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Abstract 

 

Different languages use temporal speech cues in different linguistic functions. In Finnish, 

speech-sound duration is used as the primary cue for the phonological quantity distinction 

― i.e., a distinction between short and long phonemes. For the second-language (L2) 

learners of Finnish, quantity is often difficult to master if speech-sound duration plays a 

less important role in the phonology of their native language (L1). The present studies 

aimed to investigate the cortical representations for phonological quantity in native 

speakers and L2 users of Finnish by using behavioral and electrophysiological methods. 

Since long-term memory representations for different speech units have been previously 

shown to participate in the elicitation of the mismatch negativity (MMN) brain response, 

MMN was used to compare the neural representation for quantity between native 

speakers and L2 users of Finnish.  

 

The results of the studies suggested that native Finnish speakers’ MMN response to 

quantity was determined by the activation of native-language phonetic prototypes rather 

than by phoneme boundaries. In addition, native speakers seemed to process phoneme 

quantity and quality independently from each other by separate brain representations. The 

cross-linguistic MMN studies revealed that, in native speakers of Finnish, the MMN 

response to duration or quantity-degree changes was enhanced in amplitude selectively in 

speech sounds, whereas this pattern was not observed in L2 users. Native speakers’ 

MMN enhancement is suggested to be due to the pre-attentive activation of L1 prototypes 

for quantity. In L2 users, the activation of L2 prototypes or other L2 learning effects were 

not reflected in the MMN, with one exception. Even though L2 users failed to show 

native-like brain responses to duration changes in a vowel that was similar in L1 and L2, 

their duration MMN response was native-like for an L2 vowel with no counterpart in L1. 

Thus, the pre-attentive activation of L2 users’ representations was determined by the 

degree of similarity of L2 sounds to L1 sounds. In addition, behavioral experiments 

suggested that the establishment of representations for L2 quantity may require several 

years of language exposure. 
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1. Introduction 

 

For decades, there has been a great deal of debate about how speech is perceived. What is 

generally agreed, however, is that the flow of speech must be mapped onto some kinds of 

long-term memory representations (i.e., categories), irrespective of whether this occurs at 

the level of phonetic features, phonetic segments, syllables, or words (for a review, see 

Miller & Eimas, 1995). Thus, the acquisition of a phonological system involves the 

establishment of these representations. The native-language (L1) phonetic categories are 

established during the first year of life, and serve as building blocks for the further 

language acquisition (see e.g., Kuhl, 2004, for a review). It seems that, later in life, L1 

categories affect the learning of a second language (L2) (e.g., Best, 1994; Flege, 1995; 

Trubetzkoy, 1939/1969). Yet, to become a competent and fluent L2 user, one must be 

able to effortlessly map the L2 sounds onto their categories. Sometimes this may require 

the establishment of new categories for L2 phonemes that may even be cued by phonetic 

features that are not used contrastively in L1. This is the case for many L2 learners of 

Finnish because the Finnish phonological system includes quantity, that is, phonological 

distinction between short and long segments that is primarily cued by duration of the 

segments. In contrast, in the phonological systems of many other languages, the role of 

duration is less prominent. The present set of studies addressed the cortical representation 

of speech-sound duration and phonological quantity in native speakers and L2 users of 

Finnish. Russian speakers were chosen as the L2 group because the Russian language 

uses duration cues differently from Finnish. Studying this issue on Russian L2 learners 

also had practical interest, since Russians are one of the largest immigrant groups in 

Finland and, consequently, one of the largest groups learning Finnish as their L2. 

  

In the present set of studies, both behavioral and electrophysiological methods were used 

to investigate the representation of quantity. Research with behavioral methods, such as 

identification, discrimination, and reaction-time (RT) measurements, has laid the 

foundation on our understanding of speech perception. However, since behavioral 

responses require decision making that can be based on different cognitive strategies, it is 
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sometimes difficult to determine to what extent behavioral methods tap the neural 

organization of the perceptual space underlying the recognition of speech (see e.g., 

Massaro, 1987; Schouten et al., 2003). The development of brain-research methods 

during the past decades has shed some more light on the neural mechanisms of speech 

perception. On one hand, functional magnetic resonance imaging (fMRI) and positron 

emission tomography (PET) have allowed to localize brain activity elicited by speech 

stimuli. On the other hand, event-related potentials (ERP) measured with 

electroencephalography (EEG) and evoked magnetic fields measured with 

magnetoencephalography (MEG) have enabled one to measure brain activity with a 

timescale of milliseconds. In addition to the excellent temporal resolution of the 

electromagnetic brain-research methods, a component of ERP, the mismatch negativity 

(MMN), provides further benefits for research on the perception of speech sounds. The 

MMN reflects the accuracy of sensory-memory encoding in auditory change detection. 

The MMN does not only reflect the processing of the acoustic features, however, but is 

also modified by the familiarity of speech stimuli, suggesting that the long-term memory 

representations for phonemes participate in the MMN generation. Therefore, in addition 

to behavioral methods, the MMN was used in the current thesis to index the 

representation of duration and quantity in the brain.  

 

The current thesis will proceed to introduce the establishment of the L1 and L2 categories 

and the perceptual effects related to them in Chapter 2 and the role of speech-sound 

duration in the Finnish and Russian languages in Chapter 3. Chapter 4 deals with the 

ERPs and the MMN that are used to determine the brain representation of duration and 

quantity in the electrophysiological experiments. The results of the experiments are 

reported and shortly discussed in Chapter 5, which is followed by a general discussion 

and conclusions in Chapters 6 and 7.  
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2. Representations for native- and second-language phonetic features and phonemes 

 

Although young infants can discriminate various phonetic contrasts regardless of their 

ambient language (for reviews, see e.g., Aslin et al., 1998; Jusczyk, 1997), their 

discrimination sensitivity to non-native contrasts decreases by the end of the first year of 

life (Cheour et al., 1998; Polka & Werker, 1994; Werker & Lalonde, 1988; Werker & 

Tees, 1984). On the other hand, the discrimination of some phonetic contrasts seems to 

improve with L1 experience (Aslin et al., 1981; Polka et al., 2001; Sundara et al., in 

press). Evidently, this perceptual reorganization is caused by the ambient language. A 

probable account for the changes in infant speech-sound discrimination is statistical 

learning. Maye et al. (2002) have demonstrated that 6- and 8-month-old infants are 

sensitive to the distributional frequencies of the L1 sounds. Their results suggested that 

infants exposed to speech-sound distribution with two frequent stimuli were able to 

discriminate the target stimuli. However, when infants were exposed to distribution with 

only one frequent stimulus, their discrimination sensitivity was reduced. Similarly, 

Jusczyk et al. (1994) have shown that 9-month-old infants are sensitive to the frequency 

of phonotactic patterns as suggested by their preference for the patterns occurring with 

high probability in their L1. Thus, the statistical properties of speech input are likely to 

cause the tuning of the infant’s perceptual space to match the features that are essential 

for the L1 phonological system; the infant becomes “neurally committed” to the L1 

patterns (Kuhl, 2000, p. 11855; 2004, p. 831). 

 

Since infants are sensitive to the statistical properties of speech and they hear typical and 

good representatives of the L1 phonemes most frequently, the phonetic categories formed 

in the infant brain may be based on phonetic prototypes. The view that prototypes are 

essential in the development of speech perception is supported by the observation that in 

6-month-old infants, the sensitivity of vowel discrimination is constrained by the L1 

prototypes but not by the non-native prototypes (Kuhl et al., 1992). These prototypical 

representations may be utilized as a basis for word learning and speech production during 

the second year of life (e.g., Kuhl, 2000). 
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The phonetic categories established for the L1 enable the fast recognition of speech 

sounds, which is required for the comprehension of natural fluent speech. Early 

experimental findings on these categories by Liberman et al. (1957) suggested that the 

discrimination of speech sounds is more accurate between the phonetic categories when a 

phonetic boundary is crossed than within a category. This phenomenon known as 

categorical perception or phoneme-boundary effect1 was thought to suggest that 

categorization is based on phonemic labels. However, further studies indicated that even 

infants show the same effect regardless of the fact that they lack the knowledge of any 

particular phonological system. These results were interpreted as providing evidence for 

an innate processing mechanism specialized for speech (Eimas et al., 1971). These two 

views were later challenged by Kuhl and colleagues (Kuhl, 1981; Kuhl & Miller, 1975; 

Kuhl & Padden, 1983) who demonstrated that non-human animals show a phoneme-

boundary effect for speech sounds, suggesting that instead of the real phonetic categories, 

the effect may sometimes be due to nonlinearity in auditory processing. Kuhl and 

colleagues (Kuhl, 1981; Kuhl & Miller, 1975; Kuhl & Padden, 1983) proposed that 

phonetic categories have evolved on the basis of such auditory nonlinearities. In addition, 

an effect resembling categorical perception was found with non-speech sounds in humans 

(Miller et al., 1976; Pisoni, 1977). Still, not all phoneme-boundary effects can be 

explained by these nonlinearities, because different languages have different phonetic 

features, and the effects are language-specific (e.g., Miyawaki et al., 1975). Thus, the 

category-related perceptual effects must be primarily determined by language experience. 

 

                                                 
1 According to the definition of categorical perception by Studdert-Kennedy et al. (1970; see also Liberman 
et al., 1957), perception is categorical if discrimination performance is determined by the ability to 
categorize stimuli. That is, discrimination sensitivity should be enhanced at the phoneme boundary, but 
within-category discrimination should be at a chance level. However, the criterion of the chance-level 
within-category discrimination has usually not been met in perceptual experiments on vowels and some 
consonant features, suggesting that their discrimination is constrained but not entirely determined by 
categorization (for a review, see Strange, 1999). Some authors, such as Wood (1976) and Iverson & Kuhl 
(2000) have used the term phoneme-boundary effect to refer to a discrimination peak at the boundary and 
reduced, but not chance-level, sensitivity within the category. See Harnad (1987) for a review on 
categorical perception. 
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The basic assumption of categorical perception and phoneme-boundary effect, as the 

latter term reveals, is that the phoneme boundaries determine the perception of speech 

sounds: a sound represents a phoneme if it occurs within the boundaries of that phoneme 

in the perceptual space (see e.g., Liberman et al., 1957). However, more recent studies 

(Iverson & Kuhl, 1996; Kuhl, 1991; Miller et al., 1983; Samuel, 1982) have demonstrated 

that phonetic categories are internally organized according to the typicality of instances 

within a category. On this basis, an alternative hypothesis on the mechanism underlying 

phonetic categorization has emerged, namely, that the mapping of speech sounds onto 

categories may be based on the phonetic prototypes rather than boundaries. Kuhl (1994) 

has suggested that the prototypes “warp” the perceptual space by “pulling” input sounds 

like magnets (p. 812–813) and thus reducing the discernibility between a prototypical 

stimulus and other category members (the magnet effect) (see also Kuhl, 1991). As a 

result, similar sounds within the category are assimilated to the prototype, which enables 

the mapping of variable speech stimuli onto long-term memory representations. 

Conversely, the discernibility between speech sounds representing different phonetic 

categories is enhanced, because they are “pulled” apart by different magnets. Thus, even 

though the two hypotheses on speech-sound mapping approach the issue from the 

opposite sides ― one addresses phoneme boundaries and the other their prototypical 

centers ― they predict similar perceptual phenomena at the phoneme boundary.   

 

Whatever the underlying mechanism may be, once the representations for the L1 

phonemes are established, they affect the perception of not only the L1 sounds, but also 

the L2 sounds (e.g., Trubetzkoy, 1939/1969). In order to become a competent L2 user, an 

L2 learner must modify the phonological system to account for the new features and 

possibly establish new categories for those sounds that cannot be mapped onto the L1 

categories. Several models on the perception of the L2 speech sounds and their relation to 

the L1 categories have been proposed. For instance, Flege’s (1995) Speech Learning 

Model (SLM) makes predictions about the establishment of new phonetic categories 

based on similarities between the L1 and L2 phonemes. SLM suggests that new phonetic 

categories are more likely to be established for those L2 sounds that are discernibly 

dissimilar from any L1 phoneme than for L2 sounds that have similar L1 counterparts. 
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The reason for this is that there may be no need to establish a new category for an L2 

sound that resembles an L1 sound closely enough for categorization via this L1 category. 

Thus, SLM predicts that the perceived similarity between the L2 and L1 sounds 

determines the probability of the category establishment: new phonetic categories are 

more likely established for “new” or “dissimilar” L2 sounds than for “similar” L2 sounds 

(Flege, 1992; 1995).  

 

SLM does not, however, make explicit predictions about the perception of non-native 

phonetic contrasts, as does Best’s (1994) Perceptual Assimilation Model (PAM). PAM 

addresses how L2 sounds are perceptually assimilated into L1 categories. It suggests that 

if two L2 sounds are perceived as instances of two L1 categories, then the perception is 

excellent. If they are perceived as instances of a single category but with a different 

goodness of fit to the prototype, the discrimination is relatively good, but not as good as 

with the two-category case. A poor accuracy of discrimination is suggested, however, if 

L2 sounds are perceived as instances of a single category with an equal goodness of fit to 

the prototype. PAM is based on the assumption that the speech sounds are recognized by 

mapping them onto the representations of articulatory gestures. In contrast, Kuhl (e.g., 

2000) has suggested that speech perception is based on general auditory mechanisms. 

According to her Native Language Magnet model, the perception of the L2 speech 

sounds is determined by the L1 phonetic prototypes that warp the perceptual space. In 

addition, in her Native Language Neural Commitment model, Kuhl (2004) has proposed 

that “language learning produces dedicated neural networks that code the patterns of 

native language speech” that interfere with the processing of the L2 sounds and patterns 

(p. 838). Even though the emphasis of these models is different, they agree with each 

other on the fact that the extent of the assimilation of the L2 sounds to the L1 categories 

affects the perception of the L2 sounds.  

 

Since most phonological distinctions are cued by the spectral features, duration 

processing is explicitly addressed only in a few models on L2 acquisition. Bohn (1995) 

has discussed the accessibility of the duration cues compared with that of the spectral 

cues in his Desensitization Hypothesis. He proposed that if listeners are not sensitized to 
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the spectral differences of the non-native vowels due to the lack of that particular contrast 

in their L1 and if, at the same time, there are duration differences between the vowels, the 

listeners tend to utilize the duration cues. According to this hypothesis, duration cues are 

easily accessible regardless of the role of the duration in the L1. Findings by McAllister 

et al. (2002) did not, however, support this hypothesis. These authors recruited three 

groups of L2 users of Swedish with L1s (Spanish, English, and Estonian) that used the 

duration cue differently. The results suggested that the L2 users’ performance in the 

Swedish quantity contrast varied as a function of the relevance of the duration in the L1. 

Based on these results, the authors formulated their Feature Prominence Hypothesis, 

suggesting that the L2 phonological contrasts involving those L2 features that are not 

used in a phonological distinction in the L1 are more difficult to acquire than those 

involving features relevant for the L1.  

 

3. Speech-sound duration in Finnish and Russian  

 

In Finnish, quantity degrees can separate both the lexical meanings of words (e.g., /puro/ 

‘brook’ vs. /pu˘ro/ ‘porridge’; /mAto/ ‘worm’ vs. /mAt˘o/ ‘carpet’) and their grammatical 

functions (e.g., /tAlon/ ‘of a house’ vs. /tAlo˘n/ ‘into a house’). All vowels2 can be either 

short or long in all positions of the word. In addition, all consonants other than /d, h, j, υ/ 

can appear as short or long within a word, excluding the consonant sequences (however, 

/p, t, k, s/ can appear as long after a nasal consonant or /r, l/). According to the speech-

sound statistics, the probability of occurrence of the long segments is about 10% of all 

sounds (Aoyama, 2001; Vainio, 1996). This illustrates the importance of the correct 

perception and production of quantity for the comprehension and intelligibility in 

Finnish.  

 

                                                 
2 The Finnish vowel system has eight phonemes: /A, o, i, e, u, y, Q, O/. According to the St-Petersburg 
school of phonetics, the Russian vowel system has six phonemes: /A, o, i, e, u, ˆ/ (/o, e/ occuring in a 
stressed position only) (Bondarko, 1998). According to the Moscow school of phonetics, [i] and [ˆ] are 
considered allophones of /i/ (Avanesov, 1984). 
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At the acoustical level, the primary cue of the Finnish quantity is sound duration. 

However, speech-sound durations do not contribute to quantity distinctions only. As in all 

languages, various factors, such as the speaking rate, the intrinsic durations of the sounds, 

the adjacent sounds, the word structure, the word length, the position of a sound in a word 

and utterance, the prominence and stress relations as well as the speaker-dependent 

factors, can affect sound durations in Finnish (Iivonen 1974a; 1974b; Lehiste, 1970; 

Lehtonen, 1970; Marjomaa, 1982; Suomi et al., 2003; Suomi & Ylitalo, 2004; Wiik, 

1965; for a review, see e.g., Wiik, 1981). Therefore, it is apparent that quantity can be 

determined by no absolute values of duration, but rather by the relative duration of the 

sounds in the speech context (e.g., Lehtonen, 1970). In fact, short sounds produced at a 

slow speaking rate may even be longer in the absolute duration than long sounds 

produced at a very fast rate (Marjomaa, 1982). 

 

In addition to the duration cues, slight spectral differences between the Finnish short and 

long vowels have been found in acoustic measurements. The formant values of the short 

vowels tend to be more neutralized than those of the long ones, probably because 

articulators have more time to reach the peripheral target position during the long vowels 

than during the short ones (Wiik, 1965). To determine the significance of the spectral 

cues in quantity categorization, O’Dell (2003) presented Finnish listeners with stimuli 

from two stimulus continua that were modified in duration. The stimuli were of different 

duration, but in one continuum, the stimuli carried spectral cues of originally short 

vowels and in the other continuum, spectral cues of originally long vowels. When the 

duration cue was ambiguous in the middle of the continua, the phoneme boundary was 

shifted to the direction predicted on the basis of the spectral cues. However, at the 

endpoints of the continua, the duration cue appeared to determine the categorization 

response. In addition to the vowel quality, O’Dell’s (2003) data suggested that the 

movement of the fundamental frequency (F0) may serve as a secondary cue for quantity 

and, thus, slightly shift the phoneme boundary, but this was observed in the middle of the 

stimulus continua only, that is, when the duration cue was ambiguous. Thus, even though 

other cues than duration may affect the quantity categorization in ambiguous cases that 
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are rare in the native speakers’ speech, duration is the primary cue of the Finnish quantity 

and has an important role in the Finnish phonological system (e.g., Lehtonen, 1970). 

 

The recognition of the non-native phonological contrasts may be difficult if they involve 

features that are not used phonologically in the listener’s L1 (McAllister et al., 2002). 

Cross-linguistic studies on the categorization of the Finnish quantity by non-native 

listeners support this view. According to Aoyama (2001), the native speakers of another 

language that has quantity distinctions, Japanese, were able to perceive Finnish short and 

long consonants correctly with no prior knowledge of Finnish (see Isei-Jaakkola, 2004, 

for contrastive comparison of Finnish and Japanese). However, non-native speakers were 

less successful in the studies of Vihanta (1987; 1990), who investigated the perception 

and production of the quantity distinctions in native French foreign-language learners of 

Finnish. The main findings were that the French have difficulties especially in 

recognizing long vowels in word-final position and in producing short vowels in that 

position. This was suggested to be due to the French transfer: word-final vowels may be 

perceived in terms of stressed vs. unstressed instead of short vs. long distinction, since in 

French, word stress that is cued by longer duration is associated with word-final vowel. 

In addition, French speakers tended to hear Finnish short consonants as long and produce 

long consonants that were not long enough in duration.  

 

Similarly to French, Russian is a language that uses speech-sound duration as a cue for 

word stress and thus uses duration differently than the languages that have quantity 

contrasts. In Russian, the stressed vowel is longer in duration than the other, unstressed 

vowels of a word. For example, vowel /A/ has three allophones, durations of which are 

typically different: the stressed allophone is longer and the two unstressed allophones (the 

1st and 2nd degrees of reduction, occurring in different positions of a word) are shorter in 

duration in ratio of 1:0.5:0.25, respectively (Bondarko, 1998). However, due to their 

shorter intrinsic duration, the unstressed allophones [u, i, ˆ] are characterized by the 1st 

degree of reduction only. That is, for the allophones of /u, i, ˆ/ the ratio is 1:0.5 

(Bondarko, 1998). The unstressed vowels, especially /A/, are also reduced qualitatively 



 

 18

due to timing constraints (Bondarko, 1998; Verbickaya, 1976). Thus, the word stress 

affects both the durational and qualitative characteristics of the Russian vowels, but a 

longer sound duration is considered the most reliable cue of stress (Bondarko, 1998; 

Verbickaya, 1976). In Russian, stress is lexically determined, and it has a phonologically 

distinctive role (e.g., /'muk√/ ‘suffering’ vs. /mu'kA/ ‘flour’), whereas in Finnish, stress is 

associated with the first syllable of the word. Given that, in Finnish, quantity is 

independent of word stress, the different use of the duration cue may cause confusion for 

Russians listening to Finnish. Non-Finnish-speaking Russians may perceive the 

unstressed long vowels in Finnish as stressed based on the vowel duration (de Silva, 

1999).  

 

4. Auditory ERPs and MMN as tools of investigating the perception of speech 

features 

4.1. ERPs reflecting acoustic features 

 

Auditory ERPs are electrophysiological responses caused by, and time-locked to, 

acoustic events. They can be non-invasively recorded from the scalp using the EEG. The 

long-latency auditory ERPs start with the obligatory (exogenous) components that reflect 

the transient detection of the physical features of stimulus. In adults, these components 

are the P1 (P50), N1, P2, and N2. The P1 and N1 peak at about 50 and 100 ms from 

stimulus onset, respectively. The P2 peaks at 175–200 ms and, depending on stimulus 

duration, may be followed by the N2 and the sustained potential (for a review, see 

Näätänen, 1992; see also Kushnerenko et al., 2001). 

 

The N1 is suggested to reflect the transient detection of change in the level of sound 

energy, such as stimulus onsets (and offsets for stimuli with over 0.5 s of duration) 

(Näätänen & Picton, 1987). Thus, the N1 amplitude decreases with decreasing stimulus 

intensity. In addition, the N1 reflects the tonotopical organization of the auditory cortex 

(e.g., Pantev et al., 1988; 1995; Romani et al., 1982). The N1 amplitude is also modulated 

by the auditory environment. When a stimulus is repeated, the N1 elicited by the 
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repetitions is diminished in amplitude in comparison with that elicited by the first 

stimulus in the stimulus train due to the refractoriness of the neural populations.3 

Depending on the similarity of the stimulus features, a deviant stimulus presented in the 

stimulus train may again elicit a larger N1 owing to the activation of fresh, non-refracted 

neural populations in addition to (or instead of) those refracted populations that are tuned 

to the repeating stimulus (Näätänen & Picton, 1987; Näätänen et al., 1988). The 

refractoriness is affected by the stimulation rate: the N1 is larger for rarely occurring 

sounds than for frequently occurring sounds. According to Imada et al. (1997), both 

onset-to-onset (SOA) and offset-to-onset (ISI) time periods affect the N1 amplitude, but 

the silent period before the stimulus has a stronger effect.  

 

Some studies have suggested that obligatory responses can be modified by experience on 

sounds. Pantev et al. (1998) disclosed that the N1 elicited by piano tones was enhanced in 

amplitude in musicians in comparison with that elicited in control subjects, whereas no 

enhancement was found for pure tones. Tremblay et al. (2001) reported that the amplitude 

of the N1-P2 complex reflects the improvement of speech-sound recognition as a result of 

training. However, more recent data by Sheehan et al. (2005) challenged this view. 

Sheehan et al. (2005) suggested that the P2 enhancement may be due to an inhibitory 

process towards responses that are elicited by repetitive stimulation and have no 

relevance to the individual. Thus, so far, it is controversial whether other obligatory 

components than the N1 can be modified by experience. Even though Pantev et al. (1998) 

consider their findings on N1 enhancement as reflecting the cortical representation of 

auditory stimuli, Näätänen and Winkler (1999) have argued that the process underlying 

the N1 elicitation reflects feature encoding that does not fulfill the criteria of the neural 

substrate of stimulus representation, because this feature encoding does not result in a 

complete, functionally integrated representation that corresponds to conscious perception. 

Rather, in their view, the integrated representations of auditory events are reflected by the 

MMN component of ERP. 

 

                                                 
3 Here the term refractoriness does not refer to the refractory period of single neurons following the 
generation of an action potential, but rather to stimulus-specific refractoriness of complex neuronal circuits 
(Näätänen & Picton, 1987).  
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4.2. MMN as index of change detection 

 

The MMN (Näätänen et al., 1978) is an ERP component elicited by a discriminable 

change (e.g., change of frequency, duration, intensity, location, or pattern) in a regular 

stimulus stream of speech or non-speech sounds (for reviews, see Näätänen, 2001; Picton 

et al., 2000). It peaks at 100–250 ms after change onset and is characterized by a fronto-

central scalp distribution and inverted polarity at the mastoids (with nose reference) as a 

result of the orientation of its generators, namely, a bilateral temporal source at the 

superior temporal gyri and a frontal source in or near the right inferior frontal gyrus 

(Giard et al. 1990; Opitz et al., 2002; Rinne et al., 2000; 2005). Typically, the MMN is 

elicited in an oddball paradigm that contains a repetitive, standard stimulus and 

occasional deviant stimuli randomly occurring at a low probability. According to 

Näätänen (1990), the repetitive standard stimuli form and maintain a sensory-memory 

representation of the stimulus features. The MMN is elicited by the difference between 

the perceived features of a deviant stimulus and the features stored in the representation 

of the standard stimuli (see also Näätänen et al., 2005; Schröger, 1997). However, 

Winkler et al. (1996; 2001) have demonstrated that the existence of a sensory-memory 

representation is a necessary but not sufficient condition of MMN elicitation. Rather, it 

requires the detection of regularities in auditory input and a violation of extrapolations 

based on these regularities. The MMN amplitude and latency correlate with perception in 

behavioral discrimination tasks (e.g., Lang et al., 1990; Näätänen et al., 1993; Tiitinen et 

al., 1994). Generally, the MMN amplitude increases when the acoustic discrepancy 

between the deviant and standard stimuli increases, which also facilitates behavioral 

discrimination. However, behavioral tasks require attentive processing and decision 

making, whereas the MMN is elicited even in the absence of attention. Thus, the MMN 

reflects automatic, pre-attentive change detection in auditory stimulation. 

 

Since the first studies by Kaukoranta et al. (1989), Joutsiniemi et al. (1998), and 

Näätänen et al. (1989), it has been consistently found that the MMN and its magnetic 

equivalent (MMNm) are elicited by sound-duration changes. A large range of duration 

changes from ten milliseconds up to ca 1 second can elicit an MMN (Amenedo & Escera, 
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2000; Näätänen et al., 2004). Equally to other MMNs, also the duration MMN correlates 

with behavioral duration discrimination (Amenedo & Escera, 2000; Jaramillo et al., 

2000). Since it has been suggested that the amplitude and latency of the duration MMN 

are relatively well-replicable in a test–retest setting, the duration MMN is a useful tool in 

the study of the cognitive functions of different clinical populations (Tervaniemi et al., 

1999). For example, the duration MMN has been used to determine the accuracy of 

sensory-memory representation in individuals with schizophrenia (see Michie, 2001, for a 

review), and dyslexia (for reviews, see Kujala & Näätänen, 2001; Lyytinen et al., 2004). 

The duration MMN has been utilized also in studies addressing speech vs. non-speech 

processing in isolated vowels or syllables (e.g., Jaramillo et al., 1999; 2001; Takegata et 

al., 2004) as well as in words and pseudowords (e.g., Inouchi et al., 2003; Korpilahti et 

al., 2001; Sussman et al., 2004). In addition, Menning et al. (2002) have used the duration 

MMN as an index of neural changes occurring as a result of speech-perception training. 

 

When measuring the duration MMN, one should note some methodological aspects 

specific to duration changes. The MMN peak is usually measured from a difference 

signal obtained by subtracting the response to standard stimulus from that to deviant 

stimulus. With the duration MMN, however, the subtraction of the ERP responses to 

standard and deviant stimuli with different physical timing may distort the difference 

signal, because sound continuation or termination considerably affects the obligatory 

responses (e.g., Jacobsen & Schröger, 2003; Kushnerenko et al., 2001). This may result 

in the underestimation of the MMN with duration decrements and the overestimation of 

the MMN with duration increments (Jacobsen & Schröger, 2003). One possible solution 

to this problem is to reverse the roles of the standards and deviants in a separate block 

and to use these reversed-condition responses (or responses from some other control 

design) for subtraction (Jacobsen & Schröger, 2003). An inevitable consequence of the 

use of the reversed-condition blocks is that either the SOA or the ISI is different between 

the oddball and reversed-condition blocks. The presentation rate does not significantly 

affect the MMN amplitude (Näätänen et al., 1987; Schröger & Winkler, 1995) (with the 

exception of the intensity MMN; see Schröger, 1996), but both the SOA and the ISI 

affect the refractoriness state of obligatory responses (Imada et al., 1997). This, in turn, is 
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reflected in difference signals. However, if the duration change eliciting the MMN occurs 

at around or after 100 ms from stimulus onset, it is unlikely that the refractoriness effects 

caused by the presentation rate could distort the MMN, since they are observed only in 

the P1, N1, and P2 components (Imada et al., 1997; Jacobsen & Schröger, 2003) that thus 

would not overlap with the MMN peak.  

 

Another possible confound for the interpretation of duration MMN is the perceived 

loudness, since shorter sounds may sound softer than longer sounds with equal intensities 

due to their smaller amount of physical energy (Munson, 1947). This loudness integration 

is one example of temporal integration that applies to sounds falling within the time 

window of ~200 ms (e.g., Näätänen, 1992). As a result, the duration MMN elicited with 

stimuli falling within this window could partly be contaminated by the intensity MMN. 

However, in a study addressing this issue, Todd and Michie (2000) found no significant 

contribution of the intensity cues to the duration MMN, even though sound durations 

falling within the temporal window of integration (50 ms vs. 125 ms) were used.  

 

4.3. MMN as index of the long-term memory representations for phonemes 

 

The MMN is a useful tool for language studies because the MMN elicited by speech 

stimuli does not only reflect acoustical discrepancy between the standard and the deviant 

stimuli as with most non-speech sounds but is modified by the long-term memory 

representations for speech features. This was first demonstrated by Näätänen et al. (1997) 

with vowels and Dehaene-Lambertz (1997) with consonants. In Näätänen et al. (1997), 

the Finnish vowel [O] elicited a larger-amplitude MMN than the Estonian vowel [F] in 

native speakers of Finnish regardless of the fact that [F] was acoustically more deviant to 

the standard than [O]. Since a reversed pattern was found in the native speakers of 

Estonian, the effect observed in the native speakers of Finnish was clearly language-

specific. With the MEG, the source of the phonetic enhancement of the MMN was 

localized on the left auditory cortex (see also Alho et al., 1998; Shtyrov et al. 1998; 

2000). The language-specific MMN enhancement caused by native-language phoneme 
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changes was also found by Dehaene-Lambertz (1997) who studied MMNs elicited by 

native- and non-native across- and within-category phonetic contrasts in consonants. It 

was found that the native across-category change elicited a larger-amplitude MMN than 

did the native within-category change. In contrast, for non-native changes, no MMN was 

elicited.  

 

Several studies have corroborated the first evidence presented by Näätänen et al. (1997) 

and Dehaene-Lambertz (1997) that the MMN is affected by language experience and 

long-term memory. For instance, Winkler et al. (1999b) presented orthogonal across- and 

within-category phonetic contrasts to two language groups and found that the MMN was 

larger in amplitude for the native-language across-category change in both language 

groups. Further, MMNs elicited by across- and within-category changes in voice onset 

time (VOT) were compared with each other by Sharma and Dorman (1999). Their results 

suggested that an across-category change elicited an MMN, whereas a within-category 

change did not. In another related study, Sharma and Dorman (2000) used syllables 

starting with pre-voiced stop consonants (-10 and -50 ms VOT). Behaviorally, native 

English listeners categorized both stimuli as /ba/, whereas Hindi listeners categorized the 

former as /pa/ and the latter as /ba/. A significant MMN was only observed in the Hindi 

listeners, whose category boundary was crossed. Another important demonstration of the 

long-term memory contribution to the MMN was provided by Phillips et al. (2000) and 

Shestakova et al. (2002) who suggested that the MMNm is also elicited by acoustically 

varying speech stimuli that are unlikely to form a memory representation needed in 

MMN(m) elicitation unless they are processed categorically. In addition to phonemes, an 

MMN enhancement has recently been found for the L1 syllable structure (Dehaene-

Lambertz et al., 2000) and for L1 words relative to pseudowords (Pulvermüller et al., 

2001; 2004; Shtyrov & Pulvermüller, 2002).  

 

The language-specific MMN enhancement has also been observed for L2 features. 

Winkler et al. (1999a) demonstrated that adult second-language users can establish long-

term memory representations that are pre-attentively activated and determine the MMN 

amplitude similarly as those of the native speakers (cf. Peltola et al., 2003, for reduction 
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instead of enhancement of the MMN amplitude in L2 learners). Furthermore, Cheour et 

al. (2002) have reported that in 3–6-year-old children, foreign-language learning is 

reflected in the MMN elicited by foreign-language speech sounds as rapidly as within 

two months of exposure to the target language (see also Shestakova et al., 2003). Thus, 

the MMN can be used as a tool to probe the effects of L2 learning at the neural level.  

 

Not all attempts to demonstrate language-specific effects with the MMN have been 

successful, however. The MMN studies (Aaltonen et al., 1992; Maiste et al., 1995; Sams 

et al., 1990; Sharma et al., 1993) preceding Dehaene-Lambertz (1997) had repeatedly 

aimed at revealing the neural correlates of categorical perception, but failed to do so. The 

MMN response patterns were not significantly different between across-category and 

within-category changes. This raises the question as to whether crossing the boundary 

between two phonetic categories is, after all, the critical factor in eliciting the effect at the 

neural level. Since the phonetic categories are internally organized according to the 

typicality of instances within a category (Iverson & Kuhl, 1996; Kuhl, 1991; Miller et al., 

1983; Samuel, 1982), the extent of typicality may sometimes account for the category-

related effects even in those studies that were interpreted to reflect categorical perception 

or phoneme-boundary effect. Unfortunately, it is difficult to assess the effect of stimulus 

typicality on some of the above-mentioned results, because no data on this issue were 

reported. Some more recent MMN studies have, however, emphasized the role of the 

phonetic prototypes in MMN elicitation (Dehaene-Lambertz et al., 2000; Huotilainen et 

al., 2001; Näätänen et al., 1997). Even though the interpretations of the determinants of 

phonetic representations are controversial, the body of evidence suggests that extensive 

exposure to a certain language facilitates the processing of the acoustic changes that are 

linguistically relevant in that language, which, in turn, is reflected as an enhanced MMN 

response.  
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5. Experiments  

5.1. Aims of the studies 

 

Study I aimed at determining whether the relevance of the duration feature in the L1 

affects the accuracy of the duration processing in the brain, as indexed by the MMN brain 

response. Native speakers of Finnish and advanced Russian L2 users of Finnish, whose 

native language does not have a phonological quantity distinction, were compared with 

each other. The goal of Study II was to determine the L2 users’ accuracy in processing 

duration in different L2 sounds. On the basis of a hypothesis proposed by Flege (1995), 

the duration processing of the L2 sounds was expected to be affected by the L1 to a 

different extent depending on whether a new L2 vowel category has been established 

(with dissimilar sounds) or the L1 and L2 sounds are processed as belonging to the same 

category (with similar sounds).  

 

Study III aimed to determine whether, as a result of exposure to Finnish, Russian L2 

users of Finnish have been able to establish quantity categories that can be accessed on 

the basis of the duration cues, even though their L1 uses duration cues differently. In 

order to extend the findings of Study III, Study IV addressed the questions of whether 

the phoneme-boundary effect is reflected in the pre-attentive processing of the Finnish 

quantity categories and, further, whether the effect is, at the neural level, indeed induced 

by crossing a phoneme boundary. In addition, Study IV aimed at determining whether 

language learning is reflected in Russian L2 users’ behavioral and brain responses to 

quantity and, further, whether L2 users show similar category-related effects as do the 

native speakers. Finally, the purpose of Study V was to determine whether phoneme 

quality and quantity have a common representation or separate representations in the 

brain, as indicated by the additivity of MMNs to phoneme quality and quantity. 
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5.2. Methods 

 

Subjects  

In Studies I and II, the subjects were 10–14-year-old native speakers of Finnish and 

Russian L2 users of Finnish. They were the same in both studies, with the exception of 

Study II having one Finnish subject less. In Study I, the native-speaker group consisted of 

14 monolingual native speakers of Finnish and, in Study II, it consisted of 13 

monolingual native speakers of Finnish. The L2-user group included 11 advanced 

second-language users of Finnish, speaking Russian as their L1. From both subject 

groups, one subject was excluded due to poor signal-to-noise ratio.  

 

Studies III and IV included three adult subject groups with different language 

backgrounds, namely, native speakers of Finnish, Russian L2 users of Finnish, and non-

Finnish-speaking Russians (hereafter referred to as naïve Russians). In Experiment 1 of 

Study III, 229 native speakers, 57 Russian L2 users of Finnish, and 60 naïve Russians 

who reported not having been exposed to Finnish were included in the analysis. The L2-

user group was further divided into the short-exposure L2 group and the long-exposure 

L2 group according to the length of residence in Finland. In Experiment 2 of Study III, 20 

native speakers of Finnish and 20 native speakers of Russian participated. Ten subjects in 

the Russian group reported speaking no Finnish. The other ten Russians spoke Finnish as 

a second language at a basic level of proficiency. In Study IV, the native-speaker group 

consisted of 13 native speakers of Finnish, while the group of the naïve Russians 

consisted of 12 non-Finnish-speaking Russians, and the L2-user group of 14 Russian 

subjects speaking Finnish as their L2 at an intermediate level of proficiency. Two L2 

subjects were excluded from the MMN experiment on the basis of their behavioral 

results. In Study V, 14 adult native speakers of Finnish participated in the experiment. 

Two subjects were excluded from the analysis due to very frequent eye-blink artifacts. 
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Experimental conditions and stimuli 

Studies I and II were MMN experiments, where stimuli were presented in a passive 

oddball paradigm. In both studies, duration change occurred in two stimulus types. They 

included a complex tone (components 500, 1000, and 1500 Hz) and syllable /kA/ in Study 

I and syllables /kA/ with a similar sound and /kæ/ with a dissimilar sound in Study II.4 In 

both studies, the duration of the standard stimulus was 200 ms and that of the deviant 

stimulus 150 ms, while the SOA was 650 ms. 

 

Study III included two behavioral experiments. Experiment 1 was a two-alternative, 

forced-choice (2AFC) categorization task with two conditions, where the categorization 

of the vowel quantity was investigated in the first- and second-syllable positions. Two 

pseudoword continua with seven steps differing from each other in the vowel duration 

were used as stimuli ([tuku] vs. [tu˘ku] in the first-syllable position and [tuku] vs. [tuku˘] 

in the second-syllable position). Each stimulus was presented ten times in random order. 

Trains of five stimuli were presented with a 2-s ISI and a 4-s inter-train interval. In 

Experiment 2, categorization and discrimination performances were compared with each 

other. The categorization task was a corresponding 2AFC as in the first-syllable position 

of Experiment 1. Discrimination was studied with an AX (“same–different”) task, where 

the adjacent stimuli of the same stimulus continuum were randomly presented in pairs. 

The ISI within the stimulus pairs was 1 s while the inter-pair interval was 2.5 s.  

 

Study IV included categorization, word production, and MMN experiments. Behavioral 

2AFC tests of quantity categorization were carried out with words and isolated vowels to 

determine the individual boundaries between the categories for each subject. In the word 

condition, a stimulus sequence identical to that in the first-syllable position of Study III 

(i.e., [tuku] vs. [tu˘ku] word continuum) was used. The isolated-vowel condition was 

otherwise identical, but the [u] vs. [u˘] vowels were presented without the word context. 

With a reading task, word-production data on the same pseudowords were gathered from 

                                                 
4 For Russian L2 users, the realizations of the Finnish and Russian /A/ vowels following /k/ are hardly 
distinguishable, and can thus be considered similar. In contrast, there is no phoneme /æ/ in Russian and, 
therefore, the realizations of /æ/ can be regarded as dissimilar from any L1 phoneme. 
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the native speakers, whereas the L2 users read Russian sentences that included a similar 

Russian word that had stress on the first syllable. Moreover, an MMN experiment with 

two conditions, word and isolated vowel, was conducted using a passive oddball 

paradigm. In the word condition, [tu˘ku] vs. [tu˘ku] represented a within-category pair and 

[tu˘ku] vs. [tuku] represented an across-category pair. In the isolated-vowel condition, the 

corresponding vowel stimuli were presented without the word context. In the word and 

isolated-vowel conditions, the SOAs were 1000 ms and 500 ms, respectively. In addition, 

the oddball deviants were presented with a 100% probability in separate blocks.  

 

Study V, too, used MMN methodology. The MMNs to consecutive phoneme-quality and 

-quantity changes as well as their sum were compared with the MMN elicited by a 

simultaneous change in both quality and quantity. Stimuli were pseudowords [it˘i] 

(standard), [ip˘i] (quality deviant), [iti] (quantity deviant), and [ipi] (double deviant, 

differing from the standard in quality and quantity). In addition, 3 blocks of reversed 

conditions, in which each of the deviants were used as standards and the rest of the 

stimuli as deviants, were presented. The stimuli were delivered in a passive oddball 

paradigm with a 1000-ms SOA. 

 

Data acquisition and analysis 

In Studies I, II, IV, and V, the EEG was recorded with NeuroScan system and 

SYNAMPS amplifier. In Studies I and II, Ag/AgCl electrodes were placed at the scalp 

sites F3, F4, C3, C4, T3, T4, P3, P4, and the two mastoids, and in Studies IV and V at F3, 

Fz, F4, C3, Cz, C4, P3, Pz, P4, and the two mastoids according to the international 10-20 

system (Jasper, 1958). Eye movements were monitored with the electro-oculogram 

(EOG) attached below the eye and the canthus of the eye. The EEG was recorded while 

auditory stimuli were presented via headphones in an acoustically and electrically 

shielded room. Subjects were instructed not to pay attention to sound stimuli, but rather 

to a self-selected, muted movie. 
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Table 1. Details on the data acquisition and analysis in the MMN studies. 

 Study I Study II Study IV Study V 

Sampling rate 250 Hz 250 Hz 500 Hz 500 Hz 

Reference during the 
recording Right mastoid Right mastoid Nose Nose 

Re-referencing The average of the 
mastoids 

The average of the 
mastoids 

The average of the 
mastoids No 

Filter 1–15 Hz 2–15 Hz 1–20 Hz 1–20 Hz 

Artefact rejection ±75 μV ±75 μV ±75 μV ±50 μV 

Epoch duration (ms) -50–650 -50–650 WC*: -50–1000 
IC**: -50–500 

-50–1000 
 

Window of baseline 
correction (ms) -50–0 -50–0 -50–0 50 ms pre-change 

Amplitude 
measurement 

20-ms windows 
centered at the 
grand-average 

peaks 

20-ms windows 
centered at the 
grand-average 

peaks 

20-ms windows 
centered at the 
grand-average 

peaks 

100–150 ms and 
150–200 ms from 

change onset 

* WC = word condition; ** IC = isolated-vowel condition 
 

 

The details of data acquisition and analysis are presented in Table 1. In Studies I and II, 

the averaged standard-stimulus responses were subtracted from those for the deviants.5 In 

Studies IV and V, the difference signals were created by using the ERP signals elicited by 

the same stimulus in the low- and high-probability positions (oddball deviants and 

responses from 100% blocks or reversed-condition standards, respectively). For Study V, 
                                                 
5 The subtraction of the ERP to a shorter standard from that to a longer deviant may result in the 
underestimation of the MMN amplitude (Jacobsen & Schröger, 2003). However, the way of subtraction did 
not distort the comparisons between the subject groups for the different stimulus types that were of interest, 
since the effect of subtraction was the same for all groups and stimulus types used in the studies. 
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a modeled double deviant was created by adding the two single-deviant responses after 

adjusting the change-onset points. In all studies, the mean-amplitude data were submitted 

to t-test to assess the significance of the MMN component. Further, analyses of variance 

(ANOVA) with the MMN mean amplitude as a dependent variable were performed. 

 

In Experiment 1 of Study III, subjects responded to the stimuli in an answer sheet. After 

the data collection, difference curves for each subject’s categorization functions were 

calculated by subtracting the contiguous data points. The mean of the difference curve, 

representing the category-boundary location (the 50% cross-over point of the functions), 

and the standard deviation (SD), representing the consistency of the categorization, were 

calculated. The data on the consistency of the categorization and the boundary location 

were subjected to separate one-way ANOVAs for the two syllable positions. The overall 

categorization functions were tested in separate two-way ANOVAs. In the categorization 

task of Experiment 2 of Study III, the subjects categorized the stimuli by pressing keys of 

a response pad. The RT was measured from the offset of the stimulus. The data on the 

category boundary and the consistency of the categorization were analyzed as in 

Experiment 1 and corresponding statistical tests were used. In addition, the RT data were 

subjected to a two-way ANOVA. The procedure of the discrimination task was the same 

as that of the categorization task with the exception that subjects responded according to 

whether the stimuli within each pair were the same or different. As an index of the 

discrimination sensitivity, d’ scores were used. They were calculated according to the 

signal detection theory: d’ = ZN - ZSN, where ZN was obtained by converting 1 - p(false 

alarms) and ZSN by converting 1 - p(hits) to z scores (Gescheider, 1985). The RT was 

measured from the offset of the second stimulus of the pair. For statistical testing, d’ data 

and RT data for the same pairs and the different pairs were submitted to separate two-way 

ANOVAs. In addition, t-tests were performed on the d’ data to assess whether 

discrimination sensitivity was above the chance level. 

 

In the categorization task of Study IV, subjects responded to the stimuli in an answer 

sheet. After the data collection, the normal distribution was fitted to each subject’s 

categorization functions. The mean value of the normal distribution represented the 
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boundary location and its SD indicated the consistency of the categorization. The mean 

and SD values were used as dependent variables in two-way ANOVAs. In the production 

experiment of Study IV, the vocalizations were recorded with a digital audio tape (DAT) 

recorder. Then the sound durations were measured, and the relative durations were 

calculated by dividing the absolute durations of the vowels of interest by the mean 

duration of a sound in the utterance. The data were submitted to one-way ANOVAs to 

compare the responses of the Finnish speakers and the Russian speakers with each other.  

 

5.3. Results and discussion 

 

 
Figure 1. Study I: MMN elicited by duration change in speech and non-speech sounds in native 
speakers and second-language (L2) users of Finnish. Grand-average difference signals. 
 

 

The results of Study I revealed that the amplitude of the MMN brain response was 

similar in the native speakers and the L2 users of Finnish with a non-speech stimulus. 

With a speech sound, however, the MMN amplitude was larger than with a non-speech 

sound in the native speakers, but not in the L2 users (Group x Stimulus type interaction 

[F(1, 21) = 7.7, p < 0.05], see Fig. 1). In Study II, the MMNs amplitude for duration 

changes in two Finnish vowels did not differ significantly from each other in the native 

speakers. In the L2 users, however, duration change in a similar [A] vowel that could be 

categorized through the L1 phonological system elicited a smaller MMN than that in a 

dissimilar [Q] vowel that could not be categorized through L1 categories (Group x 
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Stimulus type interaction [F(1, 20) = 8.75, p < 0.01], see Fig. 2). The results were 

interpreted to suggest that, in the native speakers of Finnish, duration processing is tuned 

or facilitated with speech sounds in comparison with non-speech sounds (see also 

Jaramillo et al., 2001). In contrast, in the L2 users, no such tuning was observed in Study 

I. However, Study II suggested that the lack of tuning in L2 users holds for L2 sounds 

that can be categorized through L1 phonological system, whereas duration processing in 

such sounds, for which new phonetic categories are established (dissimilar sounds), may 

achieve native-like facilitation. 

 

 
Figure 2. Study II: MMN elicited by duration changes in syllables [kA] and [kQ] in native 
speakers and second-language (L2) users of Finnish. For the L2 users, /A/ was similar in their 
native and second languages, whereas /Q/ was dissimilar to any native-language phoneme. 
Grand-average difference signals. 
 

 

In Study III, the main finding of Experiment 1 was that the consistency of categorization 

differed between the groups with the different language backgrounds in both syllable 

positions (first-syllable [F(3, 342) = 40.17, p < 0.001], see Fig. 3, top; second-syllable 

[F(3, 342) = 17.88, p < 0.001]). The native speakers of Finnish were more consistent in 

the categorization than the short-exposure L2 group and the naïve Russians. Moreover, 

the long-exposure L2 group and the naïve Russians were more consistent than the short-

exposure L2 group. Significant differences between the groups were also found in the 

category-boundary location. However, the relative consistency of categorization rather 

than the boundary location or the shape of the categorization functions seemed to reflect 
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the access to the quantity categories. Thus, the results suggested that the native speakers 

and some of the long-exposure L2 users had access to the quantity categories, whereas 

the short-exposure L2 users and the naïve Russians did not.  

 

 
Figure 3. The main findings of Study III. Top: The categorization functions of the native speakers 
of Finnish (Fin), the Russian second-language users of Finnish with short exposure (Rus L2-SE) 
and long exposure (Rus L2-LE), and the non-Finnish-speaking Russians (Rus naive) in the first-
syllable position of Experiment 1. Bottom: The d’ scores of the native speakers of Finnish (Fin), 
the Russian second-language users of Finnish (Rus L2), and the non-Finnish-speaking Russians 
(Rus naive), and the average of the two Russian groups (Rus pooled) in the discrimination task of 
Experiment 2. 
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In Experiment 2 of Study III, the main finding was that the d’ data of the discrimination 

task showed that the native speakers had a significant peak in their discrimination 

sensitivity at the category boundary, reflecting the phoneme-boundary effect (cf. Bastian 

& Abramson, 1962), whereas no such effect occurred in the Russians (Language 

background x Stimulus pair interaction [F(5, 190) = 2.75, p < 0.05], see Fig. 3, bottom). 

Thus, the results suggested that the quantity categories facilitated the discrimination at the 

category boundary in the native Finnish subjects, but not in the non-native subjects. 

Moreover, the RT data supported this interpretation. At the same time, the native 

speakers’ categorization was significantly more consistent than that of the Russians [F(1, 

38) = 9.14, p < 0.01]. Thus, the results of Experiment 2 supported the interpretation of the 

results of Experiment 1, namely, that the relative consistency of quantity categorization 

may reveal the extent to which the quantity categories are accessed. 

 

In Study IV, the results of the categorization task were in accordance with the findings of 

Study III: across the two conditions, the native speakers’ categorization was significantly 

more consistent than that of the naïve Russians (Group main effect [F(2, 36) = 3.40, p < 

0.05]). A similar but only marginally significant trend was found between the native 

speakers and the L2 users. The consistency of the categorization did not significantly 

differ between the Russian L2 users of Finnish and the naïve Russians, suggesting that 

the L2 users probably did not have access to the quantity categories. Thus, the L2 users’ 

categorization might be determined by the L1 rather than the L2. In the MMN experiment 

of Study IV, the main finding was that across the conditions and stimulus types, the 

MMN amplitude was significantly larger in the native speakers than in each of the two 

Russian groups (Group main effect [F(2, 34) = 5.38, p < 0.01], see Fig. 4). In contrast, the 

Russian L2 users and the naïve Russians did not significantly differ from each other. 

Since the amplitude pattern of the MMN elicited by the across- and within-category 

changes was the same for the Finnish-speaking and non-Finnish-speaking subjects who 

lack the categories for Finnish quantity, it appears unlikely that the crossing of the 

phoneme boundary affected the MMN amplitude in the Finnish-speaking groups. Rather, 

the degree of the match of the stimuli to the L1 prototypes may have determined the 

MMN amplitude: the two deviant stimuli used in the experiment matched the L1 
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prototypes of the native speakers but did not match those of the Russian groups. The 

results also suggested that Finnish prototypes were not pre-attentively activated in the L2 

learners as in the native speakers, since the L2 users did not differ from the naïve 

Russians in the MMN amplitude. 

 

 
Fig. 4. Study IV: The MMN responses elicited by the across- and within-category quantity 
changes in the native speakers of Finnish, the Russian second-language (L2) users of Finnish, and 
the non-Finnish-speaking (naive) Russians in word and isolated-vowel conditions. Grand-average 
difference signals. 
 

 

Study V indicated that in comparison with the two single deviants (quality and quantity), 

the double deviant that differed from the standard in both quality and quantity elicited an 

MMN with a significantly larger amplitude in one of the two time windows of the 

amplitude measurement, whereas the MMN amplitude for the double deviant closely 

resembled the sum of the quantity and quality MMNs (Deviant type x Time window 

interaction [F(3, 33) = 7.94, p < 0.001], see Fig. 5). These results suggest that the MMNs 

elicited by changes in phoneme quality and quantity were additive and, consequently, 

were independently processed using separate representations, which implies that 

phoneme quality and quantity represent different levels in the phonological system of 

Finnish.      
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 Fig. 5. Study V. Left: The MMN responses elicited by quality deviant (consonant change), 
quantity deviant (duration change), and double deviant (consonant and duration change). Right: 
the comparison of the MMN response to the double deviant with the modeled double deviant (the 
sum of the MMNs elicited by the quality and quantity deviants). The time scale is in relation to 
change onset. Grand-average difference signals at Fz and left mastoid (LM). 
 

 

6. General discussion 

 

With behavioral and electrophysiological methods, the present studies investigated the 

cortical representations for phonological quantity cued by speech-sound duration in 

native speakers and L2 users of Finnish. Possible differences between the groups in the 

mapping of stimuli onto the L1 and L2 categories as well as the establishment of the L2 

phonetic categories were of interest. Below, three topics relevant to the studies will be 

discussed in more detail: (1) whether the experiments tapped the processing of duration 

or quantity; (2) whether the categorization was based on the category boundaries or the 

phoneme prototypes in the studies and how the quantity was represented in the 

phonological system; and (3) what have the studies revealed on the L2 learning. 

 

6.1. Processing of duration or quantity?  

 

Studies I and II and the isolated-vowel condition of Study IV were intended to address 

duration processing, whereas Studies III, the word condition of Study IV, and Study V 
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were intended to determine quantity at a phonological level. In the latter studies, word 

stimuli were used on the basis of the assumption that the activation of the representations 

for quantity would require context information at no less than the word level, so that the 

speaking rate and the relative durations were available as cues for the quantity 

categorization. However, on the basis of Study IV, it seems unlikely that the division to 

duration processing in syllables and quantity processing in words took place; the words 

and the isolated vowels elicited a similar MMN pattern across the subject groups that 

either did or did not have categories for quantity. Thus, even though the results of Studies 

I and II were originally interpreted to reflect the processing of duration and those of 

Studies IV and V were interpreted to reflect the processing of quantity, it is possible that 

all studies, in fact, tapped the same processes. Below, the duration processing and 

category activation accounts for the result will be discussed. 

 

The duration-processing interpretation can be considered more conservative than the 

category-activation account. Since changes between phonetic categories must be 

accomplished by changes in acoustic features, to conclude that the MMN reflects 

category activation one should be able to rule out the possibility that the acoustic or non-

categorical phonetic features caused the pattern of results. For example, in Study I, a 

larger-amplitude MMN was elicited by duration changes in speech than in non-speech 

sounds in the native speakers of Finnish, which could be interpreted to reflect category 

activation in speech stimulation. However, this result is not necessarily due to the 

category activation, since the result could have been caused by speech-specific sensitivity 

to duration changes in the native speakers of a quantity language. This sensitivity could 

also account for the results of Studies II and IV. In Study II, the results were interpreted 

to reflect speech-sound duration processing that is specific to the phonetic categories, 

because the duration-change MMN for a Finnish sound that could be categorized through 

Russian was reduced in comparison with that for a Finnish sound that has no Russian 

equivalent. In Study IV, the duration MMN elicited by the speech stimuli was larger in 

amplitude in native speakers than in Russian L2 users or non-Finnish-speaking Russians 

throughout the conditions regardless of whether the vowels were presented in word 
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context or not. Alternatively to the explanation proposed in Study IV, this could be due to 

the native Finnish speakers’ general sensitivity to duration changes in speech sounds.  

 

In the original interpretation of the results of Studies I and II, a conservative approach not 

suggesting category activation was preferred partly because the activation of the 

representations for quantity was assumed to require context information at no lower than 

the word level. However, this assumption may have been incorrect, since it is possible 

that an experimental design with constant stimulation, such as the oddball paradigm used 

in MMN studies, provides a sufficient context for the activation of the prototypes or 

categories for quantity. A conservative approach was favored also because the subjects 

were advanced L2 users of Finnish, and their pronunciation of Finnish suggested that 

they had categories for the Finnish quantity. However, even though no category 

activation was observed in the L2 users’ MMN data, this does not exclude the possibility 

that the native speakers’ results reflected the activation of the L1 categories or prototypes. 

Even though the quantity categories utilized in both production and perception of Finnish 

would have been established by the L2 users, it is nevertheless possible that the mapping 

of stimuli onto these categories is not automatic to such extent that the categories would 

be pre-attentively activated; the categorization of the L2 quantity may require attention 

and cognitive effort. At the pre-attentive level, stimuli may be processed via the L1 rather 

than the L2 if suitable L1 categories or prototypes are available.   

 

Support for the category-activation account for the present results rises from previous 

cross-linguistic studies (e.g., Dehaene-Lambertz, 1997; Näätänen et al., 1997). These 

studies have suggested that larger-amplitude MMN responses are elicited by phonetic 

stimuli in native than in non-native listeners and, further, that stimuli representing L1 

phonemes elicit larger-amplitude MMN responses than those not representing any 

phoneme in the L1. These phenomena are suggested to be due to the activation of L1 

phonetic categories, and the present data are compatible with these patterns of results. In 

addition, Dehaene-Lambertz et al. (2000) demonstrated that the MMN reflects the parsing 

of the pseudoword syllable structure into L1 prototypes. Since in Finnish, there is a 

phonological distinction consisting of (C)V vs. (C)VV syllables (e.g., /u/ vs. /u˘/ in uni 
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/uni/ ‘dream’ vs. uuni /u˘ni/ ‘oven’; tuli /tuli/ ‘wind’ vs. tuuli /tu˘li/ ‘fire’ ) and there are 

CV vs. CVV and VCV vs. VCCV minimal-pair words [e.g., te /te/ ‘you (plural)’ vs. tee 

/te˘/ ‘tea’; ala /AlA/ ‘area’ vs. alla /Al˘A/ ‘under’], the stimuli used in Studies I, II, IV, and 

V match syllable structures that have representations in the brains of native speakers of 

Finnish. Thus, regardless of whether the quantity is recognized via phoneme or syllable 

representations, the activation of the L1 prototypes, rather than the tuning of duration 

processing, may account for the results of the present studies. Also Sussman (2005) and 

Sussman et al. (2004) seem to have abandoned the original tuning account of the results 

reported in Study I, since they refer to it as evidence for categorical perception (see 

Footnote 1 for the definition of categorical perception). 

 

Since there is no unequivocal agreement as to how sensory and long-term memory are 

linked (see Huotilainen et al. 2001; Phillips et al. 2000), one way to approach the problem 

of the substance of processing is to regard category formation as equivalent to the 

facilitation in the processing of the phonetic features. In this case, for example, there 

would be no difference between the interpretations that the results of Studies I, II, IV, and 

V reflected the activation of L1 prototypes for quantity or that they reflected the tuning of 

speech-sound duration processing, because the two interpretations would mean the same. 

This proposal could be falsified if, for example, the sensitivity to duration changes was 

found in native Finnish speakers for such speech sounds that fall out of the range of 

durations that could be categorized as short or long Finnish phonemes (e.g., clearly over-

long speech sounds). This result would support the general-sensitivity account for the 

duration processing in the native speakers of Finnish. Since the present studies did not 

include such a stimulus condition (all the stimuli were clearly identifiable to one or the 

other quantity category), it would be important to include such a condition in the future 

studies of this topic.  
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6.2. Categorization  

 

Studies III and IV addressed the quantity categorization, that is, the recognition of the 

quantity degree by mapping stimuli onto the representations for the quantity degrees. In 

Study III, the phoneme-boundary effect was found in behavioral measurements in the 

native speakers of Finnish: when stimulus pairs from a continuum with step-wise changes 

in vowel duration were presented to the native Finnish listeners, they perceived the 

duration changes most accurately, when a phoneme boundary was crossed by the change. 

This may be interpreted to imply that the phoneme boundaries are the determinants of the 

categorization. However, even though the phoneme-boundary effect was found in 

behavioral measurements, the MMN data of Study IV reflected no boundary effect at the 

neural level, as indicated by the same MMN pattern in the across- and within-category 

changes in the Finnish-speaking subjects who had the categories and in the non-Finnish-

speaking subjects who did not have the categories. Instead of the category boundary, the 

MMN amplitude appeared to be determined by the degree of the typicality of the stimuli 

in subjects’ L1. The results support the view that at the neural level, the phonemes or 

phonetic features are represented in long-term memory in terms of prototypes that can be 

pre-attentively activated. In Study IV, this was observed in the native speakers only.  

 

Unlike Study IV, some previous studies comparing the MMNs elicited by across- and 

within-category changes have suggested that the MMN is enhanced by crossing the 

phoneme boundary (Dehaene-Lambertz, 1997; Sharma & Dorman, 1999; Winkler et al., 

1999b; cf. Aaltonen et al., 1992; Maiste et al., 1995; Sams et al., 1990; Sharma et al., 

1993). However, since it is well-established that the phonetic categories have an internal 

structure in terms of the degree of typicality (Iverson & Kuhl, 1996; Kuhl, 1991; Miller et 

al., 1983; Samuel, 1982), the results on the across- and within-category changes may be 

affected by the typicality of the stimuli used in these studies. For example, Sharma and 

Dorman (2000) observed a significant MMN in Hindi listeners whose phoneme boundary 

was crossed, but not in English listeners who had no boundary between the stimuli. At the 

same time, however, the deviant stimulus was more prototypical to Hindi than to English 
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speakers (see Lisker & Abramson, 1964). Similarly in Dehaene-Lambertz’s (1997) study, 

the across-category /ba/ vs. /da/ distinction elicited an MMN in French listeners, whereas 

the dental vs. retroflex distinction, which is not phonemic in French, did not. Again, the 

Hindi retroflex was less prototypical to the French listeners than the stimuli used in the 

native across-category change, suggesting that the results may be affected by typicality. 

The typicality is not, however, as likely account for the difference found between the 

MMNs to the native across- and within-category changes in the studies of Dehaene-

Lambertz (1997) and Sharma and Dorman (1999), where the stimuli appeared to be 

within the typical range for the target languages. Since previous studies (e.g., Fry et al., 

1962; Pisoni, 1973) have shown that perceptual phenomena are different between the 

vowels and consonants, the processing of some consonant features might be less affected 

by typicality than that of the vowels.  

 

The phoneme-boundary effect was observed in the behavioral experiment of Study III but 

not in the MMN experiment of Study IV. A possible account for this discrepancy is 

differences in the tasks and their requirements with regard to the sensory and categorical 

representations. According to Winkler et al. (1996) and Winkler & Cowan (2005), in the 

oddball paradigm a sensory-memory representation as well as extrapolations on future 

events are formed on the basis of the repetitive standard stimulus. An incoming stimulus, 

if compatible with the representation and the extrapolations, strengthens them or, if 

incompatible, updates them automatically, eliciting an MMN. With speech sounds and 

larger speech units, the MMN is affected by both sensory and long-term memory 

representations (e.g., Huotilainen et al., 2001; Näätänen et al., 1997; Winkler et al., 

1999b). However, no MMN is elicited without a sensory-memory representation. In 

contrast, sensory-memory representations for acoustic detail may not always be strong 

enough to be utilized in an AX task, which was used in Study III, because they are not 

strengthened by repetition as is the case with the passive oddball paradigm. An AX task 

requires active decision making after hearing a particular stimulus pair only once in a 

roving stimulus environment, where A and X are constantly changing. With increasing 

memory load, sensory memory may not be able to represent the fine acoustic detail, but if 

stimulus A is recognized as belonging to a long-term memory category, then this 
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information, or possibly the activated prototype of the category, may be used for 

comparison. In another words, stimulus A of an AX pair may be more prone to be 

categorically processed, for example in terms of a prototype, rather than in terms of both 

acoustic detail and phonetic features of the stimulus, as is suggested to be the case with 

MMN (Näätänen et al., 1997; Winkler et al., 1999b). Consequently, if stimuli A and X 

represented the same category, then X would be compared with the prototype, which 

would diminish the difference between them (Kuhl, 1991; Samuel, 1982). However, if A 

and X represented different categories, then the discrepancy between them would be 

enhanced, resulting in a peak in the behavioral discrimination sensitivity at the category 

boundary, as was observed in Study III.    

 

The view that the strength of the memory representation exerts an influence on the 

phoneme-boundary effect in an AX task is supported by previous observations (Crowder, 

1982; Iverson & Kuhl, 2000; Macmillan et al., 1988; Pisoni, 1973), according to which 

the effect may be modified by the manipulation of the experimental conditions, such as 

the task type, the ISI, or the level of context variation. Additional support comes from the 

MMN literature, since MMN elicited by speech stimuli is also affected by the 

manipulation of the strength of the memory representation. Huotilainen et al. (2001), 

measuring the MMN elicited by deviants following prototypical and non-prototypical 

standard stimuli in a roving-standard paradigm, found that the MMN was larger in 

amplitude for deviants following two or three repetitions of the prototypical standards 

than after the same number of the non-prototypical standards. However, this effect 

disappeared with the increasing number of repetitions strengthening the representations. 

Thus, even though the MMN and the behavioral responses to phonetic stimuli reflect 

different processes in the sense that the MMN is based on pre-attentive, automatic 

memory processes and the behavioral measures require active decision making, both of 

them seem to be modified by the strength of the memory representation and the typicality 

of the phonetic stimuli.  

 

In addition to the determinants of the quantity categorization, the organization of the 

phonological system with regard to the quantity was addressed. Theoretically, long 
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segments can be simply interpreted as a sequence of two short segments (Karlsson, 1969; 

cf. Harrikari, 2000), the short and long phonemes can be considered equal to the other 

phonemic distinctions in the phonological system, or the phonemes may be regarded as 

being comprised of a qualitative and a quantitative component that represent separate 

levels in the phonological system. Study V suggested that the MMN responses to changes 

in the phoneme quality and quantity were additive, indicating that the analysis of these 

features was independent of each other. This suggests that the phoneme quality and 

quantity were processed by separate neural processes that may thus be regarded as 

different levels in the phonological system. 

 

6.3. L2 learning  

 

An important aspect of the current studies was L2 learning. In particular, the 

establishment of the quantity categories in the L2 users was investigated with behavioral 

methods in Study III, while Studies I, II, and IV addressed the MMN brain response to L2 

sounds in non-native speakers of Finnish. Previous research has suggested that the L2 

quantity distinction is often difficult to non-native speakers and listeners (Han, 1992; 

Hayes-Harb, 2005; Hirata, 2004; McAllister et al., 2002). Similar conclusions can be 

drawn from the results of Studies III and IV, where the Russian L2 users and the non-

Finnish-speaking, naïve Russians were compared with each other. Study III suggested 

that some of the L2 users who have been exposed to Finnish for a longer time (5 years or 

more) had access to the phonological quantity categories, whereas the L2 users with a 

shorter exposure and the naïve subjects did not have such categories. In addition, it was 

found that similarly to the naïve subjects, the non-native subjects with low proficiency in 

Finnish did not show a phoneme-boundary effect for the quantity as the native speakers 

did, corroborating the lack of the categories in this group. In Study IV which addressed 

the representation of the quantity in the brain, no difference was found between the L2 

users’ and naïve subjects’ MMN responses to quantity. Thus, the L2 learning had not 

affected the processing of the quantity at the pre-attentive level: Finnish prototypes were 
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not pre-attentively activated in the L2 learners, as was suggested to be the case in the 

native speakers. As discussed earlier, Study I may reflect the same phenomenon.  

 

The results of Study IV indicating no effect of the L2 learning on the MMN are in 

contrast with those of previous studies (e.g., Cheour et al., 2002; Peltola et al., 2003; 

Shestakova et al., 2003; Winkler et al., 1999a) that showed such an effect when 

segmental-level phonetic stimuli were used. Cheour et al. (2002) and Shestakova et al. 

(2003) observed an enhanced MMN to L2 sounds after exposure to L2. However, since 

the age of the L2 learning is one important factor having an influence on the L2 

performance (e.g., Flege & MacKay, 2004; Piske et al., 2001), these studies are not fully 

comparable to Study IV: their subjects were 3–6-year-old children and thus exposed to 

L2 markedly earlier than were the adult subjects of Study IV. Subjects in Peltola et al. 

(2003) were adults, but had started to study English at school at around 9 years of age. 

While the other studies suggested an enhanced MMN response to L2 speech sounds after 

L2 exposure, in foreign-language learners of Peltola et al. (2003), a diminished response 

to L1 sounds was observed. In Study IV, neither increase nor decrease of the MMN 

amplitude in the L2 users as compared with that in the naïve subjects was found, 

however. Considering the age of the onset of the L2 exposure and the length of the 

residence in an L2-speaking country, the vowel study by Winkler et al. (1999a) is the 

most comparable with Study IV. In Study IV, the L2 users’ age at the onset of learning 

Finnish was 14–22 years and the length of the residence in Finland was 3–12 years, 

while, in Winkler et al. (1999a), the corresponding values were 13–32 years (with one 

exception) and 2–13 years, respectively. Unlike the results of Study IV, those of Winkler 

et al. (1999a) suggested that the Hungarian L2 users of Finnish have a native-like MMN 

response to a Finnish vowel.  

 

The lack of the language-learning effect in Study IV as opposed to the results of Winkler 

et al. (1999a) might be due to the fact that these studies involved L2 contrasts that were 

cued by different features of speech sounds. In their Feature Prominence Hypothesis, 

McAllister et al. (2002) proposed that re-attunement to duration can be difficult for those 

L2 learners with an L1 that does not exploit this feature phonologically. Moreover, these 
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L2 learners may be better able to attune their phonological systems to the spectral rather 

than to the durational cues of the L2, since the spectral cues are used in the L1 

phonological contrasts, whereas the durational cues are not. As noted by Mueller (2005), 

the learning of different features may also be differently constrained by the age of 

acquisition. Studies I and IV, when compared with Winkler et al. (1999a) vowel study, 

suggest that in the studies involving duration feature, a less native-like MMN was elicited 

than in the vowel study. This holds regardless of the fact that the subjects of Study I can 

be considered early L2 learners, whereas subjects in Winkler et al. (1999a), as well as 

those in Study IV, were adolescents or adults at the L2-acquisition onset. Therefore, the 

discordance between our results and those of Winkler et al. (1999a) might suggest that 

plastic changes in the brain resulting in L2-category establishment are less likely to occur 

for the L2 contrasts cued by the duration than for those cued by the spectral features, if 

the L2 learner’s L1 does not have phonological quantity contrasts.  

 

A possible account for the variable difficulty in the establishment of the categories for the 

L2 contrasts that are cued by different kinds of features is the different optimal periods 

for acquisition (Werker & Tees, 2005). Infants are sensitive to the rhythmic properties of 

speech, and the perception of these features is attuned to the L1 earlier than that of the 

sound segments (see Nazzi & Ramus, 2003, for a review). Werker and Tees (2005) have 

suggested a cascading model of the optimal periods of language acquisition, where each 

level of processing reinforces and constrains the preceding and following sensitivities. If 

the rhythmic features are acquired at an earlier phase than the sound segments in a 

cascading system, then these language-specific sensitivities might be more difficult to 

change after the higher levels of the L1 processing have already been established. 

 

In line with McAllister et al. (2002), Studies III and IV suggested that the establishment 

of the L2 quantity categories is difficult and may require several years of exposure to the 

target language, since a significant language-learning effect was only observed in the 

long-exposure L2 group of Study III. Even in this group, the category establishment 

probably had not occurred in all individuals. The non-native listeners’ problem in the 

establishment of the quantity categories does not seem to be primarily in the perception 
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of the duration cues, however, since all subject groups discriminated duration changes 

above the chance level in Studies I-IV. One possible account for the category 

establishment in some of the L2 users of Study III but not in the others, regardless of their 

access to the relevant cues, is selective attention. Pisoni et al. (1994) have suggested that 

the linguistic experience modifies the attentional processes underlying perception. In 

addition, Iverson et al. (2003) have demonstrated that the Japanese L2 learners of English 

have difficulties in the recognition of the /r/ vs. /l/ distinction due to sensitivity to 

irrelevant cues that make it harder to focus attention on those cues that the native 

speakers use. Regardless of the fact that the duration cues were acoustically salient 

enough to be discerned by the non-native listeners in Studies I–IV, the L2 users may not 

always be able to utilize the cues in everyday communication in such a way that stable 

categories would be established to long-term memory and that they would be 

automatically activated by speech input. Especially in the early stages of the L2 

acquisition, the comprehension of L2 speech in a natural communication situation 

requires the processing of many unfamiliar features in a limited time and with a limited 

processing capacity. Since phonological distinctions based on spectral cues are generally 

much more frequent and thus potentially more important than those based on duration 

cues, a language learner with L1 not using duration cues in phoneme distinction may 

attend to the spectral cues at the expense of the durational cues when listening to L2 

speech. 

 

Even though the most of the data in Studies I–IV showed that the L2 learners were not 

native-like in their processing of the Finnish quantity distinctions, there was one 

exception: Study II compared the advanced L2 users’ MMNs to duration changes in two 

kinds of L2 sounds; namely, in an L2 vowel similar to an L1 vowel and in an L2 vowel 

dissimilar to any L1 vowel. The results showed a native-like duration MMN in a 

dissimilar vowel, but a smaller duration MMN in a similar vowel. The result was 

probably due to the establishment of a new vowel category for a dissimilar L2 vowel, 

whereas a similar L2 vowel could be pre-attentively mapped via the L1 phonological 

system. Apparently, the L1 that does not use the duration phonologically had a smaller 

influence on the processing of a duration change in a dissimilar vowel than in a similar 
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vowel. Thus, despite L1 constraints, the L2 users could learn to utilize the duration cues 

in a native-like fashion. These L2 users were, however, early learners and had achieved 

an advanced level of proficiency. Additional studies are needed to determine whether this 

data pattern could be replicated in late learners. Recently, a near-infrared spectroscopy 

study of Minagawa-Kawai et al. (2005) suggested that the late but nevertheless proficient 

L2 learners’ brain activation for the Japanese quantity is different from that of the native 

speakers; even though the L2 learners behaviorally categorized quantity similarly to 

native speakers, they did not show such left-hemisphere brain responses for across-

category quantity-degree changes as did the native speakers. The similarities between the 

L1 and L2 phonological systems were not discussed by Minagawa-Kawai et al. (2005), 

however.  

 

It has been shown that the MMN is a useful tool to study the brain correlates of speech 

perception and L2 learning. It is noteworthy, however, that if the MMN data indicate no 

pre-attentive activation of L2 prototypes in L2 learners and there is no corroborating 

behavioral evidence, one should be cautious in concluding that L2 users have no 

categories for the L2 contrast in question. As suggested earlier, depending on the L2 

competence level, the mapping of the stimuli onto the established L2 categories may 

sometimes require active effort and not be automatic as the mapping of stimuli onto the 

L1 sounds. This would suggest that the MMN can be used as a tool to reveal whether the 

possible categories are automatically accessed in a native-like fashion by comparing the 

MMN responses of native speakers with those of L2 users [as was the case in the Winkler 

et al. (1999a) study]. However, since access to categories may require active effort from 

the L2 users, MMN results may not always reveal whether such long-term memory 

representations are established or not. On the other hand, behavioral methods may not 

reveal the differences in the neural representation of the speech features underlying the 

overt behavioral responses (e.g., Minagawa-Kawai et al., 2005). If a study is intended to 

address the L2-category establishment in the brain, behavioral and brain-research 

methods should be combined. 
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7. Conclusions 

 

This thesis suggests that the native speakers process the phoneme quantity and quality 

independently by using separate brain representations. It also shows that, in the native 

speakers of Finnish, the pre-attentive mapping of speech sounds onto the quantity 

categories does not occur on the basis of the phoneme boundaries. Rather, the L1 

phonetic prototypes may be involved. The native Finnish-speakers’ MMN brain response 

to quantity or duration changes was enhanced in amplitude in comparison with that of the 

L2 users of Finnish. This may be due to the pre-attentive and automatic activation of the 

L1 prototypes in the native, but not in the non-native listeners, who did not seem to have 

an automatic access to the L2 prototypes. Similarly, other signs of L2-category 

establishment, such as the phoneme-boundary effect, were not found in the inexperienced 

non-native listeners’ behavioral responses. Some L2 users with over five years of 

exposure to Finnish, however, appeared to have established categories for the L2 quantity 

distinctions. In the present set of studies, the L2 users showed a native-like duration 

MMN only for those speech sounds that could not be processed via the L1 phonetic 

categories. The L2 users’ difficulty to establish categories for quantity may be due to 

their inability to utilize duration cues linguistically even though they can be perceived 

non-linguistically.  
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