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Abstract 

Microarrays have a wide range of applications in the biomedical field. From the 

beginning, arrays have mostly been utilized in cancer research, including classification of 

tumors into different subgroups and identification of clinical associations. In the 

microarray format, a collection of small features, such as different oligonucleotides, is 

attached to a solid support. The advantage of microarray technology is the ability to 

simultaneously measure changes in the levels of multiple biomolecules. Because many 

diseases, including cancer, are complex, involving an interplay between various genes and 

environmental factors, the detection of only a single marker molecule is usually 

insufficient for determining disease status. Thus, a technique that simultaneously collects 

information on multiple molecules allows better insights into a complex disease. Since 

microarrays can be custom-manufactured or obtained from a number of commercial 

providers, understanding data quality and comparability between different platforms is 

important to enable the use of the technology to areas beyond basic research. When 

standardized, integrated array data could ultimately help to offer a complete profile of the 

disease, illuminating mechanisms and genes behind disorders as well as facilitating 

disease diagnostics.  

In the first part of this work, we aimed to elucidate the comparability of gene expression 

measurements from different oligonucleotide and cDNA microarray platforms. We 

compared three different gene expression microarrays; one was a commercial 

oligonucleotide microarray and the others commercial and custom-made cDNA 

microarrays. The filtered gene expression data from the commercial platforms correlated 

better across experiments (r=0.78-0.86) than the expression data between the custom-

made and either of the two commercial platforms (r=0.62-0.76). Although the results from 

different platforms correlated reasonably well, combining and comparing the 

measurements were not straightforward. The clone errors on the custom-made array and 

annotation and technical differences between the platforms introduced variability in the 

data. In conclusion, the different gene expression microarray platforms provided results 

sufficiently concordant for the research setting, but the variability represents a challenge 

for developing diagnostic applications for the microarrays. 

In the second part of the work, we performed an integrated high-resolution microarray 

analysis of gene copy number and expression in 38 laryngeal and oral tongue squamous 
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cell carcinoma cell lines and primary tumors. Our aim was to pinpoint genes for which 

expression was impacted by changes in copy number. We detected multiple frequent 

genomic alterations in head and neck squamous cell carcinoma (HNSCC) material. The 

data revealed that especially amplifications had a clear impact on gene expression. Across 

the genome, 14-32% of genes in the highly amplified regions (copy number ratio >2.5) 

had associated overexpression. The impact of decreased copy number on gene 

underexpression was less clear. This might be partly due to technical as well as biological 

reasons since the loss of one copy of the gene does not always lead to a detectable change 

in expression. Using statistical analysis across the samples, we systematically identified 

hundreds of genes for which an increased copy number was associated with increased 

expression. For example, our data implied that FADD and PPFIA1 were frequently 

overexpressed at the 11q13 amplicon in HNSCC. The 11q13 amplicon, including known 

oncogenes such as CCND1 and CTTN, is well-characterized in different type of cancers, 

but the roles of FADD and PPFIA1 remain obscure. Taken together, the integrated 

microarray analysis revealed a number of known as well as novel target genes in altered 

regions in HNSCC. The identified genes provide a basis for functional validation and may 

eventually lead to the identification of novel candidates for targeted therapy in HNSCC.  
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Introduction 

The first version of the human genome sequence was published at the beginning of this 

decade (Lander et al., 2001; Venter et al., 2001). After the initial draft sequence, the 

information has been updated (International Human Genome Sequencing Consortium, 

2004). The availability of the sequence information has promoted development of a 

number of high-throughput technologies, including microarrays. The microarrays have 

played an important role in changing the concept in biological research from investigation 

of single genes to an omics approach (reviewed by Weinstein, 2002; Ge et al., 2003; Liu 

et al., 2006). Omics studies are characterized by the use of high-throughput methods that 

produce large quantities of data. 

DNA microarray technology, which allows the investigation of multiple genes in a single 

experiment, was developed over 10 years ago (Fodor et al., 1991; Schena et al., 1995). 

DNA microarrays can comprise thousands of DNA fragments, such as oligonucleotides, or 

cDNA clones, robotically arrayed or in situ synthesized on a solid support. Initially, 

custom-made arrays were frequently applied in academic laboratories, but their use has 

diminished radically due to restrictions in the amounts of time and money allocated to 

manufacturing and quality control (reviewed by Holloway et al., 2002; Gershon, 2004). 

Currently available commercial whole genome microarrays are composed of over million 

features representing various transcripts or exons, allowing genome-wide identification of 

differentially expressed genes and alternatively spliced variants. In addition to well-

established gene expression microarrays, the technology can be applied to measure other 

biological variables, such as copy number and single-nucleotide polymorphisms (SNPs) 

(Solinas-Toldo et al., 1997; Pinkel et al., 1998; reviewed by Pinkel and Albertson, 2005; 

Syvänen, 2005). The development of microarray technology in gene expression profiling 

as well as its use in various other applications are described in Nature Genetics microarray 

theme numbers “Chipping Forecasts” published in 1999, 2002, and 2005.  

Microarrays can measure RNA, DNA, or protein levels from cells or tissues on a genome-

wide scale. These molecular profiles are invaluable in pinpointing genes critical in 

tumorigenesis (reviewed by Weinstein, 2006). For example, DNA and RNA level 

alterations measured from the same sample provide information about genes in which 

expression is altered due to increased or decreased copy number. Copy number alterations 

represent an important mechanism for cancer cells to promote or suppress the expression 
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of genes involved in cancer progression. Furthermore, genes deregulated in association 

with high-level amplifications have been linked to poor outcome of cancer, representing 

potential drug targets (Chin et al., 2006). Thus, the integrated array data can identify 

therapeutic targets, which might then provide alternative options to surgery and radiation 

therapy in cancer. Here, we integrated data from gene expression and copy number 

microarrays and identified target genes for genomic alterations of potential importance in 

HNSCC pathogenesis. 

Large quantities of gene expression microarray data are now deposited in public databases 

and are thus available to the whole research community. Using the data can be challenging 

since numerous different microarray platforms exist with different array design, labeling 

and hybridization protocols, equipment, and analysis software. To enable available data to 

be utilized effectively, the data should be well-annotated and of high quality irrespective 

of the platform and experimental methods. The use of published data could potentially 

replace some experiments in the laboratory. In the present work, our aim was to correlate 

results from gene expression microarrays to evaluate whether the data from different 

platforms are comparable and reliable. In silico resources, providing data in an electronic 

format, are not limited to gene expression microarray databases; other data types, such as 

the antibody-based protein atlas for protein expression and localization patterns (Uhlén et 

al., 2005), are also available. Future drug development could be dependent on the 

effective integration of in silico data from different sources, the application of which 

requires an in-depth understanding of measurement techniques and analysis methods 

(reviewed by Searls, 2005; Loging et al., 2007).  
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Review of the literature 

1 Genome and gene expression 

DNA represents genetic material of the cell. Traditionally, genes are defined as DNA 

fragments that code proteins. All genetic information of an organism is known as a 

genome. Of the human genome, only 3.5% is estimated to represent protein-coding DNA, 

with the majority being nonprotein-coding DNA. The estimated number of human protein-

coding genes is currently around 23 000 (www.ensembl.org/Homo_sapiens/index.html, 

accessed 14.1.2008). However, the exact number remains unclear and estimates vary 

depending on the method used in predictions. The number of proteins could be more than 

50 times higher than the number of genes due to alternative splicing events of mRNA and 

additional variability created through posttranslational modifications (reviewed by Jensen, 

2004). Human DNA, and thus, genes are distributed across 23 chromosome pairs. In 

cytogenetic nomenclature, chromosomes are divided into arms, the short arm p and the 

long arm q, arms into regions, and regions into bands and sub-bands. Each cell of an 

organism has the same DNA. However, different genes are active in different cells. This is 

dependent on a number of factors, such as developmental stage or environmental factors. 

Gene expression can be regulated at the level of transcription, posttranscriptionally, or 

epigenetically.   

Information flow from DNA to mRNA and finally to functional proteins has been a 

central theorem of biology. Even though the majority of genes encode for proteins, some 

RNAs, such as rRNAs and tRNAs, are not translated into proteins. The emergence of 

other nonprotein-coding sequences, microRNAs (miRNAs), with a regulatory function 

(Lee et al., 1993; Lagos-Quintana et al., 2001; Lee and Ambros, 2001) has broadened our 

view of genes as well as the functions of RNA. miRNAs negatively regulate genes in two 

ways. miRNAs that are perfectly or nearly perfectly complementary with their target 

mRNA direct the cleavage of the target, resulting in degradation of the transcript. This 

phenomenon works in the same manner as short interfering RNAs (siRNAs) in RNA 

interference (RNAi) (Fire et al., 1998; reviewed by Hannon, 2002; Hannon and Rossi, 

2004). miRNAs can also bind imperfectly to the target mRNA’s 3′ untranslated regions, 

regulating target expression at the translational level. The distinction between miRNA and 

endogenous siRNA molecules is sometimes unclear, but differences exist in their origin, 
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processing, evolutionary conservation, and the genes that they silence (reviewed by Bartel, 

2004). Identification of miRNA’s target genes is challenging due to their ability to 

regulate the target by imperfect binding. It has been estimated that a single miRNA could 

bind hundreds of target genes (reviewed by Esquela-Kerscher and Slack, 2006). At the 

moment, 541 human miRNA sequences are reported (microrna.sanger.ac.uk/sequences/, 

accessed 4.2.2008) (Griffiths-Jones et al., 2006). Interestingly, miRNA molecules are 

implicated as having a role in cancer either as oncogenes or tumor suppressors (reviewed 

by Calin and Croce, 2006; Esquela-Kerscher and Slack, 2006). 

2 Molecular biology of cancer 

Cancer is regarded as a genetic disease that occurs due to sequential accumulation of 

genetic alterations in oncogenes, tumor suppressor genes (TSGs), and stability genes 

(reviewed in Section 2.1). These alterations cause abnormal activation or inactivation of a 

number of critical pathways and signaling cascades, resulting in uncontrolled cellular 

growth (reviewed by Vogelstein and Kinzler, 2004). Environmental, viral, and chemical 

agents as well as physical substances can promote carcinogenesis (reviewed by Peto, 

2001; Wogan et al., 2004). After the exposure to the carcinogen, 20-40 years can pass 

until the clinical detection of a solid tumor (reviewed by Wogan et al., 2004). The risk of 

cancer can therefore be associated with lifestyle and environmental factors, even though 

hereditary factors also play a role (reviewed by Peto, 2001; Ponder, 2001; Balmain et al., 

2003).  

The majority of tumors are monoclonal since they derive from a single progenitor cell. In 

a multistep tumorigenesis process, clonal expansions involving genetic and epigenetic 

alterations follow each other (reviewed by Ponder, 2001; Balmain et al., 2003). Within a 

tumor, different subclones can have distinct alterations caused by simultaneous clonal 

expansion of different clones as a result of instability in a tumor genome (reviewed by 

Weinberg, 2006). If genome integrity was not compromised in cancer, the mutation rate 

would probably be too low to allow cancer progression (reviewed by Loeb, 2001). 

Instability can be acquired during tumor development or by inherited mutations occurring, 

for example, in genes that are responsible for genome integrity. Therefore, a person with 

inherited mutations in critical genes becomes predisposed to cancer (reviewed by Fearon, 

1997). Moreover, the accelerated cell proliferation in cancer allows mutations to occur at 
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an increased rate. A number of factors, such as inflammation, drugs, hormones, chemical 

and infectious agents, and physical trauma, increase the rate of cell proliferation (reviewed 

by Weinberg, 2006). Furthermore, communication of different cell types in a tumor 

microenvironment is important in cancer development and progression. Tumor-

surrounding stromal cells, for instance, can contribute to angiogenesis and invasion. 

Communication between cancerous epithelial cells and stromal cells can also cause 

changes in stromal cells, differentiating them from the normal state (reviewed by Tlsty and 

Hein, 2001). 

Cancer cells are characterized by acquired functional capabilities: self-sufficiency in 

exogenous growth signals, insensitivity to antigrowth signals, limitless replicative 

potential, evasion of apoptosis, sustained angiogenesis, and acquisition of invasiveness 

and metastatic ability (Hanahan and Weinberg, 2000). The order and mechanistic means to 

achieve these properties can vary between different tumors. Therefore, an understanding 

of defective signaling pathways instead of single genes could be vital (reviewed by 

Vogelstein and Kinzler, 2004). Although recent studies have illuminated genetic changes 

needed to transform human cells (Sjöblom et al., 2006), the exact number of changes 

required is still under debate. Certain pathways seem, however, to be often involved when 

cells are transformed in vitro. These include the mitogenic signaling pathway controlled 

by RAS, the cell cycle checkpoint controlled by RB1, the apoptosis pathway controlled by 

TP53, telomerase maintenance controlled by hTERT, and the signaling pathway controlled 

by PP2A. Whether all cancers have the same type of alterations remains unclear (reviewed 

by Hahn and Weinberg, 2002). To date, 367 human genes have been causally implicated 

in cancer development either through mutation, copy number alteration, or rearrangement 

(www.sanger.ac.uk/genetics/CGP/Census/, accessed 19.1.2008) (Futreal et al., 2004). 

Recently, cancer genes were mapped by a large-scale sequencing effort aimed at 

identifying somatic driver mutations in kinases in the cancer genome (Greenman et al., 

2007). The list of cancer genes is thus by no means complete. 

2.1 Oncogenes and tumor suppressors 

Exogenous and endogenous mutagenic molecules as well as chemical and physical factors 

can modify DNA. Thus, these agents can promote carcinogenesis by affecting critical 

genes, including proto-oncogenes and TSGs. Proto-oncogenes are genes controlling such 
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normal cellular functions as proliferation, differentiation, and growth signaling. Initially, 

they were recognized through viruses (reviewed by Ponder, 2001). A gain-of-function 

mutation in a proto-oncogene creates an active form, an oncogene, by changing expression 

(regulatory effect) or protein structure (structural effect). This can happen through viral 

involvement, point mutation, gene amplification, chromosomal translocation, or some 

other structural alteration (reviewed by Albertson et al., 2003; Weinberg, 2006). 

Oncogenes can then activate mitogenic signaling pathways and allow cells to become 

independent of external signals. Thus, oncogenes promote tumorigenesis by giving normal 

cells properties that allow them to escape from cellular growth control. In different cell 

types, different pathways involving different genes can regulate cell growth and division 

(reviewed by Vogelstein and Kinzler, 2004; Weinberg, 2006). 

In contrast to oncogenes, TSGs restrain the growth of the cell. Proteins encoded by TSGs 

can have various functions in the cell, but they all reduce the possibility of cancer 

development. TSGs can be divided into three groups: gatekeepers, caretakers, and 

landscapers (Kinzler and Vogelstein, 1997; Kinzler and Vogelstein, 1998). Gatekeepers, 

such as RB1 and TP53, control cell growth by inhibiting growth or promoting cell death. 

For example, the loss of RB1 allows cells to proceed through the cell cycle, leading to 

deregulated growth and the loss of TP53 to escape apoptosis. Caretakers, such as BRCA1 

and BRCA2, are DNA maintenance genes that take care of genome integrity, thus affecting 

the rate at which cells accumulate mutations. Landscapers work through less direct 

mechanisms, affecting the tumor microenvironment. 

TSG can be inactivated in cancer cells via genetic or epigenetic mechanisms. Epigenetic 

changes, such as methylation, do not affect the DNA sequence. According to Knudson’s 

two-hit hypothesis (Knudson, 1971; reviewed by Knudson, 2001), both alleles of a TSG 

need to be inactivated to have an effect on cell phenotype. Thus, complete loss of function 

is required. If one allele is inactivated through mutation or promoter methylation, then 

another allele can be inactivated via loss of heterozygosity (LOH). LOH can be achieved, 

for instance, by inappropriate chromosomal segregation, mitotic recombination, or loss of 

a chromosomal segment (reviewed by Balmain et al., 2003). In addition to the two-hit 

hypothesis, a concept of haploinsufficiency has been proposed. Haploinsufficiency is 

related to a gene dosage effect in which a one-copy loss of a potential TSG could have an 

impact on cell phenotype (reviewed by Fodde and Smits, 2002).  
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2.2 Genomic alterations in cancer 

Genomic alterations including changes in gene copy number, such as gains and losses, 

point mutations, and translocations are common in cancer (reviewed by Albertson et al., 

2003). Together with epigenetic changes (reviewed by Baylin and Ohm, 2006; Jones and 

Baylin, 2007), they affect gene regulation at the expression level. Many cellular 

mechanisms, including defects in chromosomal segregation, centrosome dynamics, cell 

cycle regulation, cellular checkpoints, telomere stability, and DNA damage response, are 

involved in numerical and structural chromosomal instability. At the gene and protein 

levels, genetic instability can involve the enzymes that replicate or repair DNA, the 

proteins that influence chromosomal stability, and the proteins that control apoptosis and 

cell cycle regulation in response to DNA damage. Mutations in these pathways have been 

connected to the pathogenesis of cancer in humans and animals (reviewed by Beckman 

and Loeb, 2005; Gollin, 2005; Bayani et al., 2007). 

Cancer cells present often aneuploidy with losses or extra copies of whole chromosomes. 

Changes in chromosome number can be caused by chromosomal instability (CIN). CIN 

can be strictly defined as the gain or loss of whole chromosomes or chromosomal 

segments at a higher rate in cancer cells than in normal cells. CIN can be a consequence of 

mis-segregation of chromosomes during mitosis (reviewed by Lengauer et al., 1998; 

Michor et al., 2005). Another type of genomic instability is microsatellite instability 

(MIN), occurring at the nucleotide level due to defects in mismatch repair. Tumor cells 

typically present either CIN or MIN (reviewed by Lengauer et al., 1998).  

Segmental chromosomal gains and losses arise from structural alterations, including 

translocations, amplifications, and deletions. Chromosome breakage and rearrangement 

due to defective cell cycle checkpoints, the DNA damage response or loss of telomere 

integrity can cause structural instability (reviewed by Gollin, 2005). Gene amplification 

can be initiated by a DNA double-strand break (reviewed by Pierce et al., 2001) in cells 

that progress through the cell cycle with the damaged DNA (reviewed by Albertson, 

2006). Double-strand breaks and telomere dysfunction have been suggested to play a role 

in creating breakage-fusion-bridge cycles, which can lead to amplification (Toledo et al., 

1992; Hellman et al., 2002; reviewed by Albertson, 2006). Amplifications are usually 

restricted to narrower chromosomal areas than low-level gains. Amplification can be 

manifested as homogeneously staining regions, double minutes, or distributed at various 
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locations in the genome (reviewed by Albertson et al., 2003). Clinically, copy number 

changes can have diagnostic or prognostic value. Amplification is one of the basic 

mechanisms that leads to overexpression of oncogenes in solid tumors. Identification of 

copy number changes in the cancer genome can therefore help in target identification for 

therapeutic interventions. Amplification has also been suggested as a mechanism for 

acquired drug resistance (reviewed by Schwab, 1999; Albertson et al., 2003; Albertson, 

2006; Myllykangas and Knuutila, 2006). Until recently, recurrent specific translocations 

were reported mostly in hematological malignancies, such as formation of the BCR-ABL 

fusion gene in leukemia (de Klein et al., 1982). In prostate cancer, a recurrent fusion of 

TMPRSS2 to ERG or ETV1 was identified in 2005, suggesting that causal gene 

rearrangements frequently also occur in epithelial cancers (Tomlins et al., 2005). 

As described above, alterations of different types and sizes occur in the human genome. 

These can be investigated using a number of methods such as chromosomal banding, 

fluorescent in situ hybridization (FISH), spectral karyotyping (SKY), and comparative 

genomic hybridization (CGH) (reviewed by Speicher and Carter, 2005). Chromosome-

banding techniques, which first allowed the investigation of microscopically observed 

alterations, are based on a specific banding pattern of each chromosome. In the 1990’s, 

such techniques as SKY (Schröck et al., 1996), which yields information about 

chromosome numbers and structural changes, and chromosomal CGH (Kallioniemi et al., 

1992) were introduced. Chromosomal CGH is based on detecting relative copy number 

changes between samples using metaphase chromosomes as hybridization targets. The 

resolution of chromosomal CGH and conventional cytogenetic methods is limited (~2-10 

Mb) (reviewed by Speicher and Carter, 2005). Introduction of array-based CGH, reviewed 

in Section 5, allowed copy number detection at a gene level, facilitating high-resolution 

studies of the genome.  

3 Head and neck squamous cell carcinoma (HNSCC) 

Head and neck cancers represent a heterogeneous group of tumors in the upper 

aerodigestive tract. The majority of head and neck cancers are squamous cell carcinomas 

(SCCs), which arise from epithelial cells forming protective layers for cell populations 

underneath. HNSCC generally includes cancers of the oral cavity, nasal cavity and 

paranasal sinuses, pharynx, and larynx. Other malignancies in the head and neck area 
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include salivary gland cancer, thyroid cancer, soft tissue or bone sarcomas, and 

lymphomas. Ideally, HNSCC tumors should be categorized into specific subgroups to 

allow an appropriate treatment to be selected and to facilitate prognostication. The 

prognosis of HNSCC is affected by various factors, including tumor stage (reviewed by 

Diaz et al., 2003). Staging is based on tumor, node, and metastasis (TNM) classification 

(Wittekind et al., 2005). Current methods fail to classify and prognosticate HNSCC in an 

adequate fashion. Thus, a large research effort is focused on identification of biomarkers 

to improve these aspects (reviewed by Rodrigo et al., 2005). 

In 2002, altogether 274 000 and 159 000 new cases of oral cavity and laryngeal cancers 

were diagnosed worldwide (Parkin et al., 2005). The incidence of HNSCC is higher in 

men than in women. According to the Finnish Cancer Registry, approximately 600 new 

cases are diagnosed each year in Finland (Finnish Cancer Registry, Cancer Statistics at 

www.cancerregistry.fi, accessed 14.1.2008). The incidences of the most common cancer 

in women, breast cancer, and the most common cancer in men, prostate cancer, are over 

six and eight times higher. In HNSCC, several etiological factors have been identified, the 

most important of which are tobacco and alcohol (reviewed by Forastiere et al., 2001). 

Viral contribution by the Epstein-Barr virus (EBV) and human papillomavirus (HPV) 

(reviewed by Syrjänen, 2007) has been established, as has a role for occupational 

exposure. In recent years, the incidence of oral tongue squamous cell carcinoma (OTSCC) 

has increased among young patients, raising questions about the potential risk factors 

(Annertz et al., 2002).  

The current management for HNSCC includes radiation therapy and surgery, either alone 

or in combination with chemotherapy (reviewed by Vokes et al., 1993; Forastiere et al., 

2001; Brockstein and Vokes, 2004). Modern surgical and chemoradiation techniques seem 

effective in improving local control and providing reduction in patient morbidity, thus 

offering better quality of life. Radical management of HNSCC, especially laryngeal 

squamous cell carcinoma (LSCC), can still dramatically affect the quality of life of those 

patients who survive. The overall five-year survival rates for HNSCC have remained low 

over the past few decades. Every year, 127 000 people worldwide die due to oral cavity 

cancer, and 90 000 due to laryngeal cancer (Parkin et al., 2005). In the US, the five-year 

relative survival rate for laryngeal cancer is 65%, placing it among the cancers that have 

shown no significant improvement in survival over the past 25 years (Jemal et al., 2007). 
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3.1 Copy number alterations in HNSCC 

Like many other solid tumors, HNSCC is characterized by recurrent patterns of both 

structural and numerical aberrations (reviewed by Mao et al., 2004; Hunter et al., 2005; 

Perez-Ordonez et al., 2006). Table 1 summarizes the results of chromosomal CGH review 

studies (Gollin, 2001; Patmore et al., 2005) reporting frequent genomic aberrations and 

examples of amplifications (Singh et al., 2001; Wreesmann et al., 2004). CGH data are 

also available in online databases (www.progenetix.com; cgap.nci.nih.gov/Chromosomes/ 

Mitelman), which are frequently updated as new data are published. Based on 

chromosomal CGH data collected in the database (Progenetix database; Baudis and 

Cleary, 2001), in LSCC frequent overrepresentations of 3q, 5p, 7q21-q31, 8q, 11q13, and 

18p and underrepresentations of 3p, 5q, 9p, 11q22-q25, 13, and 18q were reported. 

Similarly, for OTSCC, overrepresentations of 3q, 5p, 7q21, 8q, 9p21-p23, and 11q13 and 

underrepresentations of 3p, 8p, 18q, and 21q occurred.  

Table 1 Common aberrations detected by chromosomal comparative genomic hybridization in 

head and neck squamous cell carcinoma.  

Study Gains Losses/Deletions 

Gollin, 2001 3q, 5p, 7p, 8q, 9q, 11q13, 20q 3p, 5q, 8p, 9p, 13q, 18q, 21q 

Patmore et al., 2005 
1q, 3q, 5p, 7, 8q, 9q, 10q, 11q13, 

14q, 15q, 16, 19, 20, 22q 
1p, 3p, 4q, 5q, 8p, 9p, 11q, 18q 

 Amplifications  

Singh et al., 2001 

3q13, 3q25-q26, 5q22-q23, 7q21, 

8q24, 11q13-q14, 12p13, 14q24, 

20q13.1 

 

Wreesmann et al., 

2004 

2q32, 3q26, 4p15.3-p16, 5p15, 

7q11.2-p12, 7q21, 8p11, 8q24, 

9p22-p24, 11q13, 12p13, 18p, 19p 

 

 

Some of the copy number alterations also have prognostic significance in HNSCC 

(reviewed by Wreesmann and Singh, 2005; Akervall, 2006). Gains of 3q21-q29 and 

11q13, and loss of 8p21-p22 (Bockmuhl et al., 2000) as well as amplification at 11q13, 

gain of 12q24, and losses at 5q11, 6q14, and 21q11 have been consistently associated with 

poor prognosis (Wreesmann et al., 2004). Overrepresentations of 2q12, 3q21-q29, 6p21.1, 

11q13, 14q23, 14q24, 14q31, 14q32, 15q24, and 16q22, and deletions of 8p21-p22 and 

18q11.2 have been significantly associated with both shorter disease-free interval and 
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shorter disease-specific survival (Bockmuhl et al., 2000). Here, the nomenclature for 

alterations (gain, amplification, loss, deletion) is used as presented in the studies. 

Wreesmann and Singh (2005) proposed 53 target genes for chromosomal aberrations in 

SCCs based on multiple chromosomal CGH studies. The genes included FHIT (3p14), 

PIK3CA (3q26.3), APC (5q21), EGFR (7p11), CDKN2A (9p21), PTEN (10q23), CCND1, 

TAOS1, EMS1 (11q13), and DPC4 (18q21.1) for HNSCC (Wreesmann et al., 2005). From 

these genes, FHIT, CDKN2A, CCND1, and EGFR as well as TP53 (17p13) have been 

linked to genetic progression of HNSCC (Section 3.2).  

3.2 Genetic progression model for HNSCC 

Slaughter and coworkers (1953) proposed the concept of field cancerization in which 

changes are induced by carcinogens, such as tobacco and alcohol, throughout the mucosal 

surfaces of the upper aerodigestive tract. This increases the possibility of future or 

concurrent disease. In 1996, Califano and coworkers introduced their preliminary genetic 

progression model for HNSCC (Figure 1). The authors suggested that areas of 

histopathological abnormality surrounding malignant and premalignant lesions are all 

generally derived from a single common progenitor clone. Subsequent genetic events in 

various subclones produce different phenotypic alterations, resulting in histopathologically 

different regions in a local anatomical area. A subclone that has acquired a particular 

selective growth advantage through clonal expansions may obtain a dominant position 

(Califano et al., 1996). 

The exact role of multiple foci of independent alterations versus clonal expansions in the 

phenomenon of field cancerization is being debated (reviewed by Ha and Califano, 2003). 

A classification system where second or subsequent HNSCCs comprise three types has 

been proposed. Tumors might be derived from the primary SCC itself (recurrence); they 

might have a different but overlapping spectrum of genetic changes, having developed 

from an intervening field of abnormal oral mucosa (second field tumors); or they might be 

true second primary tumors with an independent origin (Tabor et al., 2001; reviewed by 

Braakhuis et al., 2003; Hunter et al., 2005). 
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Figure 1 A genetic progression model for head and neck squamous cell carcinoma (modified 
from Califano et al., 1996; Mao et al., 2004; Perez-Ordonez et al., 2006). Genetic changes can also 
be present in a normal or benign appearing tissue. 

4 Gene expression profiling 

Multiple techniques, such as in situ hybridization, Northern blot, and reverse transcription-

polymerase chain reaction (RT-PCR), allow measurement of gene expression levels. 

Genome-wide gene expression measurement techniques include microarrays, differential 

display, and serial analysis of gene expression (SAGE). Differential display allows 

monitoring of previously unknown genes using PCR primers arbitrary in sequence (Liang 

and Pardee, 1992). The method is applied to compare gene expression levels between 

samples. SAGE is a sequencing-based method for identifying expressed genes in a cell 

and revealing their number (Velculescu et al., 1995). DNA microarrays provide a tool for 

measuring relative differences in RNA levels between samples. Development of 

microarray technology was preceded by lower-resolution dot blots and nylon filter arrays 

with radioactive labeling. DNA microarray technology is based on the complementary 

base pairing property of nucleic acids. In the hybridization reaction, two complementary 

nucleic acid strands form molecules according to base pairing rules. In the traditional 

hybridization methods, a specific labeled probe is applied to detect complementary target 

sequence in the mixture (reviewed by Southern, 2001). In the array technology, a target is 

a labeled sample hybridized onto the surface. A probe is a known nucleic acid bound to 

that solid surface. Gene expression microarrays can be categorized according to probe 

type as cDNA and oligonucleotide arrays (Fodor et al., 1991; Schena et al., 1995). 

The microarray experimental process can be divided into array acquisition, sample 

preparation, hybridization, image analysis, and data interpretation (reviewed by Holloway 

et al., 2002; Hariharan, 2003). Depending on the microarray platform, one can either 
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compare expression from two samples, test and reference, on the same array, or use only 

one array per sample. Accordingly, the result is presented either as a ratio between the 

expression levels from test and reference samples or as an estimate of transcript levels in 

one sample (reviewed by Hardiman, 2004). The resulting ratio or intensity data can be 

analyzed by different softwares. 

4.1 cDNA microarrays  

cDNA microarray manufacturing requires many steps. To obtain sufficient material for 

array construction, a collection of well-annotated and characterized cDNA clones is 

amplified by PCR after culturing. Usually, a glass slide, which can be coated (e.g., poly-L-

lysine) to increase the binding efficiency of the probe cDNA, is applied as an array 

surface. The amplified and purified cDNA sequences are spotted on the slides by a robotic 

arrayer. The pins of the arrayer collect the probe and deposit small aliquots each time they 

touch the surface in a contact printing process. A single loading of a pen can provide 

around two hundred spots (reviewed by Holloway et al., 2002). cDNA microarrays can 

also be manufactured by a noncontact printing method, such as inkjet technology 

(Blanchard et al., 1996), in which electrical pulse is applied to expel a drop of liquid onto 

the surface. 

4.2 In situ synthezised oligonucleotide microarrays 

Oligonucleotide arrays can be manufactured in a similar fashion as described above by 

synthesizing individual oligonucleotides prior to spotting. In addition to these delivery-

based methods, probes can be in situ synthesized nucleotide by nucleotide on a solid 

support. In situ synthesis provides a number of advantages over delivery such as 

consistent and high yields over the surface of the support (Southern et al., 1999). In situ 

synthesis is used by most microarray companies, including Nimblegen (Nuwaysir et al., 

2002) as well as Affymetrix (Fodor et al., 1991) and Agilent Technologies (Blanchard et 

al., 1996).  

One of the biggest and oldest manufacturers of in situ microarrays is Affymetrix. In array 

manufacturing, Affymetrix uses light-directed chemical synthesis relying on 

photolithography adapted from the semiconductor industry. The surface of a solid support, 

containing photolabile-protecting groups attached to the linker, is illuminated through a 



Review of the literature 

23 

photolithographic mask, creating reactive hydroxyl groups. 3´-O-phosphoramidite-

activated deoxynucleosides are then added and coupled to reactive hydroxyl groups. The 

coupled deoxynucleosides are also 5´-protected. Then, a new mask is applied over the 

surface and a second round of deoxynucleosides is coupled in regions exposed to light. 

The cycles are repeated until the desired probes are obtained (Pease et al., 1994). The 

physical size of the array and the lithographic resolution set limits on the technique. The 

synthesis of probes is simultaneous, and the synthesis time is therefore dependent on the 

length of the oligonucleotides (Lipshutz et al., 1999). In the manufacturing process, 

multiple arrays are synthesized on a quartz glass wafer, which is then diced. The 

individual arrays are packaged in cartridges, which protect the arrays and serve as 

hybridization chambers.  

In the early days of Affymetrix array development, Lockhart and coworkers (1996) 

investigated whether short in situ synthesized oligonucleotides quantitatively detected 

RNA in a cellular population. Array layout was based on probe pair strategy. Each probe 

pair was composed of a 20-mer that was perfectly complementary to the transcript (perfect 

match, PM) and a 20-mer that had a single base pair difference in a central position 

(mismatch, MM). The obtained hybridization signals were specific and quantitatively 

related to target concentration, and PM hybridizations were distinguished from MM 

hybridizations. At the higher RNA target concentrations, the hybridization intensity was 

nonlinearly related to concentration because of probe site saturation (Lockhart et al., 

1996). The use of MM oligonucleotides allows direct subtraction of background and 

cross-hybridization signals. Affymetrix’s standard GeneChip
®
 gene expression arrays 

currently contain around 11 different 25-mer oligonucleotide probe pairs, representing one 

probe set specific for a gene or transcript. Thus, different probe pairs hybridize at different 

sites of the same RNA transcript. The array itself therefore provides a kind of replication, 

although it simultaneously presents a challenge for the probe design. The in silico design 

is based on the probe’s ability to hybridize with the transcript of interest, its uniqueness, 

and its lack of similarity to any other highly abundant RNAs in the sample. When probes 

on the array change, a new set of photolithographic masks is designed (Lipshutz et al., 

1999). The Affymetrix Human Genome U133 Plus 2.0 array contains over 54 000 probe 

sets and over 1.3 million features. The more recently released Human Exon 1.0 ST array 

comprises 1.4 million probe sets and over 5.5 million features (www.affymetrix.com, 

accessed 14.1.2008). 
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Longer 60-mer oligonucleotide microarrays can be in situ synthesized by, for instance, 

inkjet technology (Blanchard et al., 1996), which is currently used by Agilent 

Technologies. The principle of the technology was described by Blanchard and colleagues 

(1996) when they constructed a high-density oligonucleotide array utilizing surface 

tension effects and inkjet pumps. In this method, an array containing thousands of wells 

on the surface of oxidized silicon wafer is produced. A hydrophobic coating is applied to 

the area surrounding the wells. Small amounts of nucleotides are delivered to the 

hydrophilic wells by inkjet pumps, which utilize capillary action and electrical pulse 

through a piezoelectric element to transfer the liquid. The machine resembles a four-color 

inkjet printer. The excess of monomer is rinsed away, followed by acid treatment to the 

entire array surface to deprotect the new end of the oligonucleotide for the next synthesis 

step. Depending on how many inkjets are utilized in the process, the manufacturing can be 

very quick and flexible (Blanchard et al., 1996). Inkjet-manufactured oligonucleotide 

microarrays were examined for sensitivity and specificity (Hughes et al., 2001), which are 

dependent on, for instance, oligonucleotide length. Long oligonucleotides were optimal 

due to both steric and nonsteric factors fulfilling specificity and sensitivity requirements. 

In complex cellular populations, transcript ratios at one copy per cell were reliably 

detected by a 60-mer probe. Thus, a single, carefully chosen oligonucleotide can be more 

specific than several oligonucleotides, among which cross-hybridization can be 

challenging to control. The resolution achievable by inkjet technology is high, as 

demonstrated by the Agilent Technologies human genome CGH oligonucleotide 

microarray containing 244 000 probes on a single microscope slide. The resolution also 

enables the profiling of multiple samples on a single array (4x44 000; www.agilent.com, 

accessed 14.1.2008). 

4.3 Experimental aspects of microarrays 

To prepare a target for hybridization on microarray, high-quality mRNA or total RNA is 

extracted from a sample such as a tissue or cell line. Amplification methods can be utilized 

for small RNA amounts (e.g., Van Gelder et al., 1990; Eberwine et al., 1992). In the direct 

two-color labeling method, extracted RNA is reverse-transcribed into cDNA and labeled 

with fluorochromes such as Cy3 and Cy5. Alternatively, in the indirect labeling method, 

amino-allyl conjugated nucleotides are incorporated into the first-strand cDNA, followed 

by chemical coupling of fluorochromes. Indirect labeling does not suffer from a dye bias 
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effect caused by the test and reference sample being labeled with two fluorochromes of 

different properties. To compensate the possible dye bias effect of the direct labelling, 

dye-swap replicates with reversed labeling between replicate arrays can be performed 

(reviewed by Hardiman, 2004). Affymetrix oligonucleotide arrays utilize a one-color 

labeling system (Affymetrix, 2004). RNA is reverse-transcribed to cDNA, followed by in 

vitro transcription (IVT) -based amplification of cDNA to cRNA. Biotinylated nucleotides 

are incorporated to cRNA during IVT, and streptavidin-phycoerythrin conjugates are used 

in the detection and visualization. Compared with arrays where two samples labeled with 

different fluorochromes are hybridized simultaneously, Affymetrix oligonucleotide arrays 

provide an estimate of transcript levels in one sample. Thus, they allow flexibility in 

sample comparison, which can be performed afterwards by computer. Nowadays, the 

Agilent two-color labeling system applies the same procedure, but instead of biotin, cRNA 

from test and reference samples is labeled with Cy5 and Cy3 (Agilent Technologies, 

2007a). Recently, Agilent also introduced a one-color Cy3-labeling protocol (Agilent 

Technologies, 2007b). High-quality commercial manufacturing processes have decreased 

variability due to microarray production, improving the consistency of microarray results 

at both the signal and ratio levels. Thus, the choice between one- and two-color arrays is 

considered more a personal one (Patterson et al., 2006).  

Labeled targets are hybridized on a microarray, usually overnight, and either manual or 

automatic washing procedures are used to remove the unbound target. Microarray is then 

scanned with device that excites fluorescently labeled targets by laser and produces an 

image of the array. The acquired images are analyzed by software, which places a grid, 

usually automatically, on the array. In the segmentation and quantification process, 

software provides measures of the signal for each feature and the background. Signals 

intensities from the features are background-corrected if deemed necessary. Most image 

analysis programs also flag low-quality measurements for filtering (reviewed by 

Hariharan, 2003; Smyth et al., 2003a). A number of different algorithms to preprocess and 

analyze microarray data (reviewed in Section 4.4) have been developed. However, no 

consensus exists as to which method is the gold standard (Allison et al., 2006). When 

performing image and data analysis, it is important for the experimenter to understand the 

nature of the data and thereby choose appropriate analysis methods to achieve meaningful 

results (reviewed by Tilstone, 2003). 
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4.4 Microarray data analysis 

Since experimental design has a clear impact on data analysis, it should be carefully 

considered already when starting array experiments. The design of the microarray 

experiment is dependent on the hypothesis, array platform, number of samples, number of 

biological and technical replicates, amount of RNA, and cost (reviewed by Churchill, 

2002; Dobbin et al., 2003). The experimental design and other key steps involved in 

microarray analysis are reviewed, for example, in Imbeaud and Auffray (2005) and an 

overview is presented in the next paragraphs.  

To remove sources of systematic nonbiological variation in the microarray data, a 

mathematical adjustment, normalization, is performed. Variation can be caused by many 

factors such as dye bias, experimental conditions, or unequal starting amounts of RNA. 

For spotted arrays, print-tip group information can be utilized in normalization because a 

systematic difference may exist between subarrays due to variation in pins of the arrayer. 

Normalization can be performed within an array, between a pair of arrays, or between 

multiple arrays (reviewed by Quackenbush, 2002; Yang et al., 2002; Hariharan, 2003; 

Smyth et al., 2003a). If multiple arrays are compared, adjustment of scale differences 

between arrays may be necessary (Yang et al., 2002; Smyth and Speed, 2003b). Many of 

the normalization methods assume that most of the genes on the array, some subset of 

genes such as housekeeping genes, or a set of exogenous controls have constant 

expression values. Based on this assumption, the normalization factor is calculated to 

adjust the data to compensate for systematic variability (reviewed by Quackenbush, 2002; 

Yang et al., 2002; Hariharan, 2003). Multiple different advanced normalization methods 

are available, one of the most popular being lowess (locally weighted scatter plot 

smoothing) (Cleveland, 1979), which is suitable for nonlinearly dependent data. 

Normalization methods can be adapted on different array platforms (reviewed by 

Quackenbush, 2002).  

Since the Affymetrix array design is unique, arrays are usually preprocessed with the 

company’s own Microarray Suite 5 (MAS5) software or current Gene Chip Operating 

software (GCOS). Software performs the background subtraction, calculates PM and MM 

probe values, calculates of the probe set value, and scales the data (Affymetrix, 2005). 

Alternative approaches performing data preprocessing differently at probe level, such as 

robust multi-array average (RMA) (Irizarry et al., 2003) or dChip (Li and Wong, 2001), 
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are also available. Affymetrix preprocessing algorithms have been reviewed in detail in 

Hariharan (2003) and are compared, for example, in Irizarry et al. (2006).  

Preprocessed microarray data are analyzed to identify differentially expressed genes 

between samples. The analysis can be simply performed using fold change with an 

arbitrarily determined fixed cut-off. Standard and advanced statistical tests, such as t-test 

and analysis of variance, can also be applied to the gene expression data, but they often 

require normal data distribution. Gene expression data are often assumed to be normally 

distributed after logarithmic transformation (reviewed by Hariharan, 2003; Imbeaud and 

Auffray, 2005; Allison et al., 2006).  

Unsupervised classification, clustering, can be used for class discovery in microarray 

experiments. Clustering analysis can reveal genes that show similar expression patterns as 

well as illustrate multidimensional gene expression data effectively. Most clustering 

techniques applied in gene expression analysis are hierarchical resulting a tree structure 

(Eisen et al., 1998), but nonhierarchical ones, such as k-means (Tavazoie et al., 1999) or 

self-organizing map (SOM) (Kohonen, 2001), have also been utilized. When applying 

clustering methods, the user must decide several parameters, which have an effect on the 

results. In addition to the unsupervised approaches, supervised algorithms can be used if 

some information on how to group data is available. These class prediction methods 

preferably include independent training and test data sets to build and evaluate the 

classifier (reviewed by Ringner et al., 2002; Allison et al., 2006; Dupuy and Simon, 

2007). 

To reveal which biological processes are active among differentially expressed genes, 

gene ontology (GO) (www.geneontology.org) (The Gene Ontology Consortium, 2008) or 

pathway analysis can be performed. GO analysis groups genes into functionally 

meaningful classes using different GO terms. The terms are divided into three main 

branches: biological process, cellular component, and molecular function. Gene set 

enrichment analysis (GSEA) focuses on differentially expressed gene sets instead of single 

genes (Mootha et al., 2003; Subramanian et al., 2005). In GSEA, gene sets can be created 

based on GO or pathway information, highlighting the altered biological processes.  
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4.5 Validation of microarray data  

Developments of microarray technology have reduced the need for additional validation at 

gene expression level to rule out false-positive results. Typically, gene expression 

validation has been carried out using methods such as Northern blot or real-time RT-PCR 

(e.g., Yuen et al., 2002; Ginos et al., 2004; Larkin et al., 2005; Canales et al., 2006). 

Canales and coworkers (2006) demonstrated a good correlation between quantitative gene 

expression platforms and microarrays. Discrepancies in expression measurements were 

mostly dependent on the detection limit of the array platform and differences in the probe 

sequence. Both methods gave accurate results for the specific sequence they were 

measuring (Canales et al., 2006). Inherent limitations of microarray technology due to 

sensitivity, especially at lower expression levels, and accuracy as compared with RT-PCR 

methods exist (reviewed by Draghici et al., 2006).  

To validate functional relevance of the gene expression microarray results, protein level 

studies using immunohistochemistry, Western blotting, 2-D gel electrophoresis, and mass 

spectrometry or RNAi experiments can also performed (e.g., Chung et al., 2004; Choi et 

al., 2005; Tonon et al., 2005). As evolving standards and comparability studies allow 

effective use of publicly available data, meta-analysis provides an attractive option for 

further studies (Rhodes et al., 2004; Rhodes et al., 2007).  

5 Copy number profiling 

Copy number profiling by CGH can be performed on microarrays containing oligos, 

cDNA, or bacterial artificial chromosome (BAC) clones instead of chromosomal targets 

described in Kallioniemi et al. (1992). The resolution was significantly improved by the 

substitution of the metaphase chromosomes by an array with large inserts from genomic 

sequences (Solinas-Toldo et al., 1997). Pinkel and coworkers (1998) described the 

implementation of array CGH (aCGH) using genomic clones (BAC, P1) as probes on an 

array. In 2004, a tiling resolution array consisting of 32 433 overlapping BAC clones 

covering the entire human genome was constructed (Ishkanian et al., 2004).  

cDNA arrays in CGH were introduced almost at the same time as BAC arrays (Pollack et 

al., 1999). An oligonucleotide-based aCGH method, representational oligonucleotide 

microarray analysis (ROMA), was described a few years later (Lucito et al., 2003). The 
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principle of ROMA is similar to that of cDNA- and BAC-based methods, but it includes 

complexity reduction of DNA samples by representations to increase the signal to noise. 

This is accomplished by PCR performed in a specific size range after digestion by 

restriction enzymes. Complexity reduction is applied also on Affymetrix SNP 

oligonucleotide arrays (Bignell et al., 2004; Zhao et al., 2004), which allow simultaneous 

detection of LOH and copy number. Oligonucleotide-based aCGH without complexity 

reduction was introduced only four years ago (Barrett et al., 2004; Brennan et al., 2004; 

Carvalho et al., 2004).  

In aCGH, different labeling and hybridization protocols can be used (Pollack et al., 1999; 

Snijders et al., 2001; Barrett et al., 2004). The sample material is total genomic DNA, 

which is digested by restriction enzymes. Test and reference samples can be then 

differentially labeled using random priming and cohybridized on array with blocking 

DNA, such as Cot-1 DNA, which suppresses signals from repetitive sequences. 

Depending on the array platform, labeling protocols vary, but typically test and reference 

samples are labeled with Cy3 and Cy5. The data can be analyzed with commercial (e.g., 

Agilent Technologies) or custom-developed programs (e.g., Autio et al., 2003).  

DNA of phenotypically normal individuals used as a reference sample in aCGH can 

possess marked genomic variability, affecting data interpretation. One of the most 

common forms of variability in the human genome is in SNPs (e.g., HapMap project, 

www.hapmap.org), but a few years ago, two studies reported wide-spread copy number 

variants (CNVs) in a normal population (Iafrate et al., 2004; Sebat et al., 2004). CNV can 

be defined as a segment of DNA that is one kb or larger and is present in variable copy 

number in comparison with a reference genome. CNVs include insertions, deletions, and 

duplications as well as large-scale CNVs, which are variants involving DNA segments 

over 50 kb that are detectable by CGH (reviewed by Feuk et al., 2006). Efforts to collect 

information about CNVs are on-going, e.g. the Database of Genomic Variants 

(projects.tcag.ca/variation/) (Iafrate et al., 2004). Interpretation of copy number changes 

between samples from different projects and standardization of databases of structural 

variants can be complicated due to various reference samples used in the projects 

(reviewed by Feuk et al., 2006). 

Compared with aCGH, chromosomal CGH fails to produce high-resolution data because 

metaphase chromosomes are utilized as hybridization targets. Therefore, the boundaries 
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and sizes of the genomic alterations are impossible to define accurately. aCGH with 

cDNAs, BACs, or oligos as targets provides high-resolution data with a good dynamic 

range (reviewed by Pinkel and Albertson, 2005; Ylstra et al., 2006). Compared with BAC 

arrays, oligonucleotide arrays allow better resolution because of the size of the BAC 

clones. However, in many oligonucleotide platforms, 3-5 adjacent oligonucleotides are 

used to define gain or loss (reviewed by Ylstra et al., 2006). Interestingly, allele-specific 

copy number profiling on Affymetrix SNP arrays has been described (LaFramboise et al., 

2005). As a method, CGH can detect only unbalanced rearrangements and polyploidy or 

balanced rearrangements remain undetected. 

6 Molecular profiling of cancer by array technologies 

Gene expression microarrays have a wide variety of applications in biomedical research, 

but 80% of the publications have been reported to rise from the field of cancer research 

(reviewed by Ewis et al., 2005). These applications include classification of tumors into 

biological and diagnostic subgroups, identification of molecular mechanisms behind 

cancer, identification of clinical associations such as prognosis, response to treatment, and 

disease progression, and identification of drug targets (reviewed by Gerhold et al., 2002; 

Ewis et al., 2005). As an example, in a study of 17 HNSCC patients, 375 genes 

discriminating between two genotypic subtypes of HNSCC were identified with different 

clinical outcome (Belbin et al., 2002). Another study of 41 HNSCCs reported a gene 

expression signature associated with recurrent disease (Ginos et al., 2004). A study of 60 

HNSCCs revealed four distinct subtypes of HNSCC with differences in recurrence-free 

survival as well as overall survival based on gene expression. Furthermore, a set of genes 

was proposed to be predictive of lymph node metastases (Chung et al., 2004). Roepman 

and coworkers (2005) also identified a predictor of lymph node metastases based on the 

differential expression of 102 genes using 82 tumors. These results and over 20 other 

HNSCC gene expression microarray studies reviewed in Choi and Chen (2005) revealed 

considerable heterogeneity in experimental design, number of samples used, site and stage 

of disease, ratio of tumor-to-stromal cells analyzed, microarray platform used, and 

validation of results by other methodologies. The heterogeneity makes it challenging to 

compare and integrate the results from different studies. Microarrays have also been used 

in copy number profiling of cancer (e.g., Pollack et al., 1999; Snijders et al., 2001; Zhao et 
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al., 2004; LaFramboise et al., 2005; reviewed by Pinkel and Albertson, 2005). aCGH 

studies of HNSCC are described in detail in Section 8.1.1. 

In addition to expression and copy number analysis, microarrays have been applied in 

genotyping and sequencing applications in cancer (reviewed by Fan et al., 2006a). Since 

the concentration of mRNA can be poorly correlated with the protein levels in the cell, 

high-throughput array formats to measure the actual protein levels have also been actively 

developed (Zhu et al., 2001; reviewed by MacBeath, 2002; Mitchell, 2002; LaBaer and 

Ramachandran, 2005). To verify molecular markers, a tissue microarray (TMA) can be 

applied (Kononen et al., 1998). In TMA, tissue from paraffin-embedded tumor blocks is 

arrayed into a new paraffin block until the desired set of tumors is printed on the new 

array block. Hundreds of sections could be cut from each tumor array block. TMA enables 

the investigation of changes in DNA, RNA, or protein levels from a large set of tumors on 

one slide. Further microarray applications include chromatin immunoprecipitation 

followed by array detection (ChIP-on-chip) to examine the interactions between DNA and 

proteins, epigenetic studies of methylation, and cell array to perform functional screenings 

(reviewed by Hoheisel, 2006). Thus, array-based methods can provide molecular profiles 

which can be integrated for more comprehensive understanding of complex diseases such 

as cancer (Figure 2).  
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Figure 2 Array-based approaches for molecular profiling (modified from Weinstein, 2006).  
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Aims of the study 

 

The aims of the study were the following: 

 

1. To compare data from different gene expression microarray platforms.  

 

2. To integrate copy number and gene expression microarray data to identify genes in 

which expression is changed in association with underlying genetic alteration. 

This genome-wide approach was applied to discover genes potentially important in 

HNSCC pathogenesis. 
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Materials and methods 

The materials and methods used are listed in Table 2 and described in detail in the original 

publications. In addition to methods presented in Table 2, standard molecular biology 

methods, such as gel electrophoresis and spectrophotometry, were used. The UT-SCC cell 

lines were kindly provided by the Department of Otorhinolaryngology-Head and Neck 

Surgery at Turku University Central Hospital (TUCH), University of Turku, Finland. 

Other cell lines were from the American Type Culture Collection (ATCC, VA). The use of 

LSCC clinical sample material was approved by the Research Ethics Board at the 

Department of Otorhinolaryngology, Helsinki University Central Hospital, and the Joint 

Ethics Committee of TUCH and the University of Turku.  

Table 2 Materials and methods used in Studies I-III. 

Cell lines and tumor samples Study 

Breast cancer cell lines: MDA-MB-361, MDA-MB-436, BT-474, MCF-7, 

HBL-100 
I 

LSCC cell lines: UT-SCC-8, -11, -19A, -19B, -29, -34, -38, -42A, -49, -75 II, III 

OTSCC cell lines: UT-SCC-16A, -16B, -21, -24A, -24B, -30, -40, -67, -73,  

-76A, -76B, -81, -87, -95 

SCC-4, SCC-9, SCC-15, SCC-25 

III 

10 LSCC tumor samples II 

Methods  

Cell culturing I, II, III 

DNA extraction II, III 

Total RNA extraction I, II, III 

Lab-on-a-Chip/Agilent Bioanalyzer I, II, III 

Expression profiling on Affymetrix microarray I 

Expression profiling on custom-made microarray I 

Expression profiling on Agilent microarrays  I, II, III 

Copy number profiling on Agilent microarrays II, III 

Microarray data analysis by custom-developed and commercial programs I, II, III 

Gene ontology analysis II, III 

Pathway analysis II, III 

Real-time quantitative RT-PCR III 

Immunohistochemistry II 

Sequencing I 
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Results and Discussion 

7 Comparison of the data from different gene expression 
microarray platforms (I) 

7.1 Gene expression profiling on microarrays  

We compared data from three different microarray platforms, Affymetrix 13k HG-U95v2 

in situ oligonucleotide array, Agilent Technologies 13k Human 1 cDNA array, and 

custom-made 13k cDNA array. Four ATCC breast cancer cell lines were used as test 

samples and the HBL-100 cell line as a reference sample. The laboratory protocols and 

data analysis methods provided by commercial manufacturers were applied without 

modifications to reflect the situation of the average biologically oriented user when 

starting array experiments. For custom-made arrays, two different filtering-normalization 

options were applied. On Affymetrix arrays, we performed data analysis using both MAS5 

and RMA because of the wide acceptance of RMA by the research community. 

To determine the concordance between the three different microarray platforms, 

correlation coefficients were calculated. Using common probes between platforms, 

Pearson and Spearman correlation coefficients gave similar results, Pearson correlations 

being slightly better. The unfiltered gene expression data (n=2340) from the commercial 

platforms correlated well across experiments (r=0.70-0.83), whereas correlations between 

the custom-made and either of the two commercial platforms were consistently lower 

(r=0.53-0.63). SOM analysis for filtered data confirmed the results, illustrating better 

concordance on commercial platforms than on the custom-made platform. Our results 

demonstrated that filtering improved the correlations. Filtered data (n=1093-1206) 

between commercial platforms showed correlation coefficients from 0.78 to 0.86, whereas 

between custom-made and commercial platforms the correlations ranged from 0.62 to 0.76 

(Table 3). We observed better correlations in unfiltered data between Affymetrix and other 

platforms when using RMA as compared with MAS5. The two data analysis options for 

custom-made arrays produced comparable outcomes when used in unfiltered and filtered 

data.  
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Table 3 Range of Pearson and Spearman correlation coefficients between different microarray 

platforms in filtered data. 

Comparison Correlation 

Affymetrix - Agilent 0.78-0.86 

Affymetrix - custom-made 0.66-0.76 

Agilent - custom-made 0.62-0.73 

 

Differences between microarray platforms can arise from a variety of factors, including 

the wrong probe or incomplete annotation on the array, splice variants, different kinds of 

hybridization properties between target and oligonucleotide compared with target and full-

length cDNA clone, low-quality spots on the custom-made array, homologies between 

genes, or a suboptimal image or data analysis algorithm. We were able to verify 16 

incorrect sequences on the custom-made array by sequencing 28 cDNA clones giving 

discrepant results between arrays. Sequencing of an additional unselected set of 90 clones 

from one random plate in the cDNA library revealed a 16% error rate. Despite these 

results, hierarchical clustering (n=877) grouped the same cell lines, independent on the 

platform, together, implying that biological differences still dominanted over technical 

ones.  

In general, cDNA arrays are likely to be prone to errors because of the handling of 

thousands of cDNA clones through multiple processing steps. Up to a 30% error rate has 

been reported in cDNA libraries (Halgren et al., 2001; Knight, 2001). Thus, cDNA clones 

should be resequenced as a quality procedure even those from sequence-verified libraries, 

and the local error rate should always be reported. Unfortunately, the sequencing of 

thousands of clones is often an impossible task due to time constraints and cost. Potential 

error rate should be also kept in mind if old cDNA microarray data are reanalyzed, for 

example, in meta-analysis studies. When manufacturing oligonucleotide arrays, much of 

the tedious preparation can be avoided. On the other hand, manufacturing of 

oligonucleotide arrays requires knowledge of the gene sequence to perform the synthesis. 

The synthesized oligonucleotides are as reliable as their sequence data. In addition to 

manufacturing differences, the hybridization properties as well as the targets, such as 

different splice variants of the same gene, of longer cDNA clones and shorter 

oligonucleotides can be different.  
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Our results revealed challenges in manufacturing and quality control of custom-made 

microarrays. Such printing conditions as temperature and humidity can affect spot quality. 

Furthermore, pins can be blocked during the printing process in the case of dust on the 

slides or impurities in a probe sample. This can lead to spot bleeding, nonuniform pixel 

distribution, and missing spots. The variable quality of spots on the custom-made array 

presents a challenge for image analysis software and data filtering. In commercial arrays, 

the quality was more uniform. Therefore, commercial arrays could provide a platform 

where technical replication may not be as crucial as on custom-made arrays. On the 

custom-made microarrays, however, the within-platform correlation of arrays belonging to 

the same print batch was better (average 0.9; n=7412-9982) than on Agilent cDNA arrays 

(dye-swap average 0.77; n=10 080-10 596). Unfortunately, the concordance between 

custom-made and commercial platforms was poorer than that between commercial 

platforms.  

Annotating of the probes on the array is a demanding and dynamic process that may cause 

variability in the results obtained from different platforms. Many manufacturers provide 

detailed information about the probes on the array. These annotations might not, however, 

be up-to-date, and thus, they should be updated before analysis. For example, the latest 

information of the Human Genome Project is deposited in public databases 

(genome.ucsc.edu; www.ensembl.org; www.ncbi.nlm.nih.gov) and is readily available for 

annotation purposes, even at sequence level. Correct annotations are crucial for identifying 

valid target genes and drawing correct conclusions from an array study. Here, we 

annotated probes using UniGene cluster ID as the common identifier between different 

platforms. Annotation at the transcript level would be more optimal, especially in the case 

of the oligonucleotide arrays. Furthermore, as manufacturers nowadays usually provide 

the probe sequence information, probes should be mapped to the most up-to-date genome 

sequence for annotation. A recent study reported problems in probe annotations on 

Affymetrix arrays caused by probe design being older than the current knowledge of 

genome sequence (Dai et al., 2005). This had a profound effect on results, underlining the 

importance of keeping probe annotations updated. Moreover, multiple available analysis 

options for each platform make comparisons challenging. In addition to manufacturer’s 

recommended algorithms and programs, data analysis methods are numerous, which may 

influence the correlation between platforms. For example, here, we noticed a difference in 
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the results when using MAS5 and RMA for Affymetrix data. Overall, the original raw 

data should be available for other researchers for reanalysis.  

In our study, the discrepant findings between platforms were due to clone errors on the 

custom-made microarrays, old annotations, or unknown causes. The results illustrate 

points that should be taken into account when comparable data from microarrays are 

desired in research settings as well as in clinical settings. In concordance with our results, 

when currently profiling common organisms, such as human, custom-made arrays are less 

popular than commercial ones, and cDNA arrays are less popular than oligonucleotide 

arrays (reviewed by Gershon, 2004). However, cDNA arrays might still be useful in cases 

in which sequence information is not available, and custom-made arrays when no 

commercial option exists. Diagnostic and clinical applications of the DNA microarray 

technology will be dependent on generally acceptable and comparable platforms, placing 

far more stringent demands on quality control than in research settings (reviewed by 

Petricoin et al., 2002).  

Despite rapid development of microarray technology and availability of a vast amount of 

gene expression data, we still face challenges in the clinically orientated applications of 

microarrays (reviewed by Abdullah-Sayani et al., 2006; Tinker et al., 2006). 

Encouragingly, the results from breast cancer research suggest that gene expression 

profiles can predict the outcome of disease as accurately as the currently used clinical 

parameters (van't Veer et al., 2002). Importantly, the results have been translated to a 

diagnostic test approved by the U.S. Food and Drug Administration (FDA) (Glas et al., 

2006). Agendia’s MammaPrint
®
 breast cancer prognosis test (Agilent oligonucleotide 

array) is the second microarray-based test after Roche’s pharmacogenetic AmpliChip
®
 

CYP450 test (Affymetrix oligonucleotide array) approved for clinical use. Despite these 

few successful examples, criticism about the usefulness and added value of gene 

expression profiles in the clinics compared with conventional prognostic factors has been 

voiced (reviewed by Michiels et al., 2007).  

7.2 Comparability of gene expression microarray data 

When starting this project in 2002, scarce publications comparing results from different 

gene expression microarray platforms existed, and only a few more were published during 

the project. The results were inconsistent, with some studies reporting agreement (Kane et 
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al., 2000; Hughes et al., 2001; Yuen et al., 2002; Barczak et al., 2003; Wang et al., 2003) 

and others not (Kothapalli et al., 2002; Kuo et al., 2002; Li et al., 2002; Tan et al., 2003). 

Nowadays, microarray technology is more mature and multiple systematic comparisons 

between different array platforms as well as laboratories have been published. Still 

comparability and reproducibility issues arise regularly, as evidenced by two recent large-

scale efforts presented in the next paragraphs (Bammler et al., 2005; Irizarry et al., 2005; 

Larkin et al., 2005; MAQC Consortium, 2006).  

In the Nature Methods Journal three articles published in 2005 (Bammler et al., 2005; 

Irizarry et al., 2005; Larkin et al., 2005) brought together work by researchers from 17 

laboratories, using more than 15 microarray platforms. Larkin and coworkers (2005) used 

both Affymetrix and spotted cDNA arrays to examine gene expression changes in a mouse 

heart. The obtained expression data were consistent and independent of platform for most 

of the common genes, as biological effect dominated over platform effect. Only a small 

subset of genes, 9% (n=504), from the two platforms gave discordant results. Based on 

quantitative RT-PCR results, the discordance could be due to different splice variants of 

the same gene measured by two platforms. In the second study by Irizarry and coworkers 

(2005), Affymetrix, spotted cDNA, and spotted long oligonucleotide arrays using identical 

RNA samples were applied in different laboratories. Researchers observed that laboratory 

had a larger effect on many parameters than platform. The results from the best 

laboratories, which presented repeatable data within the laboratory, agreed well with the 

highest cross-platform correlation between Affymetrix and cDNA array, 0.48, and 

between Affymetrix and spotted long oligonucleotide array, 0.57. In the third study by 

Bammler and coworkers (2005), expression data were generated in eight laboratories that 

compared two standard RNA samples using different cDNA and oligonucleotide 

microarray platforms. Although intra-platform reproducibility within a single laboratory 

was good, reproducibility across laboratories was generally poor for the same platform. 

The implementation of standardized protocols for all aspects of the study including RNA 

labeling, hybridization, microarray processing, data acquisition, and normalization, 

however, increased inter-laboratory reproducibility. After standardization, the correlation 

for gene expression ratios on the commercial oligonucleotide array varied from 0.79 to 

0.93 between laboratories. To compare correlations between seven different array 

platforms, 502 common genes were identified. The obtained cross-platform correlations 

varied both within and between laboratories (r=0.11-0.76). However, the identified 
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biological themes, as defined by GO analysis, were quite consistent. Based on the result, 

the authors concluded that microarray platform can be a source of gene expression 

variability and standardization is essential. In these three studies, the importance of 

annotation and preprocessing were acknowledged. Here, the relative expression measures 

seemed to give more reliable results than intensities. Overall, the results imply that 

microarray data can be reproducible and comparable between different platforms as well 

as between laboratories, but standardization and user experience are important issues 

affecting data quality, especially when data from different laboratories are compared.  

Another recent effort is the MicroArray Quality Control project (MAQC) 

(www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/index.htm) led by FDA 

scientists and involving 137 participants from 51 organizations (MAQC Consortium, 

2006). In this project, gene expression levels of two RNA samples were measured on the 

following seven microarray platforms: Applied Biosystems, Affymetrix, Agilent 

Technologies (both one- and two-color), GE Healthcare, Illumina, spotted microarrays 

using Operon (NCI) oligonucleotides, and Eppendorf. Each microarray platform was used 

at three test sites, and five replicates were performed at each site. The study indicated that 

microarray results were generally repeatable within a test site, reproducible between test 

sites, and comparable across platforms, despite probe sequence differences and unique 

protocols for labeling and detection of expression. Between platforms, the median rank 

correlation of log ratios was 0.87, and the smallest rank correlation was 0.69. Five 

accompanying articles concerning issues of evaluation of microarray results compared 

with quantitative gene expression platforms (Canales et al., 2006), use of titration pools to 

assess microarray performance and normalization issues (Shippy et al., 2006), evaluation 

of external RNA controls to assess microarray performance (Tong et al., 2006), 

comparison of one- and two-color platforms (Patterson et al., 2006), and a rat 

toxicogenomic study that validated the findings of the MAQC main data set (Guo et al., 

2006) were published in the same issue. The complete data set created in the MAQC study 

is the most extensive published to date and is freely available to the research community.  

Taken together, recent studies have demonstrated concordant results between different 

gene expression microarray platforms. We and others have also reported that biological 

differences exceed technical ones. The terms “concordant” and “discordant” can also be 

quite subjective and dependent on perspective. For example, in our study, we found 
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reasonably good correlations after filtering between all platforms (r=0.62-0.86), especially 

between commercial ones (r=0.78-0.86). These results are in line with those of large-scale 

studies (Bammler et al., 2005; Irizarry et al., 2005; Larkin et al., 2005; MAQC 

Consortium, 2006). In a clinical diagnostic setting, however, these correlations are 

inadequate. One measure of comparability of microarray results has been suggested to be 

an accurate and consistent prediction of individual patient outcome. In a study of breast 

cancer, the authors demonstrated that even though different gene sets from different 

microarray studies were used for prognostication of patients, four of the five tests showed 

significant agreement in outcome predictions for individual patients. Thus, they probably 

track a common set of biological characteristics (Fan et al., 2006b).  

7.3 Reliability and reproducibility – towards standardization  

Standardized laboratory practices allow better comparability of microarray data from 

different platforms and laboratories (Bammler et al., 2005). Reliable results are a 

prerequisite for clinical applications (reviewed by Petricoin et al., 2002). The Microarray 

Gene Expression Data (MGED) group was established in 1999 to develop standards for 

describing microarray experiments. Gene expression data are meaningful only when 

sufficient background information of data is provided in a standardized fashion. In 2001, 

MGED published a recommendation, the Minimum Information About a Microarray 

Experiment (MIAME), to define the information needed in association with a microarray 

experiment (Brazma et al., 2001). The purpose of MIAME is not to promote any particular 

format, but to outline certain common principles. MIAME has not been adopted by all 

scientific journals. 

Many steps occur between a raw image and final gene expression values, but most of these 

steps are ill-defined in publications. According to MIAME guideline, the following six 

sections should be described in any microarray experiment: the raw data for each 

hybridization, the final processed data for the set of hybridizations in the experiment, the 

essential sample annotation, the experiment design, sufficient annotation of the array 

design, and essential experimental and data processing protocols 

(www.mged.org/Workgroups/MIAME/miame.html, accessed 14.1.2008). The massive 

amounts of original data created in microarray experiments can be stored in a MIAME-

compliant fashion in publicly available databases such as Gene Expression Omnibus 



Results and Discussion 

41 

(www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2007) and ArrayExpress (www.ebi.ac.uk/ 

microarray/ArrayExpress/arrayexpress.html) (Parkinson et al., 2007). In addition to 

MIAME, other ongoing standardization efforts, such as the External RNA Controls 

Consortium (ERCC) (Baker et al., 2005), best practices for Affymetrix arrays (Tumor 

Analysis Best Practices Working Group, 2004), and MAQC (MAQC Consortium, 2006), 

exist.  

8 Copy number and gene expression profiling on microarrays 
(II, III) 

In Studies II and III, we investigated genes targeted by genomic alterations in HNSCC by 

integrating copy number and gene expression microarray data. We concentrated on two 

HNSCC sites: OTSCC, which is anatomically part of the oral cavity, and LSCC. Based on 

results from the first study, we applied commercial cDNA and oligonucleotide 

microarrays from Agilent Technologies in copy number and expression profiling, 

respectively.  

Head and neck SCCs present a number of recurrent gains and losses as well as well-

defined amplifications and homozygous deletions. Previous HNSCC microarray studies 

have focused on either copy number or gene expression profiling on a genome-wide scale, 

performing further analysis for a few selected genes by such methods as quantitative PCR 

or RT-PCR (Cromer et al., 2004; Baldwin et al., 2005; Snijders et al., 2005). None of the 

studies have integrated genome-wide data in a systematic manner to achieve more 

accurate information about genes that are activated or inactivated by copy number 

alteration with focus on specific HNSCC site. Such studies have been published in various 

other cancer types (Guo et al., 2002; Hyman et al., 2002; Pollack et al., 2002; Wolf et al., 

2004; Heidenblad et al., 2005; Tonon et al., 2005). In bladder cancer, a converse 

integrative microarray approach to examine genome-wide copy number independent 

transcription, possibly regulated by epigenetic mechanisms, has also been taken (Stransky 

et al., 2006).  

8.1 Copy number profiling of HNSCC 

We copy number profiled 10 LSCC cell lines and 10 LSCC tumor samples on cDNA 

microarrays providing a theoretical resolution of ~400 kb across the genome (II). We 
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identified copy number alterations in several regions, including gains at 3q, 5p, 7p, 8q, 9q, 

11q, 14q, 15q, 16q, and 20, as well as losses at 3p, 4q, 5, 6q, 8p, 9p, 10p, 11q, 13q, 18q, 

and 21. The analysis was followed by similar profiling of 18 OTSCC cell lines (III). 

Frequent copy number gains in OTSCC cell lines were identified at 3q, 5p, 7p, 8q, 9, 14, 

and 20 and losses at 3p, 4q, 8p, 10p, 13q, and 18q. Thus, these two HNSCC sites seemed 

to have similar alterations, which were also in concordance with earlier chromosomal 

CGH studies (Section 3.1). Figure 3 summarizes the copy number alterations across all 

LSCC and OTSCC samples. 

 

Figure 3 Frequency of copy number alterations (gain>1.3, loss<0.7) in 38 HNSCC samples. All 

copy number data were processed similarly and were plotted using 750 kb smoothing with CGH-

Plotter (Autio et al., 2003). The clone coverage in the chromosome Y was poor and thus, it was 

omitted from the analysis. 

We and others have reported that homozygous deletions are challenging to distinguish 

from one copy losses on a cDNA platform. Therefore, the LSCC cell line UT-SCC-75 and 

OTSCC cell lines UT-SCC-24B, UT-SCC-30, UT-SCC-67, and UT-SCC-76A, all of 

which presented multiple genomic alterations on cDNA arrays, were evaluated on 185k 

oligonucleotide CGH arrays. The array provided a resolution of dozens of kbs and was 

capable of detecting intragenic deletions. We identified multiple homozygously deleted 

regions (both copies of the gene lost) containing TSG previously indicated in HNSCC 

such as LRP1B at 2q21.2 (Nakagawa et al., 2006), FHIT at 3p14.2 (Mao et al., 1996; 
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Virgilio et al., 1996), CSMD1 at 8p23.2 (Sun et al., 2001), MTAP/CDKN2A/CDKN2B at 

9p21 (Reed et al., 1996; Worsham et al., 2006), and MRO/ME2/ELAC1/SMAD4 at 18q21 

(Kim et al., 1996). In addition, previously unrecognized homozygously deleted targets in 

HNSCC, such as ITGAV at 2q31-q32, PDE4D at 5q12, and IL1RAPL2 at Xq22.2-q22.3, 

were located. From these genes, we observed simultaneous underexpression of ITGAV, 

which codes integrin alpha chain V. Although no decreased expression of PDE4D in 

association with homozygous deletion was detected, the gene has been reported by others 

homozygously deleted in lung adenocarcinoma (Weir et al., 2007). The authors located no 

somatic mutations in PDE4D. However, when combining the results of these individual 

studies, some role may exist for PDE4D, which participates in degradation of cAMP, in 

different type of cancers. These CGH results from oligonucleotide array illustrate the 

potential of microarrays in discovering new TSGs. Overall, our data showed that genomic 

alterations in an individual HNSCC sample can be composed of low-level gains and losses 

as well as narrower amplifications and homozygously deleted regions, all of which can be 

identified by array-based methods. 

8.1.1 Genome-wide copy number studies on microarrays 

Our results as well as previous data show that genomic alterations are recurrent in HNSCC 

and are likely to contain genes with pathogenetic relevance in the disease. Thus far, only a 

few comprehensive high-resolution genome-wide aCGH studies of HNSCC have been 

published (Table 4).  
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Table 4 Genome-wide aCGH studies in HNSCC. Smaller specific altered areas distinguished by 

the studies are presented in italics. Definitions of gain, loss, amplification, and deletion vary 

between Studies. 

Study Gains/Amplifications Losses/Deletions 

Baldwin 

et al., 

2005 

3q, 8q, 9q, 11q, 14q, 20q 

 

3q23, 5p15.2, 7p11.2, 7p12.3-p13, 

7q21.2, 7q35, 11q13.3, 11q22.2-q22.3 

3p, 4, 5q, 8p, 9p, 10q, 11, 18q, 21q 

 

2p15, 4q34.3, 8p23.2, 16q23.2 

Järvinen 

et al., 

2006 (II) 

3q, 5p, 7p, 8q, 9q, 11q, 14q, 15q, 16q, 

20  

 

5p12, 5p15.33, 8q24.12-q24.13, 

11q13.2-q13.4, 14q24.3, 20p13, 

20q13.13-q13.31, 20q13.33 

3p, 4q, 5, 6q, 8p, 9p, 10p, 11q, 13q, 18q, 

21 

 

4q13.3, 4q31.3-q32.1, 9p21.3 10p12.31-

p13, 11q22.3, 18q21.33-q22.3 

Järvinen 

et al., 

2008 (III) 

3q, 5p, 7p, 8q, 9, 14, 20  

 

6q12-q14, 9p13.3, 9p22.3-p24.3, 

10q11.21, 11p11.2-p13, 11q12.1-

q12.2, 11q13.2-q13.4, 14q24.3, 

22q11.21 

3p, 4q, 8p, 10p, 13q, 18q 

 

2q21.2, 2q31-q32, 3p14.2, 5q12, 8p11-

p12, 8p23.2, 9p21, 18q21, Xq22.2-q22.3  

Smeets   

et al., 

2005 

3q22.2-qter, 5p15.2-pter, 8p11.2-qter, 

9q22-q34.1, 20 

11q14.1-qter, 13q11-q33 

Snijders 

et al., 

2005 

3q, 8q, 11q, 20 

 

2q14.2, 3q24-q25, 4p15.2, 5p13.2, 

6q12, 7p11.2, 7q21.2, 8p12, 9p13.3, 

9p24.1, 11p11.2, 11p13, 11q13.3, 

11q13.5, 11q22, 12q15, 18q11.2, 

20p12.2 

3p, 4, 5q, 8p, 9p, 18, 21 

Sparano 

et al., 

2006 

3q, 5p, 8q, 9q, 20q 

 

3q23, 3q25.2, 3q26.31, 3q26.33, 

3q27.1-q27.3, 5p13.1-p13.2, 5p15.33, 

8q11.21, 8q13.3-q21.11, 8q21.3-q22.1, 

8q24.11-q24.12, 8q24.21, 8q24.23-

q24.3, 9q34.3-qter, 20q13.33 

3p, 8p, 13q, 18q 

 

3p12.3-p13, 3p21.32, 3p22.1-p22.3, 3p23-

p24.1, 3p24.2-p24.3, 3p25.3, 3p26.3, 

3q22.1-q22.2, 8p12, 8p23.2, 13q12.3, 

13q13.3, 13q13.3-q14.11, 13q21.1, 

18q12.1 

 

Common alterations, such as copy number increase of 3q, 8q, 9q, 11q, 14q, and 20q as 

well as copy number decrease of 3p, 4q, 8p, 9p, 13q, and 18q, have been reported. The 

smaller, specific regions show more variability, even though alterations such as 5p15, 

8p23.2, 11q13, and 11q22 are reported by multiple studies. Additionally, Smeets and 

coworkers (2005) performed analyses of HNSCC with and without HPV16 involvement. 
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HPV-negative tumors presented losses at 3p11.2-p26.3, 5q11.2-q35.2, and 9p21.1-p24 and 

gains/amplifications at 11q12.1-q13.4 which were missing in HPV-positive tumors. 

Furthermore, HPV-negative tumors presented loss at 18q12.1-q23 and HPV-positive 

tumors presented gain at the same region. Regions altered at high frequency (>33%) in 

both groups are reported in Table 4. Although, we detected these HPV-associated 

alterations in our material, HPV status was unavailable, and thus, the relationship between 

alterations and HPV could not be assessed. 

An additional layer of complexity of interpretation of CGH data is added by CNVs, which 

could account for a large amount of normal phenotypic variation. CNVs can directly cause 

or predispose to disease, or they might also function as susceptibility alleles. Some large 

variants might seem benign, but in combination with other genetic and environmental 

factors, they might influence on a disease phenotype (reviewed by Feuk et al., 2006; 

Freeman et al., 2006). Here, we have not systematically taken into account CNV regions 

when analyzing CGH data. CNVs can affect gene dosage at the transcriptional level, either 

directly or indirectly through position effects (reviewed by Feuk et al., 2006; Freeman et 

al., 2006). 

8.2 Integration of copy number and gene expression data in HNSCC 

Copy number alterations represent an important mechanism for cancer cells to promote or 

suppress the expression of target genes. Since HNSCC contains genome-wide expression 

(Section 6) as well genomic alterations with a poorly known connection, it provides a 

good model to study the impact of copy number on gene expression. To illustrate the 

impact, we performed gene expression profiling on oligonucleotide microarrays (~200 kb 

resolution) of all 38 copy number profiled LSCC and OTSCC samples (II, III). Because 

we had different array platforms for genome-wide copy number (cDNA) and gene 

expression (oligonucleotide) analysis, we applied and developed bioinformatic procedures 

to analyze and integrate the data (Hyman et al., 2002; Autio et al., 2003; Hautaniemi et 

al., 2004). We produced a novel interpolation option in the CGH-Plotter, which is a 

MATLAB toolbox for identifying and visualizing altered regions in aCGH data (Autio et 

al., 2003). In the interpolation process, if no matching cDNA clone for a gene or transcript 

present on the oligonucleotide microarray was located, we used location-based linear 

interpolation algorithm to interpolate CGH values from the cDNA data with a 750 kb 
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window. Here, we assumed that aCGH values from a certain genomic region are linearly 

dependent on the adjacent values. The interpolation option enables integration of data 

from different microarray platforms lacking an extensive probe sequence overlap. We 

were able to map over 11 000 genes between copy number and gene expression 

microarrays. We also improved the visualization and data smoothing options of the CGH-

Plotter. Furthermore, the direct integration of processed aCGH data to the Expression 

annotation of Copy Number (ECN) tool was made possible. The MATLAB-based ECN 

tool allows visualization of expression data with processed aCGH data. The developed 

tools are freely available at www.cs.tut.fi/~bsmg/download.html. 

8.2.1 Impact of copy number on gene expression 

Using integrated microarray data, we first investigated the global impact of copy number 

on gene expression in HNSCC. Especially amplifications affected gene expression. Highly 

amplified regions (>2.5) had on average 5.2-fold more overexpressed genes in the cell 

lines and 2.5-fold in the primary tumors as compared with normal copy number regions 

(0.7-1.3). This is in line with studies of different cancers reporting that amplified regions 

can have many overexpressed genes (e.g., Hyman et al., 2002; Wolf et al., 2004; 

Heidenblad et al., 2005). The association between decreased copy number and 

underexpression was less clear. It was, however, detectable in the cell lines with, on 

average, 3.0-fold more genes being underexpressed in the regions with decreased copy 

number (<0.4) (Figure 4). The actual percentages varied between samples. The weak 

association in primary tumors compared with cell lines could be due to other cell 

populations, such as normal cells, present in tissue samples. To study a homogenous cell 

population, one option is to apply laser capture microdissection, which allows the 

selection of a certain cell population from the primary tumor (Luo et al., 1999; reviewed 

by Espina et al., 2006). Overall, our results illustrated that in more than half of the cases 

copy number change was not associated with the respective change in gene expression, 

emphasizing the presence of multiple important gene expression regulation mechanisms in 

the cell. 
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Figure 4 Global influence of copy number on gene expression in HNSCC samples. Copy 

number class from deletion to amplification is plotted from left to right on the X-axis. Percentage 

of over- and underexpressed genes in each copy number class (Y-axis) is illustrated separately for 

the sample groups. Threshold values for over- and underexpression for OTSCC cell lines were 

1.51 and 0.69 (global upper and lower 7th percentile of median centered expression ratios 

including interpolated values), for LSCC cell lines 1.50 and 0.69, and for LSCC tumors 1.95 and 

0.56. 

In our study, the size and structure of the amplicons varied; some included multiple 

overexpressed genes, whereas others had only a few candidates. In LSCC, altered regions 

with overexpressed genes included 7p11-p15 (EGFR), 8p11-p12 (BRF2, ASH2L, 

WHSC1L1, sFRP1, GCP16, FNTA), 9p24 (CDC37L1, RCL1, JAK2, RLN1, AK3, 

SLC1A1), 11q13 (FADD, PPFIA1), 11q22 (BIRC2, BIRC3), 12q15 (HMGA2, MDM1, 

MDM2, DYRK2), and 17q23 (PPM1D, APPBP2) (examples of target genes shown in 

parentheses). Alterations at 11q13 and 9p24 were present also in the OTSCC cell lines, 

implying importance of these regions in HNSCC pathogenesis. In OTSCC, the identified 

alterations and candidate target genes included 6q12-q14 (CD109, MTO1), 11p11.2-p13 

(TRAF6, COMMD9, TRIM44, FJX1, PDHX, APIP), 14q24.3 (ABCD4, HBLD1, LTBP2, 

ZNF410, COQ6, JDP2, EIF2B2, ACYP), and 22q11.21 (SNAP29). An association 

between chromosomal alterations at 11q13 (Bockmuhl et al., 2000; Wreesmann et al., 

2004) or 14q24 (Bockmuhl et al., 2000) and poor prognosis of HNSCC patients has been 

reported, but specific target genes have remained obscure. 
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In OTSCC, we observed that 9-64% of genes located at the highly amplified regions (ratio 

>2.5) containing overexpressed genes (6q12-q14, 9p13.3, 9p22.3-p24.3, 10q11.21, 

11p11.2-p13, 11q12.1-q12.2, 11q13.2-q13.4, 14q24.3, 22q11.21) had an associated 

increase in gene expression. Therefore, identification of the driver gene, even in highly 

amplified region, can be challenging. Instead of a single driver gene, a number of genes 

could be providing a growth advantage for cancer cells, as speculated in connection with 

the 11q13 amplicon in oral SCC (Huang et al., 2006). In HNSCC aCGH studies (Table 4), 

the expression of only a few genes in the altered region was determined by RT-PCR in 

selected samples (Baldwin et al., 2005; Snijders et al., 2005). RT-PCR analysis for 

selected genes can be an effective approach if a large and well-defined sample material in 

copy number analysis narrows the altered region clearly, and thus allowing identification 

of a manageable number of candidate genes. Integration of high-resolution genome-wide 

DNA- and RNA-level data can help to prioritize candidate genes also in a smaller 

material. However, especially in very complex and large gains, many bystander genes 

could have an altered expression, and distinguishing relevant genes can be difficult despite 

the methods used. For example, when previously reported chromosomal CGH data were 

correlated with Affymetrix data in HNSCC, Masayesva and coworkers (2004) described 

concordance between direction of copy number alteration and average expression values 

on chromosomal arms 1q, 2p, 3q, 5p, 7p, 8q, 9q, 20p, and 20q. Chromosomal aberrations 

resulted in alterations of both significantly and nonsignificantly expressed genes over a 

large chromosomal region. Therefore, alterations in expression might occur in bystander 

genes that are located close to target genetic or chromosomal alteration. Alternatively, in a 

larger region of chromosomal loss, a selective growth advantage could be achieved by 

summing expression alterations in multiple genes that individually have little or no effect 

(Masayesva et al., 2004).  

8.2.2 Statistical analysis of target genes in altered regions 

We further performed a statistical analysis (Hyman et al., 2002; Hautaniemi et al., 2004) 

to systematically identify genes with an association between copy number and gene 

expression. Across the genome, the overexpression of 739 genes could be attributed to 

copy number increase in 10 LSCC cell lines, with 325 genes showing the same association 

in 10 LSCC primary tumors (II). The majority of the genes, 62% in cell lines and 77% in 

tumors, were identified only in one sample. The cross-section of identified target gene 
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groups consisted of 40 genes including FADD and PPFIA1 at the 11q13 amplicon. 11q13 

amplicon has been studied in HNSCC extensively with CCND1 and CTTN as potential 

target genes (reviewed by Schuuring, 1995). Using paraffin-embedded tissue sections 

from eight samples in immunohistochemistry, we further detected protein-level changes of 

FADD and CCND1 in the same primary tumor sample. Thus, we were able to demonstrate 

not only the association between DNA and RNA levels but also with protein level. The 

fact that the 11q13 amplicon spanned over several Mbs with overexpressed genes suggests 

that multiple target genes in the region could have a role in cancer pathogenesis. To clarify 

the function of each gene, they need to be tested by protein and functional level analyses. 

After the publication of our results, a study verified FADD as one of the potential driver 

genes of the 11q13 amplicon in laryngeal and pharyngeal SCCs (Gibcus et al., 2007). The 

authors also hypothesized that cells expressing high levels of the phosphorylated isoform 

of FADD (Ser194) could be more sensitive to Taxol-induced cell cycle arrest. This 

suggests that patients with FADD overexpression might benefit from therapy.  

The number of common genes with a statistically significant association between copy 

number and expression in LSCC tumors and cell lines was small (40). However, GO 

analysis of all identified genes revealed that many top GO terms were shared by tumors 

and cell lines, such as ones involved in ion binding and transcription factor activities as 

well as signal transduction and proteolysis and peptidolysis. Therefore, the important 

processes involved in LSCC might be identified, although different pathways and genes 

could be activated. We also applied statistical analysis to identify genes with an 

association between copy number decrease and underexpression in LSCC. We identified 

502 genes in the cell lines, including also a known TSG CDKN2A, and 223 genes in the 

primary tumors, with a cross-section of groups containing 22 genes.  

Since LSCC and OTSCC cell lines presented for the most part a common spectrum of 

genomic alterations with similar effects on gene expression, we also performed statistical 

analysis (Hyman et al., 2002; Hautaniemi et al., 2004) for the LSCC and OTSCC cell 

lines together (III). This analysis yielded 1192 genes, 32 of which had a ratio higher than 

two between expression levels in groups with and without copy number increase in at least 

15% of the cell lines (Table 5). These 32 genes included such candidates as TRIO (5p15), 

FANCG and STOML2 (9p13), CD44 (11p13), FADD (11q13), and BIRC3 (11q22) (Table 

5, Figure 5), which have earlier been implicated in HNSCC biology.  
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Table 5 Statistical analysis of HNSCC cell lines yielded 1192 genes with an association between 

copy number increase and gene expression. Here, 32 genes were selected based on the expression 

levels and detection frequency. Genes presented in bold are illustrated in Figure 5.  

Ensembl ID 

(ENSG) 

Gene 

symbol 
Gene name Chr 

00000135919 SERPINE2 serpin peptidase inhibitor, clade E, member 2 2q36.1 

00000163710 PCOLCE2 procollagen C-endopeptidase enhancer 2 3q23 

00000169908 TM4SF1 transmembrane 4 L six family member 1 3q25.1 

00000114248 LRRC31 leucine rich repeat containing 31 3q26.2 

00000175166 PSMD2 proteasome 26S subunit, non-ATPase, 2 3q27.1 

00000038382 TRIO triple functional domain (PTPRF interacting) 5p15.2 

00000166508 MCM7 minichromosome maintenance complex component 7 7q22.1 

00000104368 PLAT plasminogen activator, tissue 8p11.21 

00000067167 TRAM1 translocation associated membrane protein 1 8q13.3 

00000164695 CHMP4C chromatin modifying protein 4C 8q21.13 

00000086065 CHMP5 chromatin modifying protein 5 9p21.1 

00000165281 FANCG Fanconi anemia, complementation group G 9p13.3 

00000165283 STOML2 stomatin (EPB72)-like 2 9p13.3 

00000099139 PCSK5 proprotein convertase subtilisin/kexin type 5 9q21.2 

00000135069 PSAT1 phosphoserine aminotransferase 1 9q21.31 

00000169583 CLIC3 chloride intracellular channel 3 9q34.3 

00000026508 CD44 CD44 molecule 11p13 

00000168040 FADD Fas (TNFRSF6)-associated via death domain 11q13.3 

00000172893 DHCR7 7-dehydrocholesterol reductase 11q13.4 

00000172890 NADSYN1 NAD synthetase 1 11q13.4 

00000175581 MRPL48 mitochondrial ribosomal protein L48 11q13.4 

00000175575 PAAF1 proteasomal ATPase-associated factor 1 11q13.4 

00000023445 BIRC3 baculoviral IAP repeat-containing 3 11q22.2 

00000111700 SLCO1B3 solute carrier organic anion transporter family, member 1B3 12p12.2 

00000178695 KCTD12 potassium channel tetramerisation domain containing 12 13q22.3 

00000072110 ACTN1 actinin, alpha 1 14q24.1 

00000182351 CRIP1  cysteine-rich protein 1 (intestinal) 14q32.33 

00000184254 ALDH1A3 aldehyde dehydrogenase 1 family, member A3 15q26.3 

00000128482 ZNF179 zinc finger protein 179 17p11.2 

00000125846 ZNF133 zinc finger protein 133 20p11.23 

00000178726 THBD thrombomodulin 20p11.21 

00000101443 WFDC2 WAP four-disulfide core domain 2 20q13.12 
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At 9p13, DNA repair gene FANCG has 

been described as amplified in HNSCC 

(Sparano et al., 2006), and the 

overexpression of STOML2 has been 

identified in LSCC with a correlation 

with clinical stage (Cao et al., 2007). 

11p13 amplification, including CD44 

and overexpressed FJX1, was detected in 

oral SCC by genome-wide CGH analysis 

on BAC arrays (Snijders et al., 2005). In 

aCGH study by Baldwin and coworkers 

(2005), RT-PCR using a subset of 

samples was performed for TRIO 

(5p15.2) and CDK6 (7q21.2), confirming 

the overexpression of these genes in 

association with segmental amplification 

in oral cancer. In concordance, we 

detected a frequent increase in copy 

number at 5p15, including overexpressed 

TRIO. Baldwin and coworkers (2005) 

also reported amplification of 11q22 

region (MMP1, 3, 7, 8, 10, 12, 13, 20, 

and 27; BIRC2 and 3) with no integration 

with expression data. Thus, no target 

genes could be pinpointed. Since our 

data allowed a direct integration of 

genome-wide aCGH and expression data, 

we could distinguish the potential target 

genes, including BIRC3 at the 11q22 

amplicon, which are deregulated through 

copy number alteration and are not just 

bystanders in the region.  

A

C

B

 

Figure 5 Altered regions with overexpressed 

genes (presented in Table 5) visualized by the 

ECN-tool. A) 9p13 region in OTSCC cell line 

SCC-9, B) 11p13 region in OTSCC cell line 

UT-SCC-76A, and C) 11q13 region in LSCC 

cell line UT-SCC-8.
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Our results also demonstrated frequent, statistically significant overexpression of FADD in 

association with 11q13 amplification in OTSCC cell lines. This indicates that OTSCC and 

LSCC patients possessing the 11q13 amplicon with overexpressed FADD might benefit 

from similar treatment options. Of the identified 1192 genes, 316 mapped to biological 

pathways. Most genes did not map to known pathways, implicating that their exact 

function is still unclear.  

Overall, the results showed that we were able to detect genes with previously reported 

relevance in HNSCC. This implies that also the genes identified in this study with no 

previous association with HNSCC could be important in disease pathogenesis. Taken 

together, the integrated microarray data revealed known as well as novel target genes in 

altered regions. The data set created in this work will provide a basis for protein and 

functional studies that could eventually lead to clinically relevant findings. 

8.3 Targeted therapy in cancer 

During the last few years, targeted therapy options, such as monoclonal antibodies and 

small molecule drugs, have been introduced for cancer. Examples of these therapies 

include Gleevec (BCR-ABL), Tarceva (EGFR), Erbitux (EGFR), Herceptin (ERBB2), 

Rituxan (CD20), and Avastin (VEFG-A). Furthermore, the drug Tykerb (lapatinib), which 

is a dual tyrosine kinase inhibitor (EGFR, ERBB2), has recently been approved as a breast 

cancer treatment. As a gene dosage effect is a common mechanism for gene regulation, 

combined copy number and gene expression data can give clues about potential drug 

targets. Currently, a number of drugs on the market or being developed target proteins 

encoded by genes that are often amplified in solid tumors, such as ERBB2. In HNSCC, 

EGFR small molecule tyrosine kinase inhibitors as well as monoclonal antibodies, either 

alone or in combination with other treatments, have been applied as targeted therapy 

option (reviewed by Forastiere and Burtness, 2007). Thus, in addition to targeted therapy 

alone, the synergistic combination of targeted therapy and conventional cancer treatments 

could be applied.  

Unfortunately, in many cases, patient can develop resistance to the treatment, necessitating 

a second-line therapy. Thus, therapy affecting cells that provide support to the cancer cells 

might be beneficial since these genetically normal cells are not as prone to developing 

drug resistance as cancer cells (reviewed by Sawyers, 2004). Recently, a specific cell 
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population, cancer stem cells, has been proposed as a true target for genetic alterations and 

clonal selection, thus presenting also an attractive option for targeted therapy (reviewed by 

Reya et al., 2001; Tan et al., 2006).  

Completion of genome sequencing project (International Human Genome Sequencing 

Consortium, 2004) has already led to the development of novel genome-wide 

technologies. Therefore, in the future, new examples of targeted therapies for specific 

genetic alterations are likely to appear for HNSCC as well as for other cancer types. 

Patient stratification through accurate molecular diagnostics will be crucial in the 

development and success of new targeted drugs (reviewed by Sawyers, 2004). 
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Conclusions and Future prospects 

A new generation of microarrays providing a more detailed, higher-resolution view of the 

genome is launched almost every year. The constant developments have improved 

microarray technology. The reasons for the initial problems with reproducibility and 

comparability (reviewed by Marshall, 2004) within and between microarray platforms are 

understood better today than at the beginning of the decade, as demonstrated by the 

emerging clinical applications. In Study I, we showed a reasonably good concordance 

between the results from different gene expression microarray platforms despite 

challenges in comparing the data. Our results illustrated points that can create variability 

between platforms, such as annotation differences, clone errors, and differences in data 

preprocessing and analysis methods. Comparability of different gene expression data sets 

has become increasingly important with the growing amount of data available in public 

databases. Tools to carry out meta-analysis with gene expression microarray data are now 

available (www.genelogic.com; www.oncomine.org, Rhodes et al., 2007). As standards to 

describe other array-based data develop (e.g., Scheinin et al., 2008), the collected high-

throughput data will have a more central role in biological discoveries.  

The research community has invested heavily in molecular profiling of the cancer 

genome, e.g. The Cancer Genome Atlas -project (TCGA; cancergenome.nih.gov). The 

TCGA project aims to improve our understanding of the molecular basis of cancer by 

genome analysis technologies, such as array-based gene expression, copy number, SNP, 

and miRNA profiling. Additionally, the project is focused on application of large-scale 

genome sequencing technologies, which have rapidly developed during the last few years 

(Wold and Myers, 2008). In the future, high-throughput sequencing may partly replace 

some applications of microarrays. 

In Studies II and III, we integrated microarray-based copy number and gene expression 

data from 38 HNSCC cell lines and tumor samples. The integrated microarray data 

revealed the impact of copy number changes on gene expression in HNSCC, especially 

with regard to high-level amplifications. We identified a number of amplified regions, 

including 11q13 which contains overexpressed FADD. Since cancer cell lines have been 

reported to reflect the genomic and resulting transcriptional abnormalities of primary 

tumors (Neve et al., 2006), cell lines are an important model system to identify genes of 

pathogenetic relevance. Functional experiments with identified genes by RNAi will 
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provide further information of the effect of these genes on cancer phenotype. In addition, 

integration of data from other genome-wide methods, such as protein or lysate arrays, 

could reveal a more comprehensive molecular profile of HNSCC.  
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