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ABSTRACT 
The heterogeneous group of the Gram-negative anaerobes constitutes a large part of the 

indigenous oral microbiota. The present study exploited a variety of phenotypic and 

molecular methods for identification, taxonomic classification, investigating population 

dynamics, and tracing transmission of individual clones of selected Gram-negative oral 

anaerobes. 

 

The main phenotypic properties used in identification of bacteria are various biochemical 

tests for bacterial metabolism. For identifying Porphyromonas gingivalis and 

differentiating lactose-fermenting species from non-fermenting species rapid phenotypic 

screening was adequate. Commercial identification kits tested failed to improve the level 

of identification achieved with the phenotypic screening. Only 16S rDNA PCR method 

could differentiate Prevotella intermedia and Prevotella nigrescens. PCR increases the 

reliability of identification of a range of Gram-negative anaerobic bacteria. 

 

The substantial natural variability of glycoproteins and glycolipids on the surface of 

erythrocytes makes them a convenient model for evaluating the specificity of bacterial 

adherence. A hemagglutinating variant of Prevotella melaninogenica appeared fimbriated 

when viewed in electron microscope. The strength of P. melaninogenica hemagglutination 

was, however considerably less than that of P. gingivalis. The hemagglutinating agent on 

P. melaninogenica seemed to be a protein, which could be separated from the cell and 

bound to lactose, galactose, and raffinose-containing carbohydrates on the erythrocytes. 

As this potential virulence factor of P. melaninogenica is of a significantly lower 

magnitude than that of major periodontal pathogens, this hemagglutinating variant is, at 

most, scarcely pathogenic. 

RFLP analysis of PCR-amplified 16S rDNA, using combinations of 3 or more 

tetrameric restriction enzymes, is an appropriate technique for differentiation and 

characterization of microorganisms. The hemagglutinating strains did not form a 

homologous group inside the Prevotella genus, as viewed by PCR-RFLP results from a 

combination of 5 tetrameric enzymes, but fell into 3 distinct clusters. 

 

AP-PCR typing, using more than one primer has proved to be a simple, rapid, and reliable 

method for fingerprinting bacteria. AP-PCR typing with a combination of up to 4 primers 
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Abstract 

revealed a wide genetic diversity within the Fusobacterium nucleatum populations in 

infants with up to 7 AP-PCR types simultaneously detected in each sample. This high 

clonal heterogeneity combined with frequent turnover of clones might allow the species to 

escape the host immune response, and persistently to colonize the oral cavity. Strain 

turnover rate was high during the first year of life, but then persistent clones were 

increasingly found. In 11 of 12 infants examined, AP-PCR types persisted for up to one 

year. 

In 5 of 8 infants with experience of acute otitis media, identical AP-PCR types 

were found between the nasopharyngeal and salivary isolates. Since anaerobes seem to be 

only transiently present in the nasopharynx and salivary contamination of the 

nasopharyngeal samples could be excluded, this indicates that the source of 

nasopharyngeal anaerobes was the oral cavity and saliva the transmission vehicle. 
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INTRODUCTION 
The indigenous microbiota is one of the major defense mechanisms protecting the body 

against foreign bacteria, and disruption of this microbiota can harm the host. Endogenous 

microorganisms maintain the health of the host by preventing access of pathogenic 

bacteria and stimulating the immune response. Members of the indigenous microbiota 

may, however, cause local infections if the stability of the habitat is disrupted. 

Translocation of commensal oral bacteria to sites not normally accessible to them may 

also lead to infections at these non-oral sites. Some of these species, however, might not 

be involved in the etiology of the disease but merely be favored by the biological changes 

caused by true pathogens and host responses to them. 

Although much progress has been made in the last 2 decades in the taxonomy of 

Gram-negative oral anaerobes, the high degree of heterogeneity among commensal 

bacteria, along with a high similarity with related species, can lead to problematic 

identification. Furthermore, clonal diversity within pioneering commensal species can be 

high, and several clones inhabit the oral cavity simultaneously. After initial colonization, 

commensal bacterial species tend to persist in the mouth for years. 

The present thesis gives an overview of the identification of Gram-negative 

anaerobic bacteria of the oral cavity and considers some of their ecological and possibly 

virulent properties. Molecular methods were used for identification, taxonomic 

classification, investigating population dynamics, and tracing translocation of individual 

clones. 
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REVIEW OF THE LITERATURE 
The oral cavity as a habitat for bacterial colonization 

The ecological characteristics of the oral cavity make it unique in the body, although it 

should not be regarded as a uniform environment. The various surfaces of the oral cavity 

create diverse ecological niches, each with its own particular microbial population. 

Mucosal surfaces (tongue, cheeks, palate, and lips), teeth, and gingival crevices all form 

their own particular environment, and have their own specific microbial population, based 

on the physical and nutritional factors that apply to that particular site. A range of habitats 

that exist at each surface further increases this complexity of the mouth. Moreover, the 

properties of these environments are constantly changing. Daily changes include food 

consumption, hot and cold drinks, oral hygiene, and salivary flow. Thus the mouth may be 

considered a "feast or famine" environment. Not only does the ecology of the oral cavity 

change during the day, but also during the lifetime of the host, affecting the entire oral 

microbial community. In addition, other occasional events, such as scaling and polishing, 

dental restorations, and antibiotic therapy, influence the residential microbiota.  

 

Bacterial populations in the oral cavity 

Of the more than 1014 cells of which make the human body, only about 10% are 

mammalian. The remaining cells are the microorganisms that make the commensal 

microbiota of the host. The composition of this microbiota varies at distinct habitats, but is 

relatively consistent at each separate site within the individual. In healthy human subjects 

saliva contains roughly 108 bacterial cells/ml and bacterial concentration of the gingival 

crevice exceeds 1011 bacteria/ml (Evaldson et al. 1982). In accordance with these high 

numbers of bacteria, between 500 and 1000 species of bacteria can be found in the oral 

cavity (Haffajee et al. 1999, Paster et al. 2001). These diverse bacteria can be divided into 

2 categories based on their occurrence in the host; normal (resident) and transient 

(Loesche 1988). These normal species compose the commensal microbiota and are almost 

always found in high prevalence within the host. The transient species are less prevalent 

and in lower numbers. They may consist of transient bacteria, that are temporarily present 

in the oral cavity but disappear relatively quickly, but, the proportion of some of these 

species may occasionally increase, due to environmental circumstances, causing disease in 

a susceptible host. 
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Oral bacterial colonization in children  

The composition of the oral microbiota varies with the age of the host. Age-related 

changes in the oral cavity include those due to teeth eruption, changes in diet, hormonal 

fluctuation, and salivary flow (Marcotte and Lavoie 1998). Infants are edentulous at birth, 

and their first teeth start to appear around the age of 6 months. By the age of 3 years, the 

primary dentition is usually complete and stays intact until at the age of 6 years when the 

permanent dentition starts to erupt. 

Infants are susceptible to microbial colonization, as specific antibodies, such as 

secretory immunoglobulin A (sIgA), are present at relatively low levels in infancy 

(Könönen 2000). Additionally, some of the early colonizing bacteria have the ability 

specifically to cleave IgA1 in vivo (Frandsen et al. 1995b, Kilian et al. 1996), which aid 

these bacteria in evading the host immune response, and might even reduce the effect of 

the immune response on other bacteria lacking this capability. Although many bacteria 

gain access to the mouth, only certain species become established. Most of the bacteria 

found in the oral cavity at any particular time are only transient, while others find a 

suitable surface for attachment and growth. Colonization of the oral cavity is not a random 

event, but much rather a selective process with regard to the age at which infants are 

susceptible to colonization by different species of bacteria (Könönen 2000). Furthermore, 

colonization of each species alters the environment in the oral cavity, allowing other 

species to colonize. Thus, there is a steady increase in the diversity of the oral flora from 

birth to the climax community of the adult (Marsh and Martin 1992).  

At birth, the oral cavity is usually void of microbes, but within few hours 

microorganisms from the environment, especially from the mother, become established. 

The pioneer species are members of “viridans” streptococci (Carlsson et al. 1970a, 

Carlsson et al. 1970b, Pearce et al. 1995, Rotimi and Duerden 1981). Initial anaerobic 

colonization of the oral cavity occurs within the first months of life (Könönen et al. 1992, 

Könönen et al. 1999c). In early childhood, children are exposed to bacterial clones similar 

to those present in their family members, and the species diversity increases in direct 

proportion with age. As they get older, contact with other persons increases and, children 

are exposed to a wider range of bacterial species and clones, for example in daycare. 

Previously, anaerobes were considered to be absent from the mouth of infants, as it 

was assumed that they were dependent on the oxygen-depleted environment of the 

gingival crevice, i.e. the presence of teeth. Additionally, anaerobes were regarded as late 
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colonizers, not appearing until puberty (Bailit et al. 1964, Kelstrup 1966). Anaerobic 

bacteria are, however, frequently isolated from the oral cavity of edentulous infants 

(Könönen et al. 1992, Könönen 1999, Könönen et al. 1999c). The recent concept is that 

the strictly anaerobic bacteria coexist through coaggregation with oxygen-consuming 

bacteria, forming a biofilm, where various physical and chemical gradients, such as pH, 

oxygen concentration, and electric potential exists, thus offering a suitable environment 

for anaerobic bacteria (Kolenbrander 2000). The low redox potential within the papillary 

surface of the dorsum of the tongue might supply the necessary reservoir for the 

obligatory anaerobic bacteria in edentulous infants. 

 

Attachment and coaggregation in oral bacterial colonization 

Adhesion of bacteria to host surfaces is the initial event in the colonization of any 

environment (Gibbons 1984), and is essential for their growth and survival of bacteria in 

the mouth (Handley et al. 1999). If bacteria are unable to adhere to their surroundings, 

they will be rapidly removed by saliva flow. Colonization of the host tissues is 

accomplished by a variety of surface molecules, including fimbriae, adhesins and 

hemagglutinins, lipoteichoic acid, lipopolysaccharides, exopolysaccharides, outer 

membrane proteins, and outer membrane vesicles (Holt et al. 1999). Erythrocytes are 

widely used as a model for evaluating the specificity of bacterial adherence. 

Coaggregation is the physical interaction between bacteria of different species. 

Coaggregations are not random among the oral bacteria, each species binds specifically to 

other bacteria. In dental plaque, certain bacteria often cluster together and if one member 

of a particular cluster is present in a sample, other members of that cluster are also most 

likely to be present as demonstrated using checkerboard DNA-DNA hybridization 

(Socransky et al. 1998). These observations have been supported by multiplex PCR 

studies (Yoshida et al. 2005). Some bacteria can adhere to few selected bacteria while F. 

nucleatum, which is the numerically dominating Gram-negative species in mature plaque, 

can adhere to all oral bacteria tested so far (Kolenbrander et al. 1989, Kolenbrander et al. 

1999). Furthermore, if F. nucleatum is present in plaque, other anaerobes such as P. 

nigrescens and P. melaninogenica are usually also present (Socransky et al. 1998, 

Yoshida et al. 2005). F. nucleatum seems to play a central role in these mixed microbial 

communities, by offering protection to other obligately anaerobic bacteria such as P. 

gingivalis and P. nigrescens by forming mixed species aggregates with aerobic bacteria 
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(Bradshaw et al. 1996, Bradshaw et al. 1998). This protective role of F. nucleatum might 

be the cause for why colonization of P. intermedia seems to be dependent on F. nucleatum 

(Ali et al. 1994). Through these often complicated coaggregation complexes, biofilms are 

formed, where the bacteria have characteristics different from those they have in the 

planktonic form. In these large societies, bacteria often are inactive, and more tolerant to 

bactericidal factors, such as antiseptics, antimicrobials, redox potential, and oxygen 

(Costerton et al. 1999, Gilbert and Allison 1999).  

 

Oral cultivable Gram-negative anaerobes 

Although a considerable number of oral bacteria cannot be cultivated, conventional 

culture remains an essential method in examining the oral microbiota. Advances in culture 

techniques during the last 25-30 years have made obligately anaerobic bacteria a more 

feasible field of research. The use of anaerobic cabinets and gas exchange modules for 

anaerobic jars creates the anaerobic incubation environment within minutes. Anaerobic 

culture methods are sensitive to methodological errors and require a well-established and 

standardized approach. Anaerobes grow rather slowly, so their growth is not visible until 

at least 2 days after inoculation, and primary cultures take even longer to adapt to the 

incubation environment. 

 

Prevotella and Porphyromonas 

The heterogenic group of obligate anaerobes first described by Oliver and Wherry in 1921 

as “Bacterium melaninogenicum” has undergone several taxonomical rearrangements 

through the years. Historically the oral Bacteroides were separated into those that produce 

pigment and those that do not. On one hand, bacteria that produced black or brown 

pigment on blood agar were identified as Bacteroides melaninogenicus, despite the 

reported phenotypic diversity within the group (Holdeman and Johnson 1982, Tanner et 

al. 1992) and on the other hand, the non-pigmenting strains were identified as Bacteroides 

oralis. The taxonomic importance of the pigment was, however, greatly overrated, as the 

pigmentation of colonies is largely dependent on medium composition. Indeed, some 

bacteria were transferred from one species to another when they were found to be 

pigment-producing (Holbrook and Duerden 1974). Currently, according to their ability to 

ferment glucose, bile-sensitive saccharolytic and moderately saccharolytic species were 

transferred to a new genus called Prevotella (Shah and Collins 1990) and asaccharolytic 
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species to a new genus called Porphyromonas (Shah and Collins 1988). Since then 

numerous new species have been described within these 2 genera (Avgustin et al. 1997, 

Collins et al. 1994, Downes et al. 2005, Fournier et al. 2001, Hirasawa and Takada 1994, 

Könönen et al. 1998a, Love et al. 1992, Love et al. 1994, Moore et al. 1994, Sakamoto et 

al. 2004, Sakamoto et al. 2005, Shah and Gharbia 1992), and additional species have been 

transferred there from other genera (Love et al. 1992, Love 1995, Shah et al. 1995a, 

Willems and Collins 1995a, Willems and Collins 1995b). 

The species in the genus Prevotella form a heterogeneous group in the oral cavity. 

The indole-negative and lactose-fermenting P. melaninogenica group includes the 

phenotypically similar species P. melaninogenica, P. loescheii, and P. denticola, (Shah 

and Collins 1990). Similar to these are P. oralis, P. veroralis, P. shahii, P. salivae, P. 

multiformis, and P. baroniae (Downes et al. 2005, Sakamoto et al. 2004, Sakamoto et al. 

2005, Shah and Collins 1990, Wu et al. 1992), although they have not been found to 

produce pigment. Members of the P. melaninogenica group are among the first anaerobic 

bacteria to colonize the mouths of infants (Könönen et al. 1992, Könönen et al. 1999c) 

and are regarded as a part of the commensal microbiota. The indole-positive and 

moderately saccharolytic P. intermedia group contains P. intermedia, P. nigrescens, and 

P. pallens. P. intermedia and P. nigrescens are phenotypically identical (Shah and 

Gharbia 1992) whereas P. pallens is lipase negative and only faintly pigmenting 

(Könönen et al. 1998a). P. disiens is similar but has not been found to produce pigment 

and is indole-negative. Bacteria of this group are frequently found in the oral cavity of 

both healthy individuals and patients with periodontal diseases. 

The genus Porphyromonas includes the human oral species P. gingivalis, P. 

endodontalis, and P. catoniae and the non-oral species P. asaccharolytica and P. uenonis 

(Finegold et al. 2004, Shah and Collins 1988, Willems and Collins 1995b), and several 

non-human oral species (Collins et al. 1994, Fournier et al. 2001, Hirasawa and Takada 

1994, Love et al. 1994). Recent 16S-23S rDNA internal transcribed spacer (ITS) 

sequencing shows the species separation of the Porphyromonas genus to be correct, 

although some heterogeneity is seen within some of the species (Conrads et al. 2005). P. 

gingivalis has been strongly linked to periodontal diseases (Consensus report 1996, 

Haffajee and Socransky 1994, Moore and Moore 1994, Slots 1999) and is rarely detected 

in healthy individuals (Griffen et al. 1998, Moore and Moore 1994). P. endodontalis is 
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particularly recovered from infected root canals and abscesses of odontogenic origin 

(Dahlén and Möller 1992). 

 

Fusobacterium nucleatum 

Difficulties with the taxonomy of the Fusobacterium genus are being resolved following 

the transfer of some species to other genera (Jalava and Eerola 1999), although studies 

still indicate genetic heterogeneity within the genus (Conrads et al. 2002). The genus 

Fusobacterium includes both human and animal species (Hofstad 1999, Jalava and Eerola 

1999), but some are not genetically related to Fusobacterium, and further reclassification 

is still needed (Conrads et al. 2002, Hofstad 1999). 

Among the Fusobacterium genus, F. nucleatum is the most significant species 

present in the oral cavity. F. nucleatum is a heterogeneous species (Thurnheer et al. 1999) 

and is currently divided into 5 subspecies (Dzink et al. 1990, Gharbia and Shah 1992), 

although the validity of these subspecies is disputed (Conrads et al. 2002, Morris et al. 

1997, Olsen and Shah 2003, Paster et al. 2001). F. nucleatum is the numerically 

dominating Gram-negative species in mature plaque. Furthermore, it is one of the first 

anaerobic species to colonize the mouths of infants (Könönen et al. 1999c) and is one of 

the most commonly occurring species in the gingival crevice (Moore and Moore 1994). 

Because F. nucleatum coaggregates with all other oral bacteria tested so far, it is 

considered a key species in the building and development of complex biofilms of the oral 

cavity (Kolenbrander et al. 1999).  

 

Identification of oral Gram-negative anaerobes 

The purpose of identification is to match a strain with a previously recognized taxonomic 

group, using a small number of characters, which may be weighted. To be qualified as a 

good identification system, it must be reliable, convenient, rapid, include relatively few 

tests, be flexible, and economical in terms of materials and time. A wide variety of 

identification techniques exists and the majority of these require the organism to be 

isolated in pure culture, although culture-independent methods are becoming more 

established. 

In order to be useful in demonstrating phylogeny, a DNA sequence must be 

present in all organisms, performing the same function, have sufficiently conserved 

nucleotide sequence, and be sufficiently large to deliver adequate phylogenetic 
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information. Molecules such as the ribosomal RNA genes, RNA polymerase, and 

elongation factor G have proved to provide valuable phylogenetic information (Tanner et 

al. 1994). The RNA of the small ribosomal subunit has been widely used for phylogenic 

research, and has been found to produce comparable phylogeny as the 23S rRNA 

molecule (Schleifer 1994). Currently (April 2004), the number of small subunit rRNA 

gene sequences in the Ribosomal Database Project (Maidak et al. 2001) is closing in on 

140,000 sequences. According to 16S rRNA gene sequence analysis, the Fusobacterium, 

Bacteroides, Prevotella, and Porphyromonas species belong to a subgroup of the 

Bacteroidaceae family (Hofstad 1999, Logan 1994).  

 

Phenotypic characteristics useful in identification 

The taxonomy of the Gram-negative oral anaerobes was relatively cumbersome until in 

the 1990’s when the Bacteroides genus was rearranged and the Prevotella and 

Porphyromonas genera were formed (Shah and Collins 1988, Shah and Collins 1989, 

Shah and Collins 1990). Later the phenotypically identical P. intermedia and P. 

nigrescens were separated (Shah and Gharbia 1992). Numerous identification methods for 

the Prevotella and Porphyromonas species have been described, both previously and after 

these taxonomic rearrangements. Most strains of P. gingivalis, P. intermedia/nigrescens, 

and the P. melaninogenica group produce pigment when they grow on blood agar. 

Although pigmentation is largely dependent on the culture media used (Tanner et al. 

1992), pigment production remains a widely used distinguishing character in the early 

stages of identification. Some phenotypic characteristics used for identification of selected 

Gram-negative anaerobes are listed in Table 1. 

Due to weak fermentation reactions, carbohydrate utilization tests are of limited 

value in routine identification of F. nucleatum (Morris et al. 1997). F. nucleatum can be 

separated from other common Fusobacterium species by their characteristic cell 

morphology: long, almost filamentous cell shape with pointed ends, but the separation of 

the F. nucleatum subspecies can only be achieved by molecular methods, such as 

multilocus enzyme electrophoresis (Lawson et al. 1989, Roques et al. 2000) or ITS 

sequencing (Conrads et al. 2002).  
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Table 1. Valuable characters for identification of some Gram-negative anaerobes covered 

in the present work (adapded from Jousimies-Somer et al. 2002). 

 Susceptibility*      

Species/groups Van Kan Col Fluor* Ind* β-gal* Try* Lip* 

P. melaninogenica group R R V red - + - - 

P. intermedia/nigrescens R R  red + - - + 

P. gingivalis S R R - - - + - 

F. nucleatum R S S yellow +   - 

* Van = Vancomycin, Kan = Kanamycin, Col = Colistin, Fluor = direct UV fluorescence, 
Ind = indole, β-gal = β-galactosidase, Try = trypsin like activity, Lip = lipase. 
 

Molecular methods for identification 

Phylogenetic analysis of a number of P. intermedia and P. nigrescens strains indicates that 

variations in 16S rRNA gene sequences within the species are relatively low but the 

difference between these species is more than 7% (Kuhnert et al. 2002). This difference 

makes the 16S rRNA gene a good candidate for species-specific PCR separation as 

applied by numerous researchers, both qualitatively on colonies from primary cultures 

(Conrads et al. 1997, Mättö et al. 1996a, Okamoto et al. 1999, Premaraj et al. 1999, Shah 

et al. 1995b, Slots et al. 1995); and directly from clinical samples (Ashimoto et al. 1996, 

Riggio et al. 1998, Stubbs et al. 1999); or quantitatively from clinical samples 

(Doungudomdacha et al. 2000, Gmür and Thurnheer 2002, Kuboniwa et al. 2004, Martin 

et al. 2002). Furthermore, the 16S rRNA gene has been the target for simultaneous 

detection of different species by multiplex PCR, including P. intermedia (Conrads et al. 

1999, García et al. 1998) and P. nigrescens (Yoshida et al. 2005). These methods have 

proved to be fast and accurate for the separation of P. intermedia and P. nigrescens. 

Various other molecular methods have been used to separate P. nigrescens from P. 

intermedia, such as multilocus enzyme electrophoreses (Frandsen et al. 1995a, van 

Steenbergen et al. 1997), restriction enzyme analysis of total DNA (Teanpaisan et al. 

1996), monoclonal antibodies (Devine et al. 1994), SDS-PAGE protein electrophoresis 

(Frandsen et al. 1995a), 16S rDNA PCR-restriction fragment length polymorphism (PCR-

RFLP) (Milsom et al. 1996), and ribotyping (Mättö et al. 1996b, Teanpaisan et al. 1996). 
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Approximately 50% of the oral microbiota remain unrecognized by conventional 

culture methods (Wade 1999). However, a snapshot of the entire bacterial population can 

be achieved by direct amplification of the 16S rRNA genes or molecules by PCR. After 

singularizing the amplicons by cloning, they can either be re-amplified for use in 

restriction fragment length analysis or directly sequenced and compared to existing 

sequences in the GeneBank (http://www.ncbi.nlm.nih.gov/) or RDP-II 

(http://rdp.cme.msu.edu/) databases. These advanced culture-independent methods are 

used for investigating the total bacterial population of various habitats and infections in 

the oral cavity. These methods have identified numerous uncultivable and previously 

unknown phylotypes in endodontic infections (Munson et al. 2002), dentoalveolar abscess 

(Dymock et al. 1996, Wade et al. 1997), subgingival plaque (Choi et al. 1994, Paster et al. 

2001, Spratt et al. 1999), caries lesions (Becker et al. 2002, Munson et al. 2004), and 

carious dentin (Nadkarni et al. 2004). In a detailed study (Paster et al. 2001), with 2522 

clones from subgingival plaque from subjects with and without periodontal diseases, about 

60% of the clones fell into 132 known species. However, the rest of the clones represented 

novel phylotypes, of which many were found in multiple subjects. Notably, proportions of 

certain bacteria can differ considerably between cultivation and direct amplification 

(Dymock et al. 1996, Munson et al. 2004), indicating selectivity in the culture methods. 

 

Population structure and dynamics within oral commensals 

Various molecular methods, among them RFLP of total DNA, pulsed-field gel 

electrophoresis (PFGE) of low frequency restriction of total DNA, ribotyping, serotyping, 

DNA sequencing, DNA probing, and DNA amplification procedures, such as arbitrary 

primed PCR (AP-PCR) or randomly amplified polymorphic DNA (RAPD), are nessecary 

to identify clones of numerous bacterial species (Vandamme et al. 1996). Clonal typing is 

needed for investigating the population dynamics within bacterial populations, clonal 

diversity of separate species, translocation from one site to another intra-individually, and 

transmission of bacteria from one individual to another. 

Molecular methods are necessary for investigating the population structure and 

dynamics of oral bacterial species. Generally, the intra-individual clonal diversity of oral 

early-colonizing commensals seems to be rather high; several clones of facultative 

Streptococcus mitis (Hohwy et al. 2001), Streptococcus sanguis (Pan et al. 2001), and 

Eikenella corrodens (Chen and Ashimoto 1996, Fujise et al. 2004), as well as strictly 
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anaerobic P. melaninogenica (Könönen et al. 1994a, Könönen et al. 1994c) and F. 

nucleatum (George et al. 1997, Suchett-Kaye et al. 1998, Thurnheer et al. 1999), 

simultaneously reside in each individual. Furthermore, Streptococcus mutans, the main 

species associated with dental caries, demonstrates high clonal variation intra-individually 

(Grönroos and Alaluusua 2000, Klein 2000, Redmo Emanuelsson et al. 2003). In general, 

clonal variation seems to be relatively low among oral pathogens, and usually only one or 

2 clones of P. gingivalis and P. intermedia inhabit each individual at a given time (Saarela 

et al. 1993a, Saarela et al. 1993b, Teanpaisan et al. 1996, van Steenbergen et al. 1993b), 

even though the clonal heterogeneity of these bacteria between individuals is high (Loos 

et al. 1990, Ménard and Mouton 1995). Similarly, only one or 2 clones of Actinobacillus 

actinomycetemcomitans usually reside in each individual (Alaluusua et al. 1993). On the 

other hand, the opposite has been found in beagle dogs where 4-8 genotypes of P. 

gingivalis were found in a single individual dog (Madianos et al. 1994). It still remains to 

be seen whether this difference in intra-individual clonal heterogeneity between 

commensals and pathogenic bacteria is true or an artifact of the research methods used.  

The population dynamics of oral commensal species has previously been studied 

among S. mitis isolates from 2 infants and their parents. In infants, this pioneering species 

showed a high clonal variation and rapid turnover of clones. The situation was different in 

their parents, where clonal persistence was common (Hohwy et al. 2001). The clonal 

turnover of another early-colonizing species, P. melaninogenica, is also quite high in 

young children. In a study containing 9 children, only one dentate child harbored the same 

P. melaninogenica ribotype as it had as edentulous infant (Könönen et al. 1994a). In a 

study containing 11 mother-child pairs, only one child harbored the same ribotype in 

infant and child period. In 5 of the mothers, however, one or 2 P. melaninogenica 

ribotypes persisted (Könönen et al. 1994c). Clonal stability of the commensal species E. 

corrodens (Fujise et al. 2004) and F. nucleatum (Suchett-Kaye et al. 1998) in adults 

seems, however, relatively low. 

 

Transmission and translocation of oral bacteria 

Numerous researchers have shown transmission of oral bacteria between individuals. 

Infants and young children require their oral microbes from their close contacts, especially 

from their mothers (Caufield and Walker 1989, de Soet et al. 1998, Klein 2000, Köhler 

and Bratthall 1978, Könönen et al. 1994c, Könönen et al. 2000) but also from their fathers 
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(Redmo Emanuelsson and Wang 1998), and from other individuals with frequent contacts, 

such as siblings and other children at daycare (Mattos-Graner et al. 2001). Furthermore, 

identical clones of some periodontal pathogens and mutans streptococci have been 

demonstrated to inhabit spouses (Redmo Emanuelsson and Wang 1998, Saarela et al. 

1993b, Suchett-Kaye et al. 1999, van Steenbergen et al. 1993b, van Steenbergen et al. 

1997) and the same bacterial clones can be frequently found in all members of a family 

(Asikainen et al. 1996, Redmo Emanuelsson and Wang 1998, Suchett-Kaye et al. 1999). 

Translocation of bacteria from one site to another in the oral cavity can occur and 

identical clones of bacteria are frequently found at different sites in the mouth (van 

Steenbergen et al. 1993b, van Steenbergen et al. 1997). Saliva contains the same bacterial 

clones as are found in subgingival plaque (Mättö et al. 1996a), and identical clones have 

been isolated from subgingival plaque and infected root canals (Gonçalves et al. 1999). 

Translocation of periodontal pathogens from one site to another can endanger the outcome 

of periodontal treatment (Quirynen et al. 2001) and, in fact, the re-emergence of common 

periodontal pathogens after periodontal treatment seems to be mainly from the indigenous 

microbiota, although transmission from spouses occur (von Troil-Lindén et al. 1996). 

Bacterial translocation within the oral cavity as well as from the mouth to non-oral 

sites is most likely mediated through saliva. By swallowing, oral microorganisms are 

easily transferred to the pharynx (Hohwy and Kilian 1995) and the gastrointestinal tract 

(Hossain et al. 2003). Oral bacteria can also be translocated to the respiratory tract. Supine 

position, common among infants and debilitated elderly people makes them especially 

prone to bacterial translocation by aspiration of oral secretions (Loesche and Lopatin 

1998, Scannapieco 1999). Indeed, many oral bacteria have been found in lung infections, 

both in abscesses (Brook and Frazier 1993) and pneumonia (Shinzato and Saito 1994). 

These include many anaerobes such as Porphyromonas, Prevotella, and Fusobacterium 

species (Brook and Frazier 1993, Loesche and Lopatin 1998, Shinzato and Saito 1994). 

Furthermore, the anatomical proximity of the subgingival microflora to the bloodstream 

can facilitate systemic spread of bacteria. Microorganisms gaining entrance to the 

bloodstream are usually eliminated by the host defense system within minutes, but in 

patients with defective heart valves or vascular diseases, bacteremia can be a potential 

danger, leading to infective endocarditis (Debelian et al. 1994, Loesche 1997). Indeed, in 

patients with infective endocarditis, the same clones of viridans streptococci are found in 

blood cultures and the oral cavity (Fiehn et al. 1995). Other forms of systemic diseases 
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such as brain abscesses, hematological infections, and implant infections have also been 

related to oral microorganisms (Debelian et al. 1994, Loesche 1997). 

 

Virulence and virulence factors 

A pathogen is a microbe that is capable of causing host damage, either from direct 

microbial actions or through the host immune response. Virulence is defined as the 

relative capacity of a microbe to cause damage in a host and virulence factors are those 

molecules, or components of a microbe, that have a damaging effect on host cells 

(Casadevall and Pirofski 1999, Holt et al. 1999). However, the strict definition of a 

pathogen, as above, excludes those microorganisms that cause disease only in the presence 

of other pathogens. Definitions of virulence factors are also problematic for the 

commensal microbiota, as it is difficult to distinguish virulence determinants from 

common traits (Casadevall and Pirofski 1999). In order to cause infection a microbe must 

have the ability to be transmitted to a susceptible host, enter the host, find a unique 

ecological niche, avoid host defenses, compete with the resident microbiota, replicate, and 

express specialized pathogenic traits (Fives-Taylor et al. 1999, Slots 1999). For the 

present purpose, all factors that attribute to the colonization, proliferation, and 

pathogenicity of microbes will be considered virulence factors. 

Adherence of the bacterium to host cells is the initial step in colonization and 

pathogenicity. Access to the mouth is relatively direct, but less so for other sites in the 

body. Bacteria must penetrate barrier layers, such as surface slime layers on the mucous 

membranes, before they can become associated with the host cells and the cell or tissue 

can be invaded. After the initial colonization, the bacterium must compete with the 

resident microbiota often by producing numerous antibacterial molecules, such as 

bacteriocins, organic acids, alcohols, inorganic bases, ammonia, and other metabolic end 

products. Limiting nutrients are obtained by scavenging proteins, where iron-binding 

proteins are particularly important. Bacteria also have to shield themselves from the host 

defense system. By producing exopolysaccharide capsules bacteria can imitate host tissue 

and evade phagocytes (Holt et al. 1999). A variety of enzymes, which specifically cleave 

host immunoglobulins (Kilian 1981) or enzymes such as cysteine proteinases, which 

destroy host tissues are also produced (Holt et al. 1999). Furthermore, although not a 

direct virulence factor, many bacteria carry genes for antibiotic resistance, and in that way 
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can avoid the specific treatments of the diseases (Andersson 2003, Handal and Olsen 

2000). 

 

Virulence factors of Gram-negative anaerobes 

Many Prevotella species possess virulence factors, for example, fimbria (Leung et al. 

1996, Weiss et al. 1989), hemolysins (Allison and Hillman 1997, Beem et al. 1998, Beem 

et al. 1999, Takada et al. 2003), adhesins (Leung et al. 1989, Manch-Citron et al. 1992), 

and hemagglutinins (Leung et al. 1999, Okamoto et al. 1999). These bacteria commonly 

produce immunoglobulin-degrading enzymes (Frandsen et al. 1995b, Jansen et al. 1995, 

Kilian 1981), and some produce tissue-degrading enzymes (Slots and Genco 1984). 

Additionally, bacteria of the genus Prevotella are often resistant to antibiotics, such as 

tetracycline, erythromycin, and β-lactam antibiotics (Arzese et al. 2000, Dubreuil et al. 

2003, Könönen et al. 1995, Könönen et al. 1997, Lacroix and Walker 1996, Mättö et al. 

1999, Nyfors et al. 1999, Olsvik et al. 1996, Walker and Bueno 1997). 

F. nucleatum is capable of agglutinating and lysing erythrocytes (Gaetti-Jardim 

and Avila-Campos 1999), binding to leukocytes (Ozaki et al. 1990), adhering to and 

invading epithelial cells (Han et al. 2000), producing serine protease capable of degrading 

extracellular matrix proteins (Bachrach et al. 2004), and activating leukocytes (Sheikhi et 

al. 2000) and lymphocytes (Tuttle et al. 1992). Furthermore the heat shock proteins of F. 

nucleatum can be found in the outer membrane, making them probable virulence factors 

(Skår et al. 2003). No significant differences have been found between the F. nucleatum 

subspecies considering virulence factors (Roques et al. 2000), although some clonal 

variation exists in ability to bind to lymphocytes, erythrocytes, and fibroblasts (Ozaki et 

al. 1990, Tuttle et al. 1992). Because of its multigeneric coaggregation ability, F. 

nucleatum can attach other bacterial species to a growing biofilm (Kolenbrander et al. 

1999). Moreover, combinations of bacteria may synergistically produce more damage to 

host tissues than a single species (Bolstad et al. 1996). F. nucleatum has been shown to 

increase virulence of mixed infections in animal models (Brook and Walker 1986), 

modulate the host response of mice when infected with P. gingivalis (Choi et al. 2001), 

and support the growth of P. gingivalis and P. nigrescens when the culture is exposed to 

air (Bradshaw et al. 1998, Diaz et al. 2002). Furthermore, tetracycline resistance has been 

found in F. nucleatum (Olsvik and Tenover 1993) and these bacteria are frequent 

producers of β-lactamase (Könönen et al. 1999b, Nyfors et al. 2003). 
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P. gingivalis possesses various virulence factors, including fimbriae (Du et al. 

1997, Yoshimura et al. 1984), trypsin like proteinase (Slots and Genco 1984), cysteine 

protease that also acts as a hemagglutinin (Lépine and Progulske-Fox 1996, Nishikata et 

al. 1989), adhesins (Agnani et al. 2000), hemolytic toxins (Chu et al. 1991, Deshpande 

and Khan 1999, Hoshi et al. 1993, Karunakaran and Holt 1993, Shah and Gharbia 1989, 

Shah et al. 1992), and more as has been reviewed by Holt et al. (1999). This species is 

also able to adhere to and invade oral epithelial cells (Sandros et al. 1993), and multiply 

and persist within them (Madianos et al. 1996). 

 

Oral bacteria and diseases 

The indigenous microbiota is one of the major defense mechanisms that protect the human 

or animal body, by preventing access of pathogenic bacteria and stimulating the host 

immune response, and the disruption of this microbiota may damage the host (Casadevall 

and Pirofski 2000, Tancrède 1992, Wilson 1974). However, some of the resident species 

have the potency to cause local or systemic disease, if disturbances occur that upset the 

stability of the habitat. These disturbances can be exogenous, such as antibiotic treatment, 

or they can be derived from endogenous changes, such as weakened host defenses. The 

unexpected presence of bacteria at sites not normally accessible to them may lead to 

infections at non-oral sites. 

Local infections in the oral cavity are of 2 main types; dental caries and 

periodontal diseases. These infections are the result of complex interactions between the 

resident microbiota and the host. Dental caries is the decalcification of enamel by acid 

produced primarily by bacteria of supragingival dental plaque. This is highly dependent 

on the carbohydrate consumption of the host. Periodontal diseases are a group of disorders 

affecting the supporting tissues of the teeth, through an interplay between subgingival 

microorganisms and the host immune system, which can eventually lead to loss of teeth.  

By using checkerboard DNA-DNA hybridization, Socransky et al. (1998) found 

certain bacteria often clustered together in dental plaque. If one member of a particular 

cluster was present in a sample, other members of that cluster were also most likely to be 

present. One of these clusters contained the highly suspected periodontal pathogens P. 

gingivalis, Tannerella forsythensis [Bacteroides forsythus], and Treponema denticola, 

which were found more frequently in deep periodontal pockets than in healthy sites. 

Bacteria of the genera Fusobacterium, Prevotella, Campylobacter, Peptostreptococcus, 
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and others, which are moderately connected with diseases, comprised another cluster. 

These 2 clusters were associated with periodontal diseases and furthermore, they were 

more associated with each other than with other clusters, indicating that these bacteria 

prefer similar living environment, or that they may be a causative agent for periodontal 

diseases. 

 

Gram-negative anaerobes and diseases 

Gram-negative anaerobic bacteria are frequent findings in periodontal diseases and other 

oral and non-oral infections. 

F. nucleatum is one of the most common species in both supragingival and 

subgingival plaque in both healthy individuals and patients with periodontal disease 

(Könönen et al. 1994b, Moore and Moore 1994, Ximenez-Fyvie et al. 2000). It has been 

associated with infections in the head and neck area, particularly with early stages of 

periodontal diseases in adults, since its prevalence (Darby and Curtis 2001) and proportion 

(Moore et al. 1985) is significantly higher in diseased sites than in healthy sites. 

Furthermore, it is frequently found in endodontic infections (Bolstad et al. 1996, Dahlén 

and Möller 1992, Moraes et al. 2002). There is high heterogeneity within the species and, 

although limited data exist, it is possible that each subspecies may have different primary 

habitats and may be involved in different types of infections and specific clinical stages of 

disease (Bolstad et al. 1996, Finegold and Jousimies-Somer 1997, Gharbia et al. 1990). 

Moreover, F. nucleatum is commonly found in various types of clinical infections of other 

body sites (Bolstad et al. 1996, Brook and Walker 1986, Chryssagi et al. 2001, Moore and 

Moore 1994). In children, F. nucleatum can be found in abscesses, respiratory tract 

infections (Brook 1994), in the nasopharynx of children during acute otitis media (AOM) 

episodes (Könönen et al. 1999a), and from middle ear effusion from children with chronic 

otitis media (Brook et al. 2000, Külekci et al. 2001). 

The P. melaninogenica group includes the least virulent species of the Prevotella 

(Kamma et al. 2000, Slots and Genco 1984). These species are frequent findings in 

healthy individuals, and are usually not associated with diseases (Könönen 1993, Könönen 

et al. 1994a, Könönen et al. 1994b, Ximenez-Fyvie et al. 2000), although the prevalence 

(Wu et al. 1992) and the proportion (Moore et al. 1985) of some of the bacteria of the P. 

melaninogenica group increases with the severity of periodontal disease. These bacteria 

have been isolated from children with otitis media, both from the nasopharynx (Könönen 
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et al. 1999a) and from the middle ear of children with middle ear effusion (Brook 1987) 

and chronic otitis media (Brook 1996, Brook et al. 2000). They are, furthermore, 

associated with certain clinical symptoms in endodontic infections (Drucker et al. 1997). 

Moderate associations exist between P. intermedia/nigrescens and periodontal 

diseases (Haffajee et al. 1999). The P. intermedia “sensu lato” was previously linked to 

periodontal diseases, however, the validity of earlier investigations remains uncertain 

since these 2 separate species may have difference in their virulence properties. Since the 

separation of P. nigrescens from P. intermedia (Shah and Gharbia 1992), researchers have 

described an association between P. intermedia and periodontal diseases, whereas P. 

nigrescens seems to be mainly connected with healthy gingiva (Dahlén et al. 1990, 

Gharbia et al. 1994, Mättö et al. 1996b, Teanpaisan et al. 1995, Ximenez-Fyvie et al. 

2000). P. nigrescens is, however, more frequently found in infected root canals and non-

oral abscesses than P. intermedia (Finegold and Jousimies-Somer 1997, Gharbia et al. 

1994). P. intermedia/nigrescens is also a common finding in children with chronic otitis 

media (Brook 1995). No significant difference in binding characteristics or pathogenicity 

of the 2 species has, however, been observed (Dahlén et al. 1996, Hafström and Dahlén 

1997). 

Of the bacteria included in the current investigations, the strongest association is 

between periodontal diseases and P. gingivalis. P. gingivalis is rarely found in healthy 

individuals but is found in high prevalence in periodontitis (Darby and Curtis 2001, 

Finegold and Jousimies-Somer 1997, Griffen et al. 1998, Haffajee and Socransky 1994, 

Haffajee et al. 1999, Moore and Moore 1994, Ximenez-Fyvie et al. 2000, Zambon 1996). 

P. gingivalis is also commonly found in necrotizing ulcerative gingivitis, infected root 

canals, peritonsillar abscesses, and abscesses of periodontal and endodontic origin (Dahlén 

and Möller 1992, Gmür et al. 2004, Mättö et al. 1997), but only occasionally from 

infections outside the oral cavity (Mättö et al. 1997). 

There has been an increasing awareness of possible associations between 

periodontal disease and systemic disorders. It has been speculated that Gram-negative 

anaerobic bacteria in periodontitis are associated directly, or through their stimulation of 

an immune response, with systemic disorders, especially with cardiovascular diseases 

(Beck and Offenbacher 2001) and preterm birth (Jeffcoat et al. 2001, Offenbacher et al. 

1996). These associations are disputed, especially with respect to preterm birth 

(Davenport et al. 2002, Holbrook et al. 2004). The variation between these reports might 
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be due to the fact they dealt with different populations and the associations might be 

racially or lifestyle linked, indicating that the genetic background of the host affects the 

reaction to the colonizing bacteria. 
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WORKING HYPOTHESES AND AIMS OF THE STUDY 
Working hypotheses 

1. Hemagglutinating bacterial strains resembling P. melaninogenica form a separate 

species inside the Prevotella genus and bind to erythrocytes with similar strength and by 

mechanism, similar to the major periodontal pathogen, Porphyromonas gingivalis. 

2. Clonal diversity and frequent turnover of clones are common within early colonizing 

oral anaerobic bacterial populations. 

3. Anaerobic bacteria that transiently colonize the nasopharynx during respiratory 

infection are of oral origin. 

 

Aims 

The general aim of this study was to develop an identification scheme and clonal typing 

methods for some oral commensal and pathogenic Gram-negative anaerobic bacteria. The 

specific aims were: 

1) to develop a simple identification scheme for selected oral Gram-negative anaerobes 

that could be applied to clinical research. 

2) to investigate hemagglutinating isolates resembling P. melaninogenica by determining 

whether these isolates form a separate species and clarifying hemagglutination properties 

of these isolates. 

3) to develop an arbitrarily-primed PCR (AP-PCR) method for genotyping F. nucleatum, 

with the view to examine the population structure and dynamics of this common anaerobic 

species. 

4) to demonstrate the oral origin of F. nucleatum isolates from the nasopharynx of infants 

with acute otitis media experience. 
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MATERIAL AND METHODS 
Table 2 summarizes the subjects, bacterial isolates, and methods and Table 3 summarizes 

the reference strains included in studies I-V and in unpublished data. 

 

Subjects, sample collection, and primary cultures 

Seventy-six adult subjects attending the Dental School in Reykjavík, Iceland, for a routine 

dental examination were enrolled in the study on pigmented Gram-negative anaerobes. 

Following clinical and radiographic examination and probing of pocket depths, the 

periodontal status was recorded. Pooled paperpoint samples were taken from 2-4 

subgingival sites of 49 healthy subjects with no pockets >3mm and from 27 patients with 

periodontitis. The samples were transported in a VMG II medium (Dahlén et al. 1993), 

and processed within one hour in the laboratory. Brown and black colonies of Gram-

negative anaerobes were subcultured and, once pure, harvested and kept frozen at -80°C 

until further use (I, II, III).  

Sixteen infants positive for F. nucleatum originated from a satellite subpopulation 

of the Finnish Otitis Media (FinOM) cohort study, where 50 healthy, at baseline 2-month-

old Caucasian infants were recruited to a prospective, longitudinal study on the 

development of the microflora in the upper respiratory tract (Könönen et al. 2002). The 

infants had been followed in a study clinic at scheduled healthy visits up to 24 months of 

age and, in addition, between the visits if an infant became sick. Their infections had been 

diagnosed and treated in the same clinic as described in detail by Syrjänen et al. (2001). 

Unstimulated saliva from the buccal sulcus area of the mouth and nasopharyngeal swab 

(NP) samples had been collected at scheduled healthy visits at the age of 2 (+/- 2 weeks), 

6 (+/- 2 weeks), 12 (+/- 2 weeks), 18 (+/- 4 weeks), and 24 (+/- 4 weeks) months and 

nasopharyngeal aspirate (NPA) samples at every visit related to AOM. All samples had 

been cultured within 24 hours after collection on several media, including neomycin-

vancomycin agar selective for fusobacteria, and the isolates identified using established 

biochemical methods as described previously (Könönen et al. 1999c, Könönen et al. 

2003) (IV, V). 

 

Clinical isolates and reference strains 

A total of 246 clinical isolates of dark-pigmented, Gram-negative, anaerobic rods, and 43 

well-characterized reference strains of Prevotella, Porphyromonas, and Fusobacterium 
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Materials and methods 

(Table 3) were used to develop a simple identification scheme. In addition, phenol-

extracted DNA was available from further 16 strains of Prevotella and Porphyromonas for 

PCR (I). As a subset of the previous material, 38 clinical isolates resembling P. 

melaninogenica and 22 well-characterized reference strains of various Prevotella spp. 

(Table 3) were used for taxonomical classification (II). Sixteen clinical P. melaninogenica 

isolates and 7 reference strains representing P. melaninogenica, P. intermedia, and P. 

gingivalis were included in investigating strength of hemagglutination. For further tests on 

hemagglutinating properties of P. melaninogenica, 2 clinical isolates (G9 and G107) were 

selected as hemagglutinating representatives of the 2 clusters found in Study II, and one 

isolate (G11) was selected as a non-hemagglutinating representative (III). 

Altogether 546 salivary F. nucleatum isolates from 12 infants (mean 45.5 

isolates/subject) were used to investigate population structure and kinetics among 

developing anaerobic commensals of the mouth (IV). Eleven F. nucleatum isolates from 

the nasopharynx of 8 infants and 161 isolates from saliva (mean 20.1 salivary 

isolates/subject) of the same infants were available for investigating the genetic similarity 

or dissimilarity of nasopharyngeal and salivary F. nucleatum (V). The type strains of each 

human F. nucleatum subspecies (Table 3) were used as reference strains (IV, V). 

 

Development of identifications schemes (I) 

Three different identification methods were compared in order to develop a simple and 

rapid identification scheme for pigmented Gram-negative anaerobes. 

1) Screening with 5 phenotypic tests: Gram stain reaction and cell morphology; direct 

fluorescence in UV light; detection of β-galactosidase activity (as an indicator of lactose 

fermentation) using 4-methylumbelliferyl-β-D-galactoside (MUG; Sigma-Aldrich, St. 

Louis, MO, USA); detection of trypsin-like activity using carbobenzoxy-L-arginin-7-

amino-4-metylcoumarin amide-HCl (CAAM; Fluka Chemie AG, Buchs, Switzerland); 

and agglutination of human erythrocytes on microscope slides (Slots and Genco 1979). 

2) Use of 2 commercial identification kits, the API 20A and rapid ID 32A (BioMérieux, 

Marcy-l'Étoile, France). 

3) A 16S rDNA-based PCR method using primers specific for P. melaninogenica, P. 

intermedia, P. nigrescens, and P. gingivalis (Table 4). 
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Table 3. A list of species and number of strains used as references. 

 

Species  

Total number 

of strains 

 

Study 

P. bivia 1 I, II 

P. buccae 1 I 

P. buccalis 1 I 

P. corporis 1 I, II 

P. denticola 1 I, II 

P. disiens 1 I, II 

P. intermedia 12 I, II, III, unpublished

P. loescheii 1 I, II 

P. melaninogenica 10 I, II, III, unpublished

P. nigrescens 14 I, II, unpublished 

P. oralis 2 I, II 

P. oris 1 I, II 

P. oulora 1 I, II 

P. pallens 1 I 

P. tannerae 1 I 

P. veroralis 1 I, II 

P. asaccharolytica 1 I 

P. gingivalis 10 I, III 

F. nucleatum subsp. fusiforme 1 IV, V 

F. nucleatum subsp. nucleatum 1 IV, V 

F. nucleatum subsp. polymorphum 1 I, IV, V 

F. nucleatum subsp. vincentii 1 IV, V 

 

Hemagglutination assays (II, III, unpublished) 

The hemagglutination of erythrocytes from human, sheep, rabbit, rat, guinea-pig, and 

horse was tested. For the microscope slide assay, bacterial growth was suspended in 

erythrocyte suspension on a microscope slide and hemagglutination visualized in 

microscope at 10-fold magnification. For microtiter plate assay, bacterial growth was 

suspended in PBS to optical density (OD) 1.000 at 550 nm concentration, 2-fold dilutions 
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of bacterial strains were made in microtiter plates with V-shaped bottoms, equal volume 

of 2% erythrocyte suspension added to each well, and incubated at 4°C for 4 h. 

 

Inhibition of hemagglutination by microtiter plate assay (III) 

Inhibition of hemagglutination of isolates G9, G107, and G11 by 6 sugars by adding each 

sugar to the bacterial/erythrocyte suspension in 1% and 2% (wt/vol) final concentration. 

The effect of adding proteinase inhibitors was also tested. Furthermore, the effect of 

heating the bacteria, treating bacteria with proteolytic enzymes, shaking of bacteria, and 

neuramidinase and proteolytic enzyme treatment of the erythrocytes on hemagglutination 

was tested. 

 

DNA isolation for PCR (I, II, IV, V, unpublished) 

One or 2 large colonies of a young culture were harvested from an agar plate using a 

sterile loop, suspended in 500 µl of 5% Chelex 100 (Bio-Rad Laboratories, Hercules, CA, 

USA) and boiled for 10 min. The suspension was then shaken lightly on a Vortex mixer, 

and centrifuged and the supernatant used for PCR amplification. Furthermore, phenol-

extraction of DNA was used on 16 additional reference strains in Study I. 

 

Oligonucleotide primers and PCR methods (I, II, IV, V, unpublished) 

The primers used for PCR are listed in Table 4. 

PCR for species identification was performed in 40 µl volumes in a 96-well 

microtiter plate (Techne Ltd, Cambridge, UK) in a DNA thermal cycler (Techne Ltd). The 

amplification for P. intermedia, P. melaninogenica, and P. gingivalis primer pairs was at 

primer annealing temperature of 60°C for 1 min, but with the P. nigrescens primer pair at 

66°C. Amplified material were stored at 4°C until viewed by 1.5% agarose (MedProbe, 

Oslo, Norway) electrophoresis, staining with ethidium bromide, and photographing under 

UV light. A HaeIII-digested ΦX 174 (Gibco BRL, Paisley, UK) served as a molecular 

weight marker (I, II). 

PCR-restriction fragment length polymorphism (PCR-RFLP) of the 16S rDNA 

was performed for taxonomical classification. The 16S rDNA was amplified using the 

slightly modified primers fD1 and rD1 of Weisburg et al. (1991). The amplified 16S 

rDNA was digested with HaeIII, HinfI, MspI, RsaI, and TaqI endonucleases (Gibco BRL) 

in 5 separate digestions. The digested amplicons were stored at -20°C until separated by 
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Materials and methods 

2% agarose (MedProbe) electrophoreses, stained with ethidium bromide, and 

photographed under UV light. A HaeIII digested φX 174 (Gibco BRL) served as a 

molecular weight marker. Photographs were scanned, digitized using a PDI scanner, and a 

PDI-user program (PDI, Huntington Station, New York, USA) (II). 

AP-PCR was performed for clonal typing in a 25 µl volume in a 500 µl Ready-To-

Go-PCR™ tube (Amersham Biosciences), using one of the 4 primers in an Eppendorf 

thermal cycler (Eppendorf, Hamburg, Germany). A negative control (without DNA) was 

included in each AP-PCR run. Amplification was performed using a slightly modified 

method of George et al. (1997). Amplified products were kept at 4°C until separated by 

1.5% SeaKem agarose (FMC, Bioproducts, Rockland, ME, USA) electrophoresis, stained 

with ethidium bromide, and digitally photographed (AlphaImager, Alpha Innotech Co, 

San Leandro, CA, USA) in a UV light. A 100-bp ladder (Amersham Biosciences) served 

as a molecular weight marker (IV, V). 

 

Statistical methods (II, III, V, unpublished) 

From the PCR-RFLP banding patterns, a distance matrix was calculated with the NTSYS 

program (Numerical Taxonomy and Multivariate Analysis System; Applied Biostatistics 

Inc., Setauket, New York, USA) using Dice coefficient (also named Nei and Li 

coefficient), where the presence or absence of a band was used as a character (Weisburg et 

al. 1991). The distance matrix was plotted as a phenogram using UPGMA clustering (II). 

Student’s T-test and Tukeys ANOVA were used for comparing the strength of 

hemagglutination (III). Chi-square (χ2) test was used to evaluate the significance of clonal 

persistence and non-linear simple regression (curve-fitting) was used for evaluating the 

relationship between the number of isolates investigated and the clonal types found (V). 

From the AP-PCR banding patterns, a distance matrix was calculated with the 

BioNumerics program (Applied Maths BVBA, Sint-Martens-Latem, Belgium) using Dice 

coefficient, where the presence or absence of a band was used as a character (Weisburg et 

al. 1991). One way ANOVA was used to compare the clonal types between individual 

infants (unpublished). 
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RESULTS 
Identification scheme (I) 

Using the selected 5 simple phenotypic tests (Gram staining, direct UV fluorescence, 

MUG, CAAM, and hemagglutination) for identification of pigmented Gram-negative 

isolates, all reference strains and clinical isolates of P. gingivalis were correctly identified 

to the species level. The phenotypic screening also separated the P. intermedia/nigrescens 

group from the P. melaninogenica group but no further separation was possible with these 

tests. Of the 25 isolates which remained unidentified with the screening, 11 resembled P. 

melaninogenica, except that they demonstrated hemagglutinating ability. The API 20A 

and rapid ID 32A commercial kits (BioMérieux) identified 9 isolates to other species than 

P. intermedia, P. melaninogenica or P. gingivalis: 3 isolates as P. oralis, 2 isolates as 

Veillonella spp., 2 isolates as Bacteroides ureolyticus, one isolate as Bacteroides 

capillosus, and one isolate as the Gram-positive Bifidobacterium adolescentis. 

Furthermore, the kits were able to identify 13 isolates that the phenotypic screening could 

not: 8 isolates were hemagglutinating P. melaninogenica, 2 isolates P. intermedia (one 

slightly hemagglutinating, the other MUG positive), 2 isolates P. oralis, and one isolate B. 

ureolyticus. Sixteen of the 30 isolates (53%) identified as P. intermedia with the kits 

proved to be P. nigrescens with PCR. Due to β-galactosidase activity, 8 isolates were 

identified as P. melaninogenica with the screening but proved to be P. intermedia (3 

isolates) or P. nigrescens (5 isolates) when tested with PCR. 

The commercial kits identified only 58% (API 20A) and 28% (rapid ID 32A) of 

the clinical isolates to the species level. Neither of the kits could separate P. nigrescens 

from P. intermedia, and the API 20A kit failed to identify P. gingivalis. In addition, the 

type strains of P. loescheii, P. asaccharolytica, and F. nucleatum were not correctly 

identified with either of the kits. The 16S rDNA PCR method correctly identified all P. 

intermedia, P. nigrescens, P. melaninogenica, and P. gingivalis reference strains but the 

type strain of P. veroralis was incorrectly identified as P. melaninogenica. No cross-

reaction was found among the other species. 

 

Taxonomic status of isolates of the P. melaninogenica group (II) 

The 16S rDNA PCR method using the fD1/rD1 primers gave bands, approximately 1512 

nucleotides in size, from all tested isolates. Digested DNA gave 2-9 bands. At 70% 

similarity, 6 clusters were formed, and 7 strains did not fall into a cluster with any other 
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strain or isolate (all were type strains of separate Prevotella species). One cluster included 

2 type strains (P. veroralis and P. melaninogenica). The hemagglutinating isolates 

resembling P. melaninogenica did not form a single homologous group but fell into 3 

clusters: 4 isolates into a cluster with the type strains of P. melaninogenica and P. 

veroralis, 4 isolates into a cluster with clinical isolates only, and 2 isolates into a cluster 

with the type strain of P. loescheii. 

 

Properties of hemagglutination by P. melaninogenica (II, III) 

In electron microscopy, fimbria-like structures were clearly apparent on the cells of young 

cultures of the hemagglutinating P. melaninogenica group isolates. These structures were 

not seen on non-hemagglutinating cells. The strength of the hemagglutination of P. 

melaninogenica was significantly less than that of P. gingivalis. The P. melaninogenica 

hemagglutination was inhibited by raffinose, galactose, and lactose, but no sugar tested 

had any effect on P. gingivalis hemagglutination. The P. melaninogenica 

hemagglutination was eliminated by heating at 80°C for 30 min and was reduced by 

proteinase digestion of the bacteria and shaking of the bacteria. The supernatant of shaken 

bacterial cells had, however, the same hemagglutinating ability as non-shaken cells. 

 

AP-PCR typing (IV, V) 

Out of the 12 primers tested for AP-PCR typing, 8 primers resulted in poor amplification 

using the type strains of F. nucleatum subspp., whereas 4 primers, C1, C2, D8635, and 

D11344, revealed unique and reproducible fingerprints. The amplification patterns of the 

clinical isolates generally consisted of 2-5 major amplicons. The isolates sharing an 

amplification pattern derived from one primer usually shared the patterns constructed with 

the other 3 primers. All isolates were typed using at least 2 primers. Occasionally, isolates 

were found to be identical with one primer but dissimilar with the other. These were 

subjected to amplification with the other 2 primers and in all cases were also separated by 

the additional primers.  

 

Genetic diversity within oral F. nucleatum populations (IV, unpublished) 

The relationship between the total number of F. nucleatum isolates from each sample 

examined and the number of AP-PCR types found among these isolates indicated that at 

least 10-20 isolates are needed to view the actual clonal diversity within a sample. 
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Each infant harbored 5-14 (mean 8.3) different AP-PCR types during their 2 first 

years of life. Up to 7 AP-PCR types could be found in one sample. At each time, usually 

one AP-PCR type was dominating the other types: a single AP-PCR type accounted for 

≥50% of the available isolates in 36 of the 45 samples (80%), and in the remaining 9 

samples the dominant type represented at least a third of the available isolates. 

Usually, infants harbored their own separate F. nucleatum AP-PCR types, only one 

AP-PCR type was found in 2 separate infants. An AP-PCR type was not more related to 

other AP-PCR types in the same infant than to AP-PCR types of the other infants. 

 

Clonal persistence of oral F. nucleatum during the first 2 years (IV) 

At least one AP-PCR type was found to persist for up to one year in 11 of the 12 infants 

examined. In one infant, all AP-PCR types were replaced in the subsequent samples, each 

collected 6 months apart. During the first year of life, only 22% of AP-PCR types 

persisted but the persistence of strains became more common during the second year of 

life when 44% of AP-PCR types persisted, although the difference was not statistically 

significant. The dominant AP-PCR types were not more likely to be found in saliva 

collected on the next sampling than the other types, nor were the persistent AP-PCR types 

more likely to be dominating in the subsequent salivary sample. 

 

Origin of nasopharyngeal F. nucleatum (V) 

Identical AP-PCR types were found among salivary and nasopharyngeal F. nucleatum 

isolates in 5 of the 8 infants examined. In one infant, AP-PCR typing revealed an identical 

pattern between F. nucleatum collected from saliva at the healthy visit at 12 months of age 

and the isolate from the nasopharynx during an AOM episode 2 months later. In 3 infants, 

the nasopharyngeal F. nucleatum isolate shared an identical AP-PCR pattern with salivary 

F. nucleatum isolates collected 1-3.5 months after their AOM episodes. In one infant, an 

identical AP-PCR pattern was found among F. nucleatum isolates collected from the 

nasopharynx and saliva at the same scheduled visit at 18 months of age. 
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Methodological considerations 

Samples and isolates (I, II, IV, V) 

Traditionally, subgingival samples have been taken with either a curette or paperpoint and 

some variations have been documented between and within these sampling methods 

(Hartroth et al. 1999, Tanner and Goodson 1986). Sampling by paperpoint is less invasive 

than by curette but may result in an underestimation of tightly adherent bacteria in 

subgingival sites (Hartroth et al. 1999). Lately, saliva has been used as a suitable 

specimen for oral Gram-negative anaerobes as it can be collected in an easy non-invasive 

way. Comparable frequencies of oral anaerobes and similar genotypes have been found in 

saliva and subgingival plaque samples (Mättö et al. 1996a). Therefore, saliva gives a good 

insight into the overall microbial world of the oral cavity. Furthermore, saliva offers the 

most plausible vehicle for intra-individual translocation of oral bacteria to close 

anatomical sites, such as the nasopharynx. In the present study (IV, V), unstimulated 

saliva was collected from the buccal area of the mouth, whereas NP and NPA samples 

were collected through the nasal cavity, thus excluding salivary contamination. 

For culture, an ideal transport medium keeps the microbes alive and preserves their 

proportions in the sample. Anaerobiosis and low redox potential of the transport media is 

essential for survival of anaerobes (Dahlén et al. 1993). The most commonly used 

transport media are reduced transport fluid (Syed and Loesche 1972) and variations of the 

VMG transport media (Möller 1966). In the present study, the VMG II (I, II) or VMGA 

III (IV, V) was used to transport samples from the study clinic to the laboratory. Both 

VMG media have been demonstrated to support the survival of anaerobic bacteria for 1-2 

days (Dahlén et al. 1993). 

The number of isolates to be picked up from a microbiological sample depends on 

the aim of the study. In the present study (IV), the aim was to get an overview of the 

actual clonal diversity within developing F. nucleatum populations in the oral cavity. 

Because S. mitis biovar 1 (Hohwy and Kilian 1995) and P. melaninogenica (Könönen et 

al. 1994a, Könönen et al. 1994c), which are among the early colonizers of the mouth, 

have a wide clonal heterogeneity intra-individually, we estimated that a large number of 

isolates might be required to find the actual number of F. nucleatum clones present in the 

sample. The present study on salivary F. nucleatum (IV) demonstrated that if less than 10 

isolates of F. nucleatum were examined, the number of genotypes were most likely 
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underestimated, whereas the examination of 20-25 isolates per sample was likely to reveal 

the actual clonal diversity within this bacterial population. This confirms the similar 

conclusions on S. mitis biovar 1 by Hohwy et al. (2001) and is well in line with the view 

on the wide clonal diversity within early-colonizing oral commensals.  

 

Adhesion assays (II, III) 

Similar to Escherichia coli (Goldhar 1994), different specificity in agglutination of 

erythrocytes from different animal species has seen with some Prevotella species (Leung 

et al. 1989, Okamoto et al. 1999, Weiss et al. 1989). After comparing the ability of P. 

melaninogenica and P. gingivalis strains to agglutinate erythrocytes from 6 animal 

species, human blood was selected for routine testing because of its easy availability (III). 

The substantial natural variability of glycoproteins and glycolipids on the surface of 

erythrocytes makes them a convenient model for evaluating the specificity of bacterial 

adherence. Hemagglutination tests can be performed using microscopic slides, which offer 

fast results, test tubes, or microtiter plates, which are considered most convenient for 

inhibition assays (Goldhar 1994, Goldhar 1995).  

 

DNA isolation (I, II, IV, V) 

For gene amplification, chelating resins have been widely used in DNA extraction 

procedures from bacterial and viral (de Lamballerie et al. 1992), fungal (Möhlenhoff et al. 

2001), and human (Walsh et al. 1991) origin. Chelex 100 (Bio-Rad) can chelate a large 

amount of the divalent metal ions, for which PCR is especially sensitive and it can be 

easily removed, allowing the Mg++-dependent PCR DNA amplification (Walsh et al. 

1991). This resin has been reported to increase the sensitivity of DNA amplification, 

probably by minimizing inhibitory molecules present in original samples (Jaulhac et al. 

1998, Mathis et al. 1997, Mättö et al. 1998). According to our experience (I), Chelex 

extraction is simple, inexpensive, and time-saving compared to the time-consuming and 

cumbersome phenol-chloroform extraction.  

 

Classification using 16S rDNA PCR-RFLP (II) 

The rationale of RFLP analysis is that the genetic difference between DNA sequences 

correlates with the proportion of DNA fragments shared by them, i.e. the closer the 

cleavage patterns, the higher the similarity (Jensen et al. 2002). RFLP analysis of PCR-
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amplified 16S rDNA has been found to be an appropriate technique for differentiation and 

characterization of microorganisms (Ruiz et al. 2000). The minimum number of 

restriction enzymes needed to examine the phylogenetic relationship of various isolates is 

an important factor. In 16S rDNA PCR-RFLP, most reliable estimations seem to originate 

from combinations of 3 or more tetrameric (i.e. having 4-bp recognition sites) restriction 

enzyme, as demonstrated by computer simulation (Moyer et al. 1996) and confirmed by 

RFLP experiments (Laguerre et al. 1996, Urakawa et al. 1997). In the present study (II), 5 

tetrameric restriction enzymes were used, resulting in high differentiation among the 43 

strains tested, where only 2 P. oralis strains shared identical RFLP pattern. As other 

authors have reported (Jang et al. 2003), the PCR-RFLP technique was found to be 

technically less demanding than most other molecular-biological approaches and required 

only a simple DNA extraction procedure. 

 

Clonal typing using AP-PCR (IV, V) 

AP-PCR is a commonly used method for clonal typing of various oral microorganisms, 

including Gram-negative anaerobic rods (Fukui et al. 1999, Mättö et al. 1996a, Ménard 

and Mouton 1995, van Steenbergen et al. 1993a), Gram-negative facultatives (Chen and 

Ashimoto 1996, Dogan et al. 1999, Fujise et al. 2004, Kaplan et al. 2002, Paju et al. 2000, 

Saarela et al. 1999), viridans streptococci (Grönroos and Alaluusua 2000, Li and Caufield 

1998, Li et al. 2001, Pan et al. 2001, Redmo Emanuelsson et al. 2003), Gram-positive 

facultative rods (Ruby et al. 2002), and Candida species (Hannula et al. 1999). However, 

only few researchers have used this method for the differentiation of F. nucleatum (Avila-

Campos et al. 1999, George et al. 1997, Moraes et al. 2002). Different primers have 

different discriminatory power (George et al. 1997, Mättö et al. 1996a, Ménard and 

Mouton 1995), thus emphasizing the importance of using more than one primer for AP-

PCR analysis of bacteria. In the present study (VI, V), after testing 12 primers using 4 

reference strains of F. nucleatum, 4 primers were selected for AP-PCR typing of clinical 

F. nucleatum isolates in order to eliminate the need for further confirmation. These 4 

primers have previously been reported to produce discriminating AP-PCR patterns for 

different Fusobacterium strains (George et al. 1997, Narongwanichgarn et al. 2001). 

Several methodological factors affect the outcome of AP-PCR, such as the type of 

thermal cycler and concentration of the template, primer, and polymerase (Meunier and 

Grimont 1993, Tyler et al. 1997). Some run-to-run variations have been reported in AP-
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PCR (Fukui et al. 1999), whereas other authors have found a good inter-assay 

reproducibility (van Steenbergen et al. 1993a). This stresses the importance of 

standardization and validation of all parameters. In the present study (VI, V), the 

commercial Ready-To-Go-PCR kit (Amersham Biosciences) was used, always in the 

same thermal cycler, in order to achieve quality standardization. Using these 

standardization methods, AP-PCR typing proved to be a simple, rapid, and reproducible 

method for differentiating F. nucleatum isolates, confirming the experience of George et 

al. (1997). 

 

Identification of Gram-negative anaerobes (I, unpublished) 

The screening with rapid tests is a sufficient method for identifying P. gingivalis to the 

species level and categorize P. intermedia, P. nigrescens, and P. melaninogenica to their 

appropriate groups (I). Addition of the indole spot test (Jousimies-Somer et al. 2002) 

would increase the accuracy of our simple identification scheme by recognizing 

occasional β-galactosidase (MUG) positive P. intermedia/nigrescens isolates otherwise 

misidentified as to belong to the P. melaninogenica group. Other authors have also 

reported lactose-fermenting strains among P. intermedia and P. nigrescens (Dahlén et al. 

1990, Fukushima et al. 1992) as well as among P. pallens (Könönen et al. 1998b). 

Commercial identification kits did not improve the identification achievable with 

the phenotypic screening for the 4 species examined. P. gingivalis, which was easily 

identified with simple phenotypic tests, was usually not identifiable with the kits because 

they were completely unreactive in the API kit. Furthermore, P. melaninogenica-like 

strains remained frequently unidentified to the species level and neither of the kits was 

able to differentiate P. nigrescens from P. intermedia (I). Commercial kits are expensive, 

somewhat time-consuming and seem to offer no assistance in identification at this level. 

The 16S rDNA PCR proved to be an accurate, relatively straightforward, and 

reproducible method for identification of P. gingivalis and separation of P. nigrescens 

from P. intermedia (I). Similar methods have been used by other laboratories with a good 

success (Ashimoto et al. 1996, Conrads et al. 1997, Conrads et al. 1999, García et al. 

1998, Gmür and Thurnheer 2002, Kuboniwa et al. 2004, Martin et al. 2002, Mättö et al. 

1996a, Okamoto et al. 1999, Premaraj et al. 1999, Riggio et al. 1998, Shah et al. 1995b, 

Slots et al. 1995, Stubbs et al. 1999). Other genes have been targeted with species-specific 

PCR such as the P. gingivalis fimbrial (fimA) (Doungudomdacha et al. 2000) and Arg-
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gingipain (Morillo et al. 2003) genes, and P. intermedia acid phosphatase (phoC), P. 

melaninogenica hemolysin (phyA), and P. loescheii adhesin precursor (plaA) genes 

(Yoshida et al. 2005). In contrast, identification of P. melaninogenica with 16S rDNA 

based PCR was problematical because of high 16S rDNA sequence similarity with P. 

veroralis. 

Earlier investigations associated the former Bacteroides intermedius, currently 

including P. intermedia and P. nigrescens, with hormone-induced pregnancy gingivitis 

(Kornman and Loesche 1980). With the aim to determine whether P. intermedia or P. 

nigrescens or both species are involved in the subgingival microbial shift during 

pregnancy, the 16S rDNA PCR method was used to identify the P. intermedia/nigrescens 

group isolates collected from subgingival plaque and saliva of 28 pregnant women. All the 

women had symptoms of pregnancy gingivitis, but were in other ways periodontally 

healthy (Latva-aho et al. 2004). Of the 1109 isolates tested, 982 (89%) were identified as 

P. nigrescens but only 8 isolates from 2 women as P. intermedia (unpublished) indicating 

that P. nigrescens is associated with pregnancy gingivitis. This is in line with the 

observation (Mättö et al. 1996b) on the common presence of P. nigrescens and the 

absence of P. intermedia in relatively young Finnish subjects without advanced 

periodontitis. The remaining 119 isolates could not be identified as either of the 2 species. 

These isolates could possibly be of a related species for which we had no primers 

available, for example P. tannerae, as other authors have experienced (Xia et al. 2000). 

 

Significance of finding hemagglutinating P. melaninogenica (II, III) 

Hemagglutination often seems to be linked with fimbria (Chandad and Mouton 1995, 

Leung et al. 1999) and, in combination with hemolysis, may contain potential pathogenic 

mechanisms involved in oral infections. P. gingivalis and P. intermedia, which have been 

linked to periodontal diseases (Consensus report 1996), are fimbriated and able to 

agglutinate erythrocytes (Leung et al. 1996, Ogawa and Hamada 1994, Okamoto et al. 

1999). The present study (II, III) showed the presence of hemagglutinating bacteria 

closely resembling P. melaninogenica, in patients with periodontitis. Some association 

between the isolation of hemagglutinating strains of P. melaninogenica and periodontitis 

was initially seen, but when a larger collection of P. melaninogenica was investigated, this 

association was lost (unpublished). The hemagglutinating strength of P. melaninogenica 

proved to be far less than that found in the major periodontal pathogen P. gingivalis. The 

44 



Discussion 

hemagglutinating agent of P. melaninogenica seemed to be a protein, which could be 

separated from the bacterial cell. It binds to raffinose, lactose, and galactose-containing 

carbohydrate residues on erythrocytes, unlike the hemagglutinating agent of P. 

intermedia, which binds to glucosamine-containing carbohydrates (III). Lactose and 

galactose-mediated hemagglutination of P. melaninogenica suggests a structural relation 

to the hemagglutinating mechanism of the related species P. loescheii (Weiss et al. 1989) 

and possibly also that of F. nucleatum (Gaetti-Jardim and Avila-Campos 1999). Since L-

arginin and the proteinase inhibitor antipain inhibited the agglutination of P. gingivalis but 

had no effect on hemagglutination of Prevotella, this indicates that the hemagglutinating 

activity of Prevotella is not mediated in connection with proteinases, unlike that of P. 

gingivalis (Nishikata and Yoshimura 1991, Shah et al. 1992, Yoneda and Kuramitsu 

1996). As the potential virulence factors of the hemagglutinating variants of P. 

melaninogenica are significantly weaker than those of more potential periodontal 

pathogens, these variants may only be favored by conditions created in disease, rather than 

having a role as an opportunistic pathogen. 

The hemagglutinating isolates resembling P. melaninogenica did not form a single 

homologous group, but fell into 3 clusters: with the P. melaninogenica and P. veroralis 

reference strains, with other clinical isolates, and with the P. loescheii reference strain 

(II). The division of the clinical P. melaninogenica isolates into 2 main clusters could be 

due to the 2 DNA homology groups of this species (Tanner et al. 1994) or some of the 

recently described, phenotypically similar species (Downes et al. 2005, Sakamoto et al. 

2005). 

 

Oral F. nucleatum populations (IV) 

Each genetic variant of the oral commensal microbiota may express specific characters 

related to survival and extended persistence. F. nucleatum is a heterogeneous species and 

numerous AP-PCR profiles and high heterogeneity of serovars and ribotypes have been 

found within individuals (George et al. 1997, Thurnheer et al. 1999). The present study 

(IV) demonstrated a wide genetic diversity within oral F. nucleatum populations both 

intra-individually (up to 7 AP-PCR types/subject at a time) and between individuals (only 

one AP-PCR type found in more than one infant). In general, the early-colonizing 

commensals with a wide antigenic variety can elicit natural immunity that is considered to 

be a benefit to the host (Smith et al. 1998). The clonal heterogeneity and frequent turnover 
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of clones among oral F. nucleatum populations intra-individually allows the species to 

escape the host immune response, and thus persistently colonize the oral cavity. The 

persistence of the species might, furthermore, be beneficial for the host, as it stimulates 

the natural immune response. Although the emergence and disappearance of different 

genotypes could be due to mutations or genetic recombination, Hohwy et al. (2001) 

rejected that hypothesis in their recent study on S. mitis biovar 1. The present study 

(unpublished) supports that conclusion, since the F. nucleatum AP-PCR types of each 

infant were not more related to the other AP-PCR types in the same infant than to AP-

PCR types of the other infants.  

In 11 of the 12 infants examined, identical AP-PCR types were found on 

subsequent sampling occasions, and they were persistent at least for up to one year. 

Similarly, mutans streptococci have been found to persist for up to many years, both in 

children and adults (Alaluusua et al. 1994, Köhler et al. 2003, Redmo Emanuelsson and 

Thornqvist 2000), and clonal persistence has been demonstrated for months for P. 

intermedia and P. nigrescens (Teanpaisan et al. 1996) and for years for A. 

actinomycetemcomitans (Saarela et al. 1999) in adult subjects. In contrast, no persistent 

genotypes of S. mitis biovar 1 could be detected in the 2 examined infants who at the end 

of the 9-10 month follow-up period were 19- and 15-months-old (Hohwy et al. 2001) and, 

in adults, no clone of F. nucleatum was found to persist over a 16-month period (Suchett-

Kaye et al. 1998), and only few E. corrodens clones persisted for 9 months (Fujise et al. 

2004). In the present study (IV), although some AP-PCR types were persistent, the 

majority of the F. nucleatum population was constantly changing; distinct AP-PCR types 

emerged and disappeared, and a high variability was seen in the proportions of persistent 

types throughout the following period. Persistence of F. nucleatum AP-PCR types in 

saliva was occasional during the first year of life; however, persistent types became more 

frequent after one year of age. Due to eruption of primary dentition, a new microbial 

habitat, the gingival crevice, offers an optimal habitat for many anaerobic species 

colonizing the oral cavity. This improved living environment may explain the increased 

persistence of F. nucleatum clones with age. However, Suchett-Kaye et al. (1998) found 

no persisting ribotypes among 38 F. nucleatum isolates from 8 adult dental students 

compared to 61 isolates collected 16 months earlier. 
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Origin of nasopharyngeal F. nucleatum (V) 

In children, F. nucleatum has been associated with infections in the head and neck area 

(Brook 1994). The species presents some properties, which are regarded as virulence 

factors, such as binding to epithelial cells and invading them (Han et al. 2000). However, 

these properties may vary between different clones. For example, β-lactamase-producing 

and non-producing F. nucleatum strains can be simultaneously isolated from young 

children (Könönen et al. 1999b, Nyfors et al. 2003). Furthermore, F. nucleatum has been 

found as the most common anaerobic finding (Könönen et al. 2003) in nasopharyngeal 

aspirates collected from infants during acute otitis media (part of these included in the 

present study). Interestingly, the colonization of infants’ nasopharynges by anaerobes 

occurs transiently during infection (Könönen et al. 2003). These observations led to the 

research on the potential source of nasopharyngeal anaerobes. In the present study (V) 

identical AP-PCR types were found between the nasopharyngeal and salivary isolates 

from the same infant in 5 of the 8 examined infants, thus indicating that the source of 

transient colonization of nasopharyngeal anaerobes is the oral cavity and saliva their 

transmission vehicle. Whether F. nucleatum colonizes the nasopharynx just because of 

ecological changes favoring its growth or whether it could play an active role in the 

biofilm formation on nasopharyngeal mucosa and in pathogenesis of AOM is not known. 

F. nucleatum is frequently found in middle ear effusion from children with otitis 

media with effusion (Brook et al. 2000). Part of the F. nucleatum isolates from the oral 

cavity of infants belonging to the FinOM cohort study produced β-lactamase (Nyfors et al. 

2003). In this study (unpublished) no AP-PCR types were found including both β-

lactamase-producing and non-β-lactamase-producing isolates. Furthermore, some β-

lactamase-producing strains isolated from the oral cavity, were found in the nasopharynx 

of the same infant (V). In case anaerobic bacteria, such as F. nucleatum, are involved in 

the pathogenesis of AOM, their existence in the nasopharynx may have an impact on the 

treatment of these common pediatric infections. 
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SUMMARY AND CONCLUSIONS 
This study was focused on common anaerobic Gram-negative bacteria that are generally 

considered to belong to the commensal microbiota, even though some strains may possess 

pathogenic potential. The present study 1) evaluated different methods for identification of 

selected oral anaerobes; 2) viewed the population structure and dynamics of an early-

colonizing oral commensal; 3) clarified the pathogenic potential of common oral 

commensals and; 4) demonstrated translocation of an oral species to the nasopharynx, in 

connection with respiratory infections. 

 

Acceptance/rejection of hypotheses: 

• The working hypothesis that hemagglutinating P. melaninogenica is a separate 

species with hemagglutination similar to that of P. gingivalis was rejected. 

• The working hypothesis on the high clonal diversity and high turnover rate of clones 

among oral F. nucleatum populations was accepted. However, during the second year 

of life clonal stability increases. 

• The working hypothesis on the oral origin of anaerobic bacteria colonizing the 

nasopharynx related to respiratory infection was accepted. 

 

Key findings and main conclusions: 

I. Phenotypic screening was valuable for identifying P. gingivalis and differentiated 

lactose-fermenting species from non-fermenting species. Commercial identification kits 

tested failed to improve the level of identification achieved with the phenotypic screening. 

Neither the kits nor the phenotypic screening could differentiate P. intermedia and P. 

nigrescens, whereas the 16S rDNA PCR method easily separated the species. The PCR 

method increases the reliability of identification of a range of Gram-negative anaerobic 

bacteria. 

 

II. A hemagglutinating variant of P. melaninogenica appeared fimbriated when viewed in 

electron microscope. PCR-RFLP results showed that the hemagglutinating strains did not 

form a homologous group inside the Prevotella genus but fell into 3 distinct clusters. Two 

main clusters may be due to the 2 DNA homology groups found within the species or they 

may correlate to the recently described species of Prevotella. 
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Summary and conclusion 

III. The strength of P. melaninogenica hemagglutination was considerably less than that 

of P. gingivalis. The hemagglutinating agent on P. melaninogenica seemed to be a 

protein, which could be separated from the cell and could bind to lactose, galactose, and 

raffinose-containing carbohydrates on the erythrocytes. This potential virulence factor of 

P. melaninogenica is of a significantly lower magnitude than that of major periodontal 

pathogens, and this hemagglutinating variant of P. melaninogenica is, at most, scarcely 

pathogenic. 

 

IV. A wide genetic diversity was seen within oral F. nucleatum populations in infants 

from whom up to 7 AP-PCR types could be simultaneously detected at a time. This high 

clonal heterogeneity combined with frequent turnover of clones might allow the species to 

escape the host immune response, and persistently to colonize the oral cavity. Strain 

turnover rate was high during the first year of life, but then persistent clones were 

increasingly found. In 11 of the 12 infants examined, AP-PCR types persisted for up to 

one year. 

 

V. In 5 of the 8 infants examined, identical AP-PCR types were found between the 

nasopharyngeal and salivary isolates. Since anaerobes seem to be only transiently present 

in the nasopharynx and salivary contamination of the nasopharyngeal samples could be 

excluded, this observation indicates that the source of nasopharyngeal anaerobes was the 

oral cavity and saliva the transmission vehicle. 
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