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ABSTRACT 

Androgens are mandatory for normal sexual development and maintenance of spermatogenesis. 

Also, androgens are important in the development and treatment of pathological processes such 

prostate cancer. Effects of androgens, like other steroid hormones, are mediated by their 

intracellular receptors. The androgen receptor is activated by the ligand, relocalizes into nucleus, 

binds to DNA as a dimer, and activates transcription. In addition to the receptor and general 

transcription factors, a number of auxiliary proteins that modulate the androgen response have 

been isolated in recent years. Coregulators are proteins that either increase or decrease androgen 

receptor-dependent transcription without affecting basal level of transcription. One of the 

coregulators is PIASx that is capable of modulating androgen action similar to other members of 

protein inhibitor of activated STAT (PIAS) protein family. Recently, PIAS proteins have been 

shown to act as E3 ligases in sumoylation, a posttranslational modification that resembles 

ubiquitination.  

This study aimed at delineating effects of ligands, receptor mutations, and the coregulator 

PIASx on androgen action. Serum androgen bioactivity was measured with an assay that is based 

on the interaction between N- and C-terminal regions of the androgen receptor. Serum androgen 

bioactivity was lower in men with prostate cancer than in men with benign prostatic hyperplasia 

(P < 0.005). Moreover, serum testosterone level alone overestimated serum androgen bioactivity, 

especially in men with non-aggressive prostate cancer. Mutations in the DNA-binding domain of 

androgen receptor inactivated the transactivation function of the receptor, but left the 

transrepression function relatively unchanged. Likewise, mutations in the DNA-binding domain 

did not alter the interaction with CBP/p300 coactivator. Androgen receptor coregulator PIASx, 

which is predominantly expressed in testis, was found to be present in Sertoli cells and germ 

cells. Another PIAS protein, PIAS1, was also expressed in Sertoli cells and germ cells. Highest 

levels of PIASx and PIAS1 were detected in pachytene spermatocytes and round spermatids, 

respectively. Thus, expression patterns of PIASx and PIAS1 genes are overlapping, but partially 

distinct. Proximal promoter region of the PIASx gene is GC-rich and sufficient for testis-specific 

expression in vivo. Sp transcription factors formed a major complex with the promoter and are 

candidate regulators of PIASx expression. Disruption of PIASx gene in mice resulted in a 23 % 

decrease in testis weight and reduced epididymal sperm count by 19 %. Also, the rate of 

apoptosis was increased in the testis of PIASx knockout mice. Mice defective of PIASx were 

fertile and sperm cells were qualitatively normal. Thus, PIASx is required for quantitatively 

normal spermatogenesis, and the consequences of the disruption of the PIASx gene are likely 

compensated by other PIAS proteins. 
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ABBREVIATIONS  

AF1    activation function 1 

AF2    activation function 2 

AP-1    activator protein 1 

AR    androgen receptor 

ARE    androgen response element 

bp    base pair 

BPH    benign prostatic hyperplasia 

CAIS    complete androgen insensitivity syndrome 

CARM    coactivator-associated arginine methyltransferase 

CBP    CREB-binding protein 

DBD    DNA binding domain 

DHEA    dehydroepiandrosterone 

DHT    5α-dihydrotestosterone 

dpc    days post coitum 

DRIP    vitamin D receptor-interacting protein 

ER    estrogen receptor 

GR    glucocorticoid receptor 

HAT    histone acetyltransferase 

HDAC    histone deacetylase 

LBD    ligand-binding domain 

LBP    ligand-binding pocket 

MAPK    mitogen-activated protein kinase 

MAR    matrix attachment region 

MR    mineralocorticoid receptor 

N-CoR    nuclear hormone receptor corepressor 

NF-κB    nuclear factor κB 

NPC    nuclear pore complex 

NR    nuclear receptor 

PAIS    partial androgen insensitivity syndrome 

PCAF    p300/CBP-associated factor 

PIAS    protein inhibitor of activated STAT 

PML    promyelocytic leukemia 
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PR    progesterone receptor 

PRMT    protein arginine methyltransferase 

RPII    RNA polymerase II 

SHBG    sex-hormone-binding globulin 

SP-RING   Siz/PIAS RING 

SMRT    silencing mediator for retinoid and thyroid hormone receptors 

SRC-1    steroid receptor coactivator-1 

STAT    signal transducer and activator of transcription 

SUMO    small ubiquitin-like modifier 

SWI/SNF   Switch/sucrose non-fermenting 

TAF    TBP-associated factor 

TBP    TATA box-binding protein 

TRAP    thyroid hormone receptor-associated protein  
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INTRODUCTION 

Androgens are steroid hormones that are produced mainly by testis in males and in minor 

amounts by adrenal gland, peripheral tissues, and ovary in females. Androgens are important for 

functions such as regulation of male sexual development, production of male secondary sexual 

characteristics, and maintenance of spermatogenesis. Androgens have also anabolic effects that 

increase, for example, muscle strength and bone density. All these actions of androgens are 

mediated by the intracellular androgen receptor (AR). AR binds its ligand in cytosol, translocates 

to nucleus and binds to androgen response element (ARE) as a homodimer. Binding of AR to 

DNA may either increase or decrease the transcription of a target gene. Specificity of this 

regulation is achieved at multiple levels. In physiological hormone concentrations, androgens 

bind specifically to AR whose expression is restricted to certain cell-types. Androgens may be 

metabolized to more active forms by enzymes present in some androgen target-tissues. Activity 

of AR depends also on posttranslational modifications, which enables other signaling pathways 

to regulate androgen signaling. AREs are present in the regulatory regions of certain genes and 

therefore only these genes can be regulated by AR. Coregulator proteins are able to either 

increase or decrease transcription of a target gene in an AR-dependent manner. Coregulators 

may also have cell-specific expression patterns and may be selective to only a certain steroid 

hormone receptors, and thus, add a new level of regulation. 

Androgens play an important role in the pathogenesis of relatively common diseases, such as 

benign prostatic hyperplasia (BPH) and prostate cancer. As anabolic substances, androgens can 

be used to treat catabolic states caused by aging, infection or cancer. Spermatogenesis, a process 

maintained by androgens, is also the target of hormonal male contraception. Better 

understanding of androgen action in normal processes and in the pathogenesis of androgen-

dependent diseases should, therefore, open new options for prevention and treatment of these 

diseases, for example, by selective modification of androgen action. 
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REVIEW OF THE LITERATURE 

1. ANDROGENS 

1.1. Production of androgens 

In men, androgens are produced mainly in the testis and to a lesser extent in the adrenal gland. 

Like for all steroid hormones, cholesterol is a precursor for synthesis of androgens. In the first 

rate-limiting step, cholesterol is converted to pregnenolone by P450scc enzyme in mitochondria. 

Subsequently, P450C17 catalyzes conversion of pregnenolone to 17α-hydroxypregnenolone and 

then to dehydroepiandrosterone (DHEA). In testis DHEA is further converted to 

androstenedione, and then to testosterone that acts locally within testis and is also released into 

blood (for review, Miller 2002). Testosterone is produced in minor amounts in women by 

ovaries, and both in men and in women by peripheral tissues through the conversion of blood-

derived DHEA to testosterone (for review, Labrie et al. 2001). Testosterone is metabolized to 

5α-dihydrotestosterone (DHT) in some peripheral tissues by two types of 5α-reductases. In 

adults 5α-reductase type I is expressed mainly in skin (sebaceous glands) and liver, whereas 5α-

reductase type II is predominantly present in skin (hair follicles), liver, and prostate (for review, 

Andersson 2001, Steers 2001). Therefore, DHT is the major active androgen in skin and prostate, 

and the DHT in peripheral blood is derived mostly from these tissues. 

1.2. Transport of androgens 

Androgens are lipophilic molecules and transported in blood mostly as bound to proteins, and 

only a few percent remain unbound. Three plasma proteins significantly bind androgens: 

albumin, sex-hormone binding globulin (SHBG), and corticosteroid-binding globulin (CBG). 

The relative amount of testosterone that is bound to these proteins varies depending on its 

concentration. In spermatic vein, where the concentration is high, most of testosterone is bound 

to albumin that has a high binding capacity but a low binding affinity. However, at normal serum 

testosterone concentration of men, 50%, 44%, and 4% of testosterone is bound to albumin, 

SHBG, and CBG, respectively (Dunn et al. 1981). The level of free and non-SHBG bound 

testosterone tends to correlate well with the biological androgen effects, and it is generally 

regarded as the biological active fraction (van den Beld et al. 2000). Although SHBG receptors 

have been found on the plasma membrane of androgen-responsive cells, the importance of these 
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receptors in the import of androgens into cell is unclear, and it is assumed that testosterone rather 

enters the cell by free diffusion through the plasma membrane (for review, Hammond 2002). 

1.3. Physiological androgens 

The activity of androgens depends on their concentration within the cell and on their affinity for 

AR. Intracellular concentration of androgen is probably affected by its concentration in serum 

(Table 1), because the transport through plasma membrane is passive. Furthermore, intracellular 

concentration depends on the presence of androgen-metabolizing enzymes. For example, 5α-

reductase type II enzyme converts 95% of the testosterone to DHT in prostatic cells (Taplin and 

Ho 2001). Likewise, DHEA can be converted to testosterone in peripheral cells (for review, 

Labrie et al. 2001). Androgens exhibit drastic differences in their ability to bind to AR. While 

adrenal androgens (DHEA and androstenedione) have a low affinity to AR, testosterone and 

DHT have a high affinity. Affinity of a given androgen for AR seems to correlate closely with its 

potential to activate AR. DHT has 5-10-times lower Kd than testosterone, and in reporter gene 

assays, DHT is 5-10-times more potent than testosterone (Deslypere et al. 1992). Thus, DHT is 

the most potent natural androgen formed in cells that contain 5α-reductase, whereas in cells 

devoid of 5α-reductase, testosterone is typically more important because of its higher 

concentration. Although adrenal androgens are of limited importance in men, in women they 

may cause for example hirsutism when produced in excessive amounts. Additionally, 

testosterone and DHT have been demonstrated to activate partially distinct genes in the prostate, 

indicating that the ligand regulates AR function through a complex allosteric manner (Avila et al. 

1998).  

 

Table 1. Reference ranges for androgen concentrations in serum of men and women (Helsinki 
University Central Hospital Laboratory). 

Hormone        Men Women 

Androstenedione   1.4 –   7.0 nM 1.2 –   7.0 nM 

Testosterone 10.0 – 38.0 nM 0.9 –   2.8 nM 

DHT   1.0 – 10.0 nM 0.3 –   1.2 nM 
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1.4. Androgens in sexual differentiation 

Gonad formation begins in human at about 5 weeks post coitum  and in mouse at 10 days post 

coitum (dpc) by formation of genital ridge from mesonephros (for review, Clarkson and Harley 

2002, Rey and Picard 1998, Swain and Lovell-Badge 1999). Both Müllerian ducts (progenitor of 

the oviducts, uterus and upper vagina) and Wolffian ducts (progenitor of the epididymis and vas 

deferens) form at the same time with gonad. At 11 dpc, SRY encoded in Y chromosome is 

expressed transiently triggering the development of Sertoli cells. The Sertoli cells, probably 

through activity of SOX9, orchestrate the development of testicular cords as well as 

differentiation of other cell types into Leydig cells, gonocytes, and peritubular myoid cells. The 

Sertoli cells start to secret anti-Müllerian hormone (AMH) that causes the regression of 

Müllerian ducts. At the same time, Leydig cell-derived testosterone induces transformation of 

the Wolffian duct to epididymis, vas deferens, and seminal vesicle. Development of external 

genitalia is also androgen-dependent. However, in contrast to internal genitalia, external genitalia 

express 5α-reductase type II that catalyzes conversion of testosterone to DHT. The dependence 

of external genital development on DHT is demonstrated by the ambiguous external genitalia at 

birth in patients with inactivating mutation in 5α-reductase type II (Imperato-McGinley et al. 

1974, Walsh et al. 1974). Androgens are likely to play an important role in testis descent, which 

is commonly disturbed in newborn boys. Testis descent is divided to transabdominal and 

inguinoscrotal phases. The first phase appears to be mediated by the insulin-like peptide 

hormone INSL3 and insulin receptor family, while the second phase depends on normal 

androgen action (Klonisch et al. 2004, Nef et al. 2003). Taken together, the proper male sexual 

differentiation in man requires an adequate testosterone synthesis as well as intact 5α-reductase 

activity and AR function. 

1.5. Androgens in spermatogenesis 

Spermatogenesis is a complex process; it starts from mitotically dividing spermatogonia and 

ends up to mature haploid spermatozoa through two rounds of meiotic cell divisions. The 

importance of androgens for normal spermatogenesis has been demonstrated, for example, with 

ethane dimethane sulfonate (EDS) treatment of rats that destroys Leydig cells and reduces serum 

and intratesticular testosterone levels to undetectable (Bartlett et al. 1986). This treatment results 

in disruption of spermatogenesis, which may be overcome by simultaneous testosterone 

supplementation (Sharpe et al. 1988). Spermatogenesis has been thought to depend on high local 
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testosterone concentration. However, a recent study suggests that, at least in mouse, 

spermatogenesis is maintained even at low intratesticular testosterone concentration (Zhang et al. 

2003). Localization of AR in testis has been controversial; in some studies (Vornberger et al. 

1994, Zhou et al. 1996), immunostaining has been seen also in germ cells, but in most of the 

studies, AR has not been detected in germ cells (Bremner et al. 1994, Ruizeveld de Winter et al. 

1991, Sar et al. 1990). In a recent study, Zhou et al. (2002) could detect AR by 

immunohistochemistry in Leydig cells, peritubular myoid cells, and in Sertoli cells in a stage-

dependent manner. However, the germ cells were completely devoid of AR, suggesting that 

androgens have an indirect effect on germ cells through Sertoli cells. This hypothesis was further 

strengthened in a recent study where Sertoli cell-specific AR knockout mice were generated (De 

Gendt et al. 2004). These gene-targeted mice were infertile and did not produce spermatozoa, 

although the development of genital tract was otherwise normal. Functional AR was mandatory 

to complete meiosis, as indicated by a decrease in the number of spermatocytes and almost 

complete absence of round spermatids. Although this study did not formally rule out the 

peritubular myoid cells as mediators of androgen action, the data showed nevertheless that 

indirect effects of androgens on germ cells via the Sertoli cells is an absolute requirement for 

normal spermatogenesis.  

1.6. Androgens in normal prostate gland 

The prostate gland develops by an outgrowth of epithelial buds from urogenital sinus in mouse at 

17.5 dpc and in human at around 11 weeks post coitum (for review, Marker et al. 2003, 

Sciavolino and Abate-Shen 1998). This development occurs in an androgen-dependent manner; 

mutations in AR may prevent the development of the prostate. Urogenital sinus expresses 5α-

reductase type II, and therefore, the majority of testosterone in the urogenital sinus is converted 

to DHT. The development of the prostate regarding its dependency on DHT, however, seems to 

differ between mouse and human. Knockout mice, in which type II or both type I and type II 5α-

reductases have been disrupted, are fertile and their prostates form normally (Mahendroo et al. 

2001). These animals’ prostate weight was, however, reduced compared to wild-type mice, 

suggesting that DHT acts as an amplifier of androgen action in mice. In contrast to mice, human 

patients with 5α-reductase deficiency have a rudimentary prostate, indicating that in man, the 

development of the prostate is much more dependent on DHT.  

Finasteride, a 5α-reductase type II inhibitor, is an effective drug for the treatment of BPH, 

causing 25% decrease in the weight of the prostate (Edwards and Moore 2002). The effect of 
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finasteride treatment on the prostate is, however, not uniform. Prostate gland can be divided to 

two compartments: the stroma and the epithelium (Fig. 1). The stroma consists of smooth muscle 

cells and fibroblasts, whereas the epithelium is composed of basal, luminal and neuroendocrine 

cells. During finasteride treatment, 90% of luminal cells undergo apoptosis, whereas only 20% 

of basal cells die (Marks et al. 1997). AR is expressed both in the stroma and in the epithelium. 

In the epithelium, the basal cells contain little or no AR, whereas the luminal cells are clearly 

positive for AR (for review, Heinlein and Chang 2004, Litvinov et al. 2003). In contrast luminal 

epithelial cells, the prostatic neuroendocrine cells do not contain AR.  

 

1.7. Non-genomic actions of androgens 

Classically, the effects of androgens are thought to be a result of changes in gene transcription 

mediated by AR. Some of the effects occur, however, too quickly to be mediated by the classical 

AR, or they take place in the absence of the characterized AR or in the presence of inhibitors of 

transcription or translation. These effects are termed nongenomic effects, because they are not 

attributable to the classical AR-mediated pathway (Heinlein and Chang 2002a). Three kinds of 

mechanism for nongenomic actions have been described. Firstly, binding of a ligand to AR may 

promote interaction between the receptor and c-Src, which leads to stimulation of c-Src kinase 

activity and activation of mitogen-activated protein kinase (MAPK) signaling pathway (Kousteni 

et al. 2001, Migliaccio et al. 2000). Secondly, SHBG may bind to a putative SHBG plasma 

membrane receptor and then bind to testosterone, which leads to increase of intracellular cAMP 

concentration and activation of protein kinase A (PKA) (Rosner et al. 1999). Thirdly, 

testosterone may bind to an as yet unidentified membrane AR that would cause an increase in the 

intracellular calcium level, which could, in turn, activate several signaling cascades (reviewed by 

Heinlein and Chang 2002a). Such a membrane receptor has been cloned for progesterone, and 

Figure 1. Cross-section of prostate duct. Adapted from Marker et al. 2003. 
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the membrane progesterone receptor appears to be involved in germ cell functions (Lösel and 

Wehling 2003). Additionally, MAPK and PKA activation may lead to changes in 

phosphorylation status of AR and AR coactivators. However, to date no membrane AR has been 

cloned and nor has SHBG receptor been isolated. Moreover, some of the nongenomic effects of 

androgens occur in the presence of unphysiologically high concentrations of testosterone. 

Therefore, the majority of androgenic effects occur by AR-mediated changes in the transcription 

of genes. 

2. TRANSCRIPTION 

2.1. Regulatory DNA elements 

Gene transcription is regulated by non-coding DNA elements that harbor binding sites for 

transcription factors. Promoter is a DNA segment typically located upstream of transcription 

start site of the gene, and it can be divided into proximal and core promoter regions. While the 

proximal promoter contains binding sites for sequence-specific transcription factors, the core 

promoter (segment about 35 nt upstream and downstream of transcription start site) is the site of 

transcription initiation. Typical segments of core promoter include the TATA box, the initiator 

(Inr) element, downstream core promoter element (DPE), and TFIIB recognition element (BRE) 

(for review, Butler and Kadonaga 2002, Smale 2001). The TATA box is usually located 25-30 nt 

upstream of transcription start site and serves as a binding site for TATA box-binding protein 

(TBP). The Inr is the region were transcription initiates at single or multiple sites. General 

transcription factor TFIID uses the Inr and DPE elements cooperatively for binding to DNA 

especially on TATA-less promoters. BRE, on the other hand, is the segment where TFIIB binds 

to. However, core promoters typically do not contain all of the above-mentioned elements. 

Therefore, rather than being a passive place for the assembly of transcription factors, the 

composition of the core promoter may, for example, define which enhancer cooperate with the 

promoter (Ohtsuki et al. 1998). Only 32% of human promoters contain the TATA box and 

TATA-less promoters often regulate GC-rich housekeeping genes (Suzuki et al. 2001). GC-rich 

regions usually contain CpG dinucleotides that are mostly unmethylated and harbor GC boxes 

that serve as binding sites for members of the Sp transcription factor family (for review, 

Hapgood et al. 2001). 

Not all regulatory sequences are located in the vicinity of transcription start site. Instead, 

enhancers and silencers may regulate gene expression from sites several kilobases upstream or 

downstream of transcription start site. Besides the distance from transcription start site, the 
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enhancers differ from the proximal promoter elements by their orientation requirement. Whereas 

the proximal promoter is in a fixed orientation, the enhancers are functional in both orientations. 

According to current view, enhancers can both increase the rate of transcription and, perhaps 

more importantly, affect chromatin structure enabling transcription to occur (for review, Hertel 

et al. 1997, Martin 2001). In the recruitment model, activators bind to the enhancer and then 

interact with the transcription machinery to stabilize binding of general transcription factors to 

the core promoter (Hertel et al. 1997). The effect of enhancers on transcription is nicely 

illustrated by the PSA gene. The PSA promoter governs elements for androgen-dependent 

regulation and transcriptional activity of the PSA gene is clearly increased by the enhancer 

(Schuur et al. 1996). 

The function of an enhancer is also dependent on the neighboring sequences. For example, a 

transgene containing an enhancer may be transcriptional silent due to chromatin structure at the 

site of integration. The function of elements such as insulators and matrix attachment regions 

(MAR) is site-independent. Insulators are further divided to blockers and barriers (for review, 

Kuhn and Geyer 2003, Oki and Kamakaka 2002,). The main function of a blocker is to inhibit 

the activity of an enhancer. Typically, a blocker element is located downstream of an enhancer or 

at both ends of a gene. Thus, a blocker may regulate the usage of an enhancer or insulate one 

gene from the influence of cis-acting regulatory regions of other genes by blocking the enhancer-

promoter communication (Cai and Levine 1995). The barrier activity of an insulator may, on the 

other hand, reduce the activity of nearby silencer or protect the gene from the repressive 

influence of surrounding heterochromatin. MAR sequences are AT-rich regions that may be able 

to bind to nuclear matrix, and they may be involved in the organization of nucleus (Cremer and 

Cremer 2001). 

2.2. Chromatin 

Most of genomic DNA in the nucleus is tightly packed. The basic structure of chromatin is a 

nucleosome that consists of 146 base pairs (bp) of DNA and two heterodimers of histones H3 

and H4 as well as two heterodimers of histones H2A and H2B. With the help of linker histone 

H1, chromatin is packed further and can be detected as heterochromatin and euchromatin. In 

general, the more packed the DNA is, the more inactive it is in terms of gene transcription. 

Therefore, regulation of chromatin structure is an important means to regulate transcription. 

Chromatin structure may be modified by altering the structure of histones. The N-terminal 

tails of histones protrude from the nucleosome and are important for nucleosome-nucleosome 
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contacts. Thus, a covalent modification of a histone tail, for example, by acetylation may disrupt 

the higher-order chromatin structure. Indeed, many transcriptional coactivator proteins possess 

histone acetyltransferase (HAT) activity and acetylate specific lysine residues in the histone tail 

(Brownell et al. 1996). HATs are often found in complexes with other proteins (for review, 

Ogryzko 2001). Acetylation is thought to result in a decreased affinity of a lysine residue of the 

histone for DNA and neighboring nucleosomes that, in turn, may permit the entry of 

transcription machinery. Histone acetylation tends to increase transcription, although it is not 

sufficient for transcription to occur. On the other hand, several transcriptional corepressors have 

histone deacetylase (HDAC) activity, which maintains histones in an unacetylated state. 

Chromatin structure can also be modified by chromatin remodelers, such as Switch/sucrose 

non-fermenting (SWI/SNF), imitation switch (ISWI), Mi-2, and INO80 complexes, which do not 

catalyze covalent modifications in histones (for review, Becker and Hörz 2002). Instead, 

chromatin remodelers have ATPase activity and are able to utilize the energy released in ATP 

hydrolysis to alter nucleosome conformations by sliding of nucleosomes along the DNA 

permitting the basal transcription machinery to access DNA (Kassabov et al. 2003). 

Interestingly, only a few members of SWI/SNF complex are necessary for remodeling to occur 

in vitro (Phelan et al. 1999). The other members can mediate contacts with transcription factors, 

such as BAF250 with glucocorticoid receptor (GR) (Nie et al. 2000). 

2.3. Subnuclear structures 

Nucleus is not a homogenous structure; rather, it is composed of several compartments that are 

not surrounded by a membrane (for review, Spector 2001). Chromosomes form their own 

compartment, the so called chromosome territory in which chromatin resides in heterochromatin 

and euchromatin forms. While the compact heterochromatin is located near the nuclear lamina, 

the less compact euchromatin tends to form loops that protrude into interchromatin compartment 

(Visser et al. 2000). Chromosome territory forms a barrier that restricts the movement of high-

molecular-weight molecules, suggesting that individual proteins can access into heterochromatin, 

whereas large protein complexes reside in interchromatin compartment (Cremer and Cremer 

2001, Lukacs et al. 2000). Localization of a gene into either heterochromatin or euchromatin is 

not fixed; rather, an active gene may be relocalized into heterochromatin loop (Francastel et al. 

1999). It is currently not known whether this localization of inactive gene into heterochromatin is 

a cause for or a consequence of the lack of active transcription (Carmo-Fonseca 2002). 
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Interchromatin compartment contains numerous subcompartments. Besides several 

thousands of transcription sites, interchromatin harbors structures such as nuclear speckles, 

cleavage bodies, and promyelocytic leukemia (PML) bodies. PML protein plays a central role in 

PML body formation, since PML bodies do not form without PML protein. Also, sumoylation of 

PML protein is required for the PML body formation (Zhong et al. 2000a). Several transcription-

related factors have been detected in PML bodies, implicating PML bodies in transcription (for 

review, Zhong et al. 2000b). Three different models have been proposed to explain the functions 

of PML bodies in transcription (Zhong et al. 2000b). Firstly, PML bodies may regulate the 

concentration of transcription factors in interchromatin compartment by sequestering them. 

Secondly, transcription factors may be subjected to modifications in PML bodies, such as 

sumoylation, which may alter their transcriptional activity. Thirdly, PML bodies may serve as 

compartments where otherwise active transcription factors, such as Daxx, are inactive (Li et al. 

2000). Transcription factors gain entry from cytoplasm to the interchromatin compartment 

through nuclear pore complex (NPC). Although small molecules can pass through NPC freely, 

the transport of proteins is thought to be active (for review, Fahrenkrog and Aebi 2003). In 

conclusion, the transcriptional activity of transcription factors can be regulated by affecting their 

nuclear transport and intranuclear localization. 

2.4. General transcription machinery 

Transcription requires six general transcription factors and RNA polymerase II (RPII) to occur in 

vitro (for review, Hampsey 1998, Lee and Young 2000). The first step is the recognition of the 

promoter by TBP which is a part of the TFIID complex harboring several TBP-associated factors 

(TAF). Interestingly, TBP alone is able to bind to a TATA-box containing promoter, but TAFs 

of TFIID complex are required for binding to a TATA-less promoter (Burke and Kadonaga 

1997). The binding of TBP bends DNA and forms a platform for other factors. This binding is 

further stabilized by TFIIB that binds to TFIID and core promoter elements. Binding of TFIIB, 

on the other hand, is re-enforced by TFIIA, which may also block transcriptional repressors (Ge 

and Roeder 1994). TFIIB recruits the complex of RPII and TFIIF, which is likely to block 

nonspecific DNA binding and facilitate promoter melting. In addition, closely linked TFIIE and 

TFIIH participate in promoter opening, and the kinase complex of TFIIH phosphorylates the 

carboxy-terminal domain of RPII, causing RPII to change the initiator complex to the elongation 

complex in order to start elongation (Lee and Young 2000). 
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2.5. Transcription during spermatogenesis 

Spermatogenesis is a multi-step process that begins with mitotic cell-division of diploid 

spermatogonia and ends up to haploid spermatozoa that have a highly specialized structure (Fig. 

2). In addition, meiotic recombination occurs between the sister chromosomes. In spermatids, 

histones are first replaced by transition proteins and subsequently by protamines. These changes 

put special requirements for transcription during spermatogenesis, and transcription in male 

germ cells differs indeed from that in somatic cells in multiple ways (for review, Grootegoed et 

al. 2000, Kleene 2001, Sassone-Corsi 2002). Due to chromatin reorganizations, such as meiotic 

recombination and replacement of histones, transcription tends to occur mainly in spermatogonia 

and in pachytene spermatocytes and round spermatids. However, the temporally restricted 

transcription is compensated by the abundance of general transcription factors (Schmidt and 

Schibler 1995). Moreover, some general transcription factors such as TFIIA and TAFII55 have 

testis-specific isoforms TFIIAτ and TAFIIQ, respectively (Ozer et al. 2000, Wang et al. 2001). A 

specific feature of spermatogenesis is the inactivation of the X and Y chromosomes that pair 

with each other and are stored in a sex-vesicle as heterochromatin. Therefore, for example, the 

inactivation of the phosphoglycerate kinase 1 (Pgk1) gene, located in X chromosome, is 

compensated for by the expression of the autosomal intronless Pgk2 gene, which is not expressed 

in other cell types (McCarrey and Thomas 1987). Several testis-specific genes lack the TATA 

box and TBP-like proteins are likely to utilized in transcription of TATA-less promoters during 

spermatogenesis (Sassone-Corsi 2002). Disruption of the testis-specific TBP-related factor 2 

(Trf2) indeed results in a complete arrest of spermiogenesis, indicating that Trf2 controls 

transcription of genes that are important for normal spermatogenesis (Martianov et al. 2001, 

Zhang et al. 2001). Transcription and translation appear to be loosely coupled during 

spermiogenesis due to changes in chromatin structure. Histones are replaced by protamines 

during the last steps of spermatogenesis, after which transcription ceases. Therefore, the 

protamine genes are transcribed during the early elongating steps, whereas the translation occurs 

later on and is regulated by the element in 3’ untranslated region of the protamine mRNA 

(Fajardo et al. 1997). Delayed translation may even be a more general phenomenon during 

spermatogenesis (Kleene 2001).  
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3. NUCLEAR RECEPTOR SUPERFAMILY 

3.1. Members 

Nuclear receptors (NR) is one the most abundant class of transcriptional regulators; the human 

genome contains 48 genes encoding NRs (Robinson-Rechavi et al. 2001). However, due to 

alternative splicing, the number of NR proteins is much higher (Robinson-Rechavi et al. 2001). 

The majority of NRs are ligand-regulated, sequence-specific transcription factors that share 

similarities with respect to their ligands, structures, and functions. Ligands that activate NRs are 

small lipophilic substances, such as testosterone in the case of AR. Until recently, many of the 

NRs lacked an identified physiological ligand and were therefore called orphan receptors. The 

newly-identified ligands in many cases are metabolic substances produced by the cell and 

recognize a receptor within the same cell. Thus, these new ligands seem to participate in 

intracrine rather than endocrine regulation. NR can be phylogenetically divided into six groups 

(Table 2). This phylogenetical grouping also parallels their function. For example, all steroid 

receptors belong to group III, their hormone response element is usually a palindrome, and they 

bind to DNA as homodimers. By contrast, members of the groups I and IV bind to DNA as a 

heterodimer with RXR.  

 

 

Figure 2. Cellular events and transcription in specific cell types during spermatogenesis. Adapted from Grootegoed
et al. 2000. B, type B spermatogonia; PL, preleptotene spermatocyte; 8, 10, 13,15, steps of spermiogenesis. 
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Table 2. Phylogenetic classification of mammalian nuclear receptors on the basis of the sequence similarity of 
DNA-binding domain, hinge region and ligand-binding domain (Laudet 1997). 

Class Representative member(s) Ligand Response element Binding 

Class I Thyroid hormone receptor Thyroid hormone Palindrome, DR-4, 
inverted palindrome 

Heterodimer (with RXR) 

Class II Retinoid X receptor 9-cis-retinoic acid Palindrome, DR-1 Homodimer 

Class III Androgen receptor Androgens Palindrome Homodimer 

 Estrogen receptor α and β Estrogens Palindrome Homodimer 

 Glucocorticoid receptor Glucocorticoids Palindrome Homodimer 

 Progesterone receptor Progestins Palindrome Homodimer 

Class IV NGF-induced clone B Unknown Palindrome, DR-5 Monomer, homodimer, 
heterodimer 

Class V Steroidogenic factor 1 Oxysterols Hemisite Monomer 

Class VI Germ cell nuclear factor Unknown DR-0 Homodimer 

Class 0 Small heterodimeric partner Unknown  Heterodimer 

 

3.2. DNA-binding domain 

A typical nuclear receptor protein can be structurally divided into three functional domains that 

each have their unique functions (Fig. 3). Among these domains, the DNA-binding domain 

(DBD) is the most conserved one. DBD harbors two zinc-fingers that are encoded by two 

different exons. Zinc-finger is formed around one zinc ion coordinated by four conserved 

cysteine residues (Luisi et al. 1991, Schwabe et al. 1993). DBD contains two to three α-helices: 

The first is located one after the third conserved cysteine, the second one is formed by the 

carboxy-terminal part of the second zinc-finger, and the third one, present only in RXR, resides 

in the carboxy-terminal end of the DBD. The first α-helix located in the first zinc-finger makes 

contact with the major groove of DNA (Luisi et al. 1991, Schwabe et al. 1993). Mutational 

studies have revealed a so-called P box that harbors amino acids that discriminate between 

response elements. These amino acids are conserved among GR, progesterone receptor (PR), 

mineralocorticoid receptor (MR), and AR which all recognize the same consensus sequence. 

Moreover, these residues are different in estrogen receptor (ER) that recognizes different 

consensus sequence. Indeed, mutation in the P box of GR may result in recognition of estrogen 

response element (Danielsen et al. 1989, Mader et al. 1989, Umesono and Evans 1989).  
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NRs have two different core DNA recognition motifs. While GR, PR, MR, and AR recognize the 

sequence AGAACA, the rest of the receptors recognize AGG/TTCA (for review, Glass 1994). A 

response element can consist of one core recognition motif, but more often it comprises two core 

motifs that form either a palindrome, a direct repeat or an inverted palindrome. Moreover, the 

spacing between the two core motifs is critical. Steroid receptor response elements often are 

palindromes with a spacing of three nucleotides. Thus, both GR and AR can recognize the same 

consensus response element 5’-AGAACAnnnTGTTCT-3’. However, many AR elements found 

in natural promoters differ from the consensus sequence. For example, the probasin gene, which 

is an androgen-regulated prostate-specific gene, contains two AREs of which ARE1 resembles 

consensus response element, whereas ARE2 does not resemble the consensus site (Kasper et al. 

1994, Rennie et al. 1993). ARE2 is recognized by AR, but not by GR, and the binding requires 

C-terminal residues of the AR DBD. The core motifs of ARE2 are in a direct repeat orientation, 

suggesting that at least some of the AREs are direct repeats rather than palindromes 

(Schoenmakers et al. 1999, Schoenmakers et al. 2000). 

Binding of NRs to their response elements occurs either as monomers, homodimers, or 

heterodimers with RXR. Receptors that bind DNA as monomers are orphan receptors and their 

binding depends on the third α-helix that contacts with the minor groove of DNA assisting in 

high-affinity binding (Meinke and Sigler 1999). Steroid receptors bind to DNA as homodimers 

and the receptor monomers contact each other through residues in both ligand-binding domain 

(LBD) and in the second zinc-finger. The RXR is of special importance for NRs that bind DNA 

as heterodimer with, since the action of these NRs can be regulated by availability of RXR and 

by the presence of its ligand 9-cis-retinoic acid (Kliewer et al. 1992, Zhang et al. 1992). 

Interestingly, two members of the NR superfamily belonging to class 0, DAX1 and small 

heterodimer partner (SHP), are devoid of the DBD (Seol et al. 1996a, Zanaria et al. 1994). Both 

Figure 3. Domain structure of NRs. NTD, N-terminal domain; DBD, DNA-binding domain; H, hinge; LBD, 
ligand-binding domain; Hsp, heat-shock protein.  
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DAX1 and SHP can heterodimerize with other NRs and inhibit transactivational activity of their 

partners (Seol et al. 1996a, Zanaria et al. 1994). 

3.3. Ligand-binding domain 

Crystal structures of several NR LBDs have been solved (Bourguet et al. 1995, Renaud et al. 

1995, Wagner et al. 1995), and these studies have shown that a ligand-binding domain (LBD) of 

NR is typically formed from 12 α-helices and one β-turn. A hydrophobic cavity called ligand-

binding pocket (LBP) that can accommodate the ligand is in the core of the LBD. These studies 

have highlighted the role of helix 12 in ligand binding. Binding of the ligand induces a series of 

conformational changes which lead to swinging of helix 12 to close the LBP. Besides forming a 

roof for the LBP, helix 12 together with helices 3 and 4 forms a surface. Simultaneous 

movement of other helices results in a tighter contact between LBP and ligand. Brzozowski et al. 

(1997) solved the structure of ER LBD in the presence of both agonist and raloxifen, which is 

antagonist against the ligand-dependent activation function 2 (AF2). The group demonstrated 

that helix 12 is not correctly positioned in the antagonist-bound LBD due to larger raloxifen. 

Recently, many of the orphan receptors have shown to possess a ligand thus rising a possibility 

that a ligand could be identified for all of the orphan receptors. A crystal structure of the orphan 

receptor Nurr1, however, showed that the receptor does not contain a cavity that is large enough 

to accommodate ligand, suggesting that true orphan nuclear receptors do exist (Wang et al. 

2003). 

In addition to ligand binding, LBD is crucial for protein-protein contacts, which are formed 

between coactivators, between receptor monomers, and within the same receptor monomer. 

Helix 12 together with helices 3 and 4 form a surface that is termed as AF2 (Lees et al. 1990). 

This surface is important for interaction between the receptors and coactivators through the 

LXXLL (L = leucine, X = any amino acid) motif located in the AF2 (Darimont et al. 1998, Nolte 

et al. 1998, Shiau et al. 1998). The AF2 surface in the raloxifen-bound ER is different from that 

of the agonist-bound, and coactivators are unable to bind to it, thus explaining the antagonistic-

effect of raloxifen. Also corepressors are able to interact with LBD in the presence of antagonist, 

and the binding of the corepressor antagonizes coactivator binding, for example, silencing 

mediator for retinoid and thyroid hormone receptors (SMRT) blocks the coactivator binding site 

of PPARα (Xu et al. 2002). Like DBD, also LBD participates in receptor-dimer formation as 

illustrated by ER LBD in which hydrophobic region of helix 10 is the key mediator, but also 

helices 7, 8, and 9 participate in the dimer formation (Tanenbaum et al. 1998). Residues among 
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the dimer surfaces are conserved, suggesting that also other NRs use the same residues for 

dimerization. 

3.4. N-terminal domain 

The least conserved functional domain of NRs is the N-terminal domain (NTD). The size of 

NTD varies from 23 amino acids in vitamin D receptor to 602 residues in mineralocorticoid 

receptor, and the sequence of NTD is unconserved. NTD harbors a ligand-independent activation 

function 1 (AF1) that is, in the case of AR, masked by the C-terminus of the apo (empty)-

receptor  (Simental et al. 1991). A truncated receptor that lacks LBD, but has functional NTD 

and DBD, is constitutively active (Miesfeld et al. 1987). NTD is poorly structured compared to 

DBD and LBD in that studies have not detected secondary structures in NTD (Dahlman-Wright 

et al. 1995, Wärnmark et al. 2001). However, secondary structures may be formed upon binding 

to TBP or DNA (Bain et al. 2000, Wärnmark et al. 2001). Individual hydrophobic residues of 

NTD, in contrast to individual acidic residues, appear to be important for transcriptional activity 

of the GR (Almlöf et al. 1995, Almlöf et al. 1997). In view of this, Wärnmark et al. (2003) have 

proposed that coactivator binding to AF1 may involve an initial electrostatic contact, which is 

followed by an α-helix formation and a hydrophobic interaction. 

3.5. Covalent modifications of nuclear receptors 

NRs are subjected to multiple posttranslational modifications, such as phosphorylation. 

Phosphorylation is known to occur in NTD, DBD, and LBD, but especially in steroid receptors, 

the majority of phosphorylated residues lie in the NTD (Rochette-Egly 2003). NRs are 

phosphorylated by various kinases, including cyclin-dependent kinases, MAPK and Akt, and 

phosphorylation may enable cross-talk between NR and other signaling pathways (Chen et al. 

2000a, Lin et al. 2001, Yeh et al. 1999). Phosphorylation of a NR may either increase or 

decrease its transcriptional activity. Phosphorylation of NTD may facilitate recruitment of 

coactivators, and thus, has a positive effect on transcription (Tremblay et al. 1999). On the other 

hand, phosphorylation of ER DBD prevents dimerization and DNA binding, having a negative 

effect on the receptor activity (Chen et al. 1999a). In the case of GR, phosphorylation of AF1 has 

been shown to promote ligand-dependent degradation of the receptor and to result in termination 

of glucocorticoid signaling (Wallace and Cidlowski 2001). 
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NRs such as GR and AR are also targets of sumoylation in which a small ubiquitin-like 

modifier (SUMO) protein is attached to a specific lysine residue of the receptor (Le Drean et al. 

2002, Poukka et al. 2000, Tian et al. 2002). Sumoylation of AR is ligand-dependent, and 

disruption of sumoylated lysines increases the transcriptional activity of the receptor (Poukka et 

al. 2000). Studies that have addressed the effects of sumoylation on GR function have been 

inconsistent. While Tian et al. (2002) showed that mutation of sumoylated residues in GR results 

in an increased transcriptional activity, Le Drean et al. (2002) could detect a similar increase 

when GR was cotransfected with SUMO. 

Lysine residues of proteins may be modified by ubiquitination and acetylation in addition to 

sumoylation. Treatment of AR-expressing cell line with MG-132, which is a compound that 

inhibits proteasomal degradation, increases the amount of AR, suggesting that polyubiquitination 

may modify androgen action by regulating the levels of AR (Sheflin et al. 2000). Moreover, 

polyubiquitination of AR may be dependent on phosphorylation of AR, since Akt-pathway 

enhances both phosphorylation and polyubiquitination of AR (Lin et al. 2002). 

Polyubiquitination of AR may be important for efficient transcription of androgen-regulated 

genes, such as the PSA gene, since inhibition of proteasomal activity retained AR on the PSA 

promoter and reduced transcription of the PSA gene, although the level AR is increased (Kang et 

al. 2002). Effect of ubiquitination on AR activity depends on whether AR is polyubiquitinated or 

monoubiquitinated. Monoubiquitination of AR increases its transcriptional activity. Accordingly, 

AR coactivator, the tumor susceptibility gene product TSG101, increases monoubiquitination of 

AR (Burgdorf et al. 2004). Transcriptional activity of AR may be increased also by acetylation 

of a specific lysine residue by coactivators p300 and p300/CBP-associated factor PCAF (Fu et al. 

2000). Acetylation-defective AR possessed a normal transrepression function, but an abrogated 

transactivation function probably due to increased binding of corepressors to AR (Fu et al. 

2002). 

3.6. Coactivators 

Coactivators are proteins that increase the rate of signal-specific but not basal transcription (for 

review, McKenna et al. 1999, McKenna and O’Malley 2002, Näär et al. 2001, Robyr et al. 2000, 

Xu et al. 1999). Their presence was initially postulated on the basis of transcriptional 

interference between NRs, as exemplified by competition between ER and PR for a limiting 

transcription factor (Meyer et al. 1989). Functions of coactivators can be divided into three 

classes. Firstly, some of the coactivators are likely to mediate and enhance interactions between 
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NRs and general transcription machinery, although NRs are, to certain extent, capable for these 

interactions without coactivators. Secondly, many of the coactivators can catalyze covalent 

modifications of histones by either acetylation or methylation, and thereby, alter the chromatin 

structure. Also, chromatin structure is modified by some of the coactivators in an ATP-

dependent manner. Thirdly, coactivators may recruit other coactivators and facilitate the 

assembly of coactivator complexes. 

Mediators 

CREB-binding protein (CBP) and p300 are highly similar to each other but are encoded by 

different genes. CBP was first identified to be associated with cAMP response element-binding 

protein (CREB), whereas p300 was found to interact with viral E1A protein (Chrivia et al. 1993, 

Eckner et al. 1994). CBP/p300 has been shown to interact with a number of transcription factors, 

such activator protein 1 (AP-1) and nuclear factor κB (NF-κB), as well as components of basal 

transcription machinery including TBP and TFIIB (for review, Chan and La Thangue et al. 2001, 

Shikama et al. 1997). CBP/p300 is also involved in coactivator complex assembly, since it is 

capable of interacting with other coactivators such as steroid receptor coactivator-1 (SRC-1), 

p300/CBP/cointegrator-associated protein (p/CIP) and PCAF (Chen et al. 1997, Ogryzko et al. 

1996, Spencer et al. 1997, Yao et al. 1996). Functional mapping of CBP/p300 has revealed a 

HAT domain in the center of the protein. CBP/p300 is able to catalyze acetylation not only of 

histones in vitro but also of other transcription factors such as p53 (Gu et al. 1997, Ogryzko et al. 

1996). Disruption of either CBP or p300 gene causes an embryonically lethal phenotype in 

homozygote mice, and even some of the heterozygotes die during embryogenesis (Yao et al. 

1998). This kind of haploinsufficiency suggests that an adequate amount of CBP/p300 is critical 

for normal development. These knockout mice have similar defects in growth and neural tube 

closure, indicating that CBP and p300 are involved in similar processes. However, CBP +/- mice 

have defects in hematopoietic differentiation, whereas p300 +/- mice are normal in this respect, 

suggesting that functions of CBP and p300 overlap only partially (Kung et al. 2000). Mutations 

of CBP have been associated with Rubinstein-Taybi syndrome that is characterized with similar 

defects as CBP +/- mice (Petrij et al. 1995). 

Thyroid hormone receptor-associated protein (TRAP) and vitamin D receptor-interacting 

protein (DRIP) complexes were separately identified as complexes that interact with thyroid 

hormone receptor and vitamin D receptor, respectively, and contain more than 25 different  

proteins (Fondell et al. 1996, Rachez et al. 1999). These complexes are also similar to the 
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Mediator complex (Boyer et al. 1999). Several NRs have been shown to associate with a member 

of TRAP/DRIP complex called TRAP220 (Hittelman et al. 1999, Yuan et al. 1998, Zhu et al. 

1997). The interaction is ligand-dependent and is likely to occur between the two LXXLL boxes 

located in the TRAP220 and the AF2 region of the NR (Ren et al. 2000, Yuan et al. 1998). GR 

AF1 has been shown to be capable of interaction with a different member of TRAP/DRIP 

complex, TRAP170 (Hittelman et al. 1999). Interestingly, transcription factors other than NRs 

such as p53 and E1A also interact with the TRAP/DRIP complex (for review, Ito and Roeder 

2001). However, they use TRAP80 and TRAP 150β subunits. Importantly, other subunits of the 

TRAP/DRIP complex, such as human homolog of yeast SOH1, are able to bind to TAFs and 

RPII and therefore act as mediators between NRs and general transcription machinery (Gu et al. 

1999). TRAP220 knockout mice die at 10.5 dpc and have defects in growth and development of 

heart (Ito et al. 2000, Zhu et al. 2000). In TRAP220 +/- mice, there are also signs of 

haploinsufficiency, since the mice have hypothyroidism due to decreased expression TSHβ gene 

(Ito et al. 2000). 

Two recent studies have addressed the interplay between CBP/p300 and 

TRAP/DRIP/Mediator. Acevedo and Kraus (2003) demonstrated that there is transcriptional 

synergism in ERα-dependent transcription between CBP/p300 and TRAP/DRIP. Interestingly, 

this phenomenon was observed only on chromatin templates. They also found that Mediator had 

a distinct role in reinitiation of transcription. Wallberg and collegues (2003) have highlighted the 

role of PGC-1α in this synergism. PGC-1α, which interacts with both p300 and Mediator, 

stimulates both histone acetylation and formation of preinitiation complex. 

Histone acetyltransferases 

The p160 family is a coactivator group that consists of three members. SRC-1/NcoA-1 was the 

first identified nuclear receptor coactivator and was originally found as an interaction partner for 

ligand-bound PR, ER, and thyroid hormone receptor (Kamei et al. 1996, Onate et al. 1995, 

Takeshita et al. 1996). The second member of the p160 family, SRC-2/TIF2/GRIP1/NcoA-2, 

was found to associate with LBD of GR and ER (Hong et al. 1996, Torchia et al. 1997, Voegel et 

al. 1996). The third member of the group, SRC-3/p/CIP/ACTR/AIB1/TRAM1/RAC3, was 

originally identified as a gene amplified in breast cancer and was subsequently shown to be a NR 

coactivator (Anzick et al. 1997, Chen et al. 1997, Li et al. 1997a, Suen et al. 1998). Thus, all 

three members of the p160 family are coactivators of multiple NRs. They act as coactivators also 

for other transcription factors such as AP-1 and NF-κB (Lee at al. 1998, Na et al. 1998). 
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Members of the p160 family share similar organization of functional domains. In the N-

terminal part of the protein is located the bHLH/PAS domain that is, however, not required for 

coactivation of NRs (Onate et al. 1995). In the central region of p160 family members reside 

three LXXLL motifs that mediate the interaction with NRs (Heery et al. 1997, Vogel et al. 

1998). Two activation domains, AD1 and AD2, are located in the C-terminal part of SRCs. AD1 

mediates the interaction with CBP/p300, whereas AD2 interacts with the histone 

methyltransferase coactivator-associated arginine methyltransferase 1/protein arginine 

methyltransferase 1 (CARM1/PRMT1). An important HAT domain resides also in C-terminal 

part of SRCs. The HAT activity of the SRC is, however, weak and is not mandatory for the 

coactivation function in vitro. More likely, histones are modified by other factors such as 

CBP/p300, PCAF, or CARM1/PRMT1. 

Members of the p160 family are, in general, widely expressed in various tissues (for review, 

Xu and Li 2003). However, there are differences in certain cell types. For example, in Sertoli 

cells, SRC-2 is highly expressed, whereas only low levels of SRC-1 are present and SRC-3 is not 

detected at all (Gehin et al. 2002, Mark et al. 2004). Gene disruption experiments in mice have 

demonstrated variable degree of functional redundancy among the members of the p160 family. 

SRC-1 knockout mice are viable and fertile (Xu et al. 1998). However, they are partially 

resistant to steroid and thyroid hormones and have defects in neuronal development (Nishihara et 

al. 2003, Weiss et al. 1999, Xu et al. 1998). On the other hand, disruption of SRC-2 results in a 

reduced fertility in male mice due to apoptosis in germ cells and detachment of germ cells from 

Sertoli cells (Gehin et al. 2002). However, the failure is likely to be caused by Sertoli cells, 

because SRC-2 is expressed only in Sertoli cells and not in germ cells. Female SRC-2 knockouts 

have also reduced fertility due to defects in placenta (Gehin et al. 2002). In addition, SRC-2 -/- 

mice are resistant to obesity, have higher lipolysis in white fat and produce higher amounts of 

energy in brown fat (Picard et al. 2002) SRC-3 knockout mice have impaired estrogen action 

(Xu et al. 2000). The levels of estrogen in serum of female mice are lower than those in wild-

type littermates, and this is paralleled by a delay in pubertal development, vaginal opening, and 

mammary gland development. SRC-3 -/- mice have also a reduced growth probably due to 

diminished IGF-1 levels (Wang et al. 2000, Xu et al. 2000). 

PCAF/GCN5 is a member of the PCAF complex that consists of over ten subunits and has 

been shown to be mandatory for NR activation (Korzus et al. 1998, Ogryzko et al. 1998). In the 

C-terminal part of PCAF resides a bromodomain that recognizes acetylated lysine residues 

(Dhalluin et al. 1999, Kanno et al. 2004, Ornaghi et al. 1999). The N-terminal part of PCAF, on 

the other hand, harbors a HAT domain. Indeed, PCAF has been shown to interact with histone 
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H3 and is capable of acetylating H3 (Clements et al. 1999, Kuo et al. 1996, Rojas et al. 1999). 

PCAF interacts with NRs as well as with SRC-1 and CBP/p300 (Blanco et al. 1998, Korzus et al. 

1998). Therefore, PCAF regulates transcription by acetylating histones and mediating 

interactions of other coactivators. Interestingly, a recent study demonstrated that there is 

specificity in the recruitment of PCAF and other coactivators (Li et al. 2003). PR recruited SRC-

1 and CBP, which lead to acetylation of H4, whereas GR recruited SRC-2 and PCAF, which 

resulted in acetylation of H3. 

Histone methyltransferases 

In addition to acetylation, histones are also subjected to methylation. Two well studied 

methylases, CARM1 and PRMT1, belong to the PRMT family are capable of methylating H3 

and H4, respectively (Schurter et al. 2001, Strahl et al. 2001). Both CARM1 and PRMT1 

function as secondary coactivators of NRs, meaning that they require another coactivator to be 

functional (Chen et al. 1999b, Koh et al. 2001). Indeed, members of the p160 family seem to be 

required for CARM1 to be functional; CARM1 and PRMT1 interact with SRC-2 through the 

AD2 domain of SRC-2 (Chen et al. 1999b, Koh et al. 2001). CARM1 acts synergistically with 

SRC-2, CBP/p300, and PCAF (Chen et al. 2000b, Lee et al. 2002). This phenomenon is more 

drastic at low levels of NR, which mimics the situation in vivo (Chen et al. 2000b, Lee et al. 

2002). Interestingly, CARM1 is able to catalyze methylation of not only histones, but also of 

CBP (Chevillard-Briet et al. 2002, Xu et al. 2001). Methylation of CBP is required for normal 

transcriptional activation by SRC-2 and NRs (Chevillard-Briet et al. 2002). Interestingly, 

methylation of CBP inhibits its coactivation function in CREB-dependent transcription (Xu et al. 

2001). Recently, a CARM1 knockout mice have been generated (Yadav et al. 2003). These mice 

are small in size, die perinatally and exhibit defects in CBP and H3 methylation. 

ATP-dependent chromatin remodelers 

The SWI/SNF complex that is capable of modifying chromatin structure noncovalently appears 

to enhance GR, ER, and RAR mediated transcriptional activation (Chiba et al. 1994, Muchardt 

and Yaniv 1993). NRs display specificity regarding the different chromatin remodeling 

complexes; for example, PR recruits ISWI rather than SWI/SNF (Di Croce et al. 1999). Also, 

NRs tend to associate with the brahma-related gene 1 (BRG1) subunit of SWI/SNF rather than 

the brahma (BRM) subunit (Kadam and Emerson 2003). Relationship between acetylation and 
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ATP-dependent remodeling has been addressed by studying their interactions and temporal 

requirement. Belandia et al. showed that the BAF57 subunit of SWI/SNF is capable of 

interacting with p160 coactivators and that the coactivation function of p160 is dependent on 

BAF57 (Belandia et al. 2002). Dilworth et al. (2000), on the other hand, examined the temporal 

pattern of coactivator recruitment by RARα/RXRα. They proposed a model (Fig. 4) in which NR 

is able bind to DNA weakly and this binding is tightened by ATP-dependent chromatin 

remodelers. In the next step, NRs recruit coactivators with acetylation activity. In the last step, 

general transcription factors are recruited to the promoter with the help of TRAP/DRIP 

complexes.  

 
 

 

3.7. Corepressors 

Corepressors decrease the ability of NRs to activate transcription. Two well studied corepressors, 

nuclear hormone receptor-corepressor (N-CoR) and SMRT, were originally identified by their 

ability to interact with unliganded NRs (Chen and Evans 1995, Hörlein et al. 1995). N-CoR and 

SMRT are encoded by related genes and have similarities in their functional organization. N-

CoR and SMRT interact with NRs trough their C-terminal part that contains two to three 

interaction domains (Li et al. 1997b, Seol et al. 1996b). Association of corepressors to NRs is 

selective and depends on a particular NR and homo/heterodimer (for review, Privalsky 2004). 

The interaction between N-CoR/SMRT and NRs is dependent on the CORNR box (L/I-X-X-I/V-

Figure 4.  A model for nuclear receptor (NR)-dependent transcriptional activation. HRE, hormone response
element; TATA, TATA box; TBP, TATA box-binding protein; TAFs, TBP-associated factors; B, transcription
factor B; RPII, RNA polymerase II. NR-dependent transcription is modulated by complexes containing chromatin
remodeling (SWI/SNF), histone acetylation (p160/CBP/p300/PCAF), histone deacetylation (SMRT/N-
CoR/HDACs), mediator (TRAP/DRIP) activities.
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I motif) of the corepressor and on the surface formed by helices 3/5/6 of the NR LBD (Hu and 

Lazar 1999, Nagy et al. 1999, Perissi et al. 1999, Xu et al. 2002). Interestingly, helix 12 plays an 

important role also in corepressor interaction; in the apo-NR, helix 12 is in a position where a 

corepressor is able to bind, whereas in the holo (agonist-bound)-NR it occludes the corepressor 

binding (Schulman et al. 1996, Xu et al. 2002, Zhang et al. 1999). An important feature of N-

CoR and SMRT is their ability to recruit proteins that have histone deacetylase activity such as 

HDAC3, and thus convert the chromatin to an inactive form (Fischle et al. 2002, Guenther et al. 

2001, Guenther et al. 2002, Wen et al. 2000a). Although N-CoR and SMRT are similar, their 

tendency to bind to different NRs and gene knockout experiments suggest nonredundant roles for 

the two corepressors (Jepsen et al. 2000). Interestingly, SMRT is subjected to phosphorylation, 

thus enabling a cross-talk with other signaling pathways (Hong et al. 1998, Hong et al. 2000). 

3.8. Miscellaneous coregulators 

Coregulators are proteins whose effects on NR activity are not as clear as those of coactivators 

and corepressors, and the effects may vary depending on the cell type or NR. RIP140 was 

originally identified as a protein that interacts with ER in agonist-dependent manner (Cavailles et 

al. 1994, Cavailles et al. 1995). In the early studies, low levels of RIP140 were shown to activate 

ER-dependent transcription (Cavailles et al. 1994, Cavailles et al. 1995). A similar enhancement 

of ER activity was also seen in yeast (Joyeux et al. 1997). However, subsequent studies have 

demonstrated that RIP140 usually functions as a corepressor (Lee and Wei 1999, Subramaniam 

et al. 1998, Treuter et al. 1998). RIP140 interacts with the AF2 region of NRs in agonist-

dependent manner and appears to compete with SRC-1 for the same binding site, thus 

functioning as agonist-dependent corepressor (Heery et al. 1997, L’Horset et al. 1996, Treuter et 

al. 1998, Subramaniam et al. 1999). In addition, RIP140 is capable of recruiting HDAC and 

CtBP (Wei et al. 2000, Wei et al. 2001). Interestingly, the interaction between RIP140 and CtBP 

can be reversed by CBP/p300-dependent acetylation of RIP140 (Vo et al. 2001). Gene knockout 

experiments have also revealed that it is required for normal fertility of female mice, since its 

disruption causes defect in ovulation (White et al. 2000). 

ARA proteins is a heterogeneous group of proteins that were initially identified as AR 

coactivators by Chang’s group, and in general, have thereafter been shown to coactivate also 

other steroid hormone receptors (for review, Heinlein and Chang 2002b). ARA70 interacts with 

AR and stimulates its activity weakly (Gao et al. 1999, Yeh and Chang 1996). The possible 

interaction of ARA70 with other NRs is discrepant (Alen et al. 1999, Yeh and Chang 1996). 
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ARA70 appears to change the ligand-specificity of AR; ARA70 increased the activation of AR 

by both dihydrotestosterone and estradiol (Miyamoto et al. 1998, Yeh et al. 1998). ARA24 is an 

AR coactivator that interacts with the NTD of AR (Hsiao et al. 1999). This interaction may 

involve the polyglutamine repeat of the NTD, since an increase in the length of the CAG-repeat 

tends to diminish the interaction. ARA24 is a homologue of RanGTPase which is involved in 

nuclear import and export, thus enabling regulate the nuclear trafficking of AR (Görlich and 

Kutay 1999). AR coactivator ARA54 contains a RING finger domain, suggesting that it might 

act as a E3 ligase in ubiquitination (Kang et al. 1999). Indeed, Ito et al. (2001) demonstrated that 

ARA54 is an ubiquitin E3 ligase capable of catalyzing autoubiquitination. In addition to ARA54, 

two other coactivators, namely SNURF and E6-AP, are ubiquitin E3 ligases (Häkli et al. 2004, 

Moilanen et al. 1998, Nawaz et al. 1999). E6-AP is a protein that associates with Angelman 

syndrome, and its disruption hampers the androgen-dependent growth of the prostate (Kishino et 

al. 1993, Smith et al. 2002). However, it is likely that Angelman syndrome is caused by a defect 

in ubiquitin ligase function rather than the coactivator function (Nawaz et al. 1999). 

Ubiquitination activity of a coactivator might have several consequences. For example, 

degradation of corepressors might activate transcription and degradation of preinitiation complex 

might facilitate reinitiation of transcription. Also, monoubiquitination of histones might convert 

the chromatin structure to a more accessible state (for review, Muratani and Tansey 2003). 

4. PIAS PROTEINS 

4.1. Discovery 

The name of the PIAS protein family derives from the first member, PIAS3 that was identified as 

a protein inhibitor of activated signal transducer and activator of transcription (STAT) 3 (Chung 

et al. 1997). Also, PIAS1 was originally identified by its association with STAT1 (Liu et al. 

1998). Simultaneously with PIAS1, Liu et al. (1998) also cloned the cDNAs for PIASxα, 

PIASxβ, and PIASy. The first functional clues for the α and β forms of PIASx, which are formed 

through utilization of alternatively spliced exons in the 3’ end of the gene, were from unrelated 

studies. While PIASxβ/Miz1 was found by its association with homeobox gene Msx2, PIASxα 

/ARIP3 was identified as an AR coregulator (Moilanen et al. 1999, Wu et al. 1997). Recently, a 

PIAS-like gene hZimp10 has been isolated and, like PIASxα, it is an AR coactivator (Sharma et 

al. 2003). In addition to the thus far identified members, chromosomal location 7p13 harbors a 

putative PIAS-like gene XP_374430 that resembles hZimp10 (Fig. 5). In addition to PIASx, also 
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PIAS1 and PIAS3 may have alternative forms; Gu/RNA helicase II-binding protein differs from 

PIAS1 in that it lacks the first nine amino acids, and PIAS3L/KchAP has an additional 39 amino 

acids inserted in the middle of PIAS3 sequence (Valdez et al. 1997, Wible et al. 1998). The 

presence of PIAS proteins is not restricted to mammals; Drosophila melanogaster has one PIAS-

like protein, dPIAS/Zimp, and Saccharomyces cerevisiae has two PIAS-like proteins Siz1 and 

Siz2 (Mohr and Boswell 1999, Strunnikov et al. 2001). 

 
 

 

4.2. Structure 

PIAS proteins are structurally related and share similar functional domains (Fig. 6). In the N-

terminal part of PIAS proteins resides a SAP (SAF-A/B, Acinus and PIAS) domain. It is a 35-

amino acid long motif that is anticipated to form two α-helices (Aravind and Koonin 2000, Kipp 

et al. 2000). SAP domain is found in many chromatin-associated proteins, such as scaffold 

attachment factor-A/B (SAF) and Acinus, and it is mandatory for DNA binding of SAF-A 

(Göhring et al. 1997, Romig et al. 1992, Sahara et al. 1999). SAF-A binds to AT-rich 

chromosomal regions called MARs (Romig et al. 1992). PIAS-like proteins hZimp10 and 

XP_374430 do not contain the SAP domain. In the center of PIAS proteins is the Siz/PIAS 

RING (SP-RING) motif that is present also in PIAS-like proteins (Hochstrasser 2001, Jackson 

2001). The SP-RING motif resembles a RING motif that is often found in ubiquitin E3 ligases. 

Compared to the classical RING motif, the SP-RING motif lacks two cysteine residues, 

Figure 5. The phylogenetic tree of the PIAS proteins. The phylogenetic tree of PIAS protein reference sequences
was constructed with the neighbor-joining method. An additional hypothetical protein (XP_374430) is also included.
Distance from the left depicts the dissimilarity from dPIAS. 
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suggesting that the SP-RING motif might bind only one zinc ion, but still form a RING finger-

like structure (Schmidt and Müller 2003). PIAS proteins also contain LXXLL motifs found in 

many coactivators that interact with LBD of NRs. However, in the case of PIASy, LXXLL motif 

is not required for interaction with AR, although it is required for the transrepression function 

(Gross et al. 2001). Disruption of LXXLL motifs of PIASxα similarly has only a minor effect for 

its ability to regulate the transcriptional activity of AR and GR (Kotaja et al. 2002a). 

 

 

 

4.3. PIAS proteins as SUMO E3 ligases 

Sumoylation pathway 

Sumoylation is a covalent posttranslational modification that closely resembles ubiquitination. 

Although SUMO and ubiquitin proteins share only 18% identity in amino acid sequence, the 

three-dimensional structure of SUMO-1 is remarkably similar to that of ubiquitin and consist of 

a ββαββαβ fold (Bayer et al. 1998). While mammals harbor only one ubiquitin gene, there are 

three mammalian SUMO genes that encode SUMO-1, SUMO-2, and SUMO-3 (Kamitani et al. 

1998). SUMO proteins are small; SUMO-1 consists of 101 amino acids. SUMO-1 shares 48% 

sequence similarity with SUMO-2 that is almost identical with SUMO-3. A major difference 

between SUMO-1 and SUMO-2/3 is that SUMO-2/3 can form SUMO-polymers, whereas 

SUMO-1 cannot (Tatham et al. 2001). Moreover, the majority of SUMO-2/3 appears to be in 

free form, while SUMO-1 is mostly conjugated to other proteins (Saitoh and Hinchey 2000). 

Sumoylation of the target protein is a multistep process (Fig. 7) in which SUMO protein is 

covalently attached to a specific lysine residue of the target protein. Usually, the target lysine is 

part of the ΨKXE (a large hydrophobic residue, a lysine residue, any residue, a glutamate 

residue) consensus motif (Bernier-Villamor et al. 2002). The first enzyme involved in 

sumoylation is the E1 activating enzyme that is actually a dimer of two proteins Aos1 and Uba2 

(Johnson et al. 1997). Interestingly, Aos1 and Uba2 have regions that are similar to those of the 

ubiquitin E1 activating enzyme Uba1. During the activation process, a thioester bond is formed 

Figure 6. Structural motifs of PIASx protein. Grey and black boxes depict SAP and SP-RING motifs, respectively.
LXXLL motifs are also shown. 
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between the terminal glycine residue of SUMO and the cysteine residue of Aos1/Uba2. In the 

second step, SUMO is transferred to the E2 conjugating enzyme Ubc9, and again a thioester 

bond is formed between SUMO and Ubc9. Initially, Ubc9 was thought to be an E2 conjugating 

enzyme in ubiquitination. However, Johnson and Blobel (1997) showed that Ubc9 acts as an E2 

enzyme in sumoylation rather than in ubiquitination. SUMO-1 and Ubc9 have charged surfaces 

that match each other well (Liu et al. 1999). Ubc9 is also capable of interacting with the 

sumoylation consensus motif of the target protein and thereby, participates in the recognition of 

sumoylation targets (Bernier-Villamor et al. 2002). Sumoylation of the target proteins occurs in 

vitro in the presence of Aos1/Uba2 and Ubc9 and thus, for a while, SUMO E3 ligases were not 

thought to exist at all (Saitoh et al. 1998). Sumoylation is a reversible process, and there are 

currently four confirmed and two putative isopeptidases that are capable of desumoylating 

substrates (for review, Melchior et al. 2003). All of the SUMO proteases belong to the Ulp1 

cysteine protease family. The SUMO proteases are also likely to differ from each other in terms 

of their substrate specificity (Melchior et al. 2003).  

 

 
 

 

 

Figure 7.  Sumoylation of a target protein. SUMO protein is activated by E1 enzyme AOS1/UBA2, conjugated by E2
enzyme UBC9, and ligated by E3 enzyme such as a PIAS protein. 
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E3 ligases 

The first characterized SUMO E3 ligases were Siz1 and Siz2 that are Saccharomyces cerevisiae 

homologs of the PIAS proteins (Johnson and Gupta 2001). Thereafter, all known PIAS proteins 

have been shown to possess SUMO E3 ligase activity (for review, Melchior et al. 2003). For 

example, PIASxα is capable of facilitating sumoylation of AR, c-Jun, STAT1, and Smad4 

(Kotaja et al. 2002b, Lee and Chang 2003, Nishida and Yasuda 2002, Rogers et al. 2003). 

Different PIAS proteins can enhance sumoylation of the same target protein, for example, 

PIAS1, PIASxα, PIASy, and hZimp10 participate in sumoylation of AR (Gross et al. 2004, 

Kotaja et al. 2002b, Nishida and Yasuda 2002, Sharma et al. 2003). SUMO E3 ligase activity is 

not restricted to the PIAS protein family. In addition PIAS proteins, Ran-GTP binding protein 2 

(RanBP2) and polycomb group protein Pc2 have recently been shown to act as SUMO E3 ligases 

(Kagey et al. 2003, Pichler et al. 2002). Interestingly, RanBP2 and Pc2 localize to different 

subnuclear structures than the PIAS proteins, which in part localize to PML bodies. RanBP2 is 

detected in NPC and Pc2 is observed in PcG bodies, suggesting that thus far identified SUMO 

E3 ligases may have distinct functions due to their different localization. RanBP2 and Pc2 also 

lack the SP-RING motif that is required for enhancement of sumoylation by PIAS proteins 

(Kotaja et al. 2002b) 

4.4. PIAS proteins and subnuclear compartmentalization 

As discussed earlier, sumoylation has a well established role in the formation of PML bodies (for 

review, Wilson and Rangasamy 2001). The first link between subnuclear compartmentalization 

and the PIAS proteins was revealed in a study on PIASy. Sachdev and collegues (2001) 

identified PIASy as a SUMO E3 ligase that interacts with LEF1 and facilitates its sumoylation. 

LEF1 is a transcription factor involved in Wnt signaling. Importantly, sumoylated LEF1 

colocalizes with PIASy to nuclear dots that partially overlap with PML bodies, and localization 

to PML bodies was accompanied with a reduced activity of LEF1. Similar to PIASy, other PIAS 

proteins have been shown to localize to nuclear dots, although there appears to be member-to-

member variation in the localization pattern (Kotaja et al. 2002b).  

4.5. PIAS proteins in transcription 

Many of the interaction partners of the PIAS proteins are transcription factors (for review, 

Schmidt and Müller 2003). However, the effects of the PIAS proteins on transcription appear to 
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be complex and vary depending on target protein, cell line, and promoter context (Kotaja et al. 

2000). The complexity is likely to arise, at least in part, from sumoylation of both the 

transcription factor and its coregulators (Kotaja et al. 2002c). For example, sumoylation of a 

coactivator may increase its ability to interact with a steroid receptor, whereas subsequent 

sumoylation of the steroid receptor may attenuate the receptor (Kotaja et al. 2002c). Dual effects 

on transcription may be due to the fact that PIAS proteins interact not only with coactivators, but 

also with corepressors such as HDACs (Tussie-Luna et al. 2002). PIAS-dependent repression of 

steroid receptor activity may occur through usage of HDACs, for example, PIASy can recruit 

HDAC1 and HDAC2, and represses transcriptional activity of AR independent of sumoylation 

(Gross et al. 2004). 

Transcriptional synergy is a phenomenon where two transcription factors work together and 

have a more than an additive effect on transcription (Iniguez-Lluhi and Pearce 2000). 

Interestingly, the region associated for a synergistic effect, the so-called synergy control motif, 

contains the sumoylation consensus sequence, and indeed is the major sumoylation site in GR 

and AR (Le Drean et al. 2002, Poukka et al. 2000, Tian et al. 2002). The disruption of synergy 

control motif augments transcriptional synergy at promoters containing multiple glucocorticoid 

response elements (Iniguez-Lluhi and Pearce 2000). In line with this, sumoylation of the lysine 

residue in the synergy control motif leads to inhibition of synergy (Holmstrom et al. 2003). 

Therefore, the PIAS proteins could affect transcription by disrupting the transcriptional synergy. 

Another feature of the PIAS proteins potentially involved in transcriptional regulation is 

their ability to bind to MAR through the SAP domain (Sachdev et al. 2001, Tan et al. 2002). As 

exemplified by the Drosophila PIAS homolog, PIAS proteins have been implicated in the 

maintenance of proper chromosome structure during interphase (Hari et al. 2001). Therefore, 

PIAS proteins could be important for transcriptional regulation by controlling the chromosome 

structure in general or by interacting with proteins that bind to MAR. At least the latter 

possibility seems to be true, since a MAR-binding protein, SATB2, was recently shown to be 

sumoylated in PIAS1-facilitated manner (Dobreva et al. 2003). Sumoylation of SATB2 results in 

diminished gene activation and relocalization of the protein to nuclear periphery. 

4.6. PIAS proteins in cytokine signaling 

Cytokines are polypeptides that function via cognate receptors on the plasma membrane. The 

plasma membrane receptors, in turn, activate the Janus kinase-signal transducer and activator of 

transcription (JAK-STAT) pathway that results in the binding of STAT to DNA and activation of 
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transcription. Inhibitors of the JAK-STAT pathway fall into three groups: Src homology 2 

domain-containing protein-tyrosine phosphatase (SHP), suppressor of cytokine signaling 

(SOCS), and PIAS (for review, Wormald and Hilton 2004). It was initially thought that PIAS 

proteins regulate negatively the transcriptional activity of STATs by preventing their DNA 

binding. While this may be true for interaction of PIAS1 with STAT1 and PIAS3 with STAT3, it 

fails to explain the inhibitory effect of PIASy and PIASx on STAT1 and STAT4, respectively 

(Arora et al. 2003, Chung et al. 1997, Liu et al. 1998, Liu et al. 2001). The inhibitory effects of 

PIAS proteins on STATs can be, at least in part, attributed to their role in sumoylation. Indeed, 

PIAS1, PIAS3, and PIASx have been shown to act as SUMO E3 ligases towards STAT1 (Rogers 

et al. 2003, Ungureanu et al. 2003). Moreover, mutation of the major sumoylation site may 

results in increased activity of STAT1 proving support for the importance of PIAS-facilitated 

sumoylation in cytokine signaling (Ungureanu et al. 2003). Sumoylation of STATs may, 

however, be restricted to STAT1, since other STATs do not possess consensus sumoylation 

sequences (Ungureanu et al. 2003). 

4.7. PIAS proteins and nuclear receptor function 

First clues about the role of PIAS proteins in NR-mediated transcriptional regulation were gained 

when PIASxα and PIAS1 were identified as coregulators of AR (Moilanen et al. 1999, Tan et al. 

2000). Thereafter, all PIAS proteins have been shown to regulate steroid receptor-dependent 

transcription as assessed by reporter gene assays (Table 3). Effects of PIAS proteins on steroid 

receptor function are somewhat puzzling for several reasons. First, many PIAS proteins are able 

to modulate the function of same receptor. Second, a single PIAS protein changes the activity of 

several different receptors. Third, the effect of a given PIAS protein depends on the cell-type and 

promoter context. Therefore, it is likely that the in vivo effects depend on the presence of 

receptor(s), PIAS protein(s), and other coregulators. Moreover, the effects are also likely to be 

gene-specific. 
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TABLE 3. Summary of effects of PIAS proteins on steroid receptor-regulated transcription. 

Receptor PIAS protein Effect(s) Reference(s) 

AR PIAS1 Activation Gross et al. 2001, Kotaja et al. 2000, Tan et al. 2000 

 PIAS3 Activation, unchanged Gross et al. 2001, Jimenez-Lara et al. 2002, Kotaja et 
al. 2000 

 PIASxα Activation, unchanged, 
inhibition 

Kotaja et al. 2000, Moilanen et al. 1999 

 PIASxβ Activation Kotaja et al. 2000 

 PIASy Inhibition Gross et al. 2001, Gross et al. 2004 

 hZimp10 Activation Sharma et al. 2003 

ERα PIAS1 Activation Kotaja et al. 2000 

 PIAS3 Activation Kotaja et al. 2000 

 PIASxα Activation Kotaja et al. 2000 

 PIASxβ Activation Kotaja et al. 2000 

ERβ PIAS1 Activation Kotaja et al. 2000 

 PIAS3 Activation Kotaja et al. 2000 

 PIASxα Unchanged Kotaja et al. 2000 

 PIASxβ Activation Kotaja et al. 2000 

GR PIAS1 Activation, unchanged Kotaja et al. 2000, Tan et al. 2000 

 PIAS3 Activation, inhibition Jimenez-Lara et al. 2002, Kotaja et al. 2000 

 PIASxα Activation, inhibition Kotaja et al. 2000 

 PIASxβ Activation, unchanged Kotaja et al. 2000 

MR PIAS1 Inhibition Pascual-Le Tallec et al. 2003 

PR PIAS1 Activation, inhibition Kotaja et al. 2000, Tan et al. 2000 

 PIAS3 Activation, unchanged Jimenez-Lara et al. 2002, Kotaja et al. 2000 

 PIASxα Activation Kotaja et al. 2000 

 PIASxβ Activation Kotaja et al. 2000 

 

5. ANDROGEN RECEPTOR 

5.1. The androgen receptor gene 

The cDNA encoding AR was cloned in 1988 by several groups (Chang et al. 1988, Lubahn et al. 

1988, Tan et al. 1988, Trapman et al. 1988). The AR gene is located on X chromosome at Xq11-

12. It has eight exons and spans 180 kb. Thus far, there is no evidence for alternatively spliced 

forms of the AR transcript (Hirata et al. 2003). However, two alternative transcription start sites 

are likely to exist, but they differ from each other by only 10 nucleotides and encode the same 

protein (Faber et al. 1993).  
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5.2. Structure of the androgen receptor 

Structure of AR is typical for NRs and comprises the following regions: NTD, DBD, hinge 

region, and LBD. Although alternatively spliced forms of AR do not exist, two different 

isoforms of AR may be present. An N-terminally truncated 87-kDa form of AR was originally 

detected in genital skin fibroblasts and was shown to represent about 10% of total amount of AR 

(Wilson and McPhaul 1994). Two subsequent studies have examined possible functional 

differences between the two isoforms, but the results are inconsistent (Gao and McPhaul 1998, 

Liegibel et al. 2003). Moreover, a recent study by Gregory et al. (2001a) demonstrated that the 

87-kDa isoform is likely to result from in vitro proteolysis and not to exist in vivo. 

The NTD of AR is the least conserved part of the receptor compared to other NRs. There are 

two stretches of repetitive sequences in this region of AR: polyglutamine (CAG) and polyglycine 

(GGC) repeat. The roles of these repeats in physiological function of AR are currently unknown, 

but the polyglutamine repeat has been implicated in several diseases, such as prostate cancer and 

Kennedy’s disease. Another unique feature of the AR NTD is the AF1. Compared to other NRs, 

the AF1 of AR is strong, whereas the AF2 is relatively weak (Simental et al. 1991). In general, 

AF2 of NRs functions as the binding site for coactivators, but this function may be less important 

in AR (He et al. 2001). The N-terminal part of AR is capable of interacting with the C-terminal 

part of the receptor in an agonist-dependent manner (Ikonen et al. 1997, Langley et al. 1995). 

The N/C interaction is mediated predominantly by an LXXLL-like motif, FXXLF, of the NTD 

and the AF2 region of the AR LBD (He et al. 2000). The interaction between N-terminal and C-

terminal parts of AR is important, because mutations found in the AR LBD of patients with 

androgen insensitivity syndromes may blunt the N/C interaction and receptor activity without 

affecting ligand or DNA binding (Thompson et al. 2001). N/C interaction can be further 

strengthened by coregulators such as CBP, GRIP1, and PIASxα (Ikonen et al. 1997, Moilanen et 

al. 1999, Thompson et al. 2001). Therefore, whereas other NR use their AF2 as the interaction 

interface for coactivators, the AR AF2 acts mostly as a docking surface for the N-terminal part of 

the receptor. 

5.3. Androgen insensitivity syndromes 

Almost 500 germline mutations for the AR gene causing an androgen insensitivity syndrome are 

known in the literature and they are listed in a database dedicated for AR mutations 

(www.mcgill.ca/androgendb, Gottlieb et al. 2004). There are several reasons for the existence of 
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such a high number of mutations. Firstly, the AR gene is located on X chromosome and in an 

XY individual only one copy of AR gene is present. Secondly, mutations of the AR gene are not 

lethal, and individuals survive to adulthood. Thirdly, the phenotype of an AR mutation is often 

easily detectable, for example, due to ambiguous genitalia or primary amenorrhea. Phenotypes of 

AR mutations can be grouped into three classes: complete, partial, and mild androgen 

insensitivity. Complete androgen insensitivity syndrome (CAIS) is characterized by normal 

female external genitals, the absence of uterus and the presence of testes. This kind of phenotype 

is usually detected in early childhood due to the presence of labioscrotal or inguinal testes 

(Ahmed et al. 2000). However, sometimes the phenotype is not evident until around puberty, 

when menstruation should occur. In partial androgen insensitivity syndrome (PAIS), external 

genitalia are ambiguous and therefore PAIS is evident at the time of birth. Mild androgen 

insensitivity syndrome (MAIS) is not easily detected, and its phenotype may be, for example, 

infertility (Yong et al. 2003). The majority of AR mutations are single point mutations, and they 

cluster in the DBD and the LBD. Interestingly, the same mutation can lead to different 

phenotypes as illustrated by the phenotype for M780I mutation that varies from a normal female 

to a male with ambiguous genitalia, suggesting that other factors modify the phenotype (Gottlieb 

et al. 2001). A coactivator defect is a possible cause of androgen insensitivity. Interestingly, 

there is a case-report of a patient who has normal AR despite clinical signs of androgen 

insensitivity (Adachi et al. 2000). Mutations of AR coactivators were, however, not studied in 

the report. 

5.4. Kennedy’s disease 

Kennedy’s disease or spinal and bulbar muscular atrophy (SBMA) is an X-linked motorneuron 

disease. In addition to neurological defects, the patients may also exhibit signs of androgen 

insensitivity (Dejager et al. 2002). Kennedy’s disease is caused by an expansion of the 

polyglutamine repeat located in the AR NTD (La Spada et al. 1991). Kennedy’s disease shares 

many similar features with other polyglutamine repeat diseases such as neuronal cell death. 

Cytotoxicity in trinucleotide-repeat diseases is often caused by accumulation of undegradable 

protein. Transfection of an extended-polyglutamine form of AR indeed generates a degraded 75-

kDa mutant form of AR that accumulates to nucleus and is resistant to proteolysis (for review, 

Lee and Chang 2003). Moreover, AR with an expanded polyglutamine repeat has been shown to 

form aggregates and hampers axonal traffic (Piccioni et al. 2002, Szebenyj et al. 2003). 

Cytotoxicity caused by the SBMA mutant AR is ligand-dependent, since castration prevented the 
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development of the disease in a mouse model (Katsuno et al. 2002). Similar results were 

achieved in this mouse model by using an gonadotropin-releasing hormone receptor agonist, 

leuproline, which reduced testosterone production of testis (Katsuno et al. 2003). In contrast, 

flutamide, a pure AR antagonist, did not have any therapeutic effect, possibly due to its ability to 

promote nuclear translocation of AR (Katsuno et al. 2003). 

5.5. Male breast cancer 

Male breast cancer is a rare disease; in Finland only 15 new cases were found in the year 2001 

(Finnish Cancer Registry, www.cancerregistry.fi, last updated on 30 January 2004). AR has been 

implicated in male breast cancer, since germline mutations R607Q and R608K were found in 

men with breast cancer (Lobaccaro et al. 1993). However, other studies have failed to detect 

germline or somatic mutations of AR in male breast cancer (Hiort et al. 1996, Syrjäkoski et al. 

2003). Although AR mutations are rare in men with breast cancer, a deficient androgen action 

may represent a risk factor for breast cancer in men with PAIS. Androgen insensitivity results in 

normal or elevated levels of serum testosterone that, in turn, is aromatized to estrogens (Quigley 

et al. 1995). Therefore, in men with PAIS, the protective effects of androgens on breast cancer 

development may be diminished due deficient androgen action, and also elevated estrogen levels 

may increase the likelihood of breast cancer (Hiort et al. 1996). 

6. PROSTATE CANCER 

Prostate cancer is the most common cancer of men in many industrialized countries; 3533 new 

cases were detected in Finland in 2001. Prostate cancer is one of the major causes of cancer 

mortality, as 774 deaths were attributed to prostate cancer in the same year, making it the second 

most common death-causing cancer in Finland (Finnish Cancer Registry, www.cancerregistry.fi, 

last updated on 30 January 2004). A number of risk factors for prostate cancer are known 

including positive family history, high-fat diet, sexually-transmitted disease, and ethnicity (for 

review, Bosland 2000). Several findings point out that androgens are important for prostate 

cancer; the growth and maintenance of prostate is dependent on androgens, and administration of 

androgens to rats results in an increase in prostate cancer (Noble 1977). Moreover, androgen 

deprivation therapy by surgical or pharmacological means is an effective treatment for recurrent 

prostate cancer (Huggins and Hodges 1941). However, after the initial suppression of growth, 

prostate cancer gains the ability to grow even in an androgen-deprived environment. Two 
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general mechanisms have been suggested to explain this phenomenon. According to the first 

explanation, prostate cancer cells might acquire the ability to grow by using stimulatory 

signaling pathways other than androgen action. Alternatively, prostate cancer cells may rely on a 

modified androgen action. 

6.1. Androgens in cancer etiology 

The importance of serum androgen levels for prostate cancer development has been studied in 

various study settings. One setting has been to compare serum hormone levels between higher 

risk and lower risk populations. The results from these studies have, however, been conflicting. 

Studies comparing African-American men to European-American men as well as Caucasian-

Dutch men to Japanese men have found higher total testosterone levels in serum in high risk than 

in low risk groups (de Jong et al. 1991, Ross et al. 1986). In contrast, studies comparing Japanese 

men to American whites and blacks as well as Asian-Americans to European-Americans have 

revealed lower testosterone levels in the high risk population (Ross et al. 1992, Wu et al. 1995). 

These studies were performed in adult men and, therefore, do not address the effects of earlier 

periods, such as pregnancy, on prostate cancer risk. Interestingly, black women have 47% higher 

serum testosterone concentrations than white women during pregnancy, raising a possibility that 

exposure of developing prostate gland to higher androgen amounts during pregnancy may later 

result in an increased risk of prostate cancer (Henderson et al. 1988). 

Another common study approach has been to perform case-control studies in both 

prospective and cross-sectional settings (for review, Bosland 2000, Debes and Tindall 2002, 

Hsing et al. 2002, Ntais et al. 2003a, Taplin and Ho 2001). Several prospective studies have 

evaluated the relationship between serum testosterone and DHT levels; most studies have failed 

to detect statistical correlation between serum testosterone levels and prostate cancer risk. For 

example, no association was found in serum testosterone, androstenedione and SHBG 

concentrations between control and prostate cancer groups during 24 years of follow-up period 

in a Finnish study (Heikkilä et al. 1999). However, Gann et al. found a strong positive 

correlation between increased prostate cancer risk and increased adjusted testosterone levels, 

whereas there was a negative correlation between SHBG concentration and prostate cancer risk 

(Gann et al. 1996). Two other studies have also found that there may be a correlation between 

the testosterone/DHT ratio and prostate cancer risk (Hsing and Comstock 1993, Nomura et al. 

1988). In many studies, the failure to detect association between androgen levels and prostate 
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cancer risk may be due to problems in hormone measurements or that the study does not have 

enough statistical power due to small differences in androgen levels between the groups. 

6.2. Germline mutations in etilogy 

Enzymes that are involved in androgen metabolism are plausible candidate genes for prostate 

cancer. Role of CYP17 in prostate cancer risk was evaluated in a recent meta-analysis and the 

conclusion was that CYP17 is unlikely to have a great impact on prostate cancer risk (Ntais et al. 

2003b). Aromatase, which catalyzes conversion of androgens to estrogens, has been found to 

harbor two alleles that associate with an increased prostate cancer risk. Latil et al. (2001) found 

that 171-bp and 187-bp alleles (produced by variation in the length of TTTA repeat in intron 4) 

correlated statistically significantly with increased prostate cancer. However, functional 

consequences of this variation have not been studied. Also, mutations in 5α-reductase type II 

have been examined in several studies. The results have, however, been inconsistent. Ntais et al. 

(2003c) performed a meta-analysis on these studies and concluded that A49T and TA repeat 

length polymorphism may have an effect on prostate cancer risk. 

Although AR is a candidate gene for prostate cancer, surprisingly few germline mutations 

have been found to be associated with an increased prostate cancer risk. The most studied 

mutation R726L has been detected both in Finnish and American prostate cancer patients, but it 

seems to be present in only a few percent of the patients (Gruber et al. 2003, Koivisto et al. 2004, 

Mononen et al. 2000). This mutation may change the function of AR so that it is activated by 

estrogens (Elo et al. 1995). However, R726L may show slightly reduced activity in response to 

androgens (Thompson et al. 2001). Transcriptional activity of AR seems to correlate negatively 

with the length of CAG repeat (Chamberlain et al. 1994, Tut et al. 1997). Therefore, number of 

studies examining the association between the length of CAG-repeat and the prostate cancer 

have been carried out (for review, Hsing et al. 2002, Nelson and Witte 2002, Ntais et al. 2003a). 

These studies have failed to demonstrate an association between short CAG-repeat and increased 

prostate cancer risk. However, the short CAG repeat tends to accumulate in populations with an 

increased risk. 

6.3. Somatic mutations in cancer etiology 

While only a few germline mutations of AR have been detected in prostate cancer, somatic 

mutations are numerous. In general, these mutations have been detected in recurrent cancers, 
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while the mutations are rare in untreated cancers (Marcelli et al. 2000). This may be, in part, due 

to genetic instability of cancer cells, but the selection by androgen deprivation is likely to be 

important as well. The influence of somatic mutations on AR function found in recurrent cancer 

cells can be classified to four groups: increased sensitivity to androgens, increased promiscuity 

to steroids, altered cross-talk with other signaling pathways, and by-pass of receptor dependence.  

Increased sensitivity to androgens can be achieved by increased AR level or by gain-of-

function mutations, such as V715M, H784Y, and the so-called LNCaP mutation T877A. These 

mutations modify the function of AR in such manner that adrenal androgens are able to activate 

AR, leading to growth of tumor after castration (Fenton et al. 1997, Tan et al. 1997). Due to the 

presence of gain-of-function mutations in recurrent prostate cancers, a few clinical trials have 

evaluated the potential benefit of using both castration and anti-androgen therapy. Unfortunately, 

maximal androgen blockade (MAB) therapy has not brought about any significant benefit 

compared to castration alone (Prostate Cancer Trialists' Collaborative Group 1995). Sensitivity 

of AR towards androgens is governed by the law of mass action and may therefore be augmented 

through an increase in the amount of the receptor. In line with this notion, amplification of the 

AR gene seems to be a common finding as ~30% of hormone-refractory tumors contained the 

amplification (Koivisto et al. 1995, Visakorpi et al. 1995). A recent study using expression-

profiling in prostate cancer xenocrafts showed that AR was the only gene that was consistently 

upregulated in antiandrogen-resistant tumors (Chen et al. 2004). Amplification of the AR gene is 

one explanation for the increased expression of AR in antiandrogen-resistant xenocrafts. 

However, it seems not to happen in all xenocraft models (Laitinen et al. 2002). Other 

explanations for androgen hypersensitivity may be autoupregulation of AR mRNA through 

exonic AREs, or increased stability of AR protein (Grad et at. 1999, Gregory et al. 2001b). 

Mutations of the AR gene may modify the function of the receptor in a way that makes the 

receptor more promiscuous for ligand binding as exemplified by the T877A mutation, which is 

activated by adrenal androgens and is also responsive to the non-steroidal antiandrogen 

flutamide (Taplin et al. 1999). The receptor harboring the T877A mutation, however, is not 

generally responsive to antiandrogens, since bicalutamide does not activate this AR mutant 

(Taplin et al. 1999). Activation of AR by antiandrogen may, therefore, explain the failure of 

MAB therapies. Certain mutations may convert AR to be activated by other steroid hormones 

such as corticosteroids. A representative of such a receptor is the L701H mutation with increased 

affinity for cortisol and cortisone, and the affinity for glucocorticoids is further increased by the 

concomitant T877A mutation (Zhao et al. 1999). 
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Various signaling pathways have been postulated to activate AR in an androgen-independent 

manner and are thus potential ways for the cancer cell to escape androgen dependency. Peptide 

growth factors, such as insulin-like growth factor 1 (IGF-I), keratinocyte growth factor (KGF), 

and epidermal growth factor (EGF), have been reported to activate AR even in the absence of 

androgens (Culig et al. 1994). Interestingly, the activation can be reversed by bicalutamide 

(Culig et al. 1994). Another factor implicated in ligand-independent activation of AR is HER-

2/neu – a receptor tyrosine kinase that is overexpressed in prostate cancer xenocrafts in castrated 

mice (Craft et al. 1999). HER-2/neu-mediated activation differs from that elicited by the peptide 

growth factors, because in the case of HER-2/neu, AR activation cannot be blocked by 

bicalutamide (Craft et al. 1999). HER-2/neu activation has been suggested to be mediated by 

MAPK or Akt pathways (Wen et al. 2000b, Yeh et al. 1999). Akt is a protein kinase that 

regulates cell-cycle and possesses anti-apoptotic activity by regulating proapoptotic proteins 

such as procaspase-9 and Bad. Furthermore, the tumor suppressor gene PTEN, which is often 

inactivated in prostate cancer, is an upstream negative regulator of Akt (Li et al. 1997c). Thus, 

the Akt pathway may offer a way for by-passing the AR-dependent pathway to promote the 

growth of cancer cell. However, the ligand-binding capability of AR has been shown to be 

mandatory for growth of LNCaP cells, suggesting that AR is an important factor also in 

advanced prostate cancer (Chen et al. 2004).  

6.4. Coregulators in prostate cancer 

AR coregulators are potentially important for the progression of prostate cancer. Therefore, 

many of these coregulators have been studied at both mRNA and protein level. The results 

gained so far have been contradictory. SRC-1 and SRC-2 were initially found to be 

overexpressed in prostate cancer specimen as judged by immunohistochemistry (Gregory et al. 

2001c). However, other studies have detected either unchanged or decreased levels of SRC-1 

mRNA in prostate cancer (Fujimoto et al. 2001, Li et al. 2002, Linja et al. 2004). While Li et 

al.(2002) demonstrated by in situ hybridization that both ARA24 and PIAS1 were upregulated in 

prostate cancer, Linja et al. (2004) detected by RT-PCR-based method unchanged and decreased 

expression of ARA24 and PIAS1, respectively. These contradictory results obtained thus far may 

be due to the use of different techniques and targets. Indeed, Gregory et al. (2004) have found 

that EGF increases SRC-2 protein but not mRNA levels. Naturally, there can be differences 

within prostate cancer patients and specimen. For example, Linja et al. (2004) found that 

although SRC-1 mRNA was generally downregulated in hormone-refractory prostate 
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carcinomas, the highest individual levels were detected in the treated group. Therefore, prostate 

cancer may contain subtypes that differ from each other with respect to their coregulator content. 

Although an interesting possibility, coregulator mutations have thus far not been found. 
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AIMS OF THE STUDY 

The aim of this study was to gain better insight into androgen action under physiological and 

pathological conditions. The specific objectives of the work were: 

 

•  To examine serum androgen bioactivity in patients with prostate cancer 

 

•  To characterize the functional consequences of mutations in the DNA-binding domain of 

AR found in androgen insensitivity patients 

 

•  To study expression of AR coregulator PIASx in adult testis and during testicular 

development 

 

•  To investigate regulation of PIASx gene transcription 

 

•  To study the physiological role of the PIASx gene by gene disruption in mice 
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MATERIALS AND METHODS 

For more detailed descriptions of materials and methods, the reader is referred to the original 

publications.  

1. Study subjects and study design (I) 

The study population consisted of Caucasian men with lower urinary tract symptoms from area 

near Vienna. The prostate cancer status of the men was determined by digital rectal examination 

and PSA, or by histological examination of tissues derived from prostate biopsy or transurethral 

resection of prostate. 

The study population was divided into prostate cancer (cases) and BPH (controls) groups on 

the basis of their cancer status. The prostate cancer group consisted of 101 men, and the BPH 

group was composed 103 age-matched men. The serum samples were taken at the time of 

diagnosis before any treatments, and thus, the study setting was cross-sectional. The study 

protocol was approved by the ethics committee of the University of Vienna, and all patients gave 

written informed consent. 

2. Hormone measurements (I, V) 

Murine serum LH and FSH levels were measured by immunofluorometric assays and 

intratesticular testosterone concentration was determined after diethyl ether extracting the 

gonadal homogenates followed by testosterone measurement with standard radioimmunoassay 

after reconstitution of the extract to phosphate-buffered saline. Testosterone concentration in 

human serum was determined by radioimmunoassay and SHBG levels were measured with 

fluoroimmunoassay. 

Serum androgen bioactivity was measured by recombinant cell bioassay as described by 

Raivio et al. (2001). Briefly, the assay is based on androgen-dependent interaction between N- 

and C-terminal parts of AR expressed as separate polypeptides in recipient cells. Additionally, 

PIASxα is included in the assay to facilitate the interaction. The assay is responsive to DHT, 

testosterone, and androstenedione, but not to DHEA. Moreover, the assay also takes into account 

the presence of antiandrogenic substances and androgen binding proteins. 
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3. Statistical analyses (I, II, V) 

The statistical difference between groups was analyzed by two-tailed t test unless otherwise 

stated. In publication number II, differences between prostate cancer and BPH groups were 

assessed with Mann-Whitney U-test and with analysis of variance in the case of subgroup 

analysis. The correlation between serum androgen bioactivity and testosterone levels was 

investigated using Pearson’s correlation coefficient. P < 0.05 was considered as statistically 

significant. 

4. Recombinant DNA techniques (II, III, IV, V) 

Plasmids, probes, and transgene constructs were prepared using standard recombinant DNA 

techniques. 

5. Cell culture, transfections, and reporter gene assays (II, IV) 

CV-1, COS-1, and PC-3 cells were from American Type Culture Collection (Manassas, VA). 

Murine Sertoli cell line MSC-1 (Peschon et al. 1992) was obtained from Dr. Ilpo Huhtaniemi, 

(University of Turku, Finland) and murine spermatogonial cell line GC-1spg (Hofmann et al. 

1992) was obtained from Dr. Jorma Keski-Oja (University of Helsinki, Finland). Transfections 

were performed by using FuGene6 reagent according to manufacturer’s instructions. In brief, 

cells were plated 24 h before adding the DNA. Eighteen hours after transfection, the cells 

received fresh medium containing 2% charcoal-stripped fetal bovine serum with or without 

testosterone. Forty-eight hours after transfection, the cells were harvested and luciferase, 

chloramphenicol acetyltransferase, and β-galactosidase activities were measured. Transfections 

were performed with triplicate dishes, and the results were repeated in at least two independent 

experiments. Promoters of probasin, p75, collagenase, interleukin-6, and PIASx genes as well as 

artificial promoters CMV-ARE2 and ARE4-tk were used to drive the reporter gene. 

6. Mutagenesis (II) 

Mutant ARs were contructed by a PCR-based targeted mutagenesis, and the mutations were 

verified by sequencing. 
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7. DNA-binding studies (II, IV) 

In electrophoretic mobility shift assays, testis- and liver-derived nuclear extracts, whole cell 

extracts as well as in vitro-translated proteins were incubated with a 32P-labeled probe. After the 

incubation at room temperature, protein-DNA complexes were resolved by electrophoresis on 

4% polyacrylamide gel under nondenaturing conditions. Cold probes and antibodies were used in 

binding reactions to address specificity and to identify unknown complexes. 

8. Immunoblotting (II, III) 

Protein samples were resolved by polyacrylamide gel electrophoresis under denaturing 

conditions (SDS-PAGE). Proteins were electrophoretically transferred onto polyvinylidene 

fluoride or nitrocellulose membrane and blocked. For detection of specific proteins, the 

following antibodies were used: anti-AR (residues 14-32 of rAR), anti-PIASx/ARIP3 (residues 

443-548 of rPIASxα), and anti-actin. The immunocomplexes were visualized with a horseradish 

peroxidase-conjugated secondary antibody and chemiluminesence-based detection system. 

9. In vitro protein-binding assays (II) 

GST pull-down experiments were conducted by using either purified GST alone or GST-CBP-

NT adsorbed to glutathione Sepharose and [35S]methionine-labeled rAR variants produced by 

translation in vitro. 

For immunoprecipitations, aliquots from tissue supernatants (500 µg protein) were diluted to 

1 ml with washing buffer (50 mM Tris-HCl, pH 7.8, 140 mM NaCl, 5 mM EDTA and 0.02% 

Nonidet P-40), centrifuged at 16,000 x g for 15 min at 4ºC. The supernatants were transferred to 

new tubes and 30 µl of protein G Sepharose (Amersham Biosciences) was added. The tubes were 

rotated for 30 min at 4ºC and centrifuged at 13,000 x g for 5 min at 4ºC. The supernatants were 

transferred to new tubes and 30 µl of anti-FLAG M2 affinity gel (Sigma-Aldrich) was added. 

The tubes were rotated for 2 h at 4ºC and then centrifuged at 16,000 x g for 5 s. Agarose beads 

were washed three times with 1 ml of washing buffer and once with 1 ml of TBS (10 mM Tris-

HCl, pH 8.0, and 100 mM NaCl) and 50 µl of SDS-PAGE sample buffer (100 mM Tris-HCl, 

20% glycerol, 2% SDS, 0.1 M dithiothreitol, and 0.01% bromophenol blue) was added before 

boiling of the samples at 95ºC for four min. Immunoblotting was performed with 15-µl samples. 



Materials and methods 

52 

10. Tissue samples (III, IV, V) 

All animal experiments were approved by the committee on ethics of animal experimentation of 

University of Helsinki or University of Turku. Sprague–Dawley male rats as well as FVB/N and 

C57BL/6 mice were used. The animals were sacrificed by CO2 anesthesia and cervical 

dislocation, and the tissues were snap-frozen in liquid nitrogen and stored at -70°C until used. 

Seminiferous tubule segments at stages II–VI, VII–VIII, IX–XII and XIII–I of the epithelial 

cycle were isolated under a stereomicroscope by a transillumination-assisted microdissection 

technique. The tubular segments were snap-frozen in liquid nitrogen and stored at -70°C. 

11. RNA blotting (III, V) 

Total RNA was isolated using a single-step method and was size-fractionated in 1% denaturing 

agarose gel and transferred onto nylon membrane. Prehybridization and hybridization were 

performed with ULTRAhyb hybridization solution according to the manufacturer’s instructions. 

After hybridization with 32P-labeled RNA probe, the blots were stripped and subsequently 

hybridized with 32P-labeled 28S rRNA cDNA. 

12. In situ hybridization (III) 

Tissues were fixed in paraformaldehyde and embedded in paraffin. 35S-Labelled probes 

recognizing PIASx or PIAS1 were hybridized on the slides for overnight, and the probes were 

visualized with emulsion autoradiography. 

13. Immunohistochemistry (III) 

Tissues were fixed in paraformaldehyde, embedded in paraffin, and sectioned. PIASx protein 

was detected with of α-PIASx/ARIP3 (residues 443-548 of rPIASxα) primary antibody. Positive 

cells were visualized using Vectastain Elite-kit according to the manufacturer's instructions. 

Preimmune serum or rabbit IgG was used as primary antibody in immunohistochemistry to 

control the specificity of the staining. 
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14. Sequence analysis (IV) 

Sequence of the proximal promoter of the murine PIASx gene was analyzed for potential 

transcription factor binding sites with Match program using Transfac 5.0 Public database 

(www.gene-regulation.com). 

15. Primer extension (IV) 

Transcription start site of PIASx gene was determined by using two Cy5-labeled antisense 

primers located near the translation start site. Primers were annealed with murine testis RNA and 

then extended by avian myeloblastosis virus reverse transcriptase. The primer extension products 

were subjected to electrophoresis under denaturing conditions on a 6% polyacrylamide gel 

parallel to the sequencing reaction and analyzed with ALFexpress DNA sequencer. 

16. Production of transgenic mice (IV, V) 

For studying the expression of PIASx, two promoter fragments, -4199/+76 and -168/+76, were 

cloned into the SmaI/HindIII site of the SDKlacZpA-derived vector that contains a Kozak 

consensus sequence fused in-frame to the lacZ coding region followed by an SV40 

polyadenylation signal. The transgene was injected into fertilized mouse oocytes of the FVB/N 

strain. 

PIASx knockout mouse was derived from a gene trap experiment (Hansen et al. 2003). 

Briefly, ES cells were electroporated with pT1βgeo gene-trap vector that contains En-2 splice 

acceptor upstream of β-galactosidase and neomycin resistance genes. Gene-trap integration 

occurred in the second intron of the PIASx gene. Mice were backcrossed with C57BL/6 mice for 

several generations and thus their genetic background is C57BL/6. 

In order to create a PIASxα-overexpressing mouse line, the sequence encoding FLAG-

epitope and rat PIASxα cDNA was amplified by PCR using the primers 5'-

TCTAGAACCATGGACTACAAAGACG-3' and 5'-TCTAGATACAAATTATGTTTTATT 

TTGCA-3' and the product was cloned into the XbaI site of the pEF-BOS (Mizushima and 

Nagata 1990). The gene construct is driven by the human elongation factor 1α promoter, which 

has been shown to target the transgene to murine spermatogonia and spermatocytes (Furuchi et 

al. 1996, Meng et al. 2000). The expression vector fragment was injected into fertilized mouse 

oocytes of the FVB/N strain to create three lines of FLAG-rPIASxα mice. Identification of 

transgenic mice was performed from tail biopsy derived genomic DNA by PCR using primers 5'-
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CATTCTCAAGCCTCAGACAGTGGTTC-3' and 5'-GACAGGAGATGACGGTGA 

ATGAGG-3'. 

17. β-Galactosidase assays (IV) 

For measurement of β-galactosidase activity, the tissues were homogenized and heat-treated to 

inactivate endogenous β-galactosidase activity. The β-galactosidase activity was measured from 

the samples with a chemiluminesence based assay (Galacto-Light) and the activity was related to 

protein concentrations measured by Bradford's method. 

To localize the β-galactosidase activity, the testes were dissected out, decapsulated, fixed, 

and then stained for β-galactosidase activity for overnight. After staining, the testes were 

dehydrated, embedded in paraffin, sectioned, and counterstained with eosin. 

18. Sperm analyses (V) 

Spermatozoa from cauda epididymides were stained in a solution containing 0.02% acridine 

orange and staining was examined using a fluorescence microscope. Spermatozoa with normal 

double-stranded DNA structure displayed green fluorescent color, whereas yellow to red marked 

abnormal single-stranded DNA structure. 

Cauda epididymal sperm count was measured by piercing the cauda epididymis with a 

needle and allowing sperm cells to disperse to Brinster's BMOC-3 medium. Subsequently, sperm 

counts were determined using a hemocytometer. Sperm count is expressed as the number of 

sperm per epididymis. 

19. TUNEL-assay (V) 

Testes were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned. Sections were 

stained with DeadEnd colorimetric TUNEL system according to the manufacturer’s instructions 

to detect the fragmentation of DNA which is a hallmark of apoptotic cell. 

20. Microarray experiment (V) 

Total RNA from testes of three mutant and three wild-type mice were labeled and hybridized on 

Mouse (Development) Oligo Array slides (Agilent Technologies). After background subtraction, 

the ratios were calculated by dividing average intensity of each spot in mutant hybridization by 

the average intensity of the corresponding spot in the wild-type hybridization. For transcripts 
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with two or three high quality measurements from separate slides, mean of log transformed ratios 

was calculated.  

21. Real-time quantitative RT-PCR (V) 

cDNA was synthesized from testicular total RNA with avian myeloblastosis virus reverse 

transcriptase. PCRs were performed with the Lightcycler system using FastStart DNA master 

SYBR green I mix. Standard curve for PCR test was constructed using serial 1:5 dilutions of 

normal murine testis cDNA. The concentrations of samples, performed as triplicates, were 

determined with the help of standard curve using fit-points method. The mean of the two 

repeated PCR values was used in the statistical analyses. Results were normalized to 

porphobilinogen deaminase by dividing the individual RT-PCR values by mean of three repeated 

PBGD test values of the respective sample. 
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RESULTS AND DISCUSSION 

1. Serum androgen bioactivity is reduced in patients with prostate cancer (I) 

Androgens are important for normal development of the prostate gland, and androgen 

deprivation therapy is initially an effective treatment for advanced prostate cancer. Roles of 

androgens in the development of prostate cancer have, however, remained elusive. In this study, 

we applied a recombinant cell bioassay, developed in our laboratory, to study the role of 

androgens in prostate cancer in a cross-sectional study setting. The study population consisted of  

Caucasian men with lower urinary tract symptoms. The men with histologically verified prostate 

cancer were assigned to cancer group, whereas the men in whom prostate cancer was excluded 

were assigned to BPH group.  

The main aim of this study was to compare serum androgen bioactivity between the men 

with prostate cancer and the men with BPH. The serum samples were taken at the time of 

diagnosis. Although serum testosterone, SHBG, or free androgen index 

(testosterone/SHBG*100) did not significantly differ between the groups, there was a significant 

difference in serum androgen bioactivity. Serum androgen bioactivity was significantly lower in 

the cancer group compared to the BPH group. Although the overall difference in serum androgen 

bioactivity was relatively small, the difference may be more drastic in certain subgroups of 

prostate cancer. 

Prostate cancer is not a homogenous disease entity: some prostate cancers remain local, 

while others are aggressive and metastasize. The most well-known classification system of 

prostate cancer is the Gleason score that grades the prostate cancer from two to ten according to 

the ductal structure that is preserved in the tumor (Gleason and Mellinger 1974). A low Gleason 

score corresponds to a non-aggressive disease, while a high Gleason score is usually associated 

with an aggressive disease. We pooled together the grades from two to five and those from eight 

to ten, and kept grades six and seven separate according to the recommendation by Gleason 

(Gleason 1992). When compared to the BPH group, serum androgen bioactivity displayed 

variations depending on the subgroup. The least aggressive group showed a tendency for lower 

activity, and in the most aggressive group, serum androgen bioactivity was significantly lower 

than in the BPH group. However, we could not detect any significant differences in serum 

testosterone levels between the BPH and the prostate cancer subgroups. 

Due to the difference between serum androgen bioactivity and testosterone levels, we 

studied their correlation with each other. Serum testosterone levels and androgen bioactivity 
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correlated significantly in both groups. However, the correlation was stronger in the BPH group 

than in the prostate cancer group. We also studied the androgen bioactivity-to-testosterone ratio 

among the groups and, indeed, the prostate cancer group had significantly lower ratio, indicating 

that the measurement of serum testosterone levels overestimates androgenic activity in the 

serum. There were also differences among the prostate cancer subgroups, in that the androgen 

bioactivity-to-testosterone ratio was lower than expected in both the lowest and the highest 

Gleason score groups. The observed differences in the serum androgen bioactivity-to-

testosterone ratio are likely to reflect differences between the subgroups. While the low ratio 

may be a characteristic feature of a non-aggressive cancer, in the high Gleason score group, it 

may reflect increased tumor volume. 

Several reasons can be proposed to cause the mismatch between serum androgen bioactivity 

and testosterone concentration. This phenomenon was particularly prominent in four men with 

prostate cancer, who had high serum testosterone concentration and low androgen bioactivity. 

Higher than expected androgen-to-testosterone ratio could be due to the presence of other 

androgenic substance in addition to testosterone. Although endogenous DHT levels do not 

correlate with androgen bioactivity, exogenous DHT does increase serum androgen bioactivity 

(Raivio et al. 2002). However, the men that were enrolled into this study did not receive any 

androgen supplementation. The lower than expected ratio could also due to antiandrogenic 

substances in serum. The serum samples were taken before any treatment for prostate cancer and 

antiandrogenic medication cannot be the reason for the difference. Environmental substances 

with antiandrogenic activity also represent an unlikely explanation, since both the cases and the 

controls were from the same geographical area. In this study we could not exclude the usage of 

herbal products as a possible interfering . Antibodies against testosterone or AR could also 

disturb the measurement of androgen bioactivity. In conclusion, regardless of the mechanism, the 

measurement of serum testosterone level tends to overestimate androgen bioactivity of serum in 

the patients with prostate cancer.  

2. Effects of AR DBD mutations on androgen action (II) 

Currently, hundreds of AR mutations have been found both in prostate cancer and in androgen 

insensitivity syndrome. The mutations are usually single amino acid substitutions and tend to 

concentrate to DBD and LBD of the AR. While the observed mutations in human offer a unique 

model to verify the importance of the residues in vivo, the molecular mechanism that are behind 
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the functional deficiencies are poorly understood. Therefore, we generated a series of mutations 

that are observed in human and examined the defects in molecular functions of the variant ARs. 

The generated mutations are shown in Fig. 8. In man, G551V, A579, and R590Q mutations 

cause PAIS, whereas mutation of cysteine 562 to tyrosine or phenylalanine cause CAIS (Alléra 

et al. 1995, Poujol et al. 1997, Wooster et al. 1992, Zoppi et al. 1992). Mutation of K563 has not 

yet been found in humans, but in the context of GR, this mutation converts transrepressive 

function of GR to transactivation (Meyer et al. 1997, Starr et al. 1996). 

 
 

 

 

We first studied DNA-binding ability of the mutant ARs. As shown in Table 4, the majority 

of the mutants had reduced DNA-binding capability, and the C562G mutant did not bind to DNA 

at all. The C562G mutant’s inability to bind DNA was predictable, since C562 is one the four 

cysteine residues of the first zinc-finger that coordinate binding of the zinc ion, and thus, the 

structure of the first zinc-finger is likely to be disturbed. In addition to in vitro DNA-binding, we 

studied DNA-binding of the variant ARs in intact cells by using a promoter interference assay. 

The results obtained in vivo were in line with those obtained in vitro. 

Next, we studied the transactivation functions of the mutant ARs. First, we used an artificial 

promoter that contains four AREs in front of the thymidine kinase promoter. As shown in Table 

4, G551V and K563A mutants had reduced transactivation capability, and C562G mutant did not 

activate transcription at all. Interestingly, A579T and R590Q mutants activated transcription 

stronger than the wild-type receptor. The results observed with the artificial promoter were 

similar to the data with the natural probasin promoter which contains two AREs, with the 

exception of K563A mutant that was weaker than with the artificial promoter. Transactivation 

functions of A579T and R590Q mutants were also studied with a shorter version of the probasin 

promoter that contains only one ARE. Although at high testosterone concentrations, the mutants 

Figure 8. Location of the mutated residues of the AR DBD studied in this work. Numbers refer to rat AR according
to Tan et al. 1988. In brackets are the numbering corresponding to human AR according to Lubahn et al. 1988. Grey
circles and open boxes refer to the P box and the D box, respectively. 
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were as active as the wild-type receptor, at lower levels of testosterone their transactivation 

function was clearly weaker. In the case of A579T mutation, a similar phenomenon has been 

observed in a more recent study (Lundberg Giwercman et al. 2000). Moreover, a patient carrying 

R590Q mutation has been successfully treated with androgen supplementation (Weideman et al. 

1998). The explanation for the difference between the two forms of the probasin promoter may 

lie in the difference between the two AREs in the promoter. The upstream ARE-1 resembles a 

classical ARE and is activated also by GR, whereas the downstream ARE-2 is a non-classical 

ARE and seems to be specifically activated by AR (Rennie et al. 1993, Schoenmakers et al. 

2000). Schoenmakers and colleagues (2000) studied extensively the interaction between the 

probasin ARE-2 and the AR, and they concluded that the receptor is likely to bind to ARE-2 in a 

head-to-head orientation opposite to the classical head-to-tail orientation. Also, Geserick et al. 

(2003) have recently demonstrated that the A579T mutation impairs AR function on an AR-

specific element of the Pem gene, whereas the transactivation function of the mutant was either 

unimpaired or even enhanced in the case of a classical ARE. 

In addition to transactivation, we also studied transrepression functions of the mutant ARs. 

The mutations caused only mild impairment in the transrepression activity of the NF-κB 

pathway, and in the case of AP-1 signaling, transrepression was more or less normal (Table 4). 

Therefore, we conclude that, while the DBD mutations hamper transactivation function of AR, 

transrepression activities of AR that do not require DNA-binding are relatively unaffected. 

Studies on the dimerization-deficient GR mutant mice have clearly demonstrated the importance 

of GR-mediated transrepression (Reichardt et al. 1998). These mutant mice have abolished 

transactivation function and unaffected transrepression function, whereas in GR knockout mice 

both functions are affected. The dimerization-deficient GR mutant mice are viable in contrast to 

GR knockout mice that die shortly after birth, suggesting that GR-mediated transrepression, but 

not transactivation, is essential for mice. 

TABLE 4. Effects of AR DBD mutations on DNA binding, transactivation and transrepression. 

Transactivation  Transrepression 
Mutation Phenotype DNA binding 

ARE4-tk PB(2xARE) PB(1xARE)  NF-κB AP-1 

Wild-type Normal ++ ++ ++ ++  ++ ++ 

G551V PAIS + + + n.d.  + ++ 

C562G CAIS - - - n.d.  + ++ 

K563A n.d. + + - n.d.  + + 

A579T PAIS n.d. +++ +++ +  ++ ++ 

R590Q PAIS + +++ +++ +  ++ ++ 

+++, enhanced function; ++, normal function; +, deficient function; -, lack of function; n.d., not determined 
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We also investigated the interaction between AR mutants and the coactivator CBP. However, we 

were unable to detect any differences between the mutant and wild-type ARs. Geserick et al. 

(2003) have also studied the relationship between AR activity and AR coactivators that are 

known to interact with the DBD. The SUMO E2 conjugase Ubc9 and the SUMO E3 ligase 

PIASxα downregulated AR activity on AR-specific response elements, but not in classical 

response elements. Thus, altered interaction with Ubc9 or PIASxα may contribute to the 

impaired function of the A579T mutant on AR-specific elements. A very recent study suggests, 

however, that sumoylation may be an important regulator of transcriptional synergy on classical 

rather than AR-specific response elements (Callewaert et al. 2004)  

3. Regulation of PIASx gene expression (III, IV) 

PIASxα was originally identified as an AR coregulator that is predominantly expressed in testis 

(Moilanen et al. 1999). Importantly, testes are responsible for androgen production in male, and 

spermatogenesis is dependent on sufficient androgen action. To understand better such a specific 

expression, we studied the expression pattern and regulation of the PIASx gene. 

Spermatogenesis is a multi-step differentiation process in which each cell-type is characterized 

by unique events. Therefore, it is mandatory to know the expression of a gene at a cellular level. 

We examined the expression pattern of the PIASx gene by using in situ hybridization in adult 

rats. While PIASx mRNA was absent in Leydig cells, we detected PIASx transcript in Sertoli 

cells and throughout the germinal epithelium. However, the expression pattern was uneven in the 

seminiferous epithelium: PIASx mRNA was more abundant in pachytene spermatocytes than in 

other cell-types. The expression of PIASx mRNA as assessed by in situ hybridizations appeared 

to be stage-specific, which was further proven by northern blot analysis of stage-specific RNAs. 

Indeed, intensity was at its highest at stages IX-XII, which is concordant with the abundance of 

PIASx mRNA in late spermatocytes. We also applied methoxyacetic acid (MAA) treatment that 

destroys late spermatocytes in rats. We observed that the amount of PIASx mRNA first 

decreased when pachytene spermatocytes were depleted, which was followed by increased 

mRNA levels due to reappearance of pachytene spermatocytes as well as disappearance of round 

spermatids and later on elongated spermatids. Thus, the expression pattern of PIASx indicates 

that it is involved also in processes other than androgen action in Sertoli cells, and that PIASx is 

likely to play a role in spermatogenesis, especially in pachytene spermatocytes. 

To understand better the regulation of PIASx gene transcription, we isolated the putative 

promoter region 4.2 kb upstream of the 5’ untranslated region of the PIASx gene. Sequence 
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analysis revealed that the promoter is very GC-rich, a feature typical of a housekeeping gene. 

Also, several putative binding sites for transcription factors such as Sp1 were identified. We used 

reporter gene assays to verify that the isolated DNA indeed contains a functional promoter. 

Transcriptional activity of the PIASx promoter was the highest in a Sertoli cell-derived cell-line 

(MSC-1), whereas promoter activity was lowest in COS-1, a cell-line originating from kidney. 

Furthermore, in all studied cell lines the promoter fragment +168/-76 exhibited activity 

comparable to the longest promoter fragment. Thus, we concluded that promoter fragment 

+168/-76 is likely to correspond to the proximal promoter of the PIASx gene. The activity of 

PIASx promoter fragments failed, however, to display a similar degree of specificity that was 

observed at tissue level. Therefore, we used the +4199/-76 and +168/-76 promoter fragments to 

target the expression of β-galactosidase in mice. The two promoters retained testis-specific 

expression, and their activities were similar. The cellular localization of the β-galactosidase 

reporter gene product was, however, different from that of the native PIASx mRNA. While 

PIASx mRNA was evident throughout the seminiferous epithelium with the highest levels in 

pachytene spermatocytes, β-galactosidase activity was absent in spermatogonia and early 

spermatocytes, but it was clearly detectable in spermatids. This disparity may arise from the lack 

of regulatory elements needed for expression in spermatogonia and early spermatocytes. On the 

other hand, translation of the transgene or stability of the β-galactosidase protein may be 

different from that of PIASx protein. Importantly, however, the expression of the transgene was 

evident in the pachytene spermatocytes, the primary site of PIASx mRNA accumulation. 

We used electrophoretic mobility shift assay to study the binding of transcription factors to 

the proximal promoter. Nuclear extracts derived from rat testis formed one major complex with 

two probes encompassing upstream and downstream regions of the proximal promoter. Oligo-

nucleotide competition and antibody supershift assays showed that the major complex is formed 

by several proteins: Sp1, Sp2, and Sp3 that belong to the Sp family and are known to be 

expressed in the testis. The binding of at least Sp1 and Sp3 is likely to be physiologically 

relevant, since Sp1 is expressed in Sertoli cells and germ cells up to pachytene spermatocytes, 

and Sp3 is present in primary spermatocytes and early spermatids (Shell et al. 2002, Wilkerson et 

al. 2002). In addition to acting as a transcription factor, Sp1 could potentially influence PIASx 

expression by regulating the methylation status of the PIASx promoter (Brandeis et al. 1994, 

Macleod et al. 1994). Testicular nuclear extract also formed a minor complex with 5’ end of the 

proximal promoter containing a putative binding site for the Ets family of transcription factors. 

However, this complex was not competed out with an Ets consensus binding site-containing 

oligonucleotide, indicating that the protein is not a classical member of the Ets transcription 
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factor family. A similar Ets-like-binding site has been found also in two other testis-specific 

genes, namely phosphoglycerate kinase 2 and β1,4-galactosyltransferase-I. However, the protein 

binding to the element has not been characterized (Charron et al. 1999, Goto et al. 1993). 

In conclusion, the proximal promoter of the PIASx gene is GC-rich, and the members of the 

Sp transcription factor family and possibly also an Ets-like transcription factor are able to bind to 

the promoter. The proximal promoter includes the DNA-elements that are required for germ cell-

specific expression, and therefore, this promoter sequence could be used to target transgene 

expression specifically to germ cells. 

4. Role of PIASx in the spermatogenesis (III, V) 

Expression pattern of PIASx mRNA in the testis suggests that PIASx plays a role in 

spermatogenesis. However, transcription in germ cells is not as tightly coupled to translation as 

in somatic cells. For example, the protamine genes are transcribed in round spermatids, but 

translation does not occur until in elongated spermatids. Therefore, we performed 

immunohistochemical staining with anti-PIASx/ARIP3 antibody that recognizes both α and β 

forms of the PIASx protein. We detected PIASx immunostaining in Sertoli cells and in germ 

cells up to stage XII pachytene spermatocytes. Similar to in situ hybridization analysis, we did 

not detect any PIASx in Leydig cells. Moreover, there were differences in the intensity of 

immunostaining in germ cells; the highest levels of PIASx protein were detected in pachytene 

spermatocytes. Pachytene is next to the last phase in spermatogenesis before meiotic cell 

divisions. It is the longest phase of spermatogenesis, extending from stage XIV to stage XII in 

rat. The most important process taking place in the pachynema is the homologous recombination. 

During pachytene, sister chromatids are completely paired or synapsed by a special structure 

called synaptonemal complex (for review, Cohen and Pollard 2001). Interestingly, Ubc9 has 

been shown to localize to the synaptonemal complex and to interact with core proteins Cor1 and 

Syn1 of the synaptonemal complex (Kovalenko et al. 1996, Tarsounas et al. 1997). Moreover, 

sumoylation is likely to play an important role in homologous recombination occurring in 

somatic cell in response to DNA damage (for review, Müller et al. 2004). It is thus tempting to 

speculate that sumoylation and PIAS proteins have functions related to homologous 

recombination in germ cells. 

To study the functional role of the PIASx gene in spermatogenesis, we generated transgenic 

mice that overexpress Flag-tagged rPIASxα/ARIP3 under the control of elongation factor 1 alpha 

promoter that has been shown to direct expression of the transgene into spermatogonia and 
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spermatocytes. We produced three independent transgenic lines that all expressed Flag-tagged 

PIASxα protein (Fig. 9A). When compared to endogenous PIASx protein, the expression levels 

of PIAS was up to 3.9-fold higher in line B19 (Fig. 9B). The mice of all three independent lines 

were, however, fertile and their spermatogenesis appeared to be grossly normal. The lack of 

phenotype in these mice may in part be due to relatively modest overexpression of PIASx, or 

alternatively, the level of endogenous PIASx is already so high that no gain-of-function can be 

achieved by increasing the amount of PIASxα. Therefore, we proceeded to study a loss-of-

function model of the PIASx gene. 

 

 

 

PIASx knockout mice originated from a gene-trap experiment in which an embryonic stem cell 

clone with a disruption in the PIASx gene was identified. In this clone, a gene-trap vector is 

integrated to second intron of the PIASx gene, resulting in disruption of the PIASx gene. 

Although PIASx mutant mice were viable and fertile, we nevertheless studied the reproductive 

functions of the male mice. Whereas the overall weight of the PIASx knockout mice was normal, 

their testis weight was significantly reduced, and the reduced gonadal size was accompanied 

with a smaller diameter of seminiferous tubules and fewer mature spermatozoa in the 

epididymis. However, normal DNA structure and normal motility of spermatozoa of the PIASx  

-/- mice imply that the quality of the sperm cells is unaffected. Thus, PIASx is quantitatively 

rather than qualitatively required for normal spermatogenesis. 

Figure 9.  Detection of epitope-tagged PIASx transgene product in the testes of three transgenic mouse lines. A,
Protein extracts from testes of wild-type (wt) or three different transgenic lines B19, B20, and E46 were
immunoprecipitated with anti-FLAG M2 affinity gel matrix and immunoblotted with polyclonal rabbit anti-
PIASx/ARIP3 antibody. Lane + corresponds to COS-1-produced FLAG-tagged PIASxα used as a positive control.
B, A representative immunoblot of whole testis extracts from wt and the transgenic lines B19, B20, and E46.
Arrowhead, band corresponding to PIASx protein; dot, unspecific band due to secondary antibody. 
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5. PIASx and apoptosis (V) 

Apoptosis during spermatogenesis is an important determinant for the number of germ cells that 

achieve maturity. It has been estimated that 75% of germ cells never mature due to apoptotic cell 

death occurring predominantly during spermatogonial development (for review, Sinha Hikim et 

al. 2003). Decreased levels of gonadotropins and intratesticular testosterone are known to 

increase the rate of apoptosis. Moreover, in certain knockout mouse models, such as ubiquitin E3 

ligase Siah1a -/- mice, spermatogenesis is arrested at a specific stage, which is paralleled with a 

dramatic stage-specific increase in the number of apoptotic cells (Dickins et al. 2002). Therefore, 

we studied the number of apoptotic cells in the testes of PIASx -/- mice by TUNEL-staining. We 

found that the number of TUNEL-positive cells was increased significantly, albeit not 

dramatically, in PIASx knockouts. However, the apoptotic cells did not appear to accumulate in 

any specific stage or step. We also measured the levels of serum gonadotropins and 

intratesticular testosterone. The levels did not, however, differ significantly between the wild-

type and mutant mice, suggesting that the increased rate of apoptosis is not due to the hormonal 

status of the knockout mice. Interestingly, several sumoylated proteins such as p53 and Smads 

are involved in apoptosis, and sumoylation of the latter proteins is facilitated by PIAS proteins. 

However, the roles of individual PIAS proteins in the regulation of p53 and Smad activity are 

currently elusive.  

6. Regulation of gene transcription by PIASx (V) 

PIAS proteins and sumoylation are heavily implicated in the regulation of transcription. 

Therefore, we used DNA microarray analysis to examine changes in gene expression at the level 

of transcriptome in testis of wild-type and PIASx knockout animals. We identified several 

upregulated and downregulated transcripts that corresponded to genes that have an intron-exon 

structure and more or less well-characterized functions. We also grouped the differentially 

regulated genes on the basis of their function, but we were unable to detect any significant 

enrichment of genes in to a particular functional group. We further examined the expression of 

the genes with a putative testicular function by using RT-PCR, and could confirm the decreased 

expression of a growth factor, erv1-like (Gfer) in testes of PIASx knockout mice. Gfer is a 

sulphydryl oxidase that is expressed in spermatogonia and primary spermatocytes, and it is 

known to regulate the growth of other tissues, such as liver (Adams et al. 1998, Hagiya et al. 

1994, Klissenbauer et al. 2002). It is, therefore, possible that Gfer has a growth-related function 
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also during the early spermatogenesis. In addition to protein coding mRNAs, we identified 29 

downregulated and 2 upregulated ESTs that are likely to belong to so-called regulatory 

noncoding RNAs. Although the physiological importance of such noncoding RNAs is poorly 

understood, they have been shown to participate in the regulation of transcription and translation 

(for review, Mattick 2003, Szymański and Barciszewski 2002). Interestingly, steroid receptor 

coactivator SRA is an RNA rather than a protein, but currently no other RNA-based coactivators 

have been reported (Lanz et al. 1999). 

Since PIASxα was originally identified as an AR coregulator and is known to facilitate 

sumoylation of AR, we also examined the consequence of PIASx disruption on AR-mediated 

transcription. As a target gene, we chose the Pem homeobox gene that is a Sertoli cell-specific 

and androgen-regulated gene (Rao et al. 2003). Pem mRNA level, as assessed by real-time 

quantitative RT-PCR, was decreased by 42% in PIASx knockout testes, indicating that PIASx 

has an impact on androgen receptor-mediated transcriptional regulation. 

7. Functional redundancy among PIAS proteins (III, V) 

Several lines of evidence suggest that PIAS proteins are functionally redundant. First, several 

PIAS proteins are capable of facilitating sumoylation of the same protein, such as AR. Second, 

PIASx, PIAS1, and PIASy are highly expressed in the testis (Gross et al. 2001, Moilanen et al. 

1999, Tan et al. 2000). On the other hand, PIAS proteins have clearly different effects on AR-

dependent reporter gene activity in transfection assays (Table 3). In addition to PIASx, we 

studied the expression pattern of PIAS1 in testis. Like PIASx, also PIAS1 mRNA was detected 

throughout the seminiferous epithelium. In contrast to PIASx, however, PIAS1 mRNA was most 

abundant in postmeiotic spermatids. This difference was also evident in the developmental 

appearance of PIASx and PIAS1 mRNAs. PIASx mRNA was clearly detectable at day 20 

corresponding to development of pachytene spermatocytes, whereas PIAS1 emerged at day 30 

when round spermatids are formed. Tan et al. (2000) have also shown that PIASy is expressed 

equally in spermatocytes and spermatids in murine testis. The expression patterns of PIAS1, 

PIASx, and PIASy thus overlap, although they are partially distinct. We also compared 

expression levels of PIAS mRNA in PIASx -/- and PIASx +/+ mice and found a slight increase  

and decrease in the mRNA levels of PIAS3 and PIAS1, respectively. However, both PIAS1 and 

PIASy are already expressed at high levels in the testis, and it is, therefore, possible that no 

increase in mRNA level is needed to compensate for the loss of PIASx. Thus, the relatively mild 
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phenotype of the PIASx knockout mice may be, at least in part, due to a functional redundancy 

among the PIAS proteins. 
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CONCLUSIONS 

This study aimed at deciphering molecular determinants of androgen action at the level of 

bioactive ligand, receptor, and coregulatory proteins to understand better how androgen action is 

convoyed in both physiological and pathological conditions. The main conclusions of this study 

are as follows: 

•  The serum androgen bioactivity is lower in prostate cancer patients than in patients with 

BPH, and it is overestimated solely on the basis of their serum testosterone levels, especially 

in patients with low Gleason score. These results suggest that the reduced androgen 

bioactivity-to-testosterone is a characteristic feature of less aggressive prostate cancer. 

•  Mutations in the AR DBD alter the transactivation ability of the receptor, but the 

transrepression functions are only mildly affected, indicating that the varying phenotype of 

androgen insensitivity syndrome is a result of differentially affected AR functions. 

•  The PIASx gene encoding an AR coregulator is expressed during spermatogenesis in both 

AR target Sertoli cells and germ cells, especially in pachytene spermatocytes. This suggests 

that the functions of PIASx are not restricted to its AR coregulator function and that PIASx 

may participate in structural changes of chromosome in pachytene spermatocytes. 

•  Transcription of the PIASx gene is regulated by a short GC-rich promoter region, and 

members of the Sp family are candidate trans-acting factors binding to the promoter. The 

proximal promoter of the PIASx gene includes the DNA elements that are required for male 

germ cell-specific transcription, which allows the highly specific expression of a transgene 

in male germ cells. 

•  Disruption of the PIASx gene in mice results in a reduced testis weight and epididymal 

sperm count despite the maintenance of normal fertility. These results indicate that the 

PIASx gene is important for quantitatively rather than qualitatively normal spermatogenesis. 
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