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ABSTRACT 

Pharmacogenetics deals with genetically determined variation in drug response. In this 

context, three phase I drug-metabolizing enzymes, CYP2D6, CYP2C9, and CYP2C19, have a 

central role, affecting the metabolism of about 20-30% of clinically used drugs. Since genes 

coding for these enzymes in human populations exhibit high genetic polymorphism, they are 

of major pharmacogenetic importance. The aims of this study were to develop new 

genotyping methods for CYP2D6, CYP2C9, and CYP2C19 that would cover the most 

important genetic variants altering the enzyme activity, and, for the first time, to describe the 

distribution of genetic variation at these loci on global and microgeographic scales. In 

addition, pharmacogenetics was applied to a postmortem forensic setting to elucidate the role 

of genetic variation in drug intoxications, focusing mainly on cases related to tricyclic 

antidepressants, which are commonly involved in fatal drug poisonings in Finland. 

Genetic variability data were obtained by genotyping new population samples by the methods 

developed based on PCR and multiplex single-nucleotide primer extension reaction, as well 

as by collecting data from the literature. Data consisted of 138, 129, and 146 population 

samples for CYP2D6, CYP2C9, and CYP2C19, respectively. In addition, over 200 

postmortem forensic cases were examined with respect to drug and metabolite concentrations 

and genotypic variation at CYP2D6 and CYP2C19. The distribution of genetic variation 

within and among human populations was analyzed by descriptive statistics and variance 

analysis and by correlating the genetic and geographic distances using Mantel tests and spatial 

autocorrelation. The correlation between phenotypic and genotypic variation in drug 

metabolism observed in postmortem cases was also analyzed statistically. 

The genotyping methods developed proved to be informative, technically feasible, and cost-

effective. Detailed molecular analysis of CYP2D6 genetic variation in a global survey of 

human populations revealed that the pattern of variation was similar to those of neutral 

genomic markers. Most of the CYP2D6 diversity was observed within populations, and the 

spatial pattern of variation was best described as clinal. On the other hand, genetic variants of 

CYP2D6, CYP2C9, and CYP2C19 associated with altered enzymatic activity could reach 

extremely high frequencies in certain geographic regions. Pharmacogenetic variation may 

also be significantly affected by population-specific demographic histories, as seen within the 

Finnish population. When pharmacogenetics was applied to a postmortem forensic setting, a 

correlation between amitriptyline metabolic ratios and genetic variation at CYP2D6 and 

CYP2C19 was observed in the sample material, even in the presence of confounding factors 
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typical for these cases. In addition, a case of doxepin-related fatal poisoning was shown to be 

associated with a genetic defect at CYP2D6. 

Each of the genes studied showed a distinct variation pattern in human populations and high 

frequencies of altered activity variants, which may reflect the neutral evolution and/or 

selective pressures caused by dietary or environmental exposure. The results are relevant also 

from the clinical point of view since the genetic variation at CYP2D6, CYP2C9, and 

CYP2C19 already has a range of clinical applications, e.g. in cancer treatment and oral 

anticoagulation therapy. This study revealed that pharmacogenetics may also contribute 

valuable information to the medicolegal investigation of sudden, unexpected deaths. 
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REVIEW OF THE LITERATURE 

1 Pharmacogenetics 

Pharmacogenetics deals with genetically determined variation in drug response. Nowadays, it 

is well recognized that therapeutic failures or severe adverse drug reactions (ADRs) can have 

a genetic component. Pharmacogenetics as a distinct discipline dates back to the 1950s, when 

the landmark discoveries were made (Meyer 2004). Alf Alving and coworkers observed that 

the antimalarial drug primaquine induced intravascular hemolysis in about 10% of African 

Americans, but rarely in Caucasians (Hockwald et al. 1952). A few years later, in 1956, this 

was shown to be caused by a deficiency of glucose-6-phosphate dehydrogenase (G6PD) 

(Carson et al. 1956). Inherited variation in response to succinylcholine, which is used as a 

muscular relaxant in anesthesia, was also described. Prolonged neuromuscular paralysis was 

demonstrated to be due to a deficiency in the metabolizing enzyme pseudocholinesterase 

(Lehmann and Ryan 1956; Kalow and Staron 1957). At the beginning of the 1950s, isoniazid 

was introduced in the treatment of tuberculosis. Soon after, individual differences were 

observed in the metabolism of the drug, and people could be classified as rapid or slow 

acetylators, the latter of which suffered more frequently from peripheral neuritis related to 

isoniazid toxicity (Hughes et al. 1954; Evans et al. 1960). Although acetylation polymorphism 

was the target of intense research and one of the best examples of individual differences in 

drug response, it was not until 40 years later that the actual molecular mechanism was 

characterized (Blum et al. 1991). 

Based on these key discoveries, Arno Motulsky wrote a paper in 1957 on the genetic basis of 

adverse reactions to drugs, which was the true beginning of a distinct discipline (Motulsky 

1957). A few years later, the term “pharmacogenetics” was introduced by Friedrich Vogel 

(Vogel 1959). Several new examples of inherited variation in drug response were later 

described, but it was the discovery of debrisoquine/sparteine polymorphism of drug oxidation 

in the late 1970s (Mahgoub et al. 1977; Eichelbaum et al. 1979) that excited researchers. Two 

groups independently observed unexpected adverse reactions to these drugs, and subsequent 

studies showed that both drugs are metabolized by the same enzyme, a cytochrome P450 

(CYP) mono-oxygenase, which was later designated as CYP2D6. The coding gene CYP2D6 

was also the first polymorphic gene affecting drug response to be cloned and characterized 

(Gonzalez et al. 1988). Since CYP2D6 affects the metabolism of numerous commonly used 

drugs and is highly polymorphic, it has become one of the model traits of pharmacogenetics. 
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Over the years, pharmacogenetics has been increasingly recognized by physicians, geneticists, 

and the pharmaceutical industry. The research has been extended to cover genetic variation 

not only of drug-metabolizing enzymes (DMEs) but also of drug transporters and receptors. 

While pharmacogenetics is defined as “the study of variations in DNA sequence as related to 

drug response”, a new term “pharmacogenomics” has been introduced to define “the study of 

variations of DNA and RNA characteristics as related to drug response” (The United States 

Food and Drug Administration, http://www.fda.gov/Cder/Guidance/8083fnl.pdf; The 

European Medicines Agency, http://www.emea.europa.eu/pdfs/human/ich/43798606en.pdf). 

The aim of pharmacogenomic research is to individualize drug treatment by identifying the 

optimal drug and dose for each individual based on genetic information, thereby reducing 

ADRs and costs of treatment. However, currently, pharmacogenomics is just beginning to 

make its way into the clinical practice, and it remains to be seen how extensively it will affect 

drug treatment in the future. 

 

2 Drug-Metabolizing Enzymes 

Drug metabolism, or more generally xenobiotic metabolism, protects the human body against 

the potential harmful effects of foreign compounds introduced into the body. Metabolism can 

be divided into phase I and phase II reactions, which usually increase the water solubility of 

the substrates, thus enhancing their removal. In phase I reactions, such as oxidation, 

reduction, and hydrolysis, the functional groups of the foreign compounds are modified. The 

majority of phase I enzymes belong to the CYP enzyme family (Evans and Relling 1999). 

Phase II enzymes, such as uridine diphosphate glucuronosyltransferases (UGTs), N-

acetyltransferases (NATs), thiopurine S-methyltransferase (TPMT), glutathione S-

transferases, and sulfotransferases, conjugate the substrates with endogenous substituents 

(Evans and Relling 1999). 

Most DMEs have both cytosolic and membrane-bound forms (Nebert and Dalton 2006). 

However, some DMEs are always bound in membranes, predominantly in the endoplasmic 

reticulum, mitochondria, and occasionally in the plasma membrane, whereas few DMEs are 

found only in the cytoplasm. Hydrophobic chemicals are presumably attracted to membranes 

in which, for example, most phase I DMEs reside. Generally DMEs show great flexibility in 

binding substrates, a function essential to detoxication of new potentially harmful compounds 

entering the body. 
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Although the majority of drug metabolism occurs in the liver, DMEs are also present in other 

tissues, such as the mucosa of the small intestine, kidney, lung, brain, and skin (Krishna and 

Klotz 1994). Among these, the intestinal mucosa is probably the most important extrahepatic 

site of drug metabolism (Lin and Lu 2001; Paine et al. 2006). If a drug is administered orally, 

it may undergo metabolism in the small intestine and in the liver before reaching the systemic 

circulation. This process termed first-pass metabolism can significantly affect the 

bioavailability and consequently the effects of a drug (Thummel et al. 1997). 

 

3 CYP Enzymes 

3.1 General Characteristics 

CYPs constitute a superfamily of heme-thiolate enzymes; over 7000 individual members 

found in different organisms are currently known 

(http://drnelson.utmem.edu/cytochromeP450.html) (Nelson 2006). The term cytochrome P450 

(CYP) is derived from a pigment (P) that has a 450-nm spectral peak when reduced and 

bound to carbon monoxide. CYP enzymes are usually hydrophobic and associated with 

membranes, hindering early studies, and it was not until the 1980s that the first CYPs were 

isolated and characterized (Nebert and Russell 2002). The CYP nomenclature is based on 

evolutionary relationships and the proteins are classified in families (≥ 40% amino acid 

sequence identity) indicated by a number, and in subfamilies (≥ 55% amino acid sequence 

identity) indicated by a letter (Nelson 2006). Currently, there are 781 different CYP families, 

110 of which have been identified in animals 

(http://drnelson.utmem.edu/cytochromeP450.html). Humans have 57 functional CYP genes 

arranged into 18 families. 

In humans, all CYP enzymes are bound in membranes, predominantly in the endoplasmic 

reticulum and mitochondria (Guengerich 2003). CYPs are associated with the oxidative 

metabolism of both endogenous and exogenous compounds in the human body. The reaction 

mechanism is based on the activation of molecular oxygen by the heme group in a process 

that involves the delivery of two electrons to the P450 system. This is followed by cleavage of 

the dioxygen bond, yielding water and an activated iron-oxygen species that reacts with 

substrates through a variety of mechanisms (Guengerich 2007). The majority of CYP 

enzymes are present in families CYP1-CYP4; the CYP1, CYP2, and CYP3 enzymes are 
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primarily associated with the metabolism of exogenous compounds, whereas the other CYPs 

mainly have endogenous roles (Table 1). It is estimated that CYPs in families 1-3 are 

responsible for about 75% of all phase I metabolism of clinically used drugs (Evans and 

Relling 1999). CYPs exhibiting important endogenous functions are well conserved, while 

almost all CYPs involved in xenobiotic metabolism are functionally polymorphic (Ingelman-

Sundberg 2004). The clinically most important polymorphism is seen with genes coding for 

CYP2D6, CYP2C9, and CYP2C19 (Ingelman-Sundberg 2004). 

 

 

Table 1. Human CYP enzymes classified based on major substrate class (Guengerich 2008). 

Xenobiotics Sterols Fatty acids Eicosanoids Vitamins Unknown 

1A1 1B1 2J2 4F2 2R1 2A7 
1A2 7A1 4A11 4F3 24A1 2S1 
2A6 7B1 4B1 4F8 26A1 2U1 
2A13 8B1 4F12 5A1 26B1 2W1 
2B6 11A1  8A1 26C1 3A43 
2C8 11B1   27B1 4A22 
2C9 11B2    4F11 
2C18 17A1    4F22 
2C19 19A1    4V2 
2D6 21A2    4X1 
2E1 27A1    4Z1 
2F1 39A1    20A1 
3A4 46A1    27C1 
3A5 51A1     
3A7      
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3.2 CYP2D6 

CYP2D6 (OMIM 124030) has become one of the model traits of pharmacogenetics since it is 

highly polymorphic and responsible for the metabolism of about 20-25% of prescribed drugs, 

including antidepressants, neuroleptics, β-blockers, and antiarrhythmics (Table 2) (Ingelman-

Sundberg 2005). The CYP2D6 gene spans a 4.2-kilobase (kb) region located on chromosome 

22q13.1 and is part of the CYP2D cluster together with highly homologous CYP2D8P and 

CYP2D7P pseudogenes (Fig. 1) (Kimura et al. 1989; Gough et al. 1993). Like other members 

of the CYP2 gene family, the CYP2D6 gene consists of nine exons and eight introns. 

CYP2D6 is a polypeptide of 497 amino acids. Like other drug-metabolizing CYPs, it is 

hydrophobic and bound to the endoplasmic reticulum with an N-terminal sequence, while the 

catalytic domain of the enzyme is on the cytoplasmic surface. This has hindered structural 

studies of the protein, and it was not until recently that the x-ray crystal structure of CYP2D6 

was solved by introducing solubilizing mutations to the protein (Rowland et al. 2006). The 

lengths and orientations of individual secondary structural elements were found to be very 

similar to those seen before in CYP2C9 (Williams et al. 2003). CYP2D6 has a well-defined 

active site cavity above the heme group, containing many important residues that have been 

implicated in substrate recognition and binding, including Asp-301, Glu-216, Phe-483, and 

Phe-120. Typical CYP2D6 substrate molecules contain basic nitrogen and a planar aromatic 

ring, features found in many central nervous system and cardiovascular drugs that act on the 

G protein-coupled receptor superfamily of proteins (Rowland et al. 2006). 

CYP2D6 is expressed mainly in the liver, but also at lower levels in several extrahepatic 

tissues (Zanger et al. 2001; Bieche et al. 2007). Although CYP2D6 is expressed at relatively 

low levels also in the liver relative to other CYP isoforms, it is one of the most important 

enzymes contributing to drug metabolism along with CYP3A4, CYP2C9, and CYP2C19 

(Ingelman-Sundberg 2004). Dissimilar to all other drug-metabolizing CYPs, there are no 

inducers described for CYP2D6. Possible mechanisms for the regulation of CYP2D6 

expression have been suggested to include copy number variation (i.e. whole-gene duplication 

and multiplication) and DNA methylation (Ingelman-Sundberg 2005; Ingelman-Sundberg et 

al. 2007). 
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Table 2. Common drug substrates of CYP2D6, CYP2C9, and CYP2C19 according to therapeutic 
class (Desta et al. 2002; Zanger et al. 2004; Kirchheiner and Brockmöller 2005; Rettie and Jones 
2005).  

CYP2D6 CYP2C9 CYP2C19 

Analgesica,  
Antitussives 

Antiemetics Angiotensin II blockers 
Anticonvulsants, 
hypnosedatives, 
muscle relaxants 

Codeine Ondansetron Irbesartan Diazepam 
Dextromethorphan Tropisetron Losartan Phenytoin 
Ethylmorphine    
Tramadol Antiestrogen Anticonvulsant Antidepressants 
 Tamoxifen Phenytoin Amitriptyline 
Antiarrhythmics   Citalopram 
Flecainide Antipsychotics Antidiabetics Clomipramine 
Mexiletine Haloperidol Glibenclamide Imipramine 
Propafenone Perphenazine Glimepiride Moclobemide 
 Risperidone Glipizide  
Antidepressants Thioridazine Nateglinide Anti-infectives 
Amitriptyline Zuclopenthixol  Proguanil 
Doxepin  Anti-inflammatories Voriconazole 
Fluoxetine β-blockers Celecoxib  

Fluvoxamine Metoprolol Diclofenac 
Proton pump 
inhibitors 

Imipramine Propranolol Ibuprofen Omeprazole 
Maprotiline Timolol Piroxicam Lansoprazole 
Mianserin  Tenoxicam Pantoprazole 
Nortriptyline   Rabeprazole 

Paroxetine  
HMG-CoA reductase 
inhibitor 

 

Venlafaxine  Fluvastatin β-blocker 
   Propranolol 
  Oral anticoagulant  
  (S)-Warfarin  

HMG-CoA, 3-hydroxy-3-methylglutaryl-Coenzyme A. 
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CYP2D6 exhibits high genetic diversity, the highest measured in a set of 11 genes coding for 

DMEs (Solus et al. 2004). Currently, over 60 major CYP2D6 genetic variants have been 

described (www.cypalleles.ki.se/cyp2d6.htm). These include point mutations, single or 

multiple base insertions and deletions, gene conversions, and whole-gene deletion and 

duplication. Actually, CYP2D6 gene duplication was the first stable active gene amplification 

described in humans. Johansson et al. (Johansson et al. 1993) demonstrated 13 active gene 

copies in a father and his two children with very rapid metabolism of debrisoquine. 

Subsequently, CYP2D6 gene duplications involving a varying number of copies and different 

variants have been identified (Aklillu et al. 1996; Gaedigk et al. 2007). The most common 

CYP2D6 genetic variants are presented in Table 3. Genetic variation at CYP2D6 affects the 

hepatic expression and function of the enzyme (Zanger et al. 2001), and the genetic variants 

can be associated with null, decreased, normal, or increased activity (Table 3). For the 

decreased-function variants CYP2D6*10, CYP2D6*17, and CYP2D6*29, the effect has been 

shown to be substrate-dependent (Wennerholm et al. 2001; Wennerholm et al. 2002; Bogni et 

al. 2005; Shen et al. 2007). 

Genetic variation at CYP2D6 has considerable phenotypic effects. There can be over 10-fold 

difference among individuals in the required dose of a substrate drug to achieve the same 

plasma concentration (Kirchheiner et al. 2004). When a sample of individuals from a 

population is challenged with a CYP2D6 probe substrate, four different phenotypic classes 

emerge: poor (PMs), intermediate (IMs), extensive (EMs), and ultra-rapid metabolizers 

(UMs). Bimodal or trimodal distribution of the metabolic ratios can usually be seen, in which 

the PM phenotype represents a separate subgroup, while no clear distinction exists between 

the other phenotypic classes (Zanger et al. 2004). 

Since CYP2D6 is highly polymorphic and the altered activity variants are common in 

different populations, it probably does not have a major endogenous role in the human body. 

However, since CYP2D6 is expressed at significant levels in specific cell types and in certain 

areas of the brain (Siegle et al. 2001), and it has been shown to be involved in the endogenous 

formation of serotonin and dopamine (Hiroi et al. 1998; Miller et al. 2001; Yu et al. 2003a; 

Yu et al. 2003b), a possible role in modulating the levels of neurotransmitters has been 

suggested. Interestingly, it was also recently shown in vivo that the CYP2D6 genotype affects 

serotonin concentration in platelets (Kirchheiner et al. 2005). Despite these new findings, the 

importance of CYP2D6 in endogenous metabolism and its role in neurophysiology remain 

largely unclear. 
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Figure 1. CYP2D cluster on chromosome 22q13 contains only one active gene (CYP2D6) 
and two pseudogenes (CYP2D8P and CYP2D7P). CYP2D6 can be, however, duplicated in 
the genome (a) or completely deleted (b). Important genetic polymorphisms affecting 
CYP2D6 enzymatic activity are shown (c). CYP2C cluster consists of four genes and spans 
almost 400 kb on chromosome 10q24 (d). Important polymorphisms affecting CYP2C9 and 
CYP2C19 enzymatic activities are shown. I-IX indicate exons of CYP2D6, CYP2C9, and 
CYP2C19. 
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3.3 CYP2C9 

CYP2C9 (OMIM 601130) is one of the main CYPs expressed in the liver, accounting for 

about 10% of total hepatic CYP expression (Läpple et al. 2003; Bieche et al. 2007). It is also 

expressed, albeit at a lower level, in the small intestine, possibly contributing to first-pass 

metabolism of substrate drugs (Läpple et al. 2003). Over 100 currently used drugs have been 

identified as substrates of CYP2C9, corresponding to about 15% of commonly prescribed 

drugs (Kirchheiner and Brockmöller 2005). These include nonsteroidal anti-inflammatory 

drugs, oral antidiabetics, angiotensin antagonists, oral anticoagulants, and anticonvulsants 

(Table 2) (Rettie and Jones 2005). Many of these substrate drugs have a narrow therapeutic 

index. 

CYP2C9 is part of the CYP2C gene cluster on chromosome 10q24 along with three other 

CYP2C genes (Fig. 1) (Gray et al. 1995). It spans over 50 kb and consists of nine exons and 

large intronic regions. CYP2C9 was the first human CYP protein whose three-dimensional 

structure was resolved, both unliganded and in complex with a typical substrate drug warfarin 

(Williams et al. 2003). The binding mode of warfarin suggested that CYP2C9 may undergo 

an allosteric mechanism during its function. The crystal structure also showed an 

unexpectedly large active site that may simultaneously bind multiple ligands during its 

function, providing a possible molecular basis for understanding complex drug-drug 

interactions (Williams et al. 2003). Typical CYP2C9 substrates are weak acidic compounds 

with a hydrogen bond acceptor (Lewis 2004). 

In contrast to CYP2D6, the expression of CYP2C9 can be induced by foreign chemicals, such 

as rifampicin and phenobarbital, through transcriptional factors (Gerbal-Chaloin et al. 2001; 

Ferguson et al. 2002). These nuclear receptors, namely the pregnane X receptor and the 

constitutive androstane receptor, sense the concentration of xenobiotics in the cytosol and can 

consequently induce the expression of specific DMEs to lower the concentration. 

Several CYP2C9 genetic variants with mutations in the regulatory and coding regions of the 

gene have been described (www.cypalleles.ki.se/cyp2c9.htm; Table 3). Two of these variants, 

namely CYP2C9*2 and CYP2C9*3, both associated with decreased activity of the enzyme, 

can be considered the most important ones since they have significant functional effects as 

well as appreciable high population frequencies (Kirchheiner and Brockmöller 2005). The 

effect of CYP2C9*2 on enzymatic activity seems to be more substrate-specific, whereas the  
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catalytic activity of CYP2C9*3 is reduced for most substrates (Kirchheiner and Brockmöller 

2005). 

In addition to being one of the key DMEs, CYP2C9 has an important endogenous role. It is 

involved in the regulation of vascular homeostasis by converting arachidonic acid to its 

epoxyeicosatrienoic acid metabolites, which are associated with vasodilatation, angiogenesis, 

and anti-inflammatory effects (Fleming 2008). On the other hand, CYP2C9-related 

arachidonic acid metabolism generates reactive oxygen species (Fleming et al. 2001), which 

may contribute to cardiovascular injury and disease (Chehal and Granville 2006). In addition, 

CYP2C9 is a key enzyme in the liver, involved in linoleic acid epoxidation, producing 

leukotoxins, which together with their diols have many cytotoxic effects (Draper and 

Hammock 2000). Thus, genetic variation at CYP2C9 may influence not only drug 

metabolism, but also physiologic processes (Kirchheiner and Brockmöller 2005). 
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3.4 CYP2C19 

CYP2C19 (OMIM 124020) is one of the most important enzymes contributing to the 

metabolism of clinically used drugs, although relative to other CYP isoforms, it is expressed 

at low levels and almost exclusively in the liver and the small intestine (Läpple et al. 2003; 

Bieche et al. 2007). CYP2C19 substrate drugs include proton pump inhibitors (PPIs), 

antidepressants, anticonvulsants, hypnosedatives, muscle relaxants, and antimalarial drugs 

(Table 2) (Desta et al. 2002). These substrates are usually amides or weak bases with two 

hydrogen bond acceptors (Lewis 2004). CYP2C19 gene is located in the same CYP2C gene 

cluster as CYP2C9, and it is fairly large gene, spanning over a 90-kb genomic region that 

consists of nine exons and large intronic regions (Fig. 1). 

The three-dimensional structure of CYP2C19 has not yet been resolved, but it can be 

predicted to a great extent from the structure of CYP2C9 (Williams et al. 2003). The two 

enzymes differ by 43 residues out of 490, and the differences in substrate selectivity may be 

more due to the structure of the substrate-access channel than the amino acids within their 

active sites (Williams et al. 2003). The expression of CYP2C19 can be induced, similarly as 

CYP2C9, in response to xenobiotics through the activation of nuclear receptors (Gerbal-

Chaloin et al. 2001; Chen et al. 2003). 

CYP2C19 exhibits high genetic polymorphism (www.cypalleles.ki.se/cyp2c19.htm), 

including two common defective variants (Table 3). Single-base substitutions in the coding 

sequence of CYP2C19*2 and CYP2C19*3 lead to splicing defect and premature stop codon, 

respectively, and therefore to null function of the enzyme. These variants together are 

responsible for the majority of the CYP2C19-related PM phenotypes in different populations 

(Xie et al. 2001). Interestingly, a common novel variant, CYP2C19*17, associated with ultra-

rapid drug metabolism was recently described (Sim et al. 2006). Mutation in the 5’-flanking 

region of the gene was shown to increase the rate of CYP2C19 transcription, leading to higher 

metabolic activity, possibly contributing to therapeutic failures in drug treatment with, for 

example, proton pump inhibitors and antidepressants (Sim et al. 2006; Rudberg et al. 2008). 

The relatively high frequencies of nonfunctional CYP2C19 variants in some populations 

indicate that the enzyme does not have a major endogenous role. Indeed, for the few 

endogenous substrates identified, such as farnesol and melatonin, CYP2C19-mediated 

metabolism represents only a minor pathway (DeBarber et al. 2004; Ma et al. 2005). 
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Table 3. Most common CYP2D6, CYP2C9, and CYP2C19 genetic variants. 

Varianta Defining nucleotide 
change(s) 

NCBI dbSNPb Effect on protein Enzyme 
activity 

CYP2D6*2 2850C>T, 4180G>C rs16947, rs1135840 R296C, S486T normal 
CYP2D6*3 2549delA  frameshift none 
CYP2D6*4 1846G>A rs3892097 splicing defect none 
CYP2D6*5 whole-gene deletion  CYP2D6 deleted none 
CYP2D6*6 1707delT rs5030655 frameshift none 
CYP2D6*9 2615-2617delAAG  K281del decreased 
CYP2D6*10 100C>T rs1065852 P34S decreased 
CYP2D6*17 1023C>T, 2850C>T rs28371706, 

rs16947 
T107I, R296C decreased 

CYP2D6*29 1659G>A, 1661G>C, 
3183G>A 

 V136I, V338M decreased 

CYP2D6*39 1661G>C, 4180G>C rs1135840 S486T normal 
CYP2D6*41 2988G>A  aberrant splicing decreased 
CYP2D6*1xN whole-gene duplication  Nx active genes increased 
CYP2D6*2xN whole-gene duplication 

(+2850C>T, 4180G>C) 
 Nx active genes increased 

CYP2D6*4xN whole-gene duplication 
(+1846G>A) 

 Nx inactive genes none 

CYP2D6*10xN whole-gene duplication 
(+100C>T) 

 Nx decreased-
activity genes 

decreased 

CYP2D6*41xN whole-gene duplication 
(+2988G>A) 

 Nx decreased-
activity genes 

decreased 

     
CYP2C9*2 430C>T rs1799853 R144C decreased 
CYP2C9*3 1075A>C rs1057910 I359L decreased 
CYP2C9*5 1080C>G rs28371686 D360E decreased 
CYP2C9*11 1003C>T rs28371685 R335W decreased 
     
CYP2C19*2 681G>A rs4244285 splicing defect none 
CYP2C19*3 636G>A rs4986893 premature stop 

codon 
none 

aNomenclature according to the Human Cytochrome P450 (CYP) Allele Nomenclature 
Committee (http://www.cypalleles.ki.se/). 

bReference identifier in the Single-Nucleotide Polymorphism Database (dbSNP) provided by the 
National Center for Biotechnology Information (NCBI). 
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4 Genetic Variation at CYP2D6, CYP2C9, and CYP2C19 in Human Populations 

CYP2D6, CYP2C9, and CYP2C19 exhibit high levels of genetic polymorphism in human 

populations. Variants associated with altered enzymatic activity can reach surprisingly high 

frequencies, and substantial differences in the variation between populations have been 

described. For example, CYP2D6-related PM phenotype is most important in Caucasian 

populations (frequency 5-10%), predominantly accounted for by the high frequency of 

nonfunctional variant CYP2D6*4 (Bradford 2002). By contrast, in Asian and African 

populations, the IM phenotypic group plays the major role, reflecting high frequencies of 

decreased-function variants CYP2D6*10 and CYP2D6*17, respectively (Bradford 2002). 

Extremely high frequencies of CYP2D6 active gene duplication carriers, exhibiting ultra-rapid 

metabolism, have been described in Ethiopian (29%) and Spanish (10%) populations (Aklillu 

et al. 1996; Bernal et al. 1999). 

Similarly, Caucasian populations are characterized by the highest frequencies of the common 

decreased-function variants of CYP2C9, while the altered activity variants in other 

populations are rarer (Garcia-Martin et al. 2006). CYP2C19 also shows a striking pattern of 

genetic variation; the frequency of null function variants CYP2C19*2 and CYP2C19*3 

increases steeply in Asian populations (41%), reaching its maximum in Melanesian 

populations (up to 90%), indicating that over half of the people in some populations 

completely lack CYP2C19 enzymatic activity (Kaneko et al. 1999; Shimizu et al. 2003). In 

addition to the differences shown by the common variants of these genes, there are many rare 

population/region-specific variants that also contribute to the genetic variation seen both 

within and among populations. 

 

5 Factors Affecting the Genetic Diversity at CYP Genes 

5.1 Evolution of the Gene Superfamily 

CYP enzymes have been discovered in both prokaryotes and eukaryotes, and it is clear that 

they first evolved to serve critical life functions (Nelson 1999). The earliest P450-mediated 

reactions may have been reductase and isomerase functions because of the relatively 

anaerobic conditions in the earth’s environment (Nebert and Dieter 2000). When the level of 

atmospheric oxygen increased, detoxification of oxygen, partly carried out by CYP enzymes, 
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became important as a defence mechanism for survival against oxidant stress toxicity (Nebert 

and Dieter 2000). 

Evolution of CYP genes in animals during the past 1000 million years has been strongly 

affected by the interaction of animals with plants (Gonzalez and Nebert 1990). Plants need 

animals for their reproductive cycles, but at the same time must maintain a defence system for 

survival. When animals started ingesting plants, they had to evolve new genes and 

metabolites to make them less palatable or more toxic, and animals responded with new DME 

genes to adapt to the constantly changing plants (Gonzalez and Nebert 1990). This is reflected 

in the “explosion” of new genes in the animal CYP2 family, with over 50 gene duplication 

events starting around 400 million years ago, when animals first came onto land and began 

exploiting terrestrial plant forms (Nebert 1997). 

This coevolution has led to the diversity of CYP gene superfamily seen in both animal and 

plant species. In animals, the role of DMEs has been more recently expanded to include the 

activation and detoxification of innumerable environmental pollutants, carcinogens, and 

drugs, which are, in fact, generally derived from naturally occurring plant metabolites (Nebert 

1997). 

 

5.2 Neutral Evolution in Human Populations 

The genetic variation observed at CYP genes in humans may reflect the chance effects of 

mutation and genetic drift, as expected under neutral evolution. The neutral theory of 

molecular evolution postulates that the vast majority of polymorphisms within species are the 

result of random drift of neutral mutations rather than natural selection (Kimura 1968). 

Indeed, demographic models of human history alone may explain diversity patterns observed 

at random genome markers. Based on the analysis of 783 microsatellite loci in a worldwide 

sample of human populations, the pattern of genetic variation was best explained by a serial 

founder effect originating in Africa, followed by population expansions (Ramachandran et al. 

2005). These results are in line with the standard model of modern human evolution, also 

known as the “Out of Africa“ model (Cann et al. 1987). This model proposes that a small 

population of about 1000 individuals, most likely from East Africa, expanded throughout 

much of Africa (around 100 000 years ago), which was followed by a second expansion (60 

000 - 40 000 years ago) into Asia and from there to the other continents (Cavalli-Sforza and 
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Feldman 2003). While the majority of genetic variation among human populations is 

determined by genetic drift due to the serial founder effect, the local variation may be 

produced by population-specific history or selection (Ramachandran et al. 2005). 

Genetic diversity observed in a particular population can be strongly affected by the 

demographic history. The Finnish population, which is considered a genetic isolate, represents 

an excellent example. Settlement in Finland began about 10 000 years ago, soon after 

deglaciation of Fennoscandia. The initial colonization came from the south and south-east and 

was followed by waves of settlers from the south (Baltic region) and the west (Scandinavia), 

about 4500 years ago and later (Norio 2003b). Settlement was concentrated in the south-

western and southern coastal parts of Finland, while the eastern, central, and northern parts of 

the country were permanently settled as late as the 16th and 17th centuries by people from the 

Savo region in South-East Finland (Norio 2003a; 2003b). Intense genetic drift, arising due to 

founder effects associated with colonization events and the resulting low effective population 

sizes in local sub-isolates, has played an important role in the history of the population. At the 

genomic level, this can be seen in, for instance, the pattern of inherited diseases in Finland 

(Peltonen et al. 1999; Norio 2003a; 2003c), the strong, partly hereditary, east-west difference 

in coronary heart disease mortality (Juonala et al. 2005), and the Y-chromosomal variation 

(Hedman et al. 2004; Lappalainen et al. 2006; Palo et al. 2007; Palo et al. 2008). 

 

5.3 Selective Pressures 

In addition to neutral processes, natural selection may contribute to the high levels of 

polymorphism exhibited by CYP genes in human populations. Based on the phylogenetic 

analysis of CYP genes from ten vertebrate species, genes coding for enzymes with major 

endogenous roles were shown to be evolutionarily stable, whereas enzymes mainly involved 

in the metabolism of foreign compounds were unstable, often revealing gene duplications and 

deletions (Thomas 2007). Many of these unstable CYP genes are subject to changes in their 

amino acid sequence over time via positive selection (Gotoh 1992; Thomas 2007). The 

diversification of genes in response to changes in xenobiotic exposure occurs therefore 

through a combination of gene duplication and selection-driven divergence in sequence. 

Substantial variability in DME variant frequencies between populations might thus reflect 

differences in dietary or environmental exposure that have evolved over thousands of years. 

Indeed, dietary selection pressure has been suggested to account for the extremely high 



 25 
 

occurrence of functional CYP2D6 gene duplications in North-East African populations 

(Aklillu et al. 2002; Ingelman-Sundberg 2005). 

Another adaptive explanation for the presence of CYP genetic variants at relatively high 

frequencies in human populations may be balancing selection. It favors the diversity of alleles 

present in a population, resulting in an excess of intermediate-frequency variants. Under 

balancing selection, heterozygotes usually have a survival advantage over both homozygotes. 

One of the best examples is the G6PD deficiency and resistance to malaria (Verrelli et al. 

2002). G6PD deficiency, affecting around 400 million people worldwide, is strongly 

associated with the distribution of malarial endemicity. The oxidative stress imposed by the 

deficiency in the red blood cells probably also creates a toxic environment for the 

Plasmodium parasites that cause malaria. Although G6PD deficiency may have detrimental 

effects, the benefit that it provides in the presence of malaria suggests that it may be 

maintained in populations by balancing selection (Verrelli et al. 2002). Since balancing 

selection is typically observed at loci involved in interaction with exogenous substances 

(Garrigan and Hedrick 2003; Ferrer-Admetlla et al. 2008), it may also affect the CYP genes 

involved in xenobiotic metabolism. 

 

6 Clinical Pharmacogenetics 

6.1 From Genotypes to Phenotypes 

Predicting phenotype from genotype is a tool to personalize drug therapy, i.e., to administer 

the optimal drug and dosage for each patient. Traditionally, information on an individual’s 

metabolic capacity has been obtained through phenotyping, involving measurement and 

interpretation of drug concentrations. Genotyping is, however, becoming an increasingly 

important tool in clinical practice as well as in drug development, offering several advantages 

over traditional phenotyping: (i) results are not influenced by physiologic factors or 

concurrent medication; (ii) it can be performed less invasively without predisposing an 

individual to a drug and potential adverse effects; and (iii) it can provide predictive value for 

multiple drugs, rather than only a single drug (McElroy et al. 2000; Ensom et al. 2001). 

Although the availability of various commercial genotyping platforms has made genotype 

information readily accessible, prediction of phenotype from genotype remains a challenge 

(Gaedigk et al. 2008). 
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Figure 2. Scheme of the traditional classification of phenotypes based on genotypes and their 
clinical consequences depending on the type of reaction catalyzed by the polymorphic enzyme. 
Null variants are represented by black boxes, decreased-function variants by gray boxes, and 
fully functional variants by white boxes. The dash line indicates a whole-gene deletion. Red 
represents an active drug molecule and green an inactive molecule. UM: ultra-rapid 
metabolizer; EM: extensive metabolizer; IM: intermediate metabolizer; PM: poor metabolizer. 
Modified in part from (Zanger et al. 2004). 

 

Several different systems to translate genotype data into a phenotype prediction have been 

used in a variety of clinical settings. Traditional classification of phenotypes is based on the 

assumption of dominance, in which the phenotype is determined by the most efficient variant 

in the genotype. Following the example of CYP2D6 genotype-phenotype relationships, four 

phenotypic classes can be defined: PMs, lacking the functional enzyme; IMs, carrying two 

decreased-function variants or a combination of one decreased-function variant and one 

nonfunctional variant; EMs, possessing at least one fully functional variant; and UMs, 

carrying active gene duplication or another mutation that increases enzyme activity (e.g. 

promoter polymorphism) in conjunction with a functional variant (Fig. 2) (Zanger et al. 

2004). As the number of known genetic variants associated with a range of enzyme activities 

has been growing, new quantitative systems to more precisely identify the effect of individual 

variants on the phenotype have also been introduced (Steimer et al. 2004; Gaedigk et al. 

2008). 
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Translation of genotype into a qualitative measure of phenotype is challenging for many 

reasons. Based on phenotyping studies, only the subgroup of individuals completely lacking 

the enzyme activity (PMs) can usually be identified, while substantial overlap exists in 

activity within and between the other phenotypic groups (Zanger et al. 2004; Gaedigk et al. 

2008). Subjects with identical genotypes may also exhibit different phenotypic activities 

depending on ancestry, which may be explained by population-specific factors, including 

unidentified sequence variations at the encoding gene or variations within other genes 

impacting the enzyme activity, as well as by nongenetic factors, such as diet, altering the 

enzyme activity (Aklillu et al. 2002; Gaedigk et al. 2002; Gaedigk et al. 2008). In addition, 

the functional consequences of the genetic variation may be substrate-specific, as shown by, 

for example, common decreased-function variants CYP2C9*2 and CYP2D6*17 (Wennerholm 

et al. 2002; Kirchheiner and Brockmöller 2005). These population- and substrate-specific 

factors should be considered in improved phenotype prediction, which rather than assigning 

an individual to a particular phenotypic class gives the probability of the subject being present 

in each of the defined phenotypic classes (Gaedigk et al. 2008). 

Prediction of phenotypes from genotypes has the potential to identify individuals at specific 

risk for having undesired drug effects or therapeutic failure due to altered enzymatic activity 

(Fig. 2), which would enable dose adjustment or change of therapeutic strategy (Kirchheiner 

2008). Although considerable challenges remain in predicting phenotype as well as in 

transforming this information into clinical guidelines for drug treatment of individual patients, 

there are already some promising examples of how genetic variation in drug metabolism can 

be taken into account in clinical practice to improve therapeutic outcome (Table 4). 

 

Table 4. Examples of drugs for which pharmacogenomic information regarding 
DMEs is included in the drug label (Frueh et al. 2008). 

Biomarker Drug(s) 

CYP2D6 variants Atomoxetine, fluoxetine, tamoxifen, metoprolol 
CYP2C9 variants Celecoxib, warfarin 
CYP2C19 variants Esomeprazole, omeprazole, voriconazole 
NAT variants Isoniazid, rifampin 
TPMT variants Azathioprine, mercaptopurine 
UGT1A1 variants Irinotecan 
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6.2 Clinical Applications Involving CYP2D6, CYP2C9, and CYP2C19 

6.2.1 Cancer Treatment 

Genetic variation at CYP2D6 has important therapeutic implications in cancer treatment. 

Tamoxifen is used to treat estrogen receptor-positive breast cancer. It can be considered a 

classic pro-drug, requiring metabolic activation to antiestrogenic metabolites endoxifen and 4-

hydroxytamoxifen in reactions catalyzed by CYP2D6 (Goetz et al. 2008). CYP2D6 enzyme 

activity has been shown to affect tamoxifen treatment outcomes such that patients with 

impaired CYP2D6 metabolism have a higher risk of breast cancer recurrence, shorter relapse-

free periods, and worse event-free survival rates than patients with extensive CYP2D6 

metabolism (Goetz et al. 2005; Borges et al. 2006; Schroth et al. 2007). CYP2D6 genotyping 

has been suggested to be used as a predictive marker for the individualization of the therapy; 

patients with predicted PM or IM phenotypes, who would derive little benefit from tamoxifen, 

can be identified and considered for alternative therapy (Goetz et al. 2008). CYP2D6 genetic 

polymorphism can also affect the efficacy of antiemetic drugs, which are often used for 

nausea and vomiting induced by cancer chemotherapy. Serotonin type 3 receptor antagonists 

tropisetron and ondansetron, metabolized by CYP2D6, show lack of a therapeutic effect in 

CYP2D6-related UMs, who would greatly benefit from genotype-based dose adjustment or 

change in therapeutic strategy to avoid severe emesis (Kaiser et al. 2002). 

 

6.2.2 Oral Anticoagulation Therapy 

Oral anticoagulants are widely used for the treatment and prevention of thromboembolic 

disorders, including deep vein thrombosis, acute myocardial infarction, and stroke (Baglin et 

al. 2006). Typical anticoagulants (e.g. warfarin, acenocoumarol, and phenprocoumon) act as 

vitamin K antagonists by inhibiting the liver microsomal enzyme, vitamin K epoxide 

reductase (VKOR), which is essential in the vitamin K cycle and formation of clotting factors 

(Au and Rettie 2008). Although these drugs are highly effective, clinical use is complicated 

by their narrow therapeutic index combined with wide interindividual variability in the dose 

required for adequate anticoagulation. In addition, there is a substantial related risk for serious 

adverse effects, such as hemorrhage, possibly leading to severe morbidity or death (Au and 

Rettie 2008). Variability in the response to anticoagulants can be attributed to environmental 
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factors, such as age, weight, liver function, magnitude of dietary intake of vitamin K, and 

drug interactions, as well as to genetic factors (Wadelius and Pirmohamed 2007). 

Warfarin is the most widely used anticoagulant worldwide, and the genetic variation affecting 

drug response has been extensively studied. Warfarin is administered as a racemic mixture of 

R- and S-enantiomers, the latter of which is predominantly responsible for the anticoagulant 

effect, and metabolized by CYP2C9 (Kaminsky and Zhang 1997). Both common decreased-

function variants, CYP2C9*2 and CYP2C9*3, have a substantial effect on the intrinsic 

clearance of S-warfarin, leading to lower required drug dose and to an increased risk of 

adverse bleeding events (Kirchheiner and Brockmöller 2005; Sanderson et al. 2005; Limdi et 

al. 2008). Recent identification of the gene VKORC1, encoding the warfarin target receptor 

VKOR (Li et al. 2004; Rost et al. 2004), has further improved the understanding of variability 

in warfarin dose requirements. Mutations within the noncoding regions of VKORC1, reducing 

the protein expression level, have been identified as a major determinant of warfarin 

sensitivity (Rieder et al. 2005; Oldenburg et al. 2007). Around 25% of the variance in 

warfarin dose can be explained by genetic variation at VKORC1, whereas CYP2C9 and 

known clinical factors (e.g. age, gender, weight, drug-drug interactions) account for about 

10% and 20% of the total variability, respectively (Au and Rettie 2008; Wadelius et al. 2008). 

Several new dosing algorithms taking into account these factors have been proposed to 

improve the efficacy and safety of warfarin treatment (Wu 2007). Importantly, prospective 

randomized controlled studies have already shown that the incorporation of genotype 

information will lead to a better clinical outcome in anticoagulation therapy (Anderson et al. 

2007; Caraco et al. 2008). 

 

6.2.3 Proton Pump Inhibitor Therapy 

PPIs, such as omeprazole, lanzoprazole, and rabeprazole, are widely used for the treatment of 

acid-related diseases, including gastroesophageal reflux disease and peptic ulcer, as well as 

for the eradication of Helicobacter pylori in combination with antibiotics (Horn 2000). PPIs 

are mainly metabolized by CYP2C19 in the liver, and the clinical outcome of drug therapy 

has been shown to depend on genetic variation at the encoding gene (Furuta et al. 2007b). 

Plasma concentrations of the drugs and the concomitant intragastric pH levels are 

significantly affected by CYP2C19 genotype status such that the best acidic inhibition and 

therapeutic response is attained in PMs, while EMs often experience lack of a therapeutic 
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effect with standard drug dosages (Furuta et al. 1999; Shirai et al. 2001). In addition, recently 

described ultra-rapid CYP2C19-related metabolism may also be an important factor 

contributing to therapeutic failures in drug treatment with PPIs, especially in populations of 

European ancestry, in which the causative variant CYP2C19*17 is fairly common (Sim et al. 

2006; Hunfeld et al. 2008). CYP2C19 genotype-guided PPI therapy has been suggested to 

improve the efficacy of the drugs (Furuta et al. 2007b), which was recently also shown in a 

randomized controlled trial in the treatment of H. pylori infection (Furuta et al. 2007a). 

 

6.2.4 Psychiatric Drug Therapy 

Neuropsychiatric conditions, such as major depressive disorders and schizophrenia, are 

among the most important causes of death and disability worldwide (Lopez et al. 2006). 

Despite the availability of a wide range of different antidepressants and antipsychotics, a high 

proportion of patients will not respond sufficiently to treatment (Kirchheiner et al. 2004). 

Genetic variation has been identified as an important factor underlying the variation in 

psychiatric drug response. The meta-analysis by Kirchheiner et al. (Kirchheiner et al. 2004) of 

36 commonly used antidepressants and 38 antipsychotics showed that genetic variation in 

metabolizing enzymes CYP2D6 and CYP2C19 strongly affected the pharmacokinetics of 

about one-third of the drugs. 

Tricyclic antidepressants (TCAs) have been the basis of antidepressive therapy for over four 

decades. Amitriptyline, which is one of the oldest TCAs, remains widely used because of 

higher efficacy and lower cost of therapy compared with newer antidepressants (Barbui and 

Hotopf 2001). However, amitriptyline is also well known for its relatively narrow therapeutic 

range (Schulz and Schmoldt 2003) and high toxicity at increased concentrations, leading to 

severe adverse effects. The main CYPs involved in amitriptyline metabolism are CYP2C19, 

catalyzing the major demethylation pathway to an active compound nortriptyline, and 

CYP2D6 mediating the main hydroxylation reactions of both compounds (Fig. 3) (Breyer-

Pfaff 2004). Genetic variation at these enzymes has been shown to correlate with the serum 

concentrations of amitriptyline and nortiptyline, as well as with the occurrence of side-effects 

related to amitriptyline therapy (Steimer et al. 2004; 2005). 
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Figure 3. Selected biotransformation pathways of amitriptyline and the main CYP enzymes 
involved. The relative contribution of each reaction to the overall metabolism of amitriptyline is 
shown by the thickness of the arrow, and the principal CYP isoforms responsible are 
highlighted. NNT: N-desmethylnortriptyline; EHAT: (E)-10-hydroxyamitriptyline; 
ZHAT: (Z)-10-hydroxyamitriptyline; EHNT: (E)-10-hydroxynortriptyline; ZHNT: (Z)-
10-hydroxynortriptyline. 
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In a study by Chou et al. (Chou et al. 2000), the influence of CYP2D6 genetic variability was 

examined in 100 consecutive psychiatric patients by evaluating ADRs, hospital stays, and 

total costs over a one-year period. They found that when considering medication primarily 

dependent on CYP2D6 enzyme for their metabolism, patients exhibiting PM phenotype had 

higher number of ADRs and longer duration of hospitalization. In addition, the cost of 

treating patients with extremes in CYP2D6 activity (PMs and UMs) was on average $4000 to 

$6000 per year greater than the cost of treating other patients with the same medication. The 

application of pharmacogenetics in psychiatric clinical practice seems promising, and the first 

guidelines on the dose adjustments for specific antidepressants and antipsychotics based on 

CYP2D6 and CYP2C19 genotypes are already available (Kirchheiner et al. 2004). However, 

future prospective studies are necessary to evaluate the actual outcome and benefit of 

pharmacogenetic individualization of psychiatric drug therapy. 
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7 Postmortem Pharmacogenetics 

Genetic variation related to drug response can cause severe ADRs or even fatal intoxications. 

In the case of CYP enzymes, poor drug metabolism can lead to accumulation of a drug in the 

body and subsequent toxic effects. Already in 1997, Swanson et al. (Swanson et al. 1997) 

speculated that the death of two young subjects resulting from TCA imipramine and 

desipramine intoxication could be due to a genetic defect in drug metabolism. A very low 

metabolic ratio of imipramine to its active metabolite desipramine and the absence of 

evidence suggesting an acute overdose led the authors to conclude that the intoxication in 

both cases had been chronic, and potential mechanisms included genetically determined PM 

phenotype of CYP2D6, which is the major enzyme catalyzing hydroxylation of both 

compounds, and drug interactions. 

However, the case described by Sallee et al. (Sallee et al. 2000) was the first in which 

genetically determined poor drug metabolism was shown to lead to fatal drug intoxication. In 

this case, a nine-year-old boy, who had a history of extreme behavioral problems and had 

been treated with a combination of psychotherapeutic agents, died of fluoxetine intoxication. 

Extremely high concentration of fluoxetine and its major active metabolite norfluoxetine 

found from several tissues in postmortem toxicologic evaluation led to a legal investigation of 

the adoptive parents of the child. Thorough examination of the case revealed that the child 

had a completely defective CYP2D6 gene, resulting in a compromised ability to metabolize 

CYP2D6 substrates, such as fluoxetine. In addition, despite experiencing over a 10-month 

period signs and symptoms suggestive of metabolic toxicity, including three hospitalizations, 

the child had been prescribed an increasing dose of fluoxetine; the final dose of 100 mg/day 

was higher than doses normally used in adults. 

Ultra-rapid drug metabolism can also be associated with severe or fatal ADRs if the enzyme 

catalyzes the conversion of a pro-drug into an active compound. Two case reports involving 

CYP2D6 and codeine have recently been described (Gasche et al. 2004; Koren et al. 2006). In 

the case described by Koren et al. (Koren et al. 2006), a breastfed neonate was found dead at 

the age of 13 days. Postmortem analysis revealed that the baby died of morphine intoxication. 

He got the morphine in the breast milk of the mother, who had been prescribed codeine after 

birth for episiotomy pain. Codeine is O-demethylated to morphine in a reaction catalyzed by 

CYP2D6, and the mother was later found to carry an active CYP2D6 gene duplication 

associated with increased codeine metabolism and formation of morphine, which was lethal to 

the neonate. 
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Postmortem pharmacogenetics is a relatively new area of research. It has thus far been 

focused on genetic variation at CYP enzymes in relation to drug intoxications. In 1999, CYP 

genotyping was for the first time shown to be feasible in postmortem sample material (Druid 

et al. 1999). In this study, 22 suspected overdose cases with drugs metabolized by CYP2D6 

and a control group of 24 cases were genotyped for nonfunctional variants CYP2D6*3 and 

CYP2D6*4. No PM subjects among the cases were identified, and the authors concluded that 

drug-drug interactions constitute a more frequent and important problem in interpreting 

forensic toxicology results than genetic variability in drug metabolism. Interestingly, in two 

subsequent studies by the same group on fatal drug intoxications, PM subjects were found to 

be underrepresented among the cases due to significantly lower frequency of CYP2D6*4 than 

in the general population (Holmgren et al. 2004; Zackrisson et al. 2004). However, no 

explanation was offered for this observation. 

Genetic variation in drug metabolism has been shown to be correlated with the observed 

phenotype, defined as parent drug to metabolite ratios, in postmortem sample material (Levo 

et al. 2003), and CYP genotyping has been used to aid interpretation of postmortem 

toxicology results in oxycodone- (Jannetto et al. 2002), methadone- (Wong et al. 2003), and 

fentanyl-related deaths (Jin et al. 2005). However, most of the postmortem pharmacogenetic 

studies have been performed on a limited number of samples detecting only a few genetic 

variants, and often without considering the relevant metabolic ratios or background 

information of the cases. While pharmacogenetics in a postmortem setting is a challenging 

and exciting new area of research, it remains to be seen to what extent it will contribute to 

medicolegal investigations in the future. 



 35 
 

AIMS OF THE STUDY 

The aim of this study was to describe genetic variation at CYP2D6, CYP2C9, and CYP2C19 
in different human populations on a global scale and to apply pharmacogenetics to a 
postmortem forensic setting. 

 

Specific aims of the study were as follows: 

 

1. To develop a CYP2D6 genotyping method that covers the most important mutations 
affecting enzymatic activity (I), and to apply the same method to genotype CYP2C9 and 
CYP2C19 (III). 

2. To consistently genotype CYP2D6 for the first time in a global survey of human 
populations and to analyze the distribution of its genetic variation (II). 

3. To describe and compare genetic variation at CYP2C9, CYP2C19, and CYP2D6 on a 
global scale (III). 

4. To describe genetic variation at CYP2C9, CYP2C19, and CYP2D6 within the Finnish 
population (III). 

5. To estimate the correlation between amitriptyline metabolic ratios and CYP2D6 and 
CYP2C19 genotypes in postmortem sample material (IV). 

6. To determine whether accidental or undetermined fatal drug intoxications can be 
attributed to genetic polymorphism at CYP2D6 or CYP2C19 in selected cases (IV, V). 
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MATERIALS AND METHODS 

1 Samples 

1.1 Population Genetic Studies (II, III) 

Samples belonging to the Human Genome Diversity Cell Line Panel (Cann et al. 2002) were 

used in Studies II and III. This sample set was obtained from the Centre d’Etude du 

Polymorphisme Humain (CEPH) in Paris. It includes the DNA of 1064 individuals 

originating from 52 globally distributed populations, which were in some of the analyses 

grouped into large geographic regions following the original CEPH documents 

(http://www.cephb.fr/HGDP-CEPH-Panel, Study II) or the United Nations classification of 

geographic regions (http://unstats.un.org/unsd/methods/m49/m49regin.htm, Study III). In 

addition, 56 Western Finnish (Kankaanpää region), 86 Eastern Finnish (Suomussalmi region), 

and 202 Western Indian (Gujarat state) unrelated healthy volunteers were included in Study 

III. 

 

1.2 Postmortem Cases (IV, V) 

All cases included were autopsied in Finland during 2000-2002, and the toxicological 

analyses were performed at the Laboratory of Toxicology, Department of Forensic Medicine, 

University of Helsinki. Study IV included 202 consecutive toxicology cases where at least 0.2 

mg/l of amitriptyline was detected in a broad drug and alcohol screen and where a sufficient 

amount of blood for metabolite analysis and genotyping was available. 

In Study V, 11 cases (from 2002) of fatal CYP2D6 substrate (amitriptyline, doxepin, 

dextromethorphan, fluoxetine, fluvoxamine, codeine, oxycodone, paroxetine, tramadol, or 

venlafaxine) poisonings with the manner of death denoted as accidental or undetermined were 

included. To facilitate the interpretation of the results, a control group of 34 doxepin cases 

where nordoxepin was found in the same year was also included. 
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2 Genotyping 

2.1 DNA Extraction (III-V) 

DNA was extracted from blood samples using an E.Z.N.A.™ SE Blood DNA Kit (Omega 

Bio-Tek, Inc., Doraville, GA, USA) or by standard protocols involving digestion of 

leucocytes with proteinase K, followed by phenol-chloroform extraction and ethanol 

precipitation (Sambrook et al. 1989). 

 

2.2 Detected Genetic Variants 

Among the several polymorphic positions known at CYP2C9, CYP2C19, and CYP2D6 

(http://www.cypalleles.ki.se/), we selected 4 (CYP2C9), 2 (CYP2C19), and 12 (CYP2D6) 

variable sites either highly represented in different human populations or, even if rare, known 

to be responsible for low or null metabolic activity of the corresponding enzyme (Fig. 1, 

Table 3). CYP2D6 whole-gene deletion and duplications were also included in the 

genotyping. 

 

2.3 CYP2D6 Genotyping (I-V) 

CYP2D6 genotyping was based on long PCR and single-nucleotide primer extension 

reactions. The entire CYP2D6 gene (5.1 kb) was amplified in a long PCR reaction, and the 

purified fragment was subsequently used as a template to detect 12 polymorphic positions of 

the gene. Detection was based on multiplex extension of unlabeled oligonucleotide primers 

with fluorescently labeled dideoxynucleotide triphosphates (SNaPshot™; Applied 

Biosystems, Foster City, CA, USA). Two additional long PCR reactions were used to analyze 

the whole-gene deletion and duplication, and the phase of the gene duplication in 

heterozygous genotypes was defined based on the SNaPshot result. For details of the CYP2D6 

genotyping, see Studies I and II. 
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2.4 CYP2C9 and CYP2C19 Genotyping (III-V) 

A modification of the above-mentioned method was used to genotype CYP2C9 and 

CYP2C19. Two fragments covering exons 2-3 (0.6 kb) and exon 7 (0.4 kb) of CYP2C9 as 

well as a fragment covering exons 4-5 (1.9kb) of CYP2C19 were amplified and used as 

templates in a SNaPshot multiplex reaction to detect the polymorphic positions (Fig. 1, Table 

3). For details of the genotyping, see Study III. 

 

3 Collection of Data from the Literature (III) 

In Study III, data on genetic variation at CYP2C9, CYP2C19, and CYP2D6 were collected 

from the literature. Published articles (from 1991 to 2007) were retrieved from the PubMed 

database provided by the National Center for Biotechnology and Information 

(http://www.pubmed.gov). About 900 articles were reviewed, and data from 186 articles were 

used in the study. Inclusion criteria were that the subjects be apparently unrelated, randomly 

selected volunteers of defined ethnicity. Data from controls of case-control studies were used 

when the above criteria were fulfilled. Populations were classified according to geographic 

origin following the United Nations classification of geographic regions 

(http://unstats.un.org/unsd/methods/m49/m49regin.htm). 

 

4 Definition of CYP2D6 Phenotype Classes (II) 

To describe the CYP2D6 phenotypic diversity in different geographic regions, phenotypes 

were predicted from genotypes. Conventional classification of phenotypes, in which the 

phenotype is determined by the most efficient haplotype in the genotype, was used. The 

prediction of enzyme activity of each haplotype was based on results obtained from 

previously published studies (for reference, see http://www.cypalleles.ki.se/cyp2d6.htm). In 

this way, four phenotypic categories were defined, namely PM, IM, EM, and UM (see also 

Fig. 2 on p. 26). Specifically, two decreased-function variants or a combination of one 

decreased-function variant and one null-function variant were classified as IMs, whereas UM 

was defined as a carrier of an active gene duplication in conjunction with a functional variant. 
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5 Analysis of Drug Concentrations 

5.1 Drug Screening (IV, V) 

Each postmortem case was submitted to a comprehensive toxicological analysis of blood and 

urine samples performed using a multi-technique approach. Urine samples were screened for 

approximately 700 drugs by immunoassay, liquid chromatography-tandem mass spectrometry 

(LC-MS/MS), and LC coupled with time-of-flight mass spectrometry (Pelander et al. 2003). 

Simultaneously, blood samples were quantitatively monitored for 200 drugs by three 

techniques: gas chromatography-mass spectrometry (GC-MS) for acidic/neutral drugs, GC 

with electron capture detection for benzodiazepines, and GC with nitrogen phosphorus 

detection for basic drugs (Rasanen et al. 2003). Confirmation and additional determinations 

were carried out using GC-MS and LC-MS/MS in both urine and blood. The screening 

approach covered the majority of psychotropic drugs available on licit and illicit markets, 

with a special emphasis on abused substances. 

 

5.2 Metabolite Analysis (IV) 

Major amitriptyline metabolites nortriptyline, N-desmethylnortriptyline (NNT), (E)-10-

hydroxyamitriptyline (EHAT), (Z)-10-hydroxyamitriptyline (ZHAT), (E)-10-

hydroxynortriptyline (EHNT), and (Z)-10-hydroxynortriptyline (ZHNT) were analyzed using 

LC-MS/MS. An internal standard (imipramine) was added to blood samples, and the analytes 

were extracted into butyl acetate/2-propanol at pH 9. The organic phase was separated and 

evaporated, and the residue was reconstituted into LC eluents. Separation was achieved on a 

C18 column with gradient elution, and the detection was performed by tandem mass 

spectrometry in multiple reaction monitoring mode. Limit of quantitation was 0.001 mg/l, and 

concentrations above 5 mg/l were quantitated in 1:10 dilutions. 
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6 Statistical Methods 

6.1 Analyses of Genetic Variation (II, III) 

CYP2D6 haplotypes were inferred from genotypes using the software PHASE v. 2.1 

(Stephens et al. 2001; Stephens and Donnelly 2003). Linkage disequilibrium (LD) between 

pairs of polymorphic sites was tested in each geographic region by calculating two statistics, 

|D’ | (Lewontin 1964) and R2 (Hill and Robertson 1968), using the software DnaSP v. 3.99 

(Rozas et al. 2003). The phylogenetic relationships of CYP2D6 haplotypes were summarized 

with a maximum parsimony network (Templeton et al. 1992) using TCS software (Clement et 

al. 2000). Genetic distances between populations, namely FST values (based on genetic variant 

frequencies or predicted phenotypes) and ΦST values (based on haplotypes), were estimated, 

and the Analysis of Molecular Variance (AMOVA; (Excoffier et al. 1992)) was used to 

quantify the genetic diversity at three levels: within populations, among populations within 

regions, and among regions. Locus-by-locus AMOVA was performed to assess whether a 

specific variant is responsible for the CYP2D6 genetic distance between Finnish 

subpopulations and other European populations. Arlequin v. 3.11 (Excoffier et al. 2005) was 

used for estimation of pairwise genetic distances and for the AMOVA. Geographic patterns of 

CYP2D6 genetic diversity were assessed by comparing genetic and geographic distance 

matrices using Mantel tests (Mantel 1967) and by spatial autocorrelation analysis 

(PASSAGE; (Rosenberg 2001)). 

 

6.2 Analyses of Amitriptyline Metabolism (IV) 

The logarithms of the main metabolite ratios were used for calculation of medians, confidence 

intervals for medians, and differences between medians. Mann-Whitney U-test was applied to 

assess differences between median metabolite ratios. Univariate analysis of variance was 

carried out for the most relevant logarithmic metabolite ratios using gender, age, and number 

of functional copies of CYP2D6 and CYP2C19 as covariates. MINITAB v. 13.31 (Minitab 

Inc., State College, PA, USA) was used for calculations involving medians and proportions, 

and SPSS v. 10.0.7 (SPSS Inc., Chicago, IL, USA) for univariate analysis of variance. 
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RESULTS 

1 Methodological Development (I-III) 

A new genotyping method, based on long PCR and single-nucleotide primer extension 

reactions, was developed for CYP2D6. The method allowed identification of the most 

important altered activity variants (Table 3). A novel and interesting feature of this method 

was the possibility to determine the phase of CYP2D6 gene duplication in heterozygous 

genotypes by taking advantage of the quantitative nature of the SNaPshot reaction. To 

validate the method, a sample of individuals representing different detected variants, 

including gene duplications, was genotyped by PCR-restriction fragment length 

polymorphism (RFLP) analysis (for details, see Study I), (Sachse et al. 1997; Levo et al. 

2003). In addition, polymorphic positions 2988G>A and 3183G>A, which were not included 

in the PCR-RFLP protocol, were verified by sequencing. Concordance was 100% between the 

new method and conventional methods. The same method was applied to genotype the most 

important variable sites of CYP2C9 and CYP2C19 (Table 3). SNaPshot-based genotyping 

proved to be robust and accurate, and the results were easy to interpret (Fig. 4). 

 

100    1023     1661             1707  1846             2549               2615    2850          4180          2988    3183
CYP2D6

*1/*1

430     1075               1080     1003   636          681
CYP2C9

*1/*11

CYP2C19

*2/*2

(a)

(b)

 

Figure 4. CYP2D6 (a), and CYP2C9 and CYP2C19 (b) SNaPshot genotyping results. Numbers 
above the peaks indicate the detected polymorphic positions of the corresponding genes and the 
stars indicate mutations (CYP2C9 1003C>T; CYP2C19 681G>A). Detection primer for position 
1080 of CYP2C9 is complementary to the coding strand, and therefore, nucleotide G in the 
electropherogram corresponds to nucleotide C in the coding sequence. Defined genotypes are 
indicated. 
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2 Pharmacogenetic Variation on a Global Scale 

2.1 CYP2D6 (II) 

2.1.1 Haplotypic and Phenotypic Variation 

CYP2D6 haplotypes were statistically inferred from the genotypes of 1060 individuals 

belonging to the 52 global populations. Most of the 21 inferred haplotypes corresponded to 

previously described combinations of SNPs (http://www.cypalleles.ki.se/cyp2d6.htm). Three 

new haplotypes bear only one detected SNP, namely 4180G>C, 1661G>C, or 1661G>C, in a 

duplicated gene. 

Subsaharan African populations displayed the highest diversity, with eight frequent (> 5%) 

polymorphic positions. By contrast, only three to six variable sites reached > 5% frequency in 

other regions. When pairs of polymorphic sites were tested for the presence of LD, the 

statistic |D’ | was 1 for 78 out of 82 comparisons, with the four exceptions in Subsaharan 

Africa and the Middle East (for details, see Study II). Subsaharan Africa was also the only 

region where most of the R2 values were below 0.3 and the association was nonsignificant for 

some pairwise comparisons; all tests reached statistical significance in the other geographic 

regions. The generally high values of LD and the significance of the association tests indicate 

that intra-locus recombination has not played a relevant role in shaping the CYP2D6 

molecular variation, at least after human migration out of Africa. 

CYP2D6 haplotypes were represented in a network, showing also the geographic distribution 

(Fig. 5a). The phylogenetic relationships of different variants were clearly defined. Fully 

functional haplotypes CYP2D6*1 and CYP2D6*2 were the most frequent genetic variants, 

being widely distributed in different geographic regions. However, also altered activity 

variants reached relatively high frequencies in different areas of the world. Decreased-

function variants CYP2D6*10 and CYP2D6*17 were common in Asian and African 

populations, respectively, while CYP2D6*41 was most frequent in Middle Eastern and 

Central/South Asian populations. The only common null-function variant, CYP2D6*4, was 

most frequent in European populations, whereas the increased-function variant CYP2D6*2xN 

reached an extremely high frequency (28.3%) in North Africa. 
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Figure 5. CYP2D6 haplotype and phenotype diversity in different geographic regions. (a) 
Haplotypes are represented in a network. The size of the circle is proportional to the haplotype 
frequency in the whole dataset of 1060 individuals. Mutations separating haplotypes are 
indicated. Double lines correspond to gene duplication. The altered enzymatic activity related to 
a haplotype is represented as follows: increased (↑), decreased (↓), null (-). (b) Frequency of 
CYP2D6 phenotype classes is shown in different geographic regions. Phenotypes are predicted 
from genotypes as described in Materials and Methods. UM: ultra-rapid metabolizers; EM: 
extensive metabolizers; IM: intermediate metabolizers; PM: poor metabolizers. 
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To describe CYP2D6 phenotypic diversity within the same geographic regions, phenotypes of 

the 1060 individuals were predicted from genotypes, as described in Materials and Methods. 

Interestingly, the most common altered metabolic activity group was UM in North Africa 

(40.0%), Oceania (25.6%), the Middle East (12.2%), and America (8.3%), whereas PMs were 

common only in Europe (7.6%) (Fig. 5b). Frequent decreased-function variants CYP2D6*10, 

CYP2D6*17, and CYP2D6*41 led to higher number of IMs in East Asia, Africa, and the 

Middle East than in other regions. 

 

2.1.2 Analysis of Molecular Variance 

In the AMOVA analysis, both CYP2D6 haplotypes and phenotypes showed similar results. 

Most of the diversity was observed within populations (haplotypes 89.8%; phenotypes 

90.5%). When all 52 populations included in Study II were analyzed based on seven 

geographic regions, the differences between regions accounted for 9.3% (haplotypes) or 6.5% 

(phenotypes) of the total variance. This result is consistent with estimates based on 377 

autosomal microsatellite markers typed in the same CEPH sample set (Rosenberg et al. 2002; 

Excoffier and Hamilton 2003), and based on other neutral autosomal markers (Barbujani et al. 

1997; Jorde et al. 2000; Romualdi et al. 2002). 

 

2.1.3 Geographic Patterns of Genetic Diversity 

Matrices of CYP2D6 genetic and geographic distances between populations included in Study 

II were compared by means of a Mantel test. Since the aim was to determine whether the 

CYP2D6 genetic variation has been shaped by human migrations and subsequent 

demographic effects, the geographic distances of populations were estimated considering the 

likely routes of human migration out of Africa, following the criteria of Ramachandran et al. 

(Ramachandran et al. 2005). The correlation was almost significant, but explained only a 

small fraction of the total variation (r = 0.18; P = 0.05). To test whether CYP2D6 genetic 

diversity corresponds to that inferred from neutral markers, the CYP2D6 genetic distance 

matrix was compared with a genetic distance matrix estimated using 377 autosomal 

microsatellites typed in the same sample set (Rosenberg et al. 2002). A positive and 

statistically significant correlation was observed (r = 0.37; P < 0.01), also when controlling 
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for the geographic distance (r = 0.21; P < 0.05). This indicates that the observed correlation 

between genetic variation at CYP2D6 and neutral markers was not due to the effect of 

geographic location of the samples. 

Spatial autocorrelation analysis of single CYP2D6 haplotypes revealed clear worldwide clines 

for variants CYP2D6*4, CYP2D6*10, CYP2D6*17, and in part, CYP2D6*41 (Fig. 6), all of 

them associated with null or decreased metabolism. These variants, each showing its 

maximum frequency in a different geographic region (Europe, East Asia, Subsaharan Africa, 

and Western-Central Asia, respectively), decrease in frequency with distance from the 

maximum frequency region, suggesting that these regions were the likely centers of origin for 

these haplotypes. 
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Figure 6. Spatial autocorrelation analysis of frequent CYP2D6 altered activity haplotypes in 
populations from the Old World, included in Study II. X-axis: higher limit of geographic 
distance classes (in kilometers). Y-axis: autocorrelation index I. Filled symbols indicate 
significant values. 
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2.2 CYP2C9 (III) 

CYP2C9 genetic variation data were created for four decreased-function variants in 129 

population samples by genotyping new samples as well as by collecting data from the 

literature. The most common CYP2C9 genetic variants, CYP2C9*2 and CYP2C9*3, were 

found in the highest frequencies in Northern African and European populations (Fig. 7a). 

Interestingly, the frequency of CYP2C9*2 decreased rapidly when moving from Europe 

towards the East, and it was practically zero in Eastern Asian populations. CYP2C9*3 

occurred more evenly in different geographic regions. CYP2C9*5 and CYP2C9*11 were rarer 

variants, mainly found in African populations. 
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Figure 7. Frequencies of the most common CYP2C9 (a) and CYP2C19 (b) genetic variants in 
worldwide distributed populations. For details of the population samples and the data, see Study 
III. 
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2.3 CYP2C19 (III) 

The geographic pattern revealed by CYP2C19 polymorphism differed substantially from those 

shown by CYP2D6 and CYP2C9. The null-function variant CYP2C19*2 was found in all 146 

populations studied worldwide, with a minimum frequency of about 10% (Fig. 7b). 

CYP2C19*2 frequency increased steeply when moving from Western Asia and Iran to India 

and reached its maximum (> 75%) in Melanesian populations. The frequency distribution of 

CYP2C19*3 showed a similar trend, as the frequency increased in Eastern Asia and reached 

its maximum (33%) in Melanesia (Fig. 7b). However, outside these regions, CYP2C19*3 was 

rare. 

 

3 Pharmacogenetic Variation within the Finnish Population (III) 

To gain insight into the pharmacogenetic variation within the Finnish population, two 

regional samples were genotyped for CYP2D6, CYP2C9, and CYP2C19 (Fig. 8). A significant 

overall difference was present in CYP2C9 variant frequencies between the two 

subpopulations (FST = 0.028; P = 0.008). CYP2C9*2 was much more frequent in the Western 

(17.9%) than in the Eastern (6.4%) subpopulation. In addition, CYP2C9*11 was found only in 

the Eastern sample, albeit at a low frequency (1.2%). CYP2C19 also showed differences in 

frequencies of the variants between the two samples, but the difference was not significant 

(FST = 0.019; P > 0.05). 

By contrast, the Finnish subpopulations were homogeneous with respect to variation at 

CYP2D6. However, for this gene, Finns showed a population-specific variation pattern 

compared with other European populations. Based on locus-by-locus AMOVA analysis, the 

difference was mainly due to polymorphisms 100C>T and 1846G>A, both carried by the 

null-function variant CYP2D6*4, which was indeed observed at a much lower frequency in 

Finns (8.5%) than in European populations on average (17.2%; Study II). In addition, the 

active gene duplications (CYP2D6*1xN, CYP2D6*2xN) leading to ultra-rapid CYP2D6-

mediated metabolism were more frequent in Finns (4.6%) than in other Northern European 

populations (about 1%, (Dahl et al. 1995; Bathum et al. 1998)). Together these findings 

suggest a higher CYP2D6-related metabolic rate in Finns than in other European populations 

(Sachse et al. 1997; Bernal et al. 1999; Bozina et al. 2003; Gaikovitch et al. 2003; Fuselli et 

al. 2004; Arvanitidis et al. 2007; Buzkova et al. 2008). 
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Figure 8. CYP2C9, CYP2C19, and CYP2D6 genetic variation in Western and Eastern Finland, 
roughly corresponding to the early and late settlement areas of the country. 
 

4 Amitriptyline Metabolism in Relation to CYP2D6 and CYP2C19 Genotypes (IV) 

In the 202 amitriptyline-related postmortem cases, six amitriptyline metabolites were 

analyzed along with CYP2D6 and CYP2C19 genotypes. When metabolite ratios were 

compared with the number of active genes, a correlation was found between the rate of trans-

hydroxylation (i.e. EHNT/ZHNT, EHAT/ZHAT, nortriptyline/EHNT, amitriptyline/EHAT, 

and nortriptyline/EHAT) and the number of functional copies of CYP2D6, and between the 

rate of N-demethylation (i.e. amitriptyline/nortriptyline, EHAT/EHNT, ZHAT/ZHNT, 

nortriptyline/EHAT, and nortriptyline/ZHAT) and the number of functional copies of 

CYP2C19 (Fig. 9). Several median metabolite ratios differed significantly between different 

CYP2D6 and CYP2C19 genotype groups. 
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Figure 9. Relevant metabolite ratios in amitriptyline metabolism plotted against the number of 
functional CYP2D6 and CYP2C19 genes. Logarithmic transformations of median metabolite 
ratios are shown with 95% confidence intervals. AT = amitriptyline; NT = nortriptyline. See 
also Fig. 3 on page 31. * = P < 0.05; ** = P < 0.01; *** = P < 0.001. Figure modified from 
(Koski 2005). 
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5 Genetic Variation Associated with Fatal Drug Intoxications (IV, V) 

The possibility of fatal drug poisoning occurring due to a combination of drug treatment and a 

genetic defect in drug metabolism was examined in Studies IV and V. Sixty-three fatal 

amitriptyline poisoning cases were included in Study IV. The manner of death had been 

judged as accidental in 17 and undetermined in seven cases. However, none of these 24 

poisonings was associated with a nonfunctional CYP2D6 or CYP2C19 genotype. 

Interestingly, in one suicide case, an exceptionally high amitriptyline concentration of 60 mg/l 

coincided with a defective CYP2D6 genotype (*4/*4 ). 

When fatal CYP2D6 substrate poisonings with the manner of death denoted as accidental or 

undetermined were genotyped (Study V), a case of doxepin-related poisoning was observed to 

coincide with a defective CYP2D6 genotype (*3/*4 ). In this case, a 43-year-old Finnish man 

had been found dead in his home, and the forensic toxicology samples taken at autopsy 

revealed 2.4 mg/l of doxepin and 2.9 mg/l of nordoxepin in femoral venous blood, while the 

therapeutic blood concentration of doxepin is 0.01-0.2 mg/l (Schulz and Schmoldt 2003). The 

high concentration of the active metabolite nordoxepin was not consistent with acute 

intoxication, and the doxepin-to-nordoxepin ratio of 0.83 was the lowest found among the 35 

nordoxepin-positive postmortem cases analyzed the same year. The defective genotype may 

therefore have contributed to the death, possibly involving a repeatedly high dosage of 

doxepin. 
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DISCUSSION 

1 Methodological Considerations 

Genotyping can be used as a tool to personalize drug therapy, i.e. to administer the optimal 

drug and dosage for each patient. Predicting phenotype from genotype offers several 

advantages over the experimental determination of phenotype: (i) results are not influenced by 

physiologic factors or concurrent medication; (ii) it can be performed less invasively, without 

predisposing an individual to a drug and potential adverse effects; and (iii) it can provide 

predictive value for multiple drugs, rather than merely a single drug (McElroy et al. 2000; 

Ensom et al. 2001). The availability of technically feasible and cost-effective genotyping 

methods is important in facilitating the translation of pharmacogenetic data into clinical 

practice to improve drug efficacy and safety. 

New genotyping methods based on a combination of PCR and multiplex single-nucleotide 

primer extension reactions were developed for CYP2D6, CYP2C9, and CYP2C19, all of 

which exhibit clinically important genetic polymorphisms. The methods developed, which 

covered the most important genetic variants that alter enzyme activity (Table 3), proved to be 

rapid and cost-effective. Samples could be processed in 96-well plates, and after the PCR, the 

final genotypes could be obtained in five hours. The cost per CYP2D6 genotype was 

estimated to be ~5 € (from long PCR to capillary electrophoresis) at the time of the study, 

which was less than one-half the cost of the corresponding genotyping based on laborious but 

widely used RFLP analysis (Arvanitidis et al. 2007; Zand et al. 2007). 

A novel and interesting feature of the CYP2D6 genotyping method was the possibility to 

determine the phase of gene duplication in heterozygous genotypes by taking advantage of the 

quantitative nature of the SNaPshot reaction. This is particularly useful in distinguishing, for 

example, the genotypes CYP2D6*1/*4xN and CYP2D6*1xN/*4, the former producing only a 

single full-function allele and the latter producing at least twice the amount of enzyme. 

A wide variety of different SNP-genotyping methods are currently available, but their 

disadvantages often include low throughput, high cost, or the requirement of special 

laboratory facilities (Syvänen 2001). The CYP genotyping methods developed here are 

technically feasible and cost-effective, therefore being suitable for many applications in both 

routine and research investigations. In addition, one of the advantages of the SNaPshot 
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technique is the possibility to extend the assay to also cover alternative or newly described 

SNPs in the targeted genomic region. 

 

2 Pharmacogenetic Variation in Human Populations 

CYP2D6, CYP2C9, and CYP2C19 exhibit high levels of genetic polymorphism in human 

populations. Since these genes code for enzymes affecting the metabolism of 20-30% of 

clinically used drugs, they are of major pharmacogenetic importance (Desta et al. 2002; 

Ingelman-Sundberg 2005; Kirchheiner and Brockmöller 2005). In this study, the global 

genetic variation at these loci was investigated for the first time in a systematic way by 

genotyping new population samples as well as by collecting data from the literature. 

Genetic diversity at CYP2D6 was examined in detail by genotyping 12 highly informative 

variable sites, as well as whole-gene deletion and duplications, in a global survey of 52 

populations originating from all continents (Cann et al. 2002). All of the results suggested that 

the diversity observed at CYP2D6 reflects the same combination of gene flow and drift events 

that shaped the diversity of most other genomic regions. High CYP2D6 genetic variances 

within populations were in good agreement with estimates based on neutral autosomal 

markers (Barbujani et al. 1997; Jorde et al. 2000; Romualdi et al. 2002; Rosenberg et al. 

2002). The lowest level of LD observed in Africa was consistent with the results of studies, 

suggesting that through their longer evolutionary history, African populations have had a 

greater potential for recombination to reduce the LD generated by new mutations or founder 

effects (Gabriel et al. 2002; Tishkoff and Verrelli 2003). In addition, the geographic patterns 

of CYP2D6 genetic diversity were best described as clinal, being very similar to those shown 

by autosomal microsatellites (Serre and Paabo 2004; Ramachandran et al. 2005) and protein 

markers (Cavalli-Sforza et al. 1994). 

Although the spatial patterns of CYP2D6 diversity appeared clinal and most of the variants 

were geographically dispersed over all continents, some mutations altering the enzyme 

activity occurred at very high frequencies in specific areas of the world (Fig. 10a). In 

particular, decreased-function variants CYP2D6*10, CYP2D6*17, and CYP2D6*41 were 

common in Asian, African, and Western Asian populations, respectively, while null-function 

variant CYP2D6*4 was common in European populations. The highest frequency of active 

gene duplications described thus far (28.3%) was found in a Northern African Mozabite 
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population, in which about 40% of the people were predicted to exhibit the UM phenotype. 

The data on genetic variation at CYP2C9 and CYP2C19 collected in this study showed a 

similar high occurrence of altered activity variants in specific regions (Fig. 10b-c). Especially 

the pattern of variation seen at CYP2C19 was striking: extremely high frequencies of null-

function variants indicated that over half of the people in some populations completely lack 

the enzymatic activity. 

These findings are relevant from the clinical point of view since CYP2D6, CYP2C9, and 

CYP2C19 are involved in the metabolism of many commonly used drugs. The first clinical 

applications to take into account the genetic variation to improve therapeutic outcome have 

already been introduced. These include genetic variation at CYP2D6 in cancer treatment 

(Goetz et al. 2008), CYP2C9 in oral anticoagulation therapy (Au and Rettie 2008), CYP2C19 

in PPI therapy (Furuta et al. 2007b), and CYP2D6 together with CYP2C19 in psychiatric drug 

therapy (Kirchheiner et al. 2004). 

The findings do, however, raise questions concerning the evolution of the three loci studied, 

each of which showed a distinct geographic pattern of variation. CYP2D6 genetic diversity on 

a global scale was shown to parallel that described for neutral markers and may be explained 

by demographic models of human history, consisting of a founder effect due to “Out of 

Africa” migration, followed by population expansions (Ramachandran et al. 2005). Genetic 

variation observed at CYP2D6, CYP2C9, and CYP2C19 may thus reflect the chance effects of 

mutation and drift, as expected under neutral evolution. However, the high level of genetic 

polymorphism at these loci and the local high frequencies of altered activity variants may also 

be the result of natural selection. 

CYP genes coding for enzymes involved mainly in the metabolism of foreign compounds 

have been shown to be evolutionarily unstable, often possessing gene duplications and 

deletions. Many of these genes are subject to positive selection to change their amino acid 

sequence over time in response to changes in xenobiotic exposure (Thomas 2007). Substantial 

variability in CYP variant frequencies might thus reflect differences in dietary or 

environmental exposure that have evolved over thousands of years. Indeed, dietary selection 

pressure has been suggested to account for the local high occurrence of active CYP2D6 gene 

duplications in North East African populations (Aklillu et al. 2002). Another adaptive 

explanation for the presence of CYP genetic variants at relatively high frequencies in human 

populations may be balancing selection, which favors the diversity of alleles present in a 

population. Since balancing selection is typically observed at loci involved in interaction with  
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Figure 10. World maps showing the distribution of CYP2D6 (a), CYP2C9 (b), and CYP2C19 
(c) altered activity variants in different geographic regions. Variants were grouped based on the 
phenotypic effect as follows: CYP2D6 none (*3, *4, *5, *6, *4xN); CYP2D6 decreased (*9, 
*10, *17, *29, *41, *10xN, *41xN); CYP2D6 increased (*1xN, *2xN); CYP2C9 decreased (*2, 
*3, *5, *11); and CYP2C19 none (*2, *3). All other variants were considered to have normal 
activity. For data on individual variants in different populations and geographic regions, see 
Study III. 
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exogenous substances (Garrigan and Hedrick 2003; Ferrer-Admetlla et al. 2008), it may also 

affect the genes belonging to the CYP2 family. However, more detailed molecular studies are 

needed to elucidate the evolutionary history of CYP2D6, CYP2C9, and CYP2C19. 

Pharmacogenetic variation was also examined at a microgeographic scale by analyzing two 

regional samples from Finland, representing the early settlement (Western Finland) and the 

late settlement (Eastern Finland) areas of the country. The same differentiation between the 

subpopulations observed for neutral markers, such as Y-chromosomal short tandem repeats 

(Lappalainen et al. 2006; Palo et al. 2007), was observed at CYP2C9 (FST = 0.028) and 

CYP2C19 (FST = 0.019), although the latter was not statistically significant. This may be 

explained by the demographic history of the Finnish population; the Eastern subpopulation 

has been more affected by recurring founder effects and small local effective population sizes 

than the Western subpopulation, resulting in the diversity differences seen at different 

genomic markers. However, the subpopulations were completely homogeneous with respect 

to variation at CYP2D6, which instead showed a population-specific pattern, suggesting a 

higher CYP2D6-related metabolic rate than in other European populations. These results 

indicate that the pattern of pharmacogenetic variation can be population-specific and may be 

significantly affected by the population’s demographic history. 

 

3 Pharmacogenetics in Postmortem Forensic Settings 

Postmortem pharmacogenetics is a relatively new area of research that can be considered very 

challenging for many reasons. First, postmortem material is often of poor quality, and 

degradation of DNA can hamper the genotyping analyses. Second, interpretation of 

pharmacogenetic results may be difficult because of polypharmacy and various 

pathophysiological conditions, which are common findings in postmortem cases. In fact, drug 

interactions have been suggested to be a far greater problem in drug intoxications than genetic 

variation related to drug response (Druid et al. 1999; Holmgren et al. 2004). Third, 

postmortem redistribution may contribute to the observed drug concentrations, which do not 

necessarily reflect the concentrations at the time of death (Pelissier-Alicot et al. 2003). 

However, since fatal drug intoxications may be caused by genetic variation in drug 

metabolism (Sallee et al. 2000; Koren et al. 2006), postmortem pharmacogenetics can be of 

the utmost importance in medicolegal investigations. 
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The tricyclic antidepressant amitriptyline ranks among the major causes of fatal drug 

intoxications in Finland (Vuori et al. 2006). It has a relatively narrow therapeutic range 

(Schulz and Schmoldt 2003) and high toxicity at increased concentrations, leading to severe 

side-effects. Results of clinical studies show that genetic polymorphism at CYP2D6 and 

CYP2C19, which encode the major enzymes involved in amitriptyline metabolism (see Fig. 3 

on page 31), correlates with the serum concentrations of amitriptyline and its active 

metabolite nortriptyline as well as with the occurrence of side-effects related to drug therapy 

(Steimer et al. 2004; 2005). However, genetic variation related to amitriptyline metabolism 

was investigated here for the first time in a postmortem forensic setting by analyzing the 

concentrations of amitriptyline metabolites along with CYP2D6 and CYP2C19 genotypes in a 

series of 202 amitriptyline-related postmortem toxicology cases. 

Positive correlations were found between the proportion of trans-hydroxylated metabolites 

and the number of functional copies of CYP2D6, and between the proportion of demethylated 

metabolites and the number of functional copies of CYP2C19. Therefore, the same correlation 

between phenotype and genotype observed in clinical studies was also seen in postmortem 

material, even in the presence of confounding factors, such as drug-drug interactions, typical 

for these cases. Similar results have been obtained before with respect to opioid drug tramadol 

metabolite ratios and genetic variation at CYP2D6, though in a limited number of samples 

(Levo et al. 2003). 

In investigating accidental or undetermined fatal drug intoxication cases for a genetic defect 

in drug metabolism, we found a doxepin-related death coinciding with a completely defective 

CYP2D6 genotype (*3/*4 ). In this case, the high concentration of the active metabolite 

nordoxepin was not consistent with acute intoxication. In addition, the lowest doxepin-to-

nordoxepin ratio found in forensic toxicology cases over a one-year period in Finland 

suggested that the genetic defect at CYP2D6 had probably contributed to the accumulation of 

toxic substances and subsequent fatal intoxication. This case illustrated the importance of 

considering the concentrations of relevant metabolites in addition to the parent drug when 

interpreting the results obtained from forensic toxicology and genetic analyses. 

While routinely performing genotyping of polymorphic CYPs in suspected poisoning cases is 

probably not worthwhile, postmortem pharmacogenetics may be of great value in specific 

cases, especially when applied to drugs of high toxicity, such as antidepressants and 

antipsychotics. When poisoning is caused by a drug that is metabolized by a polymorphic 

enzyme, and the concentrations of the parent drug and metabolites differ from normal 



 57 
 

findings, genotyping may add valuable information to the interpretation of forensic toxicology 

results and the manner of death. Postmortem pharmacogenetics has the potential to improve 

medicolegal investigations of death, and at its best, integrates the latest knowledge in the 

fields of forensic pathology, toxicology, and genetics (Sajantila et al. 2006). 

 

4 Future Directions in Pharmacogenetic Research 

ADRs are a significant cause of morbidity, mortality, and excessive medical care costs. ADRs 

account for an estimated 7% of all hospital admissions (Lazarou et al. 1998; Pirmohamed et 

al. 2004) and rank as one of the leading causes of death in the United States (Lazarou et al. 

1998). One possible cause of ADRs is genetic variation. A meta-analysis by Phillips et al. 

(Phillips et al. 2001) revealed that 59% of drugs frequently causing ADRs were metabolized 

by at least one enzyme with a known variant associated with poor metabolism, compared with 

only 7-22% of randomly selected drugs. These results suggest that pharmacogenetic 

information may have a major impact on reducing ADRs and improving drug therapy. 

Pharmacogenetic research has thus far focused mostly on relatively simple monogenic traits 

involving drug metabolism (Weinshilboum and Wang 2006). These well-established 

examples of pharmacogenetic traits include genetic variation at butyrylcholinesterase (Kalow 

and Staron 1957), NAT2 (Evans et al. 1960), CYP2D6 (Mahgoub et al. 1977), and TPMT 

(Weinshilboum and Sladek 1980). Although these single-gene defects can have a strong effect 

on their drug substrates, most of the drug effects and treatment outcomes are determined by 

the interplay of multiple genes (Evans and Relling 2004). Therefore, pharmacogenetic 

research has also been increasingly focused on entire pathways encoding proteins that 

influence both pharmacokinetics and pharmacodynamics of a drug (Weinshilboum and Wang 

2006). Research on anticoagulant warfarin represents an excellent example of the future 

direction of pharmacogenetic research. Genetic variation affecting warfarin response has been 

investigated with 29 genes involved in the action and biotransformation of the drug, and new 

dosing algorithms taking into account genetic and environmental factors have been developed 

(Wu 2007; Wadelius et al. 2008). 

The latest advances in human genetics research include genome-wide association studies that 

use dense maps of SNPs (around 500 000 – 1 000 000) covering the human genome to detect 

allele-frequency differences between cases and controls (Kruglyak 2008). This enables 
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genome regions containing functional DNA-sequence variants that influence the disease or 

trait in question to be identified (Raelson et al. 2007; Scott et al. 2007). This approach may be 

valuable also in pharmacogenetic research in identifying genetic variants associated with drug 

efficacy or ADRs (Link et al. 2008; Nelson et al. 2008; Roses 2008). 

Despite several well-established clinical applications and the wide variety of molecular 

genotyping methods available, pharmacogenetic testing is still rarely used in clinical settings. 

There are several factors limiting the translation of new research data into clinical practice 

that is generally a slow process (Lenfant 2003). Firstly, it will probably require that clinicians 

receive further training to be able to interpret genotype data and incorporate it into clinical 

decision-making (Evans and Relling 2004). Secondly, there is a need for randomized 

prospective clinical trials to demonstrate that pharmacogenetic testing really benefits the 

selection of appropriate drug and dosage for individual patients, improving therapeutic 

responses and/or reducing ADRs (Eichelbaum et al. 2006). To date, only a few such studies 

have been performed (Anderson et al. 2007; Furuta et al. 2007a; Caraco et al. 2008). 

Pharmacogenetic research would also greatly benefit from establishment of large-scale 

research networks to collect adequate numbers of samples and to share resources, tools, and 

statistical approaches. Some multicenter collaborations to characterize the genetic variation 

underlying drug response and ADRs have already being developed. These include the 

Pharmacogenetics Research Network (PGRN) (Giacomini et al. 2007a), the European 

Network of Pharmacogenetics/Genomics (Maitland-van der Zee et al. 2007), the 

EUDRAGENE project (Molokhia and McKeigue 2006), and the Canadian Genotypic 

Approaches to Therapy in Children (GATC) project (Ross et al. 2007). 

Given the current pharmacogenetic knowledge and the clinical applications already available, 

“ It is unthinkable that selecting drugs for individual patients remain an empirical exercise” 

(Giacomini et al. 2007b). This is particularly true in such cases as CYP2D6 genetic variation 

and tamoxifen therapy in breast cancer, in which the pharmacogenetic approach is critical not 

only for reducing costs of treatment or days of hospitalization, but also for increasing duration 

of survival (Goetz et al. 2008; Kirchheiner 2008). Although pharmacogenetics is a 

challenging area of research, it has the potential to translate knowledge of human genome 

variability into better therapeutics. 



 59 
 

CONCLUSIONS 

The distribution of genetic variation in three drug-metabolizing enzymes, CYP2D6, CYP2C9, 

and CYP2C19, was examined for the first time on a global scale by genotyping new 

population samples with developed methods as well as by systematically collecting data from 

the literature. Detailed molecular analysis of CYP2D6 genetic variation in 52 populations 

originating from all continents revealed a pattern of variation that was similar to those shown 

by neutral genomic markers. Most of the CYP2D6 diversity was observed within populations, 

and the spatial pattern of variation was best described as clinal. However, genetic variants of 

CYP2D6, CYP2C9, and CYP2C19 associated with altered enzymatic activity could reach 

extremely high frequencies in certain geographic regions. Pharmacogenetic variation may 

also be affected by population-specific demographic histories, which was revealed by 

analyzing the variation within Finns. Eastern and Western subpopulations showed a 

significant difference in variation at CYP2C9, and a population-specific pattern emerged at 

CYP2D6 compared with other European populations. 

Each of the genes studied uncovered a distinct variation pattern in human populations and 

high frequencies of altered activity variants. This may reflect neutral evolution and/or 

selective pressures caused by dietary or environmental exposure. These results are relevant 

from the clinical point of view since CYP2D6, CYP2C9, and CYP2C19 code for enzymes of 

major importance in drug metabolism, and several clinical applications taking into account 

genetic variation to improve therapeutic outcome already exist. 

Pharmacogenetics was also applied to a postmortem forensic setting. A correlation between 

amitriptyline metabolic ratios and genetic variation at CYP2D6 and CYP2C19 was observed 

in the sample material, even in the presence of confounding factors typical for these cases. In 

addition, a case of doxepin-related fatal poisoning was shown to be associated with a genetic 

defect at CYP2D6. These results suggest that pharmacogenetics may also add valuable 

information to medicolegal investigations of sudden unexpected deaths. 
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