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ABSTRACT 

 

The effects of various nitric oxide (NO) donors and cyclic GMP on intraocular pressure 

(IOP) were investigated in rabbits. Further, the mechanisms underlying these effects on 

aqueous humor dynamics were clarified by measuring aqueous humor outflow facility in 

rabbits and aqueous humor flow in healthy human volunteers. A novel tissue incubation 

method for screening potential NO donors and guanylate cyclase (GC) activators was 

evaluated using porcine iris-ciliary body. The possible clinical relevance of NO in aqueous 

humor dynamics in glaucoma patients was studied.     

 

Topically or intravitreally administered compounds affecting the NO-cyclic GMP pathway 

lowered IOP in ocular normotensive rabbits. Zaprinast, a cyclic nucleotide 

phosphodiesterase (PDE 5/6) inhibitor, in combination with sodium nitroprusside (SNP), a 

NO-releasing reference compound, prolonged the response, suggesting the central role of 

cyclic GMP in IOP reduction. All NO donors and GC-activating compounds elevated the 

nitrite + nitrate (NOx) concentration in aqueous humor, but the nitrite level was increased 

only after SNP administration. Cyclic GMP concentrations in GC activator (atriopeptin III)- 

and cyclic GMP analog (8-Br-cGMP)-treated eyes were higher than in the control eyes. 

 

Since NO donors and a cyclic GMP (8-Br-cGMP) analog lowered IOP, it was of importance 

to clarify whether they influence aqueous humor outflow facility or aqueous humor 

production. Intracamerally administered SNP, nitrosocaptopril and 8-Br-cGMP enhanced 

aqueous humor outflow facility in anesthetized rabbits. ACE inhibition was not the 

mechanism of nitrosocaptopril since plain captopril had no effect on outflow facility. 

Aqueous humor flow was not significantly changed after a single oral dose of the NO 

donor isosorbide-5-mononitrate, as compared to placebo in healthy human subjects. Since 

IOP after placebo and isosorbide-5-mononitrate intake were at the same level, the rate of 

aqueous humor flow can be regarded as an indicator of the formation of aqueous humor. 

Since isosorbide-5-mononitrate, as a model of systemic NO donors, did not influence the 

rate of aqueous humor flow, enhanced aqueous humor outflow facility mainly explains the 

IOP-lowering effect of NO-releasing compounds. 
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In a tissue incubation model, various NO donors and GC activators increased cyclic GMP 

production in the porcine iris-ciliary body. ODQ, an inhibitor of GC, totally abolished the 

production of cyclic GMP after the administration of NO donors SNP and nitrosocaptopril. 

Captopril had no effect on cyclic GMP production, while the GC activators atriopeptin III 

and YC-1 increased the production dose-dependently.  

 

Glaucoma patients had slightly higher concentrations of NOx, nitrite and cyclic GMP in 

aqueous humor than the matched control patients, but the difference was not statistically 

significant. However, glaucoma medication may have masked real changes in the 

variables, which are possibly unbalanced in untreated patients.  

 

In conclusion, various compounds affecting the NO-cyclic GMP pathway lowered IOP and 

enhanced aqueous humor outflow facility in ocular normotensive rabbits. A single oral 

dose of the NO donor isosorbide-5-mononitrate had no effect on aqueous humor flow and 

IOP in healthy volunteers, suggesting that the NO-cyclic GMP pathway has no significant 

effect on aqueous humor production. A contribution of cyclic GMP in the physiological 

regulation of IOP was supported by the findings in the porcine iris-ciliary body incubation 

method. A non-toxic NO-donating or GC-activating compound would represent a potential 

new mode of antiglaucomatous treatment.  
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1 INTRODUCTION 

 

Glaucoma is among the leading causes of irreversible blindness in the world. It is a chronic 

progressive optic neuropathy which if not treated leads to visual impairment and even 

blindness. The pathomechanism of the disease is taken to be multifactorial. Elevated 

intraocular pressure (IOP) plays a significant role as a risk factor but is not a necessary 

component of glaucoma. Lowering of IOP is thought to be beneficial in slowing down 

glaucomatous damage to the optic nerve and visual field (Leske et al. 2003). Accordingly, 

all current pharmacological treatments of glaucoma are designed to reduce IOP and 

maintain it at levels presumed to prevent deterioration of the visual field and alterations in 

the optic nerve. Glaucoma drugs lower IOP by reducing the production of aqueous humor 

and/or by increasing the outflow of aqueous humor through trabecular or uveoscleral 

routes. 

 

Nitroglycerin has been used for over a century in the treatment of cardiac diseases, but it 

was not until 1987 that the vasodilating endothelium-derived relaxing factor was identified 

as nitric oxide (NO) and nitroglycerin was shown to release NO (Ignarro et al. 1987, 

Palmer et al. 1987). NO is a gaseous messenger molecule which plays an important role 

in diverse physiological and pathophysiological processes in the body (for review, see 

Moncada and Higgs 1995, Moncada 1997, Ignarro et al. 1999). In the eye, NO is involved 

in a wide range of physiological events such as regulation of aqueous humor dynamics, 

neuronal visual processing and ocular hemodynamics, but it has also been related to the 

pathogenesis of eye diseases, including glaucoma, retinopathy, myopia and cataract (for 

review, see Becquet et al. 1997, Chiou 2001). There is good evidence to warrant the 

hypothesis that NO-releasing compounds and cyclic GMP, the second messenger of NO, 

lower IOP in animals. However, there are at present no antiglaucomatous drugs on the 

market whose effects are based on the nitric oxide-cyclic GMP pathway. 

 

The present study was designed to clarify the roles of NO and cyclic GMP in the regulation 

of IOP. The IOP-lowering effect of NO donors and cyclic GMP analog found at the 

beginning of the project raised further questions regarding their mechanisms in vivo and in 

vitro and whether there are alterations in NO levels in glaucoma patients.   
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2 REVIEW OF THE LITERATURE 

 

2.1 MODULATION OF INTRAOCULAR PRESSURE 

 

2.1.1 Aqueous humor dynamics and intraocular pressure 

IOP is maintained by a homeostatic balance of production and outflow of aqueous humor. 

When the eye is in a steady state, i.e. IOP remains stable, aqueous humor formation and 

drainage are equal.  

 

2.1.1.1 Formation of aqueous humor 

Aqueous humor is produced by the ciliary processes at approximately 2 - 3 µl/min and the 

entire volume of aqueous humor is replaced every 90-100 minutes (turnover) (see 

Brubaker 1994; for review, see Freddo 2001). There are three essential steps in the 

formation of aqueous humor. First, the blood circulation must be sufficient in the ciliary 

processes. Second, a portion of the plasma perfusing processes must be filtered into 

tissue spaces. Third, a portion of the filtrate must pass through the double-layered 

epithelium to enter the posterior chamber (see Brubaker 1994). The production of aqueous 

humor is the result of two primary driving forces: hydrostatic (pressure in liquid due to 

outside pressure) and oncotic pressures (pressure due to high-molecular substances such 

as proteins) between the posterior chamber and the ciliary process vasculature and 

stroma. These determine the net movement of fluid, electrolytes and small molecules 

across the ciliary body. Vascular tone, IOP and ion transport in the ciliary body epithelium 

combined with the blood-aqueous barrier further regulate the production of aqueous humor 

(see Kardon and Weingeist 1994, Kaufman 1994).  

 

The ciliary processes produce aqueous humor by active secretion of solutes into the 

posterior chamber. The membrane-bound enzyme complex sodium-potassium adenosine 

triphosphatase (Na+/K+ ATPase) constitutes an energy-dependent active transport system 

which transfers Na+ into the posterior chamber, resulting in water movement from the 

stromal pool into the posterior chamber (see Caprioli 1992, Kaufman 1994). Under normal 

conditions this active transport covers 80 – 90% of total aqueous formation and it is 

essentially pressure-insensitive near the physiologic IOP and operates at a constant rate 
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(see Kaufman 1994). Active transport of Cl- and HCO-
3 (formed in a reaction sequence 

catalyzed by carbonic anhydrase) may also occur to a lesser extent (see Caprioli 1992). In 

addition to active secretion, aqueous humor is produced by pressure-sensitive 

ultrafiltration of fluid from plasma into the posterior chamber. This ultrafiltration does not, 

however, contribute significantly to the formation of aqueous humor (see Caprioli 1992, 

Kaufman 1994). Aqueous humor, besides generating IOP, provides nutrition for the 

avascular ocular tissues which it bathes. It contains electrolytes, glucose, lactate, oxygen, 

ascorbate, amino acids, proteins, lipids and other substances of minor significance (see 

Caprioli 1992). 

 

2.1.1.2 Outflow of aqueous humor 

Aqueous humor passes from the posterior chamber through the pupil into the anterior 

chamber driven by a convective flow resulting from the temperature difference between 

the iris and the cornea (for review, see Freddo 2001) (Figure 1). Five routes have been 

suggested through which aqueous humor may exit the eye: 1) the trabecular pathway, 2) 

the uveoscleral pathway, 3) the corneal endothelial pathway, 4) the iris vessels, 5) the 

anterior vitreous. The trabecular and uveoscleral pathways are the two measurable ways 

by which aqueous humor escapes from the eye. The trabecular (or conventional) pathway 

is the principal route, draining over 90% of the aqueous humor in the normal eye (see 

Kardon and Weingeist 1994). The rate of uveoscleral drainage differs between species; in 

man this route accounts for about 10% of total outflow (Weinreb 2000). Direct 

measurements in human eyes have suggested that the uveoscleral pathway drains less 

than 15% of aqueous humor. However, uveoscleral outflow may alter in different age 

groups (for review, see Nilsson 1997). In the intact eye, the balance between the 

contractility of the ciliary muscle and the trabecular meshwork determines the total 

aqueous humor outflow. Contraction of the ciliary muscle alters the geometry of the 

trabecular meshwork, which in turn increases the trabecular outflow and finally reduces 

IOP. On the other hand, relaxation of the ciliary muscle leads to increased uveoscleral 

outflow (for review, see Nilsson 1997; see Wiederholt 2000). 
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Figure 1. Aqueous humor pathway (Netter FH: Atlas of Human Anatomy, 1989; p. 82, 

Basle, Ciba-Geigy Limited). 
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Flow through the trabecular system is dependent on pressure, and the rate of flow is 

determined by the hydrostatic pressure and the resistance to flow (see Hart 1992). The 

trabecular pathway consists of the trabecular meshwork, pericanalicular connective tissue, 

the canal of Schlemm and collector channels leading into the scleral vessels and venous 

circulation. The trabecular meshwork is a multilayered net-like structure located in the 

periphery of the anterior chamber angle. Wastes in the aqueous humor are filtered by this 

meshwork as they pass through it. The endothelium of the meshwork possesses 

phagocytic capability which is important in maintaining the capacity of the entire filtration 

area, especially in conditions involving an abnormal accumulation of materials which may 

obstruct the outflow of aqueous humor (e.g. pigmentary dispersion syndrome, 

pseudoexfoliation syndrome) (see Kardon and Weingeist 1994). The trabecular meshwork 

comprises the principal resistance to aqueous outflow. Resistance to flow rises gradually 

through progressively smaller pores in the trabecular meshwork. It is thought that the 

juxtacanalicular tissue, the connective tissue separating corneoscleral portions of the 

meshwork from Schlemm’s canal, and the inner wall of Schlemm’s canal are the sites of 

highest resistance, thus having a role in the pathogenesis of the ocular hypertension 

characteristic of primary open-angle glaucoma (Ethier 2002, see Hart 1992; for review, see 

Bill 1993). Once aqueous humor has passed through the trabecular meshwork, the 

pericanalicular zone and Schlemm’s canal, it has free access to the collector channels and 

venous plexuses (the deep intrascleral, mid-intrascleral and episcleral plexuses) (see 

Kardon and Weingeist 1994). 

 

Uveoscleral outflow of aqueous humor is normally independent of IOP and the rate of 

flow appears to be fairly constant. If the IOP is stabilized at levels above the normal, the 

outflow through the uveoscleral routes tends to increase, but much less than that through 

Schlemm’s canal. If the IOP is reduced from the normal level to that of the episcleral 

venous pressure, the flow through the uveoscleral pathway is very little affected, while 

drainage via the trabecular pathway ceases (Bill 1967). Aqueous humor slowly seeps 

through the base of the iris and extracellular spaces in the ciliary muscle into the 

suprachoroidal space and anterior choroid, where it leaks through the scleral wall into the 

surrounding periocular orbital tissues (Weinreb 2000, see Hart 1992, Brubaker 1994). The 

driving force for the uveoscleral outflow is the difference in pressure between the anterior 

chamber and the suprachoroidal space (for review, see Nilsson 1997). The uveoscleral 

pathway is amenable to direct pharmacological influence. Contraction of the ciliary muscle 
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fibers, as after the administration of pilocarpine, leads to compression of the extracellular 

spaces among the muscle fibers, and the uveoscleral outflow decreases. On the other 

hand, if there is relaxation of the muscle fibers, as after atropine administration, the spaces 

are expanded and the uveoscleral outflow is increased (Weinreb 2000; for review, see 

Nilsson 1997).  

 

2.1.2 Autonomic nerve system and intraocular pressure 

The ocular structures which regulate IOP have cholinergic as well as adrenergic receptors. 

The ciliary body contains nerve terminals throughout its epithelium, muscle and 

vasculature. The ciliary epithelium has α2- and β2-adrenergic receptors. Stimulation of the 

α-receptors or inhibition of the β-adrenergic receptors leads to reduced aqueous humor 

formation (Prünte and Markstein 2000). The ciliary muscle has a high density of 

cholinergic nerve terminals, primarily deriving from the ciliary ganglion (Ruskell and Griffith 

1979). Stimulation of these muscarinic receptors (M3-subtype) results in contraction of the 

ciliary muscle and further alteration in the trabecular meshwork configuration, leading to 

reduced resistance to aqueous humor outflow. The trabecular meshwork contains both 

adrenergic and cholinergic nerve endings, about a third of them being adrenergic (Nomura 

and Smelser 1974). Adrenergic agonists such as adrenaline increase outflow facility 

through direct action on the trabecular meshwork and via the uveoscleral pathway. In the 

human trabecular meshwork, β-adrenergic receptors are mainly of the β2-subtype. 

However, it is an open question whether the effects of adrenaline on outflow are mediated 

via α- or β-adrenergic receptors (Wiederholt 2000). It is possible that cholinergic 

stimulation acts directly on the endothelium of the trabecular meshwork or on the canal of 

Schlemm and this effect might consist in endothelium-dependent nitric oxide-mediated 

smooth muscle relaxation (for review, see Vapaatalo 1995). Nonadrenergic-noncholinergic 

(NANC) nerves are responsible for the relaxation of smooth-muscle cells and thus 

vasodilation in ocular circulation (Haefliger and Dettmann 1998). 

 

2.1.3 Blood pressure and intraocular pressure 

There is evidence of a link between blood pressure level and IOP. Several studies suggest 

an increased risk of open-angle glaucoma in persons with systemic hypertension (Klein 

and Klein 1981, Leske and Podgor 1983, Wilson et al. 1987; for review, see Hayreh 1999). 

On the other hand, patients with normal tension glaucoma evince a high incidence of low 
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systemic blood pressure (for review, see Hayreh 1999). It has been found that subjects 

with a systolic blood pressure of 160 mmHg or over are 2.2 times more likely to have IOP 

over 20 mmHg. Changes in IOP are positively correlated with changes in systolic blood 

pressure (McLeod et al. 1990). However, low blood pressure levels related to an 

individual’s circadian rhythm can occur simultaneous with high IOPs at night, reducing 

blood flow to the optic nerve head below critical levels and thus resulting in optic nerve 

damage (Wax et al. 2002). Even though glaucoma is related to altered blood pressure, it 

has been found that a sustained decrease in systemic blood pressure of approximately 15 

mmHg after a bolus intravenous injection of either hydralazine or prizidilol does not result 

in ocular hypotension in rabbits (Woodward et al. 1989). 

 

2.2 GLAUCOMA 

 

2.2.1 Definition and pathogenesis 

Glaucoma is a multifactorial disease involving progressive optic neuropathy and altered 

intraocular hemodynamics. The term glaucoma thus refers to a syndrome of many causes 

rather than to a single disease. There is variation in the way glaucoma is defined in current 

clinical research (Bathija et al. 1998). The essential pathological process in the condition is 

progressive loss of axons of ganglion cells, leading to a decreased amount of neural tissue 

in the optic nerve head. The configuration of the nerve head changes, resulting in 

enlargement of the disc cup, loss of disc rim, increased pallor, changes in vessels, splinter 

hemorrhage, peripapillary atrophy and retinal nerve fiber layer defects (for review, see 

Infeld and O’Shea 1998).  

 

Mechanical and vascular theories for the pathogenesis of glaucomatous optic neuropathy 

have been presented. According to the mechanical theory, increased IOP damages the 

lamina cribrosa and the neural axons of retinal ganglion cells. The vascular theory 

assumes that glaucomatous optic neuropathy is a consequence of insufficient blood flow 

due to either increased IOP or other contributing factors which reduce ocular blood flow 

(for review, see Flammer et al. 2002). Thus glaucoma can be divided into IOP-dependent 

and IOP-independent types (Schulzer et al. 1990). The predisposition to glaucomatous 

optic neuropathology varies individually. In the IOP-dependent type, an IOP exceeding the 

tolerance of the healthy eye (usually over 21 mmHg) causes optic disc disorders. First, the 
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drainage of aqueous humor from the eye becomes impaired, leading to raised IOP. This, 

together with other less well identified pathogenic factors, damages the optic nerve, 

resulting in loss of visual field. Aqueous humor drainage may be obstructed due to 

developmental or degenerative abnormalities in the trabecular outflow pathways or to 

outflow abnormalities secondary to some other ocular or systemic disease (see Phelps 

1994).  

 

Patients with ocular hypertension have abnormally high IOP, usually higher than 21 

mmHg, but normal optic discs and visual fields. Some of these patients may eventually 

develop optic nerve damage over the years, but most will only have increased IOP.  

 

Normal-tension glaucoma (previously low-tension glaucoma) is regarded as a clinical 

entity, defined as a chronic progressive optic neuropathy resulting in typical optic nerve 

head changes, retinal nerve fiber layer defects, and characteristic visual field defects. In 

addition, the chamber angle is open and IOP values within statistical normal limits (lower 

than 22 mmHg) (Lee et al. 1998; for review, see Hoyng and Kitazawa 2002). It has been 

shown that between one third and one half of patients with glaucoma do not have IOP 

higher than 21 mmHg (Tielsch et al. 1991). There is evidence that treatment of normal-

tension glaucoma by lowering IOP can slow the glaucomatous process. A reduction of at 

least 30% in IOP is needed to induce a favorable alteration in this disease (for review, see 

Hoyng and Kitazawa 2002). 

 

2.2.2 Glaucoma subtypes 

Classically, glaucoma can be classified into primary or secondary types according to the 

etiology. Primary glaucomas result from developmental or degenerative abnormalities 

which are often hereditary and affect the channels of aqueous humor outflow. Reduced 

aqueous humor outflow facility in primary open-angle glaucoma might be due to change in 

trabecular endothelial cell density and functional capacity (see Migdal 1994, Phelps 1994). 

Secondary glaucomas involve a variety of ocular disorders, systemic disorders, injuries 

or toxic medications which primarily damage other ocular tissues and secondarily affect 

the outflow channels.  
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Glaucoma can also be classified according to the pathogenic mechanism involved. In 

open-angle glaucoma the chamber angle has its normal configuration and aqueous 

humor flows through the trabecular meshwork and has access to the outflow channels. In 

closed-angle glaucoma the root of the iris lies against the trabecular meshwork and 

prevents aqueous humor from entering the meshwork. This state may be partial or 

complete, intermittent or constant and reversible or permanent (see Phelps 1994). A more 

detailed classification of glaucoma is shown in Table 1.  

 

Table 1. The classification of glaucoma according to Phelps (1994). 
________________________________________________________________________ 
 

I ADULT GLAUCOMAS 
 
A. Primary open-angle glaucoma (including ocular hypertension and low-tension 

glaucoma) 
 
B. Primary closed-angle glaucoma 

1. Relative pupillary block 
2. Plateau iris 
3. Malignant glaucoma 
 

C. Secondary glaucomas 
1. Exfoliative glaucoma 
2. Pigmentary glaucoma 
3. Corticosteroid-induced glaucoma 
4. Glaucoma associated with iritis 
5. Glaucoma after trauma 
6. Lens-induced glaucoma 
7. Glaucoma in aphakic eye 
8. Glaucoma secondary to high episcleral venous pressure 
9. Glaucoma associated with intraocular tumor 
10. Neovascular glaucoma 
11. Ghost cell glaucoma 
12. Iridocorneal endothelial syndrome 
13. Posterior polymorphous corneal dystrophy 
14. Angle closure secondary to ciliary swelling 

 
 
II CHILDHOOD GLAUCOMAS 
 
A. Primary congenital or infantile glaucoma 
 
B. Secondary glaucomas in children 

1. Secondary to or associated with other ocular abnormalities 
2. Secondary to systemic diseases 

_________________________________________________________________ 
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2.2.3 Prevalence 

Glaucoma is the third most prevalent cause of blindness in the world, accounting for over 5 

million blind people or 13.5% of the total burden of world blindness (for review, see Infeld 

and O’Shea 1998, Roodhooft 2002). It is common in Western countries; the prevalence of 

primary open-angle glaucoma has been estimated in various surveys as 1.1 – 3.0% of 

Western populations (for review, see Infeld and O’Shea 1998). However, in industrial 

countries there is a high proportion of undetected cases, possibly 50% in some nations 

(Grehn 2001). The prevalence increases with age after the age of 40 years, being well 

below 1% in persons under 65 years, approaching 1% around 70 years and about 3% in 

persons older than 75 years (for review, see Leske 1983). The prevalence of primary 

open-angle glaucoma is 4 to 5 times higher in blacks than in whites, whereas primary 

angle closure glaucoma is diagnosed most often in Asians (Quigley 1996). In Finland 

about 63 000 patients obtained glaucoma medicine reimbursement in 2001 according to 

the statistics of the Social Insurance Institute. 

 

2.2.4 Risk factors 

Elevation of IOP from the individual normal level is one of the most important risk factors in 

glaucoma. IOP in the normal population ranges from 10 to 21 mmHg with a mean of about 

16 mmHg. The risk of ocular damage and visual loss rises with increasing levels of 

pressure. The risk of visual field defects in persons with IOP over 21 mmHg is 

approximately five to six times higher than in persons with lower levels (for review, see 

Leske 1983). The progression of glaucoma is closely linked to the lowering of IOP after 

treatment, the risk decreasing by about 10% with each mmHg of IOP reduction (Leske et 

al. 2003). It should be borne in mind, however, that IOP is influenced by many factors, e.g. 

age of patient, sex, race, family history, blood pressure, menstrual cycle, season of the 

year, mental stress, use of alcohol and nonalcoholic liquids and physical exercise, and IOP 

measurements are influenced by the type of tonometer used, ocular rigidity, squeezing of 

the lids, position of patient and time of day (for review, see Leske 1983; see Leopold 

1984). 

 

Age is one of the well-known risk factors in glaucoma and it plays an important role in the 

development and progression of glaucomatous optic neuropathy (Leske et al. 1996; for 

review, see Hayreh 1999). It is known that in later life there are reduced numbers of nerve 
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fibers and age-related changes in the supporting structures of the optic disc or blood 

supply. Older persons are thus more susceptible to glaucomatous injury (see Migdal 1994, 

Greve et al. 1998).  

 

Positive family history and genetic disposition are known to increase the risk of glaucoma 

(Wilson et al. 1987, Tielsch et al. 1994, Leske et al. 1996, Nemesure et al. 1996, Wolfs et 

al. 1998; for review, see Leske 1983). In a population-based familial aggregation study in 

Rotterdam, the lifetime risk of glaucoma was almost 10 times higher in first-degree 

relatives of glaucoma patients than in siblings and offspring of controls (Wolfs et al. 1998). 

Maternal history of glaucoma was reported twice as often as paternal history in the 

Barbados Eye Study (Nemesure et al. 1996). In 1996 and 1997, the first major gene loci 

associated with an increased risk of primary open-angle glaucoma were identified 

(Stoilova et al. 1996, Stone et al. 1997) and many “glaucoma genes” have since been 

mapped (Lichter 2001). 

 

Among black populations, primary open-angle glaucoma appears at an earlier age and 

with greater severity (Greve et al. 1998), and a more rapid progression of the disease has 

been observed (for review, see Leske 1983). It has been reported that blacks have larger 

optic nerve cups than whites (Beck et al. 1985), but it is not known whether these cups are 

preglaucomatous changes or whether they are simply more susceptible to damage by high 

IOP. Furthermore, the prevalence of glaucoma-related blindness in blacks is 6.8 to 8 times 

greater than in whites (Wilson et al. 1987). The highest figures for angle closure glaucoma 

come from Asia; it is most common among the Chinese, while open-angle glaucoma is 

more evenly distributed in the world (Quigley 1996). In Japan, at least one in two patients 

have normal-tension glaucoma (Araie et al. 1994). 

 

The risk of glaucoma is about 2-4-fold in patients with myopia (Mitchell et al. 1997, 

Grodum et al. 2001). The association between myopia and glaucoma is strong at lower 

IOP levels, implying that myopia is an important risk factor for normal-tension glaucoma 

(Grodum et al. 2001). Myopia is also a serious risk factor underlying progression of 

primary open-angle glaucoma. Patients with a combination of myopia and glaucoma have 

a higher progression rate and more vision-threatening visual field defects (Wilson et al. 

1987, Greve et al. 1998). 
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Vascular factors play a role in the pathogenesis of primary open-angle glaucoma, 

particularly normal-tension glaucoma, and they can be divided into systemic and local risk 

factors. Both high and low systemic blood pressures have been regarded as risk factors 

for glaucoma (Wilson et al. 1987, Kaiser et al. 1993, Tielsch et al. 1995, Leske et al. 1996, 

Bonomi et al. 2000; for review, see Hayreh 1999). It has been shown that the effect of 

blood pressure on glaucoma is modified by age, the association being stronger among 

older patients. It has been hypothesized that increased blood pressure in the early course 

of systemic hypertension might protect the ganglion cells and their axons from damage 

resulting in increased blood flow or greater hydrostatic resistance to closure of small 

vessels. Subsequently, when damage to the small vessels has occurred and resistance to 

flow increased, a positive association between hypertension and optic nerve damage can 

be detected (Tielsch et al. 1995). Low perfusion pressure (blood pressure – IOP) is 

strongly associated with an increased prevalence of primary open-angle glaucoma 

(Tielsch et al. 1995, Bonomi et al. 2000). Low systemic blood pressure may reduce local 

perfusion, particularly in the presence of IOP elevation or poor autoregulation (Graham 

and Drance 1999). Analysis of blood pressure indicates that systemic hypotension is a far 

more important risk factor for glaucomatous damage than systemic hypertension (Tielsch 

et al. 1995). Nocturnal arterial hypotension is an important risk factor for glaucoma, 

especially among hypertensive patients taking oral hypotensive medication (for review, 

see Hayreh 1999), and patients with greater blood pressure dips are more likely to evince 

progressive visual field defects (Graham and Drance 1999). The major cause of reduced 

ocular blood flow is vascular dysregulation, and blood flow may also be reduced in 

glaucoma patients in other parts of the body. Vascular dysregulation leads to low perfusion 

pressure and insufficient autoregulation, and further unstable ocular perfusion, ischemia 

and reperfusion damage (for review, see Flammer et al. 2002). Other cardiovascular 

diseases such as coronary artery disease, cardiac arrhythmias, conduction abnormalities 

and congestive heart failure are associated with glaucoma (Peräsalo et al. 1992; for 

review, see Hayreh 1999). The prevalence of peripheral vasospasm is increased in 

glaucomatous optic neuropathy, especially normal-tension glaucoma (for review, see 

Gasser and Flammer 1991, Flammer et al. 1999, Gasser 1999). Vascular diseases such 

as migraine (Wang et al. 1997) and diabetes (Wilson et al. 1987, Klein et al. 1994, Mitchell 

et al. 1997) have been suggested to be associated with glaucoma. Local vascular risk 

factors, including hemorrhages of the disc, peripapillary atrophy and choroidal sclerosis, 

lead to progression of glaucomatous disease (Araie et al. 1994, Hendrickx et al. 1994). 
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Pseudoexfoliation syndrome, i.e. the accumulation of fibrillar extracellular material in 

ocular tissues, has been found to be associated with increased IOP and glaucoma (for 

review, see Damji et al. 1998). In eyes with pseudoexfoliation IOP usually rises to a high 

level over a short time and fluctuations in IOP are sometimes marked (Skuta 1994, see 

Flammer 2001). Subjects with pseudoexfoliation have a 5- to 10-fold risk of glaucoma and 

this is independent of other known glaucoma risk factors (Ekström 1993, Ringvold et al. 

1991, Hirvelä et al. 1995, Mitchell et al. 1997, Ritch 2001). It has been proposed that 

pseudoexfoliation is genetically inherited (Allingham et al. 2001; for review, see Damji et 

al. 1998). The risk of developing glaucoma is cumulative over time and in eyes with 

pseudoexfoliation it may develop earlier, more frequently and more severely in men (Ritch 

2001). Exfoliation accelerates the progression of glaucoma (Ritch 2001, Leske et al. 

2003). A combination of pseudoexfoliation and elevated IOP increases the risk of chronic 

open-angle glaucoma 67-fold as compared with a no-exposure group (Ekström 1993). 

 

2.2.5 Pharmacotherapy in glaucoma 

The ideal antiglaucomatous drug would be a substance which lowers IOP, facilitates blood 

flow to the retina and prevents ischemic neuronal cell death. However, the lowering of IOP 

is currently the only proven approach in reducing the risk of glaucomatous damage (Leske 

et al. 2003) and thus remains the primary goal of therapy (Soltau and Zimmermann 2002).  

The level of IOP is a function of the rate of aqueous humor production (inflow) and 

resistance in the outflow channels (outflow). Aqueous humor is produced by the epithelium 

of the ciliary processes. IOP can be reduced either by inhibiting the production of aqueous 

humor or by increasing aqueous outflow via interaction with receptors within the ciliary 

body or the outflow pathways. The glaucoma medications currently used are presented in 

Table 2. 
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2.3 NITRIC OXIDE AND CYCLIC GMP 

 

Results of a study conducted over 20 years ago showed that an intact endothelium was 

required for the acetylcholine-induced relaxation of vascular smooth muscle, and the 

authors described the endothelium-derived relaxing factor (EDRF) (Furchgott and 

Zawadzki 1980). Nitric oxide was discovered in 1987 to be a relaxant responsible for 

endothelium-dependent relaxation of blood vessels following treatment with acetylcholine 

(Ignarro et al. 1987, Palmer et al. 1987). In 1988, the amino acid L-arginine was found to 

be the precursor of NO synthesis by vascular endothelial cells (Palmer et al. 1988). NO is 

a gaseous, colorless, highly reactive short-lived signaling molecule which regulates 

various physiological and pathophysiological processes in the body. It is formed in various 

cell types in the body, including vascular endothelium, macrophages, central nervous 

system, NANC nerves, cerebellum and other tissues. NO is a small lipophilic molecule 

which diffuses freely through biological membranes and rapidly reaches the intracellular 

compartments of nearby cells, leading to the regulation of various cellular processes (for 

review, see Ignarro 1990, Moilanen and Vapaatalo 1995, Ignarro 2002). 

 

2.3.1 Biosynthesis of nitric oxide 

NO is synthesized from L-arginine by three NO synthase (NOS) isoforms: endothelial 

(eNOS), neuronal (nNOS) and inducible (iNOS) NOS (Figure 2). In addition to L-arginine, 

this reaction catalyzed by NOS requires molecular oxygen, nicotinamide adenine 

dinucleotide phosphate (NADPH), and other cofactors such as tetrahydrobiopterin (BH4), 

flavin adenine dinucleotide, flavin mononucleotide and heme (iron protoporphyrin IX) to 

produce NO and citrulline (for review, see Bredt and Snyder 1994, Farrell and Blake 1996, 

Stuehr 1997,  Marletta et al.  1998, Alderton et al. 2001).  Constitutively  expressed e NOS  

and nNOS are Ca2+/calmodulin-dependent, and they were first identified in vascular 

endothelial cells (eNOS) and certain central and peripheral nonadrenergic-noncholinergic 

neurons (NANC nerves) (for review, see Änggård 1994, Marletta et al. 1998). These 

enzymes release NO for short periods in response to receptor mediated Ca2+ increase and 

they are also regulated by shear-induced stress in the vasculature. NO released by eNOS 

and nNOS acts as a transduction mechanism in several physiological responses 

subserving e.g. vasodilation. The third enzyme, iNOS, is induced after activation of 

macrophages, endothelial cells and a number of other cells by bacterial products or 
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proinflammatory cytokines, and once expressed produces large amounts of NO for long 

periods. High levels of NO have a cytotoxic role in invading micro-organisms and tumor 

cells, and might participate in other pathological processes such as tissue damage and 

pathological vasodilation. Inducible NOS is Ca2+-independent and it requires cofactors 

such as BH4. The induction of iNOS can be inhibited by e.g. glucocorticoids (Korhonen et 

al. 2002; for review, see Moncada et al. 1991, Moncada 1992, Änggård 1994, Bredt and 

Snyder 1994, Farrell and Blake 1996, Marletta et al. 1998). NO may also be formed to 

some extent in a NOS-independent pathway involving chemical reduction of inorganic 

nitrite/nitrate to NO in acidic conditions (for review, see Weitzberg and Lundberg 1998). 

 

 

 

 

Figure 2. Biosynthesis of NO. 
CaM, calmodulin; cyclic GMP, cyclic guanosine 3’,5’-monophosphate; GTP, guanosine 
triphosphate; iNOS inducible nitric oxide synthase; NADP, nicotinamine adenine 
dinucleotide; NADPH, nicotinamine adenine dinucleotide phosphate; NO, nitric oxide 
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The synthesis of NO from L-arginine can be inhibited by analogs of L-arginine, i.e. NOS 

inhibitors, which act by competing with L-arginine at the active NOS sites such as NG-

monomethyl-L-arginine (L-NMMA), NG-nitro-L-arginine (L-NNA), NG-nitro-L-arginine methyl 

esther (L-NAME) and N-iminoethyl-L-ornithine (L-NIO) (for review, see Änggård 1994, 

Alderton et al. 2001, Vallance and Leiper 2002). Highly selective iNOS inhibitors such as 

1400W compete with arginine and presumably bind to arginine-binding sites of NOS 

isoforms. Enzyme dimerization and cofactor blockers may also inhibit the synthesis of NO 

(for review, see Vallance and Leiper 2002). In experimental systems, NO may be inhibited 

by the addition of oxyhemoglobin, or the effects of NO on the guanylate cyclase (GC) can 

be blocked by methylene-blue (for review, see Änggård 1994). NO itself appears to exert 

feedback inhibition of NOS, perhaps by interacting with the enzyme’s heme prosthetic 

group (for review, see Bredt and Snyder 1994). 

 

Nitric oxide may exist as the nitroxyl anion (NO-), nitric oxide (NO•) or the nitrosonium 

cation (NO+) depending on its oxidation state. Interconversion of NO-, NO• and NO+ can 

take place in cellular conditions and consequently all three species must be considered in 

order to account fully for the biological activity of NO (for review, see Hughes 1999, Gow 

and Ischiropoulos 2001). In air, NO reacts rapidly with oxygen to form brown fumes of 

nitrogen dioxide (NO2) which is capable of inducing tissue damage. When NO2 is applied 

to aqueous medium (water, ultrafiltrate or plasma), it hydrolyzes to equimolar amounts of 

nitrite (NO2
-) and in vivo may be further oxidized by erythrocyte hemoglobin to nitrate  

(NO3
-) (for review, see Feelisch 1991, Farrell and Blake 1996). In blood the basal 

concentrations of nitrite are thus low while those of nitrate are about 100 times higher (for 

review, see Moncada and Higgs 1993). There are four main targets for NO reactions in 

cells: metals, reduced thiols, molecular oxygen and other reactive oxygen species, e.g. 

superoxide (O2
-). Superoxide ions form in a fast reaction peroxynitrite (ONOO-), a powerful 

oxidant which can modify proteins and lipids by nitration (for review, see Vallance and 

Leiper 2002).  

 

2.3.2 Functions of nitric oxide 

Endogenous NO has a significant role in many bioregulatory systems and host defence 

mechanisms, including the control of vascular tone which is important in blood flow and 

pressure, inhibition of platelet aggregation and adhesion, neurotransmission and 
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macrophage cytotoxicity (for review, see Moncada and Higgs 1993, Ignarro et al. 1999, 

Moilanen et al. 1999). NO is probably the major endogenous vasodilator (for review, see 

Bredt and Snyder 1994, Ignarro et al. 1999). It constitutes a highly diffusible first 

messenger and it is synthetized on demand. There are both direct and indirect effects of 

NO on molecular level. The former are mediated by the NO molecule itself, while the latter 

are mediated by reactive nitrogen species produced by the interaction of NO with oxygen 

(O2) or superoxide radicals (O2
.-). At the low concentrations (< 1 µM) of NO produced by 

eNOS and nNOS, the direct effects prevail while at higher concentrations (> 1 µM) of NO, 

produced by iNOS, the indirect effects predominate (for review, see Murad 1999, Davis et 

al. 2001).  

 

The direct effects of NO often involve its interaction with metal complexes (for review, see 

Davis et al. 2001). The formation of cyclic guanosine 3’,5’-monophosphate (cyclic GMP) 

accounts for many of the physiological effects of NO (for review, see Ignarro 1990, Bredt 

and Snyder 1994, Beckman and Koppenol 1996, Ignarro et al. 1999, Murad 1999). NO 

may also interact with nonheme iron-containing and zinc-containing proteins or form S-

nitrosothiols by nitrosylation (for review, see Davis et al. 2001, Hogg 2002).  

 

The indirect effects of NO include oxidation, nitrosation and nitration (for review, see Davis 

et al. 2001). Cytokine-induced NO production mediates cytotoxicity in the target cells of 

macrophages (for review, see Farrell and Blake 1996). In a reaction with O2 (auto-

oxidation) NO forms dinitrogen trioxide (N2O3), which can mediate DNA deamination and 

nitrosylation. By reacting with superoxide (O2
.-) NO produces peroxynitrite (ONOO-), which 

is a toxic nitrating agent and a powerful oxidant, modifying proteins, lipids, tyrosine and 

nucleic acids (for review, see Beckman and Koppenol 1996, Davis et al. 2001). 

 

2.3.3 Biosynthesis of cyclic GMP 

The two pathways known to generate cyclic GMP by guanylate cyclases (GCs) are 

considerably different. Particulate guanylate cyclase is activated by peptide ligands which 

bind to cell membrane receptors possessing transmembrane domains contiguous with 

intracellular GC. Four membrane receptor guanylate cyclases have been cloned and 

characterized in humans and rats. Guanylate cyclase A, also called atrial natriuretic 

peptide receptor type A, binds atrial natriuretic peptide (ANP) and brain natriuretic peptide 
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(BNP). Guanylate cyclase B, also called atrial natriuretic peptide receptor type B, is 

selectively activated by natriuretic peptide type C (CNP). A third membrane receptor GC, 

also called guanylate cyclase C, is the intestinal receptor for Escherichia coli heat-stable 

enterotoxin, which is activated by this enterotoxin and endogenous intestinal peptide 

guanylin (Schmidt et al. 1993). A fourth membrane receptor-cyclase, i.e. human retinal 

guanylate cyclase, has been cloned and expressed (Shyjan et al. 1992).  

 

Soluble GC is a heme-containing protein found in the cytosolic fraction of virtually all 

mammalian cells, with the highest concentrations in lung and brain. Several isoforms of 

soluble GC have been cloned and characterized (for review, see Hobbs 1997). Soluble GC 

is regulated by NO, carbon monoxide (CO) and a number of other endogenously formed 

molecules, but NO is the most potent and effective activator (for review, see Schmidt et al. 

1993). The binding of NO to the heme group of soluble GC, a heterodimeric hemoprotein, 

by dislocating the heme-iron causes an immediate alteration in the enzyme’s conformation 

and an increase in catalytic activity resulting in a 50- to 200-fold increase in the velocity of 

conversion of magnesium guanosine 5’-triphoshate (MgGTP) substrate to cyclic GMP and 

pyrophosphate (for review, see Ignarro 1990, Bredt and Snyder 1994). Soluble GC is 

activated by NO at a fairly low concentration (10-100 nM), reflecting the high affinity of NO 

for the soluble GC heme moiety (for review, see Hobbs 1997, Davis et al. 2001). Since NO 

easily permeates biological membranes, endothelium-derived NO can activate cytosolic 

GC in diverse cell types located in close proximity to its cell of origin (for review, see 

Ignarro 1990, Davis et al. 2001). The result is an increase in intracellular cyclic GMP 

leading to diverse physiological effects. One of the significant actions of cyclic GMP is the 

relaxation of smooth muscle cells (for review, see Farrell and Blake 1996). 

 

2.3.4 Functions of cyclic GMP 

Cyclic GMP has a central role in several physiological phenomena, e.g. cardiac and 

smooth muscle relaxation, cellular calcium movements important for platelet aggregation, 

the retinal rod response to light, olfactory reception, steroidogenesis and renal and 

intestinal ion transport. Signal transduction pathways can be composed of any types of 

soluble and particulate GCs, and any of an array of cyclic GMP mediators, including cyclic 

GMP-gated ion channels, cyclic GMP-stimulated or inhibited phosphodiesterases and 

cyclic GMP-dependent protein kinases. Disorder in some step of the signaling transduction 
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pathway leads to pathological conditions; overactivity is associated with endotoxic shock 

and secretory diarrhea, underactivity with hypertension (for review, see Schmidt et al. 

1993, Biel et al. 1998, Smolenski 1998). 

 

2.3.5 Nitric oxide releasing compounds 

NO donors produce NO when applied to biological systems, where they either mimic an 

endogenous NO-related response or substitute for an endogenous NO deficiency. These 

compounds include the organic nitrates, S-nitrosothiols, sydnonimines, NONOates, 

sodium nitroprusside and furoxans (Feelisch 1998). 

 

2.3.5.1 Organic nitrates 

Organic nitrates are nitric acid esters of mono- and polyhydric alcohols and most of them 

are only sparingly soluble in water. Clinically used compounds include glyceryl trinitrate, 

isosorbide dinitrate and isosorbide-5-mononitrate (for review, see Feelisch 1991, Feelisch 

1998). Ferid Murad and co-workers analyzed the mechanisms of action of glyceryl 

trinitrate and other related vasodilators in 1977 and suggested that these compounds 

release NO, which enhances cyclic GMP production and relaxes smooth muscle (Arnold et 

al. 1977, Katsuki et al. 1977a, Katsuki et al. 1977b). Organic nitrates require either 

enzymatic or non-enzymatic bioactivation for NO release to occur (for review, see Feelisch 

1998). The most important indications for organic nitrates are angina pectoris, acute 

myocardial infarction and congestive heart failure. Chronic administration of organic 

nitrates leads to the development of tolerance. The precise incidence of tolerance with 

these compounds is not known. The mechanism underlying tolerance is not completely 

understood and probably involves several independent factors. Proposed mechanisms for 

the development of nitrate tolerance include depletion of reduced sulphydryl groups, 

desensitization of GC, increased activity of cyclic GMP phosphodiesterase, reflex 

neurohormonal activation, shift in extravasal volume, increased endothelin-1 production 

and increased vascular superoxide (for review, see Glasser 1999). Experimental and 

clinical observations suggest that tolerance may be a consequence of intrinsic 

abnormalities in the vasculature, including enhanced endothelial production of oxygen-

derived free radicals (for review, see Münzel and Harrison 1997). 
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2.3.5.2 S-nitrosothiols 

S-nitrosothiols are sulphur analogs of organic nitrites. At least two S-nitrosothiols have 

been prepared as stable solids and characterized: S-nitroso-N-acetylpenicillamine (SNAP) 

and S-nitrosoglutathione (GSNO) (for review, see Butler and Rhodes 1997, Feelisch 1993, 

Feelisch 1998). S-nitrosothiols decompose to yield the corresponding disulfide and NO. 

Another important reaction of S-nitrosothiols is transnitrosation, i.e. the transfer of bound 

NO from one thiol group to another (for review, see Feelisch 1998). 

 

2.3.5.3 Sydnonimines 

The most thoroughly studied compound of sydnonimines is molsidomine (N-

ethoxycarbonyl-3-morpholino-sydnonimine). Molsidomine is a prodrug which is converted 

by liver esterases to the active metabolite 3-morpholino-sydnonimine (SIN-1). SIN-1 is a 

vasorelaxant and anti-platelet agent and these activities are thought to be mediated mainly 

by the release of NO (for review, see Feelisch 1998). SIN-1 decomposes to produce NO in 

an oxygen-dependent process. It undergoes rapid nonenzymatic hydrolysis to the open-

ring form SIN-1A. Oxygen promotes conversion to a cation radical intermediate from which 

NO is released and more stable SIN-1C is formed. In the course of this reaction 

superoxide (O2
-) is formed, which together with NO can form peroxynitrite (Feelisch et al. 

1989, for review, see Feelisch 1998). SIN-1 does not induce tolerance in in vitro 

experiments (Hinz and Schröder 1999). 

 

2.3.5.4 NONOates 

NONOates are adducts of NO with nucleophiles. They have the ability to generate NO 

spontaneously in a chemically predictable manner which correlates directly with their 

biologic effect (Morley and Keefer 1993). It is thought that NONOates generate NO by 

acid-catalyzed dissociation with regeneration of the free nucleophile and NO, although 

enzymatic metabolism in vivo cannot be excluded. The decomposition of NONOates is pH-

dependent, proceeding at a very slow rate at values over pH 9, a moderate rate at 

physiological level and almost instantaneously at acidic pH (for review, see Feelisch 

1998). Spermine NONOate does not induce tolerance in in vitro experiments (Hinz and 

Schröder 1998). 
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2.3.5.5 Sodium nitroprusside 

The mechanism of NO release from sodium nitroprusside (SNP) is incompletely 

understood. In biological systems both non-enzymatic and enzymatic NO release from 

SNP may occur. SNP decomposition leads to the formation of NO, disulfide and cyanide. 

SNP is used clinically to reduce blood pressure, e.g. hypertensive emergencies (for 

review, see Feelisch 1998). 

 

2.3.5.6 Furoxans 

Furoxans are a group of heterocyclic compounds which have been shown to exert a 

variety of NO-related bioactivities. Furoxans have been demonstrated to increase potently 

the activity of soluble GC. They liberate NO after reacting with sulphydryl groups of low 

molecular weight thiols and proteins (Feelisch et al. 1992). Some furoxans have been 

reported to release NO spontaneously and independently of thiols (Hecker et al 1995). 

                                                                   

2.4 NITRIC OXIDE AND THE EYE 

 

Nitric oxide is a mediator of physiological and pathophysiological processes in the eye, for 

example regulation of aqueous humor dynamics, vascular tone, retinal neurotransmission, 

retinal ganglion cell death by apoptosis, phototransduction and ocular immunological 

responses (for review, see Haefliger et al. 1994, Becquet et al. 1997, Haefliger et al. 

1999). Both underproduction and overproduction of NO may contribute to pathological 

processes in degenerative diseases (glaucoma, retinal degeneration, cataract) or 

inflammatory diseases (uveitis, retinitis) in the eye. These diseases might thus be treated 

by compensating for NO deficiency with NO donors or NO precursors or by reducing 

overproduction of NO by inhibiting iNOS activity, respectively (for review, see Becquet et 

al. 1997, Chiou 2001).  

 

2.4.1 Localization of nitric oxide synthases in the eye 

In the eye, the capacity to form NO is found in various tissues, and both the constitutive 

and inducible isoforms of NOS have been identified. Endothelial NOS has been found to 

be present in the vascular endothelium and smooth muscle cells of the anterior segment, 

choroid and retina. In addition to the ciliary vascular endothelium, eNOS (Osborne et al. 

1993, Haufschild et al. 1996, Geyer et al. 1997; for review, see Becquet et al. 1997; see 
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Ellis and Nathanson 1998) and nNOS (Meyer et al. 1999) are highly enriched in the 

nonpigmented ciliary epithelium, and isolated human and porcine ciliary processes have 

been shown to produce NO (Haufschild et al. 2000). Using NADPH-diaphorase, a 

technique which identifies all three isoforms of NOS, the ciliary muscle and outflow 

pathway, i.e. the trabecular meshwork, Schlemm’s canal, collecting channels and draining 

veins, have been found to be markedly enriched in NOS (Nathanson and McKee 1995a, 

Geyer et al. 1997; for review, see Becquet et al. 1997; see Ellis and Nathanson 1998). 

NOS has demonstrated in NADPH-diaphorase staining in nerve fibers in the limbus, in the 

cornea (endothelium, epithelium and peripheral cornea) and in the lens epithelium. 

Neuronal and inducible NOS have been identified in different parts of the retina (Meyer et 

al. 1999; for review, see Becquet et al. 1997). After cytokines and endotoxin stimulation 

iNOS may be detected in the iris/ciliary body and vessels (for review, see Becquet et al. 

1997). All three isoforms of NOS are present in the human optic nerve head; iNOS, 

however, is present only in glaucomatous eyes or in eyes with retinal ischemia in rats, not 

in normal eyes (Neufeld et al. 1997, Neufeld et al. 2002b). 

 

2.4.2 Role of nitric oxide in different sites in the eye 

In the anterior segment of the eye, NO regulates cellular responses in conjunctiva, 

trabecular meshwork and ciliary muscle. In a pig model, NO has been found to be 

produced in the acute phase of allergic conjunctivitis and it mediates vasodilation, leading 

to increased vascular permeability and edema (Meijer et al. 1996). NO might be related to 

the regulation of aqueous humor dynamics by acting at the ciliary muscle, the aqueous 

humor outflow pathway or both (for review, see Becquet et al. 1997). For details of the 

mechanism, see 2.5. It has been suggested that overproduction of NO may result in the 

pathogenesis of endotoxin-induced uveitis as a proinflammatory mediator leading to 

hyperemia and cellular infiltration (for review, see Becquet et al. 1997, Koss 1999, Chiou 

2001). Prostaglandin F2α has been found to cause hyperemia on the surface of the eye by 

activating NOS (Astin et al. 1994). 

 

NO has a dual role in the pathogenesis of retinal diseases (e.g. retinitis) or degeneration 

(e.g. ischemic retinopathy, age-related macular degeneration and retinitis pigmentosa) (for 

review, see Becquet et al. 1997, Chiou 2001). NO mediates ischemic damage and 

promotes neuronal cell death by the production of free radicals. On the other hand, NO 
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has an important role in the regulation of the regional blood flow in the retina. It improves 

blood flow during or immediately after ischemia and thus reduces the amount of damaged 

tissue (for review, see Becquet et al. 1997, Koss 1999). The choroid appears to be under 

the influence of a basal release of NO, which maintains the vasodilatory tone of choroidal 

vessels, improving the delivery of nutrients to the retina. NO also has a vasodilatory 

function for blood flow in the optic nerve head (see Tamm and Lütjen-Drecoll 1998a). 

 

2.5 NITRIC OXIDE, CYCLIC GMP AND INTRAOCULAR PRESSURE 

 

In the anterior segment of the eye, NO donors or nitrovasodilators may regulate IOP at the 

level of ciliary muscle, trabecular meshwork and endothelial and vascular smooth muscle 

cells in the aqueous drainage system. Compounds affecting the NO-cyclic GMP pathway 

have been reported to lower IOP in some animal and human experiments (Table 3). NO 

donors and cyclic GMP analogs may be involved in the modulation of aqueous humor 

dynamics by inducing relaxation of ciliary muscle, leading to decreased trabecular 

meshwork resistance and thus alteration in the outflow facility of aqueous humor, which 

results in lowered IOP. There is evidence that the trabecular meshwork has intrinsic 

contractile elements which can be relaxed by NO, leading to increased aqueous humor 

outflow (for review, see Becquet et al. 1997; see Ellis and Nathanson 1998, Haefliger and 

Dettmann 1998, Tamm and Lütjen-Drecoll 1998b, Wiederholt 1998). In contrast to NO, 

atriopeptin acts on particulate GC by binding with a cell surface receptor (Shahidullah and 

Wilson 1999). The ciliary body, dissected free from the ciliary epithelium, has shown only 

slight stimulation of GC activity, while greater stimulation has been found in the ciliary 

processes and iris, proposing a role of atriopeptin in aqueous humor formation (Nathanson 

1987). The mechanism of action of another GC activator, YC-1, may be related to its ability 

to stabilize soluble GC in its active configuration (for review, see Hobbs 1997).  
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Nitrergic nerves might dilate episcleral vessels, thereby lowering episcleral venous 

pressure and further the resistance to aqueous humor outflow, leading to decreased IOP 

(see Tamm and Lütjen-Drecoll 1998b). Since constitutive NOS is present in the ciliary 

epithelium, a possible role of NOS in the regulation of aqueous humor formation may be 

proposed. Systemic NOS inhibition by intravenous NOS inhibitor NG-nitro-L-arginine 

methyl ester (L-NAME) causes a significant decrease in IOP, suggesting that the ocular 

hypotensive effect may be due in part to a blood-flow dependent decrease in aqueous 

production (Kiel et al. 2001). Topical application of NOS inhibitors does not prevent an IOP 

increase induced by water intake in rabbits (Fleischhauer et al. 2001). 
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2.6 NITRIC OXIDE AND GLAUCOMA 

 

Nitric oxide may have effects on the development or progression of glaucoma; these are 

summarized in Table 4. Altered NOS activity in ciliary muscle and outflow pathways has 

been found in patients with primary open-angle glaucoma. A frank structural loss of NOS 

activity has been shown in the longitudinal fibers of the ciliary muscle. These abnormalities 

can be causally related to glaucoma or they may be a manifestation of the disease or its 

treatment (Nathanson and McKee 1995b).  

 

In addition, it has recently been hypothetized that NO or NO-derived radicals might result 

in neurotoxic glaucomatous effects at the optic nerve head and retina, leading to optic 

nerve head degeneration and visual field loss. All three isoforms of NOS are present in 

increased amounts in the optic nerve head of patients with primary open-angle glaucoma. 

The increased expression of iNOS and nNOS suggests that the glaucomatous optic nerve 

head is exposed to enhanced concentrations of NO, which plays a major neurodestructive 

role in the chronic degeneration of axons in the optic nerve head (Neufeld et al. 1997). On 

the other hand, overexpression of these enzymes may reflect a mechanism compensatory 

to the lowered NO concentrations found in glaucoma patients. Increased IOP has 

apparently been a major causative factor for the overproduction of NO in an experimental 

animal model of glaucoma (Siu et al. 2002) in consequence of iNOS activation (Shareef et 

al. 1999). It has been suggested that glaucomatous visual field loss as a manifestation of 

retinal ganglion cell death occurs possibly through apoptosis. Apoptosis can be induced by 

glutamate activation of the N-methyl-D-aspartate (NMDA) membrane receptor, which 

stimulates the production of large amounts of NO as well as free radical superoxide anion 

in the mitochondria in retinal ganglion cells. NO then reacts with superoxide to form highly 

toxic peroxynitrite, which, in turn, triggers cell death (Quigley et al. 1995, see Haefliger and 

Dettmann 1998). Increased concentrations of glutamate have been found in the vitreous 

body of glaucomatous humans and monkeys (Dreyer et al. 1996). Damage to the optic 

nerve head and retinal ganglion cells might be avoided by inhibiting induction or activity of 

iNOS (Neufeld et al. 1999, Neufeld et al. 2002a; for review, see Neufeld 1999). Treatment 

with an iNOS inhibitor may stop progression of the glaucomatous process in eyes with 

already established damage (Neufeld et al. 2002a). However, the increased presence of 

eNOS in vascular endothelia could be neuroprotective in causing vasodilation and 

increased blood flow in the optic nerve head (Neufeld et al. 1997).  
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In conclusion, IOP is the result of a homeostatic balance of production and outflow of 

aqueous humor. Aqueous humor, produced by the ciliary processes, passes from the 

posterior chamber through the pupil into the anterior chamber and exits mainly through 

trabecular and uveoscleral pathways. IOP is regulated by cholinergic as well as adrenergic 

receptors. Glaucoma is a progressive optic neuropathy involving altered intraocular 

hemodynamics. Increased IOP is one of the most important risk factors for glaucoma, but 

it might also be at normal level concomitant with the disorder. Other risk factors for 

glaucoma include age, genetic disposition, black race, myopia, vascular factors such as 

arterial hyper- and hypotension and pseudoexfoliation. In the eye, NO has an important 

role in certain physiological processes, e.g. regulation of aqueous humor dynamics. On the 

other hand, NO is involved in several diseases of the eye. Compounds affecting the NO-

cyclic GMP pathway may modulate aqueous humor dynamics by reducing trabecular 

meshwork resistance, resulting in increased aqueous humor outflow facility and thus 

lowered IOP. Patients with primary open-angle glaucoma have been found to have 

abnormalities in NO-containing cells in the ciliary muscle and the outflow pathway. On the 

other hand, overproduction of NO in the optic nerve head may lead to glaucomatous 

damage to the optic nerve and visual field. 
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3 AIMS OF THE STUDY 

 

The aim of the present study was to investigate the roles of NO and cyclic GMP in the 

regulation of IOP and the mechanisms of their IOP-lowering effects using experimental 

animals, and the possible clinical relevance of NO in aqueous humor dynamics in 

glaucoma patients. 

 

The specific aims were: 

 

1. To compare the ocular hypotensive effects of different NO donors and guanylate 

cyclase activators in rabbits (Study I) and to evaluate the role of cyclic GMP in this process 

by measuring cyclic GMP production in the porcine iris-ciliary body (Study IV). 

 

2. To clarify the IOP-lowering mechanism of the NO/cyclic GMP pathway by measuring 

aqueous humor outflow facility in rabbits (Study II) and aqueous humor production in 

healthy human volunteers (Study III) treated with NO-releasing compounds. 

 

3. To investigate the possible connection of NO to aqueous humor dynamics in glaucoma 

patients (Study V). 
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4 MATERIALS AND METHODS 

 

4.1 EXPERIMENTAL ANIMALS 

 

New Zealand White (NZW) rabbits of both sexes were used (2.5-3.5 kg, n = 36 in Study I 

and 2.9-3.5 kg, n = 28 in Study II). The animals were purchased from the National 

Laboratory Animal Center, University of Kuopio, Kuopio, Finland; Harlan of UK, Bicester, 

UK or Harlan of Netherlands, Horst, the Netherlands. They were housed individually in 

Scanbur plastic cages (Scanbur BK A/S, Lellinge, Denmark); all rabbits were maintained 

conventionally during the study with regulated air temperature (15–21°C), relative humidity 

(40–70%), an artificial light cycle (12 hours light/12 hours darkness) and ventilation (air 

volume change 15 times/hour). They received about 100 g/day of pellet standard rabbit 

fodder (Stanrab, Special Diet Services, Witham, UK) and had free access to drinking 

water. 

 

Porcine eyes (n = 45, Study IV) were obtained from an abattoir and from each eye about 

five tissue samples of iris-ciliary body were detached. 

 

4.2 PATIENTS AND STUDY DESIGNS 

 

The flow of aqueous humor after a single oral dose of isosorbide-5-mononitrate (ISMN), 10 

mg, was investigated in Study III. Ten healthy human volunteers (five males and five 

females, mean age 22 years, range 19-26) with no history of ocular or systemic diseases 

participated in the study. The subjects were scheduled for four ambulatory visits, which 

included a prestudy visit and three treatment days (in random order): day 1 (ISMN or 

placebo), day 2 (ISMN or placebo) and day 3 (topical timolol maleate used as a positive 

control). In the timolol experiment, the treatment was applied in one eye while the other 

eye served as control. Isosorbide-5-mononitrate (Ormox® 10 mg, Orion Oy, Espoo, 

Finland) and identical-looking placebo capsules were packed in the Tampere University 

Hospital Pharmacy. Timolol maleate (Oftan® Timolol 5 mg/ml) and 5 % sodium fluorescein 

solution were from Santen Oy, Tampere, Finland. 
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Biochemical markers of the L-arginine-nitric oxide pathway in the aqueous humor were 

investigated in glaucoma patients (Study V). The prospective study involved 38 

consecutive glaucoma patients undergoing unilateral cataract surgery in the glaucomatous 

eye (8 males and 30 females, mean age 75 years, range 45-87). Glaucoma patients were 

compared to 38 matched cataract controls (8 males and 30 females, mean age 77 years, 

range 59-88). 

 

4.3 PHYSIOLOGICAL MEASUREMENTS  

 

4.3.1 Intraocular pressure 

In Study I IOP was measured with a pneumatonometer in conscious rabbits (Modular One 

Tonometer, Mentor, Cambridge, MA, USA) after topical anesthesia with 0.4 % 

oxybuprocain (Oftan Obucain, Santen Oy, Tampere, Finland). One hour before the test 

compound application, a control measurement was taken for both eyes. Thirty µl of the test 

compounds or vehicle were administered in the inferior conjunctival sac, or 50 µl of the test 

compounds or vehicle were injected in the vitreous humor. Thereafter, IOP was measured 

at 0.5, 1, 2, 3, 4 and 5 hours, if not otherwise indicated. 

 

In Study II IOP in anesthetized rabbits was measured manometrically in cannulated eyes 

with 27 G needles after topical anesthesia with 0.4 % oxybuprocain (Oftan Obucain). 

Measurement was carried out using a pressure transducer (P-50, Gould/Statham, 

Bilthoven, the Netherlands) connected to a Grass Model 79-D polygraph (Quincy, MA, 

USA). 

 

In human subjects (Study III) the IOP was measured by the applanation tonometry of 

Goldmann (Haag-Streit, Bern, Switzerland) after topical anesthesia with a combination of 

0.3% oxybuprocain and 0.125% fluorescein (Oftan Flurekain, Santen Oy). 

 

4.3.2 Blood pressure 

The systemic blood pressure in anesthetized rabbits was measured by cannulating a 

femoral artery with a polyethylene cannula containing heparinized isotonic saline (Study 

II). The cannula was connected to a pressure transducer (P-50, Gould/Statham) for blood 

pressure monitoring (Grass Model 79-D polygraph). An intravenous infusion of 
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hydroxyethylamylopectin (Plasmafusin 60 mg/ml, Fresenius Kabi AB, Uppsala, Sweden) 

was used to sustain blood pressure when needed. 

 

Blood pressure in human subjects (Studies III and V) was measured at the forearm with an 

automated blood pressure measuring device (Omron M5-I, Omron Matsusaka Co., Ltd., 

Kyoto, Japan). 

 

4.3.3 Aqueous humor outflow facility 

The outflow facility of aqueous humor in anesthetized rabbits was determined by the two-

level constant pressure infusion method (Bárány 1964) (Study II). General anesthesia was 

initiated with an intramuscular injection and maintained by intravenous infusion of a 

combination of ketamine (Ketalar 50 mg/ml, Parke-Davis Warner Lambert Nordic AB, 

Solna, Sweden) and xylazine (RompunVet 20 mg/ml, Bayer AG, Leverkusen, Germany). 

The rabbits were pretreated with intravenous indomethacin at 10 mg/kg body weight 

(Confortid, Dumex, Copenhagen, Denmark) to minimize the effect of the endogenous 

prostaglandins. The eyes of the animals were cannulated with three needles (27 G) 

connected to polyethylene cannulas after topical anesthesia. One cannula was used for 

continuous IOP monitoring, one for injection of the test compound or vehicle (5 µl) and one 

for the infusion of fluid for outflow facility measurements. IOP was increased 5 to 7 mmHg 

above the preinfusion level by infusing a mock solution of aqueous humor (Sperber and 

Bill 1984) into the anterior chamber. The infusion rate (F) and the increase in IOP (∆P) 

were registered in steady-state conditions. Thereafter, the IOP was raised about 5 to 7 

mmHg above the previous level, and the same procedure was repeated. The outflow 

facility (C) could then be calculated from the formula C=F/∆P. Infusion was carried out on 

both eyes simultaneously from separate reservoirs. The rabbits were euthanized by 300 

mg pentobarbital (Mebunat, Orion Oy, Espoo, Finland) after the last measurements. 

 

4.3.4 Aqueous humor flow in man 

A scanning computerized fluorophotometer (FM-2 Fluorotron Master, Ocumetrics, 

Mountain View, CA, USA) was used to assay cornea and anterior chamber fluorescein 

concentrations (Study III). Fluorescein was applied and rinsed approximately 6 hours (the 

experiments with oral ISMN or placebo) or 7 hours (the experiments with topical timolol) 

before the Fluorotron measurements. ISMN or placebo was administered 5 hours and 
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timolol was applied 6 hours after the rinsing of the eyes. Fluorescence in each eye was 

measured every 30 minutes at 6 to 8.5 hours after the rinsing and hourly from 8.5 to 10.5 

hours after rinsing. In the timolol experiment the measurement was repeated every 30 

minutes from 7 to 9.5 hours after rinsing. The readings obtained were used to calculate 

aqueous flow according to the mathematical model described by Brubaker (1989). 

 

4.4 IRIS-CILIARY BODY INCUBATION METHOD 

 

Porcine eyes were placed in a cold preoxygenated modified Krebs solution after 

enucleation. Tissue samples were prepared for the experiments within 3 hours of 

enucleation. The eyes were cut in half at the equator of the bulbus and vitreous and lens 

were removed. The ciliary body and iris were carefully detached from the sclera of the 

anterior bulbus by cutting the tissue with a cornea trepan. The tissue samples were pooled 

and placed in oxygenated modified Krebs solution.  

 

After a preincubation of 60 minutes the multidish wells were cleared of the solution and 

fresh Krebs solution and test compounds or solvent were added. Two incubation periods, 

30 and 60 minutes, were used. At the end of the experiment the tissues and incubation 

media were frozen in liquid nitrogen and stored at -80°C until measurement of cyclic GMP 

(tissue) and nitrate + nitrite (NOx) (incubation media). 

 

4.5 COLLECTION OF SAMPLES FOR BIOCHEMICAL ASSAYS 

 

In the animal experiments for the biochemical assays (Study I), blood samples were taken 

before the rabbits were euthanized. After euthanization with 300 mg pentobarbital 

(Mebunat, Orion Oy) aqueous humor was collected (Studies I and II) and iris and ciliary 

body separated (Study I). The samples were stored at -70°C until assayed for NOx, nitrite, 

cyclic GMP, NO synthases (Study I) and protein concentration (Study II).  

 

In the human experiment for the biochemical assays (Study V), blood samples were 

collected from the venous cannule immediately prior to cataract surgery and aqueous 

humor samples were collected through the first clear corneal incision of the eye. The 

samples were stored at -70°C until assayed for NOx, nitrite and cyclic GMP. 
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4.6 BIOCHEMICAL DETERMINATIONS 

 

4.6.1 Nitrite and nitrate 

The concentrations of nitrite + nitrate (NOx) in aqueous humor (Studies I and V), plasma 

(Study I) and serum (Study V) were measured by ozone-chemiluminescence. Vanadium 

chloride (VCl3) in hydrochloric acid was used to convert nitrite and nitrate to NO, which 

was then quantitated by the ozone-chemiluminescence method (Braman and Hendrix 

1989). NO was measured by NO analyzer NOA 280 (Sievers Instruments Inc., Boulder, 

CO, USA) using sodium nitrate as standard. When nitrite concentrations were measured, 

sodium iodide in acetic acid was used to convert nitrite in the deproteinized samples to 

NO, which was measured by NOA 280. The concentration of NOx in the incubation 

medium (Study IV) was determined spectrophotometrically with the Nitrate/Nitrite 

Colorimetric Assay Kit (Cayman Chemical, Ann Arbor, MI, USA). 

 

4.6.2 Cyclic GMP 

The concentrations of cyclic GMP in aqueous humor (Studies I and V), plasma (Study I), 

serum (Study V) and porcine iris-ciliary body (Study IV) were measured by 

radioimmunoassay. During homogenization of the tissue samples, zaprinast was added to 

prevent the destruction of cyclic GMP. The iris-ciliary body samples were homogenized 

with an Ultra-turrax tissue homogenizer (Ultra-Turrax T8, Ika Labortechnik, Janke & 

Kunkel GmbH & Co KG, Staufen, Germany). The homogenates were centrifuged and the 

precipitated proteins dissolved in NaOH at +37°C overnight and assayed (Lowry et al. 

1951). The supernatants (Study IV) and the samples of aqueous humor, plasma and 

serum (Studies I and V) were acidified with HCl and extracted before lyophilization. 

Acetylated cyclic GMP in the samples was assayed with the [125I]-cyclic GMP RIA kit 

(Amersham International, Little Chalfont, Buckinghamshire, UK), except for Study V, where 

cyclic GMP concentrations in serum were measured with the Cyclic GMP (low pH) 

Immunoassay Kit (R&D Systems Europe, Abington, UK). 

 

4.6.3 Nitric oxide synthases 

The expression of NO synthases (eNOS, nNOS and iNOS) in the iris and ciliary muscle of 

rabbits (Study I) was measured by Western blot. The samples were homogenized using an 

Ultra-turrax homogenizer. Homogenates were centrifuged and the protein content of the 
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supernatants measured (Lowry et al. 1951). Equal amounts of protein were resolved by 

SDS-polyacrylamide gel electrophoresis (PAGE) (Minigel apparatus, Bio-Rad, Bio-Rad 

Laboratories, Hercules, CA, USA) (Laemmli 1970). After electrophoresis, the separated 

proteins were transferred to nitrocellulose membranes and incubated overnight with the 

appropriate primary antibody at +4°C. The antibodies were mouse monoclonal anti-eNOS 

IgG1 (1:2500), anti-nNOS IgG2a (1:3000) and anti-iNOS IgG2a (1:2500) (Transduction 

Laboratories, Lexington, KY, USA). Membranes were washed and incubated with 

horseradish peroxidase-coupled anti-mouse IgG1 or IgG2a (Zymed Laboratories, San 

Francisco, CA, USA). Finally, the bound antibodies were detected using an enhanced 

chemiluminescence reagent (Amersham) and exposed to X-omat film (Kodak, Paris, 

France). Each band was quantified with computer programs (Gene Snap and Gene Tools, 

Synoptics, Cambridge, UK). 

 

4.6.4 Proteins 

The aqueous humor protein concentration used as an indicator of increased vascular 

permeability possibly induced by the test compounds was measured according to Lowry 

and co-workers (1951) (Study II). 

 

4.7 TEST COMPOUNDS 

 

The test compounds used in Studies I and II were dissolved in saline, phosphate buffer or 

dimethylsulfoxide (DMSO, Sigma Chemical Co., St. Louis, MO, USA) and in Study IV in 

Krebs solution. Sodium nitroprusside (SNP), zaprinast, L-arginine, 8-Bromo-cGMP, 

atriopeptin II and III, NOR-3 ((E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-2-hexenamide) and 

captopril were purchased from Sigma Chemical Co., spermine NONOate (N-[4-[1-(3-

aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl]-1,3-propanediamine) and S-nitrosothiol 

(SNOG) from Tocris Cookson Ltd. (Bristol, UK), S-nitrosocaptopril from Calbiochem-

Novabiochem Co. (La Jolla, CA, USA), ODQ (1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-

one) from Alexis Biochemicals (San Diego, CA, USA) and S-nitroso-N-acetylpenicillamine 

(SNAP) from Research Biochemicals International (Natick, MA, USA). YC-1 (3-(5’-

hydroxymethyl-2’furyl)-1-benzylindazole) was a generous gift from Professor C. M. Teng 

(Taipei, Taiwan). The chemical structures of NO donors, GC-activators and a cyclic GMP 

analog are shown in Figure 3. 
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4.8 STATISTICAL ANALYSIS 

 

The results are expressed as mean ± standard deviation (SD). Statistical analysis was 

carried out by analysis of variance for repeated measurements (ANOVA) (Study I), paired 

samples t-test (Studies I, II and V), area under curve (AUC) (Study III), Wilcoxon signed 

ranks test (Studies II and V), Mann-Whitney test (Studies II and V), permutation test (Study 

IV), Odd’s Ratio (CIA) (Study V) and Kruskal-Wallis test (Study V). A p-value less than 

0.05 was considered significant. 

 

4.9 ETHICS 

 

The clinical studies were conducted in accordance with the Helsinki Declaration. The 

Guiding Principles in the Care and Use of Animals (DHEW Publication, NIH 80-23) were 

adhered to in the protocols of the animal studies and the protocols were approved by the 

local Animal Experimentation Committee (Studies I and II). The study protocols in the 

human studies were approved by the Ethical Committee of Tampere University Hospital 

(Studies III and V) and the National Agency for Medicines (Study III). 
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5 RESULTS 

 

5.1 NITRIC OXIDE AND CYCLIC GMP IN AQUEOUS HUMOR DYNAMICS (Studies I-IV) 

 

5.1.1 Effect of nitric oxide donors and cyclic GMP on intraocular pressure and 

biochemical markers of NO (Study I) 

Compounds affecting the L-arginine-NO-cyclic GMP pathway lowered IOP in ocular 

normotensive rabbits (Table 5). The precursor of NO synthesis, L-arginine, NO donors, 

SNP, spermine NONOate, SNOG, nitrosocaptopril, and a soluble guanylate cyclase 

activator, YC-1, lowered IOP equally, 20-29%. A cyclic GMP analog, 8-Br-cGMP, lowered 

IOP by 37%. Particulate guanylate cyclase activators, atriopeptin II and III, lowered IOP up 

to 50% after intravitreal injection. The maximal decrease in IOP was observed 1 - 2 hours 

after administration, except after intravitreal injections, when the maximal response was 

measured up to 24 hours. The decrease in IOP lasted only a few hours, but after 

atriopeptin III lowered values remained for approximately 2 days. Zaprinast, a cyclic 

nucleotide phosphodiesterase (PDE5/6) inhibitor, alone had no effect on IOP, but in 

combination with SNP it prolonged the response, supporting the conception of a role of 

cyclic GMP in IOP reduction. Slight or pronounced conjunctival or iridal hyperemia was 

detected after administration of L-arginine, SNP, nitrosocaptopril, 8-Br-cGMP, YC-1 and 

atriopeptin II and III. All NO donors and GC-activators tested increased the NOx 

concentration in aqueous humor; cyclic GMP levels in 8-Br-cGMP- and atriopeptin III-

treated eyes were higher than in the control eyes.  

 

In conclusion, an association was observed between increased activity of the L-arginine-

NO-cyclic GMP pathway and lowered IOP in ocular normotensive rabbits. 
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5.2 BIOCHEMICAL MARKERS OF THE NITRIC OXIDE-CYCLIC GMP PATHWAY IN 

GLAUCOMA PATIENTS (STUDY V) 

 

Study V involved 28 glaucoma patients undergoing unilateral cataract surgery in the 

glaucomatous eye. The concentrations of NO metabolites (NOx, nitrite and cyclic GMP) in 

aqueous humor were slightly higher in glaucoma patients than in matched controls, but the 

difference was not statistically significant. The subgroup of glaucoma patients with 

pseudoexfoliation (n = 6) had lower NOx and nitrite levels in the aqueous humor than the 

matched controls, while cyclic GMP concentrations were higher. Patients who used oral 

nitroglycerin (n = 18) had higher levels of NOx and nitrite in the aqueous humor than 

patients without this medication (n = 58). 

 

Taken together, in patients appropriately treated to obtain normal IOP no significant 

differences were found in NO metabolites in aqueous humor and serum between 

glaucoma and control patients. Glaucoma medications, keeping the IOP in balance, may 

have interfered with the results. 
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6 DISCUSSION 

 

NO is beneficial as a messenger or modulator and for immunologic self-defence, but on 

the other hand, as it or its metabolites are highly reactive it is potentially toxic. There is 

accumulating evidence suggesting a role for NO in the control of IOP, but no current 

antiglaucomatous drugs are based on such a system. The present study clarified the 

effects of NO and cyclic GMP on IOP and their association with glaucoma. IOP was found 

to decrease after the administration of NO donors and cyclic GMP due to increased 

aqueous humor outflow facility, but aqueous humor flow was unaffected. NO donors 

increased cyclic GMP production in the porcine iris-ciliary body, which is an important site 

in IOP regulation. Appropriately treated glaucoma patients and their controls evinced no 

significant differences in NO metabolites in aqueous humor and serum. 

 

6.1 METHODOLOGICAL ASPECTS 

 

Rabbits are widely used in ophthalmological studies by reason of their convenient size, 

ease of handling and large eyes suitable for different kinds of ophthalmological 

examinations. The topical ocular route of administration corresponds well to a proposed 

human therapeutic route. However, there are species differences in drug effects, which 

poses a challenge to drug discovery. Albino rabbits are most often used, but some 

compounds bind to the pigment of the iris, i.e. drug distribution in pigmented eyes is 

different from that in albino eyes, and in these cases pigmented rabbits are preferred. 

Rabbits are found to provide a better model for drugs which suppress aqueous humor 

inflow than for drugs which enhance outflow facility (Dinslage et al. 1998). This is possibly 

due to the anatomical structures of the rabbit eye. The trabecular endothelial layer 

transports aqueous humor efficiently from the anterior chamber to the trabecular 

meshwork, rendering the uveoscleral outflow an insignificant pathway. The variation 

between humans and rabbits in responses to pharmacological agents may be explained 

by the presence of this trabecular endothelial layer in rabbits (Bergmanson 1985). 

However, most currently used antiglaucomatous drugs reduce IOP also in rabbits. 

 

The optimal way to investigate the effects of new potential glaucoma drugs would be to 

use animals with naturally occurring glaucoma. Genetically predisposed animals (such as 



 56 

beagles and rabbits) have been shown to develop spontaneous glaucoma (Kolker 1963, 

Gelatt et al. 1976). Gaasterland and Kupfer (1974) reported the first experimental model of 

glaucoma consequent upon laser treatment of the trabecular meshwork in rhesus 

monkeys. Laser-induced glaucoma in rabbits was developed by Gherezghiher and 

colleagues in 1986. In the present study we used albino rabbits with normal IOP. 

Indisputably, rabbits with ocular hypertension or glaucoma or monkeys with glaucoma 

would have been an appropriate object of investigation. Nevertheless, IOP in these rabbits 

was reduced by NO donors or guanylate cyclase stimulators equally to the response to 

currently used antiglaucomatous drugs. The decrease in IOP might have been even 

greater, if glaucoma rabbits had been used in the present study. In the future gene-

manipulated glaucoma mice or rats may be adopted for glaucoma research, and NOS 

knockout mice would be useful in further studies of NO and glaucoma.    

 

IOP was measured with a pneumatonometer calibrated to the eye of the rabbit. 

Pneumatonometry is the most accurate approach in IOP determination of anesthetized 

eyes as compared to applanation tonometry and TonoPen (Eisenberg et al. 1998). The 

limitation of this method is that it slightly disturbs normal aqueous humor dynamics. It has 

been found that immediately after pneumatonometry IOP increases by approximately 3 

mmHg and remains elevated for about 1 hour and then decreases about 2 mmHg below 

normal pressure for approximately 1 hour (Dinslage et al. 1998). There are certain 

precepts applying to tonometry; the tonometer should be accurately calibrated, corneal 

bending forces or tear attractive forces must be negligible or counterbalanced by other 

forces, pressure during measurement must be the same as that immediately prior to 

tonometry and the endpoint of the measurement must be precise and objective (Brubaker 

2001). To minimize the disturbance involved in pneumatonometry, IOP measurements in 

the present study were made simultaneously for the experimental and control eyes of the 

rabbit and measurement was carried out every hour, except at the beginning of the day, to 

ensure the recovery of IOP. In addition, the same person made measurements at the 

same time of day. IOP in human subjects was measured by Goldmann applanation 

tonometry, which is the most common clinical measurement system. 

 

Outflow facility of aqueous humor has to be determined by indirect methods or 

calculated, because fluid drained via the trabecular or uveoscleral routes cannot be 

collected. In the present study, outflow facility was measured by the two-level constant 
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pressure infusion method. This approach is based on the assumption of pressure-

independent outflow facility and secretion rate. On an average, the indirect method gives 

correct values, but at very low pressure levels the variation is considerable. Here, the 

explanation might be that the outflow facility is not constant under changing pressure, 

because the outflow channels are not always filled with aqueous humor in a normal 

manner (Bárány 1964). This method is accurate and even small changes in the outflow 

facility can be detected. A further advantage is that the test compound can be 

administrated direct to the anterior chamber. One disadvantage is that the trabecular or 

uveoscleral outflow cannot be distinguished. In addition, the method is somewhat 

complicated and the person conducting the experiment must be practised. Outflow facility 

may also be measured by tonography. 

 

Aqueous humor flow can be determined noninvasively by measuring the disappearance 

of topically applied fluorescein from the cornea and anterior chamber, a technique first 

described by Jones and Maurice (1966). The measurements are carried out by 

fluorophotometer. Stipulations for fluorophotometry are that the fluorophotometer is 

accurately calibrated and focused within the corneal stroma, the tracer is uniformly 

distributed in cornea and anterior chamber, no tracer is lost from the anterior segment of 

the eye except for bulk outflow, the tracer does not sieve or pool and the time-span of the 

measurement is adequate for the rate of loss of tracer (Brubaker 2001). Fluorescein 

should be administrated several hours before the measurements to allow it to distribute 

evenly in the cornea. In several studies fluorescein has been applied in the evening before 

testing, or the test subjects have been instructed to wake at 1 - 2 a.m. on the day of the 

study, apply fluorescein into the eye and sleep on. However, the eyes should be 

thoroughly rinsed in order to remove excess fluorescein, which may disturb the 

measurements. In the present study fluorescein was applied and rinsed by the same 

person before the measurements made at the same time of day. The advantage of 

fluorophotometry is that aqueous humor flow can be measured in the unanesthetized eye 

in vivo without disturbing IOP, but especially in glaucoma research it would nonetheless be 

interesting to correlate IOP to aqueous humor flow. Fluorophotometry is currently used 

most frequently for measuring aqueous humor flow as an index of aqueous production 

(Brubaker 1991). Disadvantages of the technique are its relative complexity and the 

tedium it involves for the test subject and sources of errors such as slight haziness of the 
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cornea or epithelial scattering following traumatic tonometry (Brubaker and McLaren 

1985). 

 

The activation of guanylate cyclase can be determined in the porcine eye by a simple 

incubation method by measuring the production cyclic GMP that introduced in the present 

study. The iris-ciliary body is the target tissue of NO donors in the modulation of aqueous 

humor flow and thus this novel method might be useful in screening new molecules 

designed to stimulate the production of cyclic GMP and further reduce IOP. There are 

several advantages in this method: porcine eyes are easily available from an abattoir, the 

measurements are well repeatable and the cyclic GMP production by both rapid and slow 

NO donors can be measured. In addition, with this method it is possible to measure the 

activation of soluble GC, which cannot be determined in broken cell preparations. 

However, this incubation method is somewhat crude, in that the tissue samples are cut 

with a cornea trepan and detached with tweezers and the tissue samples may also contain 

other tissues (such as those from the anterior chamber angle) in addition to iris and ciliary 

body. 

 

6.2 EFFECTS OF NO DONORS ON THE MODULATION OF INTRAOCULAR 

PRESSURE 

 

In the present study, several NO-donating compounds were found to reduce IOP in 

rabbits, in accord with previous findings in both rabbits (Nathanson 1992, Behar-Cohen 

1996, Sugrue 1997) and monkeys (Schuman 1994). L-arginine, the precursor of NO 

synthesis, lowered IOP at a fairly low concentration, as also found by groups under Chiou 

(1995) and Chuman (2000) in rabbits and in humans. L-arginine is a non-toxic natural 

amino-acid, being thus a convenient compound for an IOP-lowering drug through the 

formation of NO. A lipophilic derivative of L-arginine has been shown to increase the blood 

flow significantly by relaxing blood vessels in the ciliary body, retina and choroid, 

suggesting that arginine could be used in the treatment of ocular hypertension (Chiou et al. 

1995). SNP, a widely used NO-releasing reference compound, lowered IOP for a few 

hours in the present study as also noted by Nathanson (1992). However, in one earlier 

study, topical administration of SNP was seen to increase IOP in a dose-response manner 

(Krupin et al. 1977). The ocular hypotensive effect of nitrosocaptopril, spermine NONOate 

and SNOG has not previously been reported. In the present study, nitrosocaptopril was 
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found to reduce IOP equally to SNP. Nitrosocaptopril would be a potential IOP-lowering 

drug, because it is both a NO donor and an angiotensin-converting enzyme (ACE) inhibitor 

which inhibits the breakdown of bradykinin, leading to the stimulation of NO synthesis. We 

observed no effect of topical captopril on IOP in rabbits. However, topically administered 

captopril and other ACE inhibitors have been shown to reduce IOP in rabbits (Watkins et 

al. 1987, Watkins et al. 1988, Vogh and Godman 1989), whereas oral captopril has been 

reported to have no significant effect on IOP in human volunteers (Al-Sereiti and Turner 

1989, Costagliola et al. 1995). Spermine NONOate and SNOG had more marked effects 

on IOP when administered intravitreally, indicating poor penetration. The traditional NO-

donating compound nitroglycerin has been shown in previous studies to reduce IOP 

(Wizemann and Wizemann 1980, Nathanson 1988, Nathanson 1992, Schuman et al. 

1994), even though Wang and Podos (1995) found no significant IOP-lowering effect after 

topical administration in monkeys. In the present study, the IOP-lowering effect of NO 

donors was fairly short, lasting only a few hours. Combination of SNP and zaprinast, a 

PDE5/6-inhibitor specific for the breakdown of cyclic GMP, prolonged the IOP-lowering 

effect by an hour. The combination of NO donors and PDE inhibitor might be one solution 

in the development of new antiglaucomatous drugs with administration once or twice a 

day. Elevated levels of NO metabolites were also found in the control eyes, indicating 

systemic distribution of metabolites or these test compounds with short half-life. The 

samples were taken 2 hours after administration (except 24 hours after intravitreal injection 

of atriopeptin III), when IOP was lowest. This time period might have been too long to 

show differences between the treated and control eyes. 

 

The literature is inconsistent regarding the mechanism by which NO lowers IOP. In order 

to elucidate this mechanism aqueous humor outflow facility and aqueous humor flow after 

NO-donating compounds were measured in the present study. Further, the action of these 

compounds on the ciliary body, the site of aqueous humor production and outflow, was 

investigated. 

 

NO-donating compounds have been shown to lower IOP in rabbits or monkeys, but 

whether the underlying mechanism is an enhancement of aqueous humor outflow has not 

previously been clearly confirmed in vivo. In the present study, we found that SNP and 

nitrosocaptopril enhanced aqueous humor outflow facility, while the control compound 

captopril did not. This would indicate a significant role of NO in the regulation of IOP by 
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aqueous humor outflow. Unfortunately, it is not possible to distinguish between trabecular 

and uveoscleral outflow in the two-level constant pressure infusion method used in the 

current study. The nitrovasodilator nitroglycerin and hydralazine have been shown to 

reduce IOP and increase outflow facility at certain drug doses, but not others, after 

intracameral administration in monkeys (Schuman et al. 1994). Topically applied 

nitroglycerin increased outflow facility in rabbits (Nathanson 1992). Inhibition of 

endogenous NOS activity resulted in a significant reduction of aqueous humor outflow 

through the human trabecular meshwork in the anterior segment perfusion model. In this 

model, application of SNP resulted in a significant increase in flow rate (Schneemann et al. 

2002). In the present study, the possible effect of pseudofacility caused by the breakdown 

of the blood-aqueous barrier was investigated by determining the aqueous humor protein 

concentration after intracameral administration of nitrosocaptopril. No difference between 

treated and control eyes was found.  

 

Once it emerged that NO-donating compounds lower IOP and enhance aqueous humor 

outflow facility, the next step was to clarify their effect on aqueous humor production by 

measuring the aqueous humor flow. It would have been interesting to investigate the 

effects of e.g. nitrosocaptopril or other NO donors, but in this measurement system, i.e. 

fluorophotometry, the test subjects were humans and thus, in view of the lack of 

toxicological data or for ethical reasons, use of these compounds was not permissible. 

Organic nitrates contain one or more nitrate functional group in their structure and their 

pharmacological effects are due to metabolic transformation of the nitrate group to NO (for 

review, see Vapaatalo 1994). In the present study we used a single oral dose of 10 mg 

isosorbide-5-mononitrate (ISMN), which had no significant effect on aqueous humor flow. 

To our knowledge, this is the first study investigating the effects of oral ISMN on aqueous 

humor flow. Higher doses of ISMN were not used because undesirable adverse effects 

shown in the pilot study might have disturbed the measurements. Since IOP after placebo 

and ISMN intake was at the same level, the rate of aqueous humor flow can be regarded 

as an indicator of the formation of aqueous humor. However, ISMN may have enhanced 

aqueous humor outflow facility and thus increased aqueous humor formation, since IOP 

remained stable. Studies on the effect of ISMN on aqueous humor outflow facility have not 

been reported. Diestelhorst and co-workers (1991) showed an increase in aqueous humor 

flow after topical ISMN, but since this increase was also found in control eyes the result 

was statistically not significant. Topical nitroglycerin has been shown to cause a decrease 
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in aqueous humor production, but to such a minor extent that it could not explain the 

ocular hypotension observed (Nathanson 1992). 

 

NO has been shown to be a transmitter of smooth muscle relaxation in the chamber angle 

and it might thus be involved in the regulation of aqueous humor dynamics. This relaxation 

of the ciliary muscle and trabecular meshwork results from an increase in intracellular 

cyclic GMP (Wiederholt et al. 1994). On the other hand, eNOS and nNOS have been 

shown to be present in the ciliary processes, indicating a role of NO in aqueous humor 

production (Osborne et al. 1993, Meyer et al. 1999). The ciliary body is an important tissue 

in the modulation of IOP in that it may regulate both aqueous humor formation and outflow. 

In the present study, it was found that NO donors with IOP-lowering ability increased cyclic 

GMP production in the porcine iris-ciliary body. SNP increased the cyclic GMP 

concentration up to ten times as compared to control. This is consistent with previous 

findings; SNP has been shown to increase cyclic GMP formation in bovine (Ding and 

Abdel-Latif 1997, Masuda et al. 1997, Kamikawatoko et al. 1998) and porcine (Fujimoto et 

al. 1998) ciliary muscle and to induce cyclic GMP-dependent ciliary muscle or trabecular 

meshwork relaxation in cats, bovines, dogs, monkeys and humans (Wiederholt et al. 1994, 

Goh et al. 1995, Azuma et al. 1997, Ding and Abdel-Latif 1997, Masuda et al. 1997, 

Kamikawatoko et al. 1998). Other NO donors, nitrosocaptopril, SNAP, SNOG, spermine 

NONOate and NOR-3, clearly increased the cyclic GMP concentration in the porcine iris-

ciliary body. SNAP has also been found to relax ciliary muscle in bovines and cats 

(Wiederholt et al. 1994, Goh et al. 1995). In the present study a guanylate cyclase (GC)-

inhibitor, ODQ, totally abolished the production of cyclic GMP after administration of SNP 

and nitrosocaptopril. These data indicate that this incubation method is valid. 

 

The effect of NO production can be beneficial to the retina, where it can increase the blood 

circulation and facilitate the flow of metabolites. SNP has been shown to have a dose-

dependent neuroprotective effect on retinal ganglion cells (Nakazawa et al. 2002). In a 

previous study, L-arginine and SNAP blocked cell death induced by anisomycin in the 

neuroblastic layer of retina in newborn rats (Guimarães et al. 2001). Excessive NO, 

however, may damage retinal tissues in a free radical oxidative mechanism by forming 

peroxynitrite. Two studies have demonstrated in vivo retinal neuronal death by intraocular 

administration of NO donors (Oku et al. 1997, Takahata et al. 2003). Induction of NOS in 

the optic nerve leads to glaucomatous damage (for review, see Neufeld 1999). A large 
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amount of the radical form of NO adequate to interact with oxygen radicals, is required to 

induce retinal damage, because NO has also pharmacologic functions such as lowering 

IOP and increasing retinal blood flow. 

 

6.3 EFFECTS OF GUANYLATE CYCLASE ACTIVATORS AND CYCLIC GMP ON THE 

MODULATION OF INTRAOCULAR PRESSURE 

 

Recent studies have demonstrated that elevation of ocular levels of cyclic GMP by GC 

activators or cyclic GMP analogs is associated with a reduction in IOP (Sugrue and Viader 

1986, Mittag et al. 1987, Nathanson 1987, Diestelhorst and Krieglstein 1989, Korenfeld 

and Becker 1989, Becker 1990, Samuelsson-Almén et al. 1991, Busch et al. 1992, Stein 

and Clack 1994, Takashima et al. 1996). In accord with this, we found in the present study 

that the GC activators, atriopeptin and YC-1, and a cyclic GMP analog, 8-Br-cGMP, 

lowered IOP in rabbits. Atriopeptin, the activator of particulate GC, had a long-lasting effect 

with duration of up to two days. This could be due to persistent levels of atriopeptin in the 

ciliary processes (Nathanson 1987). YC-1, a NO-independent activator of soluble GC, 

induced a short-lasting decrease in IOP. This is to our knowledge the first study to show 

IOP effects of YC-1. As YC-1 potentiates the stimulatory effect of NO (Friebe et al. 1996), 

a combination of YC-1 and a NO donor, e.g. SNP, would be effective in lowering IOP. Due 

to direct synergistic action of YC-1 and NO on the soluble GC, low doses of YC-1 might be 

of therapeutic value in permitting a reduction of NO donor dosage (Mülsch et al. 1997). 

Decreased IOP after administration of 8-Br-cGMP confirmed the conception that increased 

cyclic GMP is associated with lowering of IOP. Cyclic GMP concentrations in aqueous 

humor after atriopeptin and 8-Br-cGMP were high compared to control eyes, suggesting 

no significant systemic absorption. 

 

It has been proposed that atriopeptin lowers IOP by reducing aqueous humor formation 

(Mittag et al. 1987, Millar et al. 1997, Shahidullah and Wilson 1999). Samuelsson-Almén 

and co-workers (1991) found aqueous humor flow to be increased by approximately 50% 

after intracameral administration of atriopeptin in monkeys and uveoscleral outflow also 

tended to increase. Intravitreal injection of other endogenous ligands of natriuretic 

peptides, brain natriuretic peptide and C-type natriuretic peptide, reduced IOP in rabbits 

due to an increase in the outflow facility, this effect being associated with an increase in 

cyclic GMP concentration in the aqueous humor (Takashima et al. 1996, Takashima et al. 
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1998). In the present study, 8-Br-cGMP clearly increased aqueous humor outflow facility, 

which supports the earlier findings of Kee and co-workers (1994), even though they 

observed the positive effect on outflow facility only after intravitreal administration of 8-Br-

cGMP. However, Becker (1990) showed that a decrease in IOP after 8-Br-cGMP was not 

due to enhanced outflow facility as measured by a different system, tonography. 

Exogenously applied 8-Br-cGMP has been shown to relax the ciliary muscle strips 

(Masuda 1997, Kamikawatoko 1998), which would suggest a role for cyclic GMP in 

increasing outflow. 

 

In the present study, atriopeptin and YC-1 increased cyclic GMP production in the porcine 

iris-ciliary body dose-dependently, though their effect on cyclic GMP synthesis was smaller 

than with most of the NO donors. In the eye, the number of specific binding sites for 

atriopeptin is high in the ciliary body (Mantyh et al. 1987). Atriopeptin receptors, coupled to 

the activation of GC, are found to be present in the ciliary processes (Bianchi et al. 1986, 

Nathanson 1987). An increase in cyclic GMP concentration has been found in iris-ciliary 

body preparations after exposure to physiological concentrations of atriopeptin in vitro 

(Korenfeld and Becker 1989, Millar et al. 1997). 

 

6.4 NITRIC OXIDE AND CYCLIC GMP IN GLAUCOMA PATIENTS 

 

In order to investigate the clinical association between NO and glaucoma, the endogenous 

metabolites of NO were measured in glaucoma patients undergoing cataract surgery. A 

deficit in NOS-like reactivity has been shown in the ciliary muscle and outflow pathway in 

patients with primary open-angle glaucoma (Nathanson and McKee 1995b). The 

hypothesis in the present study was that NO metabolites would be lower in glaucoma 

patients as compared to control patients, this in view of the findings of Nathanson and 

McKee and our earlier results showing reduced IOP after administration of NO donors. 

However, no significant difference in NO metabolites in aqueous humor and serum were 

found between glaucoma and control patients. Glaucoma patients were further divided into 

subgroups according to the number of glaucoma drugs used, on the assumption that this 

would correlate with the degree of severity of glaucoma. The levels of NO metabolites in 

aqueous humor were fairly consistent with the conception that the more difficult it is to 

achieve the targeted IOP, the lower NOx and nitrite concentrations will be. Earlier studies 

have shown considerable variability in NO levels in the aqueous humor of glaucoma 
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patients. Aqueous humor NO levels in primary open-angle and acute angle closure 

glaucoma have been found to be higher than in control patients (Chang et al. 2000, Tsai et 

al. 2002). In another study, decreased nitrite levels were found in the aqueous humor of 

primary open-angle glaucoma patients (Doganay et al. 2002). Cyclic GMP levels in 

aqueous humor in normal-tension glaucoma patients have been shown to be lower than 

those in control patients (Galassi et al. 2000). It is not possible to say whether the 

alterations in NOS and NO metabolites in primary open-angle glaucoma are causally 

related to glaucoma or secondary manifestations of the condition. In the present study, 

92% of glaucoma patients were taking glaucoma medication and this may have masked 

the real changes in NO metabolites, which are possibly unbalanced in untreated glaucoma 

patients. It is not known whether the antiglaucomatous drugs currently used have a direct 

effect on the L-arginine-NO-cyclic GMP pathway. The control patients were matched for 

sex, age, smoking habits and organic nitrate medication to eliminate the potential 

confounding factors.  

 

An interesting finding in the present study was that systemic hypertension was diagnosed 

twice as often in glaucoma patients as in the controls. Systolic and diastolic blood 

pressures were higher in glaucoma patients, the difference in diastolic blood pressure 

being statistically significant. In previous studies, systemic hypertension has been found to 

be associated with glaucoma (Tielsch et al. 1995, Leske et al. 1996). On one hand 

systemic hypertension may damage small vessels of the optic disc, on the other, low blood 

pressure might impair perfusion of the optic nerve. The relationship between blood 

pressure and glaucoma is complex and there is therefore some variability in results of 

different studies. Hypertension has been found significantly more frequently in persons 

with high-tension open-angle glaucoma (Dielemans et al. 1995, Bonomi et al. 2000) and 

these patients also have high diastolic blood pressure (Leske et al. 1996). Results of a 

previous study suggest that systemic hypertension does not increase the risk of open-

angle glaucoma, while low perfusion pressure (blood pressure – IOP) approximately triples 

the risk. In addition, antihypertensive treatment did not increase the risk of open-angle 

glaucoma (Leske et al. 2002). Disturbed circulation and a systemic tendency to 

vasospasm may reflect endothelial dysfunction with decreased NO production in glaucoma 

patients (Drance et al. 1988, Haefliger et al. 1994, Flammer et al. 1999). 
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In conclusion, current glaucoma therapy remains that of lowering IOP. NO has a dual role 

in the pathogenesis of glaucoma; this role is dose-dependent. The overproduction of NO 

leads to retinal ganglion cell degeneration, but on the other hand NO has an important role 

in the regulation of regional blood flow in retina. NO donors have all the features of an 

optimal medical treatment for glaucoma; they reduce IOP, may provide additional 

vasodilation and may also offer neuroprotection. 
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7  SUMMARY AND CONCLUSIONS 

 

The present study was set out to establish the roles of NO and cyclic GMP in the 

modulation of IOP, the mechanism of their IOP-lowering effects and the possible clinical 

relevance of NO in aqueous humor dynamics in glaucoma patients. 

 

The main findings were the following: 

 

1. Chemically different NO donors and particulate and soluble guanylate cyclase-activating 

compounds enhanced cyclic GMP production in iris-ciliary body and they lowered IOP in 

ocular normotensive rabbits. In addition, a cyclic GMP analog lowered IOP, suggesting the 

IOP-regulatory role of cyclic GMP. 

 

2. NO donors and a cyclic GMP analog increased aqueous humor outflow facility in rabbits 

after intracameral administration, indicating the significance of that mechanism in the IOP-

lowering effect of the NO/cyclic GMP pathway. 

 

3. A single oral dose of isosorbide-5-mononitrate had no effect on aqueous humor flow in 

healthy volunteers. Since IOP after placebo and ISMN intake was at the same level, the 

rate of aqueous humor flow can be regarded as an indicator of the formation of aqueous 

humor, which may indicate that the NO/cyclic GMP pathway has no significant effect on 

aqueous humor production. 

 

4. No significant differences in NO metabolites in aqueous humor and serum were found 

between treated glaucoma and control patients. Glaucoma medications may have 

interfered with the results. 

 

In conclusion, it is well-founded to suggest that NO plays a role in the regulation of IOP. 

The evidence obtained in this study points to a contribution of cyclic GMP in this process. 

A non-toxic NO-donating or guanylate cyclase-activating compound would represent a 

new class of antiglaucomatous treatment.  
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