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3. ABSTRACT 

Oral yeast infections caused by Candida are becoming an increasing problem. Most infections 

caused by Candida are superficial, but as the infection persists it tends to invade deeper into 

the epithelium. Particularly in immunocompromised patients, the invasion by Candida may 

cause systemic infection. Candidosis is the third most common infection causing mortality in 

hospitalized patients.  

The exact invasion mechanisms of Candida yeasts through the mucosal epithelial layer 

remain unknown. The integrity of the epithelium depends on intact and functional structural 

components.Candida use several virulence factors in gaining nutrients from the environment 

and invading tissue, one of these being proteinases. The aim of this thesis was to compare the 

degradation of human oral epithelial proteins by proteinases of different Candida yeast 

species. We focused on proteins in the cell-to-cell junction, the basement membrane zone, the 

extracellular matrix, and local tissue inflammatory regulators. Another main objective was to 

evaluate the effect of the yeast/hyphal transition and pH on the degradative capability of 

Candida.  

To identify the specific Candida-mucosal protein interactions without the effect of the 

modifying host tissue response on Candida, we made the study setting simple by using direct 

degradation assays. The enzymatic activity of the Candida proteinases was verified by gelatin 

zymography. Laminins-332 (Lm-322) and -511(Lm-511) produced by human oral 

keratinocytes were gathered from the growth media, and E-cadherin (E-Cad) was isolated 

from the cell membrane of the keratinocytes by immunoprecipitation. The proteins were 

incubated with Candida cells and cell-free fractions, and degradation was detected by 

fluorography. Fibronectin degradation was visualised by sodium dodecylsulphate 

polyacrylamide gel electrophoresis (SDS-PAGE). Matrix metalloproteinase-9 (MMP-9) 

activation and tissue inhibitor of metalloproteinase-1 (TIMP-1) fragmentation was detected by 

using the Western blot and enhanced chemoluminescence (ECL) techniques. Residual activity 

of TIMP-1 was evaluated by a casein degradation assay. A fluorimetric assay was used to 

detect and compare Candida proteinase activities with MMP-9, typical oral bacterial and 

control enzyme activities. 

These studies showed that the ability of the different Candida yeast species to degrade human 

Lm-332, fibronectin, and E-Cad vary from strain to strain and that this degradation is pH-

dependent. This indicates that local acidic pH in tissue may play a role in tissue destruction by 

activating Candida proteinases and aid invasion of Candida into deeper tissue. A potential 

correlation exists between the morphological form of the yeasts and the degradative ability; 

the C. albicans yeast form seems to be related to superficial infections, and hyphal forms can 

apparently invade deeper tissues between the epithelial cells by degradation of E-Cad. 

Basement membrane degradation is possible, especially in the junctional epithelium, which 

contains only Lm-332 as a structural component. Candida glabrata did not cause E-Cad 

degradation. Local tissue host inflammatory mediators, such as MMP-9, were activated, and 

TIMP-1 was degraded by certain Candida species, thus indicating the possibility of a 

weakened host tissue defence mechanism in vivo. The inhibition of Candida proteinases is a 

potential field in the development of anticandidal agents. In enzymatic activity studies, we 

unexpectedly noticed fluorescence produced by Candida proteinase interaction with a 

synthetic substrate. These kinds of fluorigenic substrates of a certain molecule structure seem 

promising in the development of a rapid Candida diagnostic method.  
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4. INTRODUCTION 

The oral mucosa is one of the first barriers against microbial dissemination. To avoid invasion 

and combat microbes, the structural integrity and normal defence mechanisms of the mucosal 

epithelial layer are important. Micro-organisms, such as bacteria and yeasts, form a complex 

biolayer covering the mucosal membranes of the body. Each compartment of the mucosa has 

a unique local microenvironment with differences in pH, gland secretions and epithelial 

structure. The balance of the microbial flora in the oral cavity can be disturbed by different 

factors, such as the use of broad spectrum antibiotics or immunocompromising diseases, and 

the result can be the overgrowth of yeasts.  

The virulence factors of Candida yeasts are the focus of many study groups, and the 

unravelling of the invasion mechanisms is crucial in understanding candidosis. Studies of 

invasion mechanisms are mostly based on several indirect methods, such as histologically 

visualizing the loss of components or physical growth of Candida in the epithelial layer or 

interpreting gene expression profiles from infected host tissue material.  

Investigating the molecular mechanisms of invasion is nonetheless a daunting task because of 

the complex structural interactions between the host and Candida. By using direct 

degradation assays in which only one protein is degraded at a time, we could identify and 

isolate possible individual proteinase-protein interactions and protein modifications that may 

have a role in the invasion process eventually in vitro. The basic question we wanted to 

answer was whether Candida is able to degrade human-derived basement membrane zone 

(BMZ) proteins, thus making the structure of the epithelial layer more vulnerable to Candida 

invasion. Because most human-derived BMZ and extracellular matrix (ECM) proteins are not 

commercially available, we isolated two such proteins from a culture medium of oral 

epithelial cells, one from the cell membranes of oral epithelial cells and one from donor 

blood.  

This thesis focused on the degradation of human oral mucosal proteins by several Candida 

species, particularly those found in the BMZ, namely laminin-332 (Lm-332), laminin-

511(Lm-511), fibronectin and E-cadherin (E-Cad). These proteins play an important role in 

epithelial structural and functional integrity. We compared this degradative ability of the most 

common Candida species.  

We also aimed to elucidate the unclear role of hyphae in the invasion capability of yeasts by 

using hyphal and secreted aspartic proteinase mutants of a known invasive clinical strain of C. 

albicans SC5314. Comparative studies were made with C. glabrata, the Candida strain that 

often acquires resistance to the commonly used antifungal group azoles. C. glabrata does not 

form true hyphae, but can still cause infection.  

The effect of Candida proteinases on host inflammatory molecules, such as matrix 

metalloproteinase-9 (MMP-9) and tissue inhibitors of metalloproteinase-1 and -2 (TIMP-1 

and -2), was evaluated to elucidate the possible impact on host responses. C. albicans is 

known to have a significant role in tissue structure through basement membrane (BM) protein 

and MMP modulation (Claveau et al., 2004).  
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5. REVIEW OF THE LITERATURE 

5.1. Oral mucosa 

5.1.1. Anatomy and histology 

The oral epithelium is a stratified squamous epithelium comprising the palate, lip, gingival, 

buccal, tongue and floor of the mouth epithelium. The epithelium of the palate, the dorsum of 

the tongue and the parts of the gingivae attached to the teeth are keratinized. The keratin layer 

acts as a mechanical barrier that makes these parts of the epithelium more resistent to wear 

and injury. The oral gingival epithelium is stratified squamous cell epithelium and can be 

classified into three distinct entities: 1) keratinized gingival epithelium, 2) non-keratinized 

sulcular epithelium and 3) junctional epithelium. Epithelial cells shed continuously from the 

mucoid surface, forming a protective shield against pathogens. The epithelial cells attach to 

the underlying tissue by hemidesmosomes. Oral stratified squamous epithelium is illustrated 

in Figure 1A and gingival structure in Figure 1B.  

 

   A.                                                                           B. 

Figure 1 A.  Stratified squamous epithelium; the constant movement of gradually keratinizing 

epithelial cells moving towards the mucosal surface is indicated with an arrow. BM= 

basement membrane.  B. Healthy gingiva. OGE= oral gingival epithelium, SE= sulcular 

epithelium, JE= junctional epithelium.  
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The gingival tissue around the teeth is called the junctional epithelium (JE) (Bosshardt and 

Lang, 2005). Laminins -332 (Lm-332, former laminin-5, Lm-5), -311(former laminin-6, Lm-

6), -321 (former laminin-7, Lm-7), -511 (former laminin-10, Lm-10) and- 521 (former 

laminin-11, Lm-11) are glycoproteins, all found in the basement membrane of the oral 

mucosal epithelium. The gingival epithelium, which has tight junctions, acts as a barrier. JE is 

more vulnerable, contains no E-Cad and has widened intercellular spaces (Hatakeyama et al., 

2006). JE cells have fewer tonofilaments and desmosomes than the gingival epithelium 

(Nanci and Bosshardt, 2006). JE contains only Lm-332 (Oksanen et al., 2001). This makes it 

more vulnerable to breakdown by pathogens. Cells of the defensive system, such as 

polymorphonuclear leukocytes and T-lymphocytes, move to the gingival pocket through the 

JE. The gingival connective tissue is composed of collagens, osteonectin, tenascin and elastin. 

Type I and III collagens are the most abundant and are located immediately under the 

epithelium, along with the proteoglycans decorin and biglycan. Types IV and VI collagen are 

found in the BMZ. The periodontal ligament is mainly composed of types I and III collagen 

and other molecules, including fibromodulin, perlecan, tenascin, fibronectin and vitronectin 

(Bartold and Narayanan, 2006).  

Epithelial junctions 

The epithelium has four different adhesive complexes that facilitate adhesion of epithelial 

cells to each other on lateral sides and to the underlying connective tissue (Meyer et al., 1984) 

(Figure 2).  

 

Figure 2. Epithelial adhesive junctions.  
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Adherens junctions (Figure 3) are Ca 
2+

-sensitive, are located between epithelial cells, are 

situated more basally than tight junctions and contain such adhesive proteins as E-Cad which 

binds to β- and γ-(plakoglobin) catenins; these in turn bind to α-catenin. These are anchored 

to actin filaments (Chitaev and Troyanovsky, 1998).  

Hemidesmosomes connect epithelial cells to the basement membrane (Figure 4). 

Hemidesmosomal α6β4 integrin forms a complex with keratin filament, mediated by plectin 

and Lm-332, and together they play both a structural and cell signalling role in the epithelium. 

Other interactive proteins here are cytoplasmic BP230 and transmembrane BP180 (collagen 

XVII) (Litjens et al., 2006).  Lm-332 induces hemidesmosome assembly (Jones et al., 1998).  

Desmosomes, macula adherentes, are adhesion plaques attaching two epithelial cells together. 

The adhesive proteins found in desmosomes are desmogleins 1-3, desmocollin, plakoglobin 

(γ-catenin) and desmoplakin. Intracellular keratin filaments bind to desmoplakin. The length 

and homogeneity of the desmosome can be used for diagnostic and prognostic purposes in 

oral squamous cell carcinoma (Oliveira Crema et al., 2005).  

Tight junctions, zonula occludens, form a barrier connecting two epithelial cells together on 

the apical side of the epithelial layer. The main proteins present are small transmembrane 

claudins (Furuse et al., 1998), occludins (Furuse et al., 1994) and zonulin (Wang et al., 2000; 

Sapone et al., 2006). Tight junctions control the movement of fluid and molecules in and out 

of cells, and, interestingly, the upregulation of zonulin has been speculated to play a pivotal 

role in development of autoimmune diseases, such as diabetes type 1, by increasing the 

permeability of the intestine and exposure to environmental antigens (Sapone et al., 2006).  

 

Figure 3. E-cadherin dimer assembly in the adherens junction. CM= cell membrane, Ca= 

calcium. 
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 Figure 4. Hemidesmosome structure.  

 

5.1.2. Tissue components 

5.1.2.1. Basement membrane 

The epithelial cells attach to the underlying tissue by the basement membrane. It is a thin 

layer of specialized extracellular matrix and can be visualized by electron microscopy. It has 

classically been considered to be composed of four layers: lamina lucida/lamina rara interna, 

lamina densa, lamina lucida/lamina rara externa and lamina reticularis. The lamina rara 

interna is an electron-lucid layer, and it contains the glycoproteins laminins, integrins, 

entactins and dystroglycans. The electron-dense lamina densa contains type IV collagen and 

perlecan (a heparan sulphate). Lamina rara externa has a similar composition as the internal 

lucid layer. The components of the three layers are secreted mainly by epithelial cells. Lamina 

reticularis is secreted by the cells in the connective tissue and contains mainly fibronectin.The 
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basal lamina (BL) is distinguished from the basement membrane (BM); it is seen only by 

electron microscopy and lacks the lamina reticularis.  

The BMZ is composed of laminins, type IV collagen and other glycoproteins such as nidogen 

and proteoglycans (Colognato et al., 2000). The BMZ forms a network between epithelial 

cells and the underlying tissue and has both structural and signalling functions.  

Laminins are the most abundant non-collagenous molecules in the BMZ. The first laminin 

(laminin-1) was discovered by Timpl et al. (1979), and since then the family of laminins has 

been shown to contain at least 15 different laminin isoforms (Colognato and Yurchenko, 

2000; Aumailley et al., 2005). The role of laminins in the BM has been reviewed by 

Aumailley and Smyth (1998) and in mammals by Miner (2008). Laminins are heterotrimers 

composed of α-, β- and γ-chains; each laminin isoform has a distinct chain composition, 

which affects its function. Five different α-chains, three different β-chains and three different 

γ-chains have been identified.  Laminin chain self-polymerization is crucial for the formation 

of BMs and naturally occurring networks of laminin depend on isoform constituents 

(Odenthal et al., 2004). The structure of the different laminins can be viewed in the article by 

Miner (2008).  

Integrins α2β1, α3β1, α6β1 and α6β4 are found in the human gingival epithelium. Integrin 

α6β4 particularly in the junctional epithelium (Hormia et al., 1990, 1992, 2001; Thorup et al., 

1997). Integrins α3β1 and α6β4 are specific for Lm-332 and Lm-511 and integrin α6β1 for 

Lm-332, Lm-511 and Lm-111 (Nishiuchi et al., 2005). Integrin α3β1 is associated with 

epithelial cell-derived cancer migration (Kreidberg, 2000), and integrin α6β4 has a stabilizing 

role as an adhesion and signalling molecule in hemidesmosomes attaching to Lm-332 

(Borradori and Sonnenberg, 1999). 

Extracellular matrix 

Extracellular matrix (ECM) is a term for the interstitial matrix between cells in the connective 

tissue and the basement membrane. The ECM is composed of a network of fibrous 

collagenous proteins and glycosaminoglycans such as heparan sulphate, chondroitin sulphate, 

keratan sulphate and the polysaccharide hyaluronic acid. In addition, ECM contains elastin 

fibres and fibronectin as non-fibrillar proteins. C. albicans possesses cell surface integrin-like 

receptors that bind arginine-glycine-aspartic acid-containing peptides in numerous human 

proteins (Klotz, 1992). Yan et al. (1997) have identified a common haemoglobin-inducible C. 

albicans receptor for laminin, fibronectin and fibrinogen. A cell wall-associated form of 

glyceraldehydes-3-phosphate dehydrogenase (GAPDH) is able to bind to laminin and 

fibronectin and may aid C. albicans adhesion and invasion (Gozalbo et al., 1998). Bouchara 

et al. (1990) have located laminin receptors on Candida albicans germ tube tips.  

Several studies have shown the ability of different non-Candida yeasts (Tronchin et al., 1993; 

Puccia et al., 1998; Rodrigues et al., 2003; Matsuo et al., 2005; Moon et al., 2006) and 

Candida yeasts (Morschhäuser et al., 1997; Rodier et al., 1999; dos Santos et al., 2005) to 

degrade ECM proteins. The interaction of pathogenic fungi with host cells has been reviewed 

by Mendes-Giannini et al. (2005). The structural changes in these proteins may affect 

epithelial cell motility, signal transduction and cancer metastasis (Patarroyo et al., 2002; 

Katayama and Sekiguchi, 2004; Marinkovich, 2007).  
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5.1.2.1.1. Laminin- 332  

Laminin-322 ( formerly known as laminin-5) is found in tissues specialized in protecting and 

secreting functions (Ghosh and Stack, 2000). It is a glycoprotein of 460 kDa (Tsubota et al., 

2000). It is synthesized and secreted in preform, which is proteolytically modified (Miyazaki, 

2005). The molecule is composed of α3-, β3- and γ2-chains. The different domains of these 

chains have specific functions in adhesion to integrins, collagens and other BMZ 

glycoproteins and also act as part of the signalling cascade between the epithelium and 

underlying tissue. The localisation of the different laminin chains in the gingival tissue has 

been described by Pakkala et al. (2002).  

The proteolytic modification of Lm-332 has been demonstrated to be related to BM 

dysintegration, altered epithelial cell motility (Pirilä et al., 2003; Hintermann and Quaranta, 

2004) and epithelial tumour invasion (Katayama et al., 2003; Koshikawa et al., 2005). Lm-

332 γ2-chain levels are elevated in gingival crevicular fluid in chronic periodontitis (Emingil 

et al., 2004). Processing of the human laminin γ2-chain, found in Lm-332, by MT1-MMP 

may lead to tumour cell scattering and migration (Koshikawa et al., 2005). Lm-332 is 

degraded to c-terminal fragments γ2´ (100kDa), γ2x (85 kDa) and smaller fragments (27 and 

27 kDa) from γ2 domain III. The degradation of Lm-332 is outlined in Figure 7. 

5.1.2.1.2. Laminin- 511 

Laminin- 511 (formerly known as laminin-10) is composed of α5-, β1- and γ1-chains. Lm-10 

is found in most tissues, except adult skeletal muscular tissue (Miner et al., 1995). Lm-10 acts 

in cell adhesion (Tani et al., 1999; Ferletta, 2002) and plays an important role in the 

maturation of most epithelial tissues (Miner 2008). Matrix metalloproteinase-2 (MMP-2; Gu 

et al., 2002) and membrane type 1 metalloproteinase (MT1-MMP; Bair et al., 2005) are 

known to cleave Lm-10 and promote cancer cell migration. It is of interest that Lm-511 is a 

major neuronal laminin in rat hippocampus, and it is degraded by a tissue plasminogen 

activator/plasmin protease cascade during excitotoxic injury leading to neuron death (Indyk et 

al., 2003).  

5.1.2.1.3. Fibronectin 

Fibronectin (Fn) is an adhesive molecule found in most tissues. It is a large glycoprotein and 

can be found in dimeric (440 kDa) form in plasma, composed of two disulphide-linked 

monomers (Vartio et al., 1987). Plasma Fn is produced by hepatocytes, and it functions in 

wound healing, blood clotting and phagocytosis (Tamkun and Hynes, 1983). Fn is also 

produced by epithelial cells and fibroblasts. Fn is in fibrillar form on cell surfaces and in 

extracellular space. In the periodontal ligament, Fn is found on collagens fibrils (Bartold and 

Narayanan, 2006). A small amount of escaped cellular Fn can be detected from plasma 

(Vartio et al., 1987). 

Studies indicate an integrin-like protein in C. albicans (Hostetter, 1999). Beta 1 integrin in C. 

tropicalis has been found to bind Fn (DeMuri and Hostetter, 1996). Haemoglobin-induced Fn 

binding of C. albicans (Yan et al., 1998), binding of entactin, Lm and Fn by C. albicans 

(Lopez-Ribot and Chaffin, 1994) and Fn and vitronectin binding by C. albicans (Jakab et al., 

1993) have been detected. Klotz (1994) postulates that binding of C. albicans to Fn in blood 

vessel fibrin-platelet aggregates may help the yeast to avoid normal host phagocytotic 

removal and take a foothold in the host, similarly as in cancer metastasis.  
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There is a difference in the binding of soluble vs. immobilized Fn to C. albicans surface 

adhesin. Soluble Fn binds more avidly to Candida due to the differentially exposed domain 

structure (Penn and Klotz, 1994). Klotz and  Smith (1995) show inhibition of C. albicans 

adherence to type I collagen, type IV collagen, Fn, and Lm by fragments of gelatin (denatured 

type I collagen). Threonine-rich repeats in C. albicans adhesin Als5p increase the binding to 

Fn (Rauceo et al., 2006). Efg1p mutant of C. albicans has downregulated proteome and 

defective adhesion to ECM components compared with the parental strain (Saville et al., 

2006). 

5.1.2.1.4. E- cadherin  

Epithelial cadherin (E-cadherin, E- Cad) is one of the main adhesive proteins that attach 

epithelial cells to one another in the adherens junction of the epithelial layer in the digestive 

tract. It is 120 kDa and belongs to the calcium-dependent adhesion molecule superfamily. It is 

encoded by the CDH1 gene (CD324, cluster of differentiation 324). Two E- Cad molecules 

bind together in a Ca
2+

 -dependent homophilic way (between identical molecule types; van 

Roy and Berx, 2008)( Figure 3).  

It has been shown by Phan et al. (2007) that the Candida adhesion protein Als3 has structural 

similarity to human cadherins and can bind to oral epithelial E-Cad and form a pseudo-

homophilic adhesion complex. By this mechanism, Candida is endocytosed and E-Cad 

eventually degraded by fungal and host proteinases. Als3 belongs to the Als adhesive protein 

family. It binds to neural cadherin (N-cadherin, N-Cad) located in the endothelium or E-Cad 

in the oral epithelium. 

Interestingly, the periodontal pathogen Porphyromonas gingvalis has been found to degrade 

E-Cad in vitro (Katz et al., 2000, 2002). The loss of E-Cad function or expression leads to 

decreased cellular attachment, increased cellular motility and even potential cancer invasion 

into surrounding tissues. McNulty et al. (2005) have noted a decrease in motility of CD8 T-

cells and reduced E-Cad in oropharyngeal candidosis. Increased human keratinocyte cell 

motility and loss of E-Cad by C. albicans have been observed by Rollenhagen et al. (2009) in 

an in vitro study.  

The ability of C. albicans Sap 5 to degrade E-Cad has been observed (Villar et al., 2007). In 

intestinal adenocarcinoma monolayer Caco2 cells, an extracellular 89-kDa fragment of E-Cad 

was detected after incubation with the hyphal form of C. albicans (Frank and Hostetter, 

2007).  

5.1.2.2. Matrix metalloproteinases 

The matrix metalloproteinase family consists of at least 24 proteinases. They are subdivided 

depending on their substrate specificity and molecular structure into collagenases, gelatinases, 

stromelysins, membrane-type matrix metalloproteinases and others (Uitto et al., 2003). In 

cells, they are synthesized in an inactive form and secreted and activated by specific 

mediators in tissue. MMP-1, -2, -3, -8, -9 and -13 have been identified in the inflamed 

periodontal tissue (Sorsa et al., 2004, 2006). 

Matrix metalloproteinase function is regulated by growth factors, cytokines such as 

interleukin-1 (IL-1), tumour growth factor beta (TGF-β), serum inhibitor alpha macroglobulin 

and tissue inhibitors of metalloproteinases (Bartold and Narayanan, 2003). The binding of 
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Candida albicans to rabbit corneal epithelial membrane has been studied by Dong et al. 

(2005). Destruction of the membrane was caused by hyphal forms of Candida albicans and 

the inflammation correlated with an MMP-9 level. MMP-9 has been found to bind to ECM 

components such as mouse Lm-1, Lm-5 (from 804G cells), collagens types I and IV and 

serum fibronectin (Mäkelä et al., 1998).  Several MMPs can modify Lm-332 structure and 

enhance epithelial cell motility (Pirilä et al., 2003). MT1-MMP causes cleavage of Lm-332 

and has been suggested to have a role in cancer invasion (Koshikawa et al., 2000).  

5.1.2.3. Tissue inhibitors of metalloproteinases 

Tissue inhibitors of metalloproteinases (TIMPs) are the main inhibitors of matrix 

metalloproteinase function. TIMP-1, -2, -3 and -4 are expressed in vertebrates (Brew et al., 

2000).  

5.2. Oral microbiota 

5.2.1. Oral biofilms 

There are hundreds of microbial species on the oral mucosal epithelial surface. The majority 

of the species are still unidentified. Continuously competing with each other for nutrients and 

space, the microbes form biofilms on the epithelium. The biofilm is composed of yeasts and 

bacteria. 

The most commonly found bacteria are Aggregatibacter (A. actinomycetemcomitans),  

Lactobacilli, Streptococcus mutans (SM),  Porphyromonas gingivalis (P. gingivalis), 

Prevotella intermedia (P. intermedia) and  Fusobacterium nucleatum (F. nucleatum) 

(Huovinen 2003). Bacteria use quorum sensing in biofilms: responses to environmental 

changes in local microniches are transferred from bacteria to bacteria by exchanging genetic 

material. Antibiotic resistance is also transferred in this way. Yeasts are known to use quorum 

sensing (Ramage et al., 2009).  

Biofilms occupy all surfaces in the oral cavity and the growth of microbes on intravenous 

catheters are one major pathway of microbes leading to systemic infection. The search for 

materials that prevent biofilm formation is ongoing. Biofilms are found also on foreign 

objects in the oral cavity such as dental prostheses.  

Each individual has a unique microbial balance, called the normal flora. Disturbance of this 

normal flora by use of broad-spectrum antibiotics or immune-compromising diseases may 

cause overgrowth of Candida yeasts, which normally live as commensals on the mucosal 

membrane without causing disease. Biofilm formation of Candida species has been reviewed 

by Ramage et al. (2009). Comparison of C. albicans, C. parapsilosis, C. glabrata, C. 

tropicalis, C. krusei and C. pseudotropicalis strains revealed that the species that formed the 

most biofilm was C. albicans. Less biofilm formation was seen by the other species, except C. 

krusei, which had an intermediate ability to form biofilm. The C. parapsilosis biofilm 

formation was strain dependant. Biofilm formation depended also on the growth medium 

glucose/galactose concentration. At least C. parapsilosis has been shown to have phenotypic 

switching, which affects growth speed and biofilm formation (Laffey and Butler, 2005).  
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5.2.2. Candida species 

Candida species are prevalent in the oral cavity, in particular among elderly patients with 

reduced salivary flow and/or dental prostheses and in immunosuppressed patients. The most 

frequently encountered species is Candida albicans. Non-Candida albicans Candida (NCAC) 

strains, however, are isolated in increasing numbers in medically compromised patients. 

These strains may cause systemic infections and are often resistant to commonly used 

antifungal agents such as fluconazole. Candida species may be capable of metabolizing 

ethanol to carcinogenic acetaldehyde and can thus induce progression of oral and upper 

gastrointestinal tract cancer (Uittamo et al., 2008). Consequently, more focus should be 

placed on the diagnosis and treatment of oral Candida infections, also on Candida species 

other than C. albicans. 

 

C. albicans is the most common species (over 50% of the cases) isolated from the oral cavity 

of both healthy and diseased individuals. Other species responsible for oral infections have 

also been identified from the bloodstream in infections (Pfaller et al., 1998).These include C. 

parapsilosis (15%), C. glabrata (15%), C. guilliermondii (6%), C. tropicalis (2%) and C. 

krusei (1%). C. dubliniensis is often found in immunocompromised patients such as the 

elderly and HIV patients (Sullivan et al., 1997).  

 

Oral candidosis is often detected in the elderly, in patients wearing dentures, in patients 

positive for the human immunodeficiency virus (HIV), and in acquired immunodeficiency 

syndrome (AIDS) patients.   

All of the Candida species cause the same kind of mucositis, but there are significant 

differences exist in invasiveness and antifungal susceptibility. Oral yeast carriage does not 

mean infection. For infection, mucositis with clinical symptoms must be present.  

 

Clinical forms of oral candidosis include erythematous candidosis, pseudomembranous 

candidosis, median rhomboid glossitis, angular cheilitis and candidal leukoplakia. The main 

local predisposing factors are decreased saliva flow, smoking, mucosal lesions and decreased 

blood circulation in the mucosa due to, for instance, radiation therapy. Examples of systemic 

predisposing factors are diabetes mellitus, acquired or inborn immunodeficiency, oral cancer 

(Menzin et al., 2009), malignancies (Laine et al., 1993) and malnutrition (Leslie et al., 2005). 

 

The ability of Candida to adhere to the mucosa and dentures plays an important role in the 

pathogenesis of oral yeast infections. Adherence is achieved by specific and non-specific 

mechanisms, as discussed in the previous section. However, the mechanisms remain 

incompletely understood.  

Infections caused by NCAC produce 35-65% of all Candida infections (Krcmery and Barnes, 

2002). Candida species cause 4-9% of bloodstream infections, and multisite colonization 

among immune-deficient patients confers a high risk for acquiring a systemic infection (Blot 

et al., 2008).  

Mortality due to bloodstream infections related to NCAC species is similar to C. albicans: 15-

35%. C. parapsilosis produces the lowest mortality, and C. tropicalis and C. glabrata cause 

the highest mortality: 40-70% (Krcmery and Barnes, 2002). Patients with prostheses have a 

higher carriage percentage of Candida, and they tend to have multiple species (Wang et al., 

2006).  
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Polymicrobial candidemia has indeed been recorded by several study groups. It is defined as 

the detection of two or more Candida species simultaneously from a patient (Pulimood et al., 

2002). The main species detected was C. albicans, and the other common species were C. 

glabrata, C. parapsilosis, C. tropicalis, C. krusei and C. kefyr.  

The following Candida species described in more detail below are included in the studies of 

this thesis work. They are the most commonly found species in the human oral cavity. 

5.2.2.1. Candida albicans 

C. albicans is the most commonly (72.1%) found Candida yeast in the oral cavity. It exists 

mainly in two morphologic forms: budding yeast (blastospore) and hyphal form. Candida also 

show phenotypic switching, such as white/opaque change and several colony morphology 

variants (star, stipple, etc.), in response to environmental signals (Slutsky et al., 1985, 1987).  

5.2.2.2. Candida dubliniensis 

C. dubliniensis was long considered the same species as C. albicans, but analysis of the 

genome revealed C. dubliniensis to be a separate species. It is the second most common 

Candida found in the oral cavity (Sullivan et al., 1995). C. dubliniensis is particularly often 

detected in HIV-infected patients (Sullivan et al., 1997).   

C. dubliniensis is also able to exist in both blastospore and hyphal forms. It adheres more 

avidly to human buccal epithelial cells than C. albicans when grown in glucose. C. 

dubliniensis is sensitive to azoles and amphotericin B. Seven Sap homologues have been 

found from C. dubliniensis by Southern blot analysis (Gilfillan et al., 1998).  

5.2.2.3. Candida parapsilosis 

C. parapsilosis is found as a commensal, but it often causes systemic infections. C. 

parapsilosis infection is related to foreign body insertion, neonates and hyperalimentation 

(Krcmery and Barnes, 2002). High frequency of colonization with C. parapsilosis with 

reduced susceptibility to fluconazole has been observed on the hands of healthy hosts 

(hospital workers and non-hospital workers); this may be an infection risk in 

immunocompromised patients (Bonassoli et al., 2005).  In a retrospective cohort study of 

1995-2003 by Pasqualotto et al. (2006), C. parapsilosis caused 30% of the NCAC infections. 

It does not form true hyphae, but is able to form pseudohyphae (Laffey and Butler, 2005).   

5.2.2.4. Candida glabrata 

C. glabrata has recently been found to cause more Candida infections than earlier (Li et al. 

2006). C. glabrata is related to Saccharomyces cerevisiae (Barnes et al., 1991) and is haploid 

(Doi et al., 1992), as opposed to C. albicans, which is diploid (Soll, 2000). Lachke et al. 

(2002) noticed switches into four different phenotypes by C. glabrata on CuSO4-containing 

agar. They also observed pseudohyphae and tube structure formation, but no true hyphae. C. 

glabrata and C. parapsilosis have been proposed to be the second most common albicans 

species to cause infection in man (Nguyen et al., 1996). Azole resistance has been found more 

frequently in C. glabrata infections (35% resistance), and predisposing factors to infection by 

this species are azole prophylaxis, surgery and catheters. C. glabrata causes 5-40% of NCAC 

infections (Krcmery and Barnes, 2002). The roles of phenotypic switching and pseudohyphal 
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formation in pathogenesis of C. glabrata have not yet been clarified (Li et al., 2007 b). For a 

review of C. glabrata and its interaction with the host, see Kaur et al. (2005). 

5.2.2.5. Candida krusei 

C. krusei causes 10-35% of NCAC infections. The risk factors for infection are azole 

prophylaxis, neutropenia and bone marrow transplantation. Of C. krusei strains 75% are 

resistant to fluconazole and 10-15% to amphotericin B (Krcmery and Barnes, 2002). C. krusei 

is able to form hyphae.  

5.2.2.6. Candida tropicalis 

C. tropicalis is found in 10-30% of NCAC infections, and it is also detected in patients with 

neutropenia and bone marrow transplantation. It is the second most pathogenic Candida 

species (Zaugg et al., 2001). Of C. tropicalis strains 10-25% are resistant to fluconazole 

(Krcmery and Barnes, 2002). C. tropicalis forms true hyphae.  

 

5.2.2.7. Virulence factors 

Candida uses several virulence factors in the infection process. Adhesion molecules (Yang, 

2003) are the first molecules that interact with the epithelial surface and attach yeast to the 

epithelium. Candida has several cell surface-bound and secreted enzymes, such as 

phospholipase (Calderone et al., 2001; Yang, 2003) and proteinases (Monod et al., 2002; 

Hube et al., 1994; Hube and Naglik, 2001; Schaller et al., 2005), that degrade the epithelium. 

Other virulence factors of Candida are haemolytic factor, blastospore/hyphal transition (Gow 

et al., 2002) and phenotypic switching. Phenotypic switching may weaken azole susceptibility 

(Cetinkaya and Kiraz, 2005). C. albicans white phenotype is associated with disseminated 

candidosis, and this phenotype is less susceptible to host defence than the mating opaque 

phenotype (Pendrak et al., 2004). Altered signal transduction and cytoskeletal organization in 

host-fungus interaction can be used by yeasts in aiding their virulence in the host (Mendes-

Giannini et al. 2005). The pH of the infection site regulates the expression of genes in 

Candida essential for survival (de Bernardis et al., 1998). Calcineurin is one of the virulence 

factors crucial for Candida survival. It responds to stress such as temperature, pH and cations 

(Blankenship et al., 2003).  

5.2.2.7.1. Candida proteinases                  

Candida proteinases are classified depending on the catalytic mechanism they use to cleave 

peptide bonds as metalloproteinases, serine proteinases and secreted aspartic proteinases 

(Saps). These proteinases can be bound to the yeast cell wall or to be extracellularly secreted 

proteinases.  

Cell surface-associated proteinases 

Sap 9 and Sap10 are secreted aspartic proteinases identified on the cell surface of C. albicans 

(Albrecht et al., 2006). Structurally, Sap 9 and Sap10 are anchored by 

glycosylphosphatidylinositol (GPI) and are located in the cell membrane or the cell wall. Sap 

9 and Sap10 seem to be independent of environmental conditions and are constitutionally 

expressed (Schaller et al., 2005).  
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Secreted aspartic proteinases 

Several studies have been conducted on Saps (Schaller et al., 1999 a; 1999 b; Hube et al. 

1994; 1998; Hube and Naglik, 2001; Naglik et al., 2008). Saps are important in the invasion 

process. For C. albicans, eight Saps are secreted into the extracellular space (Saps 1-8). 

Seven Sap homologues have been found in C. dubliniensis (Gilfillan et al., 1998). Four Saps 

have been identified in C. tropicalis (Zaugg et al., 2001). A Sap multigene family has been 

observed in C. guilliermondii (Monod et al., 2002) and one cysteine proteinase and one 

metalloproteinase in C. glabrata. Rüchel et al. (1986)  identified a 33 kDa secretory 

proteinase, which was inhibited by pepstatin A. Weig et al. (2004) found nine aspartic 

proteases in C. glabrata that have similarity with the aspartic proteinases of S. cerevisiae. 

Three of these seem to be GPI-anchored to the cell wall.  

C. albicans Sap 1-3 activity levels depend on the pH of the growth medium (White and 

Agabian, 1995). The different proteinases have specific optimal activity pH values. Saps 1-3 

have an optimal activity at pH 2-5, Saps 4-6 at pH 3-7, as seen in Figure 5 (Hube and Naglik, 

2001). Sap isoenzymes may act in acidic microniches (Schaller et al., 2001). 

A triple deletion of Saps 1-3 causes attenuated virulence (Hube et al., 1997). A triple deletion 

of Sap 4-6 genes has also been noted to cause attenuated virulence in animals (Sanglard et al., 

1997). Sap 2 is able to degrade collagen, Lm, Fn, α-macroglobulin and all immunoglobulins 

(Schaller et al., 2005). 

Saps 1-3 are associated with superficial infection with the blastospore form of Candida. Saps 

4-6 are found in later infection stages and are related to hyphal forms. Sap 2 may be needed 

for  invasion through the endothelial cell layer barrier, and the SAP2 gene has obsereved to be 

the most important one  expressed in invasive candidosis studied by  the  reconstituted human 

epithelial (RHE) model in vitro (Lermann and Morschhäuser, 2008; Naglik et al., 2008). The 

action of aspartic proteinases has been investigated by several groups: Saps 4-6 action in 

murine macrophages (Zepelin et al., 1998), Sap 1-3 null mutants in an in vitro study by Hube 

et al. (1997), and triple mutant Saps 4-6 in vitro (Sanglard et al., 1997), revealing the role of 

these proteinases in the invasion process.  

The effect of transcription factor mutants on dissemination has been evaluated in vivo with 

mice and C. albicans (Felk et al., 2002). The study revealed that hyphal-deficient mutants 

lacking transcription factor Efg1were unable to invade parenchymal organs such as the liver 

or pancreas. The result also emphasizes the importance of Sap 4-6 in invasion capability. 

C. albicans has been shown by SEM to invade rabbit tongue mucosal explants (RTME) and 

reconstituted human oral epithelium (RHOE) intercellularly by thigmotropism (Jayatilake et 

al., 2008). The NCAC strains cause intercellular oedema. All of these effects are thought to 

be caused by enzymes such as Saps and phospholipases.  

However, differences still exist between studies on the importance or activity of the different 

Sap enzymes, which may be due to minor variations in the study protocols or Candida strains 

used (Lermann and  Morschhäuser, 2008).  Salivary pH affects proteinase activity (Germaine 

and Tellefson, 1981) and areas of low pH, such as under dental prostheses, may thus enhance 

proteolytic activity. Stress proteins have higher expression levels at lower pH in C. glabrata 

as opposed to C. albicans (Schmidt et al., 2008).   
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5.2.2.7.2. Blastospore/hyphal transition 

Blastospore and hyphal forms of Candida secrete specific proteinases; e.g. genes encoding 

secreted aspartic proteinases 1-3 (Saps 1-3) are expressed in both yeast and hyphal forms and 

Saps 4-6 principally in hyphal forms (Schaller et al., 2005). Environmental factors, such as 

temperature and pH, affect the morphology of Candida; high pH (over 6.5) and temperature 

(37°C) favour hyphal formation (Buffo et al., 1984). Contact with blood serum also induces 

hyphal formation.  Hyphal forms are more frequently found in chronic infections. Not all 

Candida species form true hyphae despite of their ability to cause systemic infections. This is 

a subject of major controversy. 

Microenvironments in tissue have been suggested to evoke distinct signalling pathways in C. 

albicans, leading to adherence, release of secreted hydrolytic enzymes, hyphal formation and 

eventually thigmotropic invasion. Regulatory networks controlling C. albicans 

morphogenesis have been described, showing signal pathways, responses to stimuli and the 

effect of transcription factors Efg1 and Cph1 on hyphal growth (Brown and Gow, 1999).     

It is still unclear whether it is the blastospore or hyphal form that is crucial in the invasion 

process through the epithelium. Non-filamentous C. albicans mutants are non-virulent (Lo, 

1997). It has been argued that for example, C. albicans is able to exist in more than the two 

morphological forms, and evidence has been shown of the existence of also pseudohyphal and 

chlamydospore forms; thus C. albicans could be called pleomorphic rather than dimorphic. 

Spore outfits (appareil sporifers) on very long hyphae (verticillia) have been detected by 

SEM, and these may have some unknown function (Jayatilake et al., 2008). 

Hyphal formation-inducing transcription factors, such as Efg1p (Stoldt et al., 1997), Cph1p 

(Lo, 1997) and Czf1p (Brown and Gow, 1999), can be activated by different environmental 

stimuli. The schematic presentation of pathways leading to hyphal development has been 

described by Saville et al.  (2003). CPH1 gene deletion mutant of C. albicans has shown 

suppressed hyphal formation (Liu et al., 1994). The pioneer study of constructing isogenic C. 

albicans strains was conducted by Fonzi and Irwin (1993). The EFG1 gene-associated 

pathway is a parallel, but independent pathway to CPH1 (Calderone and Fonzi, 2000).  

Efg1 regulator acts downstream of the cyclic adenosine monophosphate (cAMP)/ protein 

kinase A (PKA) pathway. Cph1 acts in the mitogen-activated kinase (MAPK) pathway (Lane 

et al., 2001). The efg1 and double mutants efg1/cph1 do not form hyphae (Korting et al., 

2003).  

Hyphal elements have been found in invasive or chronic candidosis. As all Candida species 

are not able to form true hyphae, the precise function of the hyphal elements remains unclear. 

Candida adapts to environmental stimuli, such as elevated pH or temperature, by forming 

hyphal structures. Germ tube production has been shown to be glucose-dependent (Vidotto et 

al., 1996). Hyphal-associated proteinases are suitable to act more efficiently in these altered 

environmental circumstances, and this is crucial to Candida survival. The ability to change 

morphology is thus a powerful virulence factor. 
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5.3. Mucosal infection 

 

5.3.1. Aetiology 

 

Candida yeasts are in most humans a part of the 10
14

 population of the normal flora of micro-

organisms in the gastro-intestinal tract. Approximately 70% of the population has Candida in 

their mucosal flora, mainly as commensals without causing disease. Superficial candidosis 

can be acute or chronic and atrophic or pseudomembraneous. If the immune defenses are 

compromised, the initially superficial candidosis can lead to invasive disease.  

 

Candida is the fourth most common cause of infection in hospital patients, but this group has 

the highest mortality rate (Mavor et al., 2005). Keeping in mind the rapidly increasing 

number of immunocompromised patients (diabetes, neonates, cancer patients, etc.) and other 

predisposing factors, such as side effects of medications (corticosteroids, broad-spectrum 

antibiotics, antihypertensive drugs, antidepressants), the number of oral candidosis cases is 

becoming a growing problem. These predisposing factors cause initially superficial 

candidosis to turn into chronic mucocutaneous candidosis, and the tendency to invade the 

epithelium increases. Also numbers of Candida strains resistant to commonly administered 

azoles increasing produces pressures to understand the candidosis infection process.  

 

Initial stages of the defence mechanisms 

 

Mucosal infection begins from the early attachment of Candida cells to the epithelial cell 

surface by adhesive proteins to progressive invasion deeper into the epithelial layer if the 

defence mechanisms of the host fail to eliminate the invader. The mucosal membrane has 

several defence mechanisms against yeast dissemination: epithelial renewal, mucus secretion 

with antimicrobial molecules such as lysozyme, lactoferrin, α- and β-defensins, acid pH and 

the immune system. Hyphal forms of C. albicans inhibit β-defensin expression and weaken 

the innate immune cell chemoattractant role of these antimicrobial peptides (Lu et al., 2006).  

The mucosal immune system (mucosa-associated lymphoid tissue, MALT) is the first barrier 

against pathogen invasion. The MALT system differs from the other three immune 

compartments in the human body (peripheral lymph nodes, peritoneum, skin) in that there are 

also γ:δ T-cell receptors with different antigen-recognition properties than conventional α:β 

T-cell receptors.  γ:δ T-cells may be classified as an interface between innate and adaptive 

immunity, responding for instance to cellular stress and injury, promoting repair and recovery 

of the damaged mucosa. Secretory IgA (sIgA) is the main antibody produced by the mucosa 

(Janeway et al., 2001).   

 

5.3.2. Inflammatory mediators 

 

5.3.2.1. Inflammatory cells 

 

The immune system can be divided into innate and adaptive components. Macrophages and 

polymorphonuclear leukocytes (PMNs) are cells of the innate immune system responsible for 

complement-activated pathogen phagocytosis. Macrophages secrete cytokines upon contact 

with pathogens. The cytokines and chemokines then activate T-cell production and migration 

to the infection site. Dendritic cells of the adaptive immune system ingest pathogens and 

present antigens of the pathogens to T-lymphocytes. Cytotoxic T-cells express co-receptor 

CD8 and bind to major histocompatibility complex (MHC) class I molecules, which then bind 
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to viral-derived fragments. CD8 T-cells were shown to play a role in oropharyngeal 

candidosis in a study of HIV patients (McNulty et al., 2005). MHC class II molecules present 

fragments from phagocytosis of bacteria, which are recognized by CD4Th1 cells (helper T-

cells). B-lymphocytes are activated by peptides attached to MHC class II molecules, and they 

start to secrete antibodies.  

 

The immune response varies depending on the morphology of C. albicans; hyphal forms 

activate an early immune response by neutrophils (Wozniak et al., 2008). The lymphocyte 

surface structure Mac-1(CD11b/CD18) is responsible for adhesion of lymphocytes to hyphal 

forms of C. albicans (Forsyth and Mathews, 2002).  

As discussed earlier, Candida can modify host immunological responses by degrading 

components of the defence system. Many proteins of the immune system, such as leukocyte 

enzymes, cathepsin, immunoglobulins, sIgA, complement factors and alpha-macroglobulin, 

are degraded by Sap 2 (Kaminishi et al., 1990; Kaminishi et al., 1994, 1995; Naglik et al., 

2004).   

 

5.3.2.2. Cytokines 

 

Interleukins are a group of inflammatory mediator molecule secreted by macrophages upon 

microbe contact. They have distinct local and systemic functions in immune response, e.g. 

immune cell recruitment and vascular effects. 

 

Interleukin-12 (IL-12) and tumour necrosis factor alpha (TNF-α) have been found to be 

important mediators of the inflammatory response to C. albicans infection. The innate 

immune response is responsible for clearance of Candida, and the adaptive immune system 

may limit tissue damage (Ashman et al., 2004). Mavor et al. (2005) have described host cell 

cytokine responses in blood vessels upon fungal contact.  

 

Candida hyphal elements have been shown to inhibit the expression of β-defensins (Lu et al., 

2006). After adhering to the epithelium with special surface proteins, the host is able to 

recognize fungal 1,3-beta-D-glucan with epithelial Dectin-1, which is a C-lectin-type 

receptor. This triggers the host innate immune response and activates transcription factor NF- 

κB (nuclear factor kappa-light-chain-enhancer of activated B-cells) through cooperation with 

toll-like receptor-2 (TLR2) -mediated signalling (Yoshiyuki, 2007). C. albicans is also able to 

induce a TLR4-mediated PMN antifungal defence mechanism (Weindl et al., 2007). C. 

glabrata triggers a greater granulocyte macrophage colony-stimulating factor response than 

C. albicans, and insignificant IL-8 or IL-lα secretion (Li et al., 2007 b). C. albicans SC5314 

has been shown to induce IL-1α and interleukin-1 receptor antagonist (IL-1Ra) expression 

(Jayatilake et al., 2007). 

 

5.4. Experimental model systems in oral yeast infection studies 

 

Several different models have been used to investigate the Candida invasion process. In vivo 

studies with mice are controversial on ethical grounds, and alternative models have been 

constructed.  Investigations of Candida invasion were started with in vitro studies by using 

bovine aortic endothelial cell monolayers on porous support material (Zink et al., 1996) and 

transmigration studies through reconstituted basement membrane  (Crowe et al.,  2003). The 

ex vivo endothelial model of invasion uses the whole liver organ, and is functional up to 12 h 

and mimics most closely  the in vivo invasion process (Thewes et al., 2007).  
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Candida dissemination has been studied in vivo in mouse models (Rüchel et al., 1986; Fallon 

et al., 1997; Chen et al., 2006; Yang et al., 2009). In vitro studies have revealed degradation 

of endothelial cells of the extracellular matrix and possible penetration of C. albicans into 

circulation and deep organs (Morshhäuser et al., 1997). The Candida infection mechanism 

has been studied in vivo by injecting Candida intravenously into mice (Hube et al., 1997; 

Sanglard et al., 1997). The epidemiology, infection process and virulence attributes of 

systemic fungal infections caused by Candida species have been reviewed by Mavor et 

al.(2005), who concluded that more studies are warranted to elucidate the exact virulence 

factors enabling Candida to cause infections.  

 

Epithelial models have been introduced to investigate the invasion process of Candida 

through the epithelium. Different epithelial cell lines have been used in the constructs 

depending on the model. An in vitro model using ventral tongue carcinoma cells grown on 

polystyrene as monolayers revealed mucosal E-cadherin degradation by C. albicans (Villar et 

al., 2007).  Reconstituted human skin epidermis cells (Dieterich et al., 2002) and intestinal 

carcinoma cells (CaCO2- cells) (Frank and Hostetter, 2007) have been grown on a biomatrix 

of collagen I to form multilayers resembling epithelium (Dieterich et al., 2002). 

 

A more recent  reconstituted human epithelial (RHE) model uses commercially produced oral 

keratinocytes (squamous cell carcinoma cell line TR146 of the buccal mucosa or human 

normal gingival keratinocytes) grown on a polycarbonate filter  to form a stratified epithelial 

multilayer in five days (Schaller et al.,  2006). Another 3D model uses immortalized human 

oral keratinocytes to form a multilayer, and this model has an additional submucosal 

component, thus better resembling the normal mucosa and submucosa (Donagari-Bagtzoglou 

and Kashleva, 2006). RHE models have been used to quantitatively evaluate yeast/hyphal 

invasion into the epithelium (Jayatilake et al., 2006).  One limitation of the model is the 

absence of host immune response elements, but rabbit tongue mucosal explants have been 

successfully used to circumvent this problem (Jayatilake et al., 2008). This model consists of 

glossal epithelium harvested from rabbits by biopsy and grown on a polycarbonate 

membrane. This study setting showed the defending capacity of the subepithelial layer seen as 

less deep penetration of Candida hyphae into the epithelium compared with the RHE model, 

which lacks the submucosal components. More recently, the addition of cells of the immune 

system (lymphocytes, polymorphonuclear leukocytes, mast cells and dendritic cells) into the 

RHE model has become possible (Schaller et al., 2008). 

 

In addition, many other methods have been used to study and visualize the Candida infection 

process:   

Histological sections of infected artificial tissue can be used to detect tissue damage (Schaller 

et al., 1999b) or localization of enzymatic activity (Korting et al., 2003; Albrecht et al., 

2006). Confocal laser scanning microscopy (Malic et al., 2007), transmission electron 

microscopy and scanning electron microscopy have been used to visualize the contact 

situation of yeasts to epithelial cells (Schaller et al., 1999). In vivo messenger ribonucleic acid 

(mRNA) extraction and reverse-transcriptase polymerase chain reaction (RT-PCR) enable 

genome-wide transcription screening, in fact the ex vivo method gives better results because 

of more tissue volume and also shows the genes associated with the process. In vivo 

transcription profiling of C. albicans has revealed genes essential for interepithelial hyphal 

dissemination (Zakikhany et al., 2007). In vitro studies have uncovered the importance of Sap 

4-6 in invasion using confocal laser scanning microscopy (Malic et al., 2007).  An in vitro 

study including immunoelectron microscopy has revealed localization of Sap 1-3 and Sap 4-
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6 and their relation to hyphal, or yeast-formed cells in acidic microniches (Schaller et al., 

1999). 

 

Proposed mechanisms of invasion 

The molecular mechanism by which Candida invades the mucosa is still fairly unknown 

despite the dramatic increase in Candida infections.  Candidosis is most often commensal 

without causing infection, but can become a persistant chronic superficial mucosal infection. 

Predisposing factors may further favour systemic spreading and lead to Candida abscesses in 

the inner organs.  Invasion takes place in hospitalized patients mainly by trauma caused by 

catheters.  Invasion may also occur by natural routes through the epithelial and endothelial 

layers, but little is known of these routes.  

Many studies have been conducted using a simple model with vascular endothelial cells. The 

endothelium is a monolayer of cells and is thus different from the mucosal epithelium, which 

is a multilayer of cells. Despite this anatomical difference, the same invasion mechanisms 

may be partially applicable to multilayered systems such as the oral epithelium. Frank and 

Hostetter (2007) demonstrated that the invasion of C.  albicans occurs between endothelial 

cells. 

Endocytosis 

C. albicans is unique among Candida species in that it induces endocytosis of the yeast by 

endothelial cells. Neither C. glabrata nor C. tropicalis induce endocytosis by endothelial cells 

(Filler et al., 1995). This route may be possible also in the epithelium, combined endocytosis 

of Candida and the action of Candida proteinases making a pathway deeper into the 

epithelium by degrading structural proteins. Hyphal tips are predicted to exert a force from 

ten to a few hundred µN, acting like a drill pushing through a point of weakest resistance such 

as degraded structural protein areas. This could lead to invasion of the yeasts sideways and 

downwards despite the epithelium being in a constant renewal process upwards to the surface 

opposing the invasion of microbes.  

Transmigration between cells 

Grubb et al. (2008) propose five different mechanisms in the endothelial transmigration by C. 

albicans: 1) endocytosis, 2) endothelial cell destruction by hyphae, 3) translocation between 

endothelial cells by cyclic switching of adhesion proteins, 4) phagocytosis and trans-

endothelial carriage by leukocytes, 5) transmigration through fenestrations in the 

endothelium.  

Filler and Sheppard (2006) proposed two possible mechanisms for Candida invasion of 

human epithelial cells: 1) lytic aspartic proteinases degrading the cell surface, thus providing 

a route inwards and 2) endocytosis of yeast by epithelial cells. By comparison, the invasion 

through the endothelium (blood vessels) could occur by 1) endocytosis of yeasts by 

endothelial cells 2) endocytosis by leukocytes or 3) yeast invasion between endothelial cells. 
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6. HYPOTHESIS AND AIMS OF THE STUDY 

The invasion process of Candida yeasts through the oral mucosa has been the focus of many 

studies, but the precise mechanisms involved remain obscure. Immunohistochemical studies 

have shown that Candida invade tissue and that invasion is more likely to occur after 

prolonged infection of the mucosa. In chronic candidosis, most Candida yeasts form hyphal 

structures believed to be elementary structures in the invasion. On the other hand, there are 

Candida species that do not form hyphae and they are nevertheless able to cause invasive 

candidosis. Most studies focus on evaluating the invasion indirectly by visualization. Only a 

few studies have revealed the mechanisms on a molecular level. 

The present series of studies were aimed at clarifying the invasion process on a molecular 

level with direct proteolytic assays using human-derived oral tissue components. The 

hypothesis was that Candida possesses proteinases capable of degrading oral mucosal 

components, thus enabling invasion into deeper structures of the oral epithelium. The main 

questions to be answered were as follows: 

 

1. Is Candida able to degrade mucosal epithelial proteins? 

2. Do differences exist between Candida species in this ability? 

3. Are hyphal forms of Candida essential in the degradation process? 

4. Does Candida invade between epithelial cells? 

5. Can Candida affect the local inflammatory response by degrading host proteinases/ 

inhibitors? 

Based on the different invasion models, hypothetical routes of Candida invasion through the 

oral epithelium are proposed and depicted in Figures 5, 6 and 7.  
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Figure 5. Inflamed gingiva and proposed hypothetical route for Candida invasion through 

degraded junctional epithelium (seen as broken lines). OGE= oral gingival epithelium, SE= 

sulcular epithelium, JE= junctional epithelium. 
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Figure 6. Proposed non-traumatic invasion mechanisms of Candida through the oral 

epithelium. A. endocytosis by epithelial cells, B. endocytosis by leukocytes, C. invasion 

between epithelial cells. The invasion of Candida between oral epithelial cells (C) by 

degrading E-Cad in adherens junctions is proposed based on the work presented in this thesis. 

A pH gradient across the epithelial layer favours expression and function of certain secreted 

aspartic proteinases (Saps). Blastospore-associated Saps(red dots) have an optimal acidic 

activity area of pH 2-5, and hyphal Saps (blue dots) have a slightly more basic optimal 

activity area of pH 3-7.   
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Figure 7. Degradation of the laminin-332 network in the basement membrane by Candida 

proteinases in oral acidic microniches causes destabilization of the hemidesmosomal 

structure. This proposed event may cause functional and motility alterations in the epithelium 

and create a possible invasion route for Candida. Saps= secreted aspartic proteinases of 

Candida species.   

 

 

 

 

 

 



31 

 

7. MATERIALS AND METHODS 

 

7.1. Candida isolates 

The yeasts used in these studies are given in the tables of each separate manuscript (I-IV) and 

are briefly described here in Table 1. Yeast sonicated cells and secreted proteinases from the 

growth medium were used to identify the fraction causing degradation. NCAC species were 

included in the studies to compare degradative ability of different Candida species. C. 

albicans SC5314 is a well-known clinical isolate from a patient with disseminated candidosis 

and was chosen for these studies as the most representive, a highly active invasive strain 

(Gillum et al., 1984). Hyphal mutants were used to evaluate the role of yeast-to-hyphal 

transition in degradation capability. Sap deletion mutants were used to identify the 

degradative proteinases. 

The Candida were grown in YPG (yeast peptone glucose) medium at 35ºC for 24 hours in a 

water bath with shaking. This was considered to be the appropriate time to obtain the highest 

possible proteinase concentration. Cells were concentrated to 10
7 

cells/ml. To obtain the cell 

fraction,1 ml of this suspension was washed twice (14000 rpm, 5 min, 4ºC) with TNC buffer 

(50 mM Tris-HCl, 0.2 M NaCl, 1 mM CaCl2, pH 7.6), and the cells were left in 1 ml TNC. 

The cell suspension was sonicated with the Branson 250 sonicator (Branson, Danbury, CT) on 

an ice bath until over 50% of the cells were disrupted. Disruption and morphology prior to 

sonication (blastospore /hyphal form) were verified by phase contrast microscopy. To obtain 

the cell-free fraction, the Candida growth medium was filtrated using a 0.45-µm filter 

(Millipore, Billerica, MA), dialysed (12 to14 kDa cut- off, Medicell, London, UK) against 

distilled water for 2 h at 4ºC and concentrated 10x by lyophilization. 

Table 1. Yeast strains used in this thesis 

 

 

 

 

 

 

 

 

 

 

 

C. albicans CCUG 32723 

C. albicans B1134 

C. albicans SC5314 

C. albicans JKC19 (cph1/cph1) 

C. albicans HLC52 (efg1/efg1) 

C. albicans HLC54 (cph1/cph1, efg1/efg1) 

C. albicans SC5314 Sap 1-3 mutant 

C. albicans SC5314 Sap 4-6 mutant 

C. dubliniensis Cd3 

C. dubliniensis Cd4 

C. guilliermondii ATCC 6260T 

C. guilliermondii B75B 

C. glabrata CCUG 32725 

C. glabrata ATCC 90030 

C. glabrata 5WT 

C. glabrata G212 

C. parapsilosis Cp2 

C. parapsilosis Cp3 

C. krusei  ATCC 6258 

C. krusei  D206B 

C. tropicalis ATCC 750 

C. tropicalis D213 
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7.2. Candida proteinase activity and inhibition assays 

The activity of the Candida proteinase cell and cell-free fractions was evaluated by MDPF (2-

methoxy-2, 4-dephenyl-3(2H)-furanone; Fluka, Buchs SG, Switzerland) - gelatin zymography 

(Study I). Fifteen mikrolitres of cell and cell free fractions of Candida were incubated with 

non-reducing Laemmli’s sample buffer (RT, 2h) and run on 11% SDS-PAGE with MDPF –

gelatin (1 mg/ml) as the substrate. The gels were first washed for 30 min with 50 mM Tris-

HCl-0.25% Tween 80-0.02% NaN3, then for 30 min in the aforementioned buffer with added 

0.5 mM CaCl2 and 1 µM ZnCl2. Finally, the gels were incubated for 7 days at 37 ºC in the 

third buffer, which was otherwise identical to the second buffer, but lacked Tween. The 

optimal incubation time was evaluated by UV detection. After a 7-day incubation, the gels 

were stained with 0.2% Coomassie Brilliant Blue and scanned with a Bio-Rad GS-700 

Densitometer. Zymography with different buffer pH values was used to define the effect of 

pH on the degradative activity of the proteinases.  

In addition, the gelatinolytic and caseinolytic activity of 15 µl of P. gingivalis ATCC 33277 

(10
8
 cells/ml), 15 µl of  S. salivarius 13419 (10

8
 cells/ml), 15 µl of L. casei 921 (10

8
 cells/ml), 

20 µl of A. actinomycetemcomitans (10
8
 cells/ml), 0.5 µl of Clostridium histolyticum 

collagenase type IA (2.5 U/mg; 1mg/ml, Sigma, MO), 0.5 µl of bovine trypsin (1mg/ml, 

Sigma, MO) and 4 µl of human neutrophil elastase (1 mU/ml, Merck, Darmstadt, Germany) 

were evaluated by the method described previously, with the exception of using several 

incubation times (2 h to 7 days) thus dividing the proteinase activities into three classes: high 

(2 h), medium (12 h) or low (7days) activity. Also, we used only neutral test pH.  

Several typical proteinase inhibitors were chosen to evaluate their ability to inhibit the 

proteinase activity of Candida. Fifteen mikrolitres of the Candida fractions were incubated 

for 2 h at 37ºC with Pefabloc (Boehringer Mannheim GmbH, Mannheim, Germany), 

Ilomastat (Chemicon International Inc., Temecula, CA), EDTA (Merck KGaA, Darmstadt, 

Germany), CMT3 and CMT308 (Collagenax Inc., Newtown, PA) and CTT2 

(GRENYHGCTTHWGFTLC, Heikkilä, 2006). The final concentration of the inhibitors was 

0.2 mM.  

7.3. Immunoprecipitation and fluorography of laminins -332 and -511 and E-cadherin 

Degradation of the oral mucosal tissue components was detected by fluorography. This 

method is semiquantitative, but very sensitive in visualizing protein chain structures with a 35 

S label. The separate chains of Lm-332, Lm-511 and E-Cad monomer can be seen as bands 

and degradation is visualized as alterations in molecular weights.  

All of the proteins studied were derived from an immortal human oral epithelial cell line (I-

III). Lm-332 and Lm-511 were secreted into the growth medium. The epithelial cell line used 

was a spontaneously immortalized gingival cell line (Salo et al., 1991). The cells were grown 

at 37ºC in Keratinocyte growth medium 2 (KGM-2, Promocell, Heidelberg, Germany) in a 

5% CO2 atmosphere. The cells were labelled with 
35

S (25 µCi/ml, GE Health Sciences, 

Uppsala, Sweden). Growth medium was precleared with non-immune rabbit serum and Lm-

332 was immunoprecipitated with polyclonal anti-rabbit antiserum specific to Lm-332 

(Filenius et al., 2001)   or monoclonal antibody 4C7 specific to Lm-511 bound to 

GammaBind™Sepharose™ beads (Amersham BioSciences, Piscataway, NJ).  
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Fifteen mikrolitres of the Candida fractions were incubated with Lm-332 at 37ºC for 24 h at 

two different pH values. The samples were run on reducing SDS-PAGE (6.5%/ Lm-332; 5%/ 

Lm-511). The degradation of Lm-332 was detected by fluorography; after electrophoresis, the 

gels were washed twice for 30 min with dimethyl sulfoxide (DMSO, Riedel deHaen, Seelze, 

Germany), then for 3 h with DMSO/2, 5-diphenyloxazole (Sigma, St. Louis, MO) and finally 

washed with water for 30 min. The gels were dried (80ºC, 2 h), placed on x-ray film (Kodak 

BioMax MS Film, Rochester, NY) into an intensifying screen (BioMax TransScreen LE, 

Kodak) and stored at -70ºC (4-7 days). The films were scanned with the Bio-Rad GS-700 

Densitometer.  

E-Cad is an integral cell-surface membrane protein. Keratinocytes were grown in KGM-2 as 

above and labelled with 
35

S (25 µCi/ml). After washing twice with cold phosphate-buffered 

saline (PBS), 0.5 ml RIPA buffer  (150 mM NaCl, 10 mM Tris pH 7.2, 0.1% SDS, 1% Triton 

X-100, 1% deoxycholate, 5 mM EDTA) was added per plate (4 ml). Cells were scraped off 

the plate and lysed on ice for 10 min and centrifuged (13000 rpm, 10 min, 4ºC). Solubilized 

E-Cad was immunoprecipitated from the supernatant by using 3.5 µg of mouse anti-human-E-

Cad antibody (BD Biosciences, San Jose, CA) bound to GammaBind™ Sepharose beads™ 

(Amersham). Non-reducing SDS-PAGE and fluorography were performed as above.  

7.4. Fibronectin assay 

Fn was isolated from serum (Finnish Red Cross Blood Transfusion Service, Helsinki, 

Finland) of blood donors according to Engvall and Ruoslahti (1977). The structure of the Fn 

monomer is identical in blood and tissues, and this isolate could be tested as a representative 

tissue Fn molecule. Degradation could be detected by SDS-PAGE (II). Fifteen mikrolitres of 

Candida fractions were incubated with 11.5 µl (690 µg/ml) of Fn at two different pH values at 

37ºC for 24 h. The samples were then run on a 5% SDS-PAGE, stained with 0.2% CBB and 

photographed.   

7.5. ProMMP-9 activation 

The ability of the Candida fractions to convert inactive proMMP-9 (IV) to active form was 

assessed by Western blot and visualized by enhanced chemoluminesence (ECL)-technique ( 

IV). Two mikrolitres of human recombinant proMMP-9 (20 ng/µl, Invitek, Berlin, Germany) 

was incubated with 15 µl of sonicated yeast cell or 10x concentrated growth media for 24 h at 

37°C. The activation of proMMP-9 was visualized as a fragment of 86 kDa compared with 

the intact proMMP-9 (92 kDa) and an aminophenylmercuric acid- positive control (APMA, 

86 kDa) and detected by ECL. The incubated samples were first run on 8% SDS-PAGE and 

then blotted onto a nitrocellulose membrane (Protran, Dassel, Germany). Primary antibody 

against human proMMP-9 (rabbit polyclonal, EMD BioSciences, La Jolla, CA) and secondary 

antibody (anti-rabbit IgG from donkey, GE Healthcare, Buckinghamshire, UK) were used to 

visualize the activation.  

7.6. TIMP-1- and -2 degradation assay 

Human recombinant TIMP-1 and TIMP-2 were incubated with the Candida fractions and the 

degradation was seen as fragmentation of the molecule ( IV).  0.5 µl of human recombinant 

TIMP-1(30 ng/µl, Calbiochem, Darmstadt, Germany) and 3 µl of human recombinant TIMP-

2 (30 ng/µl, Calbiochem) were incubated with 15 µl of the yeast cell fractions for 7 days at 

37°C. Nonreducing SDS-PAGE (8%) was performed and the proteins were blotted onto a 
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nitrocellulose membrane (Protran), and detected ECL using rabbit polyclonal primary 

antibody against TIMP-1 (Chemicon, Temecula, CA) and mouse monoclonal primary 

antibody (Oncogene, San Diego, CA) against TIMP-2, anti-rabbit IgG from a donkey (BD 

BioSciences, Buckinghamshire, UK) as a secondary antibody against TIMP-1 and anti-mouse 

IgG from sheep (BD Biosciences) as a secondary antibody against TIMP-2.  

7.7. Casein assay for residual TIMP-1 activity evaluation  

The residual activity of TIMP-1 after Candida degradation was evaluated by a modified 

casein assay (Sorsa et al., 1997). The degraded TIMP was seen as reduced inhibition on 

MMP-9 caseinolysis (IV). First TIMP-1 was incubated with Candida, as described previously 

in the TIMP degradation assay. The degraded TIMP-1 was incubated with 3 µl of the 

proteinase inhibitor Pefabloc (1 mM) for 2 h at 37°C. The samples were then incubated with 2 

µl of human recombinant proMMP-9 (20 ng/µl, Invitek) and 5 µl of β-casein (52µM) at 37°C 

for 1 h. Intact B-casein, uninhibited APMA-induced MMP-9 caseinolysis and intact TIMP-1 

were used as controls. Finally, 13 % SDS-PAGE was performed, the gels were stained with 

0.2% CBB and analysed using Bio-Rad GS-700 Densitometer.  

7.8. Fluorimetric assay 

The fluorimetric assay (MMP-14 Fluorescent Assay Kit for Drug Discovery-AK 417, Biomol, 

PA) was used to compare the enzymatic activities of 15 µl of the microbial fractions and 

typical commercial proteolytic enzymes to MMP-14 (study IV) according to the 

manufacturer’s instructions in black 96-well microtiter plates (Costar, Corning, NY). 

Substrate with assay buffer and heat- denatured fractions of the microbial enzymes were used 

as controls. As typical commercial proteolytic enzymes, we used 0.5 µl of bovine trypsin (1 

mg/ml, Biomol), 4 µl of human neutrophil elastase (1 mU/ml, Merck), and 2 µl of 

Clostridium histolyticum collagenase type IA (1 mg/ml, Sigma). Human recombinant MMP-

14 (Biomol, PA) was used as a positive control). The assay was performed with a 340-nm 

excitation wavelength and 394-nm emission wavelength for 2 h with 2- min intervals. 

Degradation of the Omni-MMP 
TM

 substrate was detected (Tecan Spectrafluor Plus, 

Hombrechticon, Switzerland) and visualized (X Fluor 4 Plus- program) as increased 

fluorescence emission values.  

The C. parapsilosis Cp2 cell fraction was investigated further. The ability of the Cp2 cell 

fraction to degrade the Omni-MMP 
TM

 synthetic peptide was compared to the ability of 

MMP-14 to degrade this substrate. The above-mentioned fluorimetric assay was used. 

Inhibition of Cp2 by 1 µl of Pepstatin A (1 mg/ml, Sigma, MO) and 5 µl of the synthetic 

inhibitor CTT-2 was measured. Denatured Cp2 was used as a negative control.  
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8. RESULTS 

The results of this series of studies are given in detail in the original publications (I-IV). In the 

following, only a brief summary of the results is presented.  

Lm-332 

At neutral pH (7.6), none of the strains degraded Lm-332. At pH 5.0, cell fractions of C. 

albicans, C. dubliniensis, C. tropicalis, C. guilliermondii and C. glabrata degraded Lm-332 

γ2-chain into a processed 100-kDa form. C. krusei caused degradation of Lm-332 γ2-chain 

into three 100 to130- kDa fragments. The 100-kDa fragment is known as γ2´ (Koshikawa et 

al., 2005). Secreted proteinases of C. albicans, C. dubliniensis and C. tropicalis also caused 

degradation of the γ2-chain into 100-kDa form. The degradation varied between reference and 

clinical strains in most species investigated and the exact strains capable of Lm-332 

degradation are given in Study I.  

Lm-332 is the only protein in JE. It does not contain E-Cad. This makes JE more vulnerable 

to degradation by specific proteinases. Weakening or loss of integrity of the JE provides a 

pathway for Candida invasion.  

Lm-511 

None of the strains caused Lm-511 degradation under the present study conditions. This may 

indicate that laminin degradation is a highly specific process and dependent on the molecular 

structure of the substrate and specificity of the proteinase.  

Fibronectin 

Degradation of human Fn by secreted proteinases of most of the strains evaluated occurred 

both at physiological and lower pH and was more pronounced at pH 4. This indicates a role of 

acid- activated secreted proteinases in the degradation process. The cell fractions of C. 

tropicalis and C. parapsilosis also degraded Fn at pH 7.8, and this may be the effect of cell 

membrane- bound or intracellular proteinases, which are activated at physiological pH. C. 

tropicalis cells showed hyphal structures prior to sonication, and C. parapsilosis was in the 

blastospore form, indicating that hyphal structure formation is not necessary for Fn 

degradative capability.  

Fn is the linking protein in the cell-ECM adhesion system and its degradation causes changes 

in the substructure by unlinking proteins from each other. This may cause alterations in cell 

signalling pathways.  

E-Cad  

In study III sonicated cell fractions of hyphal-formed C. albicans JKC-19 (cph1/cph1) and 

parental strain SC5314 degraded E-Cad at pH 4, and this was not Cph1-dependent. This result 

indicates that hyphal cell-associated proteinases are capable of E-Cad degradation at lower pH 

values. Transcription factors other than cph seem to be related to E-Cad degradation.   
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Furthermore (Study III)  blastospore (yeast form) 10x concentrated secreted proteinases of C. 

albicans HLC-52 (efg1/efg1), HLC-54 (cph1/cph1 efg1/efg1), ATCC 32723 and clinical strain 

B1134 were able to degrade E-Cad at pH 4; HLC-52 and HLC-54 Saps also at pH 6, and this 

was not Efg1-, or Cph1-dependent. In this study setting, Sap1-3 mutant cell fraction did not 

degrade E-Cad. Saps 1-3 are known to be related to blastospores and may cause destruction at 

pH 3-5. 

C. glabrata did not degrade E-Cad in our study setting. C. glabrata does not form true 

hyphae.In the light of the absent degradation capability, hyphal formation and associated 

proteinases could be speculated to be elementary to E-Cad degradation.  

E-Cad degradation indicated that Candida are able to destroy adherent junctions between 

epithelial cells in the oral epithelium. This then makes invasion of the yeasts plausible.   

MMP-9 and TIMP-1 

The activation of MMP-9 occurred by cell fractions from both the reference and clinical 

strains of C. parapsilosis. Cell fractions of both strains of C. albicans and C. krusei, C. 

parapsilosis Cp2 and C. glabrata reference strain degraded TIMP-1. TIMP-2 was not 

degraded by any of the strains tested. The degradation of TIMP-1 caused an elevation of the 

activity of MMP-9, detected as more effective caseinolysis.  

Only C. parapsilosis caused MMP-9 activation. Thus it seems that Candida has little effect on 

MMP-9 action. However, TIMP-1 was degraded by several Candida species, indicating that 

Candida may modulate MMP-9 action by weakening the action of its inhibitor TIMP-1. 

Fluorimetric assay 

Fluorimetric comparative analysis of samples tested revealed activation of the substrate in 

descending order by MMP-14, P. gingivalis, C. parapsilosis Cp2 , A. actinomycetemcomitans, 

C. albicans CCUG 32723, L. casei 921, Clostridium histolyticum collagenase type IV, C. 

albicans B1134, C. krusei ATCC 6258, S. salivarius 13914, elastase, bovine trypsin, C. 

glabrata CCUG 32725 and C. krusei D206B. All of the microbial samples studied were cell 

fractions.  

Of the Candida species, only C. parapsilosis Cp2 and Cp3 showed increased specificity 

towards the synthetic OMNI-MMP substrate. This feature could make it a suitable candidate 

for developing a diagnostic test to detect C. parapsilosis infection.  
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9. DISCUSSION 

In contrast to most of the studies in the literature, which were conducted on mouse-derived or 

non-oral proteins, we used human-derived proteins and proteins produced by a human oral 

keratinocyte cell line. Candida species are apparently able to degrade, in addition to mouse 

proteins, also human basement membrane zone proteins Lm-332, E-Cad, Fn and TIMP-1. 

Role of Saps 

Saps 2-, 5- and -9 seem to be the most important aspartic proteinases of Candida capable of 

causing tissue destruction (Naglik et al., 2008). A study with neutropenic mice showed that 

intraperitoneal injection of pepstatin A, an aspartic proteinase inhibitor, can protect against 

disseminated candidosis caused by C. albicans (Fallon et al., 1997). This protective effect 

was not noticed in intravenous Candida challenge. This finding was proposed to indicate the 

role of Candida aspartic proteinases as an early event in the dissemination prior to the entry 

into circulation. Saps 1-6 are secreted proteinases, while Sap 9 is cell surface-bound. The 

fractions used in our studies (I-IV) were concentrated growth media (containing Saps 1-6) and 

sonicated cells (contain cell-bound proteinases), and these represented the separate proteinase 

groups in the present series. The morphology of the yeasts prior to sonication contained 

mainly either blastospore or hyphal forms. By using these fractions, we could trace the 

morphology of the yeast associated with the degrading proteinase. The Sap and hyphal 

mutants served this purpose as well. The possible activating effect of pH was investigated by 

conducting the experiments at lower and higher pH values.  

Role of pH 

The low pH in oral microniches may trigger proteolysis by C. albicans, C. tropicalis, C. 

glabrata and C. krusei acidic proteinases, as has been shown by Samaranayake et al. (1994). 

The activating effect of pH was also observed in our studies (I-III). The internal organs (liver, 

heart, lung, thyroid) have a non-acidic pH, and both blastospore and hyphal forms of C. 

albicans have been detected by immunostaining in these organ specimens. The tongue, 

esophagus, intestine and most skin areas are considered non-acidic, and hyphal forms are 

predominant in them (Monteagudo et al., 2005). Our results (I-III) indicate a crucial role of 

pH as a triggering factor of the expression and function of proteinases; hyphal forms of 

Candida seem to express certain proteinases in less acidic environments, and blastospore 

forms express proteinases at acidic pH values.  

Acidic microniches have been shown to be related to Sap expression in immunoelectrical 

studies by Schaller et al. (1999). Wagner et al. (1995) also demontrated that denaturing of 

proteinases occurs if the pH conditions are unsuitable for the proteins in question. A body 

temperature of 37°C shifts the denaturing pH one pH unit towards acidity in C. parapsilosis. 

Thus, the in vitro studies conducted at room temperature should be interpreted as only rough 

estimates of proteinase function compared with in vivo studies.  

Interepithelial invasion/E-Cad degradation 

Recent studies (Lermann and Morschhäuser, 2008; Naglik et al., 2008) on the role of Saps 1-6 

have yielded contradictory results compared with earlier studies from several groups, which 

have shown that Saps 1-6 would have a role in Candida invasion by for instance degrading 

epithelial proteins. Elevated expression of Saps has been detected in candidosis. Surprisingly, 



38 

 

studies by Lermann and Morschhäuser (2008) have revealed that secreted aspartic proteinases 

1-6 of strain SC5314 are not required for invasion of reconstituted human epithelia by C. 

albicans by measuring lactate dehydrogenase (LDH) as an indicator of damage to the 

epithelium. They considered that this may be due to differences in the study settings 

compared with other studies. Schaller et al. (2008) obtained partially similar results. The role 

of Saps in the invasion process is still unclear. From the results Studies III, we could speculate 

that Candida invade initially between epithelial cells by degrading E-cadherin and possibly 

other intercellular adhesion molecules. If this invasion does not cause epithelial cell lysis, 

there might not be any LDH release. This was also noticed by Naglik et al. (2008). Filler et al. 

(1995) have shown that both live and dead C. albicans cells were phagocytosed by vascular 

endothelial cells, but only viable C. albicans could induce cell damage. Naglik et al. (2008) 

concluded that hypha formation is the main cause of tissue damage, SAP5 gene expression 

can be hypha-independent and is controlled by both Efg1 and Cph1 pathways.  

The presence of nutrients at the infection site probably affects the pathogenicity of Candida. 

This would be the case for hyphal forms of Candida; glucose is crucial for the formation of 

hyphae (Brown et al., 2006), and in our study hyphal forms of Candida species grown in 

YPG were able to degrade E-Cad. In addition, secreted aspartic proteinases of the studied 

blastospore formed C. albicans strains, only Sap1-3 and Sap 4-6 mutants were able to degrade 

E-Cad. This suggests the possible involvement of Sap2 and Sap 5 in degrading E-Cad. C. 

glabrata, which does not form hyphae, did not degrade E-Cad. Thus, the pathological 

mechanism for C. glabrata invasion remains unknown. It could be speculated, however, that 

C. glabrata always persists in mixed Candida infections containing C. albicans, exploits the 

degradaded pathway created by C. albicans and then could use this route for invasion.  

The infiltration of hyphae into connective tissue has been suggested to be caused either by C. 

albicans pathogenicity (proteinases) or tissue destruction caused by inflammation, e.g. in 

periodontitis. For instance, a histological study of chronic periodontitis shows C. albicans 

hyphae in deep gingival pockets, and the infiltration site into the connective tissue is near the 

border of the sulcular epithelium (Järvensivu et al., 2004). The role of Candida proteinases in 

the invasion process is supported by our degradation studies. More studies are needed, 

however, that use several strains of Candida species and also test degradation of other 

adhesion proteins of the oral epithelium.  

Basement membrane degradation 

If invasion of Candida is possible between the epithelial cells by the hyphal cells, they must 

first degrade other junctional proteins between the epithelial cells and eventually degrade the 

BM structure to access deeper layers and disseminate. In our study settings, Lm-332 was 

degraded by certain Candida species at specific pH environments in vitro. Thus, local pH may 

play an essential role in triggering the invasion cascade by activating certain proteinases.  

In the studies of Claveau et al. (2004) showing  paradoxically elevated BM protein production 

by human oral epithelial cells, two explanations have been proposed: 1) C. albicans induces 

elevated production of these proteins to aid adhesion prior to invasion and 2) C. albicans 

degrades BM proteins, inducing the host cells to produce more proteins to maintain tissue 

integrity. Our results (I-III) of gelatin, Lm-332 and Fn degradation by several Candida 

species support the latter hypothesis. 
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JE is different from other parts of the epithelium because it lacks of a true BM and can be 

considered as a loosely built entity similar to the connective tissue. The only protein found in 

the BM is Lm-332, and this makes it vulnerable (Oksanen et al., 2001). Our studies reveal 

that Candida are able to degrade Lm-332;  then they may use this as a second possible route 

deeper into tissue in addition to E-Cad degradation-related invasion between epithelial cells.  

Lm-511 was not degraded by the strains used in the present study, suggesting that laminin 

degradation is a specific process and depends on the substructure of the substrate molecule. 

Plasma-derived Fn produced by hepatocytes is an abundant connective tissue  

extracellular matrix protein located in all tissues. In addition, gingival tissue also  

appears to contain locally produced EDA domain-containing Fn closely associated  

with basal keratinocytes and the BM (Walsh et al., 2007). C. albicans  

appears to adhere to gingival Fn (Klotz and Smith, 1991), and this together with  

its ability to degrade Fn, as shown in the present study, also augments the  

movement of Candida through the gingival BM and connective tissue. 

Interestly that elderly toothless patients have  higher oral yeast counts than dentate patients, 

but only little difference in the infection parameter values such as C-reactive protein (CRP), 

erythrocyte sedimentation rate (ESR) of white blood cell count (WBC) (Meurman et al., 

1997). This is speculated to be caused by less portals of entry for infection in toothless 

patients. In light of the studies findings of this thesis, this might indeed be the case in 

gingival; the destruction of the junctional epithelium by yeasts is thought to be a route for 

Candida dissemination. Toothless patients have no junctional epithelium and so these are less 

portals of infection.  

Host protein modulation 

Host MMPs and TIMPs play a role in tissue destruction. MMP-9 and MMP-2 are the major 

MMPs involved in destructive processes in gingival tissue. TIMP-1 and TIMP-2 balance the 

action of the destructive proteinases by binding and inhibiting them. Claveau et al. (2004) 

proposed that decreased TIMP-2 and MMP-2 levels aid the elevated MMP-9 levels in 

degrading tissue. Our study (IV) supports this finding; we found in vitro activation of MMP-9 

and degradation of TIMP-1. In our settings, TIMP-2 was not, however, degraded. The balance 

of matrix destructive proteinases and their inhibitors plays a major role in tissue remodelling. 

Imbert et al. (2002) reported that C. albicans 95 kDa metalloproteinase caused degradation of 

ECM proteins, and this possibly aids in Candida invasion. Hence, the combinations of host 

and similarly acting Candida proteinases have the ability for ECM protein destruction.   

When comparing bacterial and candidal proteinase activity, it was surprising to detect 

fluorescence from samples other than MMP-14; the substrate proved to be non-specific. P. 

gingivalis caused the most fluorescence of the microbial species tested, as expected, because 

this species has a known strong proteolytic capability. Surprisingly, C. parapsilosis Cp2 

ranked second regarding the proteolytic degrading ability of Candida species for this 

substrate. The other samples showed expected values of degradation, which were too low for 

any clinical significance. High Cp2 values may be useful in developing a rapid diagnostic tool 

for the detection of C. parapsilosis infection. 
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10. CONCLUSIONS 
 

Studies I-IV lead to the following conclusions: 

1. Lm-332 degradation was species- and fraction-dependent. Most strains studied had the 

ability to degrade Lm-332. E-Cad degradation was investigated with two species; C. albicans 

was able to degrade E-Cad, but C. glabrata was not. Fibronectin was degraded by most of the 

strains investigated, and this may cause alterations in cell structure and signalling events. 

MMP-9 was activated only by clinical species of C. parapsilosis, which also showed high 

proteinase levels measured by the fluorimetric assay. TIMP-1 was degraded by several, but 

not all, of the species. As the methods used were semi-quantitative, we could measure only 

crude degradation phenomena, and the exact degree of degradation cannot be estimated.  

2. Candida is able to adapt to environmental challenges, such as pH, temperature or nutrient 

availability in the mucosa, and respond to these stimuli in order to survive. Local microniche 

circumstances affect the morphology of the fungus and the forms best-fitted to survival. This 

is a fine-tuned mechanism that merits more research. Both morphological forms of Candida 

seem to have a role in the development and progression of candidosis through the mucosal 

epithelial layer, initially by blastopores and later in the infection dissemination stage in hyphal 

forms. C. glabrata, which does not form hyphae, did not degrade E-Cad in our study settings, 

but still was nonetheless able to degrade Lm-332 of the basement membrane. This 

controversy requires further examination.   

3. E-Cad is degraded by both blastopore and hyphal forms of C. albicans. The blastospore 

proteinases are best-suited to act in more acidic environment and begin the degradation in the 

invasion process. As the penetration of yeast proceeds deeper into the epithelium, the hyphal 

forms start to secrete proteinases best suited for the more physiological basic conditions. 

Because some studies indicate no epithelial damage by invasion of hyphae , as measured by 

LDH activity, invasion is likely to occur by hyphal forms between epithelial cells by 

degrading the main adhesive junctional protein E-Cad. In addition, a second invasion route 

through degraded basement membrane Lm-332, particularly in the JE, is proposed.  

4. The in vitro degradation capability of Candida species indicates that the proteinases can 

cause Candida dissemination pH-dependently.  By activating MMP-9 and degrading TIMP-1, 

some Candida species are able to modify host responses, resulting in easier Candida invasion.   

As more studies are conducted in the controversial field of the role of aspartic proteinases the 

understanding and prevention of candidosis will improve. At a molecular level development 

of anticandidal agents may be possible based on the knowledge of enzyme-substrate 

interaction and its inhibition.  
 

Future studies 

 

On the basis of these results future studies of Candida should include: characterization  and 

comparison of individual proteinases from C. albicans and NCAC species to gain knowledge 

of the factors that may trigger (environmental challenge such as pH, nutrients, oxidative 

stress) and enable Candida invasion. The main focus should be the search for a proteinase 

inhibitor for use as a drug against candidosis. Development of rapid fluorimetric tests to 

detect Candida from patient samples may also be possible. 
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I conclude with the words of three distinguished yeast scientists, on elucidating the 

mechanism of pathogenic yeast invasion, thoughts with which I am in full agreement: 

 

 

“We need now to break down disease processes into temporal events (such as 

colonisation, penetration, dissemination, organ invasion and tissue necrosis), and 

reassess how morphogenesis impacts at each of these stages.”(Gow, Brown & 

Odds 2002). 
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