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1. ABSTRACT

Catechol-O-methyltransferase (COMT) is an important enzyme in the metabolism

of compounds which have a catechol structure. A high-sensitivity and reliable high-performance

liquid chromatography (HPLC) with coulometric detection was developed to analyze the COMT

reaction products, vanillic acid and isovanillic acid. Kinetic approximations, using the COMT

activity assay with dihydroxybenzoic acid (DHBAc) as a substrate showed that activity was

mainly mainly due to S-COMT present in rat brain homogenate. A novel method to analyze

COMT activity in cultured cells was developed. By adding DHBAc directly to the viable cells

without addition of the intracellular methyl donor S-adenosyl-l-methionine, the localization of

COMT inside the cells was confirmed.

The localization of COMT in activated microglial cells was seen after intrastriatal

administration of fluorocitrate, a glial toxin. This was shown by comparing COMT activity with

microglia/macrophage and astroglial marker enzymes and defining microglial and astroglial cells

immunohistochemically. COMT activity in neuronal cells was demonstrated in primary cultured

rat brain cells. In regionally discrete cultures, the glial COMT activity was almost equally

distributed and usually higher than neuronal COMT activity.

Ethanol (at 1000 mM concentration) inhibited in vitro recombinant MB-COMT

activity with a mixed inhibition pattern while recombinant S-COMT activity tended to be

increased. These minor changes in COMT activity were also seen in striatal homogenate. A

trend of decreasing recombinant MB-COMT activity, however, was seen already at 100 mM

concentration of ethanol, which is a clinically toxic concentration.

Inhibitors with a nitrocatechol structure, entacapone and tolcapone, decreased

COMT activity in rat brain cell primary cultures at nanomolar concentrations while CGP 28014,

a hydroxypyridine-type inhibitor of O-methylation in vivo, did not affect COMT activity at all.

Due to its better permeability, tolcapone was generally a more potent COMT inhibitor than

entacapone in glial cell containing cultures. In contrast, neuronal COMT appeared to be slightly

more sensitive to inhibition by entacapone and tolcapone, which were equipotent COMT

inhibitors in neuronal cell cultures.

In the rat kidney, COMT activity was decreased equally in the cortex, which

contained the highest COMT activity, in outer medulla and in papilla ex vivo after entacapone

administration. The local increase of dopamine by blocking its metabolism with entacapone

induced a more profound D1 receptor-sensitive natriuresis than could be obtained by

administration of the precursor, L-DOPA.
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2. INTRODUCTION

Catechol-O-methyltransferase (COMT, E.C.2.1.1.6.) was first characterized by

Axelrod in 1958 (Axelrod and Tomchick 1958). COMT catalyses the formation of methoxylated

products in the presence of Mg2+ and S-adenosyl-l-methionine (SAM) from the substrate which

must contain a catechol moiety (Fig. 1). During the first two deacades much of the properties of

COMT were described, e.g. distribution and biochemical data (Guldberg and Marsden 1975). In

the beginning of the 80's, there was more interest to explore the properties of COMT since novel

inhibitors of COMT were being developed (Männistö et al. 1992b, Kaakkola et al. 1994).

Nowadays, the molecular biology of COMT has been studied, the enzyme has been crystallized

and recombinant proteins constructed (Vidgren and Ovaska 1997). Also, the first COMT

inhibitors have been introduced in to the clinic where they are used as adjuncts to L-DOPA in

the therapy of Parkinson's disease (Dingemanse 1997; Männistö and Kaakkola 1999).

Figure 1. Reaction mechanism of COMT. For DHBAc R = -COOH, SAM = S-adenosyl-l-
methionine and SAH = S-adenosyl-l-homocysteine.

3. REVIEW OF THE LITERATURE

3.1. Molecular characteristics of COMT proteins

The COMT gene is localized in chromosome 22q11.2  (Grossman et al. 1992;

Winqvist et al. 1992). The COMT gene can produce two mRNA species. The P1 promoter

guides the transcription of a shorter mRNA which is included in the longer mRNA sequence

expressed by P2 promoter (Tenhunen and Ulmanen 1993; Tenhunen et al. 1994; Tenhunen

1996). The P2 promoter seems to be expressed ubiquitously while P1 is expressed in a differing

amounts depending on the tissue (Tenhunen 1996). The nucleic acid sequence of the longer

mRNA coding for membrane-bound (MB-) COMT protein contains the shorter mRNA coding

for soluble (S-) COMT. The expression of the two mRNA forms does not correlate precisely

with COMT protein levels since both MB-COMT and S-COMT proteins are produced from the

longer mRNA while S-COMT is produced also from shorter the mRNA (Ulmanen and

Lundström 1991; Tenhunen and Ulmanen 1993).
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Two alleles of the COMT gene at a single autosomal locus produce S-COMT

proteins with three to four-fold difference in activity, at least in human erythrocytes, liver and

kidney (Weinshilboum 1988; Boudikova et al. 1990; Grossman et al. 1992). This is caused by a

single amino acid substitution of valine to methionine (108 in S-COMT or 158 in MB-COMT)

(Lotta et al. 1995; Lachman et al. 1996) which produces low, intermediate and high COMT

activities in individuals. Recently, a knockout mouse strain, lacking COMT, has been developed

(Gogos et al. 1998).

The recombinant COMT enzymes have been expressed in bacterial and eukaryotic

cells. The S-COMT has been expressed in E. coli (Lundström et al. 1992), both MB-COMT and

S-COMT in E. coli, human 293 cells (Malherbe et al. 1992) and in Spodoptera frugiperda (Sf9)

cells (Tilgmann et al. 1992). MB-COMT contains the S-COMT amino acid sequence with an

additional membrane anchor. The molecular weights of recombinant enzymes are 28 kDa and

29-30 kDA for rat and human MB-COMT, respectively, and 25 kDa and 26 kDa for rat and

human S-COMT (Bertocci et al. 1991; Lundström et al. 1991; Ulmanen and Lundström 1991;

Tilgmann et al. 1992). These values, as well as other properties, correspond well to the enzymes

isolated from the natural tissues. With respect to the reported difference between species, the

amino acid sequence of S-COMT shares 80 % similarity between rat and man (Lundström et al.

1991) and pigs and humans have 83 % identity as deduced by a partial amino acid sequence

interpreted from cDNA (Bertocci et al. 1991). These recombinant COMT proteins have also

been used for the crystallization studies (Vidgren et al. 1994).

3.2. COMT activity

3.2.1. Reaction mechanism and kinetics of COMT

Endogenous substrates of COMT include the catecholamine neurotransmitters, i.e.

dopamine, noradrenaline and adrenaline, the amino acid L-DOPA and also catecholestrogens.

Several exogenous substances and drugs such as benserazide, carbidopa, dobutamine,

fenoldopam, isoprenaline, α-methyldopa, rimiterol (Guldberg and Marsden 1975; Männistö et

al. 1992b; Kaakkola et al. 1994) and vitamin C (Kern and Bernards 1997) are also metabolized

by COMT.

Reaction mechanism. Based on the three-dimensional structure of the active site

of COMT, a shallow groove binds SAM, Mg2+ and molecules with a catechol structure (Vidgren

et al. 1994). Inclusion of an electron-withdrawing group in position 5 of the catechol ring

increases the affinity (Taskinen et al. 1989). If the substitution in position 5 is a nitro group, the

ligand is not likely to be methylated (only tolcapone is O-methylated and even then only by

about 3 %) (Funaki et al. 1994) and is very slowly released. This makes nitrocatechol molecules
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very potent as COMT inhibitors. The side chain also affects the affinity. Modeling of the atomic

structure has shown that the side chain affects the orientation of the molecule to the active site

(Lotta et al. 1995; Vidgren and Ovaska 1997). Apolar and planar substituents in side chain, as in

catecholestrogens, have a high affinity since they apparently bind also well to the hydrophobic

part adjacent to the active site.

Preliminary kinetic studies with partially purified enzyme preparations have

suggested many different reaction mechanisms including rapid equilibrium random-order

(Coward and Wu 1973), ping-pong (Borchardt 1973) and sequentially ordered (Rivett and Roth

1982; Tunnicliff and Ngo 1983) reaction mechanisms. Also, a rapid equilibrium binding of Mg2+

before SAM and the substrate has been proposed (Jeffery and Roth 1987). However, in the

active site of COMT, SAM is bound deeper than Mg2+ and the substrate in the hydrophobic

pocket (Vidgren et al. 1994). Kinetic analysis with recombinant COMT enzymes have supported

a sequential order reaction mechanism, i.e. SAM binds first to the enzyme then Mg2+ before the

substrate is bound. The release of the molecules follows in the reverse order (Lotta et al. 1995).

The reaction mechanism should be the same for both COMT isoforms.

Kinetics. MB-COMT has a higher affinity but lower O-methylation capacity for

the catecholamines than S-COMT. The Km values for the substrates are at least one order of

magnitude higher for S-COMT than those for MB-COMT. For example, the Km values for

dopamine are 3.6 µM and 3.3 µM for the rat and human brain MB-COMT, respectively, while

the corresponding Km values for dopamine are 1000 µM and 280 µM for the rat and human

brain S-COMT (Rivett et al. 1982; Rivett et al. 1983a). The affinities of recombinant COMT

enzymes (15.1 µM and 207 µM for recombinant MB and S-COMT, respectively) are similar to

the natural enzymes (Lotta et al. 1995). A widely used exogenic substrate, 3,4-dihydroxybenzoic

acid (DHBAc), has similar Km values, i.e. 30.0 µM and 38.9 µM for MB-COMT and S-COMT,

respectively, with recombinant enzymes (Lotta et al. 1995).

There are more than ten fold difference in Vmax values of natural catecholamines

between MB-COMT and S-COMT. Usually, the COMT reaction is performed with substrate

concentrations that saturate S-COMT. Thus, the importance of S-COMT on catecholamine

metabolism is overestimated when the relative amount of O-methylation by different forms of

COMT or by different preparations are predicted (Roth 1992). At lower, more physiologic

substrate concentrations, the metabolism through MB-COMT increases due to its high affinity

for the substrates. Based on in vitro kinetic modeling, at 50 µM concentration of dopamine,

monoamine oxidase (MAO) metabolizes 75 %, whrereas MB-COMT and S-COMT both

account for 10 % of dopamine metabolism in a human brain homogenate but at lower
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concentrations the importance of MB-COMT in relative to other enzymes is emphasized. (Rivett

et al. 1982). Rat striatal homogenate has been proposed to contain about 65 µM dopamine

concentration (Männistö et al. 1992b; Kaakkola et al. 1994). Due to the high level of vesicular

dopamine, only a minor fraction is apparently metabolized.

The importance of MB-COMT is also apparent when whole cells or tissue blocks

have been used as an enzyme source at low substrate concentrations (Trendelenburg 1986,

1990). Extracellular concentrations of the substrates which are believed to saturate half of

COMT activity are in the low micromolar range, below the saturating concentrations of uptake

mechanisms (Guimaraes and Trendelenburg 1985; Trendelenburg 1986, 1990). For example, in

cerebral cortex slices, the half saturating outside concentration (HSOC) of COMT for dopamine

is 1.75 µM (Wilson et al. 1988). In lung perfusates, also lower HSOCs have been detected, i.e.

9.8 nM and 19.4 nM for noradrenaline and adrenaline, respectively (Bryan-Lluka 1994).

Another fact which must be considered, is the use of Vmax values obtained from

kinetic analyses. Usually the Vmax values are expressed in terms of the amount of preparation

(tissue weight or protein concentration) while the Vmax values actually reflect the purity of the

enzyme preparation (Männistö et al. 1992b) and the amount of enzyme in the analysis is not

known. In some studies with COMT, this has been calculated by analyzing the molar

concentration of COMT with tight-binding inhibitors in kinetic determinations (Schultz and

Nissinen 1989; Lotta et al. 1995; Borges et al. 1997; Vieira-Coelho and Soares-da-Silva 1999).

Solubilization of MB-COMT with detergents seems to affect the kinetic values of

COMT (Jeffery and Roth 1984). However, the proposed change in the properties so that it would

resemble S-COMT has not been confirmed (Bonifacio et al. 1998).

Regioselectivity. COMT O-methylates either of the hydroxyl groups of the

catechol containing molecule. The ratio of O-methylation of meta (3-) position and para (4-) site

of the catechol ring (meta/para ratio) could be calculated from in vitro results (Creveling et al.

1970). These values are higher with MB-COMT than S-COMT. With rat brain COMT,

dopamine has a meta/para ratio of 61.0 and 4.7 for MB-COMT and S-COMT, respectively

(Nissinen 1984b). For DHBAc, these corresponding values are 23.7 and 5.1 for MB-COMT and

S-COMT. The meta/para ratio is dependent on substrate and reaction conditions, for example

being higher with lower concentrations of the substrates (Nissinen 1984b). Para-methylation is

hardly ever found in vivo (Takahashi et al. 1978).

3.2.2. COMT activity analysis in vitro

COMT activity analyses have been made in vitro from purified enzymes, tissue

homogenates, cells, tissue blocks and ex vivo from tissue samples after a pharmacological
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treatment by incubation with a substrate (and possibly with additional Mg2+ and SAM). In most

in vitro cases, COMT activity has been estimated from the amount of COMT derived

metabolites after termination of the enzymatic reaction.

Earliest methods. COMT activity was originally analyzed by the decrease of the

amount of substrate or formation of reaction product by native fluorescence (Axelrod and

Tomchick 1958; Axelrod 1962). Later this fluorometric method was modified by improved

derivatization and extraction of the products (Lin and Narasimhachari 1974; Okada et al. 1981).

Early assay methods also included the analysis of the reaction product spectrophotometrically in

the visible (Herblin 1973; Bade et al. 1974) or UV (Coward and Wu 1973; Borchardt 1974)

wavelengths. A pulse polarographic method, a reaction product analysis with carbon paste

electrode, was also introduced (Sternson et al. 1976). Gas chromatography has also been utilized

in COMT activity analysis (Lin and Narasimhachari 1974; Koh et al. 1991). Radiochemical

methods with several variations have also been used extensively. Originally, a radioactive

substrate was incubated with the tissue and the isolated radioactive products were measured

(Axelrod and Tomchick 1958). Subsequently the analysis performance improved with the use of

labelled cofactor ([14C]-SAM) (McCaman 1965; Parvez and Parvez 1972, 1973; Bade et al.

1974; Jonas and Gehrson 1974) which enabled the use of many kinds of substrates and better

conditions to extract the labeled reaction product. The sensitivity and simplicity of radioactivity-

based COMT activity analysis was additionally improved by the use of [3H]-SAM (Gulliver and

Tipton 1978). Later methods enabled the analysis of products from the reaction tube without

requiring any separation methods other than the addition of scintillation fluid (Zürcher and

DaPrada 1982).

HPLC methods. In the late 1970's, HPLC techniques were introduced to separate

the reaction products to take advantage of the high specificity of this technique in COMT

activity analysis. The reaction products, separated with ion exchange (Borchardt et al. 1978),

normal-phase (Nohta et al. 1984) or reversed-phase (Pennings and Van Kempen 1979) columns,

have been detected by fluorometric (Pennings and Van Kempen 1979; Smit et al. 1990),

fluorescence (Zaitsu et al. 1981; Nohta et al. 1984, 1986), electrochemical (amperometric)

(Borchardt et al. 1978; Shoup et al. 1980; Koh et al. 1981; Nissinen and Männistö 1984;

Ishimitsu et al. 1985; Schultz et al. 1989) and radiochemical (Nissinen 1985) detectors.

Modern methods. Table 1. shows some examples of the methods that have been

used in the analysis of COMT activity. HPLC methods and radiochemical assays with a variety

of substrates are most commonly used. The endogenous catecholamines are good substrates for



15

COMT. However, in some cases they need to be protected from deamination with MAO

inhibitors. DHBAlc (alcohol), DHBAld (aldehyde), DHBAc (acid) (Koh et al. 1991) and a

fluorogenic substrate DNT (2-(3,4-dihydroxyphenyl)-naphtho-[1,2-d]thiazole) (Nohta et al.

1984) are exogenous substrates which are not usually further metabolized under normal reaction

conditions. The determination of meta/para ratio could be used to estimate the presence of each

form of COMT in the sample preparation and, with the exception when catechol is used as the

substrate, it is available with most of COMT analysis methods.

 Handling of the samples after enzyme reaction increases the number of steps

where the variation can be introduced into the analysis results. Usually, the reaction products are

separated from proteins by centrifugation after addition of concentrated acid, which also protects

the reaction products from oxidation. In most uncomplicated radiochemical assays, the

scintillation liquid is added directly to the reaction tubes. For the gas chromatographic analyses

and usually with fluorometric assays, derivatization of the products is needed. However, the

present HPLC methods are usually quite simple and quick to perform (Table 1).

High sensitivity enables the use of low amounts of enzyme preparation or low

substrate concentrations. The most sensitive analysis (0.04 pmol/20 µl injection) seems to be the

HPLC separation with the use of radioactive substrates (Nissinen 1985). For the radiochemical

assay (Zürcher and DaPrada 1982), no comparable value for sensitivity was given, but obviously

picomolar concentrations of the reaction products could be analyzed. Also, HPLC linked to

fluorescence detection is very sensitive, but requires the synthesis of a fluorogenic substrate

(Nohta et al. 1984). With the HPLC-UV system, a more sensitive method utilizing 5,6-

dihydroxyindole-2-carboxylic acid with a detection limit of 0.5 pmol/20 µl injection has been

presented (Smit et al. 1990). The electrochemical detection systems are also sensitive and

suitable for COMT analysis (Table 1).
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Table 1. Examples of the different modern methods available for the analysis of COMT activity

Principle Substrate Products Handling Detection                 Reference
(concentration) limit

______________________________________________________________________________________________________________________
Gas chromato- DHBAlc VAlc-TFA, extraction,   20 pmol/5 µl             Koh et al. 1991
graphic   IVAlc-TFA   evaporation,

DHBAld Van-TFA,    derivatization
  Ivan-TFA

DHBAc VA-CH3-TFA,
(1-2 mM)   IVA-CH3-TFA

Radio- Catechol (2.7 mM) 3H-guaiacol add scintil-    ?                              Zürcher and DaPrada
chemical  + 3H-SAM       lation liquid                                 1982

HPLC-UV DHBAc (250 µM) VA, IVA precipitation  20 pmol/20 µl            Smit et al. 1990

HPLC-Fluorescence DNT (20 µM) m-MNT, extraction   0.05 pmol/20 µl         Nohta et al. 1984
  p-MNT

HPLC-Radio- DHBAc (10-40 µM)  3H-VA, precipitation  0.45 pmol/20 µl          Nissinen 1984
chemical    + 3H-SAM    3H-IVA

14C-DA (10-200 µM)  14C-3-MT, 0.04 pmol/20 µl
   14C-4-MT

HPLC-Electro- DHBAm 3-MB, precipitation 1.0 pmol/20 µl           Nissinen and Männistö
chemical   4-MB                                 1984

DHBAc VA, IVA                                 Schultz et al., 1989
(400 µM)

HPLC-Electro- Adrenaline MN precipitation 0.35-0.5 pmol/20 µl    Vieira-Coelho and
chemical (5-500 µM)                                               Soares-Da-Silva 1996
______________________________________________________________________________________________________________________
For abbreviations, see list of Abbreviations.
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Due to differences in COMT enzyme sources, substrates, reaction conditions and

polymorphism of S-COMT, the activity results vary between different reports. In addition to

evaluate the precision and accuracy of the analysis, a validation of all its steps, as has been done

with erythrocyte COMT assay (Tuomainen et al. 1996), can identify the possible sources of

error.

COMT activity analysis is the most sensitive method to study the presence of

COMT in a tissue. In addition, in some cases the activity of both isoforms could be analyzed

from the same tissue homogenate or subcellular fractions (Rivett et al. 1982).

3.3. Distribution of COMT

COMT is found in invertebrates and vertebrates (Guldberg and Marsden 1975). In

mammals, COMT is distributed in a variety of tissues (Guldberg and Marsden 1975; Roth 1992)

which is related to their ability to metabolize the catecholamine neurotransmitters and

catecholestrogens as well as xenobiotic compounds.

In catecholamine metabolic pathways, COMT and MAO are the primary enzymes.

For example, the major route of dopamine metabolism is first the formation of 3,4-

dihydroxyphenylacetic acid (DOPAC) which is further metabolized to homovanillic acid (HVA)

(Fig. 2). A minor route is the O-methylation of dopamine to 3-methoxytyramine (3-MT) by

COMT. MAO then metabolizes 3-MT to HVA. With certain limitations, 3-MT could be used as

a marker of dopamine release (Wood and Altar 1988; Männistö et al. 1992b).

Figure 2. Biosynthesis and metabolism of dopamine. Tyrosine is obtained from dietary proteins.
Additional metabolic routes include conjugation reactions and formation of noradrenaline and
adrenaline from dopamine. For abbreviations see list of Abbreviations.
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COMT activity becomes detectable at 13-15 days of gestation in cells collected

from fetal rat brain (Fiszman et al. 1991) and the COMT mRNA is seen on prenatal day 18 in rat

kidney (Meister et al. 1993). Thus, COMT seems to have importance already in fetal tissues.

After birth, COMT activity is generally increased in various mammalian tissues during growth

(Broch 1973; Parvez and Parvez 1973; Goldstein et al. 1980). In aggregate cultures, which

contain all types of brain cells, specific COMT activity is also increased similarly as in mouse

brain (Seeds 1975). During aging, rat kidney and liver COMT activities have been suggested to

decrease (Vieira-Coelho and Soares-da-Silva 1996).

3.3.1. Peripheral COMT

Liver and kidney. The highest COMT activity has been found in liver and kidney.

The highest amount of S-COMT in the liver provides the highest O-methylating capacity in the

body (Ellingson et al. 1999). The liver is the most important site for the metabolism of

circulating catechol containing molecules (Kopin 1985; Männistö and Kaakkola 1999). In

addition to the high activity present in the small intestine (Nissinen et al. 1988b), dietary

catechols are also metabolized in the liver before they enter in the circulation.

In the kidney, COMT activity (Guldberg and Marsden 1975; Männistö et al.

1992b; Roth 1992; Kaakkola et al. 1994) is related to the local metabolism of dopamine.

Dopamine is synthetized from L-DOPA inside the kidney cells (Soares-da-Silva 1994). The

highest amounts of dopa decarboxylase (DDC) in the kidney are found in proximal tubular cells.

Dopamine is transported from these cells to other sites in the kidney to increase natriuresis via

dopamine receptor stimulation (Eklöf et al. 1997) emphasizing the important role of dopamine

in sodium homeostasis. Dopamine is preferentially metabolized by MAO (Soares-da-Silva 1994)

(Fig. 2) but also COMT inhibitors enhance the local actions of dopamine in the kidney (Hansell

et al. 1998). COMT mRNA (Meister et al. 1993) and protein (Kaplan et al. 1979; Karhunen et

al. 1994; Weisz et al. 1998) have been detected in proximal tubules, the thick ascending limb of

loop of Henle and the collecting duct. With respect to distribution within the kidney, the COMT

activity (apparently S-COMT) has been suggested to be higher in cortex than in medulla

(Goldstein et al. 1980).

Other sites. Other peripheral extraneuronal sites of COMT can also participate in

the metabolism of circulating or local catechols. Several organs, glands, muscle tissues, adipose

tissue, blood cells and other tissues contain COMT activity (Guldberg and Marsden 1975). In

addition, COMT activity has been detected in other tissues, e.g. small intestine (Nissinen et al.
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1988b), lymphocytes (Sladek-Chelgren and Weinshilboum 1981; Bidart et al. 1983),

mononuclear cells (Allen and Myers 1992), skin fibroblasts (Breakefield et al. 1981) and

melanocytes (Smit et al. 1990). Localization of COMT by immunohistochemical methods

(Kaplan et al. 1979; Karhunen et al. 1994) corresponds to activity results and have extended the

distribution, e.g. to tissue macrophages (Inoue and Creveling 1986; Inoue et al. 1991). Some of

these results have also been confirmed by protein (Tenhunen et al. 1993, 1994; Weisz et al.

1998) or mRNA (Tenhunen and Ulmanen 1993; Tenhunen et al. 1993, 1994) blotting

experiments from tissue homogenates.

The presence of peripheral neuronal COMT has been proposed. COMT protein is

found in dorsal root ganglion neurons (Karhunen et al. 1996) and COMT activity has been found

also in peripheral nerves (Axelrod et al. 1959; Jarrott 1971; Wooten and Coyle 1973) in addition

to cultured neuroblastoma cell lines (Blume et al. 1970). However, the major site for metabolism

by COMT is extraneuronal (Kopin 1985).

Catecholestrogens. COMT has a role in the metabolism of catecholestrogens,

which are 2- and 4-hydroxylated products of estrogens. In principle, competition with

catecholamines for the metabolism through COMT locally in tissues (e.g. breast, ovaries and

uterus) could be possible, as has been noticed in vitro (Ball et al. 1972). Catecholestrogens seem

to have importance at least in early pregnancy and in the initiation of some estrogen-dependent

tumours (Männistö et al. 1992b; Cavalieri et al. 1997; Weisz et al. 1998; Zhu and Conney 1998).

One mechanism could be the suggested regulation of COMT expression by estrogens (Xie et al.

1999). However, in animals, COMT inhibitors with a nitrocatechol structure have not been

shown to have any effect on fertility or to be carcinogenic at clinically relevant doses (CPMP

1998). Also, knockout mice without the COMT gene have been reported to be fertile and

apparently healthy (Gogos et al. 1998). The role of COMT and catecholestrogens in vitro and in

vivo has not been clarified (Männistö and Kaakkola 1999).

3.3.2. Central COMT

Regional distribution. In the brain, the main function of COMT is to metabolize

catecholamines which have escaped from neuronal reuptake after synaptic transmission. COMT

activity (Guldberg and Marsden 1975; Roth 1992), protein (Tenhunen and Ulmanen 1993;

Tenhunen et al. 1994) and mRNA (Tenhunen and Ulmanen 1993; Hong et al. 1998) are

distributed quite evenly between different parts of the brain. Also in glial cell cultures and

aggregating cultures, derived from different areas of the brain, the COMT activity did not differ
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greatly (Honegger and Richelson 1977; Hansson 1984). The highest amounts of COMT have

been found in cerebellum (Rivett et al. 1983b) and ependymal cells of the choroid plexus

(Kaplan et al. 1979; Karhunen et al. 1994; Kastner et al. 1994). In spinal cord, neuronal COMT

apparently metabolizes noradrenaline (Ekblom et al. 1993; Karhunen et al. 1996). COMT has

also been detected in the cells which form the blood brain barrier (Lai and Spector 1978;

Hardebo et al. 1980; Baranczyk-Kuzma et al. 1986; Spatz et al. 1986). These cells prevent the

passage of catecholamines from the blood into the brain.

The mRNA levels of S-COMT and MB-COMT correlate poorly with the amounts

of COMT isoform in brain tissue due to translation of S-COMT from the longer mRNA of

COMT. Based on protein blotting data in humans and rats, the amount of MB-COMT is 70 %

and 30 %, respectively, of total COMT protein (Tenhunen et al. 1994). However, no

approximations of the amount of COMT protein compared to total proteins in the brain have

been made.

Cellular localization. Immunohistochemical studies (Kaplan et al. 1979;

Karhunen et al. 1995b) have indicated that COMT resides predominantly in glial cells while in

neurons COMT is missing or present only at low amounts. COMT activity has also been

detected in vitro in cultured glial cells, such as primary cultures of astrocytes (Pelton et al. 1981;

Hansson 1984) and cell lines such as  astrocytomas (Silberstein et al. 1972). In the striatum, the

presence of COMT in neurons has been supported by studies with cell-specific toxins.

Postsynaptic lesioning with kainic acid decrease the activity of MB-COMT in some studies,

while S-COMT activity has been found to increase during the proliferation of astroglial cells

(Rivett et al. 1983a; Kaakkola et al. 1987). Kainic acid treatment decreased the amount of 3-MT

(Naudon et al. 1992) and increased the reduced HVA levels following the elevated DOPAC

concentration in microdialysis experiments (Tokunaga and Ishikawa 1992). These results

indicated that 3-MT is formed by MB-COMT in postsynaptic neurons and confirmed the

presence of S-COMT in astroglia. The dopaminergic nigrostriatal cells do not seem to possess

presynaptical COMT activity (Kaakkola et al. 1987; Karhunen et al. 1995a). In primary cultures

of the brain cells (Karhunen et al. 1995b) and in brain tissue studied by immunoelectron

microscopy (Kastner et al. 1994; Karhunen et al. 1995a) the immunofluorescence of striatal

postsynaptic COMT has been detected. Also protein blotting studies of cultured brain cells have

revealed the presence of both isoforms of COMT at about equal amounts in neuronal cells but

higher levels of S-COMT than MB-COMT in glial cells (Karhunen et al. 1995b). However, the

actual activity data indicating the presence of brain neuronal COMT have not been
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demonstrated. Immunohistochemical studies also suggest the localization of COMT to

oligodendrocytes (Kaplan et al. 1979; Karhunen et al. 1995b). The present view of the cellular

localization of COMT in the striatum is presented in Fig. 3.

Figure 3. Simplified scheme of the striatal localization of COMT and MAO with respect to
dopamine metabolism. Presynaptic neurons arise from substantia nigra and the postsynaptic
neurons are intrastriatal neurons or striatal output neurons. The glial cells presumably contain
more S-COMT than MB-COMT whereas in postsynaptic neurons both COMT isoforms are
thought to be equally present. For abbreviations see list of Abbreviations.

3.3.3. Subcellular localization

S-COMT has been found as a soluble enzyme in the cytoplasm of the cells while

MB-COMT has been detected in plasma membrane or ER fractions in subcellular fractionation

studies in peripheral tissues (Aprille and Malamud 1975; Raxworthy et al. 1982; Head et al.

1985) and in brain (Broch and Fonnum 1972; Tilgmann et al. 1992). Also, mitochondrial

membranes could contain COMT (Grossman et al. 1985; Karhunen et al. 1995a). However,

newer results with transfected cells have demonstrated the absence of MB-COMT in plasma

membrane and the presence of S-COMT in nucleus (Ulmanen et al. 1997). Interestingly, the
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amount of S-COMT protein, as detected with immunohistochemistry and protein blotting, is

greatly increased in the nucleus in the hamster model of kidney cancer (Weisz et al. 1998).

3.4. COMT inhibitors

The earliest COMT inhibitors were quite nonspecific with low efficacy and rather

high toxicity (Guldberg and Marsden 1975). At present, molecules containing a 5-nitrocatechol

moiety, i.e. entacapone, nitecapone (Nissinen et al. 1988a), tolcapone and Ro 41-0960 (Zürcher

et al. 1990), have been widely studied and shown to be effective inhibitors at nanomolar

concentrations. The IC50 values, albeit uncomparable between different laboratories, of 2.2 - 160

nM for entacapone (Nissinen et al. 1992) and tolcapone (Zürcher et al. 1990) with liver and

brain COMT have been presented. Nitecapone, entacapone and tolcapone are all tight-binding

inhibitors of COMT (Schultz and Nissinen 1989; Lotta et al. 1995; Borges et al. 1997).

Entacapone is a peripherally active inhibitor while tolcapone is able to cross the blood brain

barrier to some extent (Männistö et al. 1992a). Entacapone and tolcapone are approximately

equipotent and equieffective in animal studies in vivo (Männistö et al. 1992b; Kaakkola et al.

1994) and in vitro (i.e. about equal Ki values, Lotta et al. 1995), although a contradictory report

has also been published (DeSanti et al. 1998). CGP 28014, a hydroxypyridine inhibitor of O-

methylation, has also been studied (Waldmeier et al. 1990). It behaves quite similarly as

tolcapone in vivo, but lacks any inhibitory action on COMT in vitro. Lately, also a

dihydroxyvinyl-type COMT inhibitor has been developed (Perez et al. 1993).

Tolcapone has been claimed to be more selective against MB-COMT at low doses

(Borges et al. 1997). When inhibition by tolcapone was tested with equal molar amounts of both

COMT isoforms in vitro, the potency, i.e. IC50 values, were equal (Vieira-Coelho and Soares-da-

Silva 1999) suggesting equal inhibition at the active site of both MB-COMT and S-COMT.

However, after oral administration of tolcapone, the inhibitory efficacy and potency ex vivo, i.e.

lower ED50 value, was higher with MB-COMT in similar reaction conditions. This suggests that

low doses of tolcapone inhibits primarily against MB-COMT (Vieira-Coelho and Soares-da-

Silva 1999).

Entacapone and tolcapone have been introduced to clinical use as adjuncts of drug

treatment (L-DOPA + decarboxylation inhibitor) in Parkinson's disease to increase the efficacy

and tolerability of L-DOPA (Männistö et al. 1992b; Kaakkola et al. 1994). At present,

entacapone is available for clinical use. In Parkinson's disease, the number of dopaminergic

neurons in substantia nigra is decreased. This leads to a decrease in dopamine levels in striatum

which provokes the typical symptoms seen in Parkinson's disease. The inhibition of COMT
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activity in the intestine, even exclusively (Nissinen et al. 1988a), and in liver prevents the

metabolism of L-DOPA (Nissinen et al. 1992; Zürcher et al. 1990) to 3-O-methyldopa. This

methylated metabolite may not simply be a drain on the L-DOPA dose, it may even be harmful

(Dingemanse 1997). The increase of the bioavailability of L-DOPA leads to better distribution in

the brain where L-DOPA is decarboxylated to dopamine. Therefore, the therapeutic response is

improved and the L-DOPA dose can be decreased to reduce the side-effects (Dingemanse 1997).
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4. AIMS OF THE STUDY

Although new data has been gathered of the localization of COMT, there are still

some discrepancies, especially with respect to the cellular localization of COMT in the brain.

Since the novel COMT inhibitors have now achieved clinical use, the properties of COMT still

need to be established for safety reasons. Also, other possible agents, i.e. consumed ethanol,

could have effects on COMT activity. Although the important role of dopamine in the regulation

of sodium homeostasis has been demonstrated, the effects on COMT activity in the kidney in

COMT inhibitor-induced natriuresis have not been sufficiently elucidated. The main aims of the

present study were to examine the distribution of COMT and the effects of certain agents on

COMT activity. In addition, the improvements in bioanalytics provide new possibilities to

develop or modify COMT assay methods. More detailed aims were:

1. to characterize a sensitive and reliable method to analyze COMT activity from

various enzyme sources, i.e. brain tissue homogenates and recombinant COMT

enzymes in vitro (I, II, III), in primary cultured glial and neuronal cells in vitro (IV)

and kidney homogenates ex vivo (V)

2. to examine the distribution of COMT utilizing a COMT activity analysis in

brain tissue after in vivo lesions with a drug (III), in vitro in a primary cultured glial

and neuronal cells obtained from various regions of the brain (IV) and in regions of

the kidney tissue in vitro (V)

3. to investigate the effect of ethanol on COMT activity in vitro by using the most

pure forms of COMT enzymes, the recombinant MB-COMT and S-COMT

enzymes (II)

4. to compare the efficacy and potency of COMT inhibitors in primary cultured

brain cells (IV)

5. to observe the consequences of COMT inhibition on COMT activity of dissected

kidney homogenates and compare the COMT inhibitor-induced natriuretic effect

with administration of dopamine precursor (V).
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5. MATERIALS AND METHODS

5.1. COMT enzyme sources (I-V)

With the exception of the kidney studies (V), Wistar rats (Han/Kuo, Institute of

Biomedicine, University of Helsinki) were used in the experiments (I-IV). The rats were housed

in 12 h light and dark cycles (lights on at 7 a.m.). Normal laboratory pellets and tap water were

available ad libitum. For the intrastriatal infusion studies (III) male rats weighing 200-250 g

were used, otherwise both genders were used. As recombinant COMT enzymes (II), a 100 000 x

g pellet from baculovirus-infected Sf9-cells (Tilgmann et al. 1992) and a lysate of E. coli

(Lundström et al. 1992) for MB-COMT and S-COMT, respectively, were used. The glial cell

cultures were obtained from one-week old (postnatal day 7, P7) rats and neuronal cultures from

fetuses at 15-16 gestational day (embryonal day 15-16, E15-E16) (IV). For the kidney studies

(V), regions of the kidneys and the whole brains were obtained from male WKY rats (265 ± 1.7

g, Möllergaard Breeding Center, Copenhagen, Denmark).

5.2. Methods

5.2.1. Handling of the COMT enzyme sources

The brains of the decapitated rats were cooled in liquid nitrogen, dissected and

stored at -80oC before enzyme analysis (I-III). The tissues were homogenized by sonication in 10

mM sodium phosphate or 3-(N-morpholino)-propanesulfonic acid (MOPS) buffer, pH 7.4,

containing 0.5 mM dithiothreitol (DTT) and centrifuged 900 x g for 10 min. Supernatant, which

contains both MB-COMT and S-COMT, was used as enzyme source. The two halves of the

whole brains and pieces of the kidneys from each side of the rat were sliced with razor blade

before homogenization (V). The suspension buffer for the MB-COMT pellet (II) contained

additional 5 mM MgCl2. Sucrose (0.32 M), occasionally included in homogenization buffer, did

not affect the enzyme activity.

5.2.2. COMT reaction and activity analysis

 The COMT reaction was based on a previous report (Nissinen and Männistö

1984) utilizing DHBAc as a substrate (Schultz et al. 1989) instead of dihydroxybenzylamine,

which needed purification before enzyme reaction (Nissinen and Männistö 1984). DHBAc

concentration (240 µM) used routinely in the COMT assay was 6 times higher than the Km for

MB-COMT and half-saturating for S-COMT preparations obtained from rat brain (Nissinen

1985). For calculational convenience, 200 µM concentration of DHBAc was used with

recombinant enzymes (II). Double the amount of enzyme preparation was used to detect lower
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amounts of COMT to be used in the other studies not presented here. Routinely, the enzyme

preparation (100 µl) was incubated for 30 min at 37oC with 100 mM sodium phosphate buffer,

pH 7.4, 5 mM MgCl2, 200 µM SAM and DHBAc as a substrate in 250 µl of total volume. After

incubation, the reaction was terminated with ice-cold perchloric acid (PCA, 4 M, 25 µl) and

centrifuged for 5530 x g at 4oC for 10 min. The supernatants were injected to HPLC for vanillic

acid (VA) and isovanillic acid (IVA) analysis. The kidney samples (V) and cell culture samples

(IV) were filtered through 0.45 µm polyvinyldifluoride (PVDF) filter (Millipore, Japan) before

HPLC analysis. Routinely, samples without enzyme and samples without substrate were run as

blanks. Reaction with kidney tissues was made at the same protein level as brain homogenates,

but due to the high activity, the reaction products were diluted (1:10-1:20) with homogenizing

buffer before HPLC analysis.

Aliquots (usually 10 µl) of the samples were injected (Waters 712 Wisp

autosampler with cooler) into a HPLC system which consisted of an isocratic pump (Waters

Model 6000 A or Waters 510, Waters Association, Millford, MA, USA) and a LiChrospher 100

RP-18 column (5 µm, 125 x 4 mm, I.D., Merck, Darmstadt, Germany) with precolumn. The

reaction products were detected with ESA coulometric detector 5100 A (gain 40 x 100, ESA

Inc., Bedford, MA, USA) with analytical cell 5011, potential set to +0.10 V (detector 1), -0.30 V

(detector 2) and a conditioning cell set to +0.40 V. The current response of detector 2 was

recorded with a Hewlett Packard 3396 Series II integrator (Palo Alto, CA, USA). The mobile

phase, 0.1 M Na2HPO4, pH 3.2, 0.15 mM EDTA and 15 % (vol/vol) methanol, was used at 1.0

ml/min flow rate.

5.2.3. Other biochemical analyses

Protein concentration. The protein content was analysed spectrophotometrically

(Ultrospec III, Pharmacia LKB Biotechnology, Uppsala, Sweden) using the Bradford method

(Bradford 1976) and bovine serum albumin (BSA) as a standard.

MAO B. MAO B activity (deamination of benzylamine to benzaldehyde) was used

as a marker for astroglia (III) (Francis et al. 1985). The reaction was started by incubating 50 µl

of the enzyme preparation with 140 mM sodium phosphate buffer, pH 7.2, and 200 µM

benzylamine in total volume of 250 µl for 30 min at 37oC as described earlier (Nissinen 1984a).

After addition of 4 M PCA (25 µl) and centrifugation the supernatant was analyzed with RP-

HPLC (Hewlett-Packard 1084 B) equipped with LiChroCART 125-4 column (5 µm x 4 mm ID,

Merck, Darmstadt, Germany). The reaction product benzaldehyde was detected with a variable
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UV-detector at 245 nm built-in the HPLC system. The mobile phase was 50 mM Na2HPO4, pH

3.2, 1 mM heptanesulphonic acid and 40 % (vol/vol) methanol with a 1.2 ml/min flow rate. The

limit of detection was 6 pmol/30 µl injection, the intra-assay and interassay variation was less

than 15 % and less than 10 %, respectively.

TH. Tyrosine hydroxylase (TH) activity (hydroxylation of tyrosine to L-DOPA)

was used as a marker for dopaminergic neurons (III). The enzyme reaction was based on a

previous report (Naoi et al. 1988). The enzyme preparation (20 µl) was incubated with 100 mM

sodium acetate buffer, pH 6.0, 10 mM (NH4)2Fe(SO4), 1 mM dl-6-methyl-5,6,7,8-

tetrahydropteridine and 100 µM tyrosine in 250 µl of total volume for 10 min at 37oC. After

addition of 4 M PCA (25 µl) and centrifugation, the reaction product L-DOPA was analyzed

with the same RP-HPLC system as MAO B utilizing fluorescence spectrometer (Model LS-5,

Perkin Elmer Ltd., Buckinghamshire, UK) at 281 nm excitation and 314 nm emission

wavelength (Mandai et al. 1992). The mobile phase was 0.1 M H3PO4, pH 3.00, 20 mM citric

acid, 0.15 mM Na2EDTA, 1 mM octanesulphonic acid and 10 % (vol/vol) methanol with flow

rate of 1.0 ml/min. The limit of detection was 6 pmol/30 µl injection, the intra-assay and

interassay variation was less than 15 % and less than 20 %, respectively.

ALK-PDE. Alkaline phosphodiesterase I (alk-PDE) activity (formation of p-

nitrophenol from p-nitrophenyl-thymidine-5'-phosphate) was used as a marker for

macrophages/microglia (Morahan et al. 1980). The enzyme reaction was based on a previous

report (Storrie and Madden 1990). The enzyme preparation (35 µl) was incubated with 200 mM

Tris-HCl buffer, pH 9.0, 20 mM MgCl2, and 5 mM p-nitrophenyl-thymidine-5'-phosphate in a

total volume of 250 µl. After 10 min at 37oC, 0.5 M glycine-Na2CO3 was added (700 µl) and the

reaction product p-nitrophenol was analyzed spectrophotometrically (Ultrospec III, Pharmacia

LKB Biotechnology, Uppsala, Sweden).

5.2.4. Validation of the HPLC analysis of COMT reaction products (I)

The specificity, linearity, limit of detection, limit of determination, precision and

accuracy for the determination of the reaction products were performed. For the enzyme

reaction, the effects of protein concentration for the brain tissue and incubation time for the MB-

COMT preparation were analyzed.

5.2.5. The effect of ethanol on COMT activity in vitro (II)
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Ethanol (25-1000 mM) was incubated without preincubation with recombinant

MB-COMT and S-COMT preparations and also in striatal homogenates. The effect of 1000 mM

ethanol on the kinetic values (Km and Vmax) were determined with recombinant MB-COMT and

S-COMT enzymes at DHBAc concentrations of 12.5-300 µM and 25-500 µM for recombinant

MB-COMT and S-COMT, respectively.

5.2.6. Intrastriatal stereotaxic infusion (III)

The rats were anesthetized with chloral hydrate (350 mg/kg, i.p., 1.0 ml/kg) and

placed in a David Kopf stereotaxic apparatus. Through a burr hole, an injection needle was

lowered in the brain through a guide cannula to the final coordinates of +0.7 anterioposterior,

±3.0 lateral and -5.5 dorsoventral from bregma (Paxinos and Watson 1982). One or two µl of

DL-fluorocitrate (right side of the striatum) and vehicle (left side) were infused bilaterally. After

one, two or three days, COMT, MAO B, TH and alk-PDE activities were analyzed from the

striatal homogenates. Immunohistochemical stainings with COMT, glial fibrillary acidic protein

(GFAP, astroglial marker), TH (dopaminergic neuron marker) antiserums and OX-42 antibody

(microglial marker) were carried out on days one and three.

5.2.7. Cell cultures and COMT enzyme reaction (IV)

The cultures were prepared as described previously (McMillian et al. 1997). The

brain regions of P7 or E15-E16 rats were dissected and the cells were dissociated at ambient

temperature by trituration in a Ca2+-Mg2+ free buffer (145 mM NaCl, 5.4 mM KCl, 1 mM

NaH2PO4, 11.2 mM glucose and 15 mM N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic

acid) [HEPES] buffer pH 7.4 containing 133 U/ml penicillin and 133 µg/ml streptomycin). The

cells, collected by centrifugation, were suspended in Dulbecco's modified Eagle's medium

(DMEM)/F12 medium containing 10 % fetal calf serum (FCS), 0.12 % NaHCO3, 100 U/ml

penicillin, 20 µg/ml streptomycin, 71.3 µg/ml amikasin and phenol red. The cells were plated on

24-well cell culture plates (Greiner, Germany). The glial cells alone were grown for 35-41 days

and the microglia were removed by shaking for 4 h before COMT assay. For neuron-enriched

cultures, the culture wells were coated with polylysine (100 µg/ml) before plating at 100 000

neurons per well. The neuronal cultures were grown for 1 or 6-7 days or 7 days when plated on

top of striatal or hypothalamic glial cells which were grown for 18-30 days. The growing media

were changed weekly.
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For the analysis of COMT activity, an artificial cerebrospinal fluid buffer (CSF)

(Törnwall et al. 1994) was used. This Krebs-Ringer buffer contained 147 mM Na+, 3.5 mM K+,

1.0 mM Ca2+, 1.2 mM Mg2+, 129 mM Cl-, 1.0 mM PO4
3- and 25 mM HCO3- supplemented with

1.25 g/l glucose and gassed with O2/CO2 (95%/5%) to pH 7.4. Based on pilot studies, the

reaction conditions (60 min incubation at 37oC) and 400 µM substrate concentration were

estimated to produce adequate COMT activity levels. Since 10 min preincubation of nitecapone

in tissue homogenates produced a sufficient inhibitory effect (Schultz and Nissinen 1989), a 15

min preincubation time was chosen. The cells were washed twice with Krebs-Ringer buffer and

preincubated with entacapone, tolcapone or CGP 28014. The substrate was added and after

incubation the plates were moved on ice and the media were collected. To 200 µl sample of the

medium, 20 µl of 4 M PCA was added and the sample was treated as with COMT enzyme

reaction sample. The cells were scraped and collected with a plastic pipette in Krebs-Ringer

buffer for protein analysis.

5.2.8. Immunohistochemistry (III, IV)

For the tissue immunohistochemical studies (III), anesthetized (sodium

pentobarbital 45 mg/kg, i.p.) rats were perfused with 4 % paraformaldehyde (250 ml) and

postfixed. Ten µm sections were air-dried and washed with phosphate bufferd saline (PBS). The

specimens were incubated with non-immune swine serum before addition of the primary

antibody against COMT (1:200 dilution), OX-42 (Graeber et al. 1989) (1:100), GFAP (1:50) or

TH. After overnight incubation at 4oC, the specimens were incubated with secondary antibody

(1:200 dilution) conjugated with rhodamine or fluorescein and examined with fluorescence

microscope (Leitz Aristoplan).

Specimens of the cell cultures were plated on polylysine coated glass cover slips

and grown on cell culture dishes analogously as cell cultures (III). The cultures on cover slips

were fixed with 4 % paraformaldehyde in 100 mM PBS, pH 7.4, for 15 min at room

temperature. The cover slips were rinsed and permeabilized with 0.1 % Triton X-100 in PBS and

incubated with 5 % normal horse serum. After overnight incubation at 4oC with the primary

antibody against GFAP (undiluted) or neuron specific enolase (NSE, 1:50), the secondary

antibody (biotinylated rabbit anti-mouse IgG, 1:250 dilution) was added. After 1 h incubation

with avidin-biotin-peroxidase complex, the slips were inverted on a drop of glycero-Na-veronal

mixture on an object glass, and examined with a Leica DMLS microscope.

5.2.9. Effect of entacapone on kidney COMT activity and function (V)
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For the distribution of COMT in kidney regions (cortex, outer medulla and papilla)

COMT activity was analyzed ex vivo with or without entacapone treatment after 2 h and 3 h. The

maximal natriuretic effect has been reached within 2 h after 30 mg/kg (i.p) entacapone dose

(Hansell et al. 1998) and the inhibition of COMT activity has been suggested to last for 3-4 h

after the same dose of nitecapone (administered by gavage) (Eklöf et al. 1997). To assess the

possible role of brain COMT on natriuretic effect, the whole brain COMT activity was measured

1 h and 3 h after entacapone treatment. For the effects of dopamine on kidney function (Hansell

et al. 1998) anesthetized rats were given 1) vehicle, 2) entacapone (30 mg/kg, i.p.), 3)

entacapone + SCH23390 (30 µg/kg/h, i.v.) 4) entacapone + sulpiride (300 µg/kg/h, i.v.) , 5) L-

DOPA (60 µg/kg/h, i.v.) and 6) L-DOPA + SCH23390. The urinary concentration of sodium,

dopamine and DOPAC were analyzed. Mean arterial pressure (MAP), glomerular filtration

(GFR) and renal plasma flow were also measured (V).

5.3. Reagents

Ethanol was from Alko Ltd. (Helsinki, Finland). Fluorocitrate, purchased from

Sigma (St. Louis, MO, USA), was prepared as described earlier (Paulsen et al. 1987).

Entacapone (OR-611, N,N-diethyl-2-cyano-3-(3,4-dihydroxy-5-nitrophenyl) acrylamide),

tolcapone (Ro 40-7592, 3,4-dihydroxy-4'-methyl-5-nitrobenzophenone), CGP 28014 (N-(2-

pyridone-6-yl)-N',N'-di-n-propylformamidine), a gift from Orion Pharma (Espoo, Finland), were

dissolved in a small amount of dimethylsulfoxide (DMSO) and diluted with water.

Thiobutabarbital (5-ethyl-(1-methyl-propyl)-2-thio-barbiturate sodium, InactinR) was from

Research Biochemicals International (Natick, MA, USA), [3H]methoxyinulin and 4-

aminohippuric acid (PAH) were obtained from Merck (Darmstadt, Germany). SCH23390 was

purchased from Schering Corp. (Kenilworth, NJ, USA) and sulpiride from Ravizza (Milano,

Italy). S-adenosyl-l-methionine iodide (SAM), 3,4-dihydroxybenzoic acid (DHBAc), vanillic

acid (3-methoxy-4-hydroxybenzoic acid), isovanillic acid (4-methoxy-3-hydroxybenzoic acid),

tyrosine and L-DOPA were from Sigma. Ultrapure reagent-grade water was obtained with a

Milli-Q system (Millipore/Waters, Millford, MA, USA). Solvents (methanol) were HPLC-grade

(Rathburn, Walkenburg, UK) and other HPLC chemicals were analytical-grade (Merck).

DMEM/F12 medium, HEPES and additives in cell cultures were purchased from Sigma. FCS

was from Boehringer Mannheim Biochemicals (Germany). OX-42 monoclonal antibody was

obtained from Pharmingen (San Diego, CA, USA). Neuron specific enolase (NSE) was from

Chemicon (Temecula, CA, USA), rabbit antimouse IgG was obtained from Vector.

Benzaldehyde and benzylamine were from Fluka Chemie AG (Buchs, Switzerland).
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5.4. Calibration and calculation

For each HPLC run, the method was calibrated with 7-8 calibration samples

(COMT: 0.01-2.0 µM VA and IVA, MAO B: 0.2-50 µM benzaldehyde and TH: 0.2-50 µM L-

DOPA). By using the calibration curve, obtained from linear regression of the peak heights of

the calibration samples, the concentrations of the samples were calculated from the peak-height

values of the samples (Quattro Pro, Borland International, Scott Valley, CA, USA).

5.5. Statistical analysis

The effects of ethanol (0-1000 mM) (II) or drugs (IV, V) were analyzed with one-

way analysis of variance (ANOVA) followed by Tukey's test. Enzyme kinetic comparisons (II)

and the effect of fluorocitrate treatment (III) were calculated with paired t-test (Systat Intelligent

Software, Systat Inc., Evanston, IL, USA). Kinetic values (Km and Vmax) were computed using

statistically weighed estimates with bilinear regression (Wilkinson 1961).
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6. RESULTS

6.1. COMT activity analysis (I-V)

Vanillic and isovanillic acid were separated well with RP-HPLC using coulometric

detection and no interfering peaks were seen. Due our excellent detection capabilities, both

reaction products could be seen at low substrate concentrations (Fig. 4). Reproducibility of the

analysis was tested for the reaction products. A summary of the characteristics is presented in

Table 2. Compared to earlier method utilizing amperometric detection (Nissinen and Männistö

1984), the limit of detection was 10 times lower with only half of the injection volume. In the

studied concentration range, the reaction product analysis was linear with less than 10 %

variation in precision and accuracy. The precision of the analysis decreased when the same

sample was analyzed on subsequent days and additionally when the reaction was made from the

same homogenate pool and finally the lowest precision (RSD 37.8 %) was seen when different

tissue samples were analyzed. The meta/para ratio calculated for the striatal homogenates was

6.3 (I) and 8.6 (II) suggesting preferential metabolism through S-COMT rather than MB-COMT

since at the same reaction conditions the meta/para ratio was closer to that obtained with

recombinant S-COMT than that of recombinant MB-COMT (II). In the WKY rats used in the

kidney experiments (V) the specific

Figure 4. Chromatograms of A) 0.1 pmol calibration sample (10 µl injection), reaction products
obtained from B) recombinant MB-COMT (5 µl injection) and C) recombinant MB-COMT
assayed with 1000 mM concentration of ethanol (10 µl injection). The substrate (DHBAc)
concentration was 12.5 µM. Peaks: 1=vanillic acid and 2=isovanillic acid. The bar at y-axis
denotes 10 nA.
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Table 2. Summary of the validation of COMT activity analysis by reversed phase high-
performance liquid chromatography with coulometric detection (I). The results are mean ± SD.
_____________________________________________________________________________

Vanillic acid Isovanillic acid (n)

_____________________________________________________________________________

Limit of detection       0.1 pmol/10 µl 0.1 pmol/10

Linearity:    (13)

   Slope       0.00945 ± 0.0032  0.00716 ± 0.0025

   Y-intercept       0.00206 ± 0.0090  0.00246 ± 0.0063

Range       0.5 - 20 pmol/10 µl  0.5 - 20 pmol/10 µl

Limit of quantitation       0.5 pmol/10 µl  0.5 pmol/10 µl

Precision       0.28 - 6.6 %  0.58 - 9.9 % (9-14)

Accuracy       -0.47 - 2.9 % -0.92 - 2.0 % (10-14)

Within-day: (5-8)

   Precision       0.65 %  2.8 %

   Accuracy       6.7 %  5.68 %

Between-day-precision:

   Recombinant MB-COMT     10.4 % 14.9 % (14)

   Striatal sample        1.62 %   2.93 % (8)

   Striatal tissue pool       10.7 %  9.4 % (4)

   Striatal tissues       45.8 ± 17.3a  6.26 ± 2.90a (7)

_____________________________________________________________________________
a pmol/min/mg

 COMT activity in the whole brains was 8.52 ± 0.15 pmol/min/mg, which is about one fifth of

that in striatal homogenates of the Wistar rats used in other studies (I-III). The brain and kidney

specific COMT activities were lower than those of isolated S-COMT but higher than MB-

COMT. For example, the specific activites of 86.6 pmol/min/mg protein and 16.5 pmol/min/mg

protein for rat brain S-COMT and MB-COMT have been reported (Nissinen 1985). This was

apparently due to the use of the lower substrate concentration and unpurified the COMT enzyme

preparation. Meta/para ratios were about 2.5.

Kinetics. Kinetic values for the formation of vanillic acid were determined for the

recombinant MB-COMT and S-COMT enzymes (II). Apparent Km values were 27.2 ± 1.4 µM
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and 136 ± 11 µM for recombinant MB-COMT and S-COMT, respectively. The corresponding

Vmax values, expressed as µM product formed in 30 min, were 1.8 ± 0.2 and 4.6 ± 1.4. These

values agree well with the fact that recombinant MB-COMT has a higher affinity but lower

methylation capacity than recombinant S-COMT. The meta/para ratios decreased non-

significantly with recombinant MB-COMT from 19 to 13 with increasing substrate

concentrations (12.5-300 µM of DHBAc concentration) and remained the same with

recombinant S-COMT (from 5.2 to 5.5 with 25-500 µM of DHBAc concentration).

Cell cultures. The analysis of the COMT reaction products from cell culture

studies (IV) was performed in a similar way. Artificial CSF with glucose supplement was used

since the cell culture media produced background in the chromatograms. The COMT inhibitors

did not interfere with the detection system. The reaction with increasing concentrations (12.5-

400 uM) of DHBAc was in most cases linear with glial and cocultures (data not shown).

Generally, the production of isovanillic acid was below the detection limit and could not be

analyzed. A few meta/para ratios suggested a high value (more than 20) which could indicate

that most of the metabolism was carried out by MB-COMT compared to S-COMT.

6.2. Distribution of COMT (III-V)

Lesion studies. Intrastriatal infusion of fluorocitrate, a glial toxin, at 4 nmol dose

started to decrease insignificantly striatal COMT activity after 12 h (Fig. 5A) decreasing further

at 24 h and 48 h (19 % and 24 %, respectively) (III). The two nmol dose followed insignificantly

the same pattern. Surprisingly, after 72 h COMT activity increased with both 2 and 4 nmol doses

of fluorocitrate infusion (62 % and 73 % respectively). The meta/para ratio was changed by +30

%, +4% and -7 % after 24 h, 48 h and 72 h, respectively, at 2 nmol dose of fluorocitrate while at

4 nmol dose of fluorocitrate the meta/para ratio was decreased by 3-8 % at the these timepoints.

None of these changes were statistically significant. The control meta/para ratios (mean ± sem)

with the 2 nmol dose of fluorocitrate were 9.4 ± 1.8, 11.1 ± 2.9 and 8.4 ± 0.91 for 24 h, 48 h and

72 h, respectively, and the control ratios (mean ± sem) with the 4 nmol dose of fluorocitrate

were 8.3 ± 0.6, 7.5 ± 0.46 and 8.4 ± 0.45 for 24 h, 48 h and 72 h, respectively. MAO B activity,

a marker for astroglia, remained below control levels more predictably with the 2 nmol dose of

fluorocitrate throughout the studied period. Alk-PDE activity, a marker of

macrophages/microglia, was increased significantly with the 4 nmol dose of fluorocitrate at 48 h

and at 72 h with both doses of fluorocitrate. TH activity, a dopaminergic neuronal marker, gave
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variable results and was not affected significantly by fluorocitrate during the study (Fig. 5B).

The control values for specific TH activity were (mean ± sem) 336.8 ± 78.9, 388.7 ± 28.3 and

382.4 ± 54.7 pmol/min/mg protein at 24 h, 48 h and 72 h, respectively, with the 2 nmol dose of

fluorocitrate and with the 4 nmol dose of fluorocitrate 508.6 ± 34.6, 615.3 ± 97.4 and 553.7 ±

47.7 pmol/min/mg protein at 24 h, 48 h and 72 h, respectively (n=5-20).

Figure 5. Time course of striatal enzyme activities after intrastriatal infusion of fluorocitrate. A)
COMT activity (modified from Fig. 1, III) and B) tyrosine hydroxylase activity. Mean values and
sems are presented. Individual specific activities were compared with control side and calculated
with paired t-test, * p<0.05, ** p<0.01, n = 3-28.

Immmunohistochemical analysis of the toxin treated rat striata (III), revealed a

distinct staining pattern by TH and GFAP (astroglial marker) antisera in control sides of the

striata while COMT staining was low and inconclusive with respect to a definitive cellular

localization. No OX-42 (microglial marker) immunoreactivity was observed. Fluorocitrate,

especially 72 hours after the infusion, caused a decrease of TH and GFAP immunoreactivities in

the injection region and an increase of distinguishable COMT reactivity which colocalized with

OX-42 in double staining. Further away from the injection site, TH staining was increased while

GFAP staining was comparable to control stainings.

Cell cultures. Primary brain cell cultures (IV) were partially characterized by

using immunohistochemistry with antiserums against GFAP, an astroglial marker, and against

NSE, a neuronal cell marker. The amount of immunopositive cells in a culture was classified

and scored from 0 to 5. The ratios expressed in (IV) were calculated from the means of the

results shown in Fig 6. All the glial cultures were immunoreactive with GFAP. In neuronal
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cultures, 1-day basal forebrain was the most neuron-enriched. The number of GFAP positive

cells increased during growth from 1 to 6-7 days indicating glial proliferation. In glial/neuronal

cocultures, the immunoreactivity was so intense that no quantification could be done.

Approximately half of cells were of glial and half were of neuronal origin.

Figure 6. Immunohistochemical characterization of rat brain primary cultured cells. The number
of GFAP or NSE stained cells were scored from 0 (no or low amount of stained cells) to 5 (all or
almost all cells stained) and the mean + sem for each culture type was calculated, n = 1-7.

The basal COMT activities were similar as found in other studies with striatal

tissues (I-III). Glial cells, prepared from various parts of the rat brain, displayed similar COMT

activity indicating about equal distribution between different parts of the brain (Fig. 7).

Cerebellar glial cultures, which had the highest COMT activity, differed from both 1-day

neuron-enriched cultures and from both glial/neuronal cocultures. In other glial cultures, a

partial glial dominance of COMT activity over neurons was also found compared to basal

forebrain neuron-enriched cell cultures. COMT activity in striatal and hypothalamic glial

cultures, which did not differ from each other, was higher than in 1-day basal forebrain neuron-

enriched culture.
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Figure 7. Basal specific COMT activities in primary cultures of the rat brain cells. Values are
mean + sem, statistics: one-way ANOVA followed by Tukey's test, *: p<0.001, **: p<0.01, ***:
p<0.05, n = 6-26.

Kidney. In rat kidney tissue homogenates (V), the specific COMT activity was

highest in cortical sections (399 ± 104 pmol/min/mg) being about ten times higher than in

striatal homogenates. In the outer medulla homogenates, the COMT activity (210 ± 48

pmol/min/mg) was approximately half of the cortical activity and nearly twice as high as in

papillar tissues (123 ± 24 pmol/min/mg), which had the lowest activity. The meta/para ratios

were approximately 5-9. These values resemble those of recombinant S-COMT (II) suggesting

the primary response being attributable to S-COMT rather than MB-COMT.

6.3. Modification of COMT activity by various agents (II, IV, V)

Recombinant COMT. To test the effect of ethanol on COMT activity in vitro (II),

the most pure enzyme preparations i.e. recombinant forms of COMT, were used. Ethanol did not

affect the coulometric detection system (Fig. 4C). As the ethanol concentration increased, the
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formation of both reaction products, i.e. vanillic acid and isovanillic acid, by recombinant MB-

COMT tended to decrease and this fall reached statistical significance at 1000 mM ethanol

concentration (51 % and 57 % decrease in the formation of vanillic acid and isovanillic acid,

respectively). With recombinant S-COMT, only the formation of vanillic acid was affected by

1000 mM ethanol concentration. With both recombinant enzymes the meta/para ratio was

increased at 1000 mM ethanol concentration (from 13.2 to 19.0  and from 5.3 to 7.7 with

recombinant MB-COMT and recombinant S-COMT, respectively). Due to the opposite effect of

ethanol on COMT activities, ethanol was not anticipated to interfere with the COMT assay.

With striatal homogenate, 1000 mM concentration of ethanol decreased the formation of vanillic

acid (10 %) and isovanillic acid (30 %, p<0.001) (Fig. 8).

Figure 8. Effect of ethanol on striatal COMT activity in vitro. Values (mean ± sem) were
obtained from three independent experiments. Statistics: one-way ANOVA followed by Tukey's
test, *: p<0.001, n = 15-16.

The effect of 1000 mM concentration of ethanol to apparent kinetic values was

tested with recombinant COMT enzymes. Ethanol decreased both Km and Vmax values of MB-

COMT indicating a mixed type of inhibition mechanism (Table 3). With S-COMT, the Vmax was

increased. With increasing substrate concentrations, the meta/para ratio of recombinant MB-

COMT was decreased (from 28 to 15) by 1000 mM ethanol concentration, which differed from

the corresponding control value at the lowest concentration of DHBAc (p<0.01). With

increasing concentrations of the substrate, 1000 mM concentration of ethanol did not affect the

meta/para ratios (7.3-7.7) of recombinant S-COMT, while all meta/para values differed from
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corresponding control values (p<0.01). In striatal tissue, only a decrease in the formation of

isovanillic was observed.

Table 3. Effect of 1000 mM ethanol on the apparent kinetics of vanillic acid with recombinant
COMT enzymes. Values are means ± sem, n = 3.
_____________________________________________________________________________

Km Vmax

(µM) (µM)
_____________________________________________________________________________

MB-COMT

   Control 27.2 ± 1.4 1.8 ± 0.2

  + ethanol 43.4 ± 2.5b 0.8 ± 0.2a

S-COMT

   Control 136 ± 11 4.6 ± 1.4

  + ethanol 167 ± 45 9.8 ± 0.8a

_____________________________________________________________________________

DHBAc concentrations were 12.5-300 µM and 25-500 µM for the MB-COMT and the S-
COMT, respectively, with 2-5 replicate samples. The values were obtained from the double
reciprocal plots without or with 1000 mM ethanol in the assay. Vmax is expressed as µmol/l
product formed in 30 min. (10 µl of the sample analyzed with HPLC). ap<0.05, bp< 0.01 vs
corresponding control (t-test).

Cell cultures. The effect of COMT inhibitors (IV) on COMT activity was tested in

primary glial, neuronal and glial/neuronal co-cultures of brain cells. The inhibitors with a

nitrocatechol structure, entacapone and tolcapone, decreased COMT activity in all glial, neuron-

enriched and glial/neuronal cocultures (Fig. 9). In contrast, a pyridine derivative, CGP 28014,

did not affect COMT activity in any of these cultures. Since the effect of nitrocatechol-type

inhibitors was usually higher than 50 % inhibition of COMT activity, exact IC50 values were not

obtained. The approximated concentrations of the nitrocatechol drugs inhibiting COMT activity

in glial cell cultures by 50 % were 10-20 nM for tolcapone and 45-150 nM for entacapone. In

glial/neuronal co-cultures the estimated 50 % inhibitory concentrations were 15 nM in both

cultures for tolcapone and 45 nM in basal forebrain coculture and 100 nM in midbrain coculture

for entacapone. This corresponds to about 3-7 times greater potency of tolcapone than

entacapone. In neuron-enriched cultures, the efficacy was slightly better in 1-
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Figure 9. The efficacy of COMT inhibitors on specific COMT activity in primary cultures of rat
brain cells. For the sake of clarity, only the results for 30 nM and 300 nM concentration of the
drugs are shown. A) Glia. The cell cultures were grown for 35-41 days. B) Neurons. The
cultures were grown for 1 day (1 d) or 6-7 days (7 d). C) Neuronal/glial coculture. The
cocultures were grown for 7 days after plating of neurons on top of 18-36 day-old glia. With the
exception of 30 nM concentration of entacapone in midbrain glial culture, the drugs decreased
significantly COMT activity (p<0.05 at least).



41

day cultures than in 6-7 day cultures suggesting modest sensitivity of neuronal COMT to

nitrocatechol drugs. The approximated 50 % inhibitory concentrations of the drugs in neuron-

enriched cultures were 15-60 nM for tolcapone and 20-75 nM for entacapone, suggesting equal

potency of both drugs. In all glial and neuronal/glial cocultures at 30 nM concentration

tolcapone was more efficient than entacapone (p<0.05). This was true also at 150 nM

concentration in striatal glial culture and 1-day basal forebrain cultures (p<0.05) in addition to

glial/midbrain neuronal co-cultures (p<0.05) at 300 nM concentration of the drugs.

Kidney COMT activity. Peripheral actions of entacapone on COMT activity (V)

were studied by analyzing COMT activity ex vivo in different regions of rat kidney. COMT

activity decreased similarly in all sections of the kidney, i.e. cortex, outer medulla and papilla.

Two and three hours after entacapone treatment (30 mg/kg, i.p.) the activity was decreased by

nearly 100 %. To evaluate a possible correlation of central nervous system COMT activity to

that of kidney, the whole brain COMT activity was analyzed after the same entacapone treament.

The whole brain COMT activity was reduced by about 40 % one hour after entacapone treatment

and had returned to its basal level three hours after entacapone administration.

Kidney function. The effect of certain compounds on rat kidney function (V) were

also studied. Entacapone (30 mg/kg, i.p.) increased natriuresis by more than five-fold. The

entacapone induced natriuretic effect was suppressed by dopamine receptor type 1 (D1)

antagonism with SCH23390 (30 µg/kg/h) by about 60 % whereas D2 antagonism with sulpiride

was without any effect on natriuresis. COMT inhibition with entacapone caused a trend towards

transient increase of dopamine excretion while DOPAC excretion was increased by more than

three-fold with or without antagonist treatments. Entacapone alone or with dopamine receptor

antagonists did not affect the kidney hemodynamic responses (GFR, RPF or MAP). L-DOPA

infusion (60 µg/kg/h) for one hour increased natriuresis by two-fold, and this could be blocked

with D1 antagonist treatment. Dopamine excretion increased by more than 17-fold and DOPAC

excretion was elevated by two-fold.
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7. DISCUSSION

7.1. COMT activity analysis

RP-HPLC is a non-radioactive method which does not involve many steps in

processing the samples, making it easy to perform and automatize. The coulometric detection

system proved to be a reliable method to analyze the COMT reaction products (I). This detection

method means that the present set-up is the most sensitive of its kind used in the COMT activity

analysis. Thus, it is suitable for the enzyme kinetic analyses and can detect lower COMT

activites than previous methods. It allows the analysis of vanillic acid and isovanillic acid, and

thus one can calculate the meta/para ratios, from several tissue sources when DHBAc is used as

a substrate. Another COMT assay utilizing the described detection system has been developed to

be used with dihydroxybenzylamine as a substrate (Ellingson et al. 1999). Since coulometric

detection has been used for the analysis of catecholamines and their metabolites (Törnwall et al.

1994), the endogenous cateacholamines should also be applicable as substrates for COMT

activity analysis.

The highest variation in COMT activity was found in repeated analysis of

apparently similar pieces of tissues obtained from different individuals. The interindividual

variation may be due to at least two sources, i.e. COMT assay and genetic differences. COMT

assay includes the variation from analytical and sample preparation steps. Previously, we noticed

that the variation in specific COMT activity in erythrocytes was mainly affected by the variation

in HPLC and protein analysis while the handling of the samples produced less variation

(Tuomainen et al. 1996). In the present assay the protein analysis introduces more variation than

the enzyme reaction and the HPLC analysis. The genetical variation of COMT activity in

humans could be observed by the thermolability of COMT enzyme (Weinshilboum et al. 1999).

Although a different level of COMT activity between different inbred rat strains has been

described, no thermolability of COMT enzyme has been noticed within a single rat strain

(Goldstein et al. 1980; Lotta et al. 1995).

Kinetics. The Km value for recombinant MB-COMT (27.2 µM) obtained (II) was

comparable to that observed earlier (22.2 µM, Lotta et al. 1995). Also the higher affinity and

lower methylation capacity of recombinant MB-COMT compared to that of recombinant S-

COMT is in agreement with the observations with partially purified enzyme preparations.

Meta/para ratios for DHBAc with recombinant COMT proteins were similar to those reported

earlier (23.7 and 5.1 for MB-COMT and S-COMT, respectively, Nissinen 1984b). The increase

of meta/para ratio of recombinant MB-COMT, but not recombinant S-COMT, was also found
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with declining substrate concentrations as described previously (Nissinen 1984b). The high

meta/para ratios with low substrate concentrations resemble the values encountered in vivo.

DHBAc offers some advantages over most endogenic substrates. It is not

metabolized further and it is not easily oxidized. The high sensitivity of the detection of reaction

products means that one can use a non-saturating concentration of DHBAc. This was achieved

in 900 x g supernatant which contains both COMT isoforms. Previously, the activity of the two

enzyme forms, MB-COMT and S-COMT, has been analyzed in the same homogenate sample of

human brain with a low concentration of dopamine for MB-COMT and a high concentration for

S-COMT (Rivett et al. 1983a). Dopamine differs in its affinity and reaction velocity between

MB-COMT and S-COMT. Using DHBAc in rat tissues, however, the difference is not so great.

The sum of metabolism of DHBAc through MB-COMT and S-COMT could also

be calculated by adding the reaction velocities of both isoenzymes (Rivett et al. 1983a). Kinetic

constants determined for recombinant human COMT enzyme forms (Lotta et al. 1995) could be

assumed to represent the values of pure natural enzymes. Since the Vmax values were given as

catalytic numbers (kcat in 1/min) they could be converted to Vmax values (expressed as µmol/min

of product formed) when total enzyme concentrations (Etot in nM) are known. These calculations

are shown in Table 5. These Vmax values could be interpreted so that 64 nmol of recombinant

MB-COMT produces maximally 1.41 µmol/min of the reaction product and 32 nM of

recombinant S-COMT produces maximally 1.39 µmol/min of the reaction product. The molar

ratio of 64 nM : 32 nM of recombinant COMT isoforms is close to the relative ratio of 70 % : 30

% (MB-COMT : S-COMT) obtained by COMT protein blotting in human brain (Tenhunen et al.

1994). By using the analyzed Km values and the corresponding calculated Vmax values, the

approximation of total metabolism of DHBAc in a hypothetical human brain homogenate

containing these amounts of COMT enzymes were computed. It is assumed that SAM is present

at saturating concentrations and does not affect the kinetic values. At 10-400 µM DHBAc

concentration range, 51-55 % of the metabolism is account for MB-COMT by our hypothetical

human brain homogenate (Fig. 10A). In the rat brain, the ratio of COMT protein isoforms is 30

% : 70 % (MB-COMT : S-COMT) (Tenhunen et al. 1994). Assuming that the molar amount of

MB-COMT is half of the corresponding amount of human brain (32 nM) and the amount of S-

COMT is twice as high as in human brain (64 nM), the Vmax values
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TABLE 5. Calculated kinetic values for DHBAc.

Enzyme Km kcat Etot Vmax

(µM) (1/min) (nM) (µmol/min)
____________________________________________________________________________
MB-COMT 30a 22.2a 64a 1.41

32 0.705

S-COMT 38.9a 43.4a 32a 1.39

64 2.78

____________________________________________________________________________

Vmax = kcat x Etot, kcat = catalytic number, Etot = concentration of the enzyme in the assay.
a determined with recombinant human MB-COMT and recombinant human S-COMT (Lotta et
al. 1995).

Figure 10. Calculated kinetics for brain COMT using DHBAc as a substrate. The Km and Vmax
values from Table 5. were substituted to enzyme kinetic equation (v = Vmax,MB x substrate
concentration/(Km,MB + substrate concentration) + Vmax,S x substrate concentration/(Km,S +
substrate concentration) (Rivett et al., 1983a). Based on the relative amount of COMT isoforms
present in the brain (Tenhunen et al., 1994), the Vmax values corresponding to 63 nM and 32 nM
for MB-COMT and S-COMT, respectively, were used for the human brain (A) while Vmax
values corresponding to 32 nM and 64 nM for MB-COMT and S-COMT, respectively, were
used for the rat brain (B).

were calculated to be half and twice for MB-COMT and S-COMT, respectively. By substituting

these Vmax values to the corresponding equations for reaction velocities, the estimation of

DHBAc metabolism in rat brain homogenate was computed (Fig. 10B). It revealed that only 21-

24 % of 10-400 µM DHBAc is metabolized via MB-COMT. Since the reported Km value for S-
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COMT is lower than that of rat brain COMT (Nissinen 1985), these calculations slightly

underestimate the metabolism through S-COMT. Nonetheless, with DHBAc as a substrate, it

seems that half of the metabolism is via MB-COMT in human brain tissue homogenate

independently of substrate concentration. Also, the present analysis (at 240 µM concentration of

DHBAc, I) of rat brain tissue homogenates appears to assay preferentially the S-COMT activity.

Based on analogous calculations for endogenous substrates (within 10-400 µM

concentrations), L-DOPA behaves similarly as DHBAc while dopamine and noradrenaline are

metabolized primarily (50-90 %) via MB-COMT in hypothetical human brain homogenate (data

not shown). In a hypothetical rat brain homogenate, L-DOPA again acts like DHBAc as a

substrate while dopamine and noradrenaline are metabolized primarily via MB-COMT only at

lower substrate concentrations (less than 100 µM and 50 µM for dopamine and noradrenaline,

respectively, data not shown). These approximations represent a situation when other

metabolism is blocked and the reaction is made at saturating concentrations of SAM. Also, in rat

brain, the affinities of catecholamines for S-COMT are higher than with recombinant S-COMT

(Lotta et al. 1995; Nissinen 1985). Altogether, these approximations are in line with earlier

calculations (Rivett et al. 1982) supporting the importance of MB-COMT in the metabolism of

endogenous catecholamines in vivo.

Amount of COMT. Although the actual amount of COMT proteins with respect

to total protein content in the brain is not known, a rough estimation of the amount of COMT

enzyme in the present COMT assay (I) could be calculated. Recombinant COMT, derived from

rat liver S-COMT sequence, has been purified to near homogeneity (Lundström et al. 1992). Up

to 98 % of purity (Vidgren et al. 1991) has been reported for the enzyme (denoted as fraction b

by Lundström et al. 1992) in crystallization studies. This preparation has a specific activity of

500 nmol/min/mg protein (Lundström et al. 1992) with 400 µM concentration of DHBAc. If it is

assumed that this preparation is 100 % active and pure soluble COMT, then 1 mg of COMT

protein produces 500 nmol/min of the reaction product as a maximal capacity of methylation.

Since 1 mg protein of striatal homogenate produces 45.8 pmol/min of the reaction product (note:

with 240 µM concentration of DHBAc, I), only 91.6 ng of pure S-COMT protein is needed to

produce that activity. This amount of COMT represents 0.09 % of the total protein in the rat

brain homogenate. Since the molecular weight of recombinant S-COMT is 25 kD (Lundström et

al. 1992), 9.1 ng of S-COMT protein corresponds to about 3.7 pmol of S-COMT in 1 mg of total

protein in rat brain homogenate. In the present assay, approximately 400 µg of total protein has
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been normally used in the COMT reaction. This corresponds to 1.5 pmol of COMT protein,

which is close to the calculated molar range of recombinant COMT proteins (16 pmol and 8

pmol for recombinant MB-COMT and S-COMT, respectively) used in kinetic analyses (Lotta et

al. 1995). In another study, 400 µM concentration of DHBAc produced about 0.15 nmol/min of

the reaction product in 1 mg of total rat brain homogenate protein (Tilgmann et al. 1992). By

analogous calculations, this homogenate contains 30 ng or 1.2 pmol (0.03 %) of S-COMT

protein in 1 mg of total protein. These approximations, however, are likely to overestimate the

amount of S-COMT since the specific activities obtained in these studies also contain the

activity derived by MB-COMT (about 20 %, Fig. 10). On the other hand, since the present assay

utilizes the 900 x g supernatant, the loss of COMT activity (approximately 10 %) in the pellet is

clear due mostly to loss of S-COMT (Ulmanen et al. 1997). Assuming that COMT activity in

100 000 x g supernatant is derived only from S-COMT, which has a Vmax value of 186

pmol/min/total protein (Nissinen 1985), the amount of COMT in this preparation is 1.57 ng or

63 pmol (about 0.16 %) in 1 mg of the total protein in this fraction. Altogether, these

calculations suggest that the amount of COMT protein is less than 1 % of the total protein of the

rat brain homogenate. Also, this molar amount of COMT enzyme in the assay could be

physiologically relevant e.g. in kinetic analyses.

Cell cultures. Earlier, the COMT activity in brain cell cultures has been analyzed

after homogenization of the collected cells (Hansson 1984). In our studies (IV), COMT activity

was analyzed by adding the substrate directly to the viable cell cultures without addition of

SAM, which penetrates poorly through cell membranes (Baldessarini 1987). Thus, the product

formation must have been occurred inside the cells confirming the intracellular localization of

COMT (Trendelenburg 1990; Männistö et al. 1992b; Kaakkola et al. 1994; Ulmanen et al.

1997). Although preliminary kinetic data suggest non-saturating conditions with the current

concentration of the substrate, it cannot be excluded that the saturation occurred in certain

cultures (data not shown). Also, the penetration of DHBAc inside the cell and the low

micromolar concentration of intracellular SAM (Baldessarini 1988) affect the overall pace of the

reaction. In peripheral tissues, addition of substrate in low concentrations seems to saturate

COMT, below the level of uptake saturation (Trendelenburg 1986, 1990; Wilson et al. 1988). It

can be speculated that MB-COMT, which has a higher affinity than S-COMT, is responsible for

the methylation at low micromolar concentrations of substrates. Also, apparently high meta/para

ratios in culture studies (IV) support the primary metabolism through MB-COMT over S-

COMT.
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7.2. Distribution of COMT in the brain and in the kidney

Brain regions. The present results with cultured cells from discrete regions of the

brain (IV) agree well with concept that COMT is widely distributed throughout the rat brain

(Kaplan et al. 1979; Hansson 1984; Roth 1992; Karhunen et al. 1994). Also, the highest COMT

activity was found in cerebellar cultures (IV), which corresponds to COMT staining of

Bergmann glia (Kaplan et al. 1979; Karhunen et al. 1994). The basal COMT activities found

here in brain cell cultures were comparable with earlier reports of primary glial cultures

(Hansson 1984). In addition, in the present cultures (IV), the COMT activities are at the same

level as in striatal (I,II), hypothalamic and hippocampal homogenates from rat brain.

Brain cells. Cell cultures studies (IV) confirm the presence of COMT in neurons

and glia (Karhunen et al. 1994, 1995b). For the first time, the COMT activity was demonstrated

in primary cultures of brain neurons. Cultured fetal basal forebrain and midbrain neurons have

commonly been used as a model of striatal and nigral neurons, respectively (McMillian et al.

1995, 1997). For basal forebrain neurons, neuronal COMT is probably located in site

postsynaptical to nigrostriatal dopaminergic neurons. Midbrain neuronal cultures confirm the

observations of nigral COMT activity (Guldberg and Marsden 1975; Rivett et al. 1983a). Only a

weak COMT immunoreactivity has been observed in dopaminergic neurons in human substantia

nigra (Kastner et al. 1994). Also, a nigral lesion does not change the COMT activity in striatum

(Kaakkola et al. 1987). Thus, COMT must be located in neurons other than the dopaminergic

neurons in the substantia nigra.

Some of the COMT activity data supported the predominant role of COMT in glia,

especially in basal forebrain neurons. First, the lowest COMT activity was found in the most

pure neuronal cultures. Second, when neurons were grown on top of striatal and hypothalamic

glial cells, the specific COMT activity was not changed. Indeed, when increasing amounts of

neurons were plated on top of glia (12 500 - 200 000 neurons/plate) the total COMT activity

increased while specific activity did not (data not shown). Third, in basal forebrain neuron

enriched cultures, the increase of COMT activity corresponded to glial proliferation, which was

indicated by increased GFAP staining.

Microglia. A novel finding was the presence of COMT in the microglial cells in

the striatum (III). This was demonstrated three days after fluorocitrate infusion by the increased

COMT activity and colocalization with double stained activated microglial cells. The
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astrogliosis, which takes place about one week after the toxin lesion (Rivett et al. 1983a;

Kaakkola et al. 1987) can be excluded since MAO B activity, which is present in astroglia and

absent in microglia (Ekblom et al. 1994), was decreased and GFAP staining was low at the

injection site throughout the study. The appearance of activated microglia at the lesion site was

demonstrated by increased alk-PDE activity, a marker for activated peripheral macrophages

(Morahan et al. 1980), and high OX-42 staining, a marker for microglia (Graeber et al. 1989).

The localization of COMT in macrophages has earlier been speculated as a cause of the transient

increase of COMT activity in virus-infected brain (Guchhait and Monjan 1980). In addition,

COMT immunoreactivity has been detected in peripheral macrophages (Inoue and Creveling

1986; Inoue et al. 1991). Since the meta/para ratios were not greatly changed, the dominance of

either COMT isoform in microglia could not be determined. One function of increased COMT

activity may be to metabolize the catecholamines which are leaking out of damaged cells. Due to

reduced COMT and MAO B activity at 1-2 days after glial damage, the amount of extracellular

dopamine could increase and represent as a possible factor for microglial activation. Depending

on whether the effect of increased COMT activity in microglia/macrophages is regenerative (or

degenerative) on brain tissue, the brain penetrating COMT inhibitors could be either clinically

harmful (or useful) in pathological situations.

Although fluorocitrate is taken up by astrocytes (Clarke et al. 1970), the selectivity

of this toxin is reduced at higher doses. This has been shown by decreased activity of a

cholinergic neuronal marker after intrastriatal infusion of fluorocitrate (Paulsen et al. 1987).

However, the major effect of fluorocitrate on glial cells was seen as a decrease of MAO B

activity and by a decrease of COMT activity for two days after fluorocitrate infusion evidence of

the presence of COMT in glial cells. A trend towards increased meta/para ratio 24 h after the 2

nmol dose of fluorocitrate suggested that the reduction of total COMT activity is due to

decreased glial S-COMT activity. The higher dose seems to reduce almost equally the activity of

both COMT isoforms. Apparently fluorocitrate affected also dopaminergic neurons, since

staining of TH at the site of lesion was decreased and increased outside the lesion suggesting

induction of compensatory dopaminergic tone. Differential staining of TH also explains the

inconsistent results in TH activity. No studies are available concerning the long term effects of

fluorocitrate.

Kidney. In kidney COMT activity is concentrated in cortex but the deeper parts

also have a considerable COMT activity (V). Little is known about the distribution of COMT

activity in the different regions of kidney tissue. COMT activity in kidney cortex has been
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reported to be higher than in medulla (Goldstein et al. 1980). The COMT mRNA (Meister et al.

1993) and protein (Kaplan et al. 1979; Karhunen et al. 1994) have been demonstrated to reside

in proximal and distal tubules in addition to the collecting duct and ureter in rat kidney. The

present results on the distribution of COMT activity suggest that metabolism via COMT could

take place throughout the kidney but the primary site is in cortical areas, e.g. proximal tubular

cells.

7.3. Modification of COMT activity

Recombinant COMT. The direct effect of ethanol on COMT activity was studied

in vitro with recombinant COMT enzymes (II). Ethanol inhibited recombinant MB-COMT

activity but this was significant only at 1000 mM concentration. At this ethanol concentration,

recombinant MB-COMT activity was inhibited with a mixed type of inhibition. With

recombinant S-COMT only the formation of vanillic acid was affected by 1000 mM ethanol

concentration, which increased the Vmax value of recombinant S-COMT. These opposite effects

of ethanol on MB-COMT and S-COMT seemed to cancel each other out, producing mainly a

decrease of the formation of isovanillic acid in striatal tissue homogenates. As expected, all

these changes were reflected in the meta/para ratios.

There was a trend towards reduction of MB-COMT activity already at 100 mM

ethanol concentration (II). Previously, no evidence for the inhibition of (apparently S-) COMT

by ethanol at concentrations up to 90 mM have been found in vitro (Lahti and Majchrowicz

1974; Giovine et al. 1977; Hoffman et al. 1981). Due to the opposite effect of ethanol on COMT

isoforms these changes have not been detected earlier. However, an acute in vivo administration

of ethanol (1 g/kg, i.p., which produced 25 mM concentration of ethanol in the blood) on rats

has decreased the 3-MT concentration in the nucleus accumbens of non-alcohol prefering rats

and (pargyline treated) Wistar rats (Honkanen et al. 1994). Also, in the mouse striatum, a

decrease of 3-MT by ethanol (3.5 g/kg, i.p.) has been noticed (Milio and Hadfield 1992). In

contrast, ethanol and other reinforcing drugs, rather increase the release of dopamine in the

brain, especially in nucleus accumbens. Thus, it is tempting to speculate that decreased 3-MT

formation is caused by selective inhibition of postsynaptic MB-COMT, possibly leading to

elevated dopaminergic tone. The present experiments give only faint support for the inhibition of

MB-COMT by 100 mM concentration of ethanol, which is a clinically intoxicating blood

concentration (4.6 g/l). Thus, a slight potentiation of COMT inhibitor toxicity could only be

possible at very high concentrations of ethanol.
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Cell cultures. In primary cultures of rat brain cells, COMT activity was effectively

decreased by the nitrocatechol-type inhibitors with tolcapone being slightly more potent than

entacapone in cultures containing glial cells (IV). The approximated 50 % inhibition of COMT

activity was achieved with 10-150 nM concentration of entacapone and tolcapone. This is in

agreement with the reported IC50 values of entacapone and tolcapone (2.2-160 nM for brain and

liver COMT) (Zürcher et al. 1990; Nissinen et al. 1992). Based on Ki values determined with

recombinant human COMT enzymes, tolcapone is slightly more potent against MB-COMT (2.0

nM and 0.3 nM for entacapone and tolcapone, respectively), while the Ki values of both drugs

do not differ for S-COMT (Lotta et al. 1995). At the catalytic site, the binding should be similar

suggesting equal affinity for both drugs (Lotta et al. 1995; Vidgren and Ovaska 1997). The

apparent difference in potency between entacapone and tolcapone is probably due to their

membrane penetrating ability. Since tolcapone is a brain penetrating drug (Männistö et al.

1992a) it could reach the enzyme slightly more effectively.

Examination of the approximated 50 % inhibitory concentrations of the

nitrocatechol-type drugs revealed a trend for more sensitive inhibition of neuronal COMT than

glial COMT. This was supported by the reduction of COMT inhibitor efficacy after the

proliferation of glial cells in neuron-enriched cultures. Both entacapone and tolcapone were

equipotent in these neuronal cultures. Since tolcapone has been claimed to be more effective

against MB-COMT than S-COMT (Borges et al. 1997; Vieira-Coelho and Soares-da-Silva 1999)

and primary neuronal cultures apparently contain about the same amount of MB-COMT and S-

COMT protein (Karhunen et al. 1995b), a slight sensitivity of neuronal COMT to inhibition by

both entacapone and tolcapone could possibly explain these results.

CGP 28014 did not affect COMT activity in any of the cultures (IV). Also previous

experiments with tissue homogenates (Waldmeier et al. 1990) and with aggregate cultures

(Wiese et al. 1993) demonstrated that CGP 28014 does not inhibit COMT in vitro. Thus, CGP

28014 is not metabolized to an active COMT inhibitor by brain cells. Since the main metabolite

of CGP 28014 was also ineffective in vitro, inhibition of glial uptake2 was suggested

(Waldmeier et al. 1990). However, in our laboratory CGP 28014 did not reduce the uptake of

[3H]-dopamine into glial cells (M. Törnwall 1994, unpublished results). Thus, the mechanism of

the inhibition of O-methylation CGP 28014 remains unknown.

Kidney. In kidney (V), increased natriuresis by entacapone was demonstrated to be

caused by inhibition of COMT activity. Furthermore, the inhibition of COMT activity by

entacapone was seen to be equal in all regions of the kidney. Previously, the inhibition of COMT
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activity with nitecapone has been noted, but this was not fully demonstrated (Eklöf et al. 1997).

The natriuretic effect was produced by local COMT inhibition in the kidney since only a

transient effect of entacapone on brain COMT was observed. At this dose entacapone affects

briefly also brain COMT activity (Kaakkola and Wurtman 1992). However, due to the shorter

duration of COMT inhibition in brain than in kidney, a local effect on kidney function

predominates.

Both entacapone and L-DOPA induced natriuresis, which was mediated by D1

receptors, as has been reported before (Eklöf et al. 1997; Hansell et al. 1998). Nitecapone and

gamma-L-glutamyl-DOPA, a kidney specific dopamine precursor, have additive effect on

natriuresis (Eklöf et al. 1997). This also emphasizes the important role of kidney dopamine in

the regulation of salt balance.

In addition to the natriuretic effect, the inhibition of COMT was accompanied by a

slight increase of dopamine levels and over three-fold increase of DOPAC levels in the urine

whereas L-DOPA produced a smaller natriuretic effect but greater efflux of dopamine and less

increase in DOPAC excretion. This suggests that L-DOPA is metabolized first to dopamine

outside of the kidney while entacapone acts more locally to elevate kidney dopamine

concentrations providing more dopamine to stimulate its receptors within the kidney.
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8. CONCLUSIONS

RP-HPLC using coulometric detection with improved sensitivity was developed

for the analysis of COMT activity. It is a reliable and sensitive method and applicable for COMT

activity analysis from various sources . It is suitable for distribution studies and studies of the

effects of various agents on COMT activity. Based on kinetic calculations, the metabolism of

DHBAc, at saturating concentrations of SAM, in rat brain homogenate in vitro is proposed to be

preferentially mediated by S-COMT irrespective of the DHBAc concentration. In contrast,

endogenous catecholamines has been calculated to be metabolized preferentially or exclusively

by MB-COMT. It was estimated from kinetic data that COMT protein represents less than 1 %

of all the proteins present in rat brain.

The localization of COMT to activated microglial cells was demonstrated. The

function of COMT in microglia, though demonstration if this is a general phenomenon during

microglial activation, remains to be established. The presence of COMT activity in neuronal

cells was presented. However, in general a slightly higher COMT activity resides in glial cells.

COMT was found to be almost equally distributed in glia throughout the rat brain. In rat kidney,

the COMT activity is highest in cortical areas with less activity found deeper in the tissue,

indicating that the proximal tubular cells are the principal site of COMT in proximal tubular

cells.

A small reduction of MB-COMT activity by ethanol was noticed in vitro. There

was a coincidental ethanol-induced increase of S-COMT activity counteracting any possible

reduction of catecholamine metabolism. However, these effects were achieved only at

intoxicating concentrations of ethanol. Therefore, it is unlikely that COMT inhibitors would

have any major interaction with ethanol.

COMT activity was effectively decreased in cultured brain cells by nanomolar

concentrations of nitrocatechol-type inhibitors in vitro. In general, tolcapone was a slightly more

potent inhibitor of glial COMT this being due to its better permeability through membranes. In

contrast, CGP 28014 did not affect COMT activity excluding the possibility that it is

metabolized to an active COMT inhibitor in brain cells. These effects could be demonstrated by

analyzing COMT activity in viable cells grown in culture.

COMT activity was demonstrated to be reduced effectively by entacapone in all

regions of rat kidney ex vivo. The increase of the dopamine concentration in vivo following

administration of the precursor, L-DOPA, or blocking dopamine metabolism by entacapone,

produced a D1-receptor sensitive natriuretic effect in the kidney. Entacapone and L-DOPA
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exhibited quantitatively different effect on natriuresis and excretion of dopamine and its

metabolites.
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