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ABSTRACT

This thesis presents a series of experiments conducted on Finnish prosody

for text-to-speech synthesis using artificial neural networks.

The study serves the purpose of mapping and extracting out the rele-

vant factors that have an effect on prosody in general – be they phonetic

or linguistic in nature. The interplay between the relevant factors and the

behavior of the prosodic parameters range from the simplest, phonetically

determined variation on the segmental level to the linguistically determined

variation on the level of the utterance.

The fundamental idea of this work is to use similar models for all aspects

and levels of suprasegmental and segmental prosodic phenomena – in effect

building a superpositional and modular model from similar building blocks.

All in all, a framework that can be further extended to encompass all levels

of prosody is presented.

Since the models are intended to work on all aspects and parameters of

prosody, any underlying models that are generally used for prosody control

in speech synthesis systems have been intentionally left out. That is, by

allowing a large amount of redundancy in the models, the conceptual and

practical discrepancy between, say, a tone sequence intonation model and

a CART-based duration model has been circumvented. Nevertheless, it is

not claimed that in a real world situation these models would out-perform

a less redundant but more heterogeneous set of models. Instead, a concep-

tual framework that can be tailored to suit arbitrarily large domains and to

include separate models for all aspects and scopes of prosody is presented.

As mentioned, these models have not only intended for prosody control,

but also to extract the relevant factors for each type of network – or each

problem the network is intended to solve. That is, the presented artificial
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neural network methodology can be used to measure separate influences that

the different phonetic and linguistic factors have on the complicated interplay

among the physical prosodic parameters.



PREFACE

Prosody modeling of Finnish has been basically non-existent for the period

between the 1970’s (where it briefly existed) and the occurrence of the work

presented in this thesis. Moreover, the basic methodology for doing such

work has not been taught in Finnish universities – that is, how to bring

together phonetic, linguistic and mathematical methods and knowledge that

are necessary for such work.

The research community has benefited from the good descriptive accounts

of Finnish prosody that have existed for decades, and the Finnish scientific

community has gained international fame with work on linguistic morphology

on the one hand and neural computation on the other. But not until 1991,

when Matti Karjalainen and Toomas Altosaar at the Helsinki University of

Technology produced their first study on segmental duration modeling with

artificial neural networks (ANNs), were these disciplines brought forward in

a unified study. The study conducted by Karjalainen and Altosaar was a

pioneering work in prosody modeling and this thesis builds on their results.

This thesis is based on a collection of seven articles which were published

between 1996 and 2000. The articles have a certain amount of overlap and it

should be sufficient for the general reader to get acquainted with the intro-

duction alone. The intended, or primary audience of this thesis is the future

research worker who will be responsible to further push forward the prosody

modeling for Finnish. It can be safely said that this work constitutes the

majority of prosody modeling that has been conducted for Finnish, and that

all further research and publications thereof on the subject are more than

welcome.

For the above reasons and to the benefit of the average reader, two some-

what superficial chapters have been included to this thesis. They deal with
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prosody modeling in general and Finnish prosody. More detailed information

on both of these subjects can be found throughout the literature dealing with

prosody and speech technology. Nevertheless, I hope that they will make this

thesis more coherent and easier to follow. This is not an apology and if the

reader perceives a sense of urgency in this work, he or she is not mistaken

since models for Finnish prosody and their description are long overdue.
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Chapter 1

INTRODUCTION

1.1 Overview

This chapter will give a brief description of the contents and the structure of

this thesis as well as a slightly more lengthy discussion about problems asso-

ciated with prosody modeling and text-to-speech synthesis (TTS) in general.

The basic problem motivating this study was the lack of prosody models

for Finnish. Such models are necessary in many respects: first of all, they are

an essential part of any high quality TTS system and secondly, they provide

a framework for the description of the phenomena that prosody comprises.

The general problems with prosody modeling lie in the grey area between

the discrete, symbolic representation of speech and its actual manifestation as

a continuously varying signal. Basically, one needs to develop a methodology

to associate a set of linguistic, para-linguistic and emotional instructions or

representations with the prosodic parameters of synthetic or natural speech.

The solution to the above problems presented in this thesis is based on

data, artificial neural networks (ANN), and the general methodology related

to their use.

The most significant results from this study are, firstly, that neural net-

works can be used for both prosody control in Finnish TTS and that they

may be used so directly – there is no need for underlying models and, sec-

ondly, that the modeling paradigm presented here can be used for certain

aspects of prosody research in general.
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1.2 Prosody Modeling and Text-to-Speech Synthesis

The essence of text-to-speech synthesis is to convert symbols into signals.

Thus, a TTS system occupies a special place in the realm of information

technologies. As the signal generation systems, i.e., the speech synthesizers

themselves have moved into the domain of sampled speech and stored forms,

the main problem of adding naturalness and intelligibility to the systems can

largely be solved by incorporating better prosody models.

The mapping from a string of phonemes or phones and the linguistic

structures in which they participate, to the continuous prosodic parameters

is a complex and nonlinear task. This mapping can, and has traditionally

been done by sets of sequentially ordered rules which control a synthesizer

that produces the digital forms of the signals that are then rendered audible

by some means. Nevertheless, a set of rules cannot describe the nonlinear

relations past a certain point without getting impractically large and com-

plicated. The rules are usually as general as possible and exceptions to them

tend to extend and complicate the rule-set. Moreover, rule development is

usually based on the introspective capabilities and expertise of individual re-

search workers. It usually reflects their theoretical backgrounds, which is only

natural, but can be a burden if the theories rely too much on introspection

and subjective measurements.

1.2.1 Data-based models

In speech synthesis, data-based, statistical methods have practically replaced

explicit rules. These modern data-oriented methods include Hidden Markov

Models (HMM), Classification and Regression Trees (CART) and Artificial

Neural Networks.

The investigation of prosodic variation has a serious problem in common

with the study of many other aspects of speech and language research; one

frequently encounters phenomena that are both extremely common as well as

extremely rare. (See for instance van Santen in [69] and [31].) This makes the

preparation of representative databases for all speech phenomena and their

combinations practically impossible even in a fairly constrained domain, such
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as prosody. The situation calls for models that can produce generalizations

and accurately predict patterns that are absent in the data.

Neural networks are known for their ability to generalize according to the

similarity of their inputs but also to distinguish different outputs from input

patterns that are similar only on the surface. As a consequence, networks

have the power to predict, after an appropriate learning phase, even patterns

they have never seen before. This provides the researcher with a potential

solution to the problem of constructing models from imperfect data. The

problem, then, boils down to finding an optimal network organization and

data representation as well as a method for training the network successfully

from real speech data. Provided, of course, that one has large amounts of

high-quality speech data available.1

In this study neural networks were used to accomplish the prediction of

continuous values for fundamental frequency, loudness and segmental dura-

tion, which in turn determine the accentuation and prominence level of the

syllables and phones within the utterances. This is done for the same reason

that most researchers use decision trees (see for instance [12], [23], [8] and

[53]). That is, neural networks should in principle enjoy the same advantages

the decision tree methodology does; “they can be automatically trained to

learn different speaking styles and they can accommodate a range of inputs

from simple text analysis for the problem of synthesis from unrestricted text

to more detailed discourse information that may be available as a by-product

of text generation” [12]. Moreover, artificial neural networks with hidden

units can learn new features that combine multiple input features. This is

also a drawback when the inner workings of a network are under study and

one desires to learn more about the way the networks accomplish their task.

The modeling framework presented here assumes the existence of a text

1 The data that are used to train speech synthesis systems have very stringent require-

ments concerning the segmentation and annotation (i.e., labeling) of the utterances. Since

the amount of well-labeled data available is usually small compared to data used for train-

ing automatic speech recognizers, the requirements for the quality of the content of the

data are also increased.
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processing module that is capable of providing neural networks information

about the linguistic structure of the text. At this point no explicit informa-

tion or instructions in the form of intonational transcriptions have been used,

but the networks rely on their ability to infer the necessary information from

the input text and its implicit linguistic and phonetic structure. In other

words, the training data contained no annotations for prosodic constituent

structure.

The models described here are, not like Taylor’s Tilt model [57] and Fu-

jisaki’s superpositional intonation model [16], phonetic in nature. Their pur-

pose is not only to describe observable linguistic sound phenomena [57], but

to associate these phenomena with the abstract linguistic structures.

The increasing scope of information and context in terms of hierarchical

levels and horizontal extent described in this thesis could be used for a “proof

by induction” for the case that neural network models could be extended to

give representations to arbitrarily large domains; i.e., the problem of pro-

ducing correct prosody can be divided into a) the problem of identifying the

particular types of information that have an effect on physical parameters,

and b) acquiring and labeling sufficient amounts of data for model training.

As an example, one could imagine a situation where different types of infor-

mation that have been identified by conversation analysis techniques could

be coded as network input. Similarly, the givenness of each word could be

easily added by simply making the networks aware of the occurrence of any

given word (or a semantic feature that it shares) before and the distance

of the word from the current one; any metric that can be translated to the

network input space would do.

1.3 Organization of this Thesis

The first chapter of this thesis gives an overview of the problems commonly

encountered in prosody modeling as well some discussion about the relative

merits of different modeling paradigms. The rest of the chapter describes the

outline of this thesis and gives an account of the author’s contributions in

relation to the published work.
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The second chapter gives an outline of some existing models used for

prosody control in various TTS-systems. This chapter and the following one,

which gives an account of Finnish prosody, are fairly shallow with respect to

detail and are intended to give support the reader who comes from outside

the field of prosody and speech technology.

The fourth chapter gives a description of the various databases and the

fifth chapter gives a short introduction to the neural network methodology

used in this study.

The results from the study are discussed in various degrees of detail in

the sixth chapter.

The final chapter serves as a conclusion to the thesis with a recapitulation

of the actions taken, some concluding remarks about the results and a section

on future directions of study.

1.4 Author’s Involvement in the Published Work

The following is a brief summary of the publications (see Page xxv) and the

author’s involvement in their preparation as well as the research work:

• Paper 1 describes the basic methodology used for word level prosody

modeling including the neural network architecture. Basic results from

pitch, loudness and segmental duration as well as some error analyses

are described. The author was the main researcher in the study and

the final paper was mostly written by him.

• Paper 2 is basically a continuation of paper 1 with results from new

experiments relating to specialization. The paper also includes a de-

scription of a new methodology for evaluating the relative importance

of different input factors and summarizes the results from experiments

of word level data. The author was the main researcher in the study

and also wrote the paper.

• Paper 3 describes the extension of the methodology into modeling mi-

croprosodic variation. An alternative method based on multiple linear
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regression (MLR) is also described. Results from both neural network

and MLR modeling are presented. The author was the main researcher

in the study and also wrote the paper.

• Paper 4 describes the global structure of the synthesizer where the

neural network models were intended to act as the prosody control

module. The author was responsible for the section describing prosody

control.

• Paper 5 is a continuation of paper 3. New results for microprosody of

both pitch and loudness are presented as well results from applying the

methodology to sentence length material. The author was the main

researcher in the study and also wrote the paper.

• Paper 6 describes work done on both word level and segmental level

prosody. New results from sentence level prosody are presented. The

author was the main researcher in the study and also wrote the paper.

• Paper 7 describes results from extending the models with linguistic

information. Specifically, results from experiments to determine the

relative importance of different levels of linguistic information for pre-

dicting segmental durations and syllabic pitch values are presented.

The author was the main researcher in the study and also wrote the

paper.



Chapter 2

AN OVERVIEW OF EXISTING MODELS FOR PROSODY

Prosody is an elementary component in all text-to-speech systems. No sys-

tem seriously attempts to produce the full range of phenomena that can be

conveyed in speech with the means of varying fundamental frequency, inten-

sity and timing, the main physical parameters used in prosody control in

text-to-speech systems. Instead, most research is centered around produc-

ing a declarative reading – void of any emotion – of the input text (with

the exception of providing different pitch contours for questions when neces-

sary). Even this restricted goal is difficult to achieve with the current state

of knowledge and technology.

The models used for prosody control range from rule-based methods to

trainable, data-based methods. The extreme ends of this continuum both

have their merits as well as problems: rule-based models often generalize

too much and cannot handle exceptions well without getting exceedingly

complicated; data-based methods are generally dependent on the quality

and quantity of available training data (see Chapter 1 and references therein

for more detail about the scarcity-of-data problem).

Although there are three acoustic parameters that need to be predicted,

loudness is often either completely neglected or is modeled concurrently with

fundamental frequency. This is based on the assumption that the loudness

contour is implied by the fundamental frequency of the utterance. Many con-

catenative synthesizers based on either linear prediction or overlap-and-add

methods (e.g., MBROLA [13]) use the inherent loudness values in the diphone

data and no other modeling is used. Although, in the case of MBROLA, the

possibility to control loudness is currently being studied.
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Thus, prosody control is usually accomplished with three separate mod-

ules: prosodic boundary placement, segmental duration determination and

F 0 contour specification.

Since the research presented here is mainly concerned with segmental

durations and intonation1, the rest of this chapter discusses some of the most

influential existing models – those concerning loudness, pause insertion, and

pause length prediction are ignored. The ones discussed here represent, of

course, only a fraction of the prosody models in existence and were chosen

because of their influence on TTS systems development and prosody research

in general.

2.1 Segmental Duration Models

Four distinct segmental duration models are introduced. They range from

purely knowledge-oriented, rule-based models to purely data-based models

which gain their predictive power directly from the data.

2.1.1 Klatt Rules

Dennis Klatt proposed a rule-based system [41] which was implemented in

the MITalk system [2]. His model was based on information presented in pho-

netic literature about the different factors affecting segmental duration. The

duration of each phone was calculated according to the following equation:

DUR = (INHDUR − MINDUR) ∗
PRCNT

100
+ MINDUR (2.1)

where INHDUR and MINDUR are the inherent and minimum durations

for the phone, respectively. PRCNT is the shortening in percent of the

1 In this thesis the term prosody is used for all suprasegmentals and intonation for the

variations in fundamental frequency (usually and if not explicitly mentioned, on the level

of sentence/utterance). Daniel Hirst and Albert Di Cristo give a good overview of the

different definitions for the basic terminology and the consequent problems in [25].
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duration change which is determined by the rules themselves. Klatt used ten

rules that were based on effects of the phonetic environment, emphasis, stress

level, etc. on the current phone’s duration. Each rule adjusts the PRCNT

term in a multiplicative manner and the final result is the product of the

rules plus the effect of one final rule that is applied after the calculation of

DUR in equation 2.1 [2].

As with any rule-based models, the Klatt rules and their parameter values

are determined manually by a trial-and-error process.

2.1.2 Linear Statistical Models – Sums-of-Products Model

Jan van Santen has developed a model which seems to be able to address the

scarcity-of-data problem better than other data-based models ([70], [71], [69]

and [53]). His model is linear and is based on a collection of equations that

are determined according to prior phonetic and phonological information as

well as information collected by analyzing data. He calls it the sums-of-

products model for the reason that each equation, which is determined by

certain contextual factors, represents a sum of a sequence of products of

terms associated with the contexts. Equation 2.2 shows a typical sums-of-

products model whose variables have to be manually determined from data

by standard least-squares methods.

DUR(Vowel:/e/, Next:V oiced, Loc:Final) =

α(/e/) + δ(Final) + β(V oiced) × γ(Final) (2.2)

Equation 2.2 states that the duration of a vowel /e/ which is followed

by a voiced consonant and is in utterance-final position is given by taking

the intrinsic duration of the vowel [α(/e/)], adding a certain number of mil-

liseconds for being utterance-final [δ(Final)], and finally adding the effect of

post-vocalic voicing [β(V oiced)] modulated by utterance-finality [γ(Final)].

The model is based on the assumption that most factors that have an

effect on segmental durations have the property of directional invariance; for

instance, with other factors being constant, the stressed vowels are longer
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than non-stressed ones – i.e., the direction of the effects of a factor is unaf-

fected by other factors.

Van Santen makes the claim that sums-of-products models have the prop-

erty that they can capture directionally invariant interactions using very few

parameters [72]. The sums-of-products models are applied by constructing

a tree whose terminal nodes split the feature space into homogeneous sub-

classes each of which is represented by a separate sums-of-products model.

This is done manually by incorporating knowledge from literature and infor-

mation from exploratory data analysis.

2.1.3 Classification and Regression Trees (CART)

The Classification and Regression Trees are typical data-based duration mod-

els that can be constructed automatically. This capability of self-configuration

makes them very popular; for instance the Festival speech synthesis system

includes tools for building such trees from existing databases [7].

A duration predicting CART is basically a binary-branching tree whose

inputs are instances of phones which are fed in from the top node. The phones

then pass through the arcs satisfying their constraints. Figure 2.1 shows a

partial tree constructed to determine segmental durations for Finnish. The

numbers in the leaf-nodes are so called z-scores and the final durations are

calculated according to an equation which states that duration = mean +

(z-score * standard deviation). Both the mean and standard deviation are

estimated from a corpus. The tree in Figure 2.1 has already satisfied the

following criteria: the current phone is in a lexically unstressed syllable, it is

the coda of the syllable and the syllable itself is fewer than three syllables from

a following phrase break. The circles in the figure depict omitted sections.

As an example, the tree asserts that the duration of the phone [u] in word

[minut] is approximately 81 milliseconds (0.065 + (0.717 ∗ 0.022) = 0.080774

where 0.065 and 0.022 are the mean and standard deviation in milliseconds

for [u] in the database.).

The tree itself is constructed (or grown) with an algorithm that accepts

sample phones with correct outputs, in this case their observed z-scores from
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Fig. 2.1: Partial decision tree for segmental durations in Finnish. The circles de-

pict omitted sections.

a set of training data. Usually the tree-constructing methods look for a

binary split that is 1) determined by a single factor and 2) that best correlates

with the data. Basically, the algorithm clusters durations according to their

contexts. Usually the contextual effects that are used include the stress level

of the current phone, its position in the word, its position in the phrase, and

the phonetic context within a window that spans a number of phones on

either side of the current one. These are, of course, the basic factors that are

known to influence segmental durations. The tree in Figure 2.1 was trained

with a subset of the 1126-sentence corpus described in Chapter 4.
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Using individual phone identities in the description of the phonetic con-

text usually leads to highly individual and distinct feature vectors and there-

fore increases their number. This usually leads to problems concerning the

coverage of data that are difficult to address without gathering and labeling

enormous amounts of speech for model training. Therefore, it is better to

describe the context in terms of broad classes; i.e., the phones can be grouped

according to their phonological features. This is how the problem is usually

solved in data-based systems.

The tree-constructing algorithms usually guarantee that the tree fits the

training data well but there is no guarantee that new and unseen data will

be properly modeled. The tree may simply be over-trained to fit the idiosyn-

crasies in the training data [46]. However, there is a way to get around this

problem by pruning the tree by cutting off the branches that are responsible

for the over-training. The pruning is usually done by evaluating the tree on

some unseen data (usually called the pruning set) and then simplifying the

tree by cutting off the parts that do not fit well to the pruning data.

2.1.4 Syllable Durations with Neural Networks

Campbell [10] has devised a neural network based model which predicts syl-

lable durations and then fits phone durations to the syllables. He uses neural

networks because it is assumed that the networks can learn the underlying

interactions between the contextual effects. That is, they should be able to

represent the rule-governed behavior that is implicit in the data (this is pre-

cisely the reason for using them for all aspects of prosody modeling in this

study). If the networks can code the underlying interactions, they should do

well with unseen data.

Campbell computed a feature vector for each syllable which consisted

of information about the syllable’s length in terms of number of phones,

the nature of the syllable nucleus (Campbell calls it the syllabic peak), the

position in tone-group, the type of foot, stress level, and word class (function

vs. content word). He then predicted the syllable durations with these

feature vectors and an artificial neural network. The phone durations within
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the predicted syllables were then determined by their elasticity. The elasticity

is determined from a normalized duration which is calculated “by subtracting

the means and expressing the residuals in terms of their standard deviations

to yield a zero with unit variance for each phoneme distribution” [10]. These

normalized values then represent the amount of lengthening or compression

undergone by each segment relative to its elasticity. According to Campbell,

in the majority of cases, the amount of compression or lengthening within

a syllable can be expressed with a single constant which is determined from

data by solving the following equation for k:

n
∑

i=1

exp(µi + kσi)

The equation returns the duration for a syllable of length n in millisec-

onds (exponentiation is due to the fact that all durations in the system are

expressed in logarithmic form (see section 5 for more detail)). The segment

(i) is assigned the duration according to exp(µi+kσi) where µi and σi are the

mean and standard deviation of the log-transformed duration for the real-

ization of phone or phoneme class (e.g., [e]) represented by i. Some analyses

of Finnish data done with this kind of normalization scheme can be found in

Appendix A.

2.2 Intonation Models

Two major schools for intonation modeling have emerged within the last

twenty years: the tone sequence school which follows a traditional phonolog-

ical description of intonation and the more phonetically oriented superposi-

tion school.

The tone sequence models interpret the F 0 contour as a linear sequence

of phonologically distinctive units (tones or pitch accents), which are local in

nature. These events in the F 0 contour do not interact with each other and

their occurrence within the sequence can be described by a grammar. That

is, they are linguistic in nature. The most influential of the models is based

on Janet Pierrehumbert’s theory, which was presented in her doctoral thesis
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in 1980 [50] and led to a widely used and popular transcription system ToBI

(Tone and Break Indices [52]).

On the other end of the continuum are the superpositional models which

are phonetic in nature. They are hierarchically organized models which in-

terpret the F 0 contour as a complicated pattern of components that are su-

perimposed on each other. The best known of these models is the Fujisaki

model [15] which was inspired by theories developed by Öhman in the sixties

[27].

The main difference between these models is how local movements (e.g.,

accents) and global phenomena (e.g., declination) and their relations are

viewed. The problem, of course, is that all those phenomena are manifested

in the same signal; basically the F 0 contour (although the amount of influ-

ence loudness, segmental durations and other factors have on the perception

of these phenomena is not well known – this is problematic especially with

the tone sequence models as they usually depend on human produced tran-

scriptions).

The basic problem with intonation models in general is how to separate

accentuation from intonation2, [48]; that is, the word-level phenomena from

the more global, sentence-level phenomena. This cannot be achieved on the

acoustic basis alone; a linguistic description is needed. One should be able

to formulate a set of “rules that can predict accent- or intonation-related

patterns independent of, as well as in interaction, with each other” [48]. On

the basis of this argument, none of the current models can and should be

purely phonological as opposed to phonetic.

Figure 2.2 shows a comparison of four different intonation models ranging

from Pierrehumbert’s tone sequence model to Paul Taylor’s Tilt model. The

Pierrehumbert model, inevitably, belongs to the tone sequence school; Fu-

jisaki’s model is the quintessential superpositional model whereas the Dutch

IPO model [55] lies somewhere between the extremes. The Tilt model at-

tempts to capture the whole spectrum by being both phonological and pho-

2 By accentuation the author means the possible manifestation of lexical stress on the

F 0 contour.
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Fig. 2.2: A comparison of four different intonation models (after [58] and [57]).

Note that all of the models are bi-directional in the sense that they can

be used for both analysis and synthesis of pitch contours. The IPO model

is not discussed further in this work.

netic to the same degree.

The rest of this section will briefly introduce three different intonation
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models: the tone sequence model, the Fujisaki model and the Tilt model.

Modern TTS systems use both tone sequence and superpositional models

and it is difficult to asses which type is more popular among the develop-

ers. According to van Santen, Shih and Möbius, these models of intonation

diverge in notational and formal terms but are, nevertheless, fairly similar

from descriptive or implementation points of view [53].

From a theoretical and philosophical standpoint the tone sequence and

superpositional models seem to follow the traditional split between phonetics

and phonology and their respective methodological discrepancies. Phonol-

ogy has traditionally been based on the methodology of the human sciences

while phonetics has based its explanations on the methodology of natural

sciences [30]. The failure to recognize this fact has lead to many unfortunate

misunderstandings between the two schools.

2.2.1 Tone Sequence Models

This section describes briefly the tone sequence model as introduced by Pier-

rehumbert in [50]. In her model an utterance consists of intonational phrases,

which are represented as a sequence of tones: H and L for high and low tone,

respectively. These tones are in phonological opposition. In addition to

tones the model incorporates accents of three different types: pitch accents,

phrase accents and boundary tones. Pitch accents are marked by a “*” sym-

bol, e.g., H* or L*. Pitch accents may consist of two elements, e.g., L*H.

Phrase accents are marked by a “-” symbol, e.g., H-. Boundary tones are

marked by “%”. Phrase accents are used to mark pitch movements between

pitch accents and boundary tones. Boundary tones are used at the edges

(boundaries) of (intonational) phrases.

The occurrence of the three accent types are constrained by a grammar,

which can be described by a finite-state automaton. The grammar will gen-

erate or accept only well-formed intonational representations. The grammar

for describing English intonation contours or tunes can be formulated in the

following regular expression, which stipulates that an intonation phrase con-

sists of three parts: one or more pitch accents, followed by a phrase accent
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and ending with a boundary tone:



























































H∗

L∗

H ∗ +L

H + L∗

L ∗ +H

L + H∗

H ∗ +H



























































+







H−

L−













H%

L%







Sentences given an abstract tonal representation are converted to F 0 con-

tours by means of phonetic implementation rules. These rules determine the

F 0 values of tones and their temporal alignment with the syllables. The

rules are calculated from left to right and they apply locally – any global

trends (e.g., declination and rising intonation in questions) are caused by the

sequence of tones and their interaction with each other. In a TTS implemen-

tation the tones, which are described in terms of their height and position,

are connected to each other either by straight line interpolations or smoothed

transitions in order to avoid discontinuities. The smoothing is accomplished

by filtering the interpolated signal with e.g., a Hamming window [5].

Tone sequence models have been implemented for several languages in-

cluding German, English, Chinese, Navajo and Japanese [53]. Unfortunately,

no one has implemented a tone-sequence model for Finnish so far.

2.2.2 Fujisaki Model

The Fujisaki model was developed for generating F 0 contours of Japanese

words and sentences. The model is widely used in TTS systems and it has

been applied to at least Japanese, German [49], English [17], Greek [20],

Polish, Spanish [18] and French.

The model is based on the assumption that any F 0 contour can be consid-

ered to consist of two kinds of elements: the slowly varying phrase component

which consists of one or more slowly varying components, and a more quickly

varying accent component (see Figure 2.3). These components are said to be
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related to the actions of the laryngeal muscles, specifically the cricothyroid

muscle, which control the frequency of vibration of the vocal chords. Thus,

the model has a physiological basis.

The model is driven by a set of commands in the form of impulses (the

phrase commands) and a set of stepwise functions (the accent commands)

which are both fed to critically damped second-order linear filters and then

superimposed to produce the final F 0 curve in the logarithmic domain which

is then transformed to absolute pitch values. A good quantitative account of

the model can be found in [19].

Figure 2.3 shows a Finnish sentence “menemmekö Lemille laivalla” (Will

we go to Lemi by boat?) decomposed into its phrase and accent compo-

nents. The figure depicts the signal waveform (on the top) followed by the

actual pitch values (depicted by plus signs), the phonetic transcription (in

Worldbet alphabet [22]) and the phrase and accent commands. The fitted

F 0 curve from the model is drawn underneath the actual pitch values (the

continuous line depicts the final contour and the dotted line the phrase com-

ponent alone).

2.2.3 Tilt Intonation Model

Taylor’s Tilt model [57] is based on the rise/fall/connection model that he

introduced in [56]. Tilt is a bi-directional model that gives an abstraction

for the F 0 contour directly from the data. The abstractions can then be

used to produce a close copy of the original contour. In Tilt, each intonation

event, be it an accent, a boundary, silence or a connection between events, is

described by a set of continuous parameters. As an event-based model it is

phonological in nature. The continuous nature of the parameters, however,

give it a phonetic dimension that renders it very useful for prosody control

in speech synthesis.

The events are described by following parameters (see Figure 2.4): start-

ing F 0, amplitude (the distance between starting F 0 and the peak F 0 (am-

plitude is further divided to rise- and fall-amplitudes), duration (of the event

in seconds), peak position (distance from the start of the first vowel of the
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Fig. 2.3: An example sentence analyzed the Fujisaki model.

event and the peak of the F 0 event and the tilt, which is the result of dividing

the difference of the rise and fall amplitudes by the sum of the rise and fall

amplitudes [57]:
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start F0
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end of eventstart of vowel
start of event

Fig. 2.4: The tilt model and its parameters. The final shape of the contour in this

figure implies a tilt-value of approximately 0.25.

tilt =
| Arise | − | Afall |

| Arise | + | Afall |
(2.3)

The tilt parameter gives the actual shape of the event with a range from

-1 to 1. -1 is a pure fall, 0 is a symmetric peak and 1 is a pure rise. The

shape in Figure 2.4 has a value of approximately 0.25.

The importance of the Tilt model is in its ability to capture both phonetic

and phonological aspects of intonation and its applicability to automatic

speech recognition. This is due to its design goals which state that the model

should have an automatic mechanism for generating F0contours from the

linguistic representation and that it should be possible to derive the linguistic

representation automatically from the utterance’s acoustics [57].

2.3 Prosody Modeling for Finnish

The most conspicuous aspect of any Finnish text-to-speech system is usually

the lack of an intonation model.3 Segmental durations, however, are often

quite well modeled; at least, the quantity degrees are well preserved and the

3 Some synthesis systems have a linearly descending pitch, which attempts to model

the declination in F 0. Others even give users the option of adding random fluctuations to

pitch! And this is not to model the perturbation in the form of jitter found in real speech.
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speech rhythm is acceptable. Most of the Finnish text-to-speech systems are

proprietary and lack any documentation pertaining to the algorithms used

for the models.

Fig. 2.5: Matti Karjalainen’s intonation model for Finnish. a© depicts the

sentence-level component, b© depicts the word-level component and c© is

the superimposed signal used for F 0 control.

Arguably, the most sophisticated intonation and segmental duration mod-

els can be found in the Finnish version of the Infovox speech synthesis system.

Nevertheless, even they are primitive compared to modern standards. The

Infovox system is rule-based [11] and the intonation is carried out with less

than 50 rules and a lexicon of less than 500 word-forms to separate function
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words from content words [61]. The segmental duration model is an imple-

mentation of Klatt-type rules. Matti Karjalainen and Toomas Altosaar [35]

have used neural networks for duration modeling.4

Aaltonen [1] worked on a fairly sophisticated, syntactically driven intona-

tion model in the 1970’s. Unfortunately, Aaltonen’s work was not continued.

Matti Karjalainen also implemented an interesting superpositional model,

which is presented in his doctoral thesis [34]. Figure 2.5 show the compo-

nents of the model. The input to Karjalainen’s model was limited to syllabic

segmentation and certain quantitative analysis of the input phoneme strings.

The lack of prosody models does not imply that Finnish prosody itself

lies in uncharted territory – on the contrary. It is only an implication of the

fact that Finnish speakers as synthesis developers have usually been loyal to

their intuition and misconception that there is no intonation in Finnish or

that intonation is very simple and has direct correspondence to the written

forms of the sentences. The misconception is most likely due to the fact the

intonation is not in distinctive use in Finnish.

4 The segmental duration research described in this thesis is a continuation of that work.
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CHARACTERISTICS OF FINNISH PROSODY AND THE

CORRESPONDING DOMAINS OF MODELING

Finnish is among the languages that use morphology and morpho-syntax to

convey certain types of information that in other languages are expressed

by suprasegmental means. For instance, questions in more formal types of

speech can be fully signalled by structural means – no specific intonation pat-

tern is necessary. This ability is partly due to the free word-order in Finnish,

which in turn, is a consequence of the rich morphology. The emphasis on

linguistic structure has a bearing on the phonetic aspects of utterances – the

structure, brought forth by rich morphology, has to be identifiable from the

utterance, not vice versa. That is, prosody in Finnish may be more tightly

coupled to the linguistic structure of the language than, say, in English.

Finnish prosody is characterized by two conspicuous phenomena: the

fixed place of word stress (always on the first syllable of the word) and the

quantity system which strongly influences the segmental durations (and to a

lesser degree the other parameters as well). The segmental degree of length

(i.e., quantity1) encompasses all sounds of Finnish, thus in effect, doubling the

phoneme inventory of 17 consonants and eight vowels to 34 consonants and 16

vowels.2 Statistically, quantity represents a high frequency phoneme within

1 For more information on Finnish quantity, see [45] and [76].

2 Not all sounds in Finnish take part equally in the quantity dichotomy; long /h/, /v/,

/j/ and /d/ are marginal and long /j/ is very rare, occurring only in certain dialects and

as a phonetic variant in words like [lyij:y] (lead). Long /b/, /g/ and /d/ occur only in

loan words.
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the phonological system: there are 4074 long phonemes in our database of

692 sentences whereas the same data has 4608 /i/ and 4388 /a/ phonemes.

The next most frequent phoneme is /n/ with 3515 tokens. A more detailed

account of the data can be found in Appendix A.

The two quantity degrees have an average duration ratio of roughly two to

one.3 This ratio of lends credibility to the claim shared by most linguists and

phoneticians who are familiar with Finnish that in fact the long phones stand

for a sequence of two identical phonemes. Nevertheless, the distribution of

durations is highly complex – this is best explained by an example; even

though the first [a] in Figure 3.1 is more than twice as long as the second

one, they are both perceived as short by Finnish listeners, furthermore the

first [k] (whose quantity degree is long and is therefore perceived as long)

is approximately equal in duration with the second one, whose quantity is

short (it should be noted that the second [k] is word-initial; nevertheless, it

causes no perception of an inserted pause). The lengthening of the short

sounds is, of course, due to the fact that they reside in an accented syllable.

A more detailed account of the distribution of durations and the effect of

accentuation on durations in our data can be found in Appendix A.

Since this research was concerned only with non-emphatic, declarative

speech, no description of other kinds of utterances is given here. For a good

overview of other types of utterances and of Finnish prosody in general, see

[28].

The rhythmic structure of Finnish is straightforward with a strong sylla-

ble followed by zero, one or two weak syllables constituting a foot. A word

is usually started by a new foot; see Figure 3.2 for a simple example and

Section 3.1 for more detail. This is, of course, a simplification and does not

3 Ilkka Marjomaa [47] has found the average ratio between the durations of short and

long phones to vary from 1:2.1 to 1:2.4 depending on speech rate (smaller ratio for faster

speech). In our database of 692 sentences from one speaker the durations for long and

short phones are 126.9 ms and 69.2 ms, respectively – this yields a ratio of 1:1.83. This is

less than Marjomaa’s results and is probably due to the fact that Marjomaa had a fixed

place for the opposition within an utterance whereas our results show the average over all

occurrences of long phones in the data.
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tarkka kirurgi varoo näköään

tarkka kirurgi varoo

t A r k: A k i r u r g i v A

Time (s)
0 1.1

Fig. 3.1: Wave-form and transcription for the first two words in the sentence:

“Tarkka kirurgi varoo näköään” (A meticulous surgeon is careful about

his eye-sight). The durations for the first two [ � ]-phones are 122 ms and

52 ms, respectively – similarly for [k] the durations are 122 ms and 118

ms.

include cases where the words have a more complex syllabic structure or

when an utterance is started with a non-accented (or non-stressed) function

word (the so called silent ictus), which usually does not occupy the begin-

ning of a foot. Nevertheless, this simplification reflects the very basis of the

rhythmic structure of Finnish.

Another conspicuous aspect of Finnish prosody is that the linguistic func-

tion of fundamental frequency is much weaker than in most European lan-

guages – that is, intonation is not used for linguistic distinctions the way that

is common among so called intonation-languages. This increases the relative

importance of other prosodic parameters in carrying out the required linguis-

tic distinctions. Segmental durations are especially important as they are the
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Fig. 3.2: The stress structure for a phrase “Jyväskylän asemalla” (At the

Jyväskylä station). Note that the long /l/ in the last word is – like

all long consonants in Finnish – ambisyllabic.

most important factor responsible for the perception of phonemic length (for

the relationship between F 0 and duration, see [73] and [4]). Loudness, on

the other hand, has a trading relation with duration in the perception of

prominence [60], which inevitably increases its significance.

The following sections correspond to the domains (or levels) that were

modeled throughout the investigation. With the exception of segmental dura-

tions, all three physical parameters were modeled on all levels independently

(with the exception of loudness, which was not modeled on the sentence

level).

3.1 Lexical Prosody

Unlike the Indo-European languages, Finnish has a very central role for the

word – as opposed to a phrase – as a grammatical and phonetic unit. This

is due to the very rich morphology of the language. Most words in running

text or speech are thus collections of both function- and content-related in-

formation and the distribution of actual function words is much more sparse

than, for instance in English.4 For example, any noun in Finnish can have

4 Shattuck-Hufnagel and Veilleux [51] counted the percentage of function words in En-

glish text and found out that 48 % of the words are function words and the rest either, what
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more than 2000 different surface forms [38]. The grammatical information

is always attached to the end of the stems as suffixes. Therefore, the last

syllables of the word are usually functional/grammatical whereas the content

resides in the beginnings (stems). This and the basic foot structure forces

the lexical stress to the first syllable of the word. Most Finnish stems are

bisyllabic and the most common stem-type is CVCV. The primary stress

falls on the first syllable and the secondary stress on the third syllable which

is always the strong syllable in the second foot of the word (see Figure 3.2

for an example). Even-numbered syllables are usually unstressed. This gives

Finnish its characteristic rhythm.

The fixed stress naturally serves as a place for accentuation – although

the F 0 peaks do not always fall on the stressed syllable; see for instance [29].

Nevertheless, there is no dispute as to the perception of stress and accent on

the first syllable of the word.

3.2 Segmental Prosody

Finnish is among the languages where pitch-related microprosodic variation

has been well attested; see for instance Aulanko [4]. Although the micro-

prosodic characteristics work on the segmental level, they can be seen as

the lowest level of a multi-layered system producing the final realization of

the suprasegmentals in speech. The microprosodic variation is not generally

considered to be a part of the linguistic or the prosodic pattern of the utter-

ance, but rather to be something that is conditioned segmentally either by

the identity of the segments themselves or by their immediate segmental con-

text. That is, this variation reflects the specific articulatory movements that

produce the sounds themselves. For instance, the fundamental frequency

difference between open and close vowels and the effect of immediate conso-

nant context on the fundamental frequency of a vowel seem to be universal

they call intermediate words (adverbs, some prepositions, exclamations, post-determiners,

quantifiers and qualifiers) (5 %) or content words (47 %). The percentage of function

words in our database (692 sentences) is only 23.6.



28 Chapter 3. Finnish Prosody and Domains of Modeling

[75], [4], [74]. Similar variation can be observed with regard to loudness.

The best-known phenomenon is the difference between the inherent loudness

levels of, e.g., open vs. close vowels and sonorant vs. obstruent consonants

[44].

If, however, one considers the final shape of the F 0 or loudness trajec-

tory within a given segment to be a part of the aforementioned multi-layered

prosodic system, the prediction of that shape will be dependent on informa-

tion pertaining to all of those layers or levels. That is to say that micro-

prosodic variation can hardly be abstracted away from the rest of prosody

in a straightforward manner. Nevertheless, microprosodic variation is often

left out of prosody models in text-to-speech systems. Some systems leave

the microprosodic information in the concatenated units themselves and no

further processing is done. Considering the amount of variation found in

speech, this may not be the best approach unless one is willing to accept

the necessary repercussions as to the size of the database or the quality of

the output speech. Furthermore, great care has to be taken when the local

events are superimposed on the global contour.

The developers of text-to-speech systems usually regard microprosody as

a set of a few well-known phenomena (the aforementioned intrinsic pitch and

the effect of the immediate consonant context on the F 0 during a vowel or

a voiced sonorant). This view is, perhaps, a little too simplistic and does

not deal with the possibility that correctly modeled microprosody may well

enhance the segmental intelligibility and naturalness of a system.

The only microprosodic aspect of segmental durations would be the rel-

ative durations of the different parts of sounds that comprise more than one

acoustically different chunk, such as stops and affricates. Nevertheless, no

such phenomena have been investigated so far.5

5 Naturally, the final segmental durations are a product of an interplay between seg-

mentally conditioned factors (e.g., inherent durations). Therefore, it can be said that in

fact, certain microprosodic aspects of segmental durations were modeled by the addition

of segmental and contextual information to the models’ input.
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3.3 Sentence Level Prosody

Naturally, the word-level stress pattern of an utterance forms the basis for

its accentuation pattern. The accentuation itself is carried out by the means

of segmental durations (durations are longer in accentuated syllables (see

Appendix A for more detail)), fundamental frequency and loudness (both

have conspicuous peaks during accentuated syllables).
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Fig. 3.3: The word “sikaa” in the sentence “tupakointi on siis täyttä sikaa ja tu-

pakoitsijat tulisi ampua lähimmässä aamunkoitossa” (‘smoking, then, is

pure swinery and smokers should be shot in the closest dawn’). The la-

ryngealization visible in both the time waveform and loudness contour is

used for signaling finality before a silent pause.

The basic declarative utterance in Finnish usually follows a gradually

declining F 0-curve with a corresponding loudness curve (although the loud-

ness does not always undergo declination). This pattern is common for both
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statements and questions, which nevertheless, usually start with a higher F 0

than statements, but otherwise follow a similar declination pattern. Certain

types of questions may, however, follow a different default pattern [26].

Finality is usually signaled with creaky (pressed) voice or an aperiodic

(sometimes diplophonic) voice during the last (unstressed) syllables of the

utterance. Continuation, on the other hand, is signaled by a higher level of

F 0 before the boundary or some kind of laryngealization if there is a mea-

surable pause within the utterance.6 Figures 3.3 and 3.4 show the two types

of laryngealizations. The examples are from the sentence “tupakointi on

siis täyttä sikaa ja tupakoitsijat tulisi ampua lähimmässä aamunkoitossa”

(‘smoking, then, is pure swinery and smokers should be shot in the closest

dawn’).7 The first figure depicts the word “sikaa” which occurs before a

silent pause and is therefore signaled by a laryngealization and a falling F 0.

Nevertheless, the change in F 0 is minimal (during the long [ ��� ] compared to

the laryngeal effect that can easily be seen on the time waveform and loud-

ness curve. The utterance-final word in the same utterance, on the other

hand, ends with a creaky voice and a premature loss of voicing; see word

“aamunkoitossa” in Figure 3.4.

6 This regular use of laryngeal gestures that are extremely difficult to detect in the F 0-

contour of an utterance is one reason why it is very difficult to apply existing intonation

models in Finnish.

7 This sentence is taken from the database of 692 sentences described in Chapter 4.
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Fig. 3.4: The word “aamunkoitossa” in sentence “tupakointi on siis täyttä sikaa ja

tupakoitsijat tulisi ampua lähimmässä aamunkoitossa” (‘smoking, then,

pure swinery and smokers should be shot in the closest dawn’). The

diplophonic voice, which can be seen in all displays is used to signal

utterance finality.
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Chapter 4

DATA

The research presented in this thesis has co-evolved with the Finnish Speech

Database [3] in the sense that the scope of the study correlates with the inclu-

sion of speech data in the database. On the other hand, the type of speech

that has been included has largely been determined by the requirements

of our research. Since the database initially consisted of isolated words, it

was inevitable that lexical prosody was studied before moving into modeling

whole utterances.

The following sections give a short account of the different sets of data

that were used for the research ranging from lexical prosody and micro-

prosody on both lexical and sentence level to sentence level prosody with

morphologically and morpho-syntactically tagged data. The current state of

the database is shown in Table 4.1.

Throughout the tests the material under study was divided into training

and evaluation sets with the ratio of 2 to 1, respectively. This division was

always based on random selection of data.
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Description Items/speaker Speakers Labeling

phonetically balanced

isolated words 2000 2 male manual

phonetically balanced

isolated sentences 117 2 male/female manual

syntactically diverse

sentences 276 5 male semi-autom.

diverse sentences 1126 1 male manual

Tab. 4.1: The contents of the Finnish Speech Database used for the studies (as of

August 2000). The diverse sentences were further divided into questions

(ca. 300 sentences), exclamations (ca. 100 sentences) and basic declar-

ative sentences (ca. 700 sentences). A recording of these sentences by a

female speaker is also in preparation.

4.1 Segmental and Lexical Level Experiments

The segmental and lexical level experiments were run on several subsets

of the database. These subsets were chosen according to the problem at

hand – for segmental prosody studies at the word level, both isolated words

and sentence material were used. The sentence material consisted of 117

sentences spoken by two male and two female speakers. The isolated words

consisted of 889 phonetically balanced words with a wide coverage of different

diphones and triphones spoken by two male speakers. Some tests were run on

a 276 sentence, syntactically diverse (balanced) material spoken by five male

speakers (this material was not, however, labeled by trained phoneticians and

was not reliable for anything but very coarse pitch estimation). The material

was prepared for a study on Finnish intonation [40].

Since loudness was only studied with the isolated word material, the

varying signal amplitudes had to be normalized. A normalization scheme

to keep the inputs for the loudness networks as constant as possible was

devised. The scheme is described in [63]. The loudness curves for the study
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Fig. 4.1: The distribution of sentence durations in the 692 sentence set of declar-

ative sentences. The horizontal axis represents the duration of the sen-

tences in seconds.

were calculated with the QuickSig signal processing system1 from auditory

spectra.

Two auto-correlation based pitch-detection systems were used for attain-

ing the F 0-curves for the material.2

1 The QS-system serves as an application development environment for the Finnish

Speech Database [36]

2 One method was implemented in the QuickSig -system and some curves were calcu-

lated with the Praat program [9].
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4.2 Sentence Level Intonation and Morphological

Experiments

For the sentence level experiments a database of 692 declarative sentences

selected from a corpus of a Finnish periodical (Suomen Kuvalehti, 1987) was

used. The sentences were selected randomly from a set of 60 000 sentences

where the occurrence of foreign words had been minimized. Moreover, the

lengths of the sentences (as phonemes) were kept between certain limits to

keep their consequent durations within natural bounds with respect to speech

production. The sentences were kept between 50 and 150 graphemes. The

distribution of consequent sentence durations is shown in Figure 4.1. Figure

4.2 shows a typical isolated sentence in the database. The figure also depicts

the typical creaky voice at the end of the utterance. This phenomenon is

extremely common in this type of speech in Finnish (in our data more than

90 % of the sentences end with a creak). For this reason the experiments

described in Section 6 which included sentence level pitch were run on every-

thing but the last words in the data. The creaky voice and the premature

cessation of phonation at the end of the utterances seem to be systematically

distributed and merit a model of their own.3

The sentences were aligned with phonetic transcriptions with the aid of

a Hidden-Markov-model based system (HTK by Entropic) and further man-

ually corrected by a trained phonetician. The orthographic forms of the sen-

tences were then analyzed morphologically by a two-level morphological tool

(FINTWOL by Lingsoft Ltd.) and the analyses were further disambiguated

by hand and attached to the word level transcriptions in the database.

According to other researchers in the field, the study of prosody with

a set of isolated sentences is bound to be doubtful as the “speaker has no

emotional involvement in their content and no hearer for whom the message

is intended, other than a microphone and any future listeners of the record-

ing” [10]. However, Välimaa-Blum [68] argues that intonation in Finnish has

3 Since these phenomena are based on voice quality, they are impossible to model by

the basic control parameters (F 0, timing and intensity).
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Fig. 4.2: A typical sentence in the sentence level test set: “sellainen malli tuntuu

viehättävältä” (Such a model feels charming). The typical creaky voice

at the end of the utterance can be seen (the smaller box within the

waveform display and the spectrogram). Note that although there is

basically no detectable fundamental frequency during the creaky period,

the intensity level remains fairly high. Note also that a typical pitch

detection algorithm is unable to detect the F 0 at the end of the utterance;

only two values are detected and even those are doubtful.
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default forms that are directly related to the utterances syntactic form, its

semantics and function, which is determined by its context. Therefore, it

can be argued that the database of isolated sentences can be used for fruitful

research on prosody. This is based on the grounds that the sentences are

decontextualized and that the function of the sentences is neutralized or nor-

malized (the function is simply to produce the decontextualized utterances

as neutrally as possible).

If there actually is a default form of intonation for each of the sentences,

this may well be the only way to learn what that form is. Any deviation

from the default will then be the result seen in longer stretches of speech

or discourse that provide a stronger semantic and functional context for its

parts. The deviations themselves are difficult to measure unless the default

form is known beforehand.
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METHODS

This chapter describes the neural network methodology used in our research.

First, a short introduction to multi-layer-perceptrons is given followed by a

description of their application to Finnish prosody.

5.1 A Short Introduction to Artificial Neural Networks

Artificial neural networks are widely used in speech research today. Their

uses range from acoustic pre-classification for automatic speech recognition

[32] to full-scale neural net based synthesis systems ([33] and [37]). But what

is an artificial neural network and why is it good for modeling prosody?

Basically a “neural network is an interconnected assembly of simple pro-

cessing elements, units or nodes, whose functionality is loosely based on the

animal neuron. The processing ability of the network is stored in the inter-

unit connection strengths, or weights, obtained by a process of adaptation,

or learning, from a set of training patterns” [21].

A plethora of different types of artificial neural networks have been de-

vised with the multi-layer perceptron (MLP) – especially when trained with

the back-propagation algorithm – being perhaps the most widely used. An

MLP consists of at least two layers of neurons; the hidden and output lay-

ers with a separate layer of nodes for the input. There is a certain amount

of confusion as to the number of layers in the literature – some authors in-

clude the input layer in their description whereas other do not. Therefore,

one encounters the terms two and three layer networks as describing similar

architectures.
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Σ ......

inputs from other nodes

outputs to other nodes

Fig. 5.1: An artificial neuron as found in most multi-layer perceptrons.

5.1.1 Artificial Neuron

Figure 5.1 shows graphically the structure of an artificial neuron (or a node

in neural network parlance). The following description describes both the

input to the node and its activation in more formal terms.

The input to a node or a neuron can be defined by the following equation:

neti =
∑

j

wijaj (5.1)

This states that the net input is the sum of all inputs where each input

is a product of node j ’s activation aj and the weight from j to i (wij). The

node’s response to the net input is determined by its response or activation
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Fig. 5.2: The logistic (sigmoid) function.

function. This function can be anything from a simple linear response to a

so called logistic function:

g(neti) =
1

1 + exp(−neti)
(5.2)

Equation 5.2 defines a basic sigmoid function which is graphed in Figure

5.2. The sigmoid activation function makes the node act as a Threshold Logic

Unit for both small and large inputs (i.e., it outputs either a 0 or a 1) but has

a gradual and more sensitive response for inputs in the middle of its range.1

In these cases the nodes are capable of categorization even along dimensions

that are continuous in nature [14]. This mixture of linear and nonlinear

responses is what lies behind the behavior of these nodes and makes them

so useful when grouped properly. Note that with the absence of input (i.e.,

when the input = 0.0) the nodes’ response is 0.5. It is often desirable to

have a default activation other than 0.5 and a bias is used. The bias takes

the form of an additional input (from a separate node) that is constant for a

given node (although different nodes may have different biases).

1 This response is, in fact, linear and a network with sigmoidal activation functions

contains a linear network as a special case [6].
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5.1.2 Network Architecture

According to the description above, the network’s knowledge resides within

the weights between its nodes as well as in the form of the network’s ar-

chitecture – to be efficient, the architecture has to match the problem it is

designed to solve. A network with an unfavorable number of units on any of

its layers can be expected to be incompetent and inaccurate when compared

to a network with the correct number of nodes. The determination of the

correct architecture is, however, a trial-and-error process which reflects the

theoretical views of the modelers.2

5.1.3 Learning in Neural Networks

Since the knowledge within a network is represented by the weights between

its nodes, a means to adjust those weights from their initial (usually random)

values to something that best represents the solution to the problem at hand

is needed. In other words, the network needs to learn and one needs a way

to teach it.

The most widely used training algorithm for multi-layer perceptrons is

the so called error back-propagation or EBP. The aim of the algorithm is to

adjust the weights from the output units to the hidden layer(s) and onwards

from the units in the hidden layer to the input units in a manner which

minimizes the discrepancy between the network’s output and its target, the

desired output. In back-propagation this is done by propagating the error

2 It has actually been said that all of the modeling that a neural net is capable of can

be expressed in standard, classical statistical means and the success of the neural net

methodology reflects the cleverness of different input representations that modelers have

designed. When our research is considered in this light, the verdict is not necessarily a

bad one: this kind of methodology suits especially well the determination of the important

factors in the symbolic domain that influence the physical aspects of prosody. There are

two points that defend our choice of methodology: the networks’ ability to model the

underlying interactions in the data which does away with some of the problems brought

about by the nature of our data and the ability to use similar models for all of the physical

parameters (F 0, segmental durations and loudness).
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(i.e., the network’s output for a given training vector (t− o) subtracted from

the target, or (ti − oi) if there is more than one output node)) back to the

network in such a way that the weights are gradually adjusted to optimal

values. This process is in no way deterministic and the networks do not

always converge on the same solution. Elman and his co-authors give a

simple formal account of the back-propagation algorithm in [14].

The existence of target values implies that multi-layer perceptrons gain

their knowledge in a supervised manner. This is in stark contrast with the

real world where most learning is done without supervision. This kind of

learning is captured in networks that are capable of learning without super-

vision – Teuvo Kohonen’s Self Organizing Maps (SOM), [42] being a prime

example.

5.1.4 Pre- and Post-processing

Since the input to the network can only be numerical and text is graphical in

nature, a pre-processing phase is needed. That is, the textual representation

of speech has to be transformed into a numerical representation.

The fact that the networks’ mapping serves a general purpose implies that

less emphasis is needed as to the care of optimizing the inputs than is the

case with simple linear techniques, e.g., multiple linear regression (see [65] for

an example). This is not to say that one can go about pre-processing care-

lessly. In the case where the (input) data has to be transformed into another

representation (as opposed to transformations within representations), the

network’s performance is directly dependent on the amount of prior knowl-

edge incorporated in the input. In relation to prosody, the prior knowledge

dictates what information that is known to have an influence on the prosodic

parameters should be included in the input. For instance, the phonetic con-

text is known to affect segmental durations and should, therefore, not be left

out of the model.

Prior knowledge should also be used to determine how to post–process

the network output – the output coding should reflect the way the parame-

ters are distributed. For instance, it is well known that segmental durations
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Fig. 5.3: Schematic illustration of the use of pre- and post-processing of data for

neural network mapping (after [6]).

follow a logarithmic distribution and it is, therefore, more practical and ad-

vantageous to use the logarithm of the duration as a target value. Moreover,

the logarithm can be further coded so that the mean of the durations is

located in the middle of the sigmoid response function.

Figure 5.3 shows the process of pre- and post-processing in conjunction

with a neural net mapping (after [6]). In our case, the pre-processing stage

refers to the transformation of text and linguistic structures to numerical

inputs (see Section 5.2.1 for more detail) while post-processing refers to the

target and output coding of the physical parameter values to match an opti-

mal output from the networks. In order to get a final output from a network,

the coded values have to undergo the inverse of the original output coding.

5.1.5 Feature Selection

In order to make the problem easier for the network to model, some infor-

mation in the training data has to be ignored. That is, not all information

inherent in the data is useful for training. For instance, defining phonetic con-

texts with phone identities rather than grouping them under broader classes

increases information in the training data without giving the network any

advantage. The process of reducing the dimensionality in the input is called

feature extraction or feature selection. Given a linguistic input, feature se-

lection can be based on prior linguistic knowledge. In this case, the features

are the well-known phonological and linguistic ones that can be calculated

from the textual input.

The reduction of dimensionality by grouping the features or by repre-

senting the units by higher-level features (e.g., using the feature nasal rather
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Fig. 5.4: A global view of the model for prosody control proposed in this study.

than the phone identities [m],[n], and[ � ]) works to our advantage in two ways:

it reduces the scarcity of data by reducing the number of different feature

vectors and it ensures that only the relevant information is given to the net-

works to learn from. Naturally, most of this linguistic knowledge is discrete.

To avoid artificial ordering, certain care must be taken when coding it.

5.2 Neural Network Methodology Used in this Research

Figure 5.4 shows the overall architecture of the model for prosody control

described in this thesis.

In our experiments the network’s task was to compute from one to three

values (duration, average pitch, average loudness-level or any combination

therein) for a known phoneme in a context defined by the phoneme sequence

within a word or a sentence and additional information pertaining to the
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syllable, word or utterance in question.3

Since the sentence level experiments with morphological information re-

quired the most complex input representation which actually included all of

the input used for the earlier experiments, it is sufficient to describe only

the final composition of the input vectors here. It should be noted that

this coding scheme differs in minor details from the one used for lexical and

microprosody experiments. However, the differences are not significant and

have no bearing on the final results.

Each type of network (duration, loudness or pitch) was given an identical

training vector. The composition of the training vector was varied systemat-

ically throughout the tests. In order to determine the optimal network size

for a problem, the number of input and hidden nodes in the networks was

varied. This was done by varying the length of the phone context window,

choosing different factor combinations for the network input and varying the

number of hidden nodes in a systematic manner. All results from the tests

are described in Chapter 6.

Since the network architectures and data representations for different

tasks were kept as similar as possible throughout the tests, certain inferences

could be made from the influence of the different factors on the parameters’

behavior.4 The basic network architecture used was based on a two-layer per-

ceptron5 architecture with fully connected nodes throughout (see Figure 5.5).

The activation function of the nodes in the hidden layer as well as the output

node was a basic sigmoid. The networks were all trained with the standard

back-propagation algorithm.

3 Only a few tests were run for concurrent parameter prediction for the reason that a

set of specialized nets always performed better than a network trained to predict more

than one parameter at a time.

4 This will hopefully make the system’s transition from the laboratory to the real world

a little less painstaking.

5 Feed-forward network is practically synonymous with multi-layer perceptron. It should

also be noted that some authors use the concept of layer to include the input nodes. Thus

the networks employed in this study would consist of three layers.
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Input layer Hidden layer Output layer

Fig. 5.5: The basic neural network architecture used for all experiments. The

layers are fully connected. The activation function in both the hidden

and output layers is a sigmoid. The output of the network is either a

coded loudness value, a coded fundamental frequency value or a coded

segmental duration.

Since this study was concerned with the relative importance of different

linguistically motivated factors in the network input, the optimal perfor-

mance of the networks was not always the primary goal. It may even be

argued that the basic MLP methodology is not well suited to the problems

at hand – intonation and segmental duration modeling on the level of ut-

terances. For instance, recursive networks have enjoyed better success in

modeling intonation [59]. However, Campbell [10] has successfully used a

similar methodology for segmental duration modeling.

It must be emphasized that the models described here do not attempt

to predict F 0 or loudness curves per se, but instantaneous values within an

utterance. The models simply map values between a phonetically and lin-

guistically motivated input vector for a certain unit in a sequence and a
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corresponding physical parameter. Any curve or trajectory is just a side-

effect of predicting values for a sequence of vectors that earn their cohesion

from being calculated from the same utterance and being reconstructed into

a similar sequential order. This is important when one looks at the problem

from the point of view of selecting the right kind of neural network archi-

tecture for a given task. Viewed in this light, it should be clear that no

time series estimation or forecasting is being done with the models presented

here and therefore the networks do not need to have information about their

prior behavior. That is, a simple multi-layer perceptron trained with back-

propagation is sufficient for the purpose.

No explicit prosodic information was used. Therefore, the networks’ task

was to associate the given prosodic value (pitch in semi-tone, logarithmic du-

ration) with the symbolic information in the linguistic and spatial description

of the sentence.

The final input to the network consisted of coded values for the current

phone or syllable and the current word. Also, a window of three units on

either side of it was similarly coded and added to the input vector. Thus the

duration network’s input consisted of word-related and phone-related data

covering a certain span of the input text as well as data concerning the place

and size of the current units in the sentence (see Figure 5.7 for more detail).

The neural networks were trained speaker-dependently, i.e., one or more

models were generated for each speaker.

The individual coding schemes are described in the following papers: lex-

ical experiments [62]; microprosody for pitch and loudness (isolated words)

[65]; microprosody on the sentence level [64], [63] and [66] and sentence level

prosody augmented with morphological and morpho-syntactic information

[67].

5.2.1 Input Coding

Input Data Representation – Words

Tables 5.1 and 5.2 show the factors that were given as input to the networks.

All factors were translated to a numerical representation so that the values
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Current phoneme:
    − identity
    − broad class
    − quantity degree

Nearest neighbor:
    − broad class
    − quantity degree

Other neighbors:
    − consonant vs vowel
    − quantity degree

Region of input vector dedicated to phonetic context

Fig. 5.6: The representation of phonetic context in the neural network input.

varied between 0.0 and 1.0. Those factors that had more than three levels

(e.g., case with 15 levels) were distributed to two nodes. This is akin to the

1-of-C coding scheme described in [6].

As can be seen in Table 5.1, most of the morphological factors concern

words of a certain part-of-speech only; e.g., comparation is inherently con-

nected to adjectives. Verbs on the other hand have more morphological

features and more factors attributed to them than other words. Whenever

a factor was unrelated to the word being coded, a small, non-zero value was

added to the input vector. Thus, it made no sense to test each morpholog-

ical factor’s influence against the whole set of words and the morphological

factors were tested as a whole against other factors (see Section 6.3 for more

detail).

Input Data Representation – Phonemes

The information relating to phones and phonemes for coding the phonetic

context consisted of three different levels of description depending on the

proximity of the current (predicted) phone to the rest of the phones included
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Morphological factors Values Number of nodes

Comparation 3 1

Case 14 2

Number 2 1

Mood 4 2

Tense 2 1

Voice 2 1

Person 7 2

Negative 2 1

Infinitive/participle 6 2

Suffix 2 1

Tab. 5.1: The morphological factors concerning words and the number of necessary

values that were coded as input to the networks.

Coded factors Number of values Number of nodes

Function word 2 1

Punctuation 2 1

Compound word 2 1

Part-of-speech 15 2

Place in syllable continuous 1

Place in word continuous 1

Place in sentence continuous 1

Length in phones continuous 1

Length in syllables continuous 1

Length in words continuous 1

Tab. 5.2: Other types of information pertaining the phone, word and sentence in

question and the number of values needed.

in the input. That is, the phonetic context was described in a heterogeneous

way.
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The coding of the current phoneme included its identity and broad class

broken down between two nodes and its length degree. The nearest neighbors

to the current phoneme were coded according to their broad class (e.g., nasal)

and their length. Any further phonemes were coded as either vowels or

consonants and being either short or long. See Figure 5.6 for more detail.

Input Data Representation – Size and Place

Fig. 5.7: The hierarchical coding of relative position and size of the current (esti-

mated) phone or syllable. In this case the phone [v] is being estimated

and its place is coded according to its position in the syllable [va] of length

two (phones). The syllable’s position is coded in relation to the word [va

. roo] with a length of two syllables. The word is further given a code

according to its place in the sentence /tarkka kirurgi varoo näköään/

with a length of four words (“A meticulous surgeon is careful about his

eyesight”). This yields six values for the networks’ input vector that con-

cisely describe the relevant units’ places in the hierarchy as well as their

lengths: 0.0 and 0.2773 for the phone; 0.0 and 0.2773 for the syllable;

0.6666 and 0.5546 for the word.

Finally, the relative position of the estimated phone within the word,

syllable and sentence was added according to a scheme that takes into account

the units’ sizes and position in a hierarchical representation of the utterance;

see Figure 5.7 for more detail.
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5.2.2 Output Coding

In all but the microprosodic experiments the network’s output consisted of a

single value for each phone, or, in the case of sentence level F 0 experiments, a

syllable. In the microprosody experiments three to nine values were generated

for each (voiced) phone.

In order to yield a single value for loudness and pitch, the original time

functions were reduced to an average for each phone. The central third of the

whole phone was chosen as the span to be averaged. Naturally, for segmen-

tal level, microprosodic networks, no averaging was needed and the networks

were trained to predict from three to nine absolute pitch or normalized loud-

ness values for each phone. This was done to capture the shape of the pitch

or loudness contour during the predicted sound.

It is a well known fact that segmental durations follow a normal distri-

bution on a logarithmic scale (see Figure 5.8). Therefore, the network was

output coded to yield the logarithm of duration which was further coded

so that the values remained between 0.0 and 1.0. Similarly, the output of

the pitch-network was the frequency value in Hertz converted to semitones

which was further coded to a value between 0.0 and 1.0. The network error

was simply the target value minus the output value, i.e., (t − o). The errors

reported in Section 6 are all average absolute errors in percent: thus, an error

of 5 % for pitch would be 5 Hz at 100 Hz.

Thus, the target values for the networks were as follows:

• Duration networks: log of duration (mapped linearly to values between

0.0 and 1.0)

• Pitch networks: semitone (mapped linearly to values between 0.0 and

1.0)

• Loudness networks: phon (mapped linearly to values between 0.0 and

1.0)

In order to study the influence of morphological information on the net-

works’ performance to predict F 0 values, the syllable nucleus – instead of a
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Raw and Logarithmic Distributions for Segmental Durations

’duration-distribution.asc’
’duration-distribution-log.asc’

Fig. 5.8: The distribution of durations in the 692-sentence database: both

raw durations in milliseconds (leftmost, skewed distribution) and log-

transformed durations are plotted.

single phone – as the predicted unit, was chosen. Thus, the target value for

the network was an averaged F 0 value for the center one third of the sylla-

ble nucleus. This is a very coarse way of calculating the pitch values for it

ignores partially the shape of pitch accents as well as their exact placement

in relation to the syllables. It also produces a fairly large margin of error

concerning the values usually deemed important in relation to perception of

pitch, that is, the peaks and valleys of the pitch contour as well as their

placement in relation to the syllable nucleus.
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Chapter 6

RESULTS

This chapter summarizes the results from the various experiments which

were conducted during the research. The results are presented in a concep-

tually motivated order that does not necessarily reflect the order in which

the studies were conducted. The discussion of results from the lexical and

microprosodic studies are basically duplicated from the publications (see the

list of publications on page xxv) with a little more discussion added, whereas

a more detailed discussion of the results from the sentence level studies is

given.

The overall results obtained in all of the experiments are very encourag-

ing and point to possibility of using this methodology, as it is, for prosody

control in a TTS system (see Chapter 7 for more details). Since the modeling

task for isolated words – as opposed to isolated sentences – is less complex

in nature, it is not surprising to find that the results are better as well. All

in all, the results for segmental and word level prosody stay within the per-

ceptual thresholds for speech, whereas the results for sentence level networks

generally perform somewhere in the area around the thresholds as reported

in the literature:

• Networks modeling word level loudness achieved an average error of

2.2 phon whereas segmental level networks error was 2.6 phon at best

(1 phon is generally considered just noticeable for non-speech sounds),

whereas the just noticeable difference (JND) for more speech-like sounds
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varies from 1.0 to 4.0 dB1 [54].

• Networks modeling word level pitch achieved an average error of 3.5 %

which corresponds to about 0.6 semitones and is well below the 1.5 to

2 semitone JND for speech [55].

• Networks modeling segmental duration on word level achieved an aver-

age error of approximately 12 %, which is well below the 20 % threshold

for Finnish as reported in [35].

• Networks modeling segmental duration on sentence level achieved an

average error of approximately 17 %.

• Networks modeling pitch on sentence level achieved an average error of

approximately 8 % (1.33 semitones), which is within the JND for pitch

perception in running speech.

Nevertheless, it must be emphasized that the errors reported here are av-

erages and the networks sometimes make predictions that are well beyond the

reported thresholds. This is especially the case with sentence level networks.

Some analyses of the errors are discussed in Section 6.3.

6.1 Segmental Prosody

As mentioned earlier, segmental or microprosodic variation was studied in

relation to F 0 and loudness. Table 6.1 shows the performance of the segmen-

tal level networks on both pitch and loudness. The values in the table are

average absolute errors in percent and do not depict the networks’ ability to

predict the actual shapes for the contours during the predicted phone; this

can be seen in Figure 6.1 which shows the performance of an F 0 network

against actual data. It should be mentioned that these tests were run on

1 At the loudness and frequency ranges of speech the phon and dB scales are practically

equal.
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isolated words which are, as a matter of fact, always accented. This sim-

plifies the network’s task in the sense that it can predict the accentedness

from the position of the current phone and its phonetic context.2 Accent-

edness, naturally, defines the basic shape of the given contour during the

phone; e.g., the shape of the F 0 contour during accented vowels often con-

tains a clear peak whereas unaccented vowels tend to have flat3 or concave

shapes. Nevertheless, the F 0 shapes of accented phones (especially vowels)

vary greatly depending on the segmental make-up and context of the current

syllable. This can be seen in Figure 6.1 where the shapes of the two accented

[ � ] vowels are markedly different (lower left and middle right panes).

The networks’ good ability to predict the shapes of the F 0 and loudness

curves was, therefore, partly due to the fact that they did not need to predict

whether a given phone was in an accented syllable or not; this information

was directly related to the position of the current syllable in the word.

2 This is, naturally, due to the fact that lexical stress in Finnish always falls on the

first syllable of the word. However, this does not mean that the consequent F 0 and

loudness peaks occur during the lexically stressed syllable; see for instance the first word

(“olennaisia”) in Figure 6.6.

3 That is, more or less linear shapes that are either rising, falling, or level.
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Fig. 6.1: Examples of F 0 networks’ results (circles) plotted against natural data

(squares) (from [65]). The current or predicted phone is printed with

bold-face letters.

Table 6.1 summarizes the results for a group of networks with a varying

degree of specialization for two male speakers (two sets of identical words

spoken by the speakers). It is fairly conspicuous that the results for Speaker

1 are generally better than for Speaker 2 – only in two out of sixteen cases are

the results better for Speaker 2. This may be a consequence from a multitude
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of factors – however, Speaker 1 had (at the time of recording) much more

experience in speaking in an anechoic environment, which lead to much less

prosodic variation in the material. Speaker 2, on the other hand, tended to

over-articulate the words leading to unnaturally long segmental durations at

times as well as unnaturally large variation in loudness.4

Pitch (% error) Loudness (error in phon)

Network trained for: Speaker 1 Speaker 2 Speaker 1 Speaker 2

Voiced 1.66 2.07 2.61 3.22

Vowel 1.39 2.01 1.76 2.50

Sonorant 1.76 1.88 3.05 3.45

Voiced Stop - - 4.59 3.56

Unvoiced - - 3.66 4.45

Fricative - - 2.55 3.28

Unvoiced Stop - - 3.18 3.39

[ � ] 1.40 2.18 1.37 1.76

[l] 1.18 1.74 2.48 2.30

[s] - - 2.33 2.53

[ � � ] - - 3.28 2.32

Tab. 6.1: Segmental level network estimation results (average absolute error in

percent) for pitch and loudness — two male speakers. The pitch values

are in Hertz (average percent error) and the loudness values are aver-

age phon. The values for [ � � ] are for the release phase only. The term

“sonorant” refers to voiced, continuant consonants (from [63]).

4 The 889-word material used for both segmental and word level prosody experiments

was recorded in an anechoic environment without auxiliary auditory feedback for the

speaker (e.g., headphones), which in the case of Speaker 2 lead to some compensatory

raising of the voice and consequent (and somewhat unpredictable) prosodic variation.
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6.2 Word Level Prosody

The term word level, as used here, refers to the fact that these tests were

run on isolated words. Naturally these words are bound to have a residue of

prosodic variation from larger domains; mainly the utterance. The material

was, however, recorded in a manner which minimized sentence or utterance

level effects; the words were each spoken three times with a small pause

between the tokens. Since the tokens were identical, the speakers were able

to avoid an obvious list intonation. The possible prepausal lengthening effect

was also minimal – by a rough estimate, over ninety percent of the time the

middle token was used for final data and the rest of the tokens were discarded.

This section describes the results from a series of three tests which were

run to determine:

• the level of specialization necessary for adequate prosody control,

• the effect of the size of phonetic context on the network performance,

and

• the relative importance of different input factors to the networks.

6.2.1 Specialization

It is often the case that the networks need to specialize on a subset of ob-

jects in order to minimize the overall error over all types of units in question.

Specialization turned out to be critical with networks predicting segmental

durations on the word level. For optimal performance, 16 networks – which

were categorized according to natural phonetic or phonological classes – had

to be trained. Figure 6.2 depicts the results of specializing a set of networks

for lexical level segmental duration prediction. On the other hand, estimating

either average pitch or loudness levels turned out to be more straightforward

— dividing the task to cover only a subset of phones did not yield com-

paratively better results. The figure shows the error percentages for a set of

duration networks that were trained for one speaker’s data of 889 words. The

tree depicts the optimal distribution of networks for the task. The leaves of
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the tree comprise the optimal set of networks with an approximately 12 %

average error.

Short Vowels
12.0%
Short Vowels
12.0%

Short Consonants
18.5 %
Short Consonants
18.5 %

Long Phones
7.7%

Long Phones
7.7%

Long 10.4 %Long 10.4 %

All Phones
16.9%

All Phones
16.9%

Consonants
19.5 %

Consonants
19.5 %

Short Phones
18.1%

Short Phones
18.1%

Long Vowels
7.3%
Long Vowels
7.3%

Vowels
13.8 %
Vowels
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Long Consonants
11.0 %

Long Consonants
11.0 %

Nasals
19.5 %
Nasals
19.5 %

Fricatives
14.0 %

Fricatives
14.0 %

Semivowels
21.1%

Semivowels
21.1%

Short 13.0 %Short 13.0 %

Long 5.0 %Long 5.0 %

Short 17.8 %Short 17.8 %

Long 8.5 %Long 8.5 %

Short 14.2 %Short 14.2 %

Short 19.7%Short 19.7%

Long 10.6%Long 10.6%

Stops
12.5 %
Stops
12.5 %

Fig. 6.2: Error percentages for lexical level duration networks (from [64]).

There is a consistent difference in the networks’ performance in relation

to the long vs. short categories of phones; e.g., the error for a network trained

on long stops is only 5 % as opposed to 13 % for short stops. It is not immedi-

ately clear why it is so and further analysis of the training data is needed for

an explanation. With respect to the number of occurrences, the short phones

outnumber the long ones with a ratio of nine to one. This, however, does not
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explain the difference in performance – neither does the overall variability

in the absolute or raw durations. The standard deviations for the long and

short durations are 0.067 s and 0.054 s, respectively. The log-transformed

durations, on the other hand, reveal a different picture with the short du-

rations having a relatively large standard deviation compared to the long

durations (0.55 vs. 0.20, respectively). The relatively small variability of the

durations of the long phones may be due to various reasons: the long/short

distinction has to be maintained, without exceeding certain boundaries which

may be rhythmically determined. Moreover, long consonants cannot occur in

word-initial or word-final positions where their durations are bound to vary

more due to residue from phrasal factors. The relatively good performance,

then, is due to the fact that the networks were trained to predict durations

in the logarithmic domain and the smaller variance in that domain make the

networks’ task easier.

6.2.2 Effect of Context Size

Figure 6.3 shows the effect of phonetic context on a duration network. The

y-axis stands for prior context and the x-axis for context after the current

phone as a number of phones. The context is measured as the number of

phones on each side of the current one. The figure clearly indicates that

increasing the contextual information has a beneficial effect on a network’s

performance.

One conspicuous fact is visible in Figure 6.3; after a context size of ±2,

increasing the right context leads to no improvement in performance whereas

increasing the left context has nearly the same effect as increasing both con-

texts at once. This finding is difficult to interpret due to small size of training

data. Nevertheless, the results beg for an intuitive interpretation concerning

speech production; it seems that the already produced segments have more

influence on the duration of a given segment than the ones still in planning.

This gives support to the claim that the duration of a word-final vowel in

a CVCV word in Finnish is influenced by the length of the preceding vowel

and not vice versa (see for instance [45] and [76]). A similar effect could be
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Fig. 6.3: Average absolute relative errors for a duration network trained to esti-

mate vowel durations as a function of the input vector’s composition.

The horizontal axis represents the right context and the vertical axis the

left context as numbers of neighboring phones. Each pair is an average

result of five separate neural networks trained for 500 training iterations

of the training set. The minimum error (12.26 %) occurs at (-4,4) and

the maximum error (20.14 %) at (0,0). From [64].

observed for F 0 but not for loudness.
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6.2.3 Relative Importance of Different Input Factors

A study to determine the effect of adding different factors to the network

input was also carried out. This was done in order to measure the factor’s

relevance and influence on the behavior of the physical parameters. These

results are shown in Figure 6.4. The methodology to obtain these values was

similar to the one described in Section 6.3. That is, the aggregate improve-

ment of network performance when a certain factor (e.g., phoneme identity)

was added to an otherwise similar network input was measured. Having six

different factors to test lead to 26 − 1 = 63 different combinations of input

to test.5 The improvement, then, was the averaged difference between the

networks’ error before and after adding a factor. For n factors. each factor

was added 2n/2 times to the input. The final results are averaged for five

different test runs. All in all, 315 networks were trained and tested. Each

network was trained for 500 cycles and the minimum evaluation error was

used for the result.

In summary, the results state the obvious: phoneme length is the most

important factor in relation to segmental durations followed by phoneme

identity, which points to the well known fact that phones have intrinsic du-

rations. A more interesting result is that phoneme identity seems to have

practically no effect on the pitch networks’ performance. This suggests that

the intrinsic pitch, as described in [4] and [75], may not be realized in other

than tightly controlled test conditions and material.

5 The omitted combination stands for the lack of any input; a network without input

generates a random output and cannot be used as a measure against other factors.
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Fig. 6.4: Averaged values for different factors’ effect on the network performance:

pitch and loudness (right) and duration (left). The y-axis represents

the average decrease in average percent error when a factor is added

to the input vector. The results are for two speakers (MK and MV).

The abbreviations are as follows: PNUM, number of phonemes in word;

SNUM, number of syllables in word; PLEN, segmental length (long vs.

short); SPOS, syllable position in word; PPOS, phoneme position in

word, PID, phoneme identity. From [64].

6.3 Sentence Level Prosody

On the sentence level 6 two different problems bearing on the modeling were

of interest: on the one hand the relative importance of grammatical – mainly

morphological – information had to be determined and, on the other hand,

the prediction accuracy had to be determined. Results from adding mor-

phological information to the network input are discussed in Section 6.3.1.

Specialization, as discussed in the previous section, had no considerable effect

on sentence level network performance. The context size was kept constant

6 The terms sentence and utterance are used interchangeably here.
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at ±3 words and phones throughout the tests.

As the modeling task becomes more complex with longer stretches of

speech, the actual performance of a single network becomes more important.

Therefore, a series of investigations on the network error was conducted and

the results are discussed in section 6.3.2.

6.3.1 Influence of Morphology on Network Performance

Morphology has traditionally played a minor role in prosody research and

prosody control in TTS. Finnish is, however, a language in which morphol-

ogy plays a very central role and a question naturally arises as to what degree

does it influence prosody? A test to determine the influence of morphologi-

cal information on the networks’ performance was conducted in a following

manner:7

1. Three factors had to be tested: these were the part-of-speech and

function-word status of the words as well as the morphological val-

ues of the words as a set. Three factors yielded eight combinations

(i.e., 23).8

2. The effect of each factor was determined by averaging the differences

in the performance of the different networks. Within the eight com-

binations, each factor was supplied four times and omitted four times

(i.e., 23/2).

3. Once all tests had been run (that is, all different networks representing

different combinations), the differences in the performance level were

calculated and averaged for each factor. The results from each combi-

nation were averaged over five different networks.

7 This test is basically the same which was used for assessing the relative importance of

input factors for word level prediction (see Section 6.2 for more detail).

8 Unlike the word level networks, there was always some input in the form of spatial

coding (see Section 5.2.1) to the network and it was not necessary to omit the “empty

combination”.
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Table 6.2 shows the average reduction in error (%) when different kinds

of information to the network input for both segmental duration and F 0 were

added. The value for function word status is binary, whereas the other values

are more gradual (see Section 5.2.1 for more detail).

It can be seen from the results that when morphological information is

added to the network input the performance of the networks increases. How-

ever, the significance of the drop in error is fairly difficult to assess in quanti-

tative terms and perception tests should be conducted to determine the final

significance of the results. The improvement is largest for segmental dura-

tions which seems to point to a higher level of interaction between segmental

durations and morphology. The results from the F 0 networks, on the other

hand, can be explained by the fact that including morphological information

to the network input gives the network a better possibility to generate hy-

potheses about the implicit linguistic structures within the sentences. The

networks may be said to implement some sort of a statistical grammar model

akin to the so called n-gram models, which in turn helps the network in de-

termining those prosodic boundaries that coincide with (or depend on) the

syntactically determined boundaries.

F0

Average decrease in error (%)

Function word -0.15

Part-of-speech -0.40

Morphology -0.71

Duration

Average decrease in error (%)

Function word -0.61

Part-of-speech -0.28

Morphology -1.16

Tab. 6.2: Results from adding morphological information, function word and part-

of-speech status to the network input (from [67]).
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6.3.2 Modeling Accuracy

Figures 6.5, 6.6 and 6.7 show three randomly selected sentences and their

annotations on the sentence, word and phone levels from the evaluation set

of a network trained to predict F 0 values on a syllabic basis. The grey lines

depict the actual (interpolated) F 0 contour and the dotted line the network’s

predictions for all but the last words in the utterances. The network was

trained for 100 cycles and contained 30 hidden nodes. It should also be

noted that the network was not trained to predict values for the syllables in

the last words of the utterances (see Section 4.2 for more detail).
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 intellektuelliksi joko synnytään tai julistaudutaan .

intellektuelliksi joko synnytään tai julistaudutaan
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Fig. 6.5: The sentence “Intellektuelliksi joko synnytään tai julistaudutaan.” (One

is either born as an intellectual or one announces to be such.). Note that

the first predicted value (not produced by the network) is arbitrarily set

at 100 Hz.

The figures show distinctly that the networks are capable of predicting

accent placement very accurately. That is to say, the networks are capable of

capturing the phonological aspects of intonation whereas the more phonetic

aspects still lack precision. It is interesting, however, to notice that the

networks are quite accurate in predicting values for unaccented syllables –
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 olennaisia toimintoja saa käsikirjoista etsiä kummallisuuksien seasta .

olennaisia toimintoja saa käsikirjoista etsiä kummallisuuksien seasta
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Fig. 6.6: The sentence “Olennaisia toimintoja saa käsikirjoista etsiä kum-

mallisuuksien seasta.” (One has to look for essential functions in the

manuals from the midst of peculiarities.).

especially in a relative sense within words . This seems to point to the fact

that – at least with regard to speech production9 – the stretches between so

called important parts (accented syllables) are not so uninteresting after all

and do not merely happen [43].

The details in Figures 6.5, 6.6 and 6.7 are difficult to interpret. Nonethe-

less, there are certain things which are evident: function words (including

copula) are always unaccented10 and verbs are either accented or not de-

pending on their function – something that the network has to infer from

the relative position and morphological analyses of the words. For instance,

9 ’t Hart, Collier and Cohen have shown that the level of detail visible in Figures 6.5,

6.6 and 6.7 may not be necessary in relation to perception. Nevertheless, the fact that

the networks are able to capture such detail makes it relevant with respect to speech

production.

10 Accentuation is simply determined by an occurrance of a clear peak in the F 0 curve.
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the passive verb “julistaudutaan” (is announced) in Figure 6.5 is accented as

opposed to the members in the verb chain “saa etsiä” (one (gets—is forced)

to look for) in Figure 6.6 which are unaccented. Another interesting detail

is the division of the intonation curve into two prosodic phrases or units in

Figure 6.7 between the words “nuorisolle” and “taiteilija”.
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 taiteilija  aaltosen tuomio on näyttänyt huonoa esimerkkiä nuorisolle , taiteilija  aaltonen itse ei niinkään .

taiteilija aaltosen tuomio on näyttänyt huonoa esimerkkiä nuorisolle taiteilija aaltonen itse ei niinkään
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Fig. 6.7: The sentence “Taiteilija Aaltosen tuomio on näyttänyt huonoa es-

imerkkiä nuorisolle, taiteilja Aaltonen ei niinkään.” (The conviction of

artist Aaltonen has been a bad example to the youth, artist Aaltonen

himself has not).

Modeling Error

In the previous sections (6.1 and 6.2) it was mentioned that the average error

of the networks usually remained below the reported JNDs by a fairly wide

margin and the modeling accuracy was considered to be crucial in a relative

sense only. While the 17 % average error for durations and 8 % for pitch in the

sentence level are fairly low, it is obvious there is still room for improvement in

the networks’ performance. The source of error is fairly difficult to assess, but
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in the case of anomalies in e.g., Figure 6.8, the cause can usually be found in

training data. More structural patterns in error usually point to inadequacies

in the models themselves. This section summarizes some analyses of the

latter kind of error in both segmental duration and pitch modeling.

Informal listening tests based on the networks’ output were carried out.

Prosody produced by a set of networks was used as a basis for a Finnish

diphone synthesizer and a set of sentences were generated. These listening

tests revealed two consistent errors in the duration networks’ performance:

first, the so called initial doubling11 was always absent and the speech rate

was perceived to be too high. Otherwise no conspicuous errors were heard

and the basic rhythm of Finnish was intact. Intonation produced by the

pitch networks was also perceived as being highly natural and even prosodic

phrasing could be perceived. This was very encouraging since the networks

did not produce pauses and any perception of phrasing had to be based on

prosodic cues.

Figures 6.8 and 6.9 show the distribution of observed values against pre-

dicted values for segmental durations (Figure 6.8) and observed values against

the network error for pitch (Figure 6.9). Although the error for durations is

fairly tightly scattered around the expected values and no obvious cluster-

ings can be seen, a general trend for long durations and high pitch values to

be overestimated and short durations and low pitch values to be underesti-

mated is present. This can be seen in Figure 6.8, which shows the predicted

vs. observed values for a sentence level duration network with an average

error of approximately 17 %. The network was trained to predict durations

for phones with a minimum duration of 40 ms.12 The pitch network’s results,

on the other hand, have an obvious cluster of values that is absent from the

distribution of the observed values (a long curve-like group of values running

11 Certain words and phonological structures in Finnish cause the first consonant of the

following word to be lengthened as if to represent a long variant of the sound or phoneme

[39].

12 Most segments with a duration of less than 40 ms were post-pausal voiceless stops,

which consist of the release phase only and should be handled differently from other stops.
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from 20 % at around 55 Hz to -40 % at around 90 Hz). A closer inspection

reveals these values to be from utterance final syllables. The network was

trained to predict values for all syllables which have F 0 values and a large

part of the error is contributed by the erroneous values produced by the pitch

detection algorithm attempting to detect pitch from a creaky voice.
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Fig. 6.8: Segmental duration predictions vs. observed values for a network trained

to predict all segmental values longer than 40 ms. The average absolute

error is approximately 17 %.

Figures 6.10 and 6.11 show the averaged errors fitted with a bezier curve

to reveal the distribution of error in a more visible manner. Both figures

distinctly show that the error is not distributed evenly throughout the data

range; the high values tend to be underestimated and low values tend to be

overestimated. In [5] Bellegarda, Silverman, Lenzo and Anderson consider

this a common problem in modeling, which usually becomes less severe when

the models acquire more independent variables representing higher-order in-
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Fig. 6.9: Observed vs. predicted pitch values for a network with an average abso-

lute error of approximately 8 %.

teractions within the data. Another possible cause for the shapes in Figures

6.10 and 6.11 might pertain to the transformation function used for the net-

works’ output coding. The solution suggested in [5] is to apply an appropriate

transformation to the raw values to compensate for the structural nature of

the patterns that can be observed in the errors.

Bellegarda and his co-authors base their observations on output from a

sums-of-products model and suggest a piecewise linear transformation which

expands the values at both ends of the range. This is in striking contrast with

the logarithmic functions with compressing characteristics usually employed

in the transformations. Their functions force the models to give more weight

to the extreme values at both ends of the range. Judging from the shapes in

Figures 6.10 and 6.11, this might also be the case with the neural network
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Fig. 6.10: Segmental duration prediction error (averaged by duration and fitted

with a bezier curve) for a network trained to predict durations for all

phones regardless of type or duration. The average absolute error is

approximately 22 %.

models where a logarithmic transformation in the raw domain is employed

to the raw durations or pitch values (Section 5.2.2).

Figures 6.10 and 6.11, moreover, show that the structural patterns of the

errors are not similar to segmental durations and pitch, which calls for differ-

ent transformations to the values in the raw domain. This can be expected

given the fact that logarithmically transformed F 0 values do not follow a

strictly normal distribution.

The network whose results can be seen in Figure 6.10 was trained to

predict all duration values including the erroneous post-pausal stops, which

can be seen as a rise in the curve as the durations become shorter. The

phenomenon of under- and over-estimation can be seen throughout the data
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Fig. 6.11: Pitch prediction error (averaged by pitch and smoothed with a bezier

curve) for a network with an average absolute error of approximately 8

%.

Figure 6.11 shows the distribution of predicted values against the ex-

pected values for a network trained to predict pitch values for all syllables –

including utterance final syllables (as long as they had detected pitch values).

The erroneous utterance final predictions are visible as a hook-like shape in

the beginning of the curve. As in Figure 6.10, the smallest amount of errors

are in the area around the mean of the distribution of the original training

data. Consequently, this is the area where the sigmoid function of the net-

works’ output node is the most accurate. This suggests, that rather than

using a different function for post-processing the raw data, it might be more

beneficial to divide the data range into intervals and predict the probability

that a given syllable falls into an interval. Another possibility to improve the
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network’s accuracy is to post-process the actual predictions by making them

undergo the inverse of the average error distribution.



Chapter 7

CONCLUSION

This thesis has presented the beginning of a journey on the long road to-

wards a comprehensive computational model of Finnish prosody. The main

contributions of this work are the application of neural network methodology

to the problem of modeling Finnish prosody – both for the purpose of con-

trolling prosody in text-to-speech synthesis and studying Finnish prosody in

general. In order to achieve the goals, the following tasks were accomplished:

• Artificial neural network models for predicting segmental durations and

actual as well as averaged pitch and loudness values were constructed.

These type of models and their application to speech synthesis in other

languages have been reported; however, none to the extent described

here and, more importantly, none to Finnish.

• Experiments with different types of network topologies were run in

order to determine the optimal size for the networks.

• Experiments with different types of network input were run to deter-

mine the necessary factors for a given problem.

• Methodology for the determination of relative importance of different

input factors was designed and used for phonetically motivated factors

on word level prosody and linguistically motivated factors on sentence

level.

• A large database of read sentences was designed, collected and labeled.

The phonetic labeling and segmentations were carried out on the seg-
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mental level and both words and sentences were labeled orthographi-

cally. In addition to the orthographic labels the lexical items were also

analyzed morphologically and the resulting, disambiguated analyses

were added to the database.

The basic conclusion that can be drawn from this work is that the neural

network methodology – as presented here – is well suited to modeling the

rich and various phenomena that prosody as a whole comprises. This conclu-

sion, however, should not be taken without a grain of salt – in a real world

situation where the prosody of a given utterance should be either correct

or (at least) neutral, these models may fail. This is not due to the basic

premises incorporated into the methodology, but to the real world problems

that concern the quality and quantity of the training data. It may simply be

impossible to gather and process necessary amounts of it. Furthermore, pre-

dicting values for physical parameters directly may not be the wisest choice

for a working model. Nevertheless, the prediction power of the neural net-

works – when constructed and trained properly – is such that when applied

to the parameter values of an underlying model (e.g., the Tilt intonation

model) the advantages should stand out over any traditional statistical mod-

els or hand-configured sequential rules. On the other hand, the results from

the experiments were good enough by themselves for application in a work-

ing system and an underlying model might, in actual fact, hide important

information from the researcher’s viewpoint.

The basic problem with mapping information between different represen-

tations and completely different domains in spoken language is that those

mappings are often nonlinear in nature. The constraints found on different

levels of representation may not work in the same direction: e.g., the length-

ening of segmental durations in a stressed syllable may be constrained by the

segmental make-up of the syllable and the word, as well as the rhythmical

demands of the utterance as a whole. As long as one is unaware of these con-

straints and demands, he or she is at the mercy of the methods which may

not reveal their inner workings in a trivial manner. Therefore, it is clearly of

primary importance to identify the factors that influence the behavior of the
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physical parameters. Only after their identification can they be approached

with proper tools. Certain factors (mainly morphological) that have not

been considered before and which seem to have an influence on the behavior

of the acoustic parameters under study were identified during this research.

One question that is left unanswered is whether these parameters themselves

– fundamental frequency, timing and intensity – are adequate for the de-

scription of prosody. The answer here seems to be negative, for there are

suprasegmental phenomena in the form of alterations in voice quality that

are clearly within the domain of prosody and cannot be reduced to alter-

ations in the aforementioned parameters. This becomes painfully clear when

one attempts to model the intonation of utterance final words (or unstressed

syllables in utterance final words).

The basic finding of this research is that – for most parts – the different

parameters depend on the same information in the input representation. This

is, of course, something that can be expected since it is known that prosodic

parameters correlate with each other. Just how independent or orthogonal

they are remains to be shown. For instance, it can be clearly shown that

segmental durations correlate with F 0 in accented syllables but the exact

degree and distribution is more difficult to estimate. For this we need more

data.

This work is solely based on data and its importance is difficult to ex-

aggerate. As mentioned in Chapter 4, the results are based on the contents

of a speech corpus that has evolved with this work. The largest part of the

corpus (the 692 declarative sentences) took several months to prepare (even

with the aid of a semi-automatic labeling program) but can only be used

for evaluation of systems and methods – the final TTS products must rely

on much more data to be useful and reliable. Moreover, the data should

be balanced in relation to the types of information or factors included. But

what types? That is the question.
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7.1 Future Work

The models constructed here are based on availability of data and thus far

only isolated sentences read aloud by a single speaker (or two speakers) have

been used and consequent models have been restricted to producing segmen-

tal durations or pitch contours for utterances which have no outside references

– i.e., their information structure is purely internal to themselves. Therefore,

the models cannot produce adequate prosody for longer stretches of speech

which include semantic and pragmatic references between sentences. Another

aspect left unmodeled is discourse structure. Both information and discourse

structure could in principle be included into the paradigm; one merely needs

to collect right kind of data, tag it in a meaningful way and devise the right

kind of input representation for the tags.

Another problem that remains to be solved is to find better transforma-

tions for the raw output and training values for the networks as it seems that

a simple logarithmic transformation is inadequate [5] (see Section 6 for more

information).

In Chapter 1 it was mentioned that the models are superpositional in na-

ture; that is, the output from the microprosodic models should be superposed

on the output of the syllable based models. However, a good solution to do

such superposition without discontinuities at phone and syllable boundaries

still needs to be found.

Thus, in summary, this research should be continued in three different

directions:

• The scope of modeling should be broadened to include, at least, infor-

mation structure and, possibly, discourse structure.

• The low level aspects of network architecture and topology as well as

output coding should be further investigated.

• The problem of superimposing the results from the microprosody mod-

els onto the coarser syllable based intonation models should be solved.

The problem of adding information and discourse structure to the models

is mainly one of resources; at the moment there is no suitable data available.
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The second problem is something that can fairly easily be studied with the

aid of a good neural network simulation package, such as MATLAB or the

Stuttgart Neural Network Simulator (SNNS). The last problem might be

solved by using the neural network methodology to predict values for an un-

derlying intonation model (e.g., MOMEL [24]) which already offers a solution

to the microprosody problem.
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Appendix A

DATABASE LABELING CRITERIA AND SOME

STATISTICAL DESCRIPTIONS OF THE DATA

This appendix contains a summary of the labeling criteria used in the databases

listed in Chapter 4. Some statistical analyses of the larger sentence set are

included.

A.1 Summary of Speech Database Labeling Criteria

This is a summary of the labeling criteria used in the phonetic segmentation

of the Finnish Speech Database. These criteria were used for all the manu-

ally labeled data in the database. There is one general rule that applies to

almost all segment boundaries; i.e., the boundary is placed on the zero line

in the wave form to avoid spurious clicks during playback.1 Furthermore,

the boundary preceding a voiced segment is usually set at the beginning of a

glottal period. The segment boundaries have been placed as much as possible

according to perceptual cues. Whenever this has been impossible the bound-

ary is set according to a rule. These rules are perforce somewhat heuristic.

The rules are usually applied to phonemes that have many contextual vari-

ants (mostly liquids and approximants). Basically, the segmentation is based

on perception – articulatorily determined boundaries are used when they are

readily available and result in a more accurate placement.

1 This zero crossing criterium never over-rides either perceptual or articulatory criteria.
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A.1.1 Utterance Boundary

An utterance boundary is either at the beginning of an utterance preceded

by silence or at the end of the utterance followed by silence.

Beginning of Utterance

The beginning of an utterance is usually set at the onset of articulation. A

word-initial vowel is segmented at the beginning of voicing excluding possible

glottal stops which can usually be detected by their resemblance to other

stops in the wave-form and loudness curve.2 The beginning of a vowel is

most conspicuous as an appearance of formants in the spectrogram. Word-

initial stops are segmented so that only the release phase is included in the

segment.

End of Utterance

The end of an utterance is a little more complicated as the voicing (in voiced

consonants and vowels) is usually followed by a breathy burst after the end

of the articulatory effort. The boundary is placed before the burst. It can

often be seen as a clear step in the loudness curve. If the word ends with a

plosive the boundary is placed after the release phase which is usually visible

in the waveform.

A.1.2 Segment Boundaries within Utterances

Segment boundaries include all boundaries within and between words. The

following descriptions include both CV and VC as well as VV (diphthong)

boundaries. Boundaries preceding and following silent pauses follow the rules

described for beginnings and endings of an utterance (above).

2 This is true only for the isolated word material – in the sentence material glottaliza-

tions are included in the initial vowels.
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Fricatives: [s], [f], [h]

All fricatives are segmented at the beginning and end of the fricative phase of

the sound. Frication is easily seen as high frequency energy in the waveform.

The inter vocalic - often voiced - [h] can usually be seen as a lack of clear

structure in the upper formant area in the spectrogram. Figure A.1 shows

the segmentation of the fricative from a vowel ([i]-[s]); a spectrogram, and

the waveform as well as the phone labels are shown.

Voiceless Stops: [p], [ �� ], [k]

Voiceless stops are segmented between the voiced parts of the surrounding

sounds. The explosion phase is thus included in the stop which thus con-

sists of silence and the explosion. The end of the preceding vowel is placed

where the vocal tract most probably reaches a closure (therefore, some low

frequency energy may be left in the stop). This can be seen in the waveform

as a smoothness due to the lack of higher frequency components in the sig-

nal. Certain parts of the material also include segmentation below the phone

level: the closure and release phases of stops are segmented. These segment

transcriptions are represented by their own level as opposed to the phone

level. Thus, the phone level transcriptions never contain smaller segments.

Figure A.2 shows the segmentation of a stop-vowel and vowel-stop pair

as well as a vowel-vowel (diphthong) pair.

Voiced Stops: [b], [d], [g]

Except for voicing during the occlusion phase, voiced stops are treated virtu-

ally identically with their voiceless counterparts. As there are no voiced stops

in standard Finnish (with the exception of [d], whose status is marginal), the

voicing of many of these sounds can be very weak or even non-existent. When

there is no voicing present, a voiceless symbol is used in the transcription.
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Fig. A.1: Segmentation of a vowel-fricative pair.
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Fig. A.2: Segmentation of a stop-vowel, vowel-vowel and vowel-stop.



88 Appendix A. Database Labeling Criteria

Nasals: [m], [n], [ � ]

Nasals are segmented according to the occlusion phase of the sound. This

can be seen as a clear change in the waveform; a disappearance of higher

frequency components due to a closure in the vocal tract. This corresponds

clearly with a nasal formant usually visible in the spectrogram.

Figure A.3 shows the segmentation of a nasal-fricative pair ([n]-[h]).
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Fig. A.3: Segmentation of a nasal-fricative pair.
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Liquid: [l]

The beginning of a liquid can be fairly difficult to determine. This is espe-

cially the case when it is followed by a plosive (e.g., [ilt � ]) where the transition

between the preceding vowel is very slow and it is impossible to find a clear

boundary in the signal. In this case the boundary is set in the middle of the

second formant transition. An intervocalic [l] is segmented according to the

maximal spectral change (the spectral change peak usually falls within the

glottal period – therefore the convention of placing the boundary between

two periods causes a systematic discrepancy between the probable boundary

and the transcription – this small difference is in no way audible and should

cause little error in any statistical data extracted from the database.

Figure A.4 shows the segmentation of a vowel-liquid pair ([l]-[ � ]).

Trill: [r]

The trilled [r] sound causes many problems to a transcriber. Sometimes only

the first closure is realized and the boundary cannot be set according to the

loudness curve. Moreover, the transition between a vowel and a preceding

[r] can be very slow, which makes it impossible to place the boundary ac-

cording to perception. In a case like this the boundary is placed anywhere

between two to five periods after the first closure. The final number of pe-

riods is reached by both visual and auditory means. Usually a fairly good

compromise can be reached.

Figure A.5 shows the segmentation of a trill-vowel pair ([r]-[o]).

Approximants: [ � ], [j]

[ � ] acts usually very much like the nasals; i.e. it is clearly visible in the

waveform. [j], on the other hand, acts very much like a diphthong ending or

beginning with a vowel [i] (see below).
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Fig. A.4: Segmentation of a vowel-liquid pair.
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Fig. A.5: Segmentation of a trill-vowel pair.
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Diphthongs

Diphthongs are segmented according to the mid-point in the change between

the individual vowels. This can usually be determined by the principal for-

mant (usually F2) involved in the diphthong. Consequently, the different

parts of the diphthong are perceptually contaminated by their counterparts

and the placing of the boundary has to be – more or less – made by a rule

based compromise. See Figure A.2 for an example of a vowel-vowel segmen-

tation.
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Ph. N log avg ms avg log s.d. Ph. N log avg ms avg log s.d.

i 4608 3.97 53.04 0.36 i: 311 4.74 114.21 0.23
� 4388 4.21 67.59 0.38 s: 291 4.95 141.72 0.24

n 3515 3.91 49.70 0.31 e: 281 4.73 113.82 0.24

e 3451 4.17 64.83 0.33 u: 274 4.85 127.43 0.27

� � 3427 4.46 86.16 0.33 œ 234 4.26 70.82 0.29

s 3052 4.32 75.00 0.31 n: 198 4.49 89.23 0.28

o 2439 4.27 71.34 0.34 k: 188 5.06 158.04 0.22

k 2064 4.47 87.60 0.28 � 160 3.90 49.19 0.31

u 1772 4.13 62.13 0.36 m: 140 4.60 99.13 0.21

l 1621 3.99 53.94 0.27 o: 70 4.89 132.68 0.33

æ 1542 4.13 61.92 0.38 y: 53 4.84 126.15 0.23

m 1260 4.17 64.47 0.29 p: 40 5.16 174.40 0.21
� 1211 4.06 57.79 0.26 � : 39 4.60 99.45 0.31

r 999 4.09 59.77 0.24 b 38 4.42 83.19 0.25

h 962 4.18 65.09 0.32 g 37 4.37 79.30 0.26

j 855 4.07 58.42 0.34 r: 24 4.56 95.60 0.39

y 753 4.12 64.80 0.40 f 24 4.65 104.31 0.34

p 710 4.57 96.37 0.29 � 8 4.55 95.06 0.64
� : 646 4.87 129.80 0.25 œ: 4 4.97 144.06 0.22

� � : 619 4.99 147.06 0.22 � : 1 5.07 159.77 0.00

l: 563 4.40 81.45 0.23 d: 1 5.41 223.09 0.00

d 426 3.90 49.35 0.29 f: 1 4.83 124.84 0.00

æ: 330 4.92 136.49

Tab. A.1: Duration data for the phones in the 692-sentence database. ln ave

stands for average of log transformed durations, ms avg for average du-

ration in milliseconds and the log s.d. for the standard deviation of the

log transformed durations.
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A.2 Statistical Analyses of Segmental Durations

This section presents some statistical analyses of the training data. These

analyses were carried out on the 692-sentence data used for segmental dura-

tion and F 0 modeling and the results should be considered very preliminary.

The statistical analyses were based on the so called z-scores [10]. This

methodology is based on the duration modeling described in Chapter 2. Thus

the statistics were calculated from the individual phone, syllable and word

units according to the values in Table A.1.2. The individual z-score for a

given phone is measured by calculating the number of standard deviations

its actual duration3 deviates from the mean given in the table. The z-scores

for other units (syllables and words) are calculated by getting the mean of

their constituent phone z-scores. Therefore, information about the degree of

stretching and compression that the units undergo is revealed. The signifi-

cance of the different factors against each other was measured with two-tailed

t-test.

Effect of Syllable Position in Word

Table A.2 shows the effect of syllable position within a word. The differences

between the durations of first syllables and others are always significant (p

< 0.001) whereas the difference between other positions are always non-

significant (p > 0.05).

Effect of Accentedness

Table A.3 shows the effect of accentedness4 of the word and the effect of

content vs. function word status of the word on the duration of the first

(stressed) syllable of the word. The difference between accented and non-

accented syllables as well as syllables in function words vs. content words

3 Both the durations and their distributions are calculated on the logarithmic scale.

4 Accentedness was determined from the F 0 curve – if a given syllable contained a clear

peak, it was considered accented.
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Syllable position Mean Z-score N

1 0.2782 6455

2 -0.1504 5497

3 -0.1774 3431

4 -0.1659 1835

5 -0.1636 904

> 5 -0.1959 630

6= 1 -0.1640 12297

Tab. A.2: Average z-scores of syllables according to the position in word.

Word type Mean Z-score N

Accented 0.4608 4830

Non-accented -0.2643 1625

Content word 0.4448 4930

Function word -0.2602 1525

Tab. A.3: Average z-scores of the word-initial syllables according to the type of

word.

is significant (p < 0.001). The difference between accented syllables and

syllables in content words is not significant – this is mainly due to the fact

the most of syllables are in both sets.

Utterance Final Lengthening

Table A.4 shows the effect of utterance finality on the duration of syllables.

The difference between final and non-final syllables is significant (p < 0.001)

except when between final and antepenultimate unstressed syllables (p >

0.05).

As can be seen, the final syllable is not lengthened as much as the ones

preceding it. This is due to the fact that utterance final phones are very short

(see Table A.5 for more detail). The shortness may be due to many different
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Syllable position Mean Z-score N

Final 0.3853 692

Penultimate (unstressed) 0.6000 518

Penultimate (all) 0.8100 685

Antepenultimate (unstressed) 0.4735 320

Tab. A.4: Average z-scores for utterance final, penultimate and antepenultimate

syllables.

factors, which are yet to be determined. Nevertheless, they are extremely

difficult to segment due to their gradual weakening in loudness. One reason

for their shortness may be due to the fact that the segmentations did not

include the breathy usually followed by utterance final voiced segments. All

in all, they seem to behave differently from similar phones in other positions.

Phone position Mean Z-score N

Final -0.460 691

Penultimate 1.035 691

Other than final -0.021 43825

Tab. A.5: Average z-scores for utterance final and penultimate as well as other

than final phones.

Table A.6 shows the extent of the final lengthening effect – as can be seen

the lengthening takes effect within the last two words in the utterance. It

should be noted, nevertheless, that part of this effect may be due to accen-

tuation in the sense that the nuclear accent (or focus) of the utterance in

Finnish usually occurs within the last word.
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Word position Mean Z-score N

Final 0.7291 692

Penultimate 0.1022 692

Antepenultimate -0.0539 692

Tab. A.6: Average z-scores for utterance final, penultimate and antepenultimate

words.

POS N Example POS N Example

Noun 2480 nolla Numeral 77 yksi

Verb 1629 pohjautuu Adj./Noun 51 lappalainen

Adverb 720 edelleen Not available 13 näkemäänsä

Adjective 517 hyvä Pre/postposition 5 kautta

Conjunction 417 kun AD-A 3 jokseenkin

Pronoun 395 joka Interjection 3 no

Quantifier 145 muissa

Tab. A.7: Distribution of words according to part-of-speech.

A.3 Distribution of Words According to Part-of-speech

Table A.7 shows the distribution of the words in the corpus according to

their part-of-speech. The total number of words in the (692 sentence) data

was 6455 of which 1523 were function words.5

5 In the tests quantifiers were included in function words. This may not have been a

good choice since most of the quantifiers in the data are accented and, therefore, behave

much like content words in phonetic terms.
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tences. In B. Lindblom and S. Öhman, editors, Frontiers of Speech

Communication Research, pages 287–300. Academic Press, New York,

1979.

[42] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in

Information Sciences. Springer, Berlin, 1995.

[43] D. Robert Ladd. Intonational Phonology. Cambridge Studies in Lin-

guistics. Cambridge University Press, Cambridge, 1996.



104 Bibliography

[44] Ilse Lehiste and Gordon Peterson. Vowel Amplitude and Phonemic

Stress in American English. Journal of the Acoustical Society of Amer-

ica, 31(4):428–435, April 1959.

[45] Jaakko Lehtonen. Aspects of quantity in standard Finnish. Studia Philo-
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[68] Riitta Välimaa-Blum. Intonation: a distinctive parameter in grammat-

ical constructions. Phonetica, 50:124–137, 1993.



Bibliography 107

[69] J. P. H. van Santen. Segmental duration and speech timing. In Sagisaka,

Campbell, and Higuchi, editors, Computing Prosody, pages 225 – 249.

Springer, 1996.

[70] Jan van Santen. Timing in text-to-speech systems. In Proceedings of the

Third European Conference on Speech Communication and Technology,

pages 1397–1404, Berlin, Germany, September 1993. ESCA.

[71] Jan van Santen. Assignment of segmental duration in text-to-speech

synthesis. Computer Speech and Language, 8:95–128, April 1994.

[72] Jan P. H van Santen, Chilin Shih, Bernd Möbius, Evelyne Tzoukermann,
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