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Abstract

In genetic epidemiology, population-based disease registries are commonly used to

collect genotype or other risk factor information concerning affected subjects and

their relatives. This work presents two new approaches for the statistical inference of

ascertained data: a conditional and full likelihood approaches for the disease with

variable age at onset phenotype using familial data obtained from population-based

registry  of  incident  cases.  The  aim  is  to  obtain  statistically  reliable  estimates  of  the

general population parameters. The statistical analysis of familial data with variable

age at onset becomes more complicated when some of the study subjects are non-

susceptible, that is to say these subjects never get the disease. A statistical model for a

variable age at onset with long-term survivors is proposed for studies of familial

aggregation, using latent variable approach, as well as for prospective studies of

genetic association studies with candidate genes. In addition, we explore the

possibility of a genetic explanation of the observed increase in the incidence of Type

1 diabetes (T1D) in Finland in recent decades and the hypothesis of non-Mendelian

transmission of T1D associated genes. Both classical and Bayesian statistical

inference were used in the modelling and estimation. Despite the fact that this work

contains five studies with different statistical models, they all concern data obtained

from nationwide registries of T1D and genetics of T1D. In the analyses of T1D data,

non-Mendelian transmission of T1D susceptibility alleles was not observed. In

addition, non-Mendelian transmission of T1D susceptibility genes did not make a

plausible explanation for the increase in T1D incidence in Finland. Instead, the

Human Leucocyte Antigen associations with T1D were confirmed in the population-

based  analysis,  which  combines  T1D  registry  information,  reference  sample  of

healthy subjects and birth cohort information of the Finnish population. Finally, a

substantial familial variation in the susceptibility of T1D nephropathy was observed.

The presented studies show the benefits of sophisticated statistical modelling to

explore risk factors for complex diseases.
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1. Introduction

All the five papers presented in this thesis introduce new ideas of statistical inference in

genetic-epidemiological family studies of complex diseases with variable age at onset. In

papers I-III classical statistical inference is applied and in papers IV-V Bayesian inference is

preferred to obtain estimates of the model parameters and their variation. A common theme in

papers I-IV is the estimation of population parameters of interest when the observed familial

data have been selected – ascertained – from a population-based disease registry of incident

cases of T1D. Phenotype-based selection of families, ascertainment, is a common way of

collecting data in genetic studies of rare human diseases. Although different statistical models

are used in each of the five papers: multinomial model (paper I), Poisson model (paper II),

fixed effect long-term survivor model (paper III), discrete time hazard model (paper IV) and

random effects long-term survivor model (paper V) all of these models are applied to the

genetics of T1D or Diabetic Nephropathy.

All  the  data  used  in  the  analysis  comes  from two nationwide  population-based  registries  of

T1D in Finland. None of the currently available statistical methods for genetic analyses of

variable age at onset phenotype is directly applicable to the problems of population-based

family data: how to model the variable age at onset phenotype (trait) and account for

population-based ascertainment of variable age at onset disease in the statistical analysis.

Statistical analyses of non-randomly collected family data in genetics dates back to the

founders of the classical statistical inference (1) and has gained increasing interest in recent

years, because of the rapid improvement in computational capabilities needed by complex

statistical models (2,3).

Survival analysis of times to event of interest has been utilized many decades in

epidemiological studies and has been applied increasingly to the genetic studies of complex

diseases with variable age at onset (4). Many common complex diseases, such as coronary

heart disease and different forms of diabetes, share two important characteristics: disease can

be  diagnosed  at  any  age  and  not  all  subjects  become  affected  during  their  lifespan.  It  thus

seems natural to assume that subjects can be classified into those who are susceptible to the
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disease and those who are not – called non-susceptible (5). In papers III and V the framework

of long-term survivors (6) is modified for genetic studies of familial aggregation and

association.

Problems of statistical inference in all of the five papers in this dissertation originated from

the familial data collected in studies of the genetics of T1D or its complications. The detailed

pathogenesis  of  T1D  remains  unsolved,  although  the  primary  role  of  Human  Leucocyte

Antigen region (HLA), located in chromosome 6q, in T1D risk has been well established

since the early 1970’s (7) and later confirmed by genome-wide studies (8,9). Yet there are

still many unresolved issues related to the more detailed characterization of the gene(s) in the

HLA region (10). In this work, articles I, III and IV concern hypothesis of the genetic

influence  of  HLA-A,  HLA-B  and  HLA-DRB1  loci  on  T1D  risk.  Paper  II  is  not  directly

related to HLA but explores possible genetic effects to explain the observed increasing trend

in the incidence of T1D in Finland, assuming a causal variant with effects identical to those

observed  for  the  HLA-DR3,4  genotype.  In  paper  IV,  familial  aggregation  of  the  partially

latent susceptibility and age at onset of nephropathy among Type 1 diabetics is modelled and

estimated.

The aims of this dissertation were to develop statistical methods to analyze registry-based

data and on the other hand characterize genetic effects of HLA A, B and DR loci both to age

at onset and to susceptibility of T1D. Next, an overview of the statistical techniques in genetic

epidemiology with focus on variable age at onset phenotype, ascertainment and genetic

association is presented. A short introduction to the epidemiology and especially genetic

epidemiology of T1D is given next. The study designs and data collection in the DiMe and

the DERI studies are then described. The proposed statistical models and inference are

described and results concerning T1D are presented, with discussion of the models and results

at the end of the thesis.
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2. Genetic epidemiology

Genetic  epidemiology  may  be  viewed  as  the  study  of  the  joint  action  of  genes  and

environmental factors in causing disease in human populations and their patterns of

inheritance  in  families  (11).  It  is  then  evident  that  genetic  epidemiology  focuses  on  the

familial, especially genetic, determinants of disease. The process of establishing genetic basis

of a phenotype in genetic epidemiology, depending on the questions asked and data at hand,

can be classified  as follows (articles in this thesis are given by Roman numerals):

� Analysis of familial aggregation: Does the potentially genetically determined

phenotype aggregate in families? (paper V)

� Segregation analysis: Find a genetic model that adequately explains patterns of

phenotypes in families (paper V)

� Linkage analysis: Determine the approximate chromosomal location of disease

gene(s) using information on the known locations (markers) in the chromosome(s)

� Association analysis: Localize the gene in more detail, look for association with

candidate genes, characterise possible causal genes (papers I-IV)

� Gene effects – gene expression, microarrays etc. Does the polymorphism affect

mRNA?

2.1 Summary of the basics of Human Genetics

Human DNA is organized in 46   chromosomes – 22 homologous pairs and two sex-specific

chromosomes (called X and Y). Each chromosomal strand is made of sequence of nucleotide

bases of four types: adenine (A), cytosine (C), guanine (G) and thymine (T), which are bound

by covalent bonds. Double-stranded DNA is replicated by breaking the two strands and then

constructing a new complementary strand for each. A single strand of DNA may also act as a

template for a complementary strand of RNA.  In this transcription RNA is identical to DNA,

but T is replaced by U (Uracil). Genes are regions of DNA from which the transcribed DNA

encodes to tell the cell how to construct aminoacids to make proteins. Genes contain regions

of variable length called exons and introns. Mature RNA is processed by cutting out introns.
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In translation, the splices the exonic sequencies produce mRNA, which codes for proteins.

The ability of genes to alterate protein function is the basis of genetic influence on

phenotype(s).

According to Mendel’s first law, each parent donates one of each pair of the chromosomal

strand with equal probability.  At a given locus, many different forms of gene representing

individual mutations may exist, called alleles. Alleles are differentiated by the repeats of

nucleotide bases. An unordered pair of alleles at the same locus is called a genotype.

Genotype can be treated as unobserved variable in the statistical analysis. When the parental

source of alleles is known genotype can be called ordered genotype.  A combination of alleles

at multiple loci along same chromosomal strand is known as haplotype. A heterozygous

individual carries two different alleles, while an homozygous individual has two copies of the

same allele. Observable, already known locations in the chromosomal strands are called

markers, and two types of markers are currently widely used in genetic epidemiological

studies: microsatellite and single nucleotide polymorphism markers (SNPs). Markers can be

highly polymorphic, that is genes usually have many possible alleles or markers that contain

only some simple aminoacid sequences. Some regions in human genome, like HLA region in

chromosome 6, are highly polymorphic.  Markers at the HLA region have until recently been

typed with serological methods, based on the antibody production, rather than modern PCA-

based genotyping or more recent high throughput methods (9).

Our ability to locate disease genes in linkage and association studies in humans is based on

the cross-over (meiotic recombination) events during meiosis. Meiosis is a special case of cell

division where sperm and egg cells are created. In meiosis the DNA material can be changed

in a cross-over event when DNA from one parental strand switches to another parental strand.

There are several phases in meiosis as described in Figure 1, where cross-over occurs in

Prophase 1. There homologous chromatids pair up and form physical connections

(chiasmata). DNA strands break up and swap material from one chromosome to material from

another. This results gametes having material from both homologues of a chromosomal pair.
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Figure 1. Phases of meiosis (www.accessexcellence.org/AB/GG/meiosis.html)

In Figure 2, a cross-over event has occurred somewhere between A and B loci. During

prophase I the four available chromatids are in tight formation with one another. While in this

formation, homologous sites on two chromatids can mesh with one another, and may

exchange genetic information. In Figure 2, a part of the maternal chromatid containing A7,

are joined with paternal chromatid containing B2 to form a recombinant chromatid and

similarly another recombinant chromatid containing  A5 and B3 is formed.
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Figure 2. Crossing-over event, producing two recombinant and two non-recombinant
chromatids.

The frequency of recombination between two locations depends on their distance, because

recombination can occur with small probability at any location along chromosome. Under the

assumption that crossover event occur randomly the expected number of crossover events can

be modeled using the Poisson model, resulting a Haldane’s map function. This is the most

simply function that relates recombination fractions to map distances. Genetic Linkage

analysis relies on the fact that if a marker is passed down through a family consistently with

the disease then it can be said that gene with a functional effect is located close to that marker.

Linkage analysis has been less successful to locate genes influencing complex diseases than

monogenic diseases, mainly due to lower statistical power (12). Therefore, genetic association

studies have been used to dissect genetics of complex diseases and later in this thesis

principles of genetic association are described.

2.1.1 Human Leucocyte Antigen

The Major Histocompatibility Complex (MHC) is a large gene-dense region in the genome of

most mammalians. It plays an important role in the immune system and reproduction

vertebrates. In humans MHC is known as the Human Leukocyte Antigen system (HLA). HLA

consists of series of closely linked and highly polymorphic genes, spanning about 4 Mb on the

short arm of the chromosome (6p21.1-6p21.3). HLA genes can be classified into three major

subgroups: class I, class II and class III. This grouping is based on the encoding functions and
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expression of the molecules (13). HLA-A and HLA-B loci belong to class I and HLA-DR to

class II. Locations of the HLA-A, HLA-B and HLA-DR loci, studied in the papers I, III and

IV, are shown in Figure 3.

Figure 3. Locations of HLA-A, HLA-B and HLA-DR loci on chromosome 6.

At the moment, all the known loci at the HLA have currently nearly 3,000 alleles that have

been detected in the human population (http://www.ebi.ac.uk/imgt/hla/stats.html, last updated

October 2007), of these the most variable are HLA-B and HLA-DR(B1). Known variant

alleles according to the international ImmunoGenetics –project (IMGT-HLA) database for

loci studied in here are HLA-A 617, HLA-B 960 and HLA-DRB1 626. The first complete

DNA sequence and gene map of HLA was published in 1999, and estimated 224 genes in the

region (14). To keep track on the alleles of various loci at the HLA region, there is a

nomenclature concerning HLA and it is evaluated at every two years. Two systems of the

nomenclature can be applied to the naming of HLA alleles:

1) The older system is based on serological (antibody-based) recognition. In this system

antigens were assigned letters and numbers (e.g. HLA-DR4 or, shortened, DR).

Because  all  the  HLA  genotype  data  of  the  Childhood  Diabetes  in  Finland  study
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(DiMe) in this dissertation is obtained with serological methods we use this notation

of the HLA-A, HLA-B and HLA-DR alleles.

2) The “newer” system is based on the nucleotide sequencing based recognition of the

alleles and thus allows for more refined definition of alleles. A "HLA" is used in

conjunction with a letter * and four or more digit number (e.g. HLA-B*0801,

A*68011, A*240201N N=Null) in order to designate a specific allele at a given HLA

locus.

The MHC genes and the cell surface protein molecules encoded by the MHC play a critical

role in T-cell recognition and thus in human immune system. The HLA system, by virtue of

its extreme polymorphism, ensures that few individuals are identical and thus the population

at large is well equipped to deal with attack. Because some HLA antigens are recognised on

all of the tissues of the body (rather than just blood cells), the identification of HLA antigens

is  described  as  "Tissue  Typing".   Routine  tissue  typing  identifies  the  alleles  at  three  HLA

Class  I  loci  (HLA-A,  HLA-B,  HLA-C)  and  three  Class  II  loci  (HLA-DR,  HLA-DP)  and  is

based on the structure of the antigens produced and their function. Class I genes encode

glycoproteins  expressed  on  the  surface  of  almost  all  nucleated  cells  of  the  body and  class  I

molecules are encoded by the A, B and C region in humans. Class II genes encode

glycoproteins expressed primarily on antigen-presenting cells (macrophages, dendritic cells,

B cells) where they present the processed antigen to the T helper cells. These molecules are

encoded by the class II  region. HLA Class I  genes and the HLA Class II  genes each spread

over approximately one third of the length of HLA region. The remaining section sometimes

called class III, contains loci responsible for complement, hormones, intracellular peptide

processing and other developmental characteristics, including tumour necrosis factor (TNF).

These loci are not actually a part of the HLA complex, but since they are located within the

HLA region are included in the nomenclature, because its components are either related to the

functions of HLA antigens or are under similar control mechanisms to the HLA genes. The

HLA region has been shown to link and/or associate to many diseases, including T1D (9).

2.2 Fundamental concepts in genetic epidemiology
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The first step in studies of genetic epidemiology uses descriptive methods to document

familial aggregation for trait that cannot be explained solely by environmental factors. In the

next step, heritability is studied. When the phenotype is continuous, heritability means the

proportion of variation in trait due to genetic factors. Variance component or path models are

commonly used statistical methods in heritability studies. When the phenotype is

dichotomous (e.g. healthy, affected) there is a threshold in the latent liability (continuous)

describing the cutoff point which divides subjects into the two groups. Segregation analysis

tests models of inheritance on family data and does not require observed genetic markers,

which are polymorphic genes whose physical locations are known. Any possible phenotype

can be analysed in segregation analysis e.g. dichotomous, continuous or censored continuous.

Modern genetic association studies use information on the historical recombinant events that

could cause linkage disequilibrium, and there are sophisticated statistical methods for the

analyses of genetic data to localise and characterize in more detail gene responsible of

variation in phenotype. Genetic association studies have become more popular when dense

marker maps have become available using microsatellite markers or SNP’s.

Segregation analysis compares patterns of trait in families to some pre-specified inheritance

model. In order to relate genes or markers to the phenotype, we need a mathematical function

describing the relationship. This function is called penetrance and it gives a probabilistic

model that relates genotypes to phenotype using a conditional probability function:

P(phenotype | gene(s) and/or environmental factors). In all of the studies presented here,

phenotype is a variable age at onset phenotype. The simplest directly observably phenotype is

binary (affected/healthy), but it can be continuous (cholesterol, blood pressure). This

dissertation focuses on phenotype with variable age at onset, because T1D can be diagnosed

at any age in contrast to phenotypes expressed immediately at birth.

2.3 Statistical inference in genetic epidemiology

Statistical inference is based on assuming a probabilistic model which could have produced

the data. Because both classical (frequentist) and Bayesian statistical inference is used in this

thesis, a short overview of both is given. The classical inference is based on the mathematical
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probability density function of the data � �Y,...,YY n1� given the unknown but fixed model

parameters �: � ��|Yf .  If the observations can be assumed to be independent and identically

distributed (i.i.d.), the likelihood function of the observations is simply a product of the

density functions of each observation, i.e. � � � ��
�

���
n

i
i |Yf|Yf

1
. Maximum likelihood

estimator is the value of �, which maximizes the above likelihood function. The classical

statistical inference relies on the assumption that the mechanism which generated the data

remains unchanged, and the data generation process can be repeated. This classical

framework has been applied to the data analysis in papers I-III. Note that in the context of

classical inference the density function describes the generation of the data. In the genetic

epidemiology observations are rarely independent because commonly we observed data from

relatives (pedigrees). In order to analyze data of dependent observations one can use

multivariate distributions or introduce unobserved latent random variables. Familial

dependency in the age at onset and susceptibility were accounted for using latent variable

approach in paper IV in this thesis.

The research questions in papers IV and V were modelled using Bayesian inference. The core

of the Bayesian inference is the joint probability density of the observed data Y and �, which

is treated as random variable in the analysis unless value is known. The statistical inference is

based on the posterior distribution of

� � � �
� �

� � � �
� � � � � �,|Yf
Yf

|Yf
Yf

YfY|f ���
��

�� gg�,�

where � �Yf  is  the  marginal  probability  density  function  of  the  data  obtained  either  by

summing over � � � ��� g|Yf  if � is discrete or integrating if � is continuous, � ��|Yf  is the

likelihood function and � ��g  is the prior density function which incorporates researchers

beliefs (in probability formulation). If the value of � is unknown it needs to be defined. This is

done by the researcher by defining a prior distribution of �. We end up with a posterior

density, which in fact is the prior multiplied by the likelihood. If the prior is vague, inference

is dominated by the data and similarities with classical approach can occur. Bayesian methods

provide natural tools to deal with missing/latent data by sampling from the posterior

distribution of missing data than the classical approach. Because the posterior distribution

rarely can be solved analytically, developments in numerical methods and computer capacity
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have made possible to apply Bayesian modelling increasingly also to genetic epidemiology

(15). Computationally intensive methods are needed to obtain samples of the posterior

density. One of the oldest methods is Metropolis-Hastings algorithm (16), which was used in

paper IV to obtain samples from the joint posterior of missing susceptibility status and the

model parameters. In paper V several sampling algorithms were used, all implemented in the

OpenBugs program (17).

2.4 Phenotype with variable age at onset

In the survival analysis a non-negative random variable *
iT  is modelled.  This is the ‘true’

time of the event of interest of subject i, e.g. ‘true’ age at onset of disease. Censoring refers to

a case where we observe the true time *
iT only if it does not exceed subject i’s censoring time

Ui, otherwise we observe Ui (right censoring). Type I censoring is assumed and it occurs

when subjects are put on a test at time 0 and are followed for a fixed period of time. Then we

observe failure times of those subjects that failed and while for the rest we know that they did

not fail before and are said to be censored. Observed data of variable age at onset disease data

consists of pairs of survival times and censoring indicators � � � �nn ,T,,,T 		 �11 , where

� �i
*

ii ,UTT min�  and 1�	i  if  subject i failed during the follow-up and 0 if censored.

A phenotype with variable age at onset can be characterized by the distribution function

� � � ��
�� ;tTp;tF i
*
ii , survival function � � � � � �������� ;tTp;tF;tS i

*
iii 1  and density

function � � � �
i

i
i dT

;tdF;tf �
�� .  Hazard function � � � �

� ��
�

��

;tS
;tf;t

i

i
i , expresses limiting

probability that the event of interest occurs in a given time interval, conditionally on that the

event of interest has not occurred before the beginning of the interval and divided by the

width of the interval. Survival models provide natural means to deal with censoring - an

important feature of age at onset phenotype. Assuming independence of the observations, the

likelihood function can then be written � � � � � �� �� ��
�

�
���

n

ii
ii TFTfcTL

1i

1
;1;;

		
��� , where c

is a constant and c is not a function of the model parameters. Survival models can be written

using the distribution function or the hazard function. One choice is the Weibull distribution
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with a shape parameter � and scale parameter � having density

� � �
�

�

�

�
�

�

�
��
�

�
��
�

�
�

���
�

�
��
�

�
��

�
���

���
ii

i
TT

,;Tf exp
1

 (paper V) or the Gamma density function with shape

parameter (a) and scale parameter (s)
� �

�
�
�

�
�
��

��
� �

s
TT

as
a,sTf ia

iai exp1);( 1   (paper III), where

�(�) is the gamma-function. Measured covariates zi can be modelled using the Weibull model

by defining the log of the scale parameter of subject i��i to be a function of the covariates and

regression coefficients: log(�i)= iz'0 �� � , where � is a (p�1) vector of regression coefficients

and � �ipii z,...,zz 1�  is vector of the observed covariates values.

Survival models have long history in epidemiology, and the variable age at onset has been

analysed using survival models developed for genetic-epidemiological studies during past few

decades. Proportional hazards models have been applied to both the segregation and linkage

(4). This semi-parametric survival model can be written using the hazard function �i(t) = �0

(t)exp(�’zi). In this model formulation covariate information (observed genetic markers) is

related to the hazard of disease age at onset through exponential function that multiplies the

baseline hazard function. In order to include familial correlation into event time models a

frailty model have been introduced by Vaupel et al. (18). It was later developed for genetic

studies (19-21). Frailty is a latent random effect variable that can be added into the

exponential part of the previous hazard model. In genetic epidemiology a shared frailty model

indicates that all members of the same family will have the same frailty. A discrete time

formulation of the survival model, in which the time scale is divided into small time periods

with constant baseline hazard (piecewise constant hazard model) is applied in paper IV of this

work.  In the analysis of event data likelihood can be based on the Poisson density.  In paper

II we make a use of the Poisson probability density � �
!d

e;df
d�

��
��

, where � is the

parameter (mean number of events) and d is the observed number of events. This model is

useful when the disease is rare, like T1D is.

Survival models described above can be extended to incorporate an idea that not all subjects

will develop outcome even if followed forever. The long-term survivor model elegantly

combines binary susceptibility phenotype and survival phenotype (6). It is assumed that
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censoring distribution is proper, e.g. � � � � 1���
��

TGlimG
T

, and that the cumulative

distribution function � � � � pTFlimF
T

���
��

 is strictly less than one. Then the case p<1

corresponds to the presence of non-susceptibles in the population. In order to allow true

survival times t* to be infinite and to introduce a proper c.d.f. to describe lifetimes of non-

susceptible subjects, a latent Bernoulli random variable Di for each subject i, which is one

(susceptible) with probability p and 0 (non-susceptible) with probability 1-p is introduced.

Because we do not know who is non-susceptible, of  all subjects, Di is a partially latent

random variable. The c.d.f. for true survival times is  then

� � � � � � � � � � � �
� � � �,;TpF;TpF

;Dp;D|tTp;Dp;D|t*Tp;t*Tp;TF
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*
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�����
����
�����
��
��
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0011

which essentially rescales the possibly improper F to a new distribution F0 with total mass 1.

The likelihood function for the observed survival times with non-susceptibles can then be

written as

� � � � � �� �� ��
�

�
����

n

ii
ii TFpTfcTL

1i

1
0 ;1;;

		 ��� .  This likelihood was applied in paper III,

when ascertainment was taken into account. Maller et al. (6) worked on the problems of  right

extremes, sufficient follow-up and testing of the presence of immunes and provided many

statistical properties of the LTS model. In the Bayesian formulation of this model (22),

susceptibility status Di is treated as partially latent variable and sampled as a part of the joint

posterior distribution as it has been done in the paper V. There are also some very recent non-

Bayesian applications of this model in the genetic studies (23,24).

2.5 Ascertainment

Phenotype-based collection of families, ascertainment, is a common type of data collection

for rare diseases in genetic epidemiology. This leads to families in which affected individuals

are over-represented compared to the population as a whole, and thus possibly falsely

increasing the statistical power when estimating genetic parameters such as recurrence risk

ratios (25).When the aim of the study is to make inference of the model parameters in the

general population from which the observed data has been ascertained, it must also be

remembered that statistical inference has to take into account the process of data collection. In
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naive statistical analysis ignoring ascertainment process, the statistical inference of the model

parameter estimates are biased – this is called ascertainment bias. Crucial for the proper

statistical analysis of such data is that the ascertainment process should be well documented

and clearly defined. Problems related to ascertainment have been studied extensively from the

early days of modern statistics (1). In the classical ascertainment model a binary phenotype

(healthy, affected) is assumed and a person is affected with a constant probability �

independently of others. An affected subject becomes a proband with constant probability  .

In other words, a single individual causes a family to enter the sample (proband)

independently of all other persons in a particular sibship.  If we observe all sibships with at

least one affected ( =1, complete ascertainment), we can compute the conditional probability

of observing R=r affected subjects given the size of sibship S=s and at least one affected

� � � �
� �

� �

� �s

rsr
r
s

;sS|Rp
;sS|rRp;R,sS|rRp

���

����
�
��

�
�

�
��!
���

��!��

�

11

1

1
1 . The likelihood function is

the product of the previous probabilities over the possible sizes of sibships and the numbers of

affected subjects.

The past studies of ascertainment focused either on the definition of discrete sampling units or

on construction of more complex conditional likelihood functions based on the above

definition of the proband (26-29). The problem of ascertainment can be handled by choosing

the appropriate study design: a case-parent triad design in which the formulation of the

conditional likelihood is based on the probability of the genotype of the case conditional on

the case status and the possible parental genotypes (30). This transmission/disequilibrium test

(TDT) based on conditional likelihood avoids ascertainment bias by conditioning on the

parental origin and its different modifications have gained much attention as a way to avoid

population stratification (28). However, one cannot estimate the absolute risk, because data

are restricted to cases only and information concerning the population is not available.

Development of computationally intensive methods has produced novel statistical methods

for the problems of complex ascertainment (2). Recently, Burton (3) explored the possibility

of heterogeneity in the risk of disease in the general population. This expands the classical

framework of ascertainment where a fixed probability of disease was assumed. Analysis of

family data through probands with variable age at onset in disease registry data has not been
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studied much. In their article Langholz et al. (31) concluded that in the estimation of rate

ratios in addition to the rare disease assumption, it is also essential that the covariate

distribution does not depend on calendar time or birth order (exchangeability assumption). In

paper I of this dissertation, we construct a likelihood function conditional on the

ascertainment by considering all sibs that could have become probands during the recruitment

period. In paper V we incorporate the relevant parts of the Finnish population to the full

likelihood function.

2.6 Genetic association

If a genotype occurs in study population more commonly among affected subjects than

among healthy subjects, this is called a genetic association. This association could be

noncausal because the marker could be in linkage disequilibrium with the truly causal gene.

As in epidemiology, association between genetic marker and a phenotype might exist because

1) the polymorphism has truly causal role (direct association) 2) polymorphism has no causal

role but is associated with nearby causal variant (indirect association) and 3) there is

population stratification/admixture (confounded association) (32). Observations of genetic

association can be confounded by population stratification, where unequal proportions of

alleles in latent subgroups can lead to spurious associations.  To avoid this it is possible to

collect data from well mixed population, to match according to geographical or ethnic origin,

to seek markers for subpopulation structure (33) or to search for genomic control to control

false positive rate (34). The characterization and mapping of genes using indirect method is

dependent on the association between causal variants and nearby markers.  This association of

loci is called a pairwise linkage disequilibrium (LD) in population genetics. LD can be

defined as joint occurrence of pairs of alleles in two linked loci more or less than expected by

random formation of haplotypes from alleles based on their frequencies. In genetic

association the same allele(s) are associated with the phenotype in a similar manner across the

whole study population. The amount of LD can be estimated by the square of standard

correlation coefficient between alleles at pair of loci and the allele at the disease locus or by

some other less common measure (35).
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Genetic association studies are therefore based on the genealogical history of the sampled

data.  The idea is that a disease mutation arises on a particular haplotype during the

genealogical history, and so individuals who inherit the mutation will also inherit the same

alleles at nearby marker loci.  At time of a disease mutation occurs, it is in complete linkage

disequilibrium with loci nearby. LD is diluted in each meiosis due to recombination between

the two loci,  recurrence of the same mutation and gene conversion.  It  has been argued that

association based methods will become more powerful than traditional linkage methods in

mapping genes with small effects on complex diseases because of population genealogy and

increasing number and density of marker information (microsatellite markers and SNP’s)

(36).  It has become clear that because the initial LD and the decay varies due to assumptions

of large population, mutation and selection, both within genome and between populations

therefore making it difficult to adopt general rules of studying complex diseases (32).

Traditional epidemiological study designs can be employed in studies relying on the genetic

association: cross-sectional, case-control, cohort and other more modern variations of these

classical study designs (nested case-control, case-cohort). More genetically oriented study

designs are based on observing information of the familial relationships: case-parent triads,

case-parent-grandparent sets, pedigrees and many variations of these including sibpairs and

twins studies. In this dissertation a cohort design is applied in papers III, IV and V. The study

design in paper I can be seen as case-parent triads but rather than testing a hypothesis of

recombination being 0.5 or LD being zero as in TDT-test we test the Mendel’s first law. The

study design of paper II can be viewed as an aggregated cohort of the Finnish population from

1965 to 1996.
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3. Type 1 diabetes

3.1 Pathogenesis of Type 1 diabetes

The detailed pathogenesis of T1D is unknown, but it is believed that joint action of

environmental and genetic factors is needed to either initialise or speed up the immune-

mediated selective destruction of the insulin-secreting � cells, in the pancreas. In T1D

patients, the pancreatic islets containing the � cells exhibit insulinitis, i.e. inflammation

characterized by the presence of T lymphocytes accompanied by macrophages, B

lymphocytes, without involvement of the glucagon-secreting �-cells. T1D usually presents

itself with symptomatic hyperglycemia or ketoacodosis. The classic symptoms of

hyperglycemia are polyuria (frequent and abundant urination) followed by polydypsia (thirst

and high intake of liquids), and weight loss. Because high levels of glocose in the blood

produce osmotic diuresis (excessive loss of water, Na+ and K+ with urine), the symptoms can

progress to dehydration, which might include blurred vision, fatigue, and nausea.  If the loss

is massive, for example if precipitated by withdrawal of insulin or infection, the modulating

effect of insulin in hepatic activity is suppressed and hepatic ketone body synthesis and

release is increased and ketoacidosis might develop. Accumulation of ketons produces first

ketonuria (increased excretion of ketons in urine), and can progress to ketoacidosis, and if not

quickly corrected, to coma and death.

T1D accounts for approximately 10% of all diabetes and it has been a lethal disease until the

late 1920’s, when the insulin treatment was discovered. During the last decades several other

forms of diabetes in children and young adults have been discovered (MODY – mature onset

diabetes of the young (37); LADA - latent autoimmune diabetes of adulthood (38), and other

less frequent forms), which earlier might have confounded the T1D phenotype. Although T1D

commonly occurs in children, with peaks of incidence around the puberty or pre-puberty (39),

it can also develop in adults. Non-genetic factors potentially associated with T1D include

gender (40), birth order (41), diet (42), breast feeding (42,43), infections (44) and composition

of the drinking water (45).
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3.2  Epidemiology of T1D

The incidence of T1D shows variation according to many factors including: gender, age and

geographical areas. A significant spatial variation worldwide has been observed from 0.2 to

40/100,000 (46). Several epidemiological studies have shown that Finland has the highest

incidence of T1D in the world: during the 1990’s there were approximately 40/100,000 new

cases per year in children below 15 years of age (47), whereas the lowest incidence has been

observed in East Asia. Geographical differences in the incidence of T1D have been detected

within Finland as well.

The average increase in the incidence of T1D between 1965 and 1996 has been estimated to

be 0.67/100,000 per year (47). Findings concerning the age at onset distribution with respect

to calendar time are conflicting. While a study of the Finnish population indicated that age at

onset has become younger (48), a later study which accounted for the registry-based

ascertainment of the T1D cases, showed that the observed shift at the age at onset of T1D

could be explained by random variation (49).

3.2.1 Genetic epidemiology of T1D

Although T1D can be best identified as a chronic T-cell mediated autoimmune disease

attacking insulin-producing pancreatic cells, genetic susceptibility plays an important role on

its onset and development. As we have also seen above, the association of specific HLA

alleles and haplotypes with T1D is very strong, this genetic locus is estimated to account for

<50% of genetic contributions to disease susceptibility (50, 51). Diabetogenic alleles are not

fully penetrant, implying that not every individual who inherits the gene develops the disease.

Family studies have also shown the importance of genetic factors in determing T1D risk.

Sibling cumulative risk of affected subjects is approximately 6% while population risk is

0.5%, varying between populations. Further evidence for genetic factors comes from the large

population-based twin studies (52) and recent large population-based twin studies indicate a

clear genetic component in the risk of T1D (53). HLA region has constantly shown linkage as

well as association in all of the genome-wide linkage or candidate gene/genome-wide

association studies. IDDM2 (region containing INS gene, chromosome 11) and IDDM12
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(region containing CTL4 gene, chromosome 2) has been detected in multiple association

studies. Other loci IDDM3-IDDM18 in different chromosomes have been identified but

further replications are needed to avoid false-positive findings. It has been postulated that

multiple genes in various chromosomes could contribute to the risk of T1D with unknown

combined effects (54). At the moment there are 32 locations linked/associated with T1D (see

Figure 4), but HLA seems to confer the highest risk of all of the detected locations.

Figure : Locations in human genome linked/associated with Type 1 diabetes
And number of locations per chromosome

http://www.ncbi.nlm.nih.gov/mapview/

HLA region

Figure 4. Locations in human genome linked/associated with T1D and the number of
locations per chromosome.

One of the first genetic associations with human diseases was with HLA and T1D (55) and

the association was later pinpointed to the HLA-DR3 and DR4 containing chromosomes.

Interestingly HLA-DR3/DR4 heterozygotes were observed to confer higher risk of T1D than

DR3/DR3 or DR4/DR4 homozygotes. Further locating the gene have been complicated by the

strong long-range LD.  Very recent genome-wide scans have provided strong evidence of

IDDM1 (HLA region) (56) and this is consistent across different populations and studies.

3.3. Dime and DERI Studies
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3.3.1 The DiMe Study and nationwide registry of T1D

The Childhood Diabetes in Finland (DiMe) study was a large population-based genetic-

epidemiologic family study of T1D (57). Nationwide, all T1D cases under the age of 15 in

Finland diagnosed during the calendar period from September 1987 to April 1989 were

identified. The cut-off age was chosen purely for practical reasons. Newly diagnosed children

under the age of 15 years with T1D were hospitalized in the pediatric wards in Finland and

therefore were easier to recruit than older subjects with T1D. T1D status was checked against

the data of the National Drug Registry. Of the 801 cases in the study 800 had also been

registered in the Drug Registry and one person died soon after the diagnosis. The participation

rate in the study was approximately 95%. Parents and siblings of the 801 probands were also

asked to participate. Extensive questionnaires were filled in and blood samples were taken

from participants. Probands, their parents and siblings were HLA genotyped at A, B, C and

DR loci using conventional serology (57,58). The ethical committees of the National Public

Health Institute and local hospitals approved the study protocol. Details of study procedures,

especially data collection, are described elsewhere (57). A polymorphism information

contents (PIC) was used to choose loci to the statistical analysis (11). Its value describes the

polymorphism within a sample and it is a function of the number of detectable alleles and

their frequency. Statistical analyses of the DiMe data were restricted to the HLA-A, HLA-B

and HLA-DR loci, which had the highest polymorphic information content (0.74, 0.89 and

0.73 respectively).

3.3.2 The Diabetes Epidemiology Research International Study (DERI)

The original cohort consisted of subjects with T1D diagnosed before the age of 18 years

between 1965 and 1979 (n = 5,126), who were included in the nationwide register of Finnish

T1D patients and comprised the Finnish contribution to the Diabetes Epidemiology Research

International (DERI) study (59,60). This register was initially based on the Social Insurance

Institution’s Drug Reimbursement Register, which lists patients approved to receive free-of-

charge medication for certain diseases, including diabetes. Their siblings (n=10,168) were

identified through the national population register of Finland. The diabetes status of the

siblings was ascertained through several sources: from the nationwide Hospital Discharge

Register for the years 1970–1998, fromthe nationwide Finnish Diabetes Register for children
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and young adults for the years 1965–1998, and from the Central Drug Register through

searching the records using the personal identification number assigned to all residents of

Finland. Because of these multiple data sources, the case ascertainment was virtually

complete. By the end of the year 1998, a total of 537 families that included 616 siblings with

T1D were identified among the original DERI cases (61). Because of missing information on

the time at onset of DN, nine families were excluded from the dataset used in the statistical

analysis. Therefore we had in the analysis 528 families, with total of 1134 T1D patients and

by the end of follow-up 321 DN cases were observed.

In order to identify patients with DN, copies of original medical records, death certificates,

and autopsy data for the probands and siblings were systematically reviewed by one of the

co-authors (V.H.). Overt nephropathy was defined when a patient repeatedly had either a

urinary albumin excretion rate of >200 μg/min or >300 mg/24 h, a 24-h urinary protein

excretion rate of >0.5 g, or a positive urinalysis for protein using a reagent strip.

Microalbuminuria was defined as a urinary albumin excretion rate of 20–200 μg/min or 30–

300 mg/24 h. Albumin elevations because of pregnancy, urinary tract infections, or other renal

diseases alone were not considered as diagnostic for DN. The urinary albumin excretion rate

had decreased in some patients because of the initiation of antihypertensive medication; in

such cases, the classification of DN was based on findings before the initiation of drug

treatment. Microalbuminuric patients were grouped together with normoalbuminuric subjects

in all analyses.



28

4. Aims

The aim of this investigation is to develop novel statistical tools for genetic-epidemiological

studies and to assess the associations of T1D with genetic factors, especially HLA. To achieve

this aim following aspects are considered:

� Construction of  conditional likelihood of variable age-at-onset phenotype in population-

based ascertainment to assess Mendelian transmission of HLA-A, HLA-B and HLA-DR

loci.

� Derivation of the Poisson likelihood for the incidence trend with possible genetic

influence in order to consider whether non-Mendelian transmission of disease alleles lead

to increase in T1D observed in Finland.

� Modelling of the genetic association of variable age at onset disease with long-term

survivors in order to study the association between HLA and both susceptibility and age at

onset of T1D.

� Introduction of the familial segregation model with long-term survivors and to consider

the familial aggregation of susceptibility and age at onset of T1D nephropathy.

� Derivation  of  the  full  likelihood  function  for  variable  age  at  onset  phenotype  in

population-based registry data in order to make population-based analysis of the HLA-A,

HLA-B and HLA-DRB1 genotypes/haplotypes and the age at onset of T1D.
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5. Results

5.1. Statistical models and inference

Observing a family during the recruitment period does not depend only on the index child, but

rather on all siblings at risk of T1D during the recruitment period. This is accounted for in the

two approaches proposed for the ascertainment based on the variable age at onset in this

work:

1. In the conditional likelihood (papers I and III) approach the first born child who is

diagnosed in the ascertainment “window”, is considered a proband. Then the two sets

of siblings are eligible for the statistical analysis: a) those born before c0-w so that

they could not become probands and b) those born after the proband (younger than

proband).
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Figure 5. Lexis diagram illustrating construction of the conditional likelihood (siblings born
before 1972 and after the proband included in the analysis) of the population-based
ascertainment of all Finnish sibships which included an individual younger than 15 years who
was diagnosed with T1D during the recruitment period 1.1.1987-30.4.1989 (dotted area).
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2. In the full likelihood (paper V) the ascertained family data is complemented by the

demographic information about the number of subjects at risk and external reference

sample of the genetic composition of non-ascertained population in order to formulate

statistically coherent likelihood function (cf  Figure 6).
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Figure 6. Lexis diagram of the population-based ascertainment of all Finnish sibships, that
included an individual younger than 15 years who was diagnosed with T1D during the
recruitment period 1.1.1987 - 30.4.1989. The start and end points of the recruitment
window are denoted by c0 and c1, respectively. Further, w is the maximum age at which an
individual can be ascertained (w equals 14 years here). The time interval (c0-w, c1)
contains all individuals at risk, such that they could have become the probands during the
recruitment. The time point c2 denotes the end of the follow-up period for the recruited
siblings. The sizes of birth cohorts 19891972 N,...,N are marked in the figure.

In more detail, we consider the situation where the proband has to be diagnosed between

1.1.1987 and 30.4.1989 and has to be less than 15 years of age at the time of diagnosis. The
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ascertainment is illustrated by Figures 5 and 6, were a hypothetical family is draw in the Lexis

diagram, together with the number of people at  risk of T1D. Notice that all  families with at

least one diabetic child diagnosed with T1D during the recruitment period are observed and

all subjects in these families are included in the analysis based on the full likelihood.

5.1.1. Conditional likelihood

Following symbols were used in the construction of the conditional likelihood function: let Tij

be the calendar time of diagnosis of IDDM of the jth child in family i. We follow the

convention that if there is no such diagnosis Tij = �. Let Yij = � �1c,Tmin ij , and let 	ij = 1 if c0 


Yij < c1, c0 – w
 bij


 c1 and Yij – bij < w. Here Yij is  the onset time of IDDM of child j in family i if 	ij = 1 (in

which case this child is a proband). Let r index   the  alleles  of  a  locus  (the  total  number  of

different alleles being A), a random variable Zijp is created, which gets value r, r = 1,…,A,  if

child j in family i got allele r from parent p, and writing the genotype of a child j in  family

i � �ijfijmij Z,ZZ � , where m and f stand for mother and father, respectively. Consider the

observed  HLA  genotype  of  the jth child in the ith family, where gijp is the allele inherited

from parent p (where m indicates mother and f father). Let " #21 p
i

p
iip G,GG �  be  the

observed genotype at that locus of parent p of the ith sibship, where superscripts 1 and 2

indicate the two alleles, because grandparental origin is not known. Let Ki be the birth order

of the index child (proband), that is diagnosed within the recruitment window. With this

notation the observed data can be written

� � � �iij
p

i
p

iijpijij J,...,j,I,...,;b,f,mp;G,G,g,,Y 11121 ���	 .

First, we assume that i) the birth dates of offspring and the genotypes of  the parents are

known, ii) for the sibships in the general population, transmitted parental alleles and affection

statuses are conditionally mutually independent and iii) the sibships are independent.

Assumption (ii) implies that the conditional independence is

� � � � � � G,G,J,...,=j;b|kj;,Y,Zkj;,Y,Z f
i

m
iiijijijijijijij 1�	$
	 . Because the truth of the

ascertainment event {Ki=k} can always be deduced from � �kj;,Y,Z ijijij 
	 it will also be
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true that � � � � � � .G,G,J,...,j;b|Kj;,Y,ZKj;,Y,Z f
i

m
iiijiijijijiijijij 1��	$
	 But this shows

that, given � � f
i

m
iiij G,GandJ,...,j;b 1� , the genotypes Zij of all siblings younger than the

index child Ki are always sampled independently of the events that led to the ascertainment of

the family. In other words, given genotypes of all siblings younger than the index child are

always sampled independently of the events that led to the ascertainment of the family.

In summary, inclusion of the sibship in the data does not depend only on the proband but on

the other siblings who where at risk of T1D at the time period of recruitment as well. This is

in contrast to the classical framework presented earlier and leaving out the proband only is not

a good method of correction. Thus, there are three possible subsets of children in each

sibship: (1) children who were older than 15 years at the beginning of the recruitment period

(obviously, the same conditional independence applies to all older siblings, in case there were

any), (2) children who were eligible to become a proband and older than the index child, or

the index child himself/herself, and (3) children younger than the index child. Excluding set 2

from analysis allows one to make unbiased inference without need to model the probability of

the ascertainment event. A likelihood function for the transmission of HLA-A, HLA-B and

HLA-DR locus alleles is then constructed using sets 1 and 3 based on the multinomial

transmission probabilities. The details of the above formulation are given in the paper I and

the same principles were applied in the formulation of the likelihood function in paper III.

5.1.2 Full likelihood

Because the above conditional likelihood leads to substantial loss of data and reduction in

statistical power, a full likelihood was presented in paper V. The full likelihood is based on

the hazard model for the risk of T1D covering the not ascertained population of Finland.

Next, some notation and available data sets are presented in order to be later able to define the

full likelihood:
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1) In the ascertained registry families with T1D, let i = 1, …, I indexing all the ascertained

families, j = 1, …, J i indexing the individuals (siblings) in the ith family, and �ij being

the indicator for right censoring of the follow-up (�ij  = 1 if individual j in family i was

diagnosed with T1D in the recruitment window, and �ij = 0 if right censored, cf. Figure

6). Let p=m , f  index the parents of the ith family. Further, for the siblings in the family

data, let � �ijlfijlmijl G,GG �  be the marker genotypes over the set of loci of interest, l =

1,..., NL. The alleles received from the mother (m) and the father (f) are indexed

accordingly, and an analogous indexing is later used for haplotypes as well. Parental

genotypes are denoted by F
ijlp

M
ijlp G,G . Finally, let �ij be the disease onset indicator for

individual j in family i during the fixed follow-up period (calendar time), and

correspondingly, let Xij represent the age at onset or the age at a censoring event. The

observed data of the ascertained sibships are thus collectively represented by the set

� �m,fpl,J...,j,,...,i,G,G,G�� X i
F
ijlp

M
ijlpijlpijij ������� DRB1,B,A,HLA,17681; .

2)  In the HLA genotyped subjects of the Bone Marrow Donor registry, let

� �� �1,198361; DRBB,A,l,...,r,GGG C
rlf

C
rlm

C
rl ���   be the set of genotypes for the

unrelated individuals in the BMDR database, using a notation analogous to the familial

data. These reference individuals are known not to have acquired T1D before the age w.

The genotype and haplotype frequencies for this reference population are collectively

denoted by ),...,( 1
C
gn

C
g

C
g g

qqq �  and ),...,( 1
C
hn

C
h

C
h h

qqq � , respectively.

3)  Demographic data is defined by the numbers of subjects born during the time interval

(c0-w, c1); � �19891972,...,b;Nb � .

The first part of the risk model specifies the hazard of acquiring T1D for individual j in family

i as a function of age a. We use a discrete time hazard model and index age a = 0,...,14

corresponding age intervals " � " � " �15,14,2,1,1,0 � . For the genotype effect model, the hazard is

assumed to be of form

" #� �.G,G�exp ijlfijlmaija 
�
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Here �a is a baseline hazard in the population and �[Gijlm,Gijlf] are the genotype effects

representing the molecular marker information at l = HLA-A, HLA-B, HLA-DRB1, each

locus being considered and analyzed separately.

An assumption of the conditional independence of individual disease onset times given the

above hazard model parameters leads to the likelihood expression for all data:
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The next three factors in (2) are the contributions of the individuals (indexed here with k1, k2

and k3) in the background population, not belonging to the DiMe families and considered

individually, who were born between c0 – w and c1 and who therefore were at risk of being

diagnosed with T1D in the “ascertainment  window” (cf. Figure 6.). Technical details of the

calculations of the Bayesian modeling and calculations of the marginal survival function in

likelihood above are given in the paper IV.

5.1.3 A transmission distortion model for incidence of Type 1 diabetes

In the following, k is used to denote the genotype ( � �1,2,3k �  for genotypes AA, Aa and aa,

respectively), b the birth cohort and , the transmission probability. Let )(t
kq  denote the

genotype frequencies of genotype k in generation t, and let )()( and t
a

t
A rr  denote the allele

frequency of 'A' and 'a' in generation t. The expected new genotype frequencies in generation

t+1 can be derived from the basic theorems of the population genetics. As the incidence of
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T1D in our data depends on the genetic susceptibility in children aged 14 years or under, the

genetic change should be calculated individually for every birth cohort. They are now treated

as genotype frequencies of the distinct annual birth cohorts, with the interval between two

consecutive generations chosen to be 25 years. In order to obtain the genotype frequencies for

annual birth cohorts between these generations, a linear approximation of the generation

specific genotypes was used, giving then � � � �
� � � �

�
�

�

�

�
�

�

� �
���

�

25
1

1 t
k

t
k

kk
qq

bqbq  where qbk is the

genotype frequency in the birth cohort born in year b. The rate of change of the allele and

genotype frequencies depends on the deviation of , from the Mendelian expectation, 0.5. The

incidence is now a function of the birth cohort genotype frequencies and the penetrance

parameters.

The following notation was used: i= calendar year, j= age, b=i-j= year of birth (of a birth

cohort), Nb= size of the birth cohort obtained from the national population registry (constant),

dij= number of new cases of T1D in year i in the j-years-old, Nijk=number of genotype k

carriers in year i in age class j, qbk= q(i-j)k=the frequency of genotype k in the cohort born in

year b, 
ijk=penetrance for genotype k in year i at age j, q0=frequency of allele A in the year in

which insulin treatment was introduced (1930).

The observed data consist of � �0,...,14,65,...,96 �� j , i, Nd ijij . In order to reduce the

number of parameters to be estimated, we suppose that 
ijk does not depend on i, i.e. 
ijk=
jk

and further, that 
jk is constant in each of the age groups 0-4.99, 5-9.99, 10-14.99. We index

these three age groups by j=1,2,3.  Since T1D is a rare disease and we assume that the

numbers of new cases in each (i,j,k) cell are mutually independent, it is natural to have

� � 332211 where,Poisson~ jbjbjbijijij qqqd 
�
�
��� .The log-likelihood is then

� � � �" #-- ����
j

ijijijij
i

!dloglogd , where � is a function of 
jk ( j,k=1,2,3), , and q0.

5.1.4 Long-term survival model for genetic association
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To develop a model for the genetic association between susceptibility and age at onset of

disease and observed markers, some notation is first introduced. Let � �ll A,...,a 1�  index

alleles at locus l=1,…L, corresponding loci A,B,DR and let � �
llAll ,...,..�. 1  be  a Al�1

vector of regression coefficients for the allele effects at locus l on the susceptibility. Further,

let � �Hh ,...,..�. 1  be a H�1 vector of regression coefficients for the three locus haplotype

effects on the susceptibility, where H indexes all possible three locus haplotypes: 1,1,1, ….,

AA,AB,ADR. Regression coefficients for the age at onset are denoted respectively:

� �
llAll ,...,���� 1  for the allele effects at locus l  and � �Hh ,...,���� 1  haplotype effects. The

vectors of the observed marker genotypes at locus l � �l
ijf

l
ijm

l
ij g,gg �  are  coded  as  a lAn�

matrix .
lZ ,  with  each  row .

ijlZ being a vector of the genotype scores of locus l for the

susceptibility. Here, the upper index . indicates that this matrix codes for the susceptibility

effects.  Respectively, a matrix �
lZ  of the locus specific genotype scores that are used to

model the age at onset effects, where each row �
ijlZ  is a vector of the genotype scores for

subject j in family i. The two matrixes .
lZ  and �

lZ allow different dominance effects of the

loci l on the susceptibility and age at onset. Respectively Hn� matrixes .
hZ  and �

hZ  are

defined using haplotype scores to model dominance of the haplotypes. When susceptibility is

modelled with multiplicative model, genotype scores are the number of alleles/haplotypes

carried by a subject j in family i (0  not  a  carrier,  1  one  copy  of  the  allele  and  2  is  subject

carries two copies of the allele of interest). Alternative dominance models are presented by

Thomas et al. and Cordell et al. (56, 57).

In papers III and V we choose to model the probability density of dichotomous partially latent

susceptibility Dij for subject j in family i using logit-function:

� �� � � �
� � ij

ijij

ijij
ijij gDp

gDp
gDp /

�
�

� ��
�
�

�
�
�
�

�

�
�

;|1
;|

ln;|logit  and let / be a (n�1) vector of linear predictors

of subject j in family i. In paper III we model the genetic association of T1D susceptibility

with HLA marker data using logistic regression model for the allele effects:

ll
l

Z .�.�/ .-0 , here the model parameters of interest are � �l,...,, ...�� 10 .  In  the
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haplotype model the linear predictor for subject j in family i is hhZ .�.�/ .
0 , where

� �h,..�� 0  and linear predictor for the joint allele and haplotype effects model is

hhll
l

ZZ .�.�.�/ ..-0 , where � �hle ,,...,,, .....�� 10 .  Age  at  onset  is  modelled

with 2-parameter gamma distribution: � �,s,a;g|Yf ijijij where the shape parameter is in case

of allele effects model � � - ���� �

l
llZalog 0 , haplotype � � hhZalog ���� �

0  and joint model

� � hh
l

ll ZZalog ������ ��-0 . For the age at onset we used dominant model in all three

fitted models in paper III. Genotype/haplotype scores for the allele effects/haplotype were

assigned to the elements of the matrix �
ijlZ and �

ijhZ according to dominant model, because

multiplicative assumption of allele/haplotype effects on the mean age at onset was considered

too restrictive. Details of the likelihood function for the ascertained sibships and construction

of the joint probability density of siblings family i are given in paper III, but in principle was

constructed using conditional likelihood described earlier in this work. The simulation study

in paper III showed that the existence of non-susceptible subjects in the population may lead

to biased estimates of genetic association, when the disease and age-at-onset parameters are

analysed separately.

5.1.5 Modelling familial aggregation and segregation in long-term survivors

In order to study clustering of nephropathy of T1D in Finnish families statistical models for

the aggregation and segregation were developed. The aim was to estimate the proportion of

subjects susceptible to diabetic nephropathy while accounting for unmeasured familial factors

(61). This was achieved by using latent variables to account for familial dependencies both in

susceptibility and age at onset.

5.1.5.1 Shared LTS random effects model

In order to introduce the LTS shared random effects model, some notation is first laid out. Let

� �p,...,..�. 1  be a (1�p) vector of regression coefficients for the effects of the covariates p-
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observed covariates � �ijpijij z,...,zz 1�  on the susceptibility  and � �p,...,���� 1  corresponding

vector for covariates influencing the age at onset. The ia  and ib are the unobserved random

effects of family i that describe the variation between families (sibships), quantified by

variances 2
.0  and 2

�0 ,   for the susceptibility and age at onset that is not explained by other

covariates in the shared LTS model.  The probability density of the age at onset is modelled

with a 2-parameter Weibull density: � � � �� � � �� �00 1
00

��� �������� ijijijijijijij /Texp/T/,;Tf

, where �0 is the shape and �ij is the scale parameter. In the shared random effects model we

simply assume

� �ijpBernoulli~ijD , � � iij az' �.�.� 0ijplogit

� � � �iij bz ���� 'exp,,Weibull~1D|T 0ijij0ijij �����

The Weibull function was chosen on the basis of statistical simplicity in the long-term

survivor model. In the shared random effects model, the parameters of interest are

� �0
2

0
2

0 �0�0.�� �. ,,,, , where .0 is the risk of susceptibility in the base population and  the

parameters of the age at onset are: �0 is  the  "baseline"  age  at  onset  scale  parameter  of  the

Weibull distribution, � �20 .0,N~ai is the random effect of the susceptibility, � �20 �0,N~bi

is the random effect of the scale parameter of the Weibull age at onset distribution and � is the

inverse of the shape parameter. Simulation study of sibships with long-term survivors showed

that all coverage rates of 95% credible intervals from the shared LTS model were at least at

the nominal level. As expected the model is sensitive to the choice of informative priors for

the variances of the random effects. However, with larger families the estimates had better

coverage even with informative priors.

5.1.5.2 ACE-LTS model for nuclear families

In the ACE-LTS variance component model (cf. Figure 7) we define variance components of

the additive genetic, common family environment and common sibling environment

separately for susceptibility � �222
vcsvc ,, 000.  and age at onset � �222

vcstvctat ,, 000 . We use the

reparametrization introduced by Burton et al. (62) in the generalized mixed linear model
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framework. The random effect bi in the model on previous page is replaced by independent

additive random latent variables iii HGF ,, , RP
ij and RC

ij for susceptibility and iii HTGTFT ,, ,

RTP
ij and RTC

ij. These describe the effects of additive polygenic, common family

environment and shared sibling environment. Trait (susceptibility and age-at-onset) variation

can be factored to variance components by replacing bi for fathers with following:

ii GTFT � +RTP
ij, for mothers ii GTFT � +RTP

ij and for children ii HTFT � + RTC
ij.

Corresponding random effects of ai for susceptibility are replaced with ii GF � +RTP
ij,

ii GF � +RTP
ij and ii HF � +RTC

ij.

Figure 7. Directed acyclic graph of additive genetic variance component (random effects)
long-term survivor model for nuclear families. Here Dij is the binary susceptibility variable
and the pair  describes the failure and the age at onset for subject j in family i. The

222 and vcsvc, 000.  are the variance components of the additive genetic, common family
environment and common sibling environment separately for susceptibility and

222 and vcstvctat , 000 are the corresponding variance components for the age at onset.

The choice of priors and the formulation of the joint  posterior density is  given in paper IV,

together with Random-walk MCMC algorithm to obtain samples from the joint posterior of

ACE-LTS model.  In the simulation study we observed reasonable coverage rates for all

parameters with non-informative priors. However, the ACE-LTS model is even more

sensitive  than  the  shared  LTS model  to  the  choice  of  priors  of  variances  of  random effects

since informative priors clearly resulted in even poorer coverage rates.
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5.2 Results of the data analysis

5.2.1  Transmission of HLA-A, HLA-B and HLA-DRB1 alleles

To  analyze  transmission  of  alleles  at  the  HLA-A,  HLA-B  and  HLA-DRB1  loci  we  made

series of the goodness-of-fit tests: maternal alleles at the A locus (12=13.7, 13 df., p=0.40),

paternal  alleles  at  the  A  locus  (12=17.06, 12 df., p=0.15), maternal alleles at the B locus

(12=39.59, 35 df., p=0.27) and paternal alleles at the B locus (12=24.84, 31 df., p=0.78),

maternal at the DR locus (12=17.4, 27 df., p=0.92) and paternal at the DR locus (12=13.3, 17

df., p=0.72), where single allele transmissions are estimated simultaneously and there are less

parameters to be estimated than in the global test. Single allele transmission probabilities were

calculated to reveal individually the alleles inherited in a non-Mendelian fashion. Even

though some single allele transmission frequencies were statistically significantly different

from 50%, these findings cannot be considered conclusive as the significance levels have not

been corrected for multiple comparisons. Therefore, we conclude that the existence of strong

transmission distortion in the considered loci is excluded by our study.

5.2.2  Transmission distortion of susceptibility alleles and incidence of T1D in Finland

Two models were fitted using Poisson model described earlier: one with transmission

probability fixed at 0.5 (M0) and another where transmission probability was estimated from

the data (M1). According to the likelihood ratio test the model M2 resulted in a significantly

better fit (12=131.12, 1 df., p<0.001). The point estimate of transmission distortion , was 0.86

with estimated gene frequencies (0.06, 0.37, 0.57).  In Figure 8 the observed incidence of

T1D and expected incidence based on the models M1 and M2 are plotted.
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Figure 8. The observed incidence of T1D in Finland from 1965 to 1996 and expected
incidence under two models: (M0) no transmission distortion (transmission probability fixed
at 0.5) and (M1) allowing transmission distortion (transmission probability has been set to the
estimated value of 0.998).

The fitted model allows only non-Mendelian transmission of susceptibility gene alleles as an

explanation of the observed increase in the incidence of T1D. As shown by the Figures 1 a-b

in paper II, the alleles frequencies may increase in the course of few generations with

increasing transmission probability. It is obvious from these simple theoretical considerations

that,  given  the  current  knowledge  of  the  risk  alleles  of  T1D,  only  an  extreme  transmission

distortion of susceptibility alleles with high risk could explain the observed rapid increase in

T1D from 1965 to 1988 in Finland.
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5.2.3  HLA-A, HLA-B and HLA-DRB1 associations with susceptibility and age at onset of

T1D

To study the association of HLA-A, HLA-B and HLA-DR locus with susceptibility and age at

onset of T1D we fitted four models to the DiMe sibships data at A, B and DR locus: locus-

specific allele main effects (M0), joint allele main effects (M1), three locus haplotype effects

(M2) and three locus joint allele main and haplotype effects (M3). No statistically significant

susceptibility or age at onset effects were detected either at the A or at the B locus. At the DR

locus both DR3 (regression coefficient 1.17, p=0.012) and DR4 (regression coefficient 1.29,

p=0.005) were associated with susceptibility to T1D. These correspond to increased

susceptibility of 10.7% with DR3 heterozygote, and 12.5% with DR4 heterozygote with

respect to the overall mean. The mean age at onset of a DR3 carrier was 18.5 years (p=0.012).

The  only  significant  allele  main  effect  with  the  age  at  onset  of  T1D was  observed  for  DR6

(mean age at onset 12.1, p=0.010).

To assess independent allele effects and take into account the linkage disequilibrium between

A, B and DR loci, we performed the joint allele main effects analysis of A, B and DR loci

(M1), and the joint allele main and three locus haplotype effects analyses (M3). Only B62

was significantly associated with increased susceptibility to T1D, after adjusting for haplotype

effects (p=0.016). At the B locus, B8 carriers (p=0.0001) had older age at onset than all T1D

cases. At the DR locus, DR3 (p=0.001) and DR6 (p=0.0233) showed significant effects with

the earlier age at onset of T1D compared with the overall mean (after adjusting for haplotype

effects).

When three locus haplotypes main effects were investigated we found three haplotypes

associated with higher than average susceptibility (A1B8DR3; A2B62DR4; A2B8DR3).

However, all these associations disappeared in the joint allele main effects and haplotype

analysis (M3). Older than average age at onset was observed in A3B18DR4, and it remained

significant after adjusting for allele main effects (p=4.0e-5). Due to the ascertainment

correction and subsequent loss of data we have very low power to detect any significant

association especially with such complex model with many parameters to be estimated.
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5.2.4 Familial aggregation of susceptibility and age at onset of T1D nephropathy

In paper V, we analyzed the susceptibility and age at onset of DN by simulating the joint

posterior distribution of the model parameters of three different models: (i) the measured

covariates only (M0), (ii) latent random effects only (M1) and (iii) both measured covariates

and  variance  component  model  (M2).  Gender  was  assumed  to  influence  both  the

susceptibility and age at onset. The age at onset of T1D was assumed to influence the time to

the  onset  of  DN,  because  if  the  age  at  onset  of  T1D  was  very  young  this  might  lead  to  an

earlier development of DN than in T1D patients with a later age at onset.

The estimated proportion of male T1D patients susceptible to DN was 53.5% (46.5%; 61.1%,

95% credible interval) and among female T1D patients 37.5 % (31.2%; 45.0%) when no

familial  clustering  was  accounted  for,  based  on  the  model  M0.  However,  the  difference

increased when shared sibship effects were accounted for in model M2: males 58.9% (45.7%;

70.8%) and females 33.8% (23.1%; 46.5%). A large familial variation in the susceptibility of

DN was reflected by the posterior mean of the variance 2.96 (0.72; 7.00). The posterior mean

of  the  time to  the  onset  of  DN from the  diagnosis  of  T1D was  19.9  years  (17.4;  23.0).  No

significant difference between males and females was observed in the time to DN from the

diagnosis of T1D, after taking into account the familial  effects.  The variance of time to DN

related to familial clustering was small 0.08 (0.03; 0.17) and remained virtually unchanged

when sex and age at onset of T1D were adjusted for.

5.2.5 HLA A, B and DRB1 associations with age at onset of T1D

The results concerning full likelihood based analysis of the association between T1D and

HLA-A, HLA-B and HLA-DRB1 genotypes are presented using predictive probabilities of

T1D free survivals. The heterozygous genotype DR3/DR4 at the DRB1 locus was associated

with the lowest predictive probability of the T1D free survival to age 15, the estimate being

0.936 (0.926; 0.948, 95% credible interval), compared to the average population T1D free

survival probability 0.995.  The effect of DR4 homozygote was also strong with associated

probability 0.962 (0.954; 0.969) of T1D free survival. Carriers of DR 3/3 genotype, with T1D

predictive probability 0.994 (0.990; 0.998), were close to the population average probability
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of T1D free survival. Carriers of DR1/DR2, a common genotype in the reference population

and of DR2/DR6, had virtually no risk of T1DM before age 15, with predictive probability for

T1D free survival being very close to 1 (0.999; 1.000). At the A locus A1/9 and A2/3 carriers

had the lowest predictive probability of the T1D free survival to age 15, 0.983 (0.976; 0.988)

and 0.993 (0.992; 0.995) respectively. At the B-locus carriers of B8/22 and 8/15 genotypes

had 0.963 (0.944; 0.977) and 0.980 (0.974; 0.984) predictive probability of the T1D free

survival to age 15, while carriers of B7/35 and B5/B7 had virtually no risk of T1D before the

age 15. To illustrate the age dependency of the HLA-DRB1 genotypes, predictive disease free

survivals for some HLA-DRB1 high risk genotypes are plotted in Figure 9.
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Figure 9. Predicted disease-free survival of T1D for some high risk HLA-DRB1 genotypes.
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6. Discussion

It is both time and financial resources consuming effort to collect registry data which serves

as data source for many future studies. Therefore, it would be atmost importance to analyze

such data in a statistically coherent way. In this work, I present new statistical methods for the

analysis of population-based familial data ascertained through an incident case(s) in genetic

association studies of complex human diseases and for the genetic analysis of variable age at

onset diseases with non-susceptible subjects. New knowledge is provided concerning the

genetic effects of HLA to the T1D risk and familial aggregation of diabetic nephropathy.

The analysis of disease registry data in this thesis is based either on modelling of the disease

risk in the entire population (paper IV) or restricting statistical analysis to those individuals

that did not contribute to the ascertainment event (paper I). We have replicated the well

known association between HLA-DR3,4 and T1D  in our population-based analyses of

population based registry of T1D. This is in contrast to unsuccessful replications of

associations in many other complex diseases (67). Further, we do not find any support of non-

Mendelian transmission of HLA-A, HLA-B and HLA-DRB1 alleles, when accounting for the

ascertainment. We failed to reject the hypothesis of Mendelian transmission of alleles at the

HLA-A,  HLA-B  and  HLA-DRB1  loci  in  paper  I,  despite  the  results  of  earlier  studies

suggesting non-Mendelian transmission (68,69). Partly these earlier findings can be explained

by lack of proper ascertainment correction and a proper analysis would use large population-

based random sample. As we observed, non-Mendelian transmission of T1D susceptibility

alleles does not look like the explanation of the observed increase of T1D incidence in

Finland nor have there been proposed any other genetic mechanism that would explain this

phenomenon (65).  Although we were not able to make very strong conclusion concerning the

association  of  HLA-A,  HLA-B  and  HLA-DR  serological  genotypes  with  susceptibility  and

age at onset, recent findings with more accurate HLA-DRB1 data seem to support such an

association (66).
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Finding complex disease genes with modest effects has turned out to be much more difficult

than expelling genes for monogenic diseases. With increasing ability to genotype large

materials and combining various already existing data sources (disease registries, population

based-biobanks and demographic data) a substantial gain can be obtained in the search for

genes of complex diseases like T1D (63). One possibility to increase statistical power is to

increase sample size by incorporating the whole population in the statistical analysis. Another

advantage of our analysis using full likelihood is that population average incidence can be

used as “natural” reference level when genotypes are assessed to confer increased or reduced

risk. Population stratification has been named as one of the reasons for the failure to find or

replicate genetic associations with diseases (67) and many approaches have been proposed

(33,70) and it should be further studied with respect to ascertainment of family data.

A complex variable age at onset phenotype with non-susceptible subjects is modelled and

estimated both with observed genetic marker data (paper III) and without (paper V). Long-

term survival segregation model revealed a substantial familial contribution to the

susceptibility of T1D related nephropathy and suggestive findings of marker alleles at the

HLA  region  to  be  associated  with  both  to  susceptibility  and  age  at  onset  of  T1D  were

detected. In search for complex disease genes one alternative is to explore sophisticated

statistical models for complex phenotypes, like long-term survivor model. This may be

motivated by the emerging new subtypes of T1D during past decades and more is to be

expected with the rapid development of our ability to assess metabolic pathways of diseases.

These more refined phenotypes may be more accurate in search for disease-causing genes,

requiring more complex statistical models. A long-term survivor model, in which age at onset

distribution can be used to make inference concerning susceptibility, has been recently

applied to studies of genetic association (23,24). However, in neither of these studies the

random variable describing susceptibility status was sampled as part of the model like the

Bayesian model presented in paper V. Neither was the probability of susceptibility further

modelled as a function of latent or observed variables. As shown in paper V, the hierarchical

LTS model is sensitive to the choice of priors (64), especially when estimating variance

components of the susceptibility and this should be further explored. Although segregation

analysis has been applied less often since the introduction of modern genetic technology, it

remains a valuable tool when combined with modern statistical models for genetic

epidemiology as describing influence of genetic and environmental factors at the population
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level and possibly evaluating the importance of residual variation after some functional genes

has been identified.

With the development of large disease or population-based biobanks (63) and increasing

accuracy of genetic information (HapMap project)  computer intensive statistical methods,

such as Bayesian methods applied in this thesis, can be utilized to analyze such a considerable

amount of data.  As this thesis provides new ways to take into account the collection of

registry data and complex variable age at onset disease, it is hoped that future registry-based

studies will benefit from the statistical methods proposed here.
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