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ABSTRACT

Gene expression is a strictly regulated process, which involves RNA polymerase II, sequence-specific

transcription factors, general transcription factors and coregulatory proteins that cooperate with each

other to achieve transcription activation or repression from a given gene promoter at a given time

(development, growth, and homeostasis) and place (tissue/cell specificity). Androgen receptor (AR) is

a sequence-specific transcription factor that delivers the messages of male steroids (androgens) to

transcription machinery, and thus is responsible for normal sexual development and maintenance of

spermatogenesis. The AR-mediated gene transcription is initiated when androgen binds to the ligand-

binding domain (LBD) of AR, which then leads to nuclear translocation, homodimerization and

binding to the androgen response element (ARE) via the DNA-binding domain (DBD). Increasing

number of coregulatory proteins that bind androgen receptor have been identified. They enhance

(coactivators) or repress (corepressors) AR-mediated transcription via modifying chromatin structures

by histone acetylation or deacetylation and by ATPase-mediated chromatin remodelling. They can

also connect the enhancer binding proteins to basal transcription machinery or can recruit additional

regulatory proteins into the transcription machinery. The activities of transcription factors and

cofactors are regulated by covalent modifications such as phosphorylation, methylation, acetylation,

ubiquitination and sumoylation, which contribute to protein stability and structure, subcellular

localization, or protein-protein and protein-DNA interactions.

In the present study, we have characterized the functions of a novel RING finger protein,

SNURF (small nuclear RING finger), that was discovered as an AR-interacting protein. SNURF

enhances the transcriptional activity of both nuclear receptors and hormone-independent transcription

factors, such as promoter specificity protein 1 (Sp1), and thus acts as a transcriptional coactivator. In

addition to steroid-receptors, SNURF interacts with many different proteins of transcriptional control

such as steroidogenic factor 1 (SF-1) and TATA-binding protein (TBP). Moreover, it exhibits binding

activity towards nucleic acids and nucleosomes. SNURF binds various types of DNA molecules

without sequence-specificity and the DNA-binding activity of SNURF correlates with its coactivation

function in Sp1-regulated transcription. SNURF specifically regulates the expression of luteinizing

hormone (LH), which is involved in the synthesis of sex steroids in ovaries and testis, from the LHβ-

promoter by connecting two promoter elements, the distal and the proximal regulatory elements,

through interactions with SF-1 and Sp1. SNURF possesses RING finger-dependent ubiquitin E3

ligase activity and cooperates with various ubiquitin-conjugating E2 enzymes in ubiquitin-mediated

protein degradation pathway. The human counterpart of SNURF, the RNF4, has been shown to inhibit

cell growth also in a RING finger-dependent fashion. SNURF is covalently modified by self-

ubiquitination, sumoylation and phosphorylation, but the role of these modifications in SNURF

function remains elusive. SNURF associates with promyelocytic leukemia protein 3 (PML-3) through

a non-covalent interaction with small ubiquitin-like modifier 1 (SUMO-1). PML-3 is able to abolish

the coactivation function of SNURF in Sp1-regulated transcription, which parallels the ability of

PML-3 to recruit nucleoplasmic SNURF to PML nuclear bodies. Taken together, these results indicate

that SNURF is a multifunctional transcriptional coregulator and suggest an important role for SNURF

in cell growth control.
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REVIEW OF THE LITERATURE

1. TRANSCRIPTIONAL REGULATION

1.1 Regulatory elements of the gene

Eukaryotes contain three RNA polymerases (RNA polymerases I, II, and III) of which RNA

polymerase II is responsible for the transcription of protein-coding genes (mRNA genes). Gene

expression is regulated by promoter regions, which are typically located upstream of transcription start

site (+1). The core promoter region, which is generally situated within ~ -35 to + 35 of the start site, is

recognized by the basal RNA polymerase II (Pol II) transcriptional machinery. The core promote is

the minimal DNA region required for the transcription initiation complex assembly and initiation of

RNA transcription in vitro. The core promoter may contain DNA elements such as TATA-box, TFIIB

recognition element (BRE), the initiator element (Inr), and the downstream core promoter (DPE).

Each of these DNA elements is found in only a subset of core promoters; certain promoters may

contain all, none or only some of these elements. The TATA-box is found approximately in one third

of human core promoters (Suzuki et al. 2001), located around −25 to −30 of the start site and is

recognized by TATA-binding protein (TBP). The Inr element contains transcription start site(s),

associates with TBP-associated proteins (TAFIIs) of the TFIID complex and RNA polymerase II, and

can function without TATA-box element. BRE element, which is recognized by the TFIIB, is located

upstream of the TATA-box (Lagrange et al. 1998, Evans et al. 2001). The DPE element mostly exist

in TATA-less promoters and is located downstream of transcription start site (at + 28 to +32). In the

DPE-dependent basal transcription, the Inr element is required for TFIID interaction (Burke and

Kadonaga 1997, Kutach and Kadonaga 2000). These different combinations of core promoter

elements contribute to the differential regulation of gene expression. Proximal promoters are ∼6-20-nt

long sequences (such as CCAAT box, Sp1 box) located in the near vicinity of core promoter region

(at -100 to -200), and typically contribute to the efficiency of transcription initiation. The distal

transcription regulatory regions (enhancers and silencers) are located several kilobases (up- or

downstream) from the transcription start site.

The general transcription factors (GTFs), such as Pol II, TBP, and TFIIB, bind to the core

promoter region. Sequence-specific transcription factors usually recognise proximal and distal

regulatory regions and stimulate or repress the recruitment of the GTFs and Pol II to the promoter.
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The third major class of transcription regulators is the group of coregulators, which function is to

connect sequence-specific transcription factors to the GTFs or to modify chromatin structure.

1.2 General transcription machinery

The basal transcription by RNA polymerase II is a multi-step process, where preinitiation-stage is

followed by initiation, elongation, termination, and mRNA processing. The preinitiation complex

(PIC) is composed of Pol II and GTFs (TFIID, -B, -E, -F, -H, and -A), and it is assembled on the core

promoter (reviewed by Orphanides et al. 1996). The PICs can be composed of different set of factors

at distinct promoters (reviewed Müller and Tora 2003). TBP-type factors (TLFs) may play

complementing roles in transcriptional regulation from the TATA-less promoters (reviewed by

Dantonel et al. 1999 and Ohbayashi et al. 2003). Also TAFIIs, subunits of the TFIID complex, can

bind the Inr and BRE element. Also TBP-free TAFII-complexes, such as yeast SAGA, may

functionally replace the TFIID from certain promoters.

At the TATA-box containing promoters, TBP binds the core promoter and forms a binding

surface for other components of the transcription machinery by bending DNA, while some of TAFIIs

interact with Inr and DPE-element (Oelgeschläger et al. 1996, Burke et al. 1997, Chalkley et al. 1999).

The BRE element facilitates TFIIB binding to the TBP-DNA complex, and TFIIB and TFIIA stabilize

the TBP-DNA complex on the core promoter. Then TFIIB recruits TFIIF together with Pol II to the

promoter and transcription is initiated when TFIIE and TFIIH incorporate into the PIC. TFIIH

possesses helicase activity and catalyzes ATP-dependent melting of the promoter at transcription start

site (open complex formation) and is required for the promoter clearance during transcription. The

carboxy-terminal domain of the largest subunit of Pol II (CTD) is phosphorylated by TFIIH-

associated kinases during transcription initiation (Liu Y et al. 2004). The Pol II, TFIIB TFIIH and

TFIIF dissociate from the promoter and leave the remaining PIC complex (TFIID-TFIIA) at the

promoter, or alternatively, the mediator coregulatory complex may remain associated with the core

promoter together with TFIIA, -D, -E, and -H for waiting for the assembly of the second transcription

complex (reinitiation) (Yudkovsky et al. 2000). The entry of RNA polymerase II into progressive

elongation stage is followed by dephosphorylation on Ser5, and phosphorylation of Ser2 within the

CTD (Komarnitsky et al. 2000). mRNA synthesis by Pol II is boosted by TFIIF and elongation factors

such as the Elongings and ELL (Eissenberg et al. 2002, Garret et al. 1994). The mRNA processing

events (5´-end capping, intron splicing and 3´-end maturation) occur while the nascent mRNA is

being synthesized by Pol II. mRNA processing factors associate with the CTD of elongating Pol II

and perform their action at a certain time point. The transcription termination, where the transcription
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complex dissociates, generally occurs 4 kbp beyond of the poly(A) signal. Gene transcription is

repetitive and thus is able to synthesize multiple copies of identical mRNA molecule from the same

template by contacting the remaining PIC complex at transcription start site (transcription

reinitiation). Reinitiation may be down-regulated by CTD dephosphorylation by specific

phosphatases, or Pol II transcription components can be ubiquitinated and degraded by the proteasome

(Reviewed by Lin et al. 2002 and Tansey 2001, Mitsui and Sharp 1999). Recent study suggests that

long yeast genes are able to form loops, where the promoter and termination regions are brought

together in the early stages of transcriptional activation, and thus explain the use of the same factors

such as TFIIB and TFIID in transcription and termination processes (O´Sullivan et al. 2004).

1.3 Sequence-specific transcription factors

In eukaryotes, there are thousands of protein-coding genes, whose transcription by Pol II is

predominantly mediated by a network of numerous sequence-specific DNA-binding transcription

factors. These factors bind to the proximal promoter and distal transcriptional regulatory regions,

enhancers or silencers, located upstream of the promoter and induce or repress gene expression via

association with Pol II, GTFs, and cofactors (Reviewed by Tjian and Maniatis 1994). A typical

sequence-specific transcription factor has a DNA-binding domain (DBD) that mediates the binding of

the protein to specific DNA sequences. There are many different DBDs, such as basic domains helix-

loop-helix (bHLH) and leucine zipper (bZip) found in myogenic transcription factor D (MyoD) and

activator protein-1 (AP-1), respectively (Ma et al. 1994, Glover and Harrison 1995). The zinc finger

(Cys2His2) is found in promoter specificity protein-1 (Sp1) and nuclear receptors (Kadonaga et al.

1998, Schwabe et al. 1991). The helix-loop-helix domain (homeo- and ETS-domains) is found in

Hox8, and a domain with the β-scaffold is found in the nuclear factor kappa B (NF-κB) and p53

(reviewed by Grimm and Baeuerle 1993, Cho et al. 1994). Also, the regions outside the DBD and

protein-protein interactions may act to increase the specificity of DNA-binding (reviewed by

Marmorstein and Fitzgerald 2003, Janknecht et al. 1994). The bHLH-, the bZIP- and zinc finger

domains allow their dimerization when binding to DNA. The DNA-binding module can be joined to

other functional modules, such as activation domain (AD) or repression domain (ID), di- and

multimerization domain, regulatory domain and nuclear localization signal (NLS). Transcription

factors are translocated to nucleus via NLS or nuclear translocation can be delivered along with other

proteins. The transactivation and repression domains are highly variable regions and they act as a

platform for other transcriptional regulators, such as coactivators and corepressors. For instance, Sp1

contains two glutamine-rich transactivation domains, which bind other transcription proteins such as
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TAFII130 (Courey and Tjian 1988, Gill et al. 1994). Some transcription factors are controlled via the

regulatory region, such as nuclear receptors via ligand-binding domain (LBD).

1.3.1 General characteristics of the nuclear receptor family

Nuclear receptors (NRs) comprise the largest family of transcription factors and are involved in the

regulation of a wide variety of cellular processes from development to homeostasis. They are a family

of ligand-inducible transcription factors that regulate gene expression in response to small lipophilic

molecules such as steroid hormones, T3/T4 thyroid hormone, vitamin D, retinoids and eicosanoids.

The human genome contains 48 genes encoding for NRs, and the total amount of different NRs is

even higher due to alternative splicing and/or alternative promoter usage (Robinson-Rechavi et al.

2001, Kastner et al. 1990). All members of the NR family share a modular structure consisting of

distinct domains (Fig. 1).

              

Fig. 1. The structural and functional domains of a nuclear receptor. AF-1, the activation function 1; DBD, the
DNA binding domain; CTE, the carboxyl-terminal extension; The hinge region; LBD, the ligand-binding
domain; AF-2, the activation function 2.

1.3.1.1 DNA-binding domain

The DNA-binding domain assembles with the NRs in a defined configuration into the response-

element (RE) of the ligand-responsive gene (reviewed by Glass 1994). The DBD consisting of 66-68

amino acids is the most conserved region among NRs. Three dimensional structures of many DBDs

have been determined in a complex with the DNA response element and have revealed that DBDs are

structurally conserved as well. The DBD contains two zinc-binding modules, where four conserved

cysteine residues (Cys4) coordinate one zinc ion in each binding module (Freedman et al. 1988,

reviewed by Khorasanizadeh and Rastinejad 2001). The DBD involves two α-helices; the α-helix1

resides after the first zinc finger, and it is responsible for specific binding of the factor to the major

groove of the half-site (six to eight nucleotides) within the RE; the α-helix2 is located after the second
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zinc finger, and it is not in contact with DNA, but is important for the overall folding of the DBD

(Schwabe et al. 1993, Alroy and Freedman 1992, Luisi et al. 1991, reviewed by Freedman 1992).

Many NRs bind DNA as homo- or heterodimers, where the N-terminal residues of the second zinc

finger in both receptors mediate dimerization (Forman et al. 1992, Kurokawa et al. 1993, Dahlman-

Wright et al. 1991, reviewed by Glass 1994). Receptor dimerization is dependent on the DNA, and the

response element must contain two half-sites in a specific orientation  (inverted or direct repeat, non-

repeat) and spacing (1-5 nucleotides) (Khorasaizadeh et al. 2001). Some NRs such as thyroid hormone

receptor (T3R, Quack et al. 2001), constitutive androstane receptor (CAR, Frank et al. 2003) and SF-1

(Wilson et al. 1993), can bind RE as a monomer, where the carboxyl-terminal extension (CTE) of the

DBD associates with the 5´ flanking sequence of the DNA half-site (Harding and Lazar 1995, Meinke

and Sigler 1999). The CTE is a part of the hinge region and a variable region among NRs. The CTD

of TR and VDR forms a third α-helix, which is needed for higher affinity DNA binding and correct

spacing with RXR heterodimer by making extensive contacts along the phosphate backbone of DNA

(Rastinejad et al. 1995, Shaffer and Gewirth 2002). In addition to DNA-binding and dimerization,

DBD binds various regulatory proteins such as non-histone proteins HMGB1- and -2, which facilitate

NR binding to DNA and the transcription activity of NR (Melvin et al. 2002). The border region

between the DBD and hinge region in steroid receptors typically contains a NLS for nuclear transport

(Poukka et al. 2000).

1.3.1.2 Ligand-binding domain

Numerous three-dimensional structures of the ligand-binding domains (LBDs) bound to their

appropriate ligands have been solved (reviewed by Renaud and Moras 2000). The C-terminal LBD is

positioned as three-layer sandwich to form a hydrophobic pocket for the ligand (Wurtz et al. 1996,

Bourguet et al. 2000a). Helix 12 sticks out from the LBD core in the absence of cognate ligand, but it

is rearranged in response to ligand binding by folding against the core of the LBD and creates a lid

over the ligand-binding pocket (Bourguet et al. 1995, Renaud et al. 1995, Kallenberger et al. 2003).

Helix 12 contains the activation function 2, the AF-2 domain, which is important for the binding of

coregulators (Danielian et al. 1992). In the agonist-induced conformation, the LBD displaces co-

repressors and reveals a binding surface for coactivators with a leucine-rich consensus sequence, the

LXXLL-motif (L=leucine, X= any amino acid, also called NR box) (Chen H et al. 1997, Ogryzko et

al. 1996). In the antagonist-bound ER, helix 12 is displaced from the position required for coactivator

binding and blocks the binding regions of coactivators in helix 3 and 4 (Brzozowski et al. 1997, Shiau

et al. 1998). Some antagonists, so-called inverse-agonists, are able to facilitate corepressor binding via

a conformational change in LBD (Xu et al. 2002). In the absence of a ligand, corepressors bind to
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LBD and partially stabilize the ligand-free conformation (Pissios et al. 2000, Pratt and Toft 1997).

Some NRs, such as liver receptor homolog 1 (LHR-1) and estrogen-related receptor 3 (ERR3), are in

an active conformation with an empty ligand pocket (Sablin et al. 2003, Greschik et al. 2002) or the

ligand-binding pocket can be occupied with the side chains of the NR (Kallen et al. 2004).

Interestingly, nur-related factor 1 (Nurr1) lacks the ligand-binding pocket and cofactor binding sites,

but it is continuously active because of its fold that mimics the agonist-bound LBD (Wang Z et al.

2003). NRs, whose physiological ligands are not yet known, are called orphan receptors, such as

steroidogenic factor 1 (SF-1) (Wilson et al. 1993), Nurr1 and testis receptors (TR2 and TR4). In

addition to binding to ligands and coregulators, LBD is able to bind heat shock proteins and form

dimers in the absence of DNA (Lee et al. 1996, Glass 1994, Bourguet et al. 2000b, Depoix et al. 2001,

reviewed by Pratt and Toft 1997).

1.3.1.3 Activation function 1

The activation function 1 (AF-1) region is located in the N-terminal region of NR, which is the most

variable region among NRs. Activities of different AF-1 domains vary considerably. The activity of

AF-1 is not dependent on the ligand and has been defined to be continuously active (Tora et al. 1989).

AF-1 is important in mediating cell type- and promoter-specific responses (Meyer et al. 1992,

McInerney and Katzenellenbogen 1996, Ikonen et al. 1997). AF-1 can function independently, but it

communicates with AF-2 to gain the full response in transcription (Kraus et al. 1995, Ikonen et al.

1997, Tetel et al. 1999, Ali et al. 1993). In vitro binding studies with purified AF-1 and AF-2

fragments of progesterone receptor (PR) showed that these two domains bind each other directly

(Tetel et al. 1999). Under physiological conditions, ligand binding to PR induces a conformation

change and thus facilitates the interaction between AF-1 and AF-2, and coactivators have been shown

to stabilize this structure (Tetel et al. 1999). In addition to coactivator binding, AF-1 is able to

associate with GTFs (Hentschke and Borgmeyer 2003, Deblois and Giguere 2003, reviewed by Beato

and Sanchez-Pacheco 1996).

NRs have been divided into six subfamilies on the basis of the evolution of the conserved

DNA- and ligand-binding domains, and differences in the mechanism of action (DNA binding and

dimerization) (Laudet 1997, NRNC, nuclear receptor nomenclature committee 1999, and an update of

the nomenclature is available in a web site, http://www.ens-lyon.fr/LBMC/laudet/nomenc.html). The

subfamily I is the largest subfamily containing thyroid receptor (TR), peroxisome proliferator

activated receptors (PPAR), vitamin D receptor (VDR), and all-trans retinoic acid receptors (RAR).

The subfamily II contains 9-cis retinoid acid receptor (RXR), and testis receptors (TR2 and TR4).
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Steroid receptors, including androgen receptor, estrogen receptors (ERα and -β), progesterone

receptor (PR), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), and estrogen receptor-

regulated receptors (ERRs), which bind DNA as a homodimer upon ligand binding belong to the

group of the subfamily III. The subfamily IV includes the nur-related factor 1 (Nurr1), and the

subfamily V contains steroidogenic factor 1 (SF-1) that binds DNA as a monomer. The subfamily VI

contains RTR that forms homodimers. Finally, there is also an additional subfamily called subfamily 0

that contains receptors that lack one of the conserved domains (DBD or LBD), such as DAX1.

Members of subfamilies I and IV are able to form heterodimers with RXR while binding to DNA.

1.3.2 Androgen receptor (AR)

Androgen receptor (AR) plays a key role in the proper development and function of male reproductive

organs in response to the androgens (testosterone and 5α-dihydrotestossterone, DHT). AR is

expressed in a variety of genital tissues (testis, prostate, and ovaries) and also in non-genital tissues,

such as the brain (reviewed by Quigley et al. 1995). The human AR gene is located on the long arm on

X chromosome (q11-12) and encodes a protein with 919 amino acid residues containing N-terminal

AF-1 domain (142-485 aa), DBD (529-618 aa), LBD (662-919 aa) and the hinge region with a

bipartite nuclear localization signal (608-625 aa). The AR gene is autoregulated by androgens, and up-

and down-regulation have been reported in different cell lines. Transcription factors that upregulate

AR are promoter specificity protein 1 (Sp1), cAMP-response element binding protein (CREB) and c-

myc, while NF-κB and NF-1 have been shown to down-regulate the AR gene (Chen S et al. 1997,

Mizokami et al. 1994, Grad et al. 1999, Supakar et al. 1995, Song et al. 1999). Examples of androgen-

induced genes are prostate-specific antigen (PSA), probasin, and antiapoptotic factor p21, while

androgen-repressed genes are the tumor suppressing genes serpin and maspin (Nelson et al. 2002,

Eder et al. 2003, Jiang and Wang 2003, Umar 2003a and 2003b).

The N-terminal region of AR contains a number of amino acid repeat sequences, including

poly-glutamine (Q), poly-glycine (G) and poly-proline (P) repeats. The N-terminus is structurally

flexible and adopts a more stable helical conformation upon specific protein-protein interactions with

e.g. TFIIF or p160, and consequently it is more potent for additional protein binding (reviewed Reid et

al. 2002a, 2002b, and 2003). The N-terminal region of AR is highly active compared to other NRs. The

primary transcription activation domain of AR is located in the N-terminal region, whereas the LBD

harbors a comparatively weak activation function (MacLean et al. 1997, Simental et al. 1991).

Interaction between the N- and C-terminal LBD regions, where helix 12 of LBD and the FXXLF

sequence of N-terminus forms the intramolecular interaction, is important for AR-dependent gene
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activation (Steketee et al. 2002, Ikonen et al. 1997, reviewed by He and Wilson 2002). AR binds DNA

as a homodimer, recognizes the sequence of DNA often as a direct repeat sequence and adopts the

“head-to-head” binding configuration.

Since AR is located on X chromosome and therefore present only as a single copy in males,

mutations within this gene will result in a direct phenotypic manifestation. The shorter length of the

N-terminal poly-Q stretch has an increased risk of prostate cancer and patterned baldness, while

shorter poly-Q repeats correlates with infertility (Correa-Cerro et al. 1999, Edwards et al. 1999, Ellis

et al. 2001, reviewed by McEwan 2001b). Expansion of the poly-Q repeat to more than 40 residues

results into misfolding and aggregation of AR and causes a spial bulbar muscular atrophy (Kennedy´s

disease), a neurodegenerative condition associated with selective neuronal cell death in brainstem and

spinal cord (reviewed by McEwan 2001b). Natural AR mutations that cause partial or complete

androgen insensitivity syndrome (AIS) have proven the significance of AR in normal male sex

differentiation. In complete AIS, males are phenotypically females with female external genitalia. In

partial AIS, the male phenotype varies from near-normal male to near-normal female (reviewed by

Quigley et al. 1995 and Avila et al. 2001).

1.3.3 Androgen action

Testis is responsible for the production of sperm and the synthesis of testosterone in the adult male,

but also the adrenal glands produce other less potent androgens, such as androstenedione (Konety et

al. 2001). Both testicular functions are regulated by the central nervous system (CNS) via follicle-

stimulating hormone (FSH) and luteinizing hormone (LH). LH regulates testosterone (T) synthesis in

Leydig cells, and FSH controls the spermatogenesis in Sertoli cells. Mutations in LH leads to the

absence of Leydig cells, azoospermic and lack of spontaneous puberty (Weiss et al. 1992). Secretion

of LH and FSH from the anterior pituitary is regulated by gonadotropin hormone-releasing hormone

(GnRH), which is synthesized in hypothalamus and secreted as pulses. GnRH recognizes and binds to

its receptors on pituitary gonatropes, which then leads to the release of LH and FSH (Clarke and

Cummins 1982). Testicular hormones (testosterone, estradiol (E2) and inhibin) decrease FSH and LH

secretion by decreasing the sensitivity of the pituitary to GnRH stimulation and GnRH production

(Matsumoto and Bremner 1984, Sheckter et al. 1989). In testis, LH stimulates directly the synthesis of

a steroidogenic acute regulatory (StAR) protein, which has an essential role in the transfer of

cholesterol from the outer to the inner mitochondrial membrane where cholesterol is converted to

pregnenolone. Thereafter, steroid hormone biosynthesis takes place in the smooth endoplasmic

reticulum. Testosterone, the most abundant androgen, is released from Leydic cells into circulation

and diffuses into various cells. As a lipophilic ligand, testosterone enters the cytoplasm by diffusing
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through the plasma membrane (Fig. 2). In certain types of cells, testosterone is converted by the 5α-

reductase to 5α-dihydrotestosterone (DHT), which is the more active androgen. Testosterone regulates

the feedback of gonadotrophin synthesis and secretion, spermatogenesis and sexual differentation of

wolffian ducts, whereas DHT regulates the differentation and development of the prostate, the

external genetalia and several secondary male characteristics during puberty.

            

Fig. 2. Simplified model of the androgen action in cell. The lipid hormone, testosterone, enters to cytoplasm
through plasma membrane by diffusion. Testosterone can be converted to the more active 5α-
dihydrotestosterone (DHT) by the 5α-reductase. When androgen binds to AR, AR-bound inhibitory proteins
(hsp, heat scock protein) dissoate and AR is transported into the nucleus. Alternatively, AR may bind hormone
within the nucleus. Further, AR dimerizes, and binds to appropriate response elements (ARE) and regulates
gene transcription. Coregulator proteins (CoAc) contact the AR dimer and PIC complex (Pol II, TBP, TFIIA
and B components are indicated) and modulate hormone-dependent transcription.

The newly synthesized AR is bound by a number of molecular chaperones such as the heat

shock protein (Hsp) -90, -70, -54, -56, p23 and by certain immunophilins (Davies et al. 2002, Pratt

and Toft 1997) and stays in an inactive form (Fig. 2). These molecular chaperones appear to maintain

the receptor in a conformation capable of binding its ligand (reviewed by Pratt and Toft 1997 and

McEwan et al. 2001a). Upon testosterone or DHT binding to LBD, AR undergoes a series of

conformational changes, which leads to the release of Hsps and results in the translocation of activated
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AR into the nucleus. It has also shown that these molecular chaperons may accompany the receptor

into the nucleus (Kaul et al. 2002). In the nucleus, AR homodimerizes and DBD recognizes the

androgen response elements (AREs) of the androgen-responsive genes.

The PSA gene is the most well-studied AR target gene. In addition to Sp1 and AP-1 binding

sites, the regulatory regions of PSA contains at least three AREs, two of which locate in the proximal

promoter region and the third one in the enhancer region (Cleutjens et al. 1997). Chromatin

immunoprecipitation (ChIP) with antibodies against acetylated histones showed that upon androgen

stimulation, the regions around the three AREs contain acetylated histones, indicating the

rearrangement of chromatin structure by ligand-bound AR (Shang et al. 2002). In the same study,

coactivators such as CBP and GRIP1 were also shown to be recruited to the AREs upon ligand-

binding (Shang et al. 2002), but in the case of antagonist (bicalutamide) binding to AR, the proximal

promoter AREs were associated by NCoR and SMRT, which indicates that antagonist-bound AR was

recruiting histone deacetylase activity (Shang et al. 2002). AR may communicate with the general

transcription machinery by direct protein-protein interactions or indirectly through coregulators

(reviewed by Heinlein and Chang 2002). AR may also regulate transcription by enhancing the

assembly of the PIC complex, clearance of the promoter region and elongation. (McEwan and

Gustafsson 1997, Lee et al. 2000, Lee et al. 2001, Kang et al. 2002).

1.4 Transcriptional coregulators

Coregulators are proteins that can interact with sequence-specific transcription factors and play an

important role in mediating or facilitating the effects of these factors to the basal transcription

machinery either via direct interactions with components of the basal transcription machinery or

through modification of chromatin structure (Fig. 3). These factors can either enhance (coactivators)

or repress (corepressors) gene transcription (reviewed by McKenna and O´Malley 2002, reviewed by

Näär et al. 2001, Robyr et al. 2000). Coregulators can be divided into four groups. The first group

consists of histone covalent modifiers, histone acetyltransferases (HATs), histone methyltransferases

(HMTs), and histone deacetylases (HDACs), that can add acetyl- and methyl-groups or remove

acetyl-groups from chromatin, respectively, and thus regulate the chromatin access for other

transcription regulators (reviewed by Schreiber and Bernstein 2002 and Cheung 2000 and Jenuwein

and Allis 2001). The second group contains ATP-dependent chromatin-modelling complexes, such as

the switch/sucrose non-fermentable (SWI/SNF) family of proteins, which disrupt the condensed

structure of chromatin and increase the accessibility of transcription regulators in a non-covalent
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manner. The third group includes mediators, such as TRAP/DRIP, which act as bridging factors

between general transcription machinery and transcription factors through protein-protein interactions.

              

Fig. 3. The action of transcriptional coregulators. Coactivators; the chromatin remodelling complex (e.g.
SWI/SNF complex) modifies the chromatin structure; the histone acetylase complex (HATs, e.g. PCAF
complex) modifies the chromatin structure via covalent histone acetylation; the mediator complex (e.g. TRAP
and TRIP complexes) connects sequence-specific transcription factors to basal transcription machinery via
protein-protein-interactions. Corepressors; the histone deacetylase complex (HDACs, e.g. Sin3-HDAC)
modifies chromatin structure by removing acetyl-groups of histone tails. NR; nuclear receptor, TBP; TATA-
binding protein, TAFs; TBP-associating proteins, A-, B-, E-, F-, H-; TFIIA, TFIIB, TFIIE, TFIIF, TFIIH,
respectively, Pol II; RNA polymerase II.            ; protein-protein-interactions;                  ; chromatin modifying
activity.

And the fourth group is characterised by coregulators of diverse or unknown function (reviewed by

Näär et al. 2001, Roeder 1998, McKenna et al. 1999). The breast cancer susceptibility gene 1

(BRCA1) is one member of the fourth group. BRCA1 possesses ubiquitin ligase activity in

combination with BARD (BRCA1-associated RING domain protein 1), it interacts with various

transcription proteins, and acts as a coactivator for p53 and AR, and corepressor for unliganded NRs

(Brzovic et al. 2001, Hashizume et al. 2001, Scully et al. 1997, Bochar et al. 2000, Yarden and Brody

1999, Zhang et al. 1998, Park et al. 2000). The ubiquitin-conjugating enzyme UbcH7 is a coactivator

for steroid receptors (Verma et al. 2004). PIAS (protein inhibitor of activated signal transducer and
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activator of transcription) proteins are SUMO ligases that have been shown to modulate the activities

of NRs (Kotaja et al. 2002, Tan et al. 2002). The non-histone proteins HMG-1 and -2 are known to

enhance the transcription of steroid receptors and p53 via increasing DNA-binding activity of

receptors (Boonyaratanakornkit et al. 1998, Melvin and Edwards 1999). Nuclear receptor corepressors

N-CoR (NR corepressor) and SMRT (silencing mediator for RAR and TR) bind unliganded NRs and

recruit histone deacetylases for silencing gene expression (Chen and Evans 1995, Hörlein et al. 1995,

Li et al. 2000, Wen et al. 2000).

It has now become clear that the transcriptional coactivation or corepression involves a

dynamic interplay of multiple distinct coregulator complexes, and rapid promoter association and

dissociation of various coregulators occurs temporally and in a cyclic manner (Burakov et al. 2002,

Shang et al. 2000, Acevedo et al. 2003, Liu XF et al. 2004). In addition, it seems that there is no

specific order for the function of coregulators; rather, each promoter possesses its own characteristic

order in recruiting and displacing transcription factors and coregulators.

1.4.1 Covalent modifiers

Histone covalent modifiers alter the chromatin structure by modifying the N-terminal tails of core

histones. Acetylation of lysine residues by histone acetyltransferases is thought to neutralize the basic

charge of histone tails and thus decrease their affinity towards negatively charged DNA and loosen the

chromatin structure. Furthermore, histone acetylation attracts other transcription coregulators such as

the chromatin modelling complexes (Lee et al. 1993, Anderson et al. 2001, Sewack et al. 2001).

Histone deacetylases catalyze removal of acetyl groups from histones resulting in gene silencing.

Methylation of histones by histone methyltransferases is associated with gene silencing and activation

depending on the specific lysine residue and the level of the modification (mono, di or tri).

1.4.1.1 Histone acetyltransferases, HATs

Four families of histone acetyltransferases have been identified in the nucleus; PCAF/GCN5, MYST,

p300/CBP and the p160 protein family. They all contain an acetyl-CoA binding site and they have

been found as a part of large complexes, such as SAGA, ADA and NuA4. Each of these complexes

contains a specific composition of subunits, and thus has distinct histone substrates and target

complexes to distinct gene promoters via interaction with different transcription factors (reviewed by
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Roth 2001). CREB-binding protein (CBP) and p300 share several conserved functional domains and

are rather general and diversified transcriptional coactivators (Arany et al. 1994, and reviewed by

Janknecht and Hunter 1996). Ito T et al. (2000) showed that acetylation of histones by p300/CBP

favors H2A/H2B dimers to escape from nucleosomes and enhance transcription. Many nuclear

receptors and other transcription factors, such as p53 and general transcription factors TBP, TFIIB and

TFIIF, interact with p300/CBP, indicating that p300/CBP also acts as a connector between sequence-

specific and general transcription factors (reviewed by Chan 2001). p300/CBP has also been shown to

form multicomponent coactivator complexes with other HATs, like pCAF, SRC-1 and SCR-3

(Ogryzko et al. 1996, Yao et al. 1996, Chen H et al. 1997). Steroid receptor coactivator 1, SRC-1

(NcoA-1), a member of the p160 family, is a common coactivator for nuclear receptors and harbors

the histone acetyltransferase activity in its C-terminal region. The central region of SRC-1 contains a

nuclear receptor-interacting region within three LXXLL-motifs (NR-box) (Ornate et al. 1995). SRC-1

knock out mice revealed that SRC-1 is needed for efficient steroid hormone action especially for

estrogen and progesterone action in the uterus and mammary gland and for androgen action in the

prostate and testis (Xu et al. 1998). Later on, it was reported that SRC-1 and AR expression levels

were elevated in recurrent prostate cancer (Gregory et al. 2001). SRC-2 (TIF2/GRIP1/NcoA-2) and

SRC-3 are coactivators for NRs, but they are able to coactivate other transcription factors. Finally,

several HATs like p300/CBP, TIP60 and PCAF can acetylate non-histone proteins such as p53,

HMG-1, and AR (Sakaguchi et al. 1998, Barlev et al. 2001, Munshi et al. 1998, Fu et al. 2000,

Gaughan et al. 2002). Acetylation of HMG-1 results in the disassembly of enhancesomes and

silencing of transcription (Munshi et al. 1998). Acetylation of AR controls co-regulation recruitment

and has been shown to promote growth of prostate cancer (Fu et al. 2000, Fu et al. 2003).

1.4.1.2 Histone deacetylases, HDACs

Gene silencing is often associated with deacetylation of histones. Histone deacetylase complexes,

HDACs, catalyze removal of acetyl groups from lysine residues not only from histones, but also from

non-histone proteins. Histone acetylases HDAC1 and HDAC2 are subunits of switch-independent 3

protein (Sin3) complex and ATPase-dependent chromatin remodelling NuRD complex (reviewed by

Khochbin 2001). In lymphocytes, the DNA-binding protein Ikaros can recruit NuRD complex to the

regions of heterochromatin, and it has been suggested to maintain the inactive state of chromatin or

remodel active chromatin structure to inaccessible structure (Kim J et al. 1999). Also a transcription

repressor, KRAB-zinc finger protein (KAP-1), recruits NuRD to specific promoters to repress

transcription (Schultz et al. 2001). Corepressors of nuclear receptors, SMRT and NcoR, interact

directly with HDAC3 and stimulate its deacetylase activity (Fischle et al. 2002, Li et al. 2000, Zhang

et al. 2002, Wen et al. 2000). Interestingly, antiestrogen- and promoter-bound ER is able to
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sequentially recruit N-CoR-HDAC3-complex and NuRD-HDAC1 to the promoter region, which

results in H3 and H4 deacetylation and release of Poll II from the promoter. The latter event might

occur through remodelling chromatin structure by NuRD (Liu XF et al. 2004).

1.4.1.3 Histone methyltransferases, HMTs

Histones H3 and H4 can be methylated on lysine or arginine residues by lysine methyltransferases,

such as Suv39HI and arginine methyltransferases like CARM1/PRMT4 and PRMT1 (Rea et al. 2000,

Strahl et al. 2001, Ma et al. 2001). CARM 1 is a coactivator for nuclear receptors, but this activity

takes place only in the presence of p300/CBP and p160 (Chen et al. 1999, Koh et al. 2001).

Interestingly, CARM1 was found to be integrated with SWI/SNF remodelling components to form

nuclear methylation activator complex, NUMAC (Xu et al. 2004). NUMAC coactivated ER-mediated

transcription, and CARM1 stimulated the chromatin remodelling activity of NUMAC. HMT activity

can be recruited to chromatin by the methyl-CpG-binding protein MeCP2, which has shown to

enhance methylation of lysine 9 in H3 and lead to gene silencing (Fuks et al. 2003). On the contrary,

the H3-Lys9 methylation is required for DNA methylation (Tamaru and Selker 2001). PRMT1 and

CARM1 can also catalyze methylation of non-histone proteins like STAT1 and CBP, respectively,

and in both systems methylation inhibits recruitment of coregulators (Mowen et al. 2001, Xu et al.

2001).

1.4.2 ATP-dependent chromatin remodelling

ATP-dependent chromatin remodelling increases the accessibility for regulatory proteins to recognize

and interact with their specific target elements on DNA through various mechanisms. They can, for

instance, remove histones from the promoter region, change nucleosome positions or replace histones

with histone variants (Reinke and Horz 2003, Fazzio et al. 2003, Krogan et al. 2003). Chromatin

remodelling complexes all have an ATP-hydrolyzing core that exhibits homology to the helicase

family proteins, which, in turn, catalyze the progressive separation of duplex DNA into single-

stranded DNA (reviewed by Flaus and Owen-Hughes 2001). Other subunits of these complexes are

thought to modulate the remodelling activity of the ATPase subunit, or they participate in targeting

the remodelling complexes to specific promoters (Ito et al. 1999, reviewed by Längst and Becker

2001, Xu et al. 2004). There are four major chromatin remodelling family: ISWI, SWI2, CHD and

Ino80. ISWI-family members, such as human chromatin accessibility complex hCHRAC and human

nucleosome remodelling factor, hNURF, contain C-terminal SAINT-like domain, which binds both

DNA and proteins, within ATPase subunit (Grüne et al. 2003). The complex remodels nucleosomes

without disruption or displacement of the histone octamer, but catalyze nucleosome sliding and this
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activity is dependent of histone H4 tails (Hamiche et al. 1999, Längst et al. 1999, Clapier et al. 2001,

Schwanbeck et al. 2004). CHD-family members like human NuRD contains the chromodomain that

mediates specific interaction with proteins (Kelley et al. 1999). The NuRD complex contains also

histone deacetylation subunits and has been suggested to play a repressive role in nuclear receptor-

mediated transcription (Feng and Zhang 2003, Underhill et al. 2000, Fujita et al. 2003, Fujita et al.

2004, Liu XF et al. 2004). The SWI/SNF-family members, such as human NUMAC and BAF, and

yeast SWI/SNF and RSC, are characterized by ATPases with a bromodomain that is involved in

binding with acetylated peptide (Martens et al. 2003). The SWI/SNF complexes that contain BRG-1

as an ATPase subunit, have been proposed to be essential in steroid receptor-dependent chromatin

remodelling and gene regulation (Direnzo et al. 2000, Fryer and Archer 1998, Huang et al. 2003, Xu

et al. 2004). In the Ino80 family, the ATPase domain is split into two segments by an insert, and so

far, only yeast members, Ino80.com and SWR.com, of this family have been identified. The

remodelling activity of CWR complex can exchange canonical H2A for H2A variants (Krogan et al.

2003, Mizuguchi et al. 2004).

1.4.3 Mediators

The Mediator complex was initially identified in yeast cells, while searching proteins that interact

with the unphosphorylated C-terminal domain (CTD) of the largest subunit of Pol II (Flanagan et al.

1991, Thompson et al. 1993, Hengartner et al. 1995, Kim et al. 1994). The yeast and metazoan

Mediators are multisubunit complexes containing from 7 to 25 different proteins. The human mediator

complexes isolated by different laboratories include the TRAP, DRIP, ARC, SMCC, NAT, and

PC2/CRSP complexes (Fondell et al. 1996, Fondell et al. 1999, Boyer et al. 1999, Ito et al. 2002, Näär

et al. 1999, Sun et al. 1998, Rachez et al. 1998, Rachez et al. 1999, reviewed by Malik and Roeder

2000, Ryu et al. 1999). These complexes share similar subunit composition with each other, and part

of their subunits are related to yeast Mediator components. Thyroid-hormone-receptor-associated

protein (TRAP) and vitamin D-interacting proteins (DRIP) were copurified with ligand-bound TR and

VDR, respectively, and were found to act as coactivators (Fondell et al. 1996, Rachez et al. 1999).

The 220-kDa subunit of these complexes, referred to as TRAP220 and DRIP230, contains the

LXXXL-motif for direct NR binding (Yan et al. 2000). TRAP220 knock-out mice fail to develop

beyond 10.5 days postconception, and fibroblast derived from TRAP220 -/- embryos do not maintain

efficient TR-mediated activation (Ito M et al. 2000). The negative regulator of activated transcription

(NAT) and SRB/mediator coactivation complex (SMCC) are also able to repress both induced and

basal transcription (Akoulitchev et al. 2000, Gu et al. 1999, Sun et al. 1998). Mediators can interact

with Pol II and general transcription factors TBP, TFIIB, TFIIE and TFIIF (reviewed by Malik and
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Roeder 2000, Park et al. 2001). Structural studies of yeast Mediator, CRSP (cofactor required for Sp1

activation) and TRAP complexes by electron microscopy have revealed that mediators can bind Pol II

through multiple domains (Asturias et al. 1999, Taatjes et al. 2002, Dotson et al. 2000, Näär 2002) and

that the conformation of mediator is significantly altered upon binding to Pol II or activator protein.

Interestingly, Mediator and p300/CBP-SRC function synergistically during ER-mediated

transcription, and ER-bound mediator promotes the formation of the PIC complex for subsequent

rounds of transcription reinitiation (Acevedo et al. 2003).

2. RING FINGER PROTEINS

The RING finger motif was originally named after a protein that was encoded by the Really

Interesting New Gene (Freemont 2000, Lovering et al.1993). To date, hundreds of members of the

RING finger protein family have been identified. RING finger motifs are found in many regulatory

proteins throughout the plant, animal, fungal, viral and protozoan kingdom. RING finger proteins are

localized both in the cell nucleus and cytoplasm. These proteins function in a many cellular processes,

including oncogenesis, apoptosis, development, viral replication and protein degradation. Several

RING proteins are implicated in human diseases. For example, PML is responsible for acute

promyelocytic leukemia when it forms a fusion protein with retinoid acid receptor α (RARα) (Jensen

et al. 2001) and RING finger motif of BRCA1 (Breast Cancer gene 1) is a site for numerous mutations

found in families genetically predisposed to breast and ovarian cancer (Ruffner et al. 2001). Parkin

protein is disrupted in autosomal recessive familial juveline parkinsonism (AP-JP). Many viral RING

finger proteins are also critical for virus replication (Saurin et al. 1996).

2.1 RING finger domain structure

Zinc-binding domains are common, relatively small protein motifs that fold around one or more zinc

ions. These domains have been divided into a number of classes, based primarily on the number and

the arrangement of the zinc-chelating histidine and cysteine residues (Schwabe and Klug 1994). For

instance, the classical zinc finger motif (ZnF), exemplified by the ZnFs of the transcription factor

TFIIIA (Miller et al. 1985), is characterised by two conserved cysteines and histidines (C2H2), which

bind tetrahedrally to a zinc atom. Another class of zinc finger proteins has been described in the

nuclear receptor family of proteins, where the motif binds two zinc atoms to form a single folded

domain with four cysteine ligands for each zinc (reviewed by Schwabe and Rhodes 1991). The zinc

finger found in GAL4 DNA binding domain (Marmorstein et al. 1992, Kraulis et al. 1992, Baleja et

al. 1992), binds two zinc atoms through six cysteines with the metals sharing two of the ligands.
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GATA-type ZnF contains a zinc atom coordinated by the conserved four cysteines (de Pater et al.

1996). RING finger (C3HC4, C3H2C3), FYVE finger (C5HC2 or C8), PHD finger (C4HC3), DnaJ

cysteine-rich domain (C8), LIM (C2HC4C/H/D) and GCM domain (C6H2) each posses two binding

pockets formed by eight zinc-coordinating residues (Barlow et al. 1994, Misra and Hurley 1999,

Pascual et al. 2000, Martinez-Yamout et al. 2000, Cohen et al.2003, Freyd et al. 1990, Crawford et al.

1994). RING, PHD and Fyve motifs use a cross-brace zinc ligation system, but the

                                          

Fig. 4. The cysteine (C)/histidine (H) arrangement in the RING finger and RING-finger-like (PHD, Fyve, LIM,
DnaJ, and GCM) motifs. Quartettes of zinc-coordinating residues are connected by lines.

LIM domain displays a striking structural similarity to domains of the GR and GATA-1 transcription

factors (Fig. 4).

Only relatively scarce structural data of RING finger domains are presently available, partly

because these domains have a tendency to aggregate and precipitate when expressed and concentrated.

RING finger is a motif of 40 to 60 residues, where the conserved eight metal binding residues
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(cysteines and histidines) bind two divalent zinc ions. There are two different variants, the C3HC4

(RING-CH) and a C3H2C3 -type (RING-H2), which are clearly related despite the presence of cysteine

(C) or histidine (H) in the fifth position. The spacing of cysteines and histidine in the RING-finger

motif is C-x2-C-x(9-39)-C-x(1-3)-H-x(2-3)-C/H-x2-C-x(4-48)-C-x2-C, where x is any amino acid. Four pairs

of metal-binding residues sequester two zinc atoms at distinct tetrahedral sites (Zheng et al. 2000).

The first and third pairs (C4-pair) ligate the zinc ion in position 1, while the zinc in position 2 is

ligated by the second and the fourth pair (C3H) of the RING finger motif. The structure of the zinc

ligation is unique and is referred to as the "cross-brace" motif (Fig. 5), which is also found in PHD

and Fyve domains. Within the RING domain the sulphydryl group of cysteine and the imidazolyl

nitrogen of histidine are ligating the metal ions (Barlow et al. 1994, Everett et al. 1993). Conserved

metal-binding residues can be substituted for other metal-binding amino acids (Asp and Thr).

Exceptionally in the RAG-1 (recombination-activating gene 1) and Rbx-1 (Ring box protein-1, also

known as ROC1 and HRT1) the first zinc-binding site of RING finger structure is a part of an unique

binuclear cluster with the cysteine bridging two zinc atoms, leading to co-ordination of three zinc

ions.

                                 

Fig. 5. Simple model of the “cross-brace” structure of the RING finger domain showing conserved cysteines
(C) and histidines (H) and secondary structure elements (Dodd et al. 2004). Zn; a zinc ion.

Metal binding has been shown to stabilize the RING structure of PML (promyelocytic

leukemia protein) and MAT-1 (Menage a trois) (Borden 1995). In addition to zinc(II) binding, RING

finger can ligate cobolt(II) and cadmium(II) but with a lower affinity (Lovering et al. 1993, von Arnim

and Deng 1993, Upton et al.1994). Interestingly, the C4-site (site one) in the RING finger domain of

BRCA1 or HDM2 (human double minute 2) possesses a higher affinity towards zinc atom, whereas

the C3H -site (site 2) possesses a lower zinc-binding activity  (Roehm and Berg 1997, Lai et al. 1998).
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The metal binding is anticooperative, since the zinc-binding affinity of the C3H -site decreases ~ 20-

fold, when a metal ion binds to the C4-site.

The atomic resolution structures have been solved for RING domains of RAG-1, PML, MAT-

1, IEEVH and EL-5. Also the structures of BRCA1-BARD1 (BRCA1-associated ring domain protein

1) heterodimeric RING-RING complex, c-Cbl-Ubc7 complex and Rbx-1 containing SCF (Skp1-

Cullin-F-box protein) ubiquitin ligase complex have been solved. The RING C3HC4 secondary

structure adopts a ββαβ fold in Herpes simplex virus type 1 immediate-early protein Vmw110

(IEEVH), RAG-1, BRCA1 and MAT-1 (Fig. 6), but PML has a βββ-loop-α-β-fold (Everett et al.

1993). Conserved residues within the α-helix, β-sheets and loops contribute to a compact hydrophobic

    

                   180°

Fig. 6. The three-dimensional structure (NMR) of the RING finger domain of IEEHV presented as a ribbon
diagram. The right site shows the molecule after a 180°C rotation around the vertical axis compared the left
side (Gervais et al. 2001). Black sphere presents zinc atom. Zinc ligating residues are shown in black.

core in IEEHV (immediate early protein from Equine herpes virus type 1) and MAT1 (Barlow et al.

1994, Gervais et al. 2001). The variable spacing in the consensus sequence leads to differences in

three-dimensional fold around the zinc-binding site 2 in PML, IEEHV and RAG1. The distance

between the two zinc-binding sites is likely to be the same in all known RING fingers, given the

absolute conservation of the spacing of the two residues between histidine ligand of the C3H-site and

the first cysteine ligand of the C4-site. For instance, the inter-zinc distance in PML, RAG1 and IEEHV
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RING finger structure is the same (14Å) (Barlow et al. 1994, Borden et al. 1995, Bellon et al. 1997).

Also the charge distribution at the surface of RING finger domains could be an essential factor that

modulates RING finger activity, since, for example, the mutations of charged amino acids within the

RING domain affect the function of PML and IEEVH (Boddy et al. 1997). Generally, there is very

little sequence homology between RING proteins outside the consensus RING sequence, but these

regions regulate the specificity of protein-protein interactions and the structural diversity within this

family of proteins (Zheng et al. 2000, Brzovic et al. 2001). It appears that the RING finger motif

adopts significantly varying three-dimensional structures, while maintaining some structural

conservation including the overall topology of the central β-strands, the cross-braced Zn2+ binding

system and the packing of conserved residues which form the hydrophobic core of the molecule. This

suggests that the RING finger motif forms a convenient scaffold, which can be structurally varied to

reflect the diversity in its molecular function. The RING finger domain cannot be substituted even

between closely related RINGs without a change in function. For instance, even though the RING

fingers of BRCA1 and Rpt1 have more than 90% sequence identity, a BRCA1 form containing the

RINGRpt1-substitution does not maintain the BAP1 interaction anymore (Jensen et al. 1998).

RING fingers are often associated with distinct domains. For instance, the RING finger

domains of TRAF 2-5 are followed by five zinc fingers, a coiled-coil and a TRAF domain (Schwabe

and Klug 1994). The DNA repair proteins RAD5 and RAD16 have a RING finger that is interleaved

with ATPase domains. The inhibitor of apoptosis (IAP3) contains three BIR (baculovirus IAP repeat)

domains in front of the RING finger (Laren et al. 2003). Many RING finger proteins, such as Parkin

and the human homologue of Drosophila Ariadne (HHARI), that are involved in protein

ubiquitination and degradation are characterized by the presence of two RING finger domains

separated by the cysteine-rich IBR (the in between RING fingers) domain or DRIL (double RING

finger linked) domain (Moynihan et al. 1999, Zhang et al. 2000). This tripartite domain is called as a

TRIAD (two RING fingers and a DRIL). Mutations in the RING-IBR-RING of Parkin cause the AR-

JP, and RING2 mutations are found in a rare form of parkinsonism (Morett and Bork 1999, Shimura

et al. 2001). Interestingly, a NMR structural study of the RING2 in TRIAD of HHARI revealed that

RING2 has a totally different three-dimensional fold when compared to the classical RING finger, and

it binds only one zinc atom. In addition, the RING2 of HHARI possesses ubiquitin E3 ligase activity

(Capili et al. 2004). Most frequently, RING domains are associated with cysteine-rich zinc-binding

domains, B-boxes, and α-helical coiled-coil domain and referred to as RBCC-domains. This domain

is found in PML, estrogen-responsive RING finger (Efp), TIFα1, neuregulin receptor degradation

pathway protein 1 (Nrdp1) and KAP-1 (Fagioli et al. 1998, Inoue et al. 1991, Qiu and Goldberg 2002,
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reviewed by Saurin et al. 1996). The RBCC domain appears to be an integral structural unit requiring

every one of its subdomains for proper function of the protein in which it is found.

2.2 Function of the RING domain

A small zinc-ligating domain can facilitate multiple intermolecular interactions between nucleic acids

and proteins. GATA-type ZnF can bind both DNA and proteins, and the proteins with multiple

GATA-type motifs can play a complex role in regulating transcription through an interplay of these

different binding selectivities and affinities. Other ZnFs have more specific functions, such as DNA-

binding ZnFs in the nuclear hormone receptor proteins and small-molecule-binding ZnFs in protein

kinase C. When the RING finger was initially identified, it was thought that it acted as a specific

DNA-binding domain (Freemont et al. 1991, van Lohuizen et al. 1991, Haupt et al. 1991), but RING

finger together with PHD, Fyve and LIM domains appear to act exclusively in protein-protein

interactions. Several intriguing characteristics evident from the studies of RING domains have made it

difficult to establish a single biochemical function for RINGs.

RING finger proteins are known to be involved in the assembly of large protein complexes.

RING finger is able to interact with other RING finger domains and non-RING containing sequences.

Further, RING finger can use both zinc-binding regions independently for binding different proteins

(Roehm and Berg 1997, reviewed by Kentsis and Borden 2000). The arenaviral protein Z is the

smallest known RING finger protein (90 aa) constituted almost entirely by its RING domain

(reviewed by Riviere et al. 1987). The Z protein self-assembles into ordered spherical structures via its

RING finger domain in vitro and these structures resemble the nuclear domains formed by Z protein

during virus infection (Kentsis et al. 2002a). Isolated RING domains of BRCA1, KAP-1, mel-18 and

PML are able to self-assembly in vitro (Kentsis et al. 2002b). Mutating the first zinc-binding site of

RING finger abolishes the capacity to self-assemble in vitro and also in vivo, but in contrast, the

second zinc-binding site mutation does not destroy the RING finger domain structure or eliminate the

self-assembly activity (Kentsis et al. 2002a,b, Peng et al. 2000, Borden et al. 1995, Campbell et al.

2000). Interestingly, the BRCA1 cancer predisposing RING mutant (C64G) protein fails to self-

assemble in vitro, form nuclear domains or suppress tumor growth in vivo (Kentsis et al. 2002b, Jin et

al. 1997). In addition to homodimerization, BRCA1 can form heterodimers with another RING finger

protein BARD1 through RINGBRCA1-RINGBARD1 interaction. Also BARD1 homodimerizes (Brzovic

et al. 1998, Meza et al. 1999). The RING finger domain of the PML is important for the formation of

PML multiprotein complexes that are referred to as PML nuclear bodies (PML NBs). Disruption of

RING domain destroys the PML NBs and further correlates with a loss of growth suppression and



31

apoptotic activities (Borden et al. 1997, Mu et al. 1994). Also the polycomb group protein Bmi1 exists

in a large 2-5 MDa protein complexes, and mutations in the conserved residues within RING finger of

Bmi1 disperses the Polycomp complexes and leads to anterior-posterior transformation of the axial

skeleton (Alkema et al. 1997). The sequence determinants for RING finger binding of RING-less

proteins are not well characterized. However, one potential proline-rich consensus sequence has been

defined as PxBxPJxP, where B is Leu/Val, J is Ala/ser and X is any amino acid, and is called as

FRODO (Funky RING oligomerization domain) (Kentsis and Borden 2000). The first zinc-binding

site of the RING finger has been shown to maintain the interaction with the FRODO.

There is a lot of evidence that the RING domain mediates ubiquitin E3 ligase activity

(reviewed by Jackson et al. 2000 and Joazeiro et al. 2000, Lorick et al. 1999). Generally, the RING

finger of E3 binds the ubiquitin-conjugation enzyme (E2) (Lorick et al. 1999, Zheng et al. 2000). The

crystal structure study of ubiquitin E3 ligase, c-Cbl, complexed with E2 enzyme, Ubc7, revealed that

the hydrophobic groove formed by the helix and the two zinc-chelating loops of the c-Cbl RING

finger forms the major contact region with loops 1 and 2 of Ubc7, but also the region preceding the

RING finger participates in E2 binding (Zheng et al. 2000). The multisubunit E3s, such as APC and

SCF, always contain a RING finger subunit such as Apc11 and Rbx1, respectively. The organization

and the function of these complex E3s are critically dependent on the RING finger (Seol et al 1999).

Mutations in the first zinc-binding site reduces ubiquitin ligase activity of SCF, but the second zinc-

binding site is irreparable for ubiquitin ligation (Ohta et al. 1999), indicating that the protein-

interactions by the zinc-binding site 2 are critical for normal function of the SCF complex. The RING

finger of Rbx1 is the primary binding region for E2 and serves as a secondary binding region for Cul1

in SCF complex (Zheng et al. 2002). The BRCA1-BARD1 complex functions as a RING ubiquitin E3

ligase (Hashizume et al. 2001, Kentsis et al. 2002b). In vitro ubiquitination reactions examined by

electron microscopy, showed that RINGBRCA1:BARD1 bodies efficiently scaffold multiple UbcH5Cs on

their surface with several chains of polyubiquitins (Kentsis et al. 2002b). In addition, a RING-like

domain (SP-RING;Siz/PIAS-RING) of PIAS proteins, which has been suggested to have a similar

three-dimensional structure as RING finger, binds directly to SUMO-conjugating enzyme (E2) Ubc9

and is required for PIAS SUMO E3 ligase activity (Kahyo et al. 2001, Kotaja et al. 2002).

RING finger proteins involve in many cellular processes. Many of the biological functions of

the PML, such as growth and transformation suppressive action, are mediated through PML NBs and

require an intact RING finger domain (Melnick and Licht 1999, Borden at al. 1997, Mu et al. 1994).

RING-mediated oligomerization of KAP-1 is required for its association with the DNA-dependent

transcriptional repression domain (KRAB) of KOX-1, thereby it mediates transcriptional repression
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(Peng et al. 2000). Also the RING finger LIM domain-binding protein, RLIM, is a corepressor that

recruits histone deacetylases HDAC2 and Sin3 (Bach et al. 1999). Interestingly, also the RING-

mediated oligomerization stimulates catalytic activity of MAPKKK/MEKK1 and its

autophosphorylation, which is needed for the JNK activation (Baud et al. 1999). RING ubiquitin E3

ligases MDM2, IPC0, BRCA1-complex, pirh2, COP1 and Topors are involved in ubiquitination and

degradation of the tumor suppressor protein p53 in addition to other protein targets (Kubbutat et al.

1997, Haupt et al. 1997, Boutell and Everett 2003, Leng et al. 2003, Dong et al. 2003, Dornan et al.

2004, Rajendra et al. 2004). c-Cbl attenuates signaling by the growth factor receptors EGFR and

PGDFR via inducing their ubiquitination and degradation. Interestingly, oncogenic variants of c-Cbl

have been shown to contain mutated forms of the RING (Levkowitz et al. 1998, Miyake et al. 1998,

Joazeiro et al. 1999, Blake et al. 1991, Langdon et al. 1989).

3. THE UBIQUITINATION SYSTEM

Protein proteolysis is increasingly understood to be an important general mechanism by which cells

regulate protein levels and consequently their function at specific times. Constant protein turnover

serves many critical regulatory roles, including quality control by confirming degradation of

misfolded proteins due to mutations or damage in the protein. This function is especially important in

non-dividing cells, such as neurons, where the accumulation of malfunctioning proteins would be

highly deleterious (reviewed by Kopito 2000 and Sherman and Goldberg 2001 and Petrucelli and

Dawson 2004). In eukaryotic cells, the main mechanism for such control involves specific covalent

modification by ubiquitin/polyubiquitin, which labels target proteins for proteolysis and subsequent

degradation by the 26S proteasome or, as in the case of cell surface receptors, the ubiquitin

conjugation causes their down-regulation by the endosomal-lysosomal pathway (reviewed by

Schwartz and Ciechanover 1999). Ubiquitination can also directly alter the function and intracellular

localization of proteins. The ubiquitination pathway is an ATP-dependent and a multistep process,

involving at least three types of enzymes, known as E1, E2 and E3. Numerous studies have

demonstrated that ubiquitination plays an important regulatory role in many cellular events, such as

cell cycle, apoptosis, inflammation, DNA repair, and stress responses.

3.1 The ubiquitination pathway and proteasome

Ubiquitin is transcribed as an inactive precursor molecule with a C-terminal extension of several

amino acids, which is processed by a specific protease, ubiquitin carboxy-terminal hydrolase, to make

the carboxy-terminal double glycine (Gly76-Gly77) motif available for conjugation. Ubiquitination is
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initiated by the activation of ubiquitin at the C-terminal Gly76 by ubiquitin-activating enzyme (E1) in

an ATP-dependent manner (Fig. 7). Synthesized C-terminal adenylate intermediate serves as the

          

Fig. 7. The ubiquitination pathway. Free ubiquitin (Ub) is cleaved from the ubiquitin precursor by ubiquitin
carboxy-terminal hydrolase (UCH). Ubiquitin is activated in an ATP-dependent manner with the formation of a
thiol-ester linkage between E1 and the carboxy terminus of ubiquitin. Ubiquitin is transferred to E2. E2
associates with E3, which may have the substrate already bound. For HECT domain E3s, ubiquitin is
transferred to the active site cysteine of the HECT domain followed by ubiquitin transfer to the substrate (S).
For RING E3, current evidence indicates that ubiquitin is transferred directly from E2 to the substrate
(reviewed by Weissman 2001).

donor of ubiquitin to a cysteine (Cys) in the E1 active site and the thiol ester bond is formed between

ubiquitin and E1. Then the ubiquitin-conjugating enzyme (E2) accepts the activated ubiquitin from E1

with its own active Cys residue and, again, the thiol ester bond is formed. Finally, E2 ubiquitinates the

substrate in cooperation with ubiquitin E3 ligase. The HECT-type E3 accepts ubiquitin from E2, and

forms thiol linkage with ubiquitin and then shifts it to protein substrate. The RING-type ubiquitin E3

ligases do not form a thiol linkage with ubiquitin, rather they facilitate direct ubiquitin transfer from

E2 to the substrate. E3s dictate the specificity of ubiquitination by recognizing the target protein. In
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most cases, the ubiquitination of proteins is mediated by lysine dependent-ubiquitination pathway,

where ubiquitin is conjugated into ε-NH2 group of an internal Lys residue. For instance, Lys21 and

Lys22 of IκBα have been shown to be the targets of ubiquitin conjugation, but in cyclin B any single

lysine residue can serve as an ubiquitin acceptor (King et al. 1996).

Proteasomes are present both in the cytoplasm and the nucleus. In the cytoplasm, proteasomes

associate with the cytoskeletal networks (reviewed by Wojcik and DeMartino 2003) and the outer

surface of the endoplasmic reticulum (ER) (reviewed by Brodsky et al. 1999). In the nucleus,

proteasomes are spread throughout the nucleoplasm, but are absent in the nucleoli, and sometimes

associate with discrete subnuclear domains called the PML nuclear bodies (PML NBs). Proteasomes

exist in multiple forms such as a free 20S proteasome, a 26S proteasome, a 20S proteasome associated

with PA28 and a hybrid proteasome (reviewed by DeMartino and Slaughter 1999 and Glickman and

Ciechanover 2002). Polyubiquitinated proteins are recognized and degraded by the 26S proteasome

(Chu-Ping et al. 1994). The S26 proteasome is a ∼ 2.4 MDa complex composed of two subcomplexes;

a 20S core particle, which carries the protease complex, and one or two 19S regulatory particles,

which regulate the function of the former and select the substrates. The polyubiquitinated proteins are

recognized and bound by the proteasome (Thrower et al. 2000) and the ubiquitin chain is cleaved from

the protein substrate by deubiquitination enzymes (DUBs). It has been suggested that specific

ubiquitin chain-recognition adaptors serve to distinguish between these ubiquitin chains and they are

likely play a role in the substrate delivery to the proteasome. For instance, HHR23 (human homologue

of yeast RAD23) translocates ubiquitinated target proteins to the proteasome via its UDP (ubiquitin-

domain protein) and UBA (ubiquitin-associated) domains, which bind catalytically active proteasome

and ubiquitin chains of the target protein, respectively (Chen and Madura 2002, Elsasser et al. 2004)

The protein is then unfolded and translocated into the 20S core proteasome in an ATP-dependent

manner and subsequently the protein is hydrolyzed into small peptides. Ubiquitin is spared from

degradation through its release from the substrate by ubiquitin hydrolases, and it is recycled back into

the ubiquitin pathway (Swaminathan et al. 1999, reviewed by Hershko and Ciechanover 1998).

Interestingly, not all ubiquitinated proteins are fully degraded, since some proteins, such as the

transcription factor p105 (a precursor of p50), and Spt23, are processed into a truncated form by

proteasome and thus the proteasome can regulate the activity of the protein (Palombella et al. 1994,

Hoppe et al. 2000). Proteasomes have also a capacity to degrade certain non-ubiquitinated substrates,

which can either be directly recognized by the proteasome or be presented to the proteasome by

cofactors, like antizyme in the case of ornithine decarboxylase (Murakami et al. 1992). Ubiquitination

is a reversible process due to deubiquitination enzymes (DUBs). DUBs are cysteine proteases that

specifically hydrolyse the amide bond immediately adjacent to the carboxy-terminal residue and these
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proteases are divided into two categories; UCHs (ubiquitin-COOH hydrolases) and UBPs (ubiquitin-

specific proteases). UCHs remove short and flexible peptide chains from the COOH terminus of

ubiquitin, whereas UBPs cleave the isopeptide bond between ubiquitins (Ub-Ub) or between the Ub

and the protein. DUBs are involved in the generation of free ubiquitin, recycling of ubiquitin, editing

polyubiquitin chains (Kovalenko et al. 2003, Trompouki et al. 2003), and aiding proteasome-

dependent degradation (Reviewed by D’Andrea and Pellman 1998). Inhibitors of the ubiquitin-

proteasome pathway directly target and inhibit the 20S proteasome, rather than the upstream

ubiquitination. Lactacystin and its derivative clasto-lactacystin β-lactone, metabolites of Streptomyces

lactacystinaeus, irreversibly inhibit the 20S proteasome, as it forms a covalent bond with the catalytic

N-terminal residue of the proteasomal β-subunit (Fenteany et al. 1995, Ostrowska et al. 1997, Dick et

al. 1996). Another natural inhibitor, epoxomicin (EXM) is a peptide (originally isolated from a species

of Actinomycetes) that has a relatively high specificity for the 20S proteasome, and it covalently binds

to the catalytic subunits of the proteasome (Meng et al. 1999). Synthetic peptide aldehydes, MG-132

(benzyloxycarbonyl-leucinyl-leucinyl-leucinal), MG-115 (carbobenzoxy-L-leucyl-L-leucyl-L-nor-

valinal) and PSI (carbo-benzoxy-L-isoleucyl-gamma-t-butyl-L-glutamyl-L-alanyl-L-leucinal) arrest

reversibly the proteasome activity by inhibiting the chymotrypsin-like activity (Rock et al. 1994, Wilk

and Figueiredo-Pereira 1993). Since the ubiquitin-proteasome pathway is critical for the proliferation

and survival of cells, including cancer cells, proteasome inhibitors are of great interest as potential

therapeutics for cancer. In general, proteasome inhibition tends to induce apoptosis in proliferating

cells (Drexler 1997). The first proteasome inhibitor has been approved for use in patients with

relapsed and refractory multiple myeloma. Bortezomib (PS-341) is a modified dipeptidyl boronic acid

that binds reversibly to the chymotryptic site in the proteasome and induces apoptosis in different

cancer cell lines (Adams et al. 1999).

Ubiquitin

Ubiquitin (Ub) was first discovered as a lymphocyte differentiation-promoting factor in 1975

(Goldstein 1975). Ubiquitin is a small 8.5-kDa polypeptide (76 amino acid residues) that is

ubiquitously expressed in all eukaryotic cells, and it is found throughout the cell (ubique, latin for

everywhere). Ubiquitin is highly conserved during evolution, with only three amino acid changes

from yeast to human. Ubiquitin consisting of both alpha-helices and beta-sheets (ββαββαβ-fold), that

form a highly stable, globular structure containing a hydrophobic core with C-terminal glycine

residues (Gly76-Gly77) protruding from the main body of the protein (Fig. 8) (Vijay-Kumar 1987).

Figure 8 also shows the 3D structure of SUMO-1 (small ubiquitin-like modifier 1), which is

conjugated to proteins in a similar fashion as ubiquitin, but with different enzyme components and

different effect on the function of the target protein (see section 4. SUMO-1 conjugation).
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                                            Ubiquitin                                     SUMO-1

Fig. 8. The three-dimensional structure of the ubiquitin and the small ubiquitin-like modifier 1 (SUMO-1). The
crystal structure of human ubiquitin and the NMR structure of human SUMO-1 are shown (Vijay-Kumar et al.
1987, Bayer et al. 1998, reviewed by Melchior 2000).

Ubiquitin is not expressed as a free ubiquitin, but instead it exists in an unfolded form attached

to itself or to certain ribosomal protein subunits. These ubiquitin precursors are processed by DUBs

into a free form and therefore, it is found both as a free monomer as well as covalently linked to itself

(polyubiquitin chain) and other proteins (ubiquitination) with its lysine-linked chain (reviewed by

Hershko and Ciechanover 1998). In protein ubiquitination, ubiquitin is covalently conjugated to

protein through isopeptide bond formed between carboxyl-terminal Gly76 and the ε-amino group of a

lysine residue in the target protein. Recent findings show that ubiquitin can be linked to a target

protein also via bonding between α-NH2 group of the N-terminal residue of target protein and the

Gly76 residue of ubiquitin (Ciechanover et al. 2004). In polyubiquitin chain formation, ubiquitins are

linked similarly to each other via the isopeptide bond between carboxyl-terminal Gly76 and lysine

residues of the previously conjugated ubiquitin (reviewed by Hershko and Ciechanover 1998).

3.2 Enzymes of the ubiquitination pathway

Ubiquitination is a dynamic and reversible process involving enzymes E1, E2, E3 and

deubiquitination enzymes, DUBs. There is only one E1 enzyme, multiple E2s, which can serve
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several E3 enzymes, and an even a greater number of E3s. This multi-step reaction involving many

different enzyme components enables protein ubiquitination to achieve a high degree of specificity

and diversity. Another large group of proteins involved in this process is the deubiquitinating

enzymes, a family of ubiquitin-specific proteases that cleave ubiquitin from ubiquitin-conjugated

proteins and are thought to act at different steps in the ubiquitin pathway.

3.2.1 Ubiquitin-activating E1 enzyme

A single E1 enzyme (UBA) in human and yeast is required to activate ubiquitin for all conjugating

reactions and to transfer it to all known E2s. E1 is essential for cell viability, since the deletion of

UBA1 in yeast is lethal (McGrath 1991). E1 is found in the nucleus and cytosol, and the localization

of E1 is cell cycle-regulated with a predominant nuclear localization in the G2 phase (Grenfell et

al.1994, Trausch, et al. 1993). E1 is also phosphorylated in mammalian cells by cdc2 kinase (Nagai et

al. 1995). Mutation of Cys residue of the active site abolishes the E1 activity (Hatfield and Vierstra

1992).

3.2.2 Ubiquitin-conjugating E2 enzymes

There are 13 isoforms of E2s in yeast and more than 20 in mammals (reviewed by Jentsch 1992 and

Hochstrasser 1996). E2s all share an active site ubiquitin binding Cys residue within the core

structure, Ubc domain, required for binding E3s. E2s are subdivided into four classes. Examples of

class I are Ubc4, Ubc5, Ubc7 and Ubc9-13, which contain UBC domain and require E3s for substrate

recognition and the ubiquitin transfer to target proteins. Several E2 enzymes are more complex than

the class I members and have unique N-terminal (class II) or C-terminal (class III) extensions of

various lengths or both of them (class IV). Class II contains Ubc1, Ubc2 (RAD6), Ubc3(Cdc34), Ubc6

and Ubc8. The C-terminal extension of Ubc2 appears to mediate interactions with histones and is also

needed for histone ubiquitination (Sung et al. 1988). Also the C-terminal extension is needed for

anchoring Ubc6 to the cytosolic side of endoplasmic reticulum (ER) (Sommer and Jentsch 1993).

Ubc2/RAD6 acts along with Ubr1/E3α to target N-end rule substrates (Xie and Varshavsky 1999).

Ubc4 and ubc5 E2s participate in the turnover of short-lived and misfolded proteins. Ubc13 is

involved in error-free postreplicative repair pathway in yeast (Brusky et al. 2000). It also forms a

complex with Mms2p, an ubiquitin-conjugating enzyme variant (UEV) without a catalytic cysteine

within UBC domain and causes the assembly of polyubiquitin chains linked through Lys-63

(Hofmann and Pickart 2001). Ubc6 associates with Ubc7 and they have been implicated in
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endoplasmic ER-associated degradation (ERAD) pathway (Chen et al.1993, Kim BW et al. 2003).

Two UBC domain-containing proteins, Ubc9 and Ubc12, do not conjugate ubiquitin, but conjugate

ubiquitin-like molecules, SUMO (small ubiquitin-like modifier) and RUB-1/Nedd8 (related to

ubiquitin 1/Neural precursor cell-Expressed Developmentally down-regulated), respectively (Johnson

and Blodel 1997, Gong and Yeh 1999). The E2 terminology is not standardized across different

species, since similar names given to yeast and mammalian enzymes do not reflect functional or

structural homology. For instance, human UBCH1 is not the human homolog of yeast Ubc1, but

rather the homolog of yeast Ubc2/RAD6. Human UbcH5 is one of the most active E2s and it is

involved in ubiquitination of p53 and IκBα (Scheffner et al.1994, Gonen, et al.1999). Human UBCH6

and UBCh7 are involved in targeting of soluble proteins in the cytosol (Nuber et al.1996).

3.2.3 Ubiquitin E3 ligases

Ubiquitin E3 ligases play a critical roles in the ubiquitination cascade by recruiting E2s with ubiquitin

and recognizing the target protein and thereby facilitating ubiquitin transfer from E2 to the target

protein. The E3s can be divided into two groups: the homologous to E6-AP carboxy terminus (HECT)

domain-containing E3s and the RING domain-containing E3s. RING-type E3s are further divided into

single subunit and multisubunit E3s. Also RING-like ubiquitin ligase domains, plant homeodomain

(PHD) domain, the U-box and HUL-1, have been identified (van Sant et al. 2001, Hagglund and

Roizman 2003).

3.2.3.1 HECT-type ubiquitin E3 ligases

The first enzyme described in this family was E6-AP (E6-associated protein), which targets p53 for

degradation in the presence of  human papillomavirus (HPV) oncoprotein E6 (Scheffner et al. 1993).

E6-AP was found to promote ubiquitination of p53 and SRC family kinase Blk in the absence of E6

(Scheffner et al. 1993, Oda et al. 1999), suggesting its role as an ubiquitin E3 ligase. Mutations in E6-

AP have been implicated in the pathogenesis of Angelman syndrome, a severe form of inherited

mental and motor retardation (Kishino et al. 1997). Later on, the family of proteins harboring HECT,

which shares a region of ~350 amino acid residues similar to the C-terminal domain of the E6-AP,

was revealed. This domain contains conserved Cys-residue that forms a covalent thiol-ester

intermediate with ubiquitin. In addition to the chemistry of ubiquitination, the C-terminal HECT

domain mediates the binding of distinct subclass of E2s, such as human UbcH5, UbcH7 and UbcH8

(Scheffner et al. 1994, Nuber et al. 1996, Kumar et al. 1997). HECT domain proteins contain an N-

terminal protein kinase C-related C2 domain and WW (two conserved tryptophan residues) domains
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responsible for cellular localization and substrate recognition. The target proteins of HECT E3 ligases

predominately possess proline-rich motif, PpxY, for WW domain recognition. Yeast has only one

HECT E3 ligase, Rsp5p, which regulates a number of important cellular processes including

mitochondrial inheritance, internalization of cell surface receptors, and transcription. The disruption of

the rsp5 gene is also lethal (Fisk and Yaffe 1999, Huibregtse et al. 1997, Hein et al. 1995, reviewed by

Rotin 2000). Higher eukaryotes have several related Nedd4 proteins, such as Nedd4-1 and -2, Smurf1

and -2, Bul1 and Itch. Nedd4 ubiquitinates subunits of the epithelial sodium channel leading to down-

regulation of the number of active channels (Kamynina et al. 2001). The Smad ubiquitin regulatory

factor 1 and 2 (Smurf 1 and 2) participate in the control of cell growth, differentiation and apoptosis

via playing distinct functions in the regulation of signaling pathways triggered by the TGF-β

superfamily (Arora and Warrior 2001).

3.2.3.2 RING-type ubiquitin E3 ligases

In contrast to HECT-type E3s, RING-type E3s do not form a thioester bond with ubiquitin, but rather

bring the ubiquitin-E2 complex and substrate into close proximity and promote ubiquitin transfer

directly from E2 to the substrate (reviewed by Hershko and Ciechanover 1998). The RING finger

protein E3 family is composed of two distinct groups, single and multisubunit proteins. In single

protein RING-type E3s, such as MDM2, Cbl and Parkin, the RING finger domain and the substrate

recognition site are in the same molecule. For instance, Cbl E3 ligase is a 120-kDa protein, harboring

RING finger domain for recruiting E2-ubiquitin complex and TKB domain for binding the target

protein, tyrosine phosphorylated receptor tyrosine kinases. The crystal structure of Cbl-RING and

Ubc7 shows that the interaction surface for Ubc7 in RING domain is similar to that of HECT domain,

and also Ubc7 uses the same structural elements for the interaction with both domains, although there

is no sequence similarity between RING finger and HECT domain. MDM2 has E3 ligase activity

towards itself (autoubiquitination) and as well as to tumor suppressor protein p53. Autoubiquitination

of MDM2 does not only render proteins for degradation by the proteasome, but it also reduces its

ubiquitination activity towards p53. Autoubiquitination of IAP E3 ligase induces its degradation and

promotes apoptosis.

Many RING finger proteins are members of multisubunit ubiquitin E3 ligase complex, such as

APC (anaphase promoting complex), SCF (Skp1-Cullin1-F-box) and VCB-CUL2 (von-Hippel-

Lindau-ElongingC/B-Cul2). The small Rbx1/Hrt1/Roc1 RING finger protein is involved in E2-

ubiquitin recruitment together with Cullin in SCF or VCB-CUL2 E3s and assembly of other

components of the complex. The F-protein such as Skip2 in SCF complex recognizes the substrate.

The most complex multisubunit E3 is APC, which contains at least 13 subunits (reviewed by Hershko
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and Ciechanover 1998, Vodermaier 2004). The APC and SCF complexes are the key players in the

control of cell cycle, where APC/C seems to inactivate many cell cycle-advancing protein activities

from the previous cell cycle stage, whereas SCF removes blocking agents of the cell cycle progression

(reviewed by Page and Hieter 1999). Interestingly, degradation of the SCF component Skp2 is

mediated by APC in the phase G1 of the cell-cycle, and therefore APC influences also the SCF-

dependent event (Wei et al. 2004).

3.3 Substrate specificity and regulation of ubiquitination

Targeting of a protein via the ubiquitin system must require specific recognition signals for

appropriate E3 ligases, but thus far our knowledge of these signals is limited. Only a few motifs or

structures that identify proteins as proteolytic substrates have been defined precisely. Certain amino

acid sequences called destruction signals or degrees appear to be the signals for degradation. Many

short-lived proteins contain a PEST sequence, a short stretch of approximately eight amino acids

enriched with proline (P), glutamic acid (E), serine (S) and threonine (T) (Rogers et al. 1986, reviewed

by Rechsteiner and Rogers 1996). PEST sequences often contain minimum consensus

phosphorylation sites (S/TP) for certain protein kinases (Yaglom et al. 1995). Phosphorylation within

the PEST region seems to be required for ubiquitination and degradation of NF-κB1 p105, the

inhibitor of the NF-κB, and transcription activator Gcn4 (Kornitzer et al. 1994, Lang et al. 2003). The

N-end rule pathway targets proteins carrying destabilizing N-terminal residues called N-degron for

degradation. The N-degron is recognized by ubiquitin E3 ligase, which then ubiquitinates the lysine

residue of the target protein. The relationship between the nature of the N-terminal amino acid

residues of the protein and its half-life is called the N-end rule (Bachmair et al. 1986, Varshavsky

1997). The E3α/Ubr1 has N-degron recognition site for substrates with basic NH2-termini and

hydrophobic termini, but also for non-N-end rule substrates (Kwon et al. 1998, Reiss, et al. 1988). For

example, DIAP1 (Drosophila inhibitor-of-apoptosis protein 1) degradation by the N-end rule pathway

is needed for its regulation activity in apoptosis (Ditzel et al. 2004). New degrons continue to be

identified at a regular rate. The Cdc20-APC/cyclosome (APC/C) ubiquitin E3 ligase complex

recognizes and binds the destruction box (D-box; Arg-xx-Leu-xxxx-Asn) of cyclin B and securin and

directs them for proteolysis during metaphase/anaphase (Yamano et al. 1998, Zur and Brandeis 2001).

Also APC/C-Cdh1 binds KEN-box (Lys-Glu-Asn) of hTK1 (human thymidine kinase 1) (Ke and

Chang 2004) and directs its to the proteasome. Signals may also be buried in the hydrophobic core.

Misfolded proteins probably expose similar hydrophobic pockets, which are buried in the correctly

folded structure, and these signals may be seen by the Ub-machinery yielding the protein to become

ubiquitinated and proteolytically processed (Sadis et al. 1995, Gilon et al. 1998.
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Interaction of E3 and degron can be modulated by posttranslational modifications occurring at

different stages of cellular events. Phosphorylation triggers degradation of CDK regulators at

appropriate points in the cell cycle (reviewed by Peters 2002 and Deshaies and Ferrell 2001) or

stabilizes the protein such as Pds1, an inhibitor of anaphase initiation, in response to DNA damage

(Agarwal et al. 2003). Hydroxylation on proline residue and acetylation of HIF-1α (hypoxia inducible

factor-1α) are critical for recognition by the pVHL ubiquitination complex (Ivan et al. 2001, Jaakkola

et al. 2001). Also RNA polymerase II needs phosphorylation and proline hydroxylation for

recognition by the pVHL complex and thus its ubiquitination (Kuznetsova et al. 2003). p53 protein is

acetylated and ubiquitinated on the same Lys residues, and it seems that acetylation blocks also

ubiquitination of unacetylated Lys residues and thus stabilizes p53 (Li M et al. 2002). In addition to

acetylation, also methylation and sumoylation can be modifying same lysine residue as ubiquitin, and

it is possible that these modifications regulate each other by competing for the same lysine residues.

Sumoylation of lysine residue in IκBα and Smad4 has been demonstrated to block ubiquitination at an

identical site, protecting these proteins from degradation (Desterro et al. 1998, Lin et al. 2003). Also

protein association and dissociation of substrate can regulate its ubiquitination. Heterodimerization of

the yeast mating factors MATa1 and MAT2, or homodimerization of nuclear factor NF-IL6 may mask

an element that otherwise serves as the target for ubiquitination and proteasome degradation (Johnson

et al. 1998, Hattori et al. 2003). It is also possible that dimerization activates subsequent proteasome

processing such as in the case of dimerization of transcription factors ATF2 (activating transcription

factor 2) and c-Jun (Fuchs and Ronai 1999).

3.4 Alternative ubiquitin signals and their function

A single protein can be ubiquitinated on one or several lysines with a single ubiquitin

(monoubiquitination) moiety, with lysine-linked chains of ubiquitin (polyubiquitination) or

combination of these two. Polyubiquitin chains can be built to the lysine residue of the target protein

through repetitive conjugation of ubiquitin via distinct Lys residues (Lys6, Lys11, Lys27, Lys29,

Lys33, Lys48, and Lys63) of preceding ubiquitin (Peng et al. 2003). The fate of a target protein

depends on the number of ubiquitin molecules conjugated as well as the lysine linkage in the ubiquitin

chain (Fig. 9). In some cases, polyubiquitination of protein requires additional ubiquitin chain

elongating factor, named E4 (Koegl et al. 1999). In yeast, E4 binds to the ubiquitin moieties of short

conjugates and catalyzes ubiquitin elongation in conjunction with E1, E2, and E3. Interestingly,

transcription coactivator p300 appears to possess the E4 activity, and polyubiquitinates p53, but p53

must be first monoubiquitinated by MDM2 (Grossman et al. 2003). Proteins modified with ubiquitin
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polymer, where a Gly78-Lys48 linkage links four or more ubiquitins to one another, are generally

directed to the 26S proteasome for degradation. Also ubiquitin chains assembled via Lys29 are

involved in degradation of substrate (Johnson et al. 1995). The ubiquitin-proteasome system regulates

transcription through removing transcription factors from the promoter region. For instance, the Pol II

is polyubiquitinated upon DNA damage, and this is thought to lead to Pol II degradation during

transcription-coupled repair (Lee et al. 2002, Woudstra et al. 2002). Lys6-linked ubiquitin  chain on

             

Fig. 9. Ubiquitin signals for degradation by the ubiquitin-specific proteases (UBPs) in the proteasome. Proteins
that are modified by polyubiquitin chains containing Lys48- or Lys29-link between ubiquitins are directed to
the proteasome for proteolysis. Ubiqutin is spared from degradation through its cleavage from target proteins,
and it is recycled into the ubiquitination pathway. The target protein is hydrolyzed into small peptides within
the proteasome. Other types of ubiquitin signals can regulate function of the target protein.

BRCA1 is generated by autoubiquitination activity of BRCA1-BARD1 dimer during DNA damage,

and this autoubiquitination does not appear to serve a signal for proteasome, rather it enhances the E3

activity of BRCA1/BARD1 (Nisikawa et al. 2004, Mallery et al. 2002, Morris and Salomon 2004,

Wu-Baer et al. 2003). Neither does a polyubiquitin chain linked through Lys63 serve a signal for the

proteasome; it mediates kinase activation and DNA repair (Deng et al. 2000). The solution structure of

Lys63-linked di-ubiquitin chain determined by NMR differs from that of Lys48-linked chain and

probably the conformation of the latter chain is more compatible with the proteasomal recognition



43

signal (Varadan et al. 2004). In addition, Lys11, -27 and -33 ubiquitin chains has been observed, but

the functions of these chains are unknown (Peng, et al. 2003). Lys-11 polyubiquitins on BAG-1

protein does not lead to degradation, but stimulation of the degradation-independent association of

BAG-1 with the proteasome (Alberti, et al. 2002). Monoubiquitination does not normally target a

protein for degradation, but appears to act as a signal for trafficking, DNA repair, gene silencing and

vesicle sorting or as a substrate for polyubiquitin conjugation (reviewed by Johnson 2002 and Pickart

2000). Sumoylated lysine of PCNA (proliferating cell nuclear antigen) becomes monoubiquitinated

during DNA damage by UV light (Stelter and Ulrich 2003). The same lysine can be further Lys63-

polyubiquitinated, which is important in error-free repair of the damaged DNA (Hoege et al. 2002).

Monoubiquitination is the principal signal responsible for the movement of receptor tyrosine kinases

(RTKs) from the plasma membrane to the lysosome (Haglund et al. 2003, Jeong et al. 2002).

Moreover, the monoubiquitination of p53 by MDM2 E3 ligase is critical for its nuclear export (Li M

et al. 2003). Monoubiquitination of transcription regulators has been shown to be involved in

transcription activation. Monoubiquitination of coactivator protein CIITA, which regulates the

expression of major histocompatibility complex (MHC) II class gene, is suggested to enhance the

assembly of CTIIA into a transcriptional complex at the promoter and thus increase gene expression

(Greer et al. 2003).

Since ubiquitination plays an essential role in a broad array of cellular functions, the

malfunction of this pathway will cause numerous diseases. In neurodegenerative diseases, such as the

Angelman sydrome and Parkinson the ubiquitin E3 ligase, E6-AP or Parkin, respectively, or the

ubiquitin carboxy-terminal hydrolase-1 (UCH-L1) have been shown to be mutated (Kishino et al.

1997, Shimura et al. 2000, Saigoh et al. 1999). The ubiquitin protease UCH BAP1 has been shown to

enhance the growth inhibitory activity of BRCA1, and mutations in BAP1 gene have been observed in

some lung carcinoma cell lines (Jensen et al. 1998). Also mutations that interfere with ubiquitin E3

ligase activity of BRCA1 are found in breast cancer (Ruffner et al. 2001). MDM2 is overexpressed in

a significant number of human tumors, which is thought to suppress normal p53 levels and suffocate

the p53 response to cell stress (Reifenberger et al. 1993, reviewed by Michael and Oren 2003).

Additionally, alterations of genes of the APC subunits have been found in colon cancer cell lines

(Wang Q et al. 2003).

3.5 Ubiquitin-binding domains

The information of ubiquitin signals can be transmitted within the cell by proteins that bind

noncovalently to ubiquitin and ubiquitinated proteins. Ubiquitin and poly-ubiquitin chains can be
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recognized by different classes of ubiquitin-binding domains; the UIM (ubiquitin-interacting motif),

the UBA (ubiquitin-associated), the CUE (coupling of ubiquitin conjugation to ER degradation), the

UEV (ubiquitin E2 variant/UBC-like), the NZF (Npl4 zinc finger), the GAT (GGA/Tom1) and the

PAZ (polyubiquitin associated zinc finger). The UBA domain consists of three helices and exposes

hydrophobic interface, which contacts ubiquitin (Mueller and Feigon 2002). The UBA domain of

RAD23 and that of Dsk2p have shown binding preference to Lys48-linked ubiquitin chains

(Funakoshi et al. 2002, Raasi and Pickart 2003) and to be essential for their function in proteolysis

(Rao and Sastry 2002). CUE and UBA are structurally similar and bind both mono-, polyubiquitin and

ubiquitinated proteins (Bertolaet et al. 2001). The UIM motif forms an amphipathic α-helix and two

or three UIMs can be present in a protein (Swanson et al. 2003). UIM and CUE domains promote

monoubiquitination of proteins containing these sequences (Shih et al. 2003, Polo et al. 2002). The

UIM domains of both Vps27 and Hse1 are needed for sorting of ubiquitinated proteins for degradation

at the endosome  (Bilodeau et al. 2002). The UEV domain is related to the catalytic domain of E2

enzymes, but lacks the catalytic cysteine that is essential for ubiquitin conjugation. In the Ubc13-

Mms2 heterodimer the Mms2 protein binds ubiquitin through its UEV domain, which is required for

linking ubiquitin molecules to one to another via Lys-63 isopeptide bond  (Mckenna et al. 2001,

Mckenna et al. 2003a, Mckenna et al. 2003b). Tsg101/Vsp23 UEV domain binds ubiquitin with a

different interface than the UEV domain of Msm2. Ubiquitin binding of Tsg101/Vsp23 does not

involve linking ubiquitin chains, but is required for sorting ubiquitinated proteins into the internal

vesicles of multivesicular bodies (Katzmann et al. 2001, Bilodeau et al. 2003, Teo et al. 2004). The

ubiquitin binding activity of the GAT domain in GGA protein is needed for ubiquitination within its

GAT domain and ubiquitin-dependent transport to endosomes (Shiba et al. 2004, Scott et al. 2004).

The PAZ domain of HDAC6 (histone deacetylase 6) interacts only with polyubiquitin and similar zinc

finger domains are present in several DUBs and in BRCA1-associated proteins 1 and 2 (Hook et al.

2002). Ubiquitin binding of the Vsp36 NZF domain is required for efficient vacuolar sorting of

ubiquitinated proteins in yeast (Alam et al. 2004). Although the NZF domain is structurally distinct

from UIM, GAT, UBA and CUE, all of these domains bind the same hydrophobic surface (the "Ile-

44" hydrophobic surface) of ubiquitin (Alam et al. 2004, Mueller and Feigon 2002, Kang et al. 2003,

Swanson et al. 2003, Scott et al. 2004).

4. SUMO-1 CONJUGATION

Over the past 15 years, a number of proteins related to ubiquitin, UBLs (ubiquitin-like proteins), have

been discovered. Most of these proteins resemble ubiquitin in their primary and higher order structure,

but they have unique properties. These UBLs can be divided into two subclasses: Type-1 UBLs
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SUMO, RUB/Nedd8 (Parry and Estelle 2004), FAT10 (Raasi et al. 2001), ISG15 (reviewed Ritchie

and Zhang 2004), Ufm1 (Komatsu et al. 2004), Hub1/UBL5 (Luders et al. 2003), Atg12 and Atg8

(reviewed by Ohsumi and Mizushima 2004) are conjugated to target proteins in a manner similar, but

not identical, to the ubiquitination pathway, whereas type-2 UBLs (also called UDP, ubiquitin-domain

proteins), such as Parkin, RAD23, and DSK2 contain an ubiquitin-like domain that is not covalently

conjugated to other proteins, but has been found to direct proteins to the proteasome (Chen and

Madura 2002, Leggett et al. 2002). SUMO (small ubiquitin-like modifier) is probably the most

investigated of the UBLs over the past few years.

4.1 The SUMO pathway

SUMOs (small ubiquitin-related modifiers) belong to a highly conserved protein family found in all

eukaryotes. SUMO is structurally related to ubiquitin containing the ββαββαβ ubiquitin-fold, although

SUMO-1 and ubiquitin share only ~18 % primary sequence identity (Bayer et al. 1998, Jin et al. 2001)

(Fig. 8). However, the surface charge distribution of SUMO is very different from that of ubiquitin.

SUMOs have also unstructured N-terminal extension that is not present in ubiquitin and that may

provide an additional surface for protein interactions (Bayer et al. 1998). Saccharomyces cerevisiae

contain a single SUMO protein encoded by the SMT3 gene, while mammals contain three different

SUMOs; SUMO-1 (also called PIC1, GMP1, Ubl1 and Smt3c), SUMO-2 (sentrin-3, Smt3a), and

SUMO-3 (sentrin-2, Smt3b) (reviewed by Melchior 2000, Müller et al. 2001, Seeler and Dejean,

2003). SUMO-1 shares 48 % identity with SUMO-2, and SUMO-2 and SUMO-3 are 95% identical to

each other. The crystal structure of the SUMO-2 is similar to that of SUMO-1 (Huang et al. 2004).

Localization studies of SUMO variants showed that SUMO-1, -2 and -3 share a similar distribution all

over the nucleoplasm, including PML NBs. However, SUMO-1 is also localized to nucleoli, the

nuclear envelope and cytoplasmic foci. The distribution of different SUMOs change rapidly during

cell cycle. During mitosis, SUMO-1 is more avidly localized to the mitotic spindle, and during late

anaphase, it is recruited to re-formed nuclear envelopes and further accumulates in the nucleus.

SUMO-2 and SUMO-3 share similar cell cycle-dependent localization, which is distinct from that of

SUMO-1. For instance, they are not concentrated in spindle microtubules and they are found in

chromatin regions earlier than SUMO-1 (Ayaydin and Dasso 2004). Recently, a human SUMO-4 gene

was discovered, and its protein product has 87% homology with SUMO-2. Interestingly, a

polymorphism in the SUMO-4 gene appears to be associated with type 1 diabetes (Bohren et al. 2004,

Guo et al. 2004). Plants (Aradopsis), in turn, might contain up to eight SUMO genes (Lois et al. 2003,

Kurepa et al. 2003).



46

Like ubiquitin, the precursor of SUMO requires processing to remove four amino acids from

its C terminus by cysteine proteases (SUMO proteases) to reveal diglycine motif (Gly-Gly) for

conjugation. Covalent attachment of SUMO on target protein is catalyzed by three enzymatic steps,

which are analogous to the ubiquitination pathway, consisting of the SUMO-activating (E1) enzyme

(heterodimer of SAE1/Aos1/Sua1 and SAE2/Uba2), the SUMO-conjugating (E2) enzyme (Ubc9), and

several SUMO E3 ligases (PIAS/Siz, RanBP2, and Pc2). First, SUMO is activated by E1 in the

presence of ATP and then it is transmitted to the active cysteine of E2 from where it is directed to the

ε-amino group of lysine in the target protein. In contrast to ubiquitination pathway where ubiquitin

ligases are responsible for target recognition, Ubc9 efficiently transfers SUMO to selected targets in

vitro. However, the specific SUMO E3 ligase appears to be required for efficient modification in vivo

(Fig. 10).

Fig. 10. The SUMO conjugation pathway. After SUMO is proteolytically processed by C-terminal hydrolases,
it serves as the substrate in the ATP-dependent formation of an isopeptide bond between SUMO and the lysine
in the target protein. This reaction is mediated by SAE1/SAE2 (E1), Ubc9 (E2) and SUMO ligases (E3).
Sumoylation is a reversible reaction, since the isopeptide bond can be cleaved by isopeptidases (Adapted from
Melchior 2000).

In most cases, the lysine residue is embedded in a consensus sequence, ψKxE/D, where ψ is a large

hydrophobic amino acid (Ile, Leu, or Val), K is lysine, X is any amino acid residue, and E and D are

glutamic and aspartic acid, respectively. Both Ubc9 and E3s contribute to substrate specificity.

Sumoylation of the target protein can be regulated by other posttranslational modification.

Phosphorylation of c-Jun, p53, IκBα and PML reduces SUMO-1 modification, whereas the heat shock

factor 1 (HSF1) must be phosphorylated in order to be sumoylated (Müller et al. 1998, Hietakangas et

al. 2003, Desterro et al. 1998, Everett et al. 1999). Also other lysine-dependent modifications,

acetylation, methylation and ubiquitination may regulate sumoylation by modifying the same lysine

residue (Sapetschnig et al. 2002, Braun et al. 2001, Desterro et al. 1998, Ross et al. 2003).

Very little is know about the functions of SUMO-2 and SUMO-3, but at least they have been

implicated to play a role in the response to environmental stress (Saitoh and Hinchey 2000). As
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SUMO-2 and SUMO-3 contain the ψKXE/D consensus motif in their N-terminal region, they can

form SUMO chains (Tatham et al. 2001). Although SUMO-1 lacks this sequence, it may be able to

form SUMO chains via different lysine acceptors (Pichler et al. 2002). SUMO chains may have

important functions in vivo , since, for instance, they may affect amyloid protein processing and thus

could be involved in the pathogenesis of Alzheimer´s disease (Li Y et al. 2003). Like ubiquitination,

sumoylation is a reversible and dynamic process. Removal of SUMO from modified proteins is

executed by SUMO-specific isopeptidases of the SUSP/SENP family.

4.2 Enzymes of the sumoylation pathway

4.2.1 SUMO-activating E1 enzyme

Most organisms have only a single SUMO-activating enzyme, E1, which is required for conjugation

of all SUMO variants to their target proteins. The SUMO E1 is a heterodimer (SAE1/SAE2), which is

structurally and functionally related to ubiquitin-activating E1 enzyme, UBA1. The SAE1 (SUMO

activating enzyme 1, also called Aos1 and Sua1) subunit resembles the N-terminal half of UBA1,

whereas the SAE2 (also called Uba2) subunit corresponds to the C-terminal part of UBA1 and

contains the active site cysteine (Desterro et al. 1999, Gong et al. 1999, Okuma et al. 1999). However,

Aradopsis has two SAE1 genes, whose products probably form a heterodimer with SAE2 (Kurepa et

al. 2003). In the SUMO activation step, SAE1/SAE2 consumes ATP to adenylate the C-terminal

glycine of SUMO-1 before it forms the high-energy thiolester bond between the C-terminal glycine of

SUMO and the active site cysteine in SAE2.

4.2.2 SUMO-conjugating E2 enzymes

The SUMO moiety is transferred from SAE1/SAE2 to the active site cysteine (Cys 93) of the SUMO-

conjugating enzyme (E2), forming a SUMO-E2 thioester complex. SUMO pathway involves only a

single SUMO E2, Ubc9, which shares substantial sequence and structural similarity with ubiquitin

E2s (Tong et al. 1997). The positively charged N-terminal region of Ubc9 binds non-covalently to the

negatively charged surface of all SUMOs, but not with the positively charged surface of ubiquitin

(Tatham et al. 2003, Liu et al. 1999). This may have a role in modifier discrimination since Ubc9 is

specific to SUMO and does not function with ubiquitin (Desterro et al. 1997, Gong et al. 1997). The

SUMO binding region of Ubc9 overlaps with that of E1, and E1 binding of Ubc9 is needed for the

thiolester bond formation (Bencsath et al. 2002). Non-covalent SUMO binding of Ubc9 is important

for the transfer of SUMO from E1 to E2, although it is distant from the C-terminal active site cysteine

of Ubc9. This C-terminal region of Ubc9 also binds the ψKXE/D consensus motif in the substrate
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(Tatham et al. 2003, Tong et al. 1997, Bernier-Villamor et al. 2002). Most of the SUMO targeted

proteins are able to bind Ubc9.

4.2.3 SUMO E3 ligases

Even though Ubc9 is capable of recognizing and binding the SUMO modification site in a substrate, a

specific SUMO E3 ligase may be required for efficient and properly targeted modification in vivo.

SUMO E3 ligases have the capacity to associate with Ubc9 and increase the rate of target protein

modification. To this date, only three kinds of SUMO E3 ligases have been discovered. The Siz/PIAS

(Sap and Miz/protein inhibitors of activated STAT) protein family shares some similarity with RING-

finger ubiquitin E3 ligases, particularly an essential RING-like motif (Johnson and Gupta 2001,

Kahyo et al. 2001, Sachdev et al. 2001). In S. cerevisiae, Siz1p is required for sumoylation of septins

in vivo, and it enhances in vitro sumoylation (Johnson and Gupta 2001, Takahashi et al. 2001).

Mammalian PIAS proteins (PIAS1, -3, -x and -y, and splicing derivatives) bind Ubc9 with their RING

finger-like domain and are able to bind the target protein (Kotaja et al. 2002, Liang et al. 2004) and

SUMO. SUMO ligation activity is clearly dependent on the RING finger-like motif. PIAS proteins act

as SUMO E3s for LEF1, p53, AR and c-Jun (Kahyo et al. 2001, Sachdev et al. 2001, Schmidt and

Müller 2002, Kotaja et al. 2002). Recently, RanBP2 (Ran-binding protein 2)/Nup358 and Pc2

(Polycomb protein) were shown to have SUMO E3 ligase activity (Pichler et al. 2002, Kagey et al.

2003). RanBP2 has SUMO E3 activity toward MDM2, Sp100 and HDAC4, heterogeneous nuclear

ribonucleoproteins, hnRNP C and M proteins (Kirsh et al. 2002, Pichler et al. 2002, Miyauchi et al.

2002, Vassileva and Matunis 2004). Pc2 is able to sumoylate the corepressor protein CtBP (carboxyl-

terminal binding protein) (Kagey et al. 2003). Also SUMO E3 ligases are themselves sumoylated

(Kotaja et al. 2002). Interestingly, all three ligase types localize to specific subcellular complexes

suggesting that these structures may serve as modification sites. PIAS proteins are found in the close

proximity of PML or other nuclear bodies, Pc2 in Polycomb group (PcG) bodies and RanBP2 in

nuclear pore complex (NPC). The role of E3 ligases may be to stabilize the interaction between Ubc9

and the target protein.

4.2.4 SUMO proteases

SUMO proteases can act both in the maturation of the pre-SUMO (carboxy-terminal hydrolases) and

in the cleavage of SUMO from modified proteins (isopeptidases). These cysteine proteases are distinct

from ubiquitin-specific proteases, and they all contain a C-terminal ULP-domain (200 aa), which

harbors the catalytically active region (Mossessova and Lima 2000). SUMO proteases have variable
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N-terminal domains, which localize the enzymes to different regions in the cells and thus appear to be

responsible for desumoylation of different proteins. Saccharomyces cerevisiae contains two SUMO

proteases, Upl1 and Ulp2/Smt4 (Li and Hochstrasser 1999 and 2000). Ulp2p is predominantly located

in the nucleus, whereas Ulp1p colocalizes with nuclear pore complex proteins. Ulp1 is capable of

processing both SUMO maturation and SUMO substrate cleavage, and it is required for the G2/M

transition of the cell cycle (Li and Hochstrasser 1999). Ulp2 is localized in the nucleus, but it is not

essential for cell viability (Li and Hochstrasser 2000). In mammals, SENP1 is primarily a nuclear

protease that is found in PML nuclear bodies. It has been shown to cleave SUMO from PML and

histone deacetylase 1 (HDAC1) (Gong et al. 2000, Bailey and O´Hare 2004, Cheng et al. 2004).

SENP2 in turn is a nuclear envelope-associated protease (Hang and Dasso 2002). SuPr-1, a splice

variant of mouse SENP2, is able to alter the distribution of Daxx, CBP and Sp3 in PML NBs (Best et

al. 2002, Ross et al. 2002). SENP3/SMT3IP1 is localized in the nucleolus (Nishida et al. 2000)

whrereas SENP6/SUSP1 is found in the cytosol (Kim et al. 2000).

4.3 Function of SUMO-1

A number of transcription factors, and chromatin-associated and DNA repair proteins have shown to

be posttranslationally modified by SUMO-1. SUMO-1 modification regulates protein-protein

interactions, protein stability, activity and conformation, and subcellular localization. For instance,

sumoylated form of the RanGAP, a GTPase-activating protein that plays a role in nuclear import,

binds more actively to the nuclear pore complex (NCP)-anchored RanBP2. This may enable RanGAP

to be recruited from cytoplasm to the NCP (Matunis et al. 1996, Mahajan et al. 1997). In addition to

SUMO-1 conjugation, other regions of RanGAP are needed for proper interaction with RanBP2,

suggesting that the binding is mediated through regions of SUMO-1 and RanBP2 or the sumoylation

induces structural changes, which then reveals the RanBP2-binding element of RanGAP (Matunis et

al. 1998 499). Moreover, the SUMO-1-modified RanGAP is found in the spindle microtubules during

mitosis (Joseph et al. 2002). Translocation of the MAP kinase MEK1 and the NF-κB essential

regulator protein (NEMO) between the nucleus and the cytosol is regulated by sumoylation (Galy et

al. 2002, Huang et al. 2003). Subnuclear localization of PML is regulated by SUMO-1 conjugation,

while SUMO-1-modified PML exists in nuclear PML NBs (Kamitani et al. 1998, Duprez et al. 1999).

SUMO-1-modified PML recruits many transcription factors and chromatin modifiers, such as Sp100,

CBP, Daxx, to PML NBs (Kamitani et al. 1998, Müller et al. 1998, Duprez et al. 1999, Ishov et al.

1999). Many of these proteins are also SUMO-1 modified (reviewed by Zhong et al. 2000), but it
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seems that sumoylation of PML rather than sumoylation of other proteins is the controlling factor in

PML NB formation (Hofmann et al. 2000, Fogal et al. 2000), e.g. sumoylation deficient Sp100 is

recruited PML NBs (Sternsdorf et al. 1997). However, SUMO-1 conjugation of Sp100 enhances its

interaction with heterochromatin protein 1 (HP1) in vitro (Seeler et al. 2001), suggesting that this

PML-associated protein may recruit additional proteins via its SUMO-1 modification. Interestingly,

different SUMO variants may direct certain SUMO target proteins to different subcellullar

compartments (Saitoh and Hinchey 2000). Transcription factor SATB2 localizes to nuclear dots when

conjugated to SUMO-1, but to the nuclear periphery when conjugated to SUMO-3 (Dobreva et al.

2003).

Many transcription factors and coregulators are sumoylated, suggesting that sumoylation plays

a role in the regulation of gene expression. In most cases, sumoylation appears to repress transcription.

For example, when SUMO-1 is fused to the DNA-binding domain of Gal4, this fusion protein

represses transcription. This result may indicate that SUMO-1 is able to recruit transcriptional

repression proteins, such as HDACs, to the promoter (Ross et al. 2002, Yang et al. 2003).

Interestingly, the coactivator protein p300 interacts with the HDAC6 only when the repressor domain

of p300 is sumoylated (Girdwood et al. 2003). Transcription is also repressed when sumoylated

transcription factor Elk-1 binds to HDAC2 (Yang and Sharrocks 2004). In addition, sumoylation of

histone H4 represses transcription, which is likely to occur through interaction with corepressor

proteins HDAC1 and HP1 (Shiio and Eisenman 2003). An interesting example of sumoylation is that

of glucocorticoid receptor (GR). GR contains so called synergy control motifs, which are found in

several transcription factors, like in AR, and attenuate the activity of promoters having multible GR-

binding elements (GREs), but not that of promoters with single GRE-sites (Iniguez-Lluhi and Pearce

2000). These synergy control motifs harbor the classical SUMO-1 attachment sites, and they are

indeed sumoylated, which is suggested to prevent the synergistic action of multible GRs bound to the

same promoter (Iniguez-Lluhi and Pearce 2000, Tian et al. 2002, Subramanian et al. 2003, Poukka et

al. 2000b). Although sumoylation of transcription factors is mainly correlated with transcriptional

repression, SUMO-1 has also been shown to have positive effects on transcription. For example,

sumoylation of the coactivator GRIP1 (SRC-2) facilitates AR-interaction and thus enhances AR-

mediated transcription (Kotaja et al. 2002b). In addition, it has been suggested that sumoylation of the

transcription factor Tcf-4 is needed for its activation function (Yamamoto et al. 2003).

SUMO-1 modification has been shown to protect some proteins from proteasome-mediated

degradation. Sumoylation stabilizes IκBα and Smad4 likely by competing with the same lysine

residue involved in ubiquitination (Desterro et al. 1998, Lin et al. 2003). Interestingly, degradation of
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CREB by ubiquitin-proteasome system leads to induction of proinflamatory genes right after hypoxic

stress, but it is stabilized via sumoylation one or two days after the stress (Comerford et al. 2003).

Yeast proliferating cell nuclear antigen (PCNA) can be modified on the same lysine by SUMO-1 and

ubiquitin. However, the SUMO-1 modification regulates the function rather than the stability of

PCNA (Stelter and Ulrich 2003, Haracska et al. 2004). Sumoylation of yeast PCNA may promote

replication by increasing the activity of translesion DNA polymerase and reducing the recombinant-

dependent bypass mechanism in the S phase, while ubiquitination of PCNA may promote DNA repair

processes (Stelter and Ulrich 2003, Haracska et al. 2004, Hoege et al. 2002).

SUMO-1 is able to alter the activity of thymine DNA glycosylase (TDG) that is involved in

base excision repair during DNA damage (Hardeland et al. 2002). The unmodified TDG binds and

excises a mutant base, becomes sumoylated and then dissociates from the DNA product. The affinity

of TDG towards its DNA substrate is reduced possibly due to a conformational change of TDG, where

an intramolecular interaction occurs between the SUMO-1-binding motif of TDG and the conjugated

SUMO-1. Further, SUMO proteases might restore the enzymatic activity of TDG. In the case of heat

shock factors 1 and 2 (HSF1 and HSF2), sumoylation enhances their binding activity to DNA in vitro

(Hong et al. 2001, Goodson et al. 2001). In vivo, heat shock treatment induces sumoylation of HSF1,

which is linked to the activation of stress-induced gene expression.

Several proteins have been shown to bind non-covalently to SUMO-1 and some SUMO-1-

binding motifs have been identified (Minty et al. 2000, Engelhardt et al. 2003, Rosendorff et al. 2004 ,

Song et al. 2004). According to Minty et al. (2000), protein motifs containing Ser/Thr- and Glu/Asp-

rich sequences preceded by hydrophobic residues are able to mediate the interaction with free SUMO-

1. Rosendorff et al. (2004) found that acidic amino acid-containing regions followed by hydrophobic

residues [consensus: (D/E)3V/TIEV] provide binding platform for SUMO-1. A recent study by Song

et al. (2004), in turn, showed that hydrophobic regions possessing V/IxV/IV/I motif (SMB) mediates

SUMO-1 interaction rather than the consensus sequence proposed by Minty et al. (2000). Indeed,

SUMO-1-binding proteins like PML, PIASx and SAE-2 contain the latter SMB-motif. In addition,

SMB is also capable of recognizing all three SUMO variants (SUMO-1, -2, and -3) (Song et al. 2004).

Many proteins that bind noncovalently to SUMO-1, such as Daxx, IE2 and Dnmt3b, PIAS and PML,

are also SUMO-1 modified (Ryu et al. 2000, Kotaja et al. 2002, Kang et al. 2001, Ahn et al. 2001). It

has been suggested that both covalent and non-covalent SUMO-1 binding enhances the complex

formation between various SUMO-1 modified proteins. For instance, PML NB-associated proteins,

such as Sp100, Daxx, CBP and HIPK2, contain the latter SMB-motif. Also HDAC6 and HDAC2 that
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are recruited by sumoylated p300 and Elk-1, respectively, contain the SMB (Bernier-Villamout et al.

2002, Yang and Sharrocks 2004).

Sumoylation has been reported to play a role in some diseases, such as in neurodegenerative

disorders and infections. In Huntington´s disease (HD), SUMO modification of Huntingtin protein

appears to contribute to HD pathology (Steffan et el. 2004). Several viral and bacterial pathogens may

benefit from the host cell sumoylation system. For instance, Yersinia pestis contains a SUMO protease

homology protein YopJ, whose activity contributes to downregulation of host immune response

(reviewed by Wilson and Rangasamy 2001). An interesting study on Gam1 protein, which is essential

for the replication of the avian adenovirus CELO, demonstrates that Gam1 is able to interfere with the

SUMO-1 pathway and thus may alter gene expression of the host cell. Gam1 binds E1 heterodimer

complex, which results in the inhibition of  E1 activity and whole sumoylation pathway in vitro and in

vivo. In addition, the protein levels of SAE-1 and -2, and Ubc9 are down-regulated upon CELO

infection or Gam1 overexpression (Boggio et al. 2004). Moreover, many tumor suppressors and

oncogenes are modified and regulated by SUMO and, therefore, they may contribute to the

development of cancer. Interestingly, the acute promyelocytic leukaemia (APL) is successfully treated

with arsenic trioxide, which restores sumoylation of the PML-RARα-fusion protein (Müller et al.

1998).

5. NUCLEAR STRUCTURES

The nucleus is the place for many vital and primary biochemical events. Recent advances in imaging

technologies have confirmed that the nucleus contains compartments and domains with specialized

functions in a fashion similar to the cytoplasm. Some nuclear domains have a dynamic structure and

rapid exchange occurs between many domains and the nucleoplasm (reviewed by Misteli 2001). The

nucleus is surrounded by a nuclear envelope, which is a double membrane structure that harbors

nuclear pores through which the material between the nucleus and cytoplasm is transported (Stofler et

al. 1999). Nuclear DNA is organized into distinct chromosomal territories, where different

chromosomes display different gene densities, transcriptionally silent heterochromatin and

transcriptionally active euchromatin (Boyle et al. 2001, Tanabe et al. 2002). Also various protein-rich

regulatory compartments are represented with distinct domains, such as the PML nuclear bodies, Cajal

bodies and nucleolus. Nucleoli are sites of ribosomal RNA synthesis and processing and assembly of

ribosomal subunits (Spector 1993). Cajal bodies (or coiled bodies) contain pre-mRNA splicing factors

and they are implicated in snRNP assembly, snRNA metabolism and posttranscriptional modification

of newly assembled of splicesomal snRNAs (Matera 1999, Sleeman et al. 1999, Stanik et al. 2003).
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PML bodies have been suggested to play a role in transcriptional regulation and to be targets of viral

infections. The nuclear matrix is maintaining the spatial arrangement of the genome and other nuclear

components. Below, the chromatin structures, PML NBs, transcriptionally active regions and nuclear

matrix is presented in more detail in light of transcription control.

5.1 Chromatin

Mammalian DNA has to be firmly packaged in order to fit inside the nucleus. Chromatin is composed

of nucleosomes in which 146-bp of DNA is wrapped around a histone octamer that consists of two

molecules each of core histones H2A, H2B, H3 and H4. Each nucleosome is separated from the next

one by a region of linker DNA to which the linker histone H1 and high mobility group proteins

(HMGs) bind (reviewed by Hill 2001). This string of nucleosomes can be further condensed to a 30-

nm fibre and further wound into higher order structures, larger solenoid structure and finally into

chromosomes (Horn and Peterson 2002). The majority of DNA is not expressed and thus forms

condensed heterochromatin structures. Current study of chromatin fiber structure of the human

genome by Gilbert et al. (2004) showed that heterochromatin is surprisingly heterogeneous structure

and there is not a simple structural division between heterochromatin and transcriptionally active

euchromatin. Gilbert and coworkers also presented that open chromatin fibers (active region) correlate

with regions of the highest gene density, but not necessarily with gene expression in view of the fact

that inactive genes can be found in domains of open chromatin, and conversely active genes within

regions of low gene density can be found in condensed chromatin fibers. Thus, the ability of a gene to

be activated does not simply depend on the condensation state of chromatin density. It was thought

that heterochromatin contains a network of stable protein-protein interactions that block access of

transcription factors to the silent genes.

Recent studies, which demonstrate the mobility of the heterochromatic proteins in living cells

by FRAP-technique (fluorescence recovery after photobleaching), have revealed that heterochromatin-

interacting proteins are not stably-bound but are rather in a constant flux (Cheutin et al. 2003,

Festenstein et al. 2003). Non-histone HP1 is recruited by methylation of histone H3 tail (N terminus)

and is believed to promote the formation of these dense chromatin structures and to act as a

corepressor of genes within transcriptionally active chromatin (Grewal and Elgin 2002, reviewed by

Li Y et al. 2002). The mobility of HP1 increases during cell activation, and the phosphoacetylation of

H3 tails release the HP1 from chromatin (Mateescu et al. 2004).
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Modulation of chromatin structure plays a central role in the regulation of cellular processes,

such as DNA replication, repair, recombination and transcription (reviewed Kornberg and Lorch

1999). Two most important enzymatic activities that regulate the chromatin access during

transcription are chromatin remodelling and covalent chromatin modification activities. The histone

acetyltransferase complexes and ATP-dependent chromatin remodelling complexes cooperate with

sequence-specific transcription factors to help the transcriptional machinery gain access to the

promoter of certain genes (Näär et al. 2001).

Covalent modifications of chromatin that include acetylation, methylation, phosphorylation,

ADP-ribosylation, sumoylation and ubiquitination usually occur on the N-terminal tails of core

histone that protrude from the nucleosomes, with the exception of ubiquitination that occurs at the C-

terminal tails of H2A and H2B (reviewed by Strahl and Allis 2000 and Berger 2001). Acetylation on

lysine residues of histone tails by histone acetyltransferases correlates with the gene activity. In

transcription activation, the HAT component acetylates nucleosomes in the vicinity of the promoter

and recruits chromatin remodelling components, such as SWI/SNF (Vignali et al. 2000, Syntichaki et

al. 2000). Then these remodelers mobilize nucleosomes by remodelling nucleosomes (the bulging

mechanism) or removing them from the promoter (Boeger et al. 2003, Reinke and Hortz 2003).

Acetylation of the promoter region can also stabilize the interactions of transcription machinery with

the active chromatin region. The changes in chromatin followed from histone acetylation are reversed

by deacetylation by histone deacetylases (reviewed by Kurdistani and Grunstein 2003, Robyr et al.

2002).

Also DNA methylation on CpG nucleotides silences gene expression, possibly through

recruitment of HDACs and histone methyltransferases by methyl CpG-binding proteins or induction

of the formation of chromatin structures that decrease the efficiency of Pol II elongation (reviewed by

Li 1999 and Bird and Wolffe 1999, El-Osta et al. 2000, Lorincz et al. 2004, Fuks et al. 2003).

Phosphorylation of all five histones has been reported (van Holde 1989). Phosphorylation of linker

histone H1 stabilizes higher order chromatin structure and hinders the access of transcriptional

coactivators to the promoter DNA (Horn et al. 2002, Lee and Archer 1998, Cheung et al. 2002, Hill

and Imbalzano 2000). Phosphorylation of H3 on Ser10 is crucial for chromosome condensation and

cell cycle progression during mitosis and meiosis (Gurley et al. 1978), but it is also important for gene

expression, probably via acting as a binding site for transcription machinery (Barratt et al. 1994).

 Methylation occurs both on arginine and lysine residues of H3 and H4 by histone

methyltransferases (Bannister et al. 2002, reviewed by Fischle et al. 2003 and Kouzarides 2002).
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Histone methylation have multiple effects on chromatin structure, since dimethylation of Lys9 and

trimethylation of Lys27 in H3 are associated with gene silencing, while methylation of Lys4, Lys36

and Lys79 is associated with gene activation (reviewed by Kouzarides 2002). Also ubiquitination of

H2B correlates with gene expression (Nickel et al. 1989). Yeast H2B ubiquitination has been

suggested to have an overlapping function with acetylation of H3, through the parallel recruitment of

chromatin remodeling factors (Johnson 2002). However, ubiquitin-conjugation to H2B can also lead

to H3 methylation and gene silencing in yeast (Sun and Allis 2002, Dover et al. 2002). Interestingly,

sumoylation of H4 leads to association with HDAC and HP1, and at least within an artificial reporter

model; this correlates with gene silencing (Shiio and Eisenman 2003).

5.2 Nuclear matrix

The nuclear matrix or nucleoskeleton is a structural framework within nucleus that has been

implicated in a number of cellular events and arrangement of chromatin (reviewed by Nickerson

2001). The nuclear matrix consists of the nuclear lamina that lies at the interface between chromatin

and inner nuclear membrane, and the internal fibrogranular ribonucleoprotein framework, which

contains over 200 nuclear matrix proteins, such as lamins, heterogeneous ribonucleoprotein (hnRNP)

and nuclear mitotic apparatus protein (NuMA) (Nickerson et al. 1997, Monneron and Bernhardt 1969,

Fey et al. 1986, Mattern et al. 1996, reviewed by Mancini et al. 1996, Goldman et al. 2002). The

protein composition of nuclear matrix varies in a cell type- and developmental stage-dependent

manner (Fey and Penman 1988, Dworetzky et al. 1990). Various nuclear proteins interact with the

nuclear matrix, which supports their assembly into functional multisubunit complexes involved in

transcription, RNA splicing and DNA replication (Nickerson 2001). Nuclear matrix proteins, such as

SAF-A (scaffold attachment factor A) and ARBP (attachment region binding protein), that

specifically bind AT-rich DNA sequences called S/MARS (scaffold/matrix-associated regions)

generate an active and silenced chromatin state by recruiting HATs and HDACs, respectively

(Martens et al. 2002). The SABT1 (special AT-rich sequence binding 1) targets chromatin

remodelling factors to specific chromatin domains and it interacts with RNA (Yasui et al. 2002,

Durrin and Krontiris 2002). Nuclear matrix proteins can also bind chromatin via association with HP1

(Ye and Worman 1996) and transcription factors, such as retinoblastoma protein (Rb), GR, AR and

active phosphorylated Pol II (Mancini et al. 1994, Markiewicz et al. 2002, van Steensel et al. 1995,

Tang and DeFranco 1996, Patturajan et al. 1998, Nayler et al. 1998). Interestingly, disruption of

normal nuclear lamin assembly significantly inhibits Poll II activity, but not that of Pol I or Pol III

(Spann et al. 2002, Kumaran et al. 2002). Taken together, these results suggest that nuclear matrix

plays an important role in gene expression.
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5.3 Sites of transcription

To identify the sites of gene expression in the nucleus it is important to elucidate the relationship of

nuclear architecture and genomic function. The sites of RNA synthesis have been examined by

labelling permeabilized cells with bromouridine triphosphate or bromouridine and light and electron

microscopy. The majority of labelled transcripts is concentrated at 500-1000 transcription foci (40-80

nm) in proliferating mammalian cell (Jackson et al. 1998, Pombo et al. 1999, Elbi et al. 2002, Grande

et al. 1997), but Pol II is also localized to numerous domains outside these “transcription factories”

(Jackson et al. 1998). A recent study by Osborne et al. (2004) shows that many transcriptionally active

genes colocalize into the same transcription factory at a high frequency and inactive genes are

localized apart from these sites. Thus, these results suggest that activated genes are recruited to

preassembled Pol II compartments rather than that each gene assembles its own transcription complex.

5.4 PML nuclear bodies

The promyelocytic leukaemia (PML) bodies (also known as PML nuclear body, PML NB; PML

oncogenic domain, POD; nuclear domain 10, ND10; Kremer body, Kr-body) are nuclear domains that

are disrupted in human acute promyelocytic leukaemia (APL) cells (Dyck et al. 1994, Koken et al.

1994). A typical cell nucleus contains about 10-30 PML NBs with the appearance of doughnut-shape

and size variation from 0.2 to 1.0 µm in diameter. The number of PML NBs varies between cell types

and the stage of cell cycle (Zhong et al. 2000b, Everett et al. 1999). Several models have been

proposed for the function of the PML NBs. They have been thought to serve as storage pools for

proteins waiting for degradation or to modulate nuclear protein concentrations by preserving them at

PML bodies until needed (reviewed by Maul et al. 2000). In addition, PML NBs may serve as a

location of post-translational modification of its protein components (Hofmann et al. 2002, D´Orazi et

al. 2002, Bernassola et al. 2004). The major structural component of PML NBs is the PML protein.

PML knock-out mice are viable, but sensitive to tumor-promoting agents and display chromosome

instability, suggesting that PML is a tumor suppressor protein (Wang et al. 1998a and 1998b).

Chromosomal translocation of the PML gene on chromosome 15 into the proximity of the RARα gene

on chromosome 17 in APL cells results in PML-RARα-fusion protein that mislocalizes PML and thus

destroys PML NBs into smaller domains (Melnick and Licht 1999, Koken et al. 1994, Dyck et al.

1994, Daniel 1993). Treatment of leukemic cells with retinoic acid or arsenic trioxide (As2O3) results

in reformation of PML NBs (Huang et al. 1988, Zhu et al. 1997 and 2002). More than forty proteins,
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including SUMO-1, nuclear antigen Sp100, p53 and CBP are listed to localize either transiently or

constitutively with these domains (Zhong et al. 2000a, Hodges et al. 1998, Dellaire et al. 2003, Zhong

et al. 2000b).

PML NBs are thought to represent sites of specific nuclear processes, such as transcription,

DNA replication or repair, and appear to be the targets of viral infections (reviewed by Maul 1998 and

Everett 2001). PML NBs are regularly found in juxtaposition to distinct nuclear structures, such as

splicing speckle domains and Cajal bodies, and are tightly associated with nuclear matrix (Dyck et al.

1994). Recent studies have proven that PML NBs are mobile (Muratani et al. 2002, Görisch et al.

2004) and that the dynamics and accessibility of chromatin may target nuclear bodies to specific

nuclear subcompartments where they carry out their biological function (Görisch et al. 2004).

Interestingly, PML NBs are stably surrounded by chromatin, but during inhibition of transcription and

chromatin condensation or cleavage, the PML NBs breakdown into microstructures, “PML

microbodies”, suggesting that chromatin integrity and condensation stage can influence also PML NB

structure and stability (Eskiw et al. 2004). Similar to transcription inhibition, PML NBs are disrupted

by heat-shock or heavy metal stress, but the released subunits of PML NBs are distinct from “PML

microbodies”, since they lack Sp100 and SUMO-1 (Eskiw et al. 2003). PML NBs may also regulate

chromatin structure, since HP1 and chromatin-modifying proteins HATs and HDACs accumulate in

PML NBs (Seeler et al. 1998, Wu et al. 2001, Doucas et al. 1999, Boisvert et al. 2001). Many

transcription regulators, such as HIPK2, p53, BRCA1 and MDM2, concentrate into PML NBs, and

the transcriptional activity of these nuclear bodies is further supported by demonstration of nascent

RNA on the surface of the PML NBs and association specific gene loci with PML NBs (Kim YH et

al. 1999, Louria-Hayon et al. 2003, Xu et al. 2003, Boisvert et al. 2000, Shiels et al. 2001, Sun et al.

2003). PML may regulate p53- and the Sp1-mediated transcription by recruiting these transcription

factors into PML NBs (Vallian et al. 1998, Fogal et al. 2000). On the other hand, RNA polymerase II,

TFIIF or DNA has not been found in these nuclear domains (Boisvert et al. 2001), arguing against

PML NBs to be the sites of active transcription.
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AIMS OF THE STUDY

We were interested in identifying androgen receptor (AR)-interacting proteins that interact with the

DNA-binding domain (DBD) and the hinge region of AR. The aim of this study was to characterize

the biological function of one of these newly discovered AR-binding proteins, termed small nuclear

RING finger protein (SNURF), in more detail. The specific aims of this study were:

• To examine the function of SNURF in the AR-dependent and -independent transcriptional

regulation

• To investigate the functional regions of SNURF by searching for interaction partners

• To study the potential role of SNURF as a RING ubiquitin E3 ligase

• To study SNURF as a target of covalent modifications

• To examine subcellular localization of SNURF
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MATERIALS AND METHODS

Materials and methods used in this study are presented in the original publications (I-V) as indicated

in Table 1, or under the title of Methods of unpublished results.

Table 1. The methods used in original publications.

Method Original publication

yeast two-hybrid screening and interaction assays I 

cDNA cloning and sequencing I

northern blotting I

cell culture and transfections I, II, III, IV, V

mammalian two-hybrid interaction assays I

immunohistochemistry I

immunocytochemistry             I, II

confocal microscopy V

immunoprecipitation I, IV, V

chromatin immunoprecipitation (ChIP) V

SDS-PAGE and immunoblotting I, II, III, IV, V

plasmid construction and recombinant DNA techniques 

- in bacteria I, II, III, IV, V

- the baculovirus/insect cell system I

- in mammalian cells I, II, III, IV, V

GST pull-down assay I, II, III, V

electrophoretic mobility shift assay (EMSA) II

gel filtration chromatography IV

in vitro ubiquitination IV

in vitro sumoylation V
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Methods of unpublished results

RNA- EMSA

A central region of SNURF gene (71-280 bp) was inserted between PstI and HincII of pGem3Z vector

(Promega). In vitro transcribed RNA (232 ribonucleotides) was produced as described in in vitro RNA

synthesis protocol of Promega. Shortly, pGem3Z-SNURF(71-280 bp) was linearized with XbaI and

the template DNA was purified by phenol/chloroform extraction and ethanol precipitation. The DNA

template was incubated with Rnase inhibitor, ATP, UTP, GTP, SP6 RNA polymerase and [γ32P]CTP

and incubated for 20 minutes at 37 °C. Samples were treated with DnaseRQ1 for 15 minutes at 37 °C

and the transcribed RNA was purified with gel filtration. GST-SNURF (60 ng) was incubated with
32P-RNA-probe and 4 units of Rnase inhibitor in a buffer containing 20 mM Hepes (pH 7.9), 50 mM

KCl, 1 mM MgCl2, 10% (v/v), 2 mM DTT, 0.35 mM EDTA, 0.025% (v/v) Nonidet P-40, 0.25 mM

PMSF, 2 µg/ml pepstatin A, 2 µg/ml leupeptin, and 2 µg/ml aprotinin in a reaction vol of 20 µl for 30

minutes at room temperature. Competitors, yeast tRNA (1 µg) (Sigma) and pGem3z-vector (200 ng)

were included before addition of the 32P-RNA probe. Protein-RNA complexes were resolved on 4%

polyacrylamide gel in 0.25 x Tris-borate-EDTA at °4C. Complexes were detected by autoradiography.

In vitro phosphorylation

GST-SNURF protein was produced in bacteria and purified as described (Häkli et al. 2000). Casein

kinase II (CKII) was obtained from Promega. GST-SNURF (1 µg) was incubated with 10 ng of CKII,

100 µM ATP, 1 µCi [γ32P]ATP in a buffer containing 25 mM Tris-HCl (pH 7.4), 200 mM NaCl, 1

mM DTT, 10 mM MgCl2, in a volume of 40 µl. Samples were incubated at 37 °C for 1 h and reactions

were terminated by adding concentrated SDS-PAGE buffer and heat denaturation. Samples were

fractioned by 15% SDS-PAGE and detected by autoradiography. Alternatively, GST-SNURFs (1 µg)

resolved on SDS-PAGE gels were stained with Coomassie staining.
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RESULTS AND DISCUSSION

1. SNURF POSSESSES PROTEIN- AND DNA-BINDING ACTIVITY (I, II, III, IV and V)

Characteristics of SNURF

In addition to mediating dimerization and binding to response element in DNA, the DNA-binding

domain of nuclear receptor can act as a binding platform for regulatory proteins. We were interested

to find out proteins that interact with the DBD and the hinge region of androgen receptor. Yeast two-

hybrid screening was used to screen a mouse embryonic day 10.5 cDNA domain library, in which the

amino acid residues 554–644 comprising the DBD and N-terminal part of the hinge region of human

AR fused to LexA DNA-binding domain was used as a bait. A novel protein termed small nuclear

RING finger (SNURF) was one of the discovered proteins. SNURF mRNAs of 3-kb and 1.6-kb in

size were identified when SNURF cDNA was used as a probe in Northern blotting of various rat and

human tissues. The 3-kb SNURF mRNA was found in all tissues, but the smaller, 1.6-kb mRNA was

expressed only in the rat testis. The human and mouse SNURF homolog, which is called RNF4, was

identified by Chiariotti and coworkers in the same year as SNURF (Chiariotti et al. 1998). RNF4

shows expression pattern similar to that of SNURF, and its gene was mapped to chromosome 4p16.3,

which is associated with different neoplastic diseases (Chiariotti et al. 1998, Galili et al. 2000,

Shivapurkar 1999, Caron et al. 1996).

Full-length SNURF cDNA was isolated from rat testis cDNA library by conventional

hybridization methods, and an open reading frame (ORF) with 194 amino acid residues was revealed.

The mouse and human RNF4 exhibit 97% and 91% sequence identity with SNURF, respectively (Fig.

11A), but no other homologs are found. Based on the primary SNURF sequence, a bipartite NLS in

the N-terminal part, a SV-40-like NLS in the central region of SNURF, and a RING finger (C3HC4)

structure in the C terminus (amino acids 136-180) (Fig. 11B), which is fully conserved in RNF4 (Fig.

11A), were identified in rat SNURF.
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 A

                            20
SNURF 1   MSTRNPQRKRRGGAVNSRQTQKRTRETTSTPEISLEAEPIELVETVGDEIVDLTCESLEPVVVDL 65
mRNF4 1   MSTRNPQRKRRGGTVNSRQTQKRTRETTSTPEVSLETEPIELVETVGDEIVDLTCESLEPVVVDL 65
hRNF4 1   MST----RKRRGGAINSRQAQKRTREATSTPEISLEAEPIELVETAGDEIVDLTCESLEPVVVDL 61
                 +   +  +  +  +          -  -  -  -  -  -   -  -

                                                                 121
SNURF 66  THNDSVVIVEERRRPRRNGRRLRQDHADSCVVSSDDEELSKDKDVYVTTHTPRSTKDEGTTGLRP 130
mRNF4 66  THNDSVVIVEERRRPRRNGRRLRQDHADSCVVSSDDEELSRDKDVYVTTHTPRSTKDDGATGPRP 130
hRNF4 62  THNDSVVIVDERRRPRRNARRLPQDHADSCVVSSDDEELSRDRDVYVTTHTPRNARDEGATGLRP 126
                   +  +  +  +             -   -   -

              136                                         180          
SNURF 131 SGTVSCPICMDGYSEIVQNGRLIVSTECGHVFCSQCLRDSLKNANTCPTCRKKINHKRYHPIYI 194
mRNF4 131 SGTVSCPICMDGYSEIVQNGRLIVSTECGHVFCSQCLRDSLKNANTCPTCRKKINHKRYHPIYI 194
hRNF4 127 SGTVSCPICMDGYSEIVQNGRLIVSTECGHVFCSQCLRDSLKNANTCPTCRKKINHKRYHPIYI 190
                                                             +  +  +
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Fig. 11. A, Sequence alignment of SNURF and its mouse (mRNF4) and human (hRNF4) counterparts. RING
finger (C3HC4) motif is indicated by dark grey shading and the cysteine and histidine residues mediating
putative zinc binding within the RING finger motif are bolded. Bolded italics present amino acid residues that
differ between the three homologous sequences, and dash lines indicate absent amino acid residues. Underlined
sequences present NLSs, and the grey shading region between amino acids 20-121 is AR-interacting region.
Basic and acidic aa regions are indicated + and –, respectively. Protein database sequence identification
numbers: SNURF (AAC35248), mRNF4 (AAF00620) and hRNF4 (AAC52022). B, Schematic “cross-braced”
structure of SNURF/RNF4 RING finger motif. Zinc (Zn)-coordinating amino acid residues are numbered and
circled with light grey spheres.

SNURF is a hydrophilic protein, and its charge distribution is asymmetrical with alternating basic and

acidic amino acid clusters. Such charged regions have been involved in DNA binding and

transcriptional activation (van Hoy et al.1993, Niessing et al. 2003). This electrical asymmetry of
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SNURF may be responsible for the slower migration rate (~35 kDa) on SDS-PAGE than expected

from the molecular mass calculations (~22 kDa).

SNURF and protein-protein interactions

RING fingers have been shown to mediate protein-protein interactions and the formation multi-protein

complexes (Saurin et al. 1996). The interaction partners of SNURF/RNF4 and their corresponding

interaction regions in SNURF/RNF4 are presented in Figure 12. The binding partners of SNURF

found in this study are presented below the schematic structure of SNURF.

                      

Fig. 12. Interaction partners of SNURF. Schematic presentation of the interaction sites of SNURF binding
partners, and SNURF amino acid (aa) region important for the protein binding is indicated. ND; SNURF
binding region not detected, RING; RING finger;     , NLS;    , DNA-binding region. Interaction partners of
SNURF that are identified by this study (boxes under the cartoon of SNURF) and by others (boxes above
SNURF). References; HMGI(Y) and PATZ by Fedele et al. 2000; Gscl by Galili et al. 2000; Sp1 by Poukka et
al. 2000a; SPBP by Lyngsø et al. 2000; ERα by Saville et al. 2002; TRPS1 by Kaiser et  al. 2003; NF-Y by Wu
et al. 2004.

 The interaction between AR and SNURF revealed by yeast two-hybrid screening was confirmed by

in vitro- and in vivo-binding studies. In the GST-pull down assay, in vitro translated SNURF bound

the GST-fusion of AR DBD, and in yeast cells (a yeast two-hybrid assay), full-length AR interacted

with SNURF in an androgen-dependent manner. In addition to AR, full-length SNURF was able to

bind DBD of other steroid receptors such as progesterone (PR) and estrogen (ER) receptor in

hormone-dependent fashion in yeast cells. Ectopically expressed FLAG-SNURF and AR were also
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observed to form a complex in mammalian cells (COS-1), when co-immunoprecipitated with anti-

FLAG antibody and furthermore, the N-terminal part of SNURF RING finger was shown to be

required for this interaction. SNURF interaction region in AR localizes to the region flanking the AR

DBD and hinge region as revealed by yeast two-hybrid screening. Later on, Poukka et al. 2000a

performed more detailed examination of this binding region, and found that the bipartite NLS in the

vicinity of the DBD/hinge-borderline was critical for the interaction. In addition, AR DBD point

mutations that are observed in patients with partial androgen insensitivity syndrome and male breast

cancer weakened the interaction between AR-DBD and SNURF (Poukka et al. 2000a). In the

interactions with ERα, both the RING and the central acidic region (aa 31-65) of SNURF were needed

for the interaction (Saville et al. 2002). The same acidic region of SNURF was also needed for the

interaction with the orphan nuclear receptor steroidogenic factor 1 (SF-1 or NR5A1). In addition to

sequence-specific transcription factors, SNURF was able to bind to the basal transcription machinery

protein TBP with its RING finger region that was also needed for binding to other transcription

factors, such as POZ AT-hook zinc finger protein (PATZ), promoter specificity protein 1 (Sp1), and

the activator of stromelysin 1 gene transcription (SPBP) (Lyngsø et al. 2000, Fedele et al. 2000,

Poukka et al. 2000a). SNURF interacts also with the repressor of GATA-mediated transcription, the

TRPS1 (trichorhino-phalangeal syndrome) protein with its amino-terminal region (aa 6-65) (Kaiser et

al. 2003).

Interestingly, when SNURF region of amino acids 21-186 was used as a bait in the yeast two-

hybrid screening SUMO-1 and Ubc9 were identified as SNURF-interacting proteins (Poukka,

unpublished results), which suggests that SNURF might be involved in SUMO modifications. We

studied these interactions by using the GST-pull down assay and found that SNURF bound efficiently

to GST-SUMO-1, but not to GST-Ubc9, suggesting that additional protein(s) mediate the SNURF-

Ubc9 interaction in yeast cells. Several proteins have been shown to bind noncovalently to SUMO,

but little is known about the effects of this function. However, noncovalent SUMO binding has been

shown to influence protein localization and activity (Minty et al. 2000, Kotaja et al. 2002, Engelhardt

et al. 2003). A recent study by Song et al. (2004) revealed that hydrophobic consensus sequence

V/IxV/IV/I is required for binding to all three SUMO variants (SUMO-1, -2,and -3). SNURF contains

one perfect SUMO-1 binding motif, 71VVIV74, in the central region of SNURF. However, the SNURF

mutant (∆66-98) lacking this region was still able to bind SUMO-1 in GST-pull down assays, albeit

less efficiency than the wild-type protein, indicating that there is an additional SUMO-1 binding site

in SNURF (unpublished results). This secondary SUMO-1-binding region in SNURF could be the
61VVVD64 sequence (Song et al. 2004). We examined the possible interaction between SNURF and

another RING finger- and well-known SUMO-binding- protein PML3 (promyelocytic leukemia
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protein 3) by using immunoprecitation techniques. Immunoprecipitation with anti-SNURF antibody

revealed that PML3 was complexed with SNURF, but only when SUMO-1 was coexpressed. Some of

the SNURF-interacting protein partners, such as SF-1 an AR, have been found to be sumoylated

(Poukka et al. 2000b, Chen et al. 2004), and thus SUMO-1 may be involved in mediating these

interactions. Finally, SNURF was found to reside in large (≥500-kDa) multiprotein complexes, as

assessed by size fractionation of protein lysates of F9 cells and mouse testis by gel filtration

chromatography. In addition, E. coli-produced purified SNURF was eluted in fractions of ≥100-kDa,

suggesting that SNURF is able to self-assemble. Taken together, SNURF is able to interact with many

diverse transcription regulators via multiple regions and in vivo it appears to be a component in a

multiprotein complex.

SNURF and DNA/nucleosome binding

It has been speculated that RING finger structure possesses DNA-binding activity similar to other

zinc-binding molecules such as Gal4, but up until now none of the DNA-binding RING finger

proteins have been shown to contact DNA via their RING fingers. Nucleotide-binding ability of

SNURF was examined by electrophoretic mobility shift assay (EMSA) in vitro. Recombinant SNURF

was found to bind DNA in a non-sequence specific manner with different types of DNA (single- and

double-stranded DNA, supercoiled and linear plasmid DNA, and four-way junction DNA), but there

was no clear binding preference between linear or branched DNA. The capacity to bind normal and

abnormal DNA without sequence specificity is a common property of architectural proteins, such as

HP1 (reviewed by Zlatanova and van Holde 1998). GST-SNURF interacted with DNA in a

cooperative fashion that was dependent on the length of the DNA fragment. Also human RNF4

showed a similar DNA-binding behavior (Wu et al. 2004). A comparable DNA-binding capacity has

been characterized for HP1 and BRCA1 (Zhao et al. 2000, Paull et al. 2001). BRCA1 interacts with

DNA as a multimer and is able to generate DNA loops (Paull et al. 2001). Since SNURF is also able

to self-associate (Lyngsø et al. 2000), it is possible that SNURF can bind DNA as a multimer. The

RING finger structure of SNURF was not needed for its DNA-binding activity, but the deletion of the

positively charged N-terminal region (aa 1-20) abolished the DNA-binding activity of SNURF.

Further examination revealed that basic amino acids 8RKRR11 play a critical role in DNA binding.

Many DNA-binding proteins, such as Bicoid, mel-8 and HMGY(I), associate with DNA through their

basic amino acid regions (Niessing et al. 2000). Since Arg-rich clusters are also involved in RNA

recognition (Muchardt et al. 2002, Burd et al. 1994), we examined whether SNURF is able to bind

RNA as well. GST-SNURF bound the RNA-probe (232 nucleotides) efficiently also in the presence of

a cold competitor transfer RNA (tRNA) (90-fold excess) (Fig. 13, lanes 2 and 3). However, a lower
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(0.3-fold) molar ratio of linearized plasmid DNA was able to compete with RNA, since smaller

SNURF-RNA complexes started to appear (Fig. 13, lane 4).

         

 32P-RNA

GST-SNURF      –           +           +           +  

tRNA    DNA

    1          2          3          4

Fig. 13. SNURF is a RNA-binding protein. In EMSA, GST-SNURF was incubated with in vitro-transcribed
32P-RNA (lanes 2-4). In lanes 3 and 4, RNA-binding of SNURF is competed with tRNA (90-fold excess) and
linearized plasmid DNA (0.3-fold excess), respectively.

Since SNURF was able to interact with proteins and various DNA molecules, we were

interested in studying whether SNURF is able to bind nucleosomes. We reconstituted DNA on

mononucleosomes in vitro and performed EMSA assays with different amounts of GST-SNURF.

SNURF was able to bind efficiently to nucleosomes, albeit with a lower activity compared to naked

DNA. The DNA binding-deficient SNURF mutant (∆1-20) was also practically unable to bind

nucleosomes. GST-SNURF pull-down experiments showed that SNURF is able to recruit histones H3

and H4, suggesting that both DNA- and protein recognitions are involved in nucleosome binding.

Interestingly, HP1α that is also a small (191 amino acids) protein with DNA- and RNA-binding

activities binds to nucleosomes and histones H3 and H4 (Polioudaki et al. 2001, Zhao et al. 2000,

Meehan et al. 2003, Murchardt et al. 2002). This suggests that SNURF and HP1 share similar

functional properties that are involved in the regulation of chromatin function. In addition, SNURF

binds non-histone chromatin modeling protein HMGI(Y), which is involved in transcription and cell



67

growth regulation (Fedele et al. 2000). Since SNURF is able to bind a variety of transcription

regulators, DNA and nucleosomes, it may promote assembly of nucleoprotein structures involved in

transcription control.

2. SNURF AS A TRANSCRIPTIONAL COREGULATOR (I, II, III, and V)

Since SNURF was able to bind AR, we studied whether SNURF was influencing AR-dependent

transcription. We performed reporter gene assays, in which SNURF was coexpressed with AR in

cultured CV-1 and COS-1 cells. These assays showed that SNURF was able to enhance transcriptional

activity of AR from different AR-regulated promoters, such as minimal ARE2-TATA-LUC and

natural and more complex rat probasin-LUC, in an androgen-dependent fashion. This activity of

SNURF was dependent on the AR-binding region of SNURF. Interestingly, SNURF was also able to

enhance basal transcription from probasin-promoter and minimal TATA-LUC reporters, which was

dependent on the RING finger of SNURF. Later on, Poukka and coworkers showed that the activity of

SNURF in AR-mediated transcription depends on the cell type. Namely, in COS-1 cells, the

coactivator function of the SNURF RING finger mutant (SNURF-C177/180S), in which the second

zinc-binding site was mutated, was practically inactive, but this mutant was active in CV-1 cells

(Poukka et al. 2000a). Interestingly, the PATZ protein is capable of switching SNURF coactivation

function to corepression function in AR-mediated transcription by interacting with SNURF (Pero et

al. 2002).

SNURF is not specific for AR, since it was able to enhance the activity of other steroid

receptors, such as the progesterone receptor (PR) and glucocorticoid receptor (GR) in the presence of

appropriate hormone. In addition, SNURF enhanced transcription from promoters containing binding

sites for Sp1 and activator protein 1 (AP-1). The latter coactivator function of SNURF was dependent

on the intact RING finger, which supports the Sp1 interaction. However, also the N-terminal region

was required for both Sp1- and AR-regulated transcription (Poukka et al. 2000a). Since SNURF uses

its N-terminal region for DNA binding, we examined whether DNA binding is required for SNURF

action in transcription regulation. We cotransfected COS-1 cells with Sp12-TATA-LUC or ARE2-

TATA-LUC together with SNURF or its DNA-binding mutants. We found that the DNA-binding

activity of SNURF clearly correlates with its coactivation function in both cases (AR; unpublished

results). Therefore, the DNA-binding activity of SNURF may also be needed in ERα-regulated

transcription, since the N-terminal deletion of SNURF abolishes the coactivation of ERα, although

SNURF was still maintaining ER-interaction and nuclear localization (Saville et al. 2000). We also

examined whether SNURF enhanced Sp1 binding to a GC-rich promoter sequence in EMSA, but
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there was no clear cooperativity between Sp1 and SNURF. Neither was AR binding to its

corresponding promoter element influenced by SNURF (AR; unpublished result). Interestingly, RNF4

has been shown to promote both DNA binding and transcriptional activity of SPBP (Lyngø et al.

2000).

Since SNURF mRNA is also expressed in mouse brain, we were interested in studying

whether SNURF is able to influence the regulation of luteinizing hormone β -gene expression in

pituitary tissues, where GnRH plays a stimulative role, and androgens and AR play a repressive role

(negative feedback). We were able to detect endogenous SNURF protein in mouse pituitary tissues

and in pituitary gonadotrope LβT2 cell line by anti-SNURF antibody. Furthermore, endogenous

SNURF physically associated with the native LHβ promoter in LβT2 cells as, revealed by anti-

SNURF antibodies and chromatin immunoprecipitation (ChIP) assay. In transient transfection assays,

ectopically expressed SNURF enhanced the basal and GnRH-regulated transcription from the LHβ-

promoter. Enhancer regions of the LHβ gene, where the distal enhancer harbors binding sites for Sp1

and the proximal enhancer contains binding sites for SF-1 and Egr-1, were both needed for full

SNURF activity. The stimulatory effect of SNURF on the LHβ-promoter was abolished, when the

Sp1- or the SF-1-binding region of SNURF was deleted. Interestingly, SNURF was able to prevent the

androgen-mediated suppression of GnRH-stimulation of LHβ. AR has previously been shown to

interfere with the transcription factors that stimulate the LHβ promoter (Curtin et al. 2001, Jorgensen

et al. 2001); AR may form a complex with SF-1, which leads to repression of LHβ transcription

(Jorgensen et al. 2001). Our results suggest that SNURF is also able to block the entry of AR to the

LHβ promoter via binding to SF-1 and Sp1. cAMP signaling system has been shown to regulate the

LHβ promoter via Sp1, Egr-1 and SF-1 in LβT2 cells, but the precise mechanism of its action on the

LHβ promoter is not known. SF-1 is not mandatory for the cAMP-induced activation of the LHβ

promoter, but it amplifies the cAMP-response via an unknown mechanism (Horton and Halvorson

2004). Interestingly, SNURF expression is enhanced by forskolin and PMA (phorbol myristate,

another LH agonist) in cultured granulosa cells of follicles (Hirvonen-Santti et al. 2003). Therefore, it

would be interesting to study whether SNURF is participating in the cAMP-induced activation of the

LHβ promoter in pituitary tissue. In view of this, it is interesting that the transcription factor NF-Y has

been shown to regulate the bovine LHβ promoter and contribute to cAMP signalling (Keri et al. 2000,

Zhong et al. 2000). Moreover, a recent study showed that RNF4 is a coactivator for NF-Y and it can

enhance transcription of GTP cyclohydrolase I (GCH), which is an essential gene in the synthesis of

neurotransmitters dopamine and serotonin (Wu et al. 2004).
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SNURF fulfills only some of the characteristics of a “classical” coregulator. It interacts with

many transcription factors, whose transcription activity SNURF either enhances (e.g. AR and Sp1) or

represses (TRPS1) (Kaiser et al. 2003). Since SNURF can bind to DNA, a large number of enhancer-

binding proteins and to proteins of general transcription machinery, SNURF may bridge the sequence-

specific transcription factors to the general transcription machinery, and thus enhance or repress

transcription. In agreement with the latter observation, SNURF has been shown to cooperate with

TBP in coactivation of ERα-mediated transactivation (Saville et al. 2002).

3. SNURF HAS UBIQUITIN E3 LIGASE ACTIVITY (IV)

Since many RING finger-containing proteins mediate ubiquitin E3 ligase activity, we have studied the

ability of SNURF to cooperate with E2 enzyme by using in vitro ubiquitination assays, in which

immobilized GST-SNURF was incubated with recombinant labelled ubiquitin, ubiquitin-activating

enzyme (E1) and various E2s. Our result showed that SNURF is able to mediate the ubiquitin E3

ligase activity via cooperation with different E2s, such as Ubch5A/B, HHR6B (RAD6), E2-25K,

MmUbc7 and UbcH13. This multiple usage of E2 is a rare quality among the known ubiquitin E3s.

UbcH5 has previously been shown to cooperate with many E3s, such as MDM2, BRCA1-BRAD1,

SCF and APC, and to ubiquitinate p53 (Ostendorff et al. 2002, Brzovic et al. 2003). HHR6 (RAD6)

has been implicated in the regulation of chromatin structure via histone ubiquitination (Robzyk et al.

2000, Haas et al. 1990). As in the case of many other E3s, such as BRCA1 and MDM2, also SNURF

was self-ubiquitinated in a RING-finger-dependent manner (Fang et al. 2000, Chen et al. 2002). We

used several SNURF-interacting partners, such as AR, Sp1, SF-1, and PML-3, to screen for

substrate(s) for the SNURF ubiquitin E3 ligase activity. SNURF was, however, not able to enhance

the ubiquitination level of these proteins, thus the specific substrate(s) other than SNURF itself was

not discovered. Since the endogenous SNURF was found in large multiprotein complexes in F9 cells,

SNURF may act as an essential RING finger subunit in an E3 multiprotein complex. Further work

should be performed to identify potential endogenous interaction partners of SNURF. It should be

possible to purify SNURF-multiprotein complex by using SNURF-affinity chromatography and

identify SNURF-bound proteins with mass spectrometric analyses. Unfortunately, our current

antibodies were not suitable for such an approach. Mammalian two-hybrid screening with full-length

SNURF as a bait could provide another tool to study the components of SNURF-containing

complexes. Results from these experiments may also lead us to identify specific ubiquitination targets

of SNURF. Interestingly, MDM2 ubiquitin E3 ligase has recently been shown to repress transcription

activity of p53 via Nedd8 (ubiquitin-like molecule) conjugation (Xirodimas et al. 2004). Therefore, it
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would be interesting to study whether SNURF is able to mediate conjugation of ubiquitin-like

molecules, such a Nedd8, ISG15 and FAT10.

SNURF has been suggested to play a role in spermatid maturation (Yan et al. 2002). SNURF

is down-regulated in germ cell tumors and RAS-transformed cells (Pero et al. 2001, Zuber et al. 2000,

Hirvonen-Santti et al. 2003), suggesting a role for SNURF in the pathogenesis of testicular germ cell

cancer. Interestingly, overexpression of SNURF inhibits cell proliferation (Pero et al. 2001). The

RING finger SNURF mutants that are inactivate as ubiquitin E3 ligases show attenuated coregulatory

function as well as inhibitory function in cell growth. Similarly, RING finger mutated BRCA1 fails to

inhibit the cell growth and also the ubiquitin E3 ligase activity of the BRCA1/BARD heterodimer is

lost as a consequence of the mutation within the RING of BRCA1. Therefore, it has been suggested

that the E3 ubiquitin ligase activity of BRCA1-BARD1 would promote tumor suppression (Chen et al.

2002, Jin et al. 1997, reviewed by Baer and Ludwig 2002). Accordingly, it would be important to

study the ubiquitin E3 ligase activity of SNURF in the context of cell growth regulation in more

detail.

4. COVALENT MODIFICATIONS OF SNURF (IV, V)

SNURF is mainly mono- and di-ubiquitinated in vitro and in vivo, but the addition of MG-132, a

proteasome inhibitor, to cultured cells increases total SNURF ubiquitination level and especially,

polyubiquitinated SNURF forms become more evident. SNURF contains nine lysine residues.

Although we have used a versatile deletion series of SNURF (Poukka et al. 2000a), we were not able

to pinpoint the target lysines, suggesting that SNURF can simultaneously be ubiquitinated on several

lysine residues or a deletion of one ubiquitination site may lead to ubiquitination of another lysine.

Some proteins, such as c-Jun, exhibit seemingly random ubiquitination patterns, while others, such as

IκBα, are ubiquitinated with high specificity (Weissman 2001). Mutations in the RING finger motif

did not stabilize the SNURF protein, suggesting that SNURF autoubiquitination is not simply

targeting SNURF for degradation, but rather modifies SNURF function, possibly its subcellular

localization, DNA binding or protein-protein interactions. MDM2, for instance, regulates its

degradation by auto-ubiquitination, since the destruction of its RING finger structure stabilizes

MDM2 in cells (Fang et al. 2000, Geyer et al. 2000), whereas in the case of BRCA1,

autoubiquitination does not lead to degradation, rather to a modulation of its function (Nishikawa et

al. 2004).
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Since SNURF was able to bind non-covalently to SUMO-1 in vitro, we studied whether

SNURF is also covalently conjugated to SUMO-1. SNURF does not contain precise sumoylation

consensus sequence, ψKXE/D. However, many proteins appear to be sumoylated through lysine

residues, which surrounding sequences do not fulfill the SUMO consensus sequence (Hoege et al.

2002, Lee et al. 2003). We performed in vitro sumoylation assays and observed that SNURF can be

conjugated to two SUMO-1 molecules in the presence of SUMO-activating enzyme (E1), Ubc9 and

SUMO-1. Studies in COS-1 cells suggested that at least three SUMO-1 molecules can be conjugated

to SNURF. SNURF has one potential site Lys121 within the TKDE sequence, but the deletion of this

SNURF region (deletion ∆121-143) did not alter the sumoylation pattern of SNURF. Interestingly, the

RING finger SNURF mutant was more avidly sumoylated than the wild-type SNURF in COS-1 cells,

suggesting that sumoylation and autoubiquitination compete for the same target lysine(s) in SNURF

or that the destruction of RING finger can reveal hidden sumoylation sites. Interestingly, SUMO-1

conjugation of MDM2 shifts its E3 activity towards p53 ubiquitination and diminishes its

autoubiquitination and thus its degradation (Buschmann et al. 2001). SUMO conjugation of SNURF

may regulate the stability, protein-protein interactions, DNA-binding or subnuclear localization of

SNURF. However, SUMO-1-mediated SNURF-PML3 complex formation was independent on the

covalent SUMO-1 conjugation.

SNURF sequence contains many consensus target sites for various kinases, such as protein

kinase A (PKA), protein kinase C (PKC) and casein kinase II (CKII). There are seven potential

phosphorylation sites for CKII, which lie within the AR-binding region of SNURF. We performed in

vitro phosphorylation reactions, where various bacterially produced and purified GST–SNURF

proteins were incubated with CKII and [γ32P]ATP. A shown in Fig. 14, wild-type SNURF was

efficiently phosphorylated by CKII (lanes 2 and 9), but the SNURF mutants 1-94 and ∆99-118 were

not phosphorylated (lanes 3 and 6). Next, we mutated two serine residues (Ser98 and Ser99)

simultaneously (lane 8 and 10) or separately (lanes 11 and 12) within this region, and found that both

serines were targets of CKII phosphorylation. Lack of CKII phosphorylation resulted in a slight

increase in SNURF coactivation function in both Sp1- and AR-regulated transcription (data not

shown), suggesting that CKII-mediated phosphorylation of SNURF does not play a major role in

transcription. Phosphorylation may, in turn, regulate sumoylation and/or ubiquitination of SNURF,

since, in the case of IκBα, phosphorylation inhibits SUMO modification and enhances ubiquitination

(Desterro et al. 1998).



72

W
T

1-
94

95
-1

94

∆6
6-

98

∆9
9-

11
8

∆1
21

-1
43

S9
8-

99
A

S9
8A

S9
9D

W
T

G
ST

S9
8-

99
A

 1        2        3        4         5         6         7        8

 9           10         11         12

Fig. 14. SNURF is phosphorylated by casein kinase II in vitro. GST (lane 1), GST-SNURF wild-type (lanes 2
and 9) and its mutants (lanes 3-8 and 10-12) were incubated with CKII and [γ32P]ATP. Samples were
fractionated by 15% SDS-PAGE gel and detected by autoradiography.

5.  SUBCELLULAR LOCALIZATION OF SNURF (I and V)

SNURF mRNA was found to be expressed in various mouse and human tissues as revealed by

Northern blotting. Immunohistochemistry of rat prostate epithelial cells by anti-SNURF antibodies

revealed that SNURF is localized into the nucleus. Furthermore, immunocytochemical staining of

cultured CV-1 cells revealed that the endogenous SNURF was localized into small nuclear speckles in

CV-1 cells. Kaiser et al. (2003) have obtained similar results with primary human fibroblast.

Interestingly, in the cells of the nervous system of developing mouse embryo and adult mouse, the

localization of RNF4 was primarily cytoplasmic (Galili et al. 2000), suggesting that the localization of

SNURF is regulated in a tissue-specific manner and that SNURF may participate in shuttling

information between the cytoplasm and the nucleus. Poukka et al. (2000c) showed that SNURF is

capable of modulating nuclear targeting of AR by facilitating nuclear import during ligand induction

and retarding export of AR after hormone withdrawal in CV-1 cells.
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Since SUMO-1 is an essential factor in the formation of the PML nuclear bodies (PML NBs)

and many RING finger proteins, such as PML, BRCA1 and MDM2, are found to colocalize to these

structures, we investigated potential colocalization of SNURF, SUMO-1 and PML in HeLa cells by

using immunostaining and confocal microscopy. Interestingly, a significant portion of the endogenous

SNURF colocalized with PML and SUMO-1 into the same nuclear structures. In addition, ectopic

expression of SNURF and PML isoforms, PML3 (PML IV) and PML-L (PML III), showed that

SNURF is specifically recruited to PML NBs by PML3. Likewise, the EGFP-SUMO-1 was localized

with ectopically expressed SNURF in the nucleus and the localization was independent on the RING

finger structure of SNURF. Furthermore, triple staining of ectopically expressed SUMO-1, PML3 and

SNURF revealed perfect localization into PML NBs. Interestingly, overexpression of PML3, but not

PML-L, was able to repress SNURF coactivition function in Sp1-regulated transcription, suggesting

that PML3 was able to regulate SNURF via recruiting SNURF into PML NBs and store SNURF in a

transcriptionally inactive form. Also Daxx and p53 are specifically recruited to PML NBs and their

transcription activity is repressed by PML3 (Fogal et al. 2000, Kim et al. 2003). PML can be

considered as a tumor suppressor protein (Wang et al. 1998a and 1998b). Its expression is down-

regulated in many cancers, such as in germ cell tumors, and absent in progressive tumors of prostate

and central nervous system (Gurrieri et al. 2004). SNURF is down-regulated in germ cell tumors and

overexpression of SNURF inhibits cell proliferation (Yan et al. 2002, Galili et al. 2000), therefore, we

suggest that SNURF and PML may communicate in the regulation of transcription and cell growth.
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CONCLUSIONS

In the present work, we have examined the functional characteristics of rat small nuclear RING finger

protein SNURF. Highly conserved SNURF homologs in human and mouse are called RNF4, but no

other close homologs or related proteins exist. SNURF is a hydrophilic protein that contains zinc-

binding RING-finger motif, which is known to maintain protein-protein interactions and ubiquitin E3

ligase activity. The results of this study are summarized below:

• SNURF is a transcriptional coregulator protein. SNURF interacts with steroid receptors as well as

other transcription regulators, such as, SF-1 and TBP, and enhances transactivation function of AR

and Sp1. SNURF is able to stimulate LHβ gene expression via interaction with Sp1 and SF-1 that

are bound to distal and proximal regulatory elements within the LHβ promoter. SNURF may act

as a bridging factor between sequence-specific transcription factors and the basal transcription

machinery.

• SNURF is able to bind DNA and RNA. SNURF binds to various types of DNA without apparent

sequence specificity. Furthermore, SNURF is able to bind to nucleosomes. The DNA-binding

activity of SNURF correlates with its transcriptional coactivation function. SNURF may thus

promote the assembly of nucleoprotein structures involved in transcriptional control.

• SNURF is a ubiquitin E3 ligase capable of cooperating with various ubiquitin-conjugating E2

enzymes. The E3 function is dependent on SNURF RING finger structure. SNURF may serve as

an essential RING component in a multiprotein E3 complex.

• SNURF is able to ubiquitinate itself (autoubiquitination), and it is covalently modified by the

SUMO-1 conjugation and phosphorylation.

• SNURF is a nuclear protein that is recruited to PML nuclear bodies via interaction with PML3 and

SUMO-1. Localization of SNURF to PML NBs represses its activity in transcription regulation.
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