavage furrow during cytokinesis 

(Glotzer M 2001). It is conceivable that the activation of RhoA by polyamination 

during the G2/M phase is related to these functions.  

 

1.3. Polyamination of RhoA and transformation 

 
RhoA by itself is not a transforming protein, but it enhances migration and invasion of 

ras and src-transformed cells (Sahai E et al. 2003, Sahai E et al. 2001). To investigate 

the functional impact of the polyamination of RhoA on cell transformation, Rat-1 

cells (Rat1 tsRSVLA29) were infected with a temperature-sensitive mutant of v-src 

(ts-v-src). Hölttä et al. have previously shown that the depletion of polyamines 

inhibits the ts-v-src-induced transformation at a permissive temperature, whereas the 

addition of exogenous polyamines restores the transformation (Höltta E et al. 1993). 

We compared the transforming capability of Rat1 tsRSVLA29 cells cultivated in the 

presence or absence of 0.25 mM cystamine. The control cells underwent 

morphological transformation at a permissive temperature, whereas the rate of 

transformation (I, Fig 4) and the polyamination of RhoA (I, Fig 1B) were repressed in 

cells treated with the TG2 inhibitor cystamine. These cells were sensitive for the over-

expression of RhoA or RhoA-Q63A. Transiently transfected cells acquired a rounded 

morphology even at a non-permissive temperature and were detached more easily 

from the culture plate. Rounded cell morphology has previously been linked to the 

activity of RhoA and ROCK (Sahai E et al. 2003). Rounding of cells has also been 

detected in v-src transformed mouse fibroblasts transfected with constitutively active 

RhoA, RhoA-Q63L. The activity of RhoA (and RhoC) was spatially regulated in 

these cells and accumulated in the cortical ring of actin (Berdeaux RL et al. 2004). 

The present results are in accordance with these findings, and suggest that RhoA is an 
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important player in v-src-induced cell transformation, and that polyamination 

regulates the activity of RhoA. 

 

1.4. ODC-mediated spatial regulation of RhoA and reorganization of 
actin  

 
CHO ODC- cells and their derivatives CHO ODC+ and CHO PHOX were used for 

studying the impact of ODC on the spatial regulation of RhoA. Mutation of the 

p47PHOX motif impairs the membrane translocation of ODC upon cell activation 

(Heiskala M et al. 1999). In addition, NIH 3T3 cells were transfected with an 

antisense oligonucleotide to AZ1 and Rat1 tsRSVLA29 cells with a polyamination-

deficient mutant of RhoA (RhoA-Q63A). The reorganization of actin was investigated 

in these cells. The cell lines were cultivated in the absence of polyamines for three 

days and stimulated by hypo-osmotic stress to enhance the ODC activity (Poulin R et 

al. 1990) with the exception of Rat1 tsRSVLA29 cells.  

 

Western blotting of total cell lysates revealed a robust polyamination of RhoA in 

CHO ODC+ cells (I, Fig 3A). The polyamination was less efficient in NIH 3T3 and 

Rat1 tsRSVLA29 cells, suggesting differences in the activity of TG2 between the 

different cell lines. In cells with normally inducible ODC activity and with ODC 

capable of membrane translocation, the reorganization of actin responded to changes 

in the activity of ODC. The induction of ODC by hypo-osmotic stress resulted in the 

formation of actin stress fibers which depolymerized when the activity of ODC 

declined (unpublished results from the present studies, Fig 4). Furthermore, no defects 

were observed in the progression of the cell cycle. Interestingly, NIH 3T3 cells with 

constitutively high ODC activity obtained by treatment with AZ1-antisense 

oligonucleotide were rounded, loosely attached, and lacked actin stress fibers 

(unpublished data).  

 

The relative amount of polyaminated RhoA was lower in CHO PHOX cells, and 

especially in CHO ODC- cells compared to the CHO ODC+ cell line. The treatment 

of CHO ODC+ cells in polyamine-free medium with DFMO increased the amount of 

non-polyaminated RhoA (I, Fig 3B). This shows that catalytically active ODC and 
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ODC capable of membrane translocation are needed for the efficient polyamination of 

RhoA in the absence of external polyamines. Nevertheless, the polyamination of 

RhoA was not totally prevented by inhibition of the ODC-activity suggesting that the 

polyamination is not entirely dependent on ODC-activity. Ray et al. have shown that 

inhibition of ODC by DFMO decreases the activity of RhoA that is recovered by the 

addition of putrescine (Ray RM, et al. 2002). This is in accordance with present 

results of the roles of ODC and TG2 for the polyamination of RhoA.  

  

The formation of actin stress fibers as a response to hypo-osmotic stress was 

repressed in CHO ODC- cells. In CHO PHOX cells, the reorganization of actin was 

delayed: stress fibers appeared later and resolved more slowly (unpublished results, 

Fig 4).  The reorganization of actin was also disturbed in Rat1 tsRSVLA29 cells 

transfected with polyamination-deficient RhoA (RhoA-Q63A). These cells were 

rounded and loosely attached. The findings on stress fiber reorganization emphasize 

not only the importance of ODC-induction for the regulation of RhoA and actin 

reorganization, but also the demand for dynamic fluctuation in ODC activity. 

 

 

 

Figure 4. The formation of actin stress fibers after 4 hours of hypo-osmotic shock. 
The cells were cultivated in polyamine-free media, and actin is visualized by 
rhodamine phalloidin staining. 

Analysis of the membrane and cytoplasmic fractions of CHO PHOX cells showed 

that the membrane fraction was devoid of ODC activity and, interestingly, also of 

both intact and polyaminated RhoA (I, Fig 3C). Only ubiquitinated forms of RhoA 

were found in the membranes of CHO PHOX cells. In CHO ODC+ cells both active 
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ODC and polyaminated RhoA were detected in the membrane fraction. However, if 

CHO ODC+ cells were treated with a synthetic peptide RLSVKFGA, which 

corresponds to the p47PHOX motif of ODC and prevents its membrane translocation 

(Heiskala M et al. 1999), both ODC activity and RhoA were absent from the 

membrane fraction (data not shown).  

 

In CHO ODC+ cells cultured in the presence or absence of polyamines, confocal 

immunofluorescence microscopy with an antibody to RhoA revealed a concentration 

of RhoA close to the plasma membrane. In CHO PHOX cells, RhoA displayed a 

diffuse cytoplasmic distribution (I, Fig 3D). Some accumulation of RhoA was seen in 

the vicinity of the plasma membrane in CHO ODC- cells, but most of it remained 

dispersed over the cytoplasm. Analysis of CHO ODC+ cells transfected with RhoA-

Q63A showed an accumulation of RhoA beneath the plasma membrane (I, Fig 3E). 

These findings demonstrate that an intact membrane translocation of catalytically 

active ODC is a prerequisite for the distribution of RhoA to the membrane actin 

cytoskeleton. It has been previously reported that inhibition of the ODC-activity 

decreased the amount of RhoA in the membrane fraction by 27% (Ray RM et al. 

2002). However, the ODC-regulated spatial distribution of RhoA is independent of 

the polyamination of RhoA. 

 

2. The structure and distribution of AZIN2 

2.1. Comparison of the structures of ODC and AZIN2 

 
As AZINs are considered to have emerged via gene duplication of ODC, the 

homology between these proteins is high. The identity between AZIN2 (SV1; 

formerly named ODC-paralogue, ODC-p) and ODC is 54%, and the similarity is 

75%. The corresponding values for AZIN2 and AZIN1 are 45% and 66%, 

respectively (II, Fig. 2). 

 

ODC is fully active only as a homodimer, and it has two active sites at the interphase 

of the monomers. Using crystallographic and biochemical assays, Albeck et al. (2008) 

showed that AZIN1 appears as a monomer under physiological conditions). Recently, 

the amino acids crucial for the lack of dimerization of AZIN1 were determined to be 
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Ser 277, Ser 331, Glu 332, and Asp 389 (Su KL, et al. 2009). Even though no data yet 

exist on the nature of AZIN2 dimerization, the amino acids Ser 277 and Ser 331 are 

also dissimilar in AZIN2 compared to ODC. While dimerization of ODC is needed to 

induce the enzymatic activity, there is no reason to assume that enzymatically inactive 

AZIN2 would appear as a dimer. 

 

The catalytically active site of ODC is combined of residues from the N terminus of 

one monomer and the C terminal residues of the other monomer (Tobias KE et al. 

1993). The most important residues for ODC activity are K69, C360, and D361 

(Tobias KE et al. 1993, Osterman AL et al. 1995, Coleman CS et al. 1993). Variants 

mutated by these amino acids reveal that each one is required for full catalytic 

activity. These residues contribute to the binding of the substrate, and K69 is also 

involved in the binding of the co-factor pyridoxal-5'-phosphate (PLP). C360 appears 

to mediate the binding of DFMO. The residues associated with the catalytic activity 

of ODC, K69, E94, K115, K169, H197, D233, E274, D361, and D364 (Osterman AL 

et al. 1995, Coleman CS et al. 1993, Tsirka S et al. 1992) are conserved in AZIN2, 

whereas D88 and C360 are not. C360 is conserved in ODC throughout the variety of 

species, from bacteria to eukaryotes. The ODC mutants C360A and C360S are almost 

devoid of decarboxylation activity (Tobias KE et al. 1993, Coleman CS et al. 1993). 

These mutated enzymes, however, catalyze a decarboxylation-dependent 

transamination reaction to form pyridoxamine-5-phosphate and γ-

aminobutyraldehyde, indicating a role for C360 in controlling the specificity of the 

reaction (Jackson LK et al. 2000). In AZIN2, C360 is replaced by a hydrophobic 

valine, whereas in AZIN1, C360 is conserved. Biochemical studies have nevertheless 

shown that both AZINs are devoid of decarboxylating activity on ornithine 

(Murakami Y et al. 1996a, Kanerva K et al. 2008). 

 

The translocation of ODC to the membrane cytoskeleton is necessary for it to function 

optimally (Heiskala M et al. 1999). The p47phox-like motif, which is responsible for 

the translocation, is conserved almost entirely in AZIN2. The distribution of AZIN2 

has been linked to membrane fractions in mouse brain and to vesicles in mast cells 

(Lopez-Contreras AJ et al. 2006, Kanerva K et al. 2009). Furthermore, the present 

results on the localization of AZIN2 in the human brain and testis also suggest that it 
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is adjacent to membranes. So far, however, there are no data available on the 

functionality of the p47phox-like motif in AZIN2. 

 

The rapid degradation of ODC in proteasome 26S is induced by binding to AZ 

(Murakami Y et al. 1992, Murakami Y et al. 1996b). AZ binds to ODC via a specific 

binding domain (residues 117-140), which is highly homologous in both AZIN2 and 

AZIN1 (I, Fig. 2). AZINs are capable of displacing ODC from the AZ-ODC complex 

because of their higher affinity (Snapir Z et al. 2008, Fujita K et al. 1982). AZ binding 

alone is not sufficient for ODC turnover; two PEST regions in the C-terminus are also 

needed for the targeting and degradation by proteasome 26S (Li X et al. 1993). The 

homology between AZINs and ODC decreases towards the C-terminus, and no PEST 

region is recognized in the C-terminal part of AZINs  

(http://www.Icnet.uk/LRITu/projects/pest/). The ODC protein is known to be 

stabilized by truncation of its C-terminus (Ghoda L et al. 1989), suggesting that the C-

terminal PEST domains are essential for the turnover of ODC. Furthermore, the 

electron-dense N- and C-termini of AZIN1 are in closer contact with each other than 

in ODC, indicating functional differences in these regions (Albeck S et al. 2008).  

  

 

2.2. Alternative splicing of AZIN2 

 

Alternative splicing is a normal phenomenon in eukaryotes; it increases the diversity 

of proteins that can be encoded by a limited number of genes.  In humans, over 80% 

of the genes are alternatively spliced enabling encoding of several proteins by a single 

gene, rather than requiring a separate gene for each polypeptide (Black DL 2003). 

Alternative splicing has been found to be especially active among genes expressed in 

human brain (Black DL et al. 2003). 

 

Ten alternatively spliced forms of the coding region of AZIN2 have been detected by 

sequencing with specific primers to exon I and IX or XI from a QUICKclone cDNA 

(Clontech) of human brain and testis (II, Table I). The four longest splicing variants 

(SV) are SV1, 2, 9, and 10, which terminate in exon XI, and are combined of exons as 

shown in Table 1. A 60-bp extension at the 5´ end of exon VIII and a 84 bp-exclusion 
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from the 5´ end of exon V distinguish the otherwise identical SV2 and SV9 from 

SV1, respectively. As compared to SV8, in SV10, exon II includes a 93-bp extension 

at the 5´end.  

Table 1. The variability of the exon composition of AZIN2. The exons of each splicing 
variants determined by sequencing the clones are marked (√).*60-bp extension in the 
5'-end. **37-bp extension in the 5'-end. † exon length 51-bp (shorter from 5'-end). ‡ 
93-bp extension in the 5'-end. 

Splice 

Variant 

Exon 

I 

Exon 

II 

Exon 

III 

Exon 

IV 

Exon 

V 

Exon 

VI 

Exon 

VII 

Exon 

VIII 

Exon 

IX 

Exon 

X 

Exon 

XI 

SV1 √  √ √ √ √ √ √  √ √ 

SV2 √  √ √ √ √ √ √ *  √ √ 

SV3 √  √ √ √ √ √ √ √   

SV4 √  √ √ √ ** √ √ √ √   

SV5 √  √  √ √ √ √ √   

SV6 √  √    √ √ √   

SV7 √     √ √ √ √   

SV8 √ √ √ √ √ √ √ √ √   

SV9 √  √ √ √† √ √ √  √ √ 

SV10 √ √‡ √ √ √ √ √ √  √ √ 

 

Splicing variants 3 through 8 terminate in exon IX: their exon structures are shown in 

Table 1. Exon IX contains a premature stop codon. This exon is not transcribed in the 

most abundant RT-PCR product from the brain and testis, and the majority of the 

ESTs do not include it. Nevertheless, the occasional transcription of exon IX is 

verified by its presence in rare ESTs from squamous cell lung carcinoma and 

brain/mixed tissue-derived libraries. By using a 3´ primer designed for exon IX, six 

different, alternatively spliced variants (SVs 3 through 8) could be amplified from 

testis tissue.  

 

The sequences of SVs 1–2 and 9–10 were obtained from a pool of human brain 

mRNA, whereas SVs 1-8 were sequenced from a testis pool. The existence in vivo of 
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the described SVs was not systematically screened in brain and testis, but rather the 

sequences of different variants emerged during the cloning of AZIN2. Thus, the 

expression pattern of these variants in different tissues is still to be discovered. 

Although not specifically tested, the predominance of SV2 and especially of SV1 over 

the other variants has become apparent through repetitive sequencing of the mRNA 

pools.  

 

The coding region of AZIN2 SVs 1, 2, 3, 7, 8, and to a lesser extent of SV5, were 

effectively translated in our system (II, Fig. 1C). Autoradiographic visualization 

showed approximately the size of 51 kDa for SV2, which agrees with the predicted 

protein sequences. SDS-PAGE analysis revealed that SVs 1, 3, 7, and 8 showed bands 

of apparent sizes of 46 kDa, 42 kDa, 40 kDa, and 44 kDa, respectively. As we have 

not in vitro translated the SVs 9 and 10, their translation to proteins in vivo remains to 

be shown. In silico translation of the splicing variants implies a premature stop-codon 

in SV7, whereas the reading-frame of the other variants remains open in spite of 

alternative splicing. 

 

According to current knowledge, the principal function of AZIN2 is the binding and 

inactivation of AZ (Kanerva K et al. 2008, Lopez-Contreras AJ et al. 2006, Snapir Z 

et al. 2008a). The presence of an AZ-binding site is a prerequisite for its function. A 

comparison of the AZIN2 sequence to that of the ODC gene, in which the AZ-binding 

site is characterized, indicates the absence of this motif from SVs 5-7 and 9. This 

implies that these variants of AZIN2 are incapable of binding and inactivating AZs. In 

addition to the AZ-binding site, the p47PHOX motif was detected from SVs 1–5 and 8–

10, although its functional significance in AZIN2 remains to be settled. The splicing 

variants lacking the AZ-binding site may be futile products of the spliceosome. 

However, they may also represent non-coding RNAs which are not intended to be 

translated but rather to regulate the translation process. 

 

The structural homologs and functional counterparts of AZIN2, ODC and AZIN1 are 

not alternatively spliced to the extent of AZIN2. The long 5’-untranslated region 

(UTR) of ODC is alternatively spliced to a short form in pancreatic tumor cells 

enabling an internal ribosomal entry site and fast, cap-independent translation. This 
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variant of the ODC transcript is more sensitive to cell-cycle changes (Pyronnet S et al. 

2005).  

 

Two antisera were raised in rabbits to AZIN2 by using the synthetic peptides 

STRDLLKELTLGASQATTDEVA (antiserum 2) and STRDLLKELTLGASQATT 

(antiserum 3), corresponding to amino acids 18–39 and 18–35 of AZIN2 sequence 

(RefSeq Accession NM_052998) as immunogens. The longer peptide spans from 

exon 1 to exon 3, leaving out exon 2 which is not included in the splicing variants 1–7 

and 9. The shorter peptide is encoded only by exon 1, thus being capable of 

recognizing all splicing variants, including variants 8 and 10 (IV, Fig S1). Another 

peptide antibody against rodent AZIN2 produced by López-Contreras et al. (2008b) is 

designed to recognize the boundary between exons 8–10, and therefore leaves out 

SVs terminating in exon 9.  

 

Two peptide antibodies differed in their ability to detect AZIN2 in different 

subcellular compartments. In brain, antiserum 3 detected a strong expression of 

AZIN2 in axons. It also stained pyramidal neurons of the neocortex with a lower 

intensity. Antiserum 2, in turn, recognized AZIN2 in the soma and apical dendrites of 

pyramidal neurons but not the axon-localized AZIN2 (IV, Fig 1). Testicular 

expression of AZIN2 detected by antiserum 3 was concentrated in Leydig cells, and 

to a lesser extent reacted with spermatogonial cells of seminiferous tubuli (III, Fig 1). 

Again, the distribution detected by antiserum 2 was more restricted; only 

spermatogonial cells were stained (unpublished data). It is surmised that this variation 

in the staining pattern was caused by the selective specificity of the antisera for 

different splicing variants of AZIN2. López-Contreras et al. (2008b) have reported the 

expression of AZIN2 in haploid germ cells of mouse testis, but they presented no data 

on the expression of AZIN2 in mouse Leydig cells. The seemingly discrepant findings 

on the distribution of AZIN2 in testis obtained with the present antibodies to the N-

terminus and the C-terminal antibody of López-Contreras et al. can be explained by 

their reactivity with different SVs of AZIN2 reflecting biological differences between 

human and mouse testis. 

 



 

 52 

The presence of several splicing variants of AZIN2 in human brain was demonstrated 

by RT-PCR with primers to exon I and XI (IV, Fig 2A), and further confirmed by 

western blotting with antiserum 3 against AZIN2. Two strong bands of AZIN2 were 

detected from the white matter, while an additional band of apparently larger size 

dominated in the blottings from the gray matter (IV, Fig 2B).  

 

Taken together, these results indicate that differently spliced variants of AZIN2 occur 

in the CNS and testis. Furthermore, these data suggest an anatomically divergent 

distribution of the different splicing variants of the protein. The functional role of 

these splicing variants of AZIN2 remains to be elucidated, but it is possible that the 

variants target their expression to specific cellular or sub-cellular distribution. 

 

2.3. Tissue distribution of AZIN2 

 

Whereas ODC is expressed in all types of living cells, with exception for certain 

archaea, the expression of AZIN2 seems to be restricted to higher eukaryotes (Homo 

sapiens, Pan troglodytes, Canis lupus familiaris, Bos taurus, Mus musculus, Rattus 

norvegicus, and Gallus gallus) as evaluated by HomoloGene, NCBI 

(http://www.ncbi.nlm.nih.gov/homologene/). In Xenopus laevis, the expression of an 

ODC homolog (XODC2) has been characterized, and that protein is presumably an 

AZIN2, as judged by its sequence homology (Kidron H et al. 2007). The expression 

of XODC2 in fetal frog is more restricted than XODC and is located e.g. in the 

forebrain (Cao Y et al. 2001). 

 

The transcription of AZIN2 was studied using mRNA Multiple Tissue Expression 

(MTE) array, RT-PCR, northern blotting, and in situ hybridization. With all these 

techniques, a high expression of AZIN2 was detected in brain and testis. In the MTE 

array, including samples from altogether 21 specified regions of human central 

nervous system, expression of AZIN2 was detected widely. Even greater amounts of 

AZIN2 transcripts were probed from testis (II, Fig 3). The expression of ODC was 

detected in all the tissues, although only moderate binding of the probe was seen in 

the dots from CNS. A similar expression pattern of AZIN2 was described by Lopez-

Contreras et al. (2006) in mouse tissues. Using quantitative PCR, they also showed a 
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predominance of AZIN2 over AZIN1 in mouse brain and testis, suggesting a 

compensatory regulative role for these homologs (Lopez-Contreras AJ, et al. 2008a). 

In addition, we have investigated the expression of AZIN2 by northern blotting of 

total RNA isolated from newborn and adult rat brain and testis. The expression of 

AZIN2 remained low/moderate in newborns compared to a more abundant expression 

in adult rat tissues (unpublished data). In mouse testis, the expression of AZIN2 was 

increasing on postpartum day 22, being nearly absent in newborns and increasing 

towards adulthood (Lopez-Contreras AJ et al. 2008b). Regunathan et al. (2000) 

studied the expression of AZIN2 in rat brain, although they falsely called AZIN2 

arginine decarboxylase (ADC). They measured the amount of mRNA and protein, and 

concluded that AZIN2 (ADC in their study) was expressed in all parts of the brain. In 

accordance with the present results and those of Lopez-Contreras, they showed an 

increase in the expression of AZIN2 upon neuronal differentiation. The expression 

data from mRNA samples invariably shows restricted distribution of AZIN2, which 

differs from the ubiquitous expression of ODC and AZIN1. This further suggests 

some restriction in the function(s) of AZIN2. 

 

With two validated polyclonal peptide antibodies, the presence of AZIN2 was 

screened by immunohistochemistry in different parts of brain, testis and some other 

human tissues. The tissues listed in Table 2 showed positive staining with AZIN2 

antibodies.  

Table 2. Human tissues and cell types in which AZIN2 is expressed detected by 
immunohistochemistry, mRNA dot blot, or in situ hybridization.  

FUNCTIONAL ENTITY ORGAN 
Nervous system central and peripheral 
Reproductive organs testis, ovary, uterus 
Neuroendocrine tissues adrenal, intestine, neuroendocrine tumors, 

pancreas, parathyroid, pituitary 
Tissues secreting or 
storaging 

breast, brown fat, lung, mast cell, stomach, sweat 
gland 

 
 

Immunohistochemical stainings from sections of human testis with the antibodies to 

AZIN2 revealed robust reactivity with the Leydig cells (III, Fig 1). A subtle granular 

positive signal was detected in spermatogonial cells. Occasional cells that represented 
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later stages of spermatogenesis, i.e. spermatocytes, also contained a few positively 

staining granules. Lopez-Contreras et al. (2008b) found a different distribution of 

AZIN2 in mouse testis. Their antibody to AZIN2 reacted mainly with haploid 

spermatids; they did not comment on the expression of AZIN2 in Leydig cells. Since 

Leydig cells were not visible in their micrographs, the estimate of the species-

dependent differences in the expression of AZIN2 is difficult to interpret. 

Furthermore, Lopez-Contreras et al. did not show any validation of their peptide 

antibody to mouse AZIN2. Interestingly, the interstitial Leydig cells in mouse testis 

have been found to express considerably higher ODC activity than the proliferating 

spermatogenic cells (Qian ZU et al. 1985) suggesting that it acts as an ODC inductor 

in these cells. 

 

Ovarian luteal cells produce steroid hormone similarly to the Leydig cells in testis. 

Immunohistochemical staining of sections from the ovaries of fertile women showed 

a strong expression of AZIN2 in luteal theca cells lining corpus luteum cysts (III, Fig 

2). No positive staining was seen in corpora albicantia or granulose cells of corpus 

luteum. Stainings of sections from postmenopausal ovaries revealed a strong 

positivity in the ovarian hilus cells which are responsible for progesterone synthesis.  

 

Intact ODC activity is needed for normal folliculogenesis and luteinization in mouse 

ovary (Bastida CM et al. 2005). Moreover, blocking of the preovulatory rise of ODC 

activity by in vivo treatment with DFMO abolished the secretion of progesterone by 

the corpus luteum (Bastida CM et al. 2002). Testosterone-producing Leydig cells of 

mature murine testis maintain high ODC activity (Qian ZU et al. 1985), whereas the 

ODC activity is lower in Sertoli and germ cells of adult rodents (Shubhada S et al. 

1989). Treatment with gonadotropins induces rapidly upregulated ODC activity in rat 

ovaries and testis (Osterman J et al. 1983, Maudsley DV et al. 1974). The 

gonodatropin-induced activation of ODC in gonads suggests that ODC has a role in 

the regulation of steroid hormone secretion or synthesis. ODC has a very short half-

life, and its de novo synthesis and release from an inactive complex with AZ is 

considered to occur in response to a stimulus, thus requiring the activity of AZIN. 

According to the results, AZIN2 could function as a part of a regulative machinery of 

ODC activity.  
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In human and murine testis, a testis-specific AZ, AZ3, is expressed, and the 

preliminary hypothesis was that ODC, AZ3, and AZIN2 form a regulatory triangle in 

polyamine synthesis in testis.  The in situ hybridization studies of sections of normal 

human testicular tissue with an AZ3 probe nevertheless revealed a positive signal 

only in spermatids of the seminiferous tubules (III, Fig 3a) as previously shown in 

murine testis (Lopez-Contreras AJ et al. 2008b). Thus, no expression of AZ3 was 

detected in Leydig cells, showing that AZIN2 and AZ3 are mainly expressed in 

different cells of the human testis. Instead, expression of AZ1 has previously been 

reported to occur in both Leydig cells and Sertoli cells (Tosaka Y et al. 2000). López-

Contreras et al. (2008b) have reported co-expression of AZIN2 and AZ3 in haploid 

germ cells of mouse testis. As mentioned above, it remains to be clarified whether the 

seemingly discrepant findings reflect biological differences between human and 

mouse testis, or differences of antibodies to detect alternatively spliced forms of 

AZIN2. In conclusion, the interaction between AZ3 and AZIN2 in haploid germ cells 

still needs to be studied further. Since no expression of AZ3 in Leydig cells or 

alternative splicing has been detected, it is likely that AZ1, rather than AZ3, is a 

regulatory counterpart of AZIN2 in Leydig cells. 

 

Despite its high expression in Leydig cells and ovarian luteal cells, Sertoli cells in the 

normal seminiferous tubules remained unstained with antibodies to AZIN2.  This 

applied also to hyperplasic Sertoli cells in testis biopsies from patients with germ cell 

aplasia or Sertoli cell-only syndrome. These results indicate that AZIN2 is not a 

general marker for endocrine cells in the gonads. The expression of AZIN2 was  also 

investigated in testicular neoplasms derived from either Leydig cells or germinal 

epithelium, and in ovarian thecomas. All of the Leydig cell tumors studied (n=4) 

stained positively for AZIN2 (III, Fig 1g, h). In addition, a scattered granular staining 

of AZIN2 was seen in ovarian thecomas (III, Fig 2d). Instead, no staining for AZIN2 

was seen in neoplasms derived from the germinal epithelium (seminomas (n=5), yolk-

sac tumors (n=2), or embryonal carcinomas (n=3), data not shown). However, as far 

as can be quantified from immunohistochemistry, the expression level of AZIN2 was 

lower in the neoplastic than in normal Leydig cells. The expression of AZIN2 seems 

to be restricted to more mature and terminally differentiated cells. The same 

observation was made when comparing the levels of AZIN2 mRNA in the brain and 

testis of newborn versus adult mice.  
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Different parts of the human brain were studied immunohistochemically for the 

expression of AZIN2 with two peptide antibodies (IV, Table 1). The neuronal tracts 

were strongly visualized in all studied areas. Axon bundles emerging from lamina V–

VI were strongly positive in the neocortex and white matter (IV, Fig 1). Also 

dendrites in the subpial plexus were visualized. In the hippocampus, AZIN2 was 

detected in axons of the dentate gyrus, of the perforant pathway, alveus, and 

entorhinal cortex. In the cerebellum, the axons of basket cells and Purkinje cells 

expressed AZIN2. Also the tracts of the thalamus and medulla oblongata showed 

abundant reactivity. Staining of the temporal and frontal lobe visualized AZIN2 also 

in the soma of medium and large pyramidal neurons in lamina III–V. However, the 

expression of AZIN2 in the somas of pyramidal neurons differed between adjacent 

areas in the neocortex, giving an impression of spatial and/or temporal regulation of 

AZIN2 expression. This might implicate a selective expression of AZIN2 in cells with 

certain neurotransmitters, or as a response to neuronal activation. In situ hybridization 

further demonstrated the regional distribution of cells expressing AZIN2 mRNA. In 

addition to the neocortex, somas of some neurons in the medulla oblongata and 

Purkinje and basket cells in the cerebellum also expressed AZIN2. Neurons of the 

hippocampus, basal ganglia, and thalamus expressed only minor reactivity with 

antiserum 2. In the sections from the temporal lobe, AZIN2 was occasionally detected 

in the cytoplasm of oligodendrocytes. Kindling and other strong electrical stimuli 

evokes also expression of ODC in glial cells {{3 Bernstein,H.G. 1999; }}. In 

accordance with the expression pattern and cell type specificity of AZIN2 determined 

from testicular tissues, this protein functions only in terminally differentiated cells. 

Considering the variety of cellular functions in which ODC and polyamines 

participate, it seems likely that their inductors AZIN1 and AZIN2 not only are 

differently distributed but also replace each other in the regulation of different cellular 

phenomena. It is noteworthy that AZIN1 and AZIN2 are also expressed 

simultaneously in certain cell types, including neurons and Leydig cells. This fact 

further emphasizes the selectivity in their regulatory functions. The distribution in 

different subcellular compartments could provide a mechanistic way to elucidate the 

relative roles of AZIN1 and AZIN2 in the regulation of ODC. 
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2.4. Subcellular distribution of AZIN2 

 
In order to understand the biological role of AZIN2, its intracellular localization is of 

fundamental importance. The current knowledge of the distribution of AZIN2 in 

subcellular compartments is derived from immunohistochemical stainings and cell 

fractionation studies.  

 

 

Figure 4. Antizyme (AZ), antizyme inhibitor 1 and 2 (AZIN1-2), ornithine 
decarboxylase (ODC), and polyamines (PA) are localized in various intracellular 
organels. 1. nucleolus, 2. nucleus, 3. ribosome, 4. vesicle, 5. rough endoplasmic 
reticulum, 6. Golgi apparatus, 7. cytoskeleton, 8. smooth endoplasmic reticulum, 9. 
mitochondrion, 10. vacuole, 11. cytosol, 12. lysosome, and 13. centriole. The original 
figure of the morphological cell was produced by Messer and Szczepan (Wikipedia, 
cc-by-sa).  

 

Immunohistochemical stainings invariably show a vesicular or granular distribution of 

AZIN2 in human cells. In the somas of neurons, these vesicle-like structures which 

contain AZIN2 were visualized in the soma close to the plasma membrane (IV, Fig 

3A). In axons, AZIN2 was also observed in granular or vesicle-like structures along 

the processes (IV, Fig 3B). As in the somal area, AZIN2 was localized close to the 

inside of the plasma membrane following the outer boundaries of the neurite. The 

vivid traffic of neurosecretory granules along the axonal cytoskeleton depends greatly 
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on the activation of small G proteins (for a review, see Ng EL et al. 2008). Given the 

present results on the regulation of cytoskeleton dynamics via the polyamination of a 

G protein RhoA (I), it is tempting to speculate that AZIN2 might regulate ODC-

dependent local polyamination of also other G proteins involved in the traffic of 

neurosecretory vesicles. 

 

A distinct granular distribution of AZIN2 was found in the lateral neurons of the 

medulla oblongata (area of spinal trigeminal and ambiguous nuclei) and the Purkinje 

cells of cerebellum. This staining was not restricted to the vicinity of the plasma 

membrane, but was rather dispersed throughout the cytoplasm and along the apical 

dendrite. A similar vesicular distribution of AZIN2 was detected in several types of 

endocrine and secreting cells (Fig 5), e.g. in the Leydig cells and spermatogonia of 

testis (III, Fig 1). The vesicular distribution of AZIN2 has also been clearly 

demonstrated in mast cells. The vesicle traffic of serotonin granules was linked to the 

distribution and expression of AZIN2 as well as to the catalytic activity of ODC 

(Kanerva K et al. 2009). 

 

Figure 5. The expression of antizyme 
inhibitor 2 in human sweat gland 
detected by immunohistochemistry. 
The glandular parts show high vesicle-
like expression whereas in ductal parts 
(indicated by arrowheads) the 
expression is low or absent. 

 

 

The association of AZIN2 with membranes was demonstrated from membrane 

fractions of cultured cells transfected with flag-tagged AZIN2 (Lopez-Contreras AJ, 

et al. 2006). No mitochondrial localization of AZIN2 could be detected by our 

doublefluorescent stainings with antibodies to AZIN2 and MitoTracker (Molecular 

Probes) (Kanerva K et al. 2008) even though this has been suggested earlier (Lopez-

Contreras AJ et al. 2006). When epitope-tagged AZIN2 localization was studied in 

more detail, AZIN2 localized to the ER-Golgi intermediate compartment and the cis-

Golgi network (Lopez-Contreras AJ et al. 2009). This further emphasizes  that AZIN2 
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is likely associated with vesicle trafficking. However, the subcellular localization of 

AZIN2 from transfected cells has to be interpreted with caution since overexpression 

due to efficient transfection might saturate the cellular compartments and contort the 

intracellular distribution. An additional epitope linked to a protein may also influence 

the subcellular distribution. 

 

There are only a few studies on the intracellular distribution of AZIN1. It is 

considered, however, to be diffusely distributed over the cytoplasm and is also found 

in the nucleus (Lopez-Contreras AJ et al. 2009). The nuclear localization fits with its 

function in the regulation of cell proliferation. Interestingly, we have occasionally 

observed nuclear staining of also AZIN2 in tissue specimens detected by 

immunofluorescence and immunohistochemistry and also more frequently in cultured 

cells transfected with AZIN2 (IV, Kanerva K et al. 2009, and our unpublished data).  

 

2.5. Functional implications of AZIN2 

 
AZIN2 has no known catalytic activity, and functions inside a cell in regulating the 

concentration of polyamines. Although less efficiently than AZIN1, AZIN2 binds the 

ODC inhibitor AZ and liberates ODC monomers, enabling the formation of 

catalytically active homodimers of ODC (Kanerva K et al. 2008, Snapir Z et al. 

2008a). In addition, AZIN2 increases the uptake of polyamines to the cell (Lopez-

Contreras AJ et al. 2008a). The amount of AZ is controlled independently of AZIN: 

the transcription is upregulated by high a polyamine concentration, and AZ is 

ubiquitinated to signal degradation (Gandre S et al. 2002). Nevertheless, AZIN1 and 2 

may function as local inductors of polyamine synthesis in selected subcellular 

compartments. 

 

AZIN1 is distributed ubiquitously, and its expression is stimulated by mitotic 

signaling (Nilsson J et al. 2000). It is also highly expressed in certain cancers, 

indicating a role in cell transformation and malignant growth (Jung MH et al. 2000, 

Schaner ME et al. 2005, Keren-Paz A et al. 2006). Instead, AZIN2 expression was 

low or absent in cancer cell lines (II, Fig 3) and it is less potent in stimulating growth 

(Snapir Z et al. 2008a). Our results show high expression of AZIN2 in terminally 

differentiated cells, including neurons, Leydig cells, luteal ovarian cells and mast 
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cells, implying that it is evidently not connected with cell proliferation. It thus appears 

that AZIN1 and AZIN2 regulate ODC for different purposes (III, IV, Kanerva K et al. 

2009).  

 

In the steroid-hormone-producing cells of testis and ovary, the activity of ODC is 

stimulated by luteinizing hormone (LH) (Osterman J et al. 1983, Maudsley DV et al. 

1974). Analogously, in the adrenal, where we have detected AZIN2 expression, 

adrenocorticotropin stimulates the activity of ODC (Levine JH et al. 1973). 

Furthermore, DFMO-mediated inhibition of LH-induced stimulation of ODC activity 

dramatically decreased the production of progesterone in mouse corpus luteum 

(Bastida CM et al. 2002). These observations indicate that polyamines and ODC have 

an important role in the regulation of steroid hormone synthesis and/or release. 

Evidence for a connection between the AZIN2-polyamine system and cellular 

secretion was also obtained from mast cells. These cells contain large granules which 

are released upon stimulation. The intracellular localization of AZIN2 to vesicle-like 

structures proceeded along with granule movement, and its expression was elevated 

also in degranulating mast cells (Kanerva K et al. 2009). Inhibition of ODC by 

DFMO prevented the release of serotonin granules. These findings suggest that 

AZIN2 has a functional role in mast cells in vesicle movement as a regulator of 

polyamines.   

 

Polyamines and ODC are related to the functional regulation of ion channels in the 

CNS. The inward rectifier K+ channels that regulate membrane potential and cell 

excitability are blocked by polyamines (Fakler B et al. 1994, Ficker E et al. 1994, 

Lopatin AN et al. 1994). Polyamines also inhibit the AMPA- and kainate-dependent 

fast depolarization of glutaminergic synapses, and thereby modulate neurotransmitter 

signals (Kamboj SK et al. 1995, Bowie D et al. 1995). The N-methyl D-aspartate type 

excitatory glutamate receptors (NMDAR) form glutamate-gated ion channels in the 

brain and mediate synaptic plasticity which is pivotal for cognitive functions, such as 

memory and learning (Bliss TV et al. 1993). NMDARs are regulated by polyamines 

in multiple ways: the binding of polyamines from the extra- or intracellular side to 

NMDAR can either enhance or inhibit the influx of Ca2+ (Araneda RC, et al. 1999, 

Benveniste M et al. 1993, Durand GM et al. 1993). Pretreatment of cultured mouse 

cortical neurons with DFMO abolished NMDA-induced neurotoxicity (Markwell MA 
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et al. 1990). This indicates that intracellular levels of polyamines are involved in the 

functioning of NMDAR. Since AZIN2 regulates polyamines, double 

immunofluorescence was used to investigate the interrelationship between AZIN2 and 

NMDAR. All the cells expressing AZIN2 were also positive for NMDAR1, even 

though NMDAR1 was more widely distributed, and AZIN2 showed a more restricted 

pattern of expression. This demonstrates overlapping localization of AZIN2 and 

NMDAR1 in the cytoplasm of large pyramidal cells in the neocortex of normal brain 

(IV, Fig 4). Although the molecular details are largely unknown, the local regulation 

of the ODC activity and the concentration of polyamines are obviously important for 

the functioning of the channels and for neurotransmitter signalling. In biochemical 

assays, AZIN2 not only stimulates the intracellular polyamine synthesis, but also 

regulates the local extracellular concentration by enhancing the uptake of polyamines 

(Kanerva K et al. 2008, Lopez-Contreras AJ et al. 2008a). NMDARs circulate 

constantly between the synaptic plasma membrane and cytoplasmic vesicles upon 

neuronal activation and sensory experience, thereby contributing to long-term 

potentiation (Grosshans DR et al. 2002, Quinlan EM et al. 1999). Vesicles containing 

NMDAR are transported along microtubules to the postsynaptic density and 

extrasynaptic areas (Washbourne P et al. 2002, Tovar KR et al. 1999). Given that 

polyamines regulate NMDAR, AZIN2 might influence glutamate-mediated signalling 

by controlling the local synthesis of polyamines.  

 

Most of the ODC in the brain is bound to antizyme which blocks its enzymatic 

activity (Laitinen PH et al. 1986, Laitinen PH 1985, Laitinen PH et al. 1985). 

However, various stimuli, including electrical and chemical stimulation, and 

traumatic injuries, activate ODC (Pajunen AE et al. 1978, Bondy SC et al. 1987, 

Martinez E et al. 1991, Baskaya MK et al. 1996, Dienel GA et al. 1984). Elevated 

ODC activity and concentration of putrescine have been detected in the brain in 

pathological conditions such as ischemia and Alzheimer’s disease (AD) (Lukkarinen 

JA et al. 1999, Keinänen R et al. 1997, Bernstein HG et al. 1995, Morrison LD et al. 

1995, Morrison LD et al. 1998, Paschen W et al. 1991). In AD, the pathological 

accumulation of β-amyloid induces activation of ODC, in addition to its ability to 

provoke the generation of neurotoxic reactive oxygen species (Nilsson T et al. 2006b, 

Behl C et al. 1994, Hensley K et al. 1994). Putrescine functions as a scavenger of free 
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radicals and thereby buffers the cytotoxic effects of ROS (Yatin SM et al. 2001). 

Yatin et al. have further shown that β-amyloid, in addition to inducing ODC activity, 

also stimulates polyamine uptake (Yatin SM et al. 1999). The cellular uptake of 

polyamines and the induction of ODC activity are regulated by AZINs. The 

expression of AZIN2 in 15 human brains affected by AD was studied in sections from 

the frontal lobe and the hippocampus (IV, Fig 5). The regional variation of AZIN2 

expression seen in normal brain was abolished and, instead, virtually all the pyramidal 

cells in the frontal cortex stained positively for AZIN2. The individual cells of the AD 

brains also appeared to contain larger amounts of AZIN2. In the pyramidal cells, 

AZIN2 was seen in large aggregates or in vacuoles. The hippocampal regions CA1-3 

of AD brains displayed a robust expression of AZIN2 that was not found in samples 

of normal brain. In the axons, which appeared swollen, AZIN2 was accumulated in 

vacuole-like aggregates that were larger than those seen in the axons of normal brain 

tissue. The subcellular localization of ODC has also been reported to be influenced by 

AD. Nilsson et al. found evidence for translocation of ODC from the nucleus to the 

cytoplasm of neocortical pyramidal cells in the early phase of AD. In addition, 

elevated expression of ODC was found in Purkinje cells of the cerebellum and in the 

hippocampus of AD brains (Nilsson T et al. 2006a). Elevated expression of AZIN2 

was also detected in Purkinje cells and the hippocampus in AD. However, earlier 

reports on the immunohistochemical location of ODC have to be considered with 

caution since the antibodies used were raised before the identification of AZIN2. 

They may therefore have caused substantial cross-reactivity due to the high degree of 

structural homology between ODC and AZIN2. The accumulation of AZIN2 in AD 

may nevertheless provide neuroprotection by enhancing the production and uptake of 

putrescine stimulated by β-amyloid. 

 

The expression of AZIN2 in the brain was not increased in the other 

neurodegenerative diseases studied. In the samples from patients with CADASIL 

dementia and from patients with dementia with Lewy bodies (DLB), the expression of 

AZIN2 was similar to that seen in samples from the corresponding areas of normal 

brain. The neuronal accumulation of AZIN2 is therefore merely a feature of AD. 

Polyamines, and in particular spermine, have been associated with the pathogenesis of 

Lewy body dementia and Parkinson’s disease. The binding of spermine to α-
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synuclein provokes its folding and leads to the formation of aggregates (Grabenauer 

M et al. 2008). The aggregation of α-synuclein is considered to be a major 

pathological event in these neurodegenerative diseases. It would be of interest to 

study whether yet uncharacterized splicing variants of AZIN2 are related to 

Parkinson’s disease, or whether there is an accumulation of AZIN1 in these 

pathological states. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 

 
 
A novel molecular mechanism was introduced by which ODC and polyamines 

regulate the reorganization of actin cytoskeleton.  The small G protein RhoA is 

polyaminated by transglutaminase, leading to its activation. Activated RhoA induces 

changes in cytoskeletal dynamics. Polyamination of RhoA occurs physiologically 

during mitosis, and explains why polyamines are needed for the cell cycle to the 

progress from mitosis to G1. During cytokinesis, active RhoA is known to accumulate 

in cleavage furrow and to regulate the contractile actin-myosin fibers in the mitotic 

spindle.  

 

Polyamine synthesis is not the only way by which ODC controls the functioning of 

RhoA. The membrane translocation of ODC, which is crucial for its transforming 

capacity, either directs RhoA to the vicinity of the plasma membrane, or is needed for 

the local maintenance of active RhoA. It is of importance since RhoA is active in the 

membrane and inactive in the cytoplasm. 

 

Constitutive overexpression of ODC leads to the transformation of NIH 3T3 cells, and 

high activity of ODC has been observed in many cancers. Cytoskeletal 

rearrangements are a major event in proliferation, attachment, and migration of cells. 

Thus, they play a crucial role in transformation and the behaviour of malignant cells. 

The results provide a mechanistic link between polyamines and the actin 

cytoskeleton, and help in understanding how polyamines influence cell 

transformation. In the future, it would be interesting to evaluate the polyamination 

status of RhoA in different types of malignant cells and to test the tumor promotion 

and metastasizing capacity of cells in which the polyamination of RhoA is 

manipulated. 

 

A new member has been characterized in the polyamine-regulative family in addition 

to ODC and AZIN1. This novel protein was devoid of ODC activity and was termed 

as AZIN2. The expression of AZIN2 was mainly found in terminally differentiated 

cells including neurons and Leydig cells. This suggests that the  role of AZIN2 differs 
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from that of AZIN1, which is implicated in the regulation of growth and proliferation. 

Another distinction from AZIN1 is the extensive alternative splicing of AZIN2 

transcripts. It appears evident that there is selective expression of variants between 

cell types and even subcellular compartments. However, the ultimate biological 

significance of these remains to be determined. 

 

Immunohistochemical stainings of sections from different human tissues appoint to 

their correlation with vesicle function. The high expression of AZIN2 in testosterone-

producing Leydig cells and progesterone-secreting luteal cells of male and female 

gonads, respectively, suggest an association with secretion and vesicle function. 

Future aims will be focussed more closely on the vesicles to which AZIN2  localizes, 

and the role of AZIN2 in vesicle function will be investigated. 

 

In brain, polyamines regulate NMDA-type glutamate receptors responsible for 

excitatory signalling, as well as Kir channels which monitor the threshold for action 

potentials. As AZIN2 colocalizes with NMDAR1 in human brain, it would be of 

interest to study whether AZIN2 serves as a local inductor of polyamine synthesis in 

the vicinity of glutamate receptors and in this way regulates their function. An 

accumulation of AZIN2 in neurons was detected in AD. Whether it is a consequence 

of pathological changes in neurons or a part of pathogenesis itself remains to be 

clarified. However, this result emphasizes the importance of studying further the role 

of polyamines and ODC in AD. However, the accumulation of AZIN2 is not a general 

response to neurodegeneration, since no accumulation was detected in neurons from 

patients with CADASIL or dementia with Lewy bodies. 
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